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Abstract

The programming models presented by parallel computers are diverse and changing. We study
the implementation of our application in different parallel programming models with a collab-
orative effort between chemical engineers and computer scientists.

The application considered is the class of three-dimensional elliptic partial differential equa-
tions (Laplace, Stokes, Navier) with solutions represented by boundary integral equations.
These partial differential equations appear in basic microscopic descriptions of heterogenerous
structured continua. As an example, we present results for the macroscopic dielectric constants
and thermal conductivities of two-phase materials. The parallel algorithm follows naturally from
our use of the Completed Double Layer Boundary Integral Equation Method (CDLBIEM).

The application is implemented in the message-passing programming model using the stan-
dard send-receive message-passing primitives in the CMMD library and the static shared-
memory model in the form of Split-C, both running on the Thinking Machines CM-5 parallel
computer. Furthermore, we study its implementation in a new parallel programming model —

cooperative shared memory (CSM). Since CSM machines do not (yet) exist we evaluate our

il



application and machine designs with the Wisconsin Wind Tunnel (WWT), which runs CSM
programs and calculates the performance of hypothetical parallel computers.

A major result is the demonstration that coding CDLBIEM is much simpler under CSM
than with the message-passing model or Split-C, and yet performance (computational times

and scaleup) is comparable, a fact that may be of great interest to designers of future machines.
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Nomenclature

Roman letters

A, A system matrix

Chu system submatrix

D electric displacement

Ep efficiency

E~ electric field at infinity

F force

G Green’s function

G Green’s function for container problem
K double layer kernel

K double layer kernel for container problem
N number of bodies

N() nullspace

M number of boundary elements

P number of processors

Q charge

Qa net charge of body «

S boundary of the fluid or void domain

Sa surface of body o

Sp speedup

Sp modified speedup

S communication schedule (CS) matrix

1% interior domain (vacuum)

V. exterior domain (body)

Voo whole domain

a sphere radius

c volume fraction of inclusions

b, E) constant system vector

d; constant system subvector

gk criterion for assigning body k to a processor
g° sum of criteria over all bodies on one processor
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n surface normal pointing into the body
n surface normal pointing from the body
Pr electric dipole moment of body &

sk1 element of CS matrix

x position vector

x solution vector

&, position of singularity in body «

Yi solution subvector on body &

Greek letters

B electric susceptibility
) Dirac’s delta function
Oij Kronecker delta

€ dielectric constant

€ permittivity constant

n position vector on body surface

£ position vector as integration variable

® double layer density

Phi collocated double layer density on element 1 of body &

<p(a) basis function of the nullspace on body «
) electric potential

Yo electric potential on body «

> electric potential at infinity

Mathematical operators

Wielandt deflated double layer operator
double layer operator

gradient w.r.t. ®

¢ gradient wr.t. §

divergence

444=e

Subscripts

"

number of processors
boundary element label
body label

body label

Q ==
— .
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Superscripts

processor label
body label

domain at infinity
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Chapter 1

Introduction

Parallel computers and their programming models are developed by computer scientists. This
thesis discusses an application which may influence this development. Application program-
mers and computer scientists have to cooperatively create parallel computers with one widely
accepted programming model.

We solve N-body electrostatic interaction problems with boundary integral methods whose
implementations exceed the limits of uniprocessor computers. In order to solve these problems,
these methods are implemented in parallel MIMD (multiple-instruction and multiple-data) pro-
gramming models on large-scale parallel machines. The features and performance of these

implementations are studied.

1.1 Problem Definition

We solve elliptic PDEs for N-body problems. Examples for elliptic, time-independent PDEs are



e the Laplace equation

Vi =0 (1.1)

where 9 is the electric potential,

o the Stokes equations

—Vp+uVie=0 | V-v=0 (1.2)

where v is the velocity and p the pressure, and

e the time-independent version of the Navier equation

A+ )V(V - u) +uVia+pb =0 (1.3)

where u is the elastic displacement [37].

This work discusses the numerical Completed Double Layer Boundary Integral Equation
Method (CDLBIEM) which is presented for the Stokes equations in Kim & Karrila’s Micro-
hydrodynamics [31]. CDLBIEM can be applied to all three equations. For the first time,
CDLBIEM is used to solve the Laplace equation.

The main purpose of this work is to optimize CDLBIEM on parallel machines and to in-
vestigate different programming models. In order to analyze the performance of the different
implementations of CDLBIEM, the Laplace equation is chosen as the simplest case. Unlike the
two other equations, the Laplace equation has a scalar variable as its unknown. By appropri-

ate extensions of the optimized program for the Laplace equation, the computationally more



expensive Stokes and Navier equations can be solved.

The physical motivation for studying these equations is as follows. The Laplace equation
describes the electric potential ¢ in electrostatics [25] but is also the equation for the temperature
T in time-independent heat conduction [6]. In the considered electrostatic problems; N charged
bodies that are perfect conductors are distributed in an unbounded, 3-dimensional domain.
CDLBIEM solves for the electric potential on the bodies’ surfaces and in the surrounding
medium. By using the method of images, we solve problems where the bodies are inclusions
in a macroscopic medium which is surrounded by a spherical perfect conductor. The solution
returned by CDLBIEM is used to calculate the macroscopic dielectric constant of this two-
phase material [26, 53]. Because of the analogy of the electrostatics to time-independent heat
conduction, this dielectic constant is equal to the thermal conductivity of a two-phase material,
where the N bodies are perfectly conducting inclusions in a medium with a finite thermal
conductivity surrounded by a perfectly conducting container [4].

The Stokes equations describe the creeping flow of Newtonian fluids with very high viscosity
or negligible inertia [31]. CDLBIEM solves the mobility problem where the forces and torques
acting on the particles are given and the velocity and the rigid body motion of the particles are
to be calculated.

A simultaneous solution of the Stokes and the Laplace equations is of great importance
in the form of electrorheological fluid simulations. An electrorheological fluid is a suspension
of polarizable particles in a nonconducting oil [32]. Its outstanding rheological property is

the change of its viscosity, which is of orders of magnitude greater under an applied electric



field. This feature makes electrorheological fluids very interesting for applications in mechanical

systems such as clutches, engine mounts, shock absorbers, hydraulic valves, among others.

1.2 Parallel Computing

CDLBIEM is implemented on three programming models: the message-passing model, the
static shared-memory model with non-uniform memory access (NUMA) in the form of Split-C,
and the cooperative shared memory model (CSM). The first two models run on a Thinking
Machines CM-5, the third model runs on a cache-coherent distributed memory machine with
the cache-coherence protocol Dir SW. However, since this computer does not (yet) exist, it is
simulated as a virtual prototype on the Wisconsin Wind Tunnel (WW'T) which also runs on a

Thinking Machines CM-5.

1.3 Summary of Results

CDLBIEM is a fast numerical method with a high numerical accuracy. In the case of two almost
touching spheres, its relative error is less than half a percent. Although our programs can solve
for the double layer density on bodies with arbitrary shapes, we use spheres as the simplest
case. By implementing a scheme which controls the communication between the processors,
the iteration time is reduced by a factor of around three for problem sizes examined in this
study. This communication scheme corresponds to the physical interactions between the bodies

and reduces the amount of communication and computation. Especially the reduced amount of



communication is of great advantage for implementations on future parallel machines, which will
have a even greater discrepancy between their computation and communication performance.

The parallel implementations of CDLBIEM have performed well. However, scaling results
are available only for the implementation on CSM. The speedup of the program is 7.7 from
running it on 16 processors to running it on 128 processors.

By using the method of images, we can solve for the dielectric constants and thermal con-
ductivities of two-phase materials. The computational predictions of these properties match
closely the analytical solutions obtained by Zuzovsky and Brenner [53] (error of less than 0.6%
for small volume fractions ¢). The amount of computation is increased by one order of mag-
nitude, but the amount of communication and the memory usage stays constant because the

number of unknowns does not increase.

1.4 Organization

Chapter 2 gives an overview of the electrostatics according to Jackson’s book [25], and the
Poisson equation and its special form, the Laplace equation, are derived.

In Chapter 3 the Completed Double Layer Integral Equation Method for the Laplace equa-
tion is presented. The Laplace equation is transformed to its classical boundary integral repre-
sentation which includes a single layer and a double layer integral. This equation is modified
to the completed double layer boundary integral equation wherein the double layer operator is
made invertible by completing its range. In addition, Wielandt’s deflation reduces its spectral

radius from 1 to 1/3 in the case of one unit sphere. The resulting boundary integral equation



for the unknown double layer density is a Fredholm integral equation of the second kind.

In Chapter 4 we discretize the boundaries of the bodies into boundary elements, collocate
the double layer density, and approximate the integrals by Gauss-Legendre quadrature. This
yields a linear algebraic equation system for the unknown double layer density.

In Chapter 5 we first discuss different aspects of parallel computers, such as their architecture
and their programming models. Then we give an introduction to the additional criteria of
parallel programming. In order to solve the linear algebraic equation system, we use Jacobi
iteration. This algorithm is parallelized and, by using a communication schedule, extended
to an asynchronous iteration with accelerated convergence properties similar to the sequential
Gauss-Seidel iteration. Afterwards, the load balance and the implementation of this algorithm
on the three different programming models are discussed.

In order to solve for physical properties of two-phase materials, we use the method of images
in Chapter 6 which yields a modified boundary integral equation for N bodies that are inclusions
in a spherical perfect conductor. Our program solves this boundary integral equation and returns
the double layer density on the boundaries of the bodies, which in turn can be manipulated
to yield the macroscopic dielectric constant and the macroscopic thermal conductivity of the
two-phase medium.

In Chapter 7 we analyze the performance of the implementations on the three different
programming models. Furthermore, we present results for the electric potential and for the
physical properties of two-phase materials.

The final chapter, Chapter 8, summarizes this thesis and proposes future work.



Chapter 2

Classical Electrostatics

Classical electrostatics provides the physical foundation for the problems considered in this
work. Following the book by J.D. Jackson [25], the fundamental equations of electrostatics
are presented and Poisson’s equation and its special form Laplace’s equation are derived which
describe the electric potential in a vacuum with or without charges.

Since the systems considered in our problems are assumed to be in equilibrium or quasi-
static, there is no time-dependence and electrostatics can be applied instead of electrodynamics.
Electrostatics deals with macroscopic phenomena. Thus, point charges or electric fields at a
point must be viewed as mathematical constructs that permit a description of the phenomena
at the macroscopic level, but may fail to have meaning microscopically.

The basic two equations from which all other equations in this chapter can be derived, are
Coulomb’s law and Gauss’ law. The next section introduces Coulomb’s law and defines both

the electric field and the electric potential.



2.1 Coulomb’s Law

Coulomb’s law describes the force between two charged bodies at rest with respect to each other.
Coulomb discovered experimentally that the force between two charged bodies separated in air

by a large distance compared to their dimensions

e varied proportionally to the magnitude of each charge,

e varied inverse proportionally to the square of the distance between them,

e is directed along the straight line joining the charges,

e is attractive, if the bodies are oppositely charged; and repulsive, if the bodies have the

same type of charge.

Based on his observations the following law for the force F between two charges in a vacuum is

stated:

I q1q2 (w1 - wz) (2 1)
= 3 .
47T€0 |ZB1 — $2|

where

® ¢, g5 are the negative or positive magnitudes of the point charges,

® x, x, are the 3-dimensional positions of the charges,

41072 mE s the permittivity constant (vacuum) where c is the speed of light!. For the
TC E

.60:

same charges interacting in a dielectric medium, we usually observe a smaller force, and

'The equations given in this chapter are in the MKSA unit system.



so Coulomb’s law is modified by increasing the permittivity with a scale factor known as

the dielectric constant e.

It is seen that the interactions between one charge and other different charges are superim-
posed linearly. Although the interaction is measured by a force, a useful concept is to introduce
a potential field, called the electric field. A test charge g at a given point position in an electic
field E experiences the force

F=Eq. (2.2)

This is the definition of the electric field E. The test charge must be negligibly small, so that
it does not disturb the electric field. Combining the equations (2.1) and (2.2) the electric field

at a point # due to a point charge g; at the position ®; is

1 _
E(:z = 4 (w w;) .
Amey |@ — @ |

(2.3)

The experimentally observed linear superposition of forces due to many point charges ¢; at

the positions x; results in the electric field

P o Gl Tg) | (2.4)

47T€0 i=1 |1E - &

The generalized Coulomb’s law is obtained introducing the charge density at a point =

p(z) = lim Aqlz)

Avso AV (2'5)



10

which is measured in % using MKSA units. Replacing the sum in Equation (2.4) by a volume

integral yields the generalized Coulomb’s law:

1 p(§) (= — &)
E(z) = 47T€O/V el (2.6)

Note: this is the electric field created only by a distribution of point charges. The additional
electric field induced by electric dipoles is discussed in Chapter 3.
The electric field is irrotational. This fact may be derived from Equation (2.6). The vector

factor in the integrand is the negative gradient of the scalar 1/ |2 — &| w.r.t. @:

— 1
ik S v . (2.7)
|:B — €| |1E - €|
Thus, Equation (2.6) becomes
1 p€)
E(z) = — v d(Ve) . 2.8
()= 5V [ g ) (28)
But the curl of every gradient is equal to zero, so that
VXE=0. (2.9)

As shown in Equation (2.8) the electric field can be written as the gradient of a scalar. This

scalar function is named the electric potential (). The electric field is defined as the negative



11

negative of this gradient:

E(z) = —Vi(a) . (2.10)

When a test charge is moved in an electric field, work is done. If the test charge is moved
from a point ®; to a point @ along a curve ', then this work is given by the following line

integral:

VV:—/F-ds:—q/E-ds. (2.11)
c c

The minus sign indicates that the work is done against the action of the field. Replacing E by

the negative gradient of the potential yields that the integral is path independent:
W:q/cV¢-ds:q/cd¢:q/ Ao = q (0] = lay) - (2.12)

2.2 Gauss’ Law

In this section the second fundamental equation of electrostatics is presented: Gauss’ law. To
specify a potential field completely, the divergence and the curl of the field must be given. So
far only the curl is given in Equation (2.9) as derived from Coulomb’s law. In addition, Gauss’
law specifies the divergence of the field.

Consider a point charge with magnitude ¢ placed inside a closed surface S. Gauss’ law

states that the integral over this surface, with the normal vector n pointing outside, evaluates



12

to:
L if g inside S
E%E-ndS: ’ (2.13)
° 0 if g outside S .

If there is a continuous charge density p(z) inside the closed surface S, Gauss’ law becomes:

ﬁﬂnw:iAM@W (2.14)

€o

Gauss’ law may be written in differential form applying the divergence theorem:

}{E-ndsz/v-Edv. (2.15)
S 1%

Since this equation is valid for any arbitrary volume V| both integrands must be equal:
v.E=L (2.16)

This is Gauss’ law in differential form.

Using the fact that E = —V - 9, we obtain Poisson’s equation:

Vip=-——. (2.17)

€0

If there is no charge, Poisson’s equation reduces to Laplace’s equation:

Vi =0, (2.18)
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From now on we use electrostatic units instead of MKSA units®. Thus, Poisson’s equation
becomes:

V) = —4np(x) . (2.19)

2For a brief discussion of units see Appendix A.



Chapter 3

Boundary Integral Equation

Methods for Laplace’s Equation

In this chapter boundary integral equations (BIEs) are derived that model the electric potential
generated by N fixed charged bodies' with arbitrary shapes. First of all these bodies are
located in an unbounded infinite void domain (in Chapter 6, we consider N bodies placed
inside a spherical perfect conductor).

Laplace’s equation derived in the previous chapter is transformed by an integral transfor-
mation. The resulting equations are boundary integral equations that are equivalent to the
differential Laplace equation but have the advantage that their unknowns are densities confined
to the body surfaces, i.e., in going from the PDE to the BIE there is a reduction in dimension-

ality. In addition, the completed double layer-boundary integral equation method (CDLBIEM)

'The terms body, particle and charge are used interchangeably throughout this work.

14
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leads to an integral equation that can be discretized into well-posed linear algebraic equations
(see Chapter 4), and is amenable to solution by fixed-point iterative methods (see Chapter 5).

First, the solution of Poisson’s equation for a point charge in a vacuum is presented, which
yields the Green’s function. Second, CDLBIEM is presented in detail for the single-body ge-
ometry. Finally, the equations are extended to the multi-body geometry in a straightforward
manner.

The underlying assumption is that the medium surrounding the bodies is a vacuum, so
that the dielectric constant of the medium is equal to 1. Furthermore all bodies are perfect

conductors, i.e., their surfaces are equipotentials.

3.1 Integral Transformation

In this section we present Green’s function of the Poisson and Laplace equations. First, this
Green’s function is shown to be the solution of Poisson’s equation in case of a point charge.
Second, it is used as the kernel of the integral transformation to transform Laplace’s equation
into a boundary integral equation. The analysis is presented for one arbitrarily shaped body and
yields the classical integral representation for Laplace’s equation that can be used directly as a
computational method. However, in the subsequent sections a far more efficient computational
method based on the double layer potential is derived. Finally, in Section 3.5 the analysis is

extended to N bodies.

2The analysis is readily extended to a dielectric medium by introducing a dielectric constant not-equal to 1.
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3.1.1 Green’s Function

As a small example for the application of the integral transformation, consider a point charge
of magnitude @) placed at the origin in an unbounded infinite space V,, and a superimposed
time-independent ambient electric field, which causes the ambient potential ¢¥*°(«). The charge

density is given by Dirac’s delta function scaled with @:

ple) =Qé(z) ;=€ V., . (3.1)

Inserting this charge density in Poisson’s equation (2.17), the governing equations for the electric

potential created by one point charge () placed at the origin are obtained:

PDE Vi) = —4nQdé(x) =€ V.,
BC llf/) ||a7|—>oo = ¢Oo(w)

(3.2)
integrability V x V¢ =0 xeV, .

¥ (&) is an ambient potential field, e.g. for a constant ambient electric field E* this potential
is given by ¥*°(z) = —E* - .

Green’s function of this boundary value problem is given by:
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and G(z, £) satisfies the following homogeneous equations:

PDE VG =-6—=) €€V

BC G ligsoo =0

integrability V¢ x V.G =0 EeV, .

The Equations (3.2) are transformed by the following integral transformation with G(z, ¢)

as its kernel:

/V Gz, &) ® dV . (3.5)

The transformed equation is:

| Gl Veule) dve = ~47QG(2,0) (3.6)

To use the boundary conditions the volume integral on the left-hand side is evaluated by Green’s

theorem, also known as Green’s second identily®:

| (Vicu©) - 6Viue) ave= § (Vv - GVev) - n(e) dse (3.7)

oo

where S, = 9V, is the boundary of the unbounded space at infinity. Inserting the boundary

3Green’s theorem corresponds to intergration by parts in one dimension and Lorentz’s reciprocal theorem for
vector fields.
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conditions of Equation (3.2) into the boundary integral over S yields the solution for ¢:

Vie) = 47QG(,0)+ § (GVe — uVO) - nle) S

=¢=(z)

= )+ = . (3.8)

Note that the Green’s function G(=,0) is the fundamental solution of both the Poisson and

Laplace equations.

3.1.2 Charge with Arbitrary Surface

Now we consider one arbitrarily shaped body with a closed surface S = V. The whole domain
is denoted by V,,. The vacuum enclosing the charge is denoted by V', further on called the
wntertor. Therefore the domain of the body is V, = V, — V, further on called the exterior.

Since there is no other charge in the vacuum, the governing equations in V' are:

PDE Vi =0 zeV

BC V| jejmoo = V() (39)

integrability V x V¢ =0 zecV°.
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The Green’s function for this problem is the same as in the previous section. Transforming

these equations with the integral transformation yields the following integral equation:
| Geoviv@ai=o. (3.10)
Again we use Green’s theorem and get:

/V V2GU(E) Ve + (Ve — VeG) - n(€) dSe = 0 (3.11)

S+Se0

where n is the surface normal on the particle pointing out of the integration domain into
the particle. Evaluating the first integral yields the potential on the body surface and in the

integration domain:

—(z) ifxzeV’

VG Y€ dVe=1 g ifegV (3.12)
Vo
:—5(5—1‘)

—3U(z) ifzes.

As = approaches the surface S from both sides, the surface looks locally planar. The jump in
the potential is equal in magnitude whether & approaches from the interior or from the exterior
because of symmetry. Therefore the result on the surface is —%;b(m)

The second integral is an integral both over the body surface and the space boundaries at



20
infinity. By applying the boundary conditions both for ¢ and for G we get:
§ GVt = VeGy) - n() dSe = v (@) (3.13)

By inserting the equations (3.12) and (3.13) into Green’s theorem (3.11) yields the final solution

of this section:

Y(z) ifxzeVP
0 fagV | = U7()- f Gl ale) - Veule) ds;
% j(e) ifweS J single layer integral
+ }ing(w,g) CA(€)0(€) dSe (3.14)

double layer integral

where n = —n is the normal vector on the surface pointing out of the conductor and into the
vacuum.

Inside the conductor the potential is zero, that is, there is no electric field, since the interior
of a charged surface is a Faraday’s cage, as long it is a perfect conductor.

There are three contributions to the potential as shown in Equation (3.14):

e The ambient potential ¢*°(«) can be invoked by a constant electric field, E* for instance,

and thus ¢*°(z) = —E* - .

e The first integral is the single layer potential, that corresponds physically to a surface

distribution of charges.
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o The second integral, the double layer polential, is a potential created by a surface distri-

bution of electric dipoles.

Using Equation (3.14) as a computational method is not recommended, since its discretiza-
tion leads to linear algebraic equations with a dense system matrix. This system of equations
has to be solved by algorithms such as Gaussian elemination, which are notoriously difficult
and inefficient to implement on parallel computers.

Furthermore (3.14) is a Fredholm equation of the first kind [15, 45], that is the unknown %
only appears under the integrals. In the sense of Hadamard this equation is ill-posed, which can
result in convergence problems especially when fine meshes for discretization are used. The ill-
posedness is caused by the compactness of the single-layer operator and its unbounded inverse,
so that small changes in the input are mapped by the unbounded inverse operator to large
changes in the output. Therefore an alternate integral representation is approached, which

yields a well-posed Fredholm equation of the second kind and a highly-parallel algorithm.

3.2 Properties of the Double Layer Operator

Before we derive the completed integral representation, we show some properties of the double
layer operator, which describes the influence of a surface distribution of electric dipoles on the
electric potential, as in Equation (3.14). There is still just one particle considered, whereas in

Section 3.5 the equations for N particles are derived.
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The double layer operator is basically the double layer potential of Equation (3.14):

Kie) =2 § VeGla, ©) -a(€0(6) dSe = § Kz, (6) dSe (3.15)
where & € S. The kernel of the double layer operator is defined as:

AE) (2 - &)

K(e,€) = 290Gl ) -(€) = = s

(3.16)

Note that K¢ (=) is scaled by 2, so that the subsequent equations may become more concise.

3.2.1 Jump Properties

The jump properties of the double layer potential are important and are derived directly from
the integral representation of ¢(z), Equation (3.14). The single layer potential and the ambient
potential are continuous across the particle surface S, thus the jump in the potential is caused

by the double layer potential alone. Let & = n + en with n € S and |¢| < 1, so that

x € V° corresponds to € >0,
z €S corresponds to € =0 ,and (3.17)

® ¢V corresponds to €< 0.
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Inserting this substitution in Equation (3.14) yields the jump properties of the double layer

operator:

lim ¢ Ko, €)p(€) dSe = ?55 K(n, €)p(€) dSe + o(n)

e=>0+ Jgo
lim ¢ K(z, €)p(€) dSe = f K(n, &) p(&) dSe — ¢(n) -
e~ S S

3.2.2 Adjoint Operator

The adjoint operator K* of the linear operator K is defined as follows:

(Ke1, 0a) = (@1, K @2)

where (f, g) denotes the inner product

(f.9) = § Fgds

(3.18)

(3.19)

(3.20)

(3.21)

of the functions f and g defined on the surface S. Thus the transformation with the operator

K inside an inner product may be flipped to the other side of the inner product by changing

the operator to KC*.

We are going to prove that the normal derivative of the single layer operator is the adjoint

operator of the double layer operator. The potential ¢(z) is given by the single layer operator
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applied to the charge density o(®) on the particle surface S:

Y(z) = 1% 7(6) dSe . (3.22)

E S|$_€|

The normal derivative of 1(x) on the particle surface is given by:

Ov(e) _ n(z) Vi(z) = ﬁfi %0(5) dS

_ % ?i K (€, 2)o(€) dS (3.23)

_ %?{51{*(%,5)0(5) ds .

Thus the adjoint kernel is given by K*(z, &) = K(&, ), only the two independent variables =
and & have to be swapped. Note that since K*(z, &) # K(=, &), the double layer operator K is
not self-adjoint.

Like the double layer operator K, its adjoint operator K* is discontinous crossing the particle
surface S. However, the sum K(o) 4+ K*(0) is a continuous function when crossing S, because
the combined kernel is no longer weakly singular. Thus, according to the jump properties of K

in Section 3.2.1 the jump properties of K* are

lim, § K" (=, €)o(¢) dS; = fi K" (n, €)0(€) dSe — o(n) (3.24)
lim § K (2. )0(€) dS = ]i K" (n,€)0(€) dSe + o(n) (3.25)

with # =+ enand n € S.
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3.2.3 Eigenvalues for The Unit Sphere

In this section the eigenvalues of the double layer operator for one unit sphere are derived. Since
the double layer operator is compact it has a discrete spectrum of eigenvalues, with at most
one accumulation point (see Theorem 5.3.2 in [15]). Let () be an eigenfunction of the double

layer operator K and A its corresponding eigenvalue, that is:

Kiple) = § (2, €)p(€) dSe = Mp() (3.20)

There is a system of 2 characteristic equations. The first equation is obtained by imposing the

condition that the electric field is continuous across surface S:

E“(n) = lim E(z) = lim E(z) = EY(n) (3.27)

e—0— e—=0+

where # = 5 + e¢n and E®) and E® are the interior (# € V°) and exterior (z ¢ V or = € V,)
electric fields. The solution of Laplace’s equation for one charged unit sphere may be written

in spherical harmonics [25]:

n

l,bfle)(r,ﬁ,gb) = a,r”" Y P (cos §)e™? (3.28)
1}17(5)(7',0,@ = A"t Z P:Ln(cosH)eim(z’ (3.29)

where wr(;) is one mode of the potential in the interior region (z € V°) and z,br(f) one mode in

the exterior region (= ¢ V). Here P™ are the Associaled Legendre Functions. Since E = -V,
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(3.27) can be written in terms of ¢{*) and ¢{¥:

2410
or

o)
or

(3.30)

r= r=1

With the harmonic solutions (3.28) and (3.29) this leads to the first characteristic equation:

om) _ n+1

(3.31)

The second characteristic equation is obtained from the jump conditions (3.18) and (3.19).
Let ¥ and 9(*) denote the interior and exterior double layer potential. Note: the single layer
potential and the ambient potential are not taken into account here. From the jump conditions

we get:

0 = 5 § KO,Oa(€) dSe+ 5 () = 500 + () (3.32)
0 (m) = % jg K(n, €)pn(€) dSg — %%(n) = %(An — Daln) (3:33)

since @(x) is an eigenfunction of K and a given double layer density on S. By dividing both

equations, the second characteristic equation is obtained:

(3.34)
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By combining (3.31) and (3.34), we get the eigenvalues:

1+ 5, |
Sl n=0,1,2.. . (3.35)

A, = —
1—x, 2n+1

The range of the eigenvalues is A, € [—1,0) and the spectral radius max, |A,| is equal to 1. The

only accumulation point of the eigenvalues is 0.

3.2.4 Nullspace

In this section we derive the null-space of the operator 1 4+ £:

(14+K)pla) = p(z) + f Ko, €pl) dSe = 0. (3:36)

This null-space and the eigenspace of the operator K for the eigenvalue —1 are identical, because

Ko(e) = —1-¢(z) . (3.37)

These two spaces play an important role in the subsequent sections.

First, we prove that the null-space N(1+ K) is non-trivial and second, that its dimension is
exactly 1. The statement that the null-space is non-trivial is equivalent to dim[N (1 + K)] > 1.
We consider the electric potential inside the particle ® € V,. But so far, we have transformed
Laplace’s equation only for the interior domain V' and not for the exterior domain V.. This

transformation in the exterior domain is performed in the same way as the one for the interior
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domain in Section 3.1.2. For the unknown double layer density ¢(z) on the particle surface S

we obtain a boundary integral equation similar to Equation (3.14):

37(2) = § G, 93(e) - Vepl®) dSe - f VeGle. ) - nl@p(©)dS . (339)

Note the sign change compared to Equation (3.14). The domain of integration is now the inside
of the particle and not its outside, but the surface normal n is still pointing to the outside.
Let us assume that ¢(z) = const; & ¢ V is a null-function of 1 + K. The single layer integral

in Equation (3.38) vanishes, so that

Sele) = s Ke(a) (3.39)

This is:

(1+K)p(z) =0 . (3.40)

This is exactly the definition of the null-function. Thus ¢(2) = const is one null-function of
1 4+ K, so that the null-space of 1 4+ K is non-trivial and its dimension dim[N (1 4+ K)] > 1.
To prove that dim[N (1+ K)] = 1 we have to prove now that dim[/N (14 K)] < 1. Therefore,

we consider the adjoint problem:

(1+K)o(z) =0 ;z€S. (3.41)
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This is the normal derivative of the single layer potential on the inner side of the particle surface:

O/
lim 9¢(e)

e=0—  On

= lim K*(m £)o(€) dSe

r=n+en e—0-

_ ?{A (n, €)0(€) dSe + o (n) (3.42)

using the jump condition of the adjoint operator (3.25). Using the same notation for the exterior

potential as in Section 3.2.3 we have:

=(1+K)=0. (3.43)

The energy dissipation rate of the single layer potential in the exterior domain « ¢ V or @ € V,
is given by

8 (e) e)alzb (o)
= / Vvl av = — jfw ds . (3.44)

Since % = 0 we also have V() = 0 for all # € V,, which implies that the single layer
potential 1 is constant in V,. The single layer potential ¢ is continuous across the particle
surface S, so 1 is also constant on the interior side of S. So we have a Dirichlet boundary value
problem with the boundary condition ¥ (x) = (¥ = ¢){¢) = const in the interior region = € V°
or z ¢ V.. By the uniqueness theorem of solutions of Laplace’s equation there is simply one
degree of freedom. Thus dim[N (1 4+ K*)] <'1

The operators K and 1 + K are defined in a Banach space, which is a normed linear real

(or complex) space that is complete. Furthermore, our operator K is a completely continuous
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linear operator in this space & € V°, and the Fredholm-Riesz-Schauder theory [15] is applicable.
One of its theorems states that the dimension of the null-spaces of both operators 1 4+ K and
1 4+ K* are identical. Thus we also have dim[N (1 4+ K)] < 1.

Since the constraint derived beforehand states that the dimension of N(14K) is also greater
or equal to 1, the dimension is equal to 1 (dim[N (14K)] = 1) and its basis function is ¢(z) = 1.

The normalization of this basis function with respect to the inner product

(f,9)= %ﬁfg ds (3.45)

yields the normalized basis function of the null-space on the surface of body a:
(3.46)

where S, is the surface area of body a.

Since the dimension of the null-space is non-zero, the operator 1+ K is singular and cannot
be inverted. The Fredholm-Riesz-Schauder theory says that the deficiency in its range is equal
to the dimension of its null-space*. Its range is completed in Section 3.4 which makes the

operator 1 4+ K amenable to inversion.

4This corresponds to the case of square matrices, where the column rank equals the row rank.
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3.3 Completed Double Layer Boundary Integral Representation

This and the subsequent sections present a modified form of the integral equation (3.14), which
can be solved very efficiently. The single layer potential in the integral equation (3.14) is replaced

by a field created by a point charge of magnitude (), and position =, € V,:

Qa

|e — @]

- § Gle. () - Veu(e) dSe — (3.47)

The position of the point charge inside the perfectly conducting body is arbitrary. However,
numerical considerations can help to find an optimal position, for which the numerical solution
is most accurate and the convergence time is optimal [41]. This optimal position depends on
the particle configurations considered and the given shape of the bodies, so that there is no
simple approach to this optimal position.

In our problem, @),, the net charge of particle a, is given and the constant potential ¥, on
the particle surface is sought®. The modified integral representation, which we call the completed

double layer boundary integral representation, is
o Qo -
Vi) = 9 () + T f Kl 0 dSe w e VO (3.48)

where p(n) ;n € S is the double layer density and K is the double layer kernel as defined in

Equation (3.16). Note that the double layer integral does not represent the entire electric field

5This is the elastance problem, i.e., the inverse of the capacitance problem.
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created by a charged body. For this reason, the potential field of a point charge has been added
in Equation (3.48). By using the jump condition (3.18), an integral equation for the unknown

double layer density ¢ is obtained on the particle surface S.

Vo = U(n) = () + MC_’)%’;H + fs K(n,&)e(&)dSe+¢(n) ;meS. (3.49)

This is a Fredholm equation of the second kind, since the double layer density ¢ also appears
outside the integral. The advantage of this equation is that upon discretization the linear
algebraic system is well-conditioned, which is not the case for a Fredholm equation of the first

kind like Equation (3.14).

3.4 Wielandt’s Deflation

The operator 14K in Equation (3.49) has an incomplete range, since its null-space has dimension
1 as shown in Section 3.2.4. For this reason, 1 4+ K is singular and cannot be inverted. The
range of 1 4+ K is completed by assigning the unknown potential to a projection of the double

layer density to the null-space:

Yo = —¢@ <997 99(“)>

1

-5 e dse (3:50)
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where ©(®) is the normalized basis function of the null-space. The choice of the orthogonality
conditions is somewhat arbitrary. However, in order to remove the indeterminacy, the projec-
tions of the chosen vectors to the null-space must be linearly independent, i.e., the volume of
the corresponding parallelepiped in the null-space must be nonzero. This volume being small
although nonzero can lead to numerical difficulties through an ill-conditioned linear system. As
a good choice, the null-function of 1 4+ K is used.

Equation (3.50) is a further condition for the double layer density ©'®) and is inserted into
Equation (3.49). The resulting equation for the unknown double layer density on the particle

surface S is:

pl) = ")~ 2 - f O S~ f K Op© s 65D

In general, the term deflation refers to algorithms for moving eigenvalues to the origin (see
Figure 3.1). Wielandt’s deflation [31] uses only the eigenfunctions of the operator and not
those of its adjoint operator. For our problem, we know the eigenfunction corresponding to the
eigenvalue A = —1 of the operator K, since this eigenfunction is identical to the basis of the
null-space of the operator 1 4+ K, as discussed in Section 3.2.4. This eigenvalue is deflated to
0, which, in the case of one sphere, reduces the spectral radius to %, the absolute value of the
next dominant eigenvalue of K. As mentioned beforehand, K has just one accumulation point

of eigenvalues, namely 0. Since 1 is not an accumulation point, the spectral radius is strictly

reduced and relaxation methods with fast convergence can be applied.



34

i i
-1.0 -0.33 -0.2 0

Figure 3.1: Wielandt’s deflation moves the eigenvalue at —1 to the accumulation point 0.

In Equation (3.51) the operator K is replaced by the new operator
H=K+¢" (o6) . (3.52)

Note that ¢(®) is still an eigenfunction of H, but now its corresponding eigenvalue is 0.

Wielandt’s deflation can be illustrated for matrices in canonical form:

10 0 0 0 X X X
0 -1 0 0 0 -1 0 - 0
0 o0 -1 o [+¢ (0 )=10 0o -1 o |- (353
0 0 0 0 0 00 0 0 o0

Wielandt’s deflation destroys the canonical form of the matrix, but the matrix remains trian-
gular. The eigenvalues of a triangular matrix can be read off the diagonal. Just one eigenvalue

has been shifted to 0, the remaining eigenvalues have not been shifted. Here the canonical
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form is used for illustration, but the results also apply to the original system, since similarity

transformations applied to obtain the canonical form preserve the eigenvalues.

3.5 Multiparticle Problem

The equations derived so far are valid for a single body « in an infinite unbounded space. In
this section the equations are generalized to N bodies in an infinite unbounded space. Each
body k is described by its associated point charge of magnitude @), its position @, and its
surface S,. We have N bodies, so k varies in the range from 1 to N. Now the boundary surface
S of the vacuum in the completed double layer boundary integral representation (3.48) is the
union of all body surfaces S;,. Instead of having just one point charge, we have an array of N
point charges, which create a sum of potential fields. These ideas are expressed in the following

equation corresponding to the equation for one body (3.48):

K(z, &)p(¢) dSE} e V0. (3.54)

By using the jump condition (3.18), we obtain the boundary integral equation on the surface

Sy, of particle k corresponding to Equation (3.49):

| Koo dsef +otn) mes. (359

where ¢ is the uniform potential on the perfectly conducting body k.
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Now we have a new operator 14+ /X with a new null-space. This null-space has one dimension
for each body surface and is altogether of dimension N and is spanned by N basis functions.
There are N distinct basis functions, one for each body surface:

— re € S
oF (@)= { k=1..N . (3.56)

After Wielandt’s deflation has been applied in parallel for all basis functions of the null-space,
the following integral equation for the unknown double layer density ¢ on the different particle

surfaces Sj, is obtained:

o) =~ = o f ple)ase - {—H

=1 |T’ B wll

+f Kmos@ds (57

This system of integral equations cannot be solved analytically for arbitrary body shapes and
number of bodies. The rest of this work approaches the solution of this system numerically, using
boundary elements and fixed-point relaxation methods. Having obtained the solution ¢ of the

equation system (3.57), the potential on each body k can be calculated using Equation (3.50):

1
Yy = GH jék (&) dSe .

The potential in the vacuum is readily available by evaluating Equation (3.54).



Chapter 4

Numerical Approach

There are two steps involved in the numerical discretization of Equation (3.57). First, the
double layer density ¢ has to be approximated numerically, based on a finite set of variables.
Second, the integrals have to be evaluated with a finite computable approximation.

The body surfaces are divided into similarly shaped boundary elements. For boundary
elements we use planar triangles, which are sufficient for the considered case of spherical bodies.
However, to solve problems with more complex bodies, these planar boundary elements should
be replaced by more efficient curved boundary elements.

The integrals are evaluated on each boundary element separately using Gauss-Legendre
quadrature. The following sections describe the boundary elements and the quadrature. The
result of this chapter is a linear algebraic equation system that is solved by relaxation methods.
This chapter mentions ‘iteration’ and ‘iterations steps’ frequently. Please refer to Chapter 5 for

an explanation of these terms.

37
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4.1 Boundary Elements

Each body surface is divided into M boundary elements, which are similarly sized planar tri-
angles in our case. The vertices of these triangles are elements of the bodies’ surfaces. A
boundary element is described by an isoparametric formulation using interpolation functions.
The following transformation transforms the 2-dimensional natural coordinate system with the

coordinates (r, s) to the 3-dimensional coordinate system a:

T = E hi(r,s)p; . (4.1)

Here p; are points on one boundary element’s edges and h; are interpolation functions, also
known as shape functions. Since we use planar triangles, ¢ is equal to 3 and the transformation

becomes:

x=p; +1(py — p1) +5(ps — p1) (4.2)

where p; are the triangle’s vertices. The natural coordinates vary in the ranges 0 < r <1
and 0 < s < 1 —r. The triangle vertex p; corresponds to (r,s) = (0,0), p, corresponds to
(r,s) = (1,0), and pj3 corresponds to (r,s) = (0,1). This range spans one whole boundary
element and the integration on one boundary element is carried out over this range.

To obtain a polyhedron with an arbitrary number of planar triangles, we use an algorithm
called tesselation. We start with a polyhedron with a fixed number of triangles — a tetrahedron,

a octahedron, or an icosahedron, for instance. Then each triangle is divided into 4 new equally
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Tetrahedron
Octahedron
lcosahedron

Starting polyhedron

—»| Divide BEs — new BEs

Project vertices onto sphere

— Add new BEsto polyhedron

Tesselation

y

Scale polyhedron I

Figure 4.1: Tesselation.
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sized triangles, whose vertices are the vertices of the old triangle plus the center points of the
edges of the old triangle. Since these center points are not on the charge’s surface, this procedure
results in an error. This error can be omitted by projecting these center points onto the charge’s
surface, thus all the new triangle vertices are also on the sphere’s surface. This iteration step
which is presented in Figure 4.1 is run iteratively, so that polyhedra of arbitrary order can
be obtained. As a further refinement, we scale the resulting polyhedra, so that its surface is
equal to the sphere surface. Its vertices are not on the sphere’s surface but outside the sphere.

Figure 4.2, Figure 4.3, and Figure 4.4 show polyhedra with 20, 80, and 320 elements.

Figure 4.2: Polyhedron with 20 elements (icosahedron).
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Figure 4.3: Polyhedron with 80 elements.

Figure 4.4: Polyhedron with 320 elements.
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4.2 Numerical Quadrature

Collocation is used to reduce the infinite domain of the double layer density ¢(n) to a finite set
of variables at distinct points ¢(ng;) = @r;*. The collocation ensures that the error of ¢ vanishes
at these collocation points n;. In our approach to the problem, one boundary element has one
collocation point, its centroid, so that the double layer density ¢(n) on the whole boundary

element Sy; is equal to its value at the one collocation point:

() = o) ;m € Spi - (4.3)

Hence the double layer density is assumed to be constant on one boundary element. This
approximation can be refined using collocation of higher order. However, first order collocation
is sufficient for our spheres problems and leads to sufficiently accurate solutions, as shown in
Section 7.1. The major advantage of using first order collocation is to reduce the number of
unknowns ;: there is only one unknown per boundary element. This leads to less computation
in one iteration step and to less memory usage. The drawback is that the decrease in the error
per iteration step is not as big as it would be in the case of higher order collocation and the
final converged solution is not as accurate. However, the less computation allows us to run
more iteration steps in the same time period and the less memory usage allows us to use more
boundary elements, which partly compensates for the loss of accuracy.

The integration is approximated by Gauss-Legendre quadrature. In contrast to classical

'The index ki denotes the ith boundary element on the kth body’s surface.
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integration formulas, such as Simpson’s rule, where the integral of a function is approximated
by the sum of its functional values at a set of equally spaced points, Gaussian quadrature
formulas choose collocation points which are not necessarily equally spaced. In addition to
choosing the weight coeflicients, there is a further degree of freedom in choosing these points
on the abscissa, which leads to a higher order of approximation using the same number of

functional evaluations. Gaussian quadrature formulas are all of the following type:

b Q
/x W@ de =Y w () (4.4)

Different functions W (z) determine different classes of the Gaussian quadrature and can be
chosen to remove integrable singularities from the desired integral. The most common chosen
W(z) is W(z) = 1, which leads to the Gauss-Legendre quadrature. The weight coeflicients w,
and the collocation points z, are chosen, so that the residual

b Q
| W@ i@ d =Y v f) (4.5)

=a

is minimal. The theory behind Gaussian quadratures is closely tied to the theory of orthogonal
polynomials. The function f(z) is approximated by polynomials, which have the same functional
values as f(z) at the @ collocation points z,. This theory is well described and the values of
w, and z, are listed in [47].

In our case, we have a 2-dimensional integration to evaluate instead of a 1-dimensional one,

as described in Formula (4.4). A common way to evaluate this integration is to divide the
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integration domain into a 2-dimensional grid of lines parallel to both coordinate axes spanning
one boundary element. The offsets of these straight lines are the collocation points of the 1-
dimensional Gaussian quadrature. First, a 1-dimensional Gaussian quadrature is executed along
the lines parallel to the first coordinate axis which leads to a 1-dimensional set of functional
values. Second, a further Gaussian quadrature is executed along the second coordinate axis
using those functional values. For the 2-dimensional integration of a scalar function g(z,y)
with a 2-dimensional input set over a rectangular domain spanned by a cartesian coordinate

system, the numerical integration is as follows:

/yi /: 9(e,y)dedy =~ w, XQ: w,g(x,, T,) . (4.6)

r=1 s=1

Note that, if the weighting coeflicients and collocation points along the x-axis, w, and z,, are

given, we have to scale the corresponding @, and Z, for the y-axis in the following way:

d—

ﬁ;s—b_sws s=1..0 (4.7)
d—

@s—b_zxs s=1..Q . (4.8)

However, our boundary elements are no rectangles but triangles. The quadrature formula

given in Equation (4.6) is modified to evaluate an integral over a triangle with the vertices p,
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Figure 4.5: Boundary element. The boundary element is a planar triangle with the vertices py,
Y and Ps3-

p, and ps. The vectors describing its edges are
Uy =p2— P, (4-9)

Uy =pP3s — P11, (4~10)

as shown in Figure 4.5. The scalar function h(z) is defined on this triangle. According to
the isoparametric formulation, the transformation from the 2-dimensional natural coordinates
(r,s) to the 3-dimensional system @ is given by Equation (4.2). The integral of h(z) over the

triangular area is given by:

1 1—r
/ h(z) dS, :/ / hipy + wir + wss) [uy X us| ds dr (4.11)
Sa r=0 Js=0

where |u; X uy| is the Jacobian of the transformation. According to the lines of the 2-dimen-
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sional quadrature for a rectangle, the following numerical approximation for the integral on the

triangle is obtained:

Q Q
/ h(x) dS, = [uy X ws] 3w, 3 e h(py + w2, + i) (4.12)
Sa r=1 s=1
where
Wrs = (1 =z )wy, ;r=1.0,s=1.0Q, (4.13)
Ty=(1—-z)z, ;r=1.0Q,s=1.0Q. (4.14)

In the boundary integral equation (3.57) the integral

§e@ds=3" ¢ wle)ds, (1.15)

is approximated by

M
ﬁ (&) dSe = D pr;Shj (4.16)
k j=1

since the double layer density ¢(€) is constant on one boundary element & € S;”.
The second integral is evaluated by Gauss-Legendre quadrature. The double layer integral

over the whole body surface is equal to the sum of all integrals over the different boundary

2Skj denotes both the domain and the area of the boundary element.
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elements on the body surface:

K pl€)dSe =30 § Kin €ele) dS (4.17)

The integrand on the right-hand side is the product of the constant ¢(€) and the double layer
kernel K(n, €), which is not assumed to be constant on the boundary element. Hence ¢(€) can
be moved out of the integral, whereas the remaining integral is solved by numerical quadrature

and Equation (4.12) is applied with h(z) = K(n, =):

Q Q
?{ K(n, &) dSe = w1 X ugj o] Z w, Z W K (1, puj1 + wiji e + woZys) (4.18)
5

17 r=1 s=1

In the case of spherical bodies, a natural position for the point charge =, is the center of the
sphere k. This might not be the optimal position for the point charge as discussed in Section 3.3,
but is a very convenient approach for arbitrary configuration of spheres.

The final numerical approximation of the boundary integral equation (3.57) is:

YQ
Pri = =Y () — Z 4 (4.19)
=1 i — 2]
by
| M N M Q Q
(_S_k ;Skj@kj - ;; [ X g o] ; w, ; Wys K (Mpei, prj1 + w1, + Ulj,2$rs)90lj)

N M
21:1 Zj:l kiij Pl
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Note that ¢*°(n) is also collocated at the collocation points n = n;. The discretized Equa-

tion (4.19) is a linear algebraic equation system:

x=A-x+b (4.20)
or
NM )
T, = ZAmnxn +b, ;m=1.NM (4.21)
n=1

where the unknown vector is @(4_1)p4i = ¢r;- The procedure in Chapter 3 guarantees that
this equation system has one unique solution «. The subsequent chapters of this thesis describe

parallel relaxation methods to solve this system.

4.3 Widely Separated Boundary Elements

The calculation of the 2-dimensional ()-point quadrature described in Section 4.2 is very expen-
sive. Furthermore, it yields an accuracy in the approximation of the integral that is not needed
for far apart boundary elements ki and [j. Two boundary elements are considered to be far
apart, if they neither belong to the same body surface nor to the surfaces of two neighboured
bodies. In this case, instead of a quadrature with ¢ > 1 collocation points, a quadrature

with one collocation point is used. The resulting discretized equation according to the lines of
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Equation (4.19) is:

N
ori = —¢7 (M) Z @
=1 |"7kz’ $z|
=bk;
1 M N M
+ (_S_k z; Skj*pkj - lz;z:l Slj ]{(’mﬂ', nlj)*plj) (422)
j= =1 j=

N M
Zz=1 Z_j:l kiij Pl

k=1.N , i=1.M.

The algorithm to solve the linear algebraic equation system (4.19) or (4.22) is divided into
two parts: the first part creates the matrix A and the vector b using the geometry of the
problem, which basically involves calculating the double layer kernel K for each boundary
element - boundary element pair. The second part solves this system of equations using fixed-

point iteration methods.



Chapter 5

Parallel Computing

The linear algebraic equation system (4.19) or (4.22) derived in Sections 3 and 4 has a large
number of unknowns and a huge system matrix A. For a problem of N bodies, which are
discretized into M boundary elements each, the number of unknownsis M - N. The number of
elements in A is (M - N)?. For instance, for N = 1024 and M = 320 the number of unknowns is
327,680, which using single precision values is equivalent to 1 MB of memory, but even this is
dwarfed by the 400 GB needed for the system matrix. The problem size and the large amount
of computation demand the use of parallel computers.

The equation system (4.19) or (4.22) is solved by a parallel form of the Jacobi iteration that
can be applied because of the small spectral radius of the system matrix. The Jacobi iteration
can be easily parallelized, that is the equation system is split into smaller parts which can be
solved on different processors in parallel. This reduces the runtime to a tolerable amount. A

further advantage of the Jacobi iteration is that the system matrix is split into square block

a0
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matrices. To reduce the memory space just a part of these block matrices is stored permanently
in memory, the rest reconstructed during the iteration. Furthermore, this parallel algorithm is
modified to a block Gauss-Seidel iteration, which naturally fits our physical problem and reduces

the execution time by an order of magnitude.

5.1 Parallel Computers

This section gives a general overview of parallel computers and discusses several aspects in
parallel computing.

To implement an algorithm on a parallel computer, the algorithm has to be parallelized. This
procedure of parallelization has several issues that do not occur in the serial implementation
of this algorithm. The first issue is splitting the total workload of the algorithm into smaller
tasks distributed to different processes, which is known as task allocation. The second issue
is communzicalion between these processes. Communication is expensive on parallel machines
compared to pure computation: a memory or network access is to two orders of magnitude
slower than a floating-point operation and this discrepancy will most likely increase on future
machines. A third issue is the synchronization of the task execution on the different processors.
Synchronization is necessary if the processes are dependent on each other, or if they exchange
data. In general, one such process which executes one part of the overall task, is run on one
Processor.

Because of these different issues, there is a whole set of different parallel computers. De-

pending on their characteristics, parallel computers can be classified in the following classes:
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Number of Processors. Parallel machines can be distinguished by number of processors
and communication granularity. Machines are called massively-parallel, if they have hundreds
to thousands of processors. Communication granularity specifies the overhead of communicating
relative to computation (for example, a floating-point operation). A machine has coarse-grain
communication when communication takes hundreds to thousands of floating-point operation
times, since the communication must initiate work taking thousands of floating-point operation
times to reasonably amortize communication overhead. A machine has fine-grain communica-
tion when communication takes tens of floating-point operation times.!

It remains to be seen, however, how fine-grained the communication of future massively-
parallel machines will be. Massively-parallel machines would like to have fine-grain communi-
cation so that they can divide the work on a parallel job across many processors, but physical

contraints place more processors further apart, favoring more coarse-grained communication.

Global Control Mechanism. All parallel computers have some kind of a global control
mechanism. They are classified by what extent their processors are controlled by this mecha-

nism. There are two different main kinds of parallel computers:

o SIMD = Single Instruclion Multiple Data. The different processors of a SIMD machine
run the same sequence of instructions synchronously. Each processor runs instructions
on a different set of data, so that the data set is distributed to the different processors.

SIMD machines’ power lies in broadcasting, where distributed data is collected or parallel

'This is not currently a concensus on the exact boundaries between fine- and coarse-grain.



93

operations are applied to distributed data in a very efficient way.

o MIMD = Multiple Instruction Multiple Data. These computers not only have different
data sets, but also execute different sequences of instructions on different processors inde-
pendently. The different program versions presented in this thesis are all SPMD = Single
Program Multiple Data codes, which is a common programming model for both SIMD and
MIMD machines. Each processor runs the same program, but in the case of the MIMD

model it can control its instruction flow by control directives, like if or for.

Programming Models. This paragraph is also covered in our paper [51]. A programming
model is an abstraction from both programming languages and computer hardware that speci-
fies the operations that may be performed and the cost of performing them without going into
too much detail. For instance, single-processor computers are unified by the von Neumann pro-
gramming model that allows people to switch languages (e.g., FORTRAN to C) and computers
(VAX to DECstation) without great disruption. The von Neumann model’s consensus is so
broad that many users forget it is there.

Broadly speaking, today’s parallel computers support three programming models: message-
passing, shared memory, and data parallel. Our program has been implemented in the former
two programming models.

In the message-passing programming model each of the P processors has its own local ad-
dress space. A program in this model uses these P address spaces and communicates between

the processors by explicitly sending messages. An address space is a mapping from addresses
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(variable names in source codes) to memory locations (storage of variable values). Thus, on
a message-passing computer, the hardware will treat accesses to one variable by two different
processors as referring to two different locations. The cost model for message-passing is that
messages have a large start-up cost, implying that performance will be better for programs that
send only a few, large messages.

The shared-memory programming model uses P processors, but allows them to share a single
address space. Thus, accesses to the same address automatically refer to the same variable.
A consequence of this variable sharing is that communication occurs implicitly whenever a

processor reads a location last written by another.

Processor Node 1 Processor Node P

Processor 4{ Cache 4{ Cache

Network Marmor I Network Memo
Interface y Interface Y

Figure 5.1: Organization of a parallel computer. Many parallel computers are composed of P
processor nodes, each of which contains a microprocessor, cache, and physically local memory.
The nodes are connected by an interconnection network (e.g., a 2D mesh or a fat tree).

A common myth regarding shared memory is that all memory must reside in a central

place. To the contrary, most future shared-memory computers will use the same physically-
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distributed memory modules as a message-passing computer (see Figure 5.1). In contrast to
message-passing, however, shared-memory programmers and compilers do not have to know
exactly where data reside, because they to not have to move it between address spaces with
explicit messages.

The algorithm described in the upcoming sections has been implemented as programs in

three different programming environments:

o CMMD message-passing library. The program is implemented in ANSI-C on a Think-
ing Machines CM-5 and calls CMMD library functions [49]. The program’s data set is
distributed to the local address spaces of the different processors. Data between these
processors is exchanged by sending messages on the data network, which connects the

processors of the CM-5 in a fat tree structure [48].

e Split-C. Split-C is a multi-processing programming language developed by the Computer
Science Devision at the University of California - Berkeley [11, 12]. The programming
model of Split-C is the static shared-memory model. The address space in Split-C is shared
and 2-dimensional, where the first coordinate is the processor number and the second the
local address on this processor. A memory access is called local, if the accessing processor
p accesses a memory location with its first coordinate equal to p. This memory location is
locally stored on processor p. If the memory location has a first coordinate different from
p, the memory access is called remote. By using global pointers and issuing split-phase
assignments or signaling stores, all processors can access the shared 2-dimensional address

space. The cost model for Split-C is similar to the message-passing model, where local
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memory accesses are fast and cheap, but remote memory accesses are slow and expensive.
Split-C creates a communication protocol that uses communication primitives called active
messages, which closely match the hardware functionality of the CM-5. However, the
implementation of these primitives in the current Version 1.0 of Split-C is based on polling*
and does not take use of the CM-5s hardware interrupts. For this reason, the Split-C
program has many similarities to the message-passing program, where receiving messages

is also based on polling.

o Cooperative shared memory (CSM). The programming model of CSM [24] is the dynamic
shared-memory model, where accessed remote data is automatically copied to the local
cache of the accessing processor. A cache maintains a high-speed memory buffer closely
coupled to a processor, and copies memory locations into this buffer, which are likely to be
accessed in one of the subsequent instructions issued by the processor [23]. Since accesses
to a cache are much faster than memory accesses, especially in the case of remote mem-
ory accesses of parallel computers, instruction sequences, which access the same memory
locations frequently and therefore have a high cache hit-ratio, execute much faster on
computers with caches than on computers without caches. The implementation of CSM
in the Check-In / Check-Out (CICO) model provides a cost model, where accesses to the
local caches are cheap, but accesses to memory locations in shared memory are expensive,

if they are not copied to the local cache of the accessing processor.

2The term polling states that a processor has to check its input buffer, in order to see if it has received any
messages.
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5.2 Parallel Programming

5.2.1 Performance Issues

The expressions and methods as already discussed in [5, 17] and summarized in this section
provide information about the efficiency and quality of a parallel program. These methods are
necessary to predict the performance of a program on future large-scale parallel machines. For
example, we want to simulate ER fluids with up to one million particles. The behavior of a
program on a parallel machine with respect to numbers of processors or different input set sizes
is widely known as scaling. The different methods to test the scaling behaviour are called scaling
models.

One of these methods, constant-problem-size scaling, which is repeatedly used in this work,
assumes that the program parameters are not changed at all during the scaling studies. The
same program with a constant input set is run on a parallel machine several times using different
numbers of processors. Using P processors and a problem of size N (number of bodies, for

example), we get the first feature for the quality of a parallel program:

Sp(N) = (5.1)

is the speedup of the program. 7(N) is the execution time of the optimal serial (uniprocessor)
version to solve the problem of size N. Tp(N) is the execution time of the parallel version with
P processors. The closer Sp(N) gets to the ideal relation Sp(N) = P, the better is the parallel

program. In general, this ideal line is never reached.
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Another magnitude, having the same information as the speedup, is the ratio

called efficiency. In the ideal case Ep(N) is equal to 1.
There is a practical difficulty with the definitions given above because the optimal serial
time 7" (N) is unknown in general. For this reason, there are differently defined alternatives for

T*(N), as follows:

e T*(N) is the execution time of the best existing serial version.

e T*(N) is the execution time on the parallel machine with one processor. In the case of
constant-problem-size scaling, it is not efficient or not possible to obtain 7*(N) with one
processor. The problem would have to be small enough to be solved on one processor.
But by distributing this problem onto many processors, the workloads of the processors
might get too small without any significant statement about the scaling. Thus, to keep
the workloads high, larger problems have to be chosen, which cannot be solved on one

processor because they exceed its resources.

e 7*(N) is the execution time of the program on the parallel machine with P* processors,
where P* < P.® The speedup based on this execution time does not include any penalties

caused by the transformation of the sequential program into the parallel program, but

#Speedup studies based on this number are widely used throughout this work.
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yields significant results for the scaling of the parallel program because of sufficiently high

workloads.

The latter two alternatives do not provide any information on the absolute merits of the algo-
rithm in contrast to the original definition of 7*(N). However, this can be seen as an advantage,
since they provide direct information on the quality of the parallelization.

A fundamental issue is whether the maximum attainable speedup S, (N) can be made
arbitrarily large, as N is increased. The main difficulty is that, in general, programs have
sections that are inherently sequential, such as input or output subroutines. Those sections
become bottlenecks in the highly parallelized version of the program. This is known as Amdahl’s
law [3] and can be quantified as follows: if a program consists of two sections, one that is
inherently sequential and the other that is fully parallelizable, and if the sequential section

consumes a fraction f of the total execution time, the attainable speedup is bounded by:

1

W< e

< VP (5.3)

1
J
Note that, for computational problems for which f tends to zero as the size of the problem N
increases, Amdahl’s law is not a concern.

Another method for testing the scaling of a parallel program used in this work is the time-
constrained scaling. Hereby not the input set is kept constant, but the execution time. An a
priori execution time for the program is modeled as a function of the number of processors and

the input set. Then the program is run on different numbers of processors with different input
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sets, so that the a prior:i estimated execution time is kept constant. The actual execution times

Tp are all the same in the ideal case, but in reality they obey the following constraint:

TP 2 TP—l ,P > 1 (54)

where P denotes the number of processors. The big advantage of this scaling method is that,

given the number of processors, the largest possible problem may be solved in every run.

5.2.2 Concurrency

Important new factors contributing to the execution time of parallel programs are communica-
tion and synchronization. Communication time is spent when data is sent from one processor
to another one in the case of distributed-memory machines or when one processor accesses the
global shared memory in the case of shared-memory machines. Synchronization is closely re-
lated to communication, since it occurs in general if one processor waits for another processor
to update global data.

A very important issue for a parallel program is to keep the communication and synchro-
nization times as small as possible, so that the speedup and the scaleup come close to ideal.

The concurrency of a parallel program is a broad measure for the number of processors
that are, in some aggregate sense, simultaneously active in carrying out the computations of a
given parallel program, that is they are not waiting for communication or synchronization. The
degree of concurrency generally depends on the method by which the overall computation is

split into smaller subtasks and is divided among the various processors for parallel execution.
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For efficiency, it is important that the computation time of parallel subtasks is relatively uniform
across the processors. Otherwise, some processors will be idle waiting for others to finish their
subtasks. This aspect of parallel computing is known as load balancing. As the number of
processors increases, the degree of concurrence and the amount of communication also increase.
Both go hand in hand. Thus, by using more and more processors we must deal with an increased
communication penalty. This may place an upper bound on the size of problems of a given type
that we can realistically solve, even with an unlimited number of processors.

In any parallel or distributed algorithm, it is necessary to coordinate the activities of different
processors to some extent. This coordination is often implemented by dividing the algorithm
into phases. During one such phase each processor should operate independently from all the
others, i.e.; it should not synchronize and communicate. Communication and synchronization
should mainly just take place in-between two phases. In one phase the program is said to
run asynchronously. Keeping these phases as long as possible insures that the concurrency is

maximal.

5.2.3 Synchronous Algorithms

A synchronous algorithm is an algorithm, where the start of each phase is simultaneous for
all processors and the end of the message receptions is simultaneous for all messages. The
implementation of a synchronous algorithm in an inherently asynchronous parallel machine
environment requires a synchronization mechanism, that is, an algorithm that is superimposed

to the original and by which each processor can detect the end of each phase. Such an algorithm
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is called a synchronizer. There are two main approaches on which synchronizers are based: global
synchronization and local synchronization.

In global synchronization all processors are synchronized at the end of each phase either by
a build-in synchronizing barrier, by sending messages, or by setting semaphores. All processors
start the next phase synchronously. In case of the message-passing model, the main idea is that
if a processor knows which messages to expect in each phase, then it can start a new phase
once it has received all those messages. This is known as local synchronization. The shared
memory model does not have any implicit synchronization. However, two or more processors
can be explicitly synchronized by using locks, for example. The communication penalty for
local synchronization is considerably less than in the global synchronization case. There are

factors, however, such as programming complexity, that favor the global method.

5.2.4 Asynchronous Algorithms

For each processor, there are times at which the processor executes some computation without
any global data exchange and other times at which it exchanges data with other processors.
The algorithm is said to be asynchronous if these times and thus also the order of computations
and data exchange periods are not fixed a prior: and can vary widely upon execution.

There are several potential advantages of asynchronous algorithms versus synchronous ones:

Reduction of Communication and Synchronization Overhead. Since data exchange
is limited to just a few processors, only those processors have to be synchronized locally in case

of the message-passing model. In case of the shared-memory model the only overhead is caused
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by the cache-coherence as described in Section 5.6.3. The other processors that do not take

part in the data exchange, operate independently.

Reduction of the Effects of Bottlenecks. Consider the following case: one or few pro-
cessors are busy doing computations without updating their part of the global data and other
processors are waiting for this new data in a local synchronization. In case of the asynchronous
model processors, that do not depend on this data, continue their computation. Whereas in
the synchronous model all processors have to wait for the data to be updated in a global
synchronization. The asynchronous model facilitates a high concurrency. However, the local
synchronization may cause a chain reaction in the asynchronous model, which can even cause
deadlocks. That is, one processor is waiting for a second, where the second processor is waiting
for the first. Both processors are waiting for each other and cannot continue their computation,
forever. This is an infinite loop and causes the program to stall. Dead-locks can easily occur in

rings caused by careless programming and using resources to their limits.

Convergence Acceleration due to Gauss-Seidel Effect. The parallel version of our algo-
rithm has an effect like the serial Gauss-Seidel iteration, as discussed in the upcoming sections.
It causes the solution to converge faster, since information is incorporated faster in the updated

formulas. The newest information is used as soon it is available.
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5.3 Jacobi Iteration

This and the subsequent section describe an iterative parallelized algorithm, which can be
implemented in all SPMD programming models discussed in Section 5.1. Thus, this section
and its successors are the foundation for all three versions of our program. First we describe
the sequential form of this algorithm, the Jacob: iteration, to solve the linear algebraic equation
(4.20) as given in Section 4.2:

xr—=A-2z+b.

The basic idea of the Jacobi iteration is to guess the solution @ initially, then to insert this
guess into the right-hand side of Equation (4.20). Evaluating the right-hand side gives a new
and better approximation for the solution ®, which is inserted again into the right-hand side.
This iteration step is repeated until the deviation of the approximation from the exact solution
is sufficiently small.

Let @(_1)pm+:(t) denote the approximation of the solution ¢; on the ith boundary element

on the kth surface in iteration step ¢, then the initial guess is given by:
Z,(0) = by, . (5.5)

Inserting this initial guess into the right-hand side of (4.20) we get a new, more accurate guess
Tpm(t+1):

NM
Ta(t+1) = E Amnxn(t) + b, m=1.NM . (5.6)
n=1
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The time ¢ > 0 has dimensionless integer values and denotes the current iteration number.
The Jacobi iteration converges to the exact solution =, if and only if the spectral radius of
A is less than one, which is true for our problems, in general. The proof for the convergence
is as follows. Let Az(t) denote the absolute error of the approximation: Az(t) = =(t) — =.
Using complete induction this error at iteration step ¢ is given by Az(t) = A’ - Az(0), which is
a sequence converging to 0, if and only if the spectral radius of A is less than 1, assuming that

the initial error Az(0) is not equal to 0.

5.4 Parallelizing the Jacobi Iteration

In general, the parallelization of an algorithm involves two steps: First, distributing the data
to the local address spaces of the different processors. Second, splitting up the computation,
that is the work, to the different processors. It turns out that both steps melt into one step in
the case of the Jacobi iteration. The solution vector for the double layer density = is split into
subvectors, where each subvector describes the double layer density on all boundary elements
on one body surface. In the same manner the system matrix A and the vector b are split. The
parallel version of the Jacobi iteration features a small amount of global read and write data,
which results in little communication between different processors, which is one of the reasons

for its very good speedup and scaleup.
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5.4.1 Splitting the Matrices

The solution vector @ is split into N subvectors:

U

Yo

Yn

where the subvector y, describes the discretized double layer density ; on all the boundary

elements of the body k, that is y, describes the complete solution on body &:

Yr1 Pr1 T(k—1)M+1
Yr2 Pk2 T(k—1)M+2

Yp = = = k=1..N . (5.8)
Yem Prm Tk—1)M+M

In the internal program representation x is an array of 2nd order. Correspondingly A and b are

split into submatrices or subvectors respectively.

Cll Cl2 e ClN

C21 CZ2 e C2N

h
Il

(5.9)

Cyi Cn2 -+ Cyn,
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d,

>
1

(5.10)

dy
The submatrix Cj; represents the influence from body [ onto body k. This interaction is
independent of all other interactions in the system (the system is linear), so that this influence

is expressed only in Cy;, and in no other submatrix of A, where A is an array of 4th order.

Cklll Ckll2 U CYkllM
Clel CklZZ U CklZM
C(klMl CklMZ U CklMM

Each element of Cy; is calculated in the following way:

Criij = Ap-vm+ae-nmsn = Awiy 1k I=1.N, ij=1.M (5.12)
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by using Equation (4.19) or Equation (4.22). Finally, dj, is a subvector of the whole constant

vector b and b like @ is an array of 2nd order. That is

dkl b(k—l)M+1 bkl
de E(k—l)M—}-Z ka
dy s 6(k—1)M+M by

5.4.2 Splitting the Equations

This section describes the parallelized version of the Jacobi iteration formula (5.6). At first the

synchronous version will be derived; the asynchronous version is presented in the next section.

N

7 subvectors, where P is the number of processors; that is,

Each processor calculates Np =
the bodies are uniformly distributed across the processors, assuming the number of bodies is a
multiple of the number of processors. Every processor owns a subset of the iteration equations
(5.6) as well as a subvector dj, of the constant vector b, and is responsible for updating its

set of solution subvectors y,. Processor p has to evaluate the following formulas to update its

subvectors within one iteration step:

Bl 4 1) = 35 gy )+ s k=0~ DNp + 1] (pNp), i= 1M . (514)

=1 j5=1
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Written in tensor form:

Y2 (1)
y(t+1)= ( C., Ciy -+ Cun ) . ' + ( d, ) (5.15)

k=1[p—1)Np+1]..(pNp) .

This equation system is equivalent to the original Jacobi iteration (5.6). Figure 5.2 is a more

A

: il\ 4 O v
L PI’0C2]7 \_ (Cua---1C24)/
: z; ¢ O v

4

Proc 2) L (Cyr-Cui)) global

m—

[> Dot Product — Communication

A

-

Figure 5.2: Parallel Jacobi iteration. Four bodies are distributed onto two processors. The
solution on the bodies is communicated between all processors, which evaluate the dot products
in parallel.

illustrative representation of this iteration scheme and shows the distribution of the bodies onto
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the different processors. In order to calculate the solution on its bodies, processor p needs the

following objects:

e the subvectors of the solution vector at timepoint (iteration) ¢ 4+ 1 for the bodies on p:

ye(t +1) ;k=[(p—1)Np +1]..(pNp) , (5.16)

e the whole “old” solution vector at timepoint ¢:

y(t)  k=1.N, (5.17)

o all those submatrices of the system matrix, which describe the influence of all N bodies

onto the Np bodies belonging to processor p:

Co k=[(p—1)Np+1]...(pNp), 1=1.N, (5.18)

e Np subvectors of the constant vector d:

di i k=[p—1)Np+1]..(pNp) . (5.19)

Except for the “old” solution vector at time ¢, all subvectors and submatrices can be stored
in the local memory of processor p. The solution vector at time ¢ either has to be stored in

global memory in the shared-memory versions or has to be communicated by messages in the
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message-passing version.

The iteration scheme (5.15) is a synchronous algorithm as described in Section 5.2.3. One
iteration step (5.15) includes a dot product, an addition, and an assignment, which can be
executed independently in a parallel phase, i.e., asynchronously. But at the end of this iteration
step there is a synchronization barrier, at which the solution subvectors are communicated
between all participating processors. Each processor has to know the solution at time ¢ +
1 of all processors in order to execute the next iteration step at time ¢ + 2. This leads to
synchronization overhead, since some processors may take longer to execute the iteration step
than others, especially when parts of the system matrix C have to be recalculated, as discussed
in Section 5.4.4. The faster processors have to wait for the slower processors and are in the idle
state. A large amount of communication overhead also occurs in both the message-passing and
the CSM versions: at the end of each iteration step all processors distribute all their solution
vectors at the same time, where the network or the shared memory may become a bottleneck. To
get around these problems, this iteration scheme is modified, so that there is no synchronization

necessary at the end of each iteration step.

5.4.3 Asynchronous Iteration

A different and better approach is an asynchronous iteration scheme where a solution subvector
on a distant body is communicated, as soon as and only when it is needed. This guarantees that
the most recent solution vector is always used, which accelerates the convergence of the solution

as the Gauss-Seidel Iteration does in the sequential case [5]. Furthermore, the synchronization
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and communication overhead is reduced.

Removing the synchronization barrier gives us more freedom in choosing a suitable iteration
scheme. The physical insight into the problem of charged bodies tells us that the local interac-
tions between bodies are dominant against the interactions between bodies that are far apart.
Thus, we do not want to consider the influence from a body that is far apart onto a particular
body as often as we consider the influence from a close body in our calculations. To update an
influence from one body k onto another body / means to communicate the solution on body &

to body I. This idea improves the performance of the algorithm implementation in two ways:

1. If the two considered bodies are calculated on two different processors, the amount of
communication is reduced, since the solution on the bodies are exchanged less frequently
between the two processors. This demands that neighboring bodies should be clustered
on one processor, so that the computation of the solution on neighboring bodies can be

executed locally on the processors without any communication.

2. The amount of computation is reduced, since a processor only evaluates the dot product
associated with a solution subvector, if this solution subvector has been updated in its
local address space. Furthermore, if the submatrix Cj; needed for this dot product is not
stored in memory but has to be recreated because of memory shortage, the decrease in

computation is of orders of magnitude.

At the present time, the problem size is limited by the computational performance of current

parallel machines, and item 2 dominates. However, on future machines item 1 may become
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more important as memory and network performance lag behind microprocessor development.

The implementation of this modified iteration scheme is as follows. A further input to the
algorithm is the communication schedule matriz (CS matriz) S, whose integer elements describe
the degree of influence from one body onto another. This N x N matrix is constructed a priors.
The element s;; minus 1 is the number of iterations, in which the update of the influence from
body [ onto body k is suppressed. That is, the influence is only updated in those iteration
steps t, where the division of ¢ by s;; yields no remainder. In those iteration steps the processor
calculating body k requests the solution on body [ from its processor or accesses global shared
memory to obtain the solution on body [. After this it recreates the corresponding submatrix
C,,; if necessary and updates the corresponding dot product.

Note that there is no global synchronization occuring in this modified iteration scheme.
However, there is local synchronization occuring in the message-passing and the Split-C versions
implemented by a request-and-send scheme. For instance, the implementation in the Split-C
version is based on global assignments (see Section 5.6.2), which the Split-C compiler translates
into request-and-send messages. The CSM version does not have any local synchronization.

A mathematical representation of this iteration scheme is shown in the subsequent para-

graphs for one processor p, where 1 < p < P. Processor p updates the solutions on its Np
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bodies in one iteration step as follows:

y1(lk1)

ya(lya)
yr(t) = ( C., Ciy -+ Cin ) . . + ( d;, ) (5.20)

yn (ten)
k‘ = [(p — 1)NP + 1](pNP)7 mlax{tk,} S t < mlin{tkl + Skl} .

Here t;;, denotes the latest iteration step, in which the solution subvector 4, on body [ has
been updated on processor p. That is, the last time processor p has evaluated the dot product
Cy; - y;- Note that this scheme still converges to the correct solution because the eigenvalues
of the system matrix Cy; are dominated by the eigenvalues of its diagonal submatrices, which
describe the influence from one body onto itself (see Section 7.2). The execution of the iteration
may be divided into distinct phases, in which the solution converges to some local fixed point
on one processor, but this fixed point moves at that time, when the influence from a distant
body is updated. This starts a new phase and a new fixed point is approached, until another
long range interaction is updated.

The scheme shown in Equation (5.20) is not optimal, since the dot products have to be
evaluated in each iteration step, even when the corresponding solution subvector has not been
updated. A modified improved scheme does not calculate the new solution in the current

iteration step from scratch, but calculates the difference between the new solution y(¢) and the
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old solution y, (¢t —1). This approach has the advantage that not all of the dot products have to
be evaluated, but only those, which correspond to the updated solution subvectors y,;(¢). The
drawback is that the old dot products have to be stored in the array zy(tx;) = Cri - yi(tw)-
But the penalty of storing these dot products is outweighed by the significant decrease in

computation time. This is the mathematical representation of the improved iteration scheme:

zgi(tit) = Crr - wi(tyr)

ye(t) =yt — 1) + Z (20 (trt) = 2o (b — Si)] (5.21)

=1t =t

k = [(p — 1)Np + 1](pNP)7 mlax{tkl} S t < mlin{tkl + Skl} .

The element of the CS matrix s;; is interpreted as a priority, which denotes the degree
of the influence from body ! onto body k. The highest priority is si; = 1. In this case the
corresponding solution subvector y; is communicated to processor p in each iteration step. A
straightforward approach for setting the elements s, is taking a feature that is closely related
to the distance between the bodies k£ and [. In our approach sj; is proportional to the distance
between the bodies k and [, scaled by the maximum distance occuring in the given array of
bodies. There might be better criteria for the degree of influence between two bodies, e.g. as

presented in [17], but our choice already speeds up the execution time significantly.
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5.4.4 Creating the System Matrices

This section describes how the system matrix C and the constant vector d are calculated. The
vector d is calculated completely before the iteration algorithm is started, whereas the system
matrix C, which uses a huge amount of memory, is optionally calculated only partially to save
memory. Of course, we want to use the whole main memory on the computer, so we store as
many submatrices as possible in memory. Those submatrices stay in memory for the whole
iteration. Whenever the non-stored submatrix Cy,; is needed in the iteration scheme (5.21) it
has to be calculated in this iteration step. After the corresponding dot product Cy,; - y; has been
evaluated, the memory for Cy; is relinquished and can be used for the storage of a different
submatrix.

One submatrix Cy;, which describes the influence from body [ onto body &, has M? elements.
For each element we have to calculate the integral of the kernel K over the boundary element
area of body [, as described in Equation (4.19) and Equation (4.22). If we assume the distance
between the two involved boundary elements to be large, then each calculation of a submatrix
C}; causes an execution of a double loop. If this distance is small, then an even more expensive
quadruple loop is to be executed, because Q-point Gaussian quadrature (with ¢ > 1) is used
to integrate the kernel.

Because of the high computational expense of calculating a submatrix Cy;, frequently used
submatrices are calculated before the iteration and stored in memory permanently, whereas
submatrices that describe long range interactions are not stored permanently but are calculated

when they are needed. As a criterion for the priority of a submatrix Cy; we use the values of the
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Figure 5.3: Matrix set-up before the iteration. The routines for setting-up the diagonal matrix
C,.;, and the non-diagonal matrix Cy,; are also called during the iteration.
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elements in the CS matrix §. The submatrices are sorted by their priority and the submatrices
are stored permanently in memory according to this order. This ensures that submatrices with
high priorities, e.g. the submatrices which describe the interactions from a body onto itself, are
always kept in memory, and that submatrices with low priorities are not stored but calculated
during the iteration. Figure 5.3 shows the routine that controls the setup of the submatrices

before the iteration.

5.5 Load Balancing

The load balance of our program has a large impact on its scaling. In order to optimize its
scaling, the bodies are distributed onto the processors in such a way, that each processor has
approximately the same workload which guarantees an optimal load balance. We use the CS
matrix to estimate the amount of computation time needed to calculate the solution on one

body. This estimation is the sum of all entries in row k of the CS matrix § which corresponds

to body k:

N
Gk =D Sk - (5.22)
=1

The greater g is, the less often influences of other bodies onto body k are updated, and the
less communication and computation is executed. The sum of these criteria g, over all bodies

Oon one processor p

pNp

9= > (5.23)

E=(p—1)Np+1
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should have a minimal variance with respect to the processors. This problem is called off-
line makespan scheduling [9], where N nonnegative numbers, g, are partitioned into P blocks.
The sum of the numbers in one block p, g”, have a maximum. This maximal sum has to be
minimized, so that the variance of g” is minimal. A further constraint is, that each of the P
processors has to have the same number of bodies Np. This problem is NP-complete. It is
generally believed that algorithms solving AP-complete problems both exactly and efficiently
do not exist. For this reason, a heuristic algorithm is used to solve this problem. We use
a reversed and modified form of Largest Processing Time first (LPT) [21]. Our algorithm is
reversed because we take the “smallest” processing time first, and modified, since each processor
has to have the same number of bodies.

The load balancing routine works as follows:

1. The bodies are sorted so that gy is in a strictly decreasing order.

2. Body k with the greatest g, is assigned to the processor with the least g”, and g¢* is

updated.

3. Then body k, with the second greatest gy, is assigned to the processor which now has the

least g”.

4. The previous step is iterated until all bodies are distributed.

This routine guarantees that the variance of g* is minimal and optimizes the load balance of

the processors.
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However, LPT is not optimal as illustrated in the following example. Consider a set of

N =5 numbers

{9:} =1{5,4,3,3,3} .

These numbers are partitioned into P = 2 blocks. LPT yields the following two sets for the two

blocks:

{5,3} , {4,3,3} .

But the optimal solution is

{5,4} , {3,3,3} .

However, if N is much larger than P, both the absolute and the relative error of LPT tend to

zero [9].

5.6 Implementation in Parallel Programming Models

The implementation of the algorithm in a programming model is used to analyze the perfor-
mance both of the algorithm and of the programming model. This analysis indicates whether
the algorithm can be applied to large-scale problems and which programming model is most
promising.

There are three implementations of the algorithm in different programming models: one in
ANSI-C using the message-passing library CMMD 3.0 on the CM-5, one in Split-C 1.0 and one

in CSM. Differing from the first two implementations the CSM implementation does not assume
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the CM-5 as the underlying hardware. Its underlying hardware is Dir; SW, which is discussed
in [24]. This section discusses the different aspects of these implementations and presents the
used programming models in more detail.

Common to all implementations is that the program consists of the five parts:

Initialization read input files
initialize timers
distribute data to each processor
initialize data

Discretization discretize boundaries into boundary elements
Equation Set-up calculate system matrices

Iteration calculate double layer density by iteration
Output collect data and write output files

Depending on the programming environment, the initialization and the output are done
either in parallel or on one processor that distributes the input data to the other processors
and collects the output data from them. All implementations execute the discretization of the
boundaries in parallel, that is, all processors do the same job. A more elegant way would be to
parallelize this job as well and let the processors exchange their data after it. However, since the
discretization is very fast compared to the other parts, the introduced overhead is negligible.
After having done the discretization, each processor continues without any synchronization,
which would have to be inserted in the case of a parallel implementation of the discretization,
and sets up its own part of the linear equation system without any synchronization or commu-
nication. In between this part and the iteration is a synchronization barrier to ensure that each
processor has set up its equations before the asynchronous iteration routine starts. Thus, the

iteration is started simultaneously and is concluded by a further synchronization. After that
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the results are collected and written to file either from one processor or from all processors in
parallel, depending on the programming environment.

Since most of the differences of the implementations are in the iteration routine and the
features of the programming models are mostly expressed in this routine, the following sections
only discuss the implementation of the iteration routine in more detail. Figure 5.4 shows the

phases of the iteration algorithm.

5.6.1 ANSI-C and CMMD

This programming model is the standard message-passing model on the CM-5 as suggested by
Thinking Machines Corporation [49]. To understand this model a brief introduction into the
CM-5 hardware is given [48].

The CM-5 is a distributed-memory, message-passing parallel machine. It has comparatively
powerful workstation-like processing nodes that include a 22 MIPS SPARC processor, a network
controller, up to 32 MByte of DRAM and optional four 32 MFLOPS vector units. The SPARC
processor has a 64 KByte instruction and data cache. All the processing nodes are connected by
two different networks accessible to user programs. The data nelwork is used to communicate
data between the nodes and its topology is a fat tree. That is, four nodes are grouped together
by a network switch and four communication channels. Four of these groups are connected
together by another switch and communication channels with a higher bandwidth as shown in
Figure 5.5. The other network, the control network, is used to coordinate the processing nodes

and has different purposes for different programming models. For instance, the CM-5 can be
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Figure 5.4: Iteration algorithm. The CSM implementation does not have the block Request
Remote Solution.
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Network Switch

Network Switches

Processor Nodes

Figure 5.5: Data network of the CM-5.

used as a SIMD machine to run the data-parallel model, where the control network provides
global synchronization and global data operations, such as summing and broadcasting, on a
hardware basis.

The standard way to use the CM-5 as a MIMD machine is to write the program code in
C, C++, CM-Fortran or C* and call the library functions of the CMMD library. Because
of history (the former CMMD version 2.0 did not support the data-parallel languages CM-
FORTRAN or C*) our program is coded in C. In addition to message-passing routines, the
CMMD library supports functions for parallel disk 1/O, timers, broadcast and scan functions,
and synchronization barriers. Upon execution the program is distributed to all processing nodes
of a CM-5 partition, which run the program in parallel. This seems to contradict the MIMD
model that claims that each processor should run a different instruction sequence. However, by
calling the CMMD function CMMD_self_address each processor obtains a unique number from
0 to P — 1, which it uses to branch to its own dynamic instruction sequence.

The data in both implementations, in CMMD and Split-C, are distributed in the same
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N
NP
Clkk][1]

P
S[kk][1]

d[kk]
flag
iter

kk

1
11

me
p

y [kk]
yold[k]

z[kk][1]

number of bodies N

number of bodies on one processor Np
system submatrix Cpr; —

processor stores only its submatrices
number of processors P

CS matrix entry sx; —

processor stores only its entries
constantsub vector dj of the equation system —
processor only stores its own subvectors
boolean flag

iteration number ¢

loop variable —

loops through bodies on the local processor
loop variable — loops through all bodies
loop variable —

loops through bodies on the remote processor p
number of the local processor

loop variable — processor number

solution subvector yx(t + 1) -

processor stores only its own subvectors
solution subvector yx(t) —

each processor stores whole vector locally
dot product zx; —

processor stores only its dot products

Table 5.1: Objects in the C+CMMD and Split-C codes.

way. The matrix C, the constant vector d and the solution vector y(¢ + 1) at time ¢ + 1 are

distributed as described in Section 5.4.2.

Each processor has a copy of the whole solution

vector y(t) at time ¢, which basically is the input buffer for solution subvectors received from

distant processors. Each processor also has a copy of the boundary elements’ data to allow

a fast calculation of the system matrices without any communication. The object names and

their corresponding mathematical notations as introduced in Section 5.4.3 are summarized in

Table 5.1.

The iteration routine is shown in a high abstraction level in Figure 5.8. It uses the two
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/* initialization */

Loop kk=1..NP // loop through local bodies (rows)
yold[me*NP+kk] = d[kk] // initialize y_k with first guess d_k
Loop 1=1.. N // loop through all bodies (columns)

z[kk][1] = 0. // initialize dot products with O
End Loop 1
End Loop kk

Figure 5.6: Subroutine INITSOLUTION() - initialization (first guess) of the solution.

/* message-loop for requests */
Loop While (REQUEST?(p) == True) // loop while there are requests
/* REQUEST returns requesting processor in p */
SEND (yold[me*NP+1. . (me+1)*NP] to p) // send local solution to
// processor p
End Loop

Figure 5.7: Subroutine MSGLOOP() — message-loop for requests.

routines INITSOLUTION(), which is common to all programming models, and MSGLOOP(), as
described in Figure 5.6 and Figure 5.7. After setting the solution vector y to the initial guess
in INITSOLUTION(), a barrier is executed synchronizing all processors to guarantee that the
initialization has been executed on all processors. Then the iteration is started.

Our implementation of the communication is based on a request-and-send scheme, where
processor A sends out a request message to processor B, when it needs the solution subvectors
from processor B for its calculations. As soon as processor B has received this request, it sends
its solution to processor A. This request-and-send scheme is implemented in such a way that
communication overlaps computation and the processors have to wait as little as possible for
messages. Bach processor executes a so called message-loop* at least once in an iteration step,

where it looks for incoming requests, which are buffered in an operating system operated buffer

*This term is stolen from IBM OS/2 or MS Windows.
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INITSOLUTION() // initialize solution with 0
BARRIER() // synchronize all processors
/* iteration */
Loop iter = 0..(ITER_MAX-1)
/* request solution from remote processors */
Loop p = 1..P // scan remote processors
flag = False
Loop 11 = 1..NP // scan bodies on remote processor p
Loop kk = 1..NP // scan local bodies
If (iter % S[kk][(p-1)*NP+11] == 0) // check if to update influence
flag = True // memorize request
End If
End Loop kk
End Loop 11
If (flag == True &% p '= me)
SEND (Request to p for solution on all its bodies) // send request
End If
End Loop p
/* update local solution */
Loop kk = 1..NP // loop through local bodies (rows)
Loop 1 = 1..N // loop through all bodies (columns)
If (iter % S[kk][1] == 0) // check if to update influence
/* influence from remote body 1 onto local body kk must be
updated */
If (C[kk][1] is not stored in memory)
/* sub matrix C_kl is calculated */
CREATE (C[kk] [11)
End If
/* wait for message containing requested solution on body 1 */
Loop
MSGLOOP() // message-loop for requests
End Loop Until (RECEIVED?(yold[1]) == True)
/* dot product */
dot = C[kk][1] . yold[1]
y[kk] += dot - z[kk][1] // update by difference
z[kk][1] = dot // store dot product for next update
End If
End Loop 1
yold[me*NP+kk] = y[kk] // switch times t <-> t+1
End Loop kk
End Loop iter
/* synchronize all processors */
Loop While (FINISHED?() == False) // wait until all processors are done
MSGLOOP() // message-loop for requests
End Loop

Figure 5.8: Iteration algorithm in C+CMMD.
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for incoming messages from the network. Only if there are no requests, the processor continues
with its computation, otherwise it responds to the requests. The usage of the asynchronous
poinl-to-point messages of CMMD avoids deadlocks.

In the first phase of the iteration, the processor scans the CS matrix S for interactions
between the particles that it has to update in the current iteration step. It sends out messages
requesting the corresponding solution subvectors on distant processors, and continues creating
the corresponding submatrices if they are not stored in memory. In this phase communica-
tion and computation are overlapped. After a submatrix is reconstructed, the processor has
to wait for the corresponding solution subvector to come in so that it can evaluate the dot
product. During this wait the processor is not idle, but executes the message-loop and responds
to requests from other processors. This nesting of waiting-for data and waiting-for requests
guarantees that there are no deadlocks occuring. After the processor has evaluated all its dot
products, it updates its part of the solution vector and starts the next iteration step. The
number of iteration steps is given a prioriin the input data. When the iteration is done on the
fastest processor, care must be taken since other processors are still requesting data from this
processor. It cannot just stop but has to execute a further message-loop in order to respond
to those requests. When all processors have finished their iteration, their results are collected
using the CMMD broadcast and scan functions and the output files are created.

We use the request-and-send scheme, since the requests for remote solution subvectors are
infrequent. In a different approach, which would not have the penalty of sending requests,

processor B would decide by itself, if it has to send its solution subvectors to processor A. The
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request-and-send scheme does not have the overhead of making this decision twice, once on
the receiving processor A and once on the sending processor B. By sending the requests at the
beginning of the iteration step and by overlapping the request messages with computation, the
penalty of sending the requests is kept low. Furthermore, the request-and-send scheme includes

less local synchronization of processor A and processor B.

5.6.2 Split-C

Split-C supports SPMD programming by adding parallel computing directives to ANSI-C, such
as global data assignments, barriers, atomic functions, and locks [11, 12]. Split-C’s programming
model is the static shared memory (or non-uniform memory access, NUMA) model where each
processor stores a fixed portion of global memory and communicates with other processors in
order to access the other portions of global memory. Split-C’s address space is 2-dimensional
where one coordinate is the processor number and the other one the local address.

The underlying hardware of Split-C is also the CM-5. It uses the data network of the CM-
5 very efficiently by basing the communication on active messages [13]. Active messages are
asynchronous point-to-point messages that have a built-in handler, which is called upon arrival
of the message on the target processor B. As shown in Figure 5.9, the sending processor A sends
the active message via the data network to processor B that is interrupted by this handler.
Processor B plays a passive part in receiving this message: it just executes the handler, which
is protected from the current execution state of processor B. One task of this handler is to

write data into the address space of processor B, so that processor B can access this data upon
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Processor A Processor B
1 1
t |2 2
4 4
5 Interrupt
6 Execute
7 AM Handler
8 5
6

Figure 5.9: Active message. Processor A executes its instruction set and issues a send of an
active message AM. Processor B receives this message and its instruction set is interrupted.
During this interrupt the AM handler is executed. Upon return of the interrupt, processor B
resumes its state at the start of the interrupt and continues the execution of its instruction set.

return of the handler. Since Split-C uses the SPMD model, the addresses of the handler both
on processor A and processor B are the same, and the handler function is existent in the code
segments of both processors. Note that the messages in version 3.0 of CMMD are also based
on active messages.

Split-C provides the following extensions to ANSI-C:

Global Pointers. Global pointers are an extension to C pointers. They have a 2-dimensional

address: the processor number and the local address.

Spread Arrays. Spread arrays are arrays, which are distributed over all nodes. The associated

pointers to spread arrays are spread pointers.
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Split-phase Assignment. Using the original C assignment (=) with a global pointer accesses
memory on a distant processor, where the accessing processor has to wait until the com-
munication is done. Using split-phase assignments (:=) a requesting processor sends out
a request to a distant processor and continues with the execution of its instruction set
until the next synchronization. Stores (:-) operate in the same way, but have a weaker

synchronization.

Atomic Functions. Split-C provides functions, which run atomically and cannot be interrupted

during execution.

Locks. Locks protect the consistency of variables.

Barriers. Barriers synchronize the processors.

The data distribution in the Split-C implementation is the same as in the CMMD imple-
mentation (see Section 5.6.1 and Table 5.1).

In the Split-C program (see Figure 5.10), the communication of the solution subvectors is
also based on a request-and-send scheme, similar to the one in the message-passing program.
However, in Split-C no message-loop has to be implemented as in the CMMD version, since the
request-and-send scheme is provided internally. Split-C translates each split-phase assignment
into a sequence of active messages. Thus, instead of sending requests at the beginning of an
iteration step, a processor issues a split-phase assignment to get the solution subvector from a
distinct processor, if it needs it. Since the split-phase assignment overlaps the computation, the

processor continues the execution of its instruction set. At the point where it starts evaluating
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INITSOLUTION() // initialize solution with 0
BARRIER() // synchronize all processors
/* iteration */
Loop iter = 0..(ITER_MAX-1)
/* request solution from remote processors */
Loop p = 1..P // scan remote processors
flag = False
Loop 11 = 1..NP // scan bodies on remote processor p
Loop kk = 1..NP // scan local bodies
If (iter % S[kk][(p-1)#NP+11] == 0) // check if to update influence
flag = True // memorize request
End If
End Loop kk
End Loop 11
If (flag == True &% p !'= me)
/* issue split-phase assignment to get solution from processor p */
GET (yold[(p-1)*NP+1] .. yold[p*NP])
End If
End Loop p
/* update local solution */
Loop kk = 1..NP // loop through local bodies (rows)
Loop 1 = 1..N // loop through all bodies (columns)
If (iter % S[kk][1] == 0) // check if to update influence
/* influence from remote body 1 onto local body kk must be
updated */
If (C[kk][1] is not stored in memory)
/* sub matrix C_kl is calculated */
CREATE (C[kk] [11)
End If
/* synchronize split-phase assignment for solution on body 1 */
SYNC_GET (yold[1])
/* dot product */
dot = C[kk][1] . yold[1]
y[kk] += dot - z[kk][1] // update by difference
z[kk][1] = dot // store dot product for next update
End If
End Loop 1
yold[me*NP+kk] = y[kk] // switch times t <-> t+1
End Loop kk
End Loop iter
BARRIER() // synchronize all processors

Figure 5.10: Iteration algorithm in Split-C.
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the dot product, it synchronizes the split-phase assignment, that is, it waits for the assignment
to complete.

Although Split-C’s programming model is the static shared-memory model, the program
has two message-passing related features: synchronization of the split-phase assignments and
additional message-polling function calls: CMAM_poll. In Version 1.0 of Split-C the receiving
processor only checks for incoming active messages at split-phase assignments or other Split-
C specific directives. This contradicts to the definition of active messages, which interrupt
the receiving processor. The checking for incoming messages is called polling and is much too
infrequent in our program, since split-phase assignments occur very infrequently and the delay
in receiving active messages puts the sending processor into idle state, which slows down the
execution or even can cause deadlocks. By inserting additional function calls CMAM_poll to the
active messages library at appropriate locations causes the processor to poll for messages more
frequently and decreases the delay in processing messages.

Split-C is a very promising language in a static shared-memory model. Our program was
easier to code and is more transparent than the implementation in the message-passing model
using the CMMD library. In addition, the performance of the Split-C communication is better
than the message-passing of the CMMD library and reduces the communication overhead in our
program significantly as shown in Section 7.3. However, the principal structure of the program
is the same and as much care must be taken in implementing an efflicient communication scheme,
since the communication in the current Version 1.0 of Split-C is closely related to the message-

passing model.
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5.6.3 Cooperative Shared Memory

The first part of this section gives a brief introduction into the Cooperative Shared Memory
CSM model implemented as the CICO model as described in more detail in [24]. In the second
part, special issues of the algorithm’s implementation in this model and the key differences to
the message-passing and Split-C implementations are discussed. This section is also covered in
our paper [51].

A widespread belief is that shared memory and shared-memory hardware is not scalable
because of the assumption that all memory references have the same cost. This assumption is
incorrect, since access to remote memory requires communication and, in orders of magnitude, is
slower than the access to local memory. Furthermore, existing shared-memory hardware, whose
implementations so far are small-scale shared-memory architectures based on bus systems, does
not scale to highly parallel systems, or does so only in connection with a large increase of
complexity because of their limits in bus capacity and bandwidth.

An alternative approach is a hardware with directory-based cache-coherence protocols lead-
ing to cache-coherent parallel computers. In this architecture each processor has local cache
and is connected to a data network in such a way that the programmer and the compiler see a
uniform address space. Note that this model is different to the NUMA model of Split-C, since
it is a dynamic shared-memory model where local copies of shared data are automatically up-
dated and the programmer does not have to know the physical location of the shared data. The
advantages of shared memory are obvious, including a uniform address space, which allows the

construction of distributed data structures, and referential transparency, which provides object
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names (addresses) that are identical for both local and remote objects. Distributed data struc-
tures facilitate fine-grained sharing, free programmers and compilers from per-node resource
limits. The uniform semantics simplify programming, compilation, and load balancing.

We implemented our algorithm in a special form of the shared-memory model, the so-called
cooperative shared memory CSM model. This model is cooperative in two ways. First, it
discourages programs whose processers compete when accessing data and avoids unnecessary
communication. Second, it identifies sharing patterns that the hardware can support effectively
to encourage their use, thus, allowing the cooperation between software and hardware.

A key component of CSM is its implementation of a performance model which provides
insight into the program’s behavior for both programmers and computer architects. This pro-
gramming model is called the Check-in / Check-out (CICO) model, which is a design tool for
programs on a cache-coherent parallel computer. It provides check-in and check-out annota-
tions that bracket uses of shared data. Check-out indicates that a processor expects to use
a shared object, and check-in terminates an expected use. This performance model includes
two functionalities. First, the descriptive functionality allows the program to indicate where it
expects communication during its execution. Second, the prescriptive functionality provides a
cost model which decribes how the programmer can reduce the cost of this communication.

CICO’s annotations are:

check_out_X Expect exclusive access to data
check_out_S Expect shared access to data
check_in Expect end of data access

check_out X asserts that the processor performing a check-out expects to be the only pro-
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cessor accessing the block until it is checked in. check_out_S asserts that the processor is willing
to share (read) access to the block. Exclusive access is not synonymous with write access. When
a processor wants to read a block and expects to be the only reader, it should use check_out_X
because check_out_S is more expensive and more difficult to manage in the hardware. check_in
asserts that the access is done. From the programmer’s point of view, check-out may be viewed
as fetching a copy of the data into the processor’s cache, and check-in as flushing the data from
the cache into shared memory.

When a CICO program executes on a cache-coherent computer, communication will occur
for three reasons. First, communication occurs at check_out and check_in annotations. Con-
sequently, performance can be improved by restructing the code to move the annotations out
of inner loops whenever possible. Second, communication occurs when the program violates an
annotation’s assumption (for example, the programmer expects exclusive access and multiple
processes access the same data). Third, communication takes place whenever there is false
sharing. Caches are organized in cache blocks. One cache block contains a fixed amount of
words and is aligned to an address, which is a multiple of the cache block size. If an object is
referenced in the main memory or in global shared memory, not only this one object but also
its surrounding objects, according to the boundaries of the cache block, are transferred to the
cache. When fetching a datum in a cache block, the whole cache block with more than one
datum is fetched. If other processes require exclusive access to other data in this cache block,
false sharing occurs.

In the future, CICO annotations will be associated with high-level language data types, so
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that the compiler can manage both large data aggregates and eliminate false sharing — up to
now the programmer has to take care of that. The key advantage of the CICO model is that its
functionality and its performance are orthogonal, whereas in message-passing, communication
is explicitly and inextricably linked with functionality. Evaluating the cost of communication is
difficult since it must be evaluated twice: once on the sending processor and once on the receiving
processor. lmproving a message-passing program is a difficult task, since a small change can
cause a cascade of modifications and has to be done carefully to avoid transformations that
could introduce functional bugs.

Using caches a programmer has to consider several rules for a fast program execution. Since
caches are arranged in cache blocks, a key issue for the program’s performance is the locality
of its data. There are two different forms of locality [23]. Spatial localily occurs because two
simultaneous memory references are likely to access nearby words. Temporal locality arises
because a recently referenced memory word is likely to be accessed again. Therefore, the data
in our program is organized in blocks according to these locality forms. For instance, one
memory block contains all the data of all boundary elements of one body because this data is
likely to be accessed within a short time period during the calculation of one submatrix of C.
This organization of the memory is used for all data. To avoid false sharing, data aggregates are
aligned according to the alignments of the cache blocks, so that the first word in a cache block
is the first word in the data aggregate. The most expensive form of false sharing, where one
cache block contains both read-only and writable data, is also avoided by distributing read-only

and writable data aggregates into different memory blocks.
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N
NP
Clkk][1]

P
S[k1[1]

d[kk]

iter
kk

1
11

me
y [kk]

ycom
yold[k]

z[kk][1]

number of bodies N

number of bodies on one processor Np

system submatrix Cp; —

processor stores only its submatrices

number of processors P

CS matrix entry sx; —

is stored in shared memory

constant subvector dj of the equation system —
processor only stores its own subvectors
iteration number ¢

loop variable —

loops through bodies on the local processor
loop variable — loops through all bodies

loop variable —

loops through bodies on the remote processor p
number of the local processor

solution subvector yk(t—l— 1) —

processor stores only its own subvectors

buffers solution subvector yold[1] in local memory
solution subvector yx(t) —

is stored in shared memory

dot product zg; —

processor stores only its dot products

Table 5.2: Objects in the CSM code.

The data distribution in the CSM implementation is significantly different from both other

implementations as shown in Table 5.2. The whole solution vector y(¢) at time ¢ is stored in

the global shared memory, and each processor updates its part of y(¢) in every iteration step.

In contrast to the other two implementations, y(¢) is only stored once, and the processors do

not have their own copies, which reduces the amount of memory used. In addition, the CS

matrix S, the data of the boundary elements, and the data of the bodies are also stored in

the global shared memory. The boundary-element data is written in the discretization routine

and is accessed read-only during the calculation of the matrices and the iteration. Of course,

it has to be communicated to the local caches of the processor whenever it is accessed by this
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processor, but since this data is read-only and organized in coherent blocks for each boundary
element, it is never invalidated. The only reason it might be flushed from the cache, is when
the cache of limited size is full and cache space is needed for other data (capacity misses).

However, the matrix C, the constant vector d, and the solution vector y(t+1) at time ¢ +1
are distributed as in the message-passing versions and are stored in the local address spaces of
the processors, since they are accessed only locally.

Since we do not overlap computation with communication (it turns out that the commu-
nication overhead of the CSM code is negligible), there is no scan of the CS matrix § or any
request for remote data at the beginning of the iteration. Instead, the processor loops through
the columns and rows of the submatrices, calculates them if they are not stored in memory,
accesses the globally stored solution vector using the CICO directives, and updates the dot
products as illustrated in Figure 5.11. One check-out copies a coherent block of the size of one
cache block from the shared memory to the processor’s cache. Assume that we want to get a
copy of the subvector y, (). If we check out the first element of this vector, this check-out not
only copies this first element, but also its succeeding elements. For example, if we have a cache
block size of 32 bytes and use double-precision numbers for y,(¢) which have a size of 8 bytes,
one cache block contains 32/8 = 4 elements of y;. Thus, if we check out the first element, the
first 4 elements are actually copied to the cache with this one check-out. For this reason, we do
not check out every element of y,(¢), but only every fourth element. We use shared check-outs
check_out_S, since the performance analysis of the program shows that there are fewer cache

misses — a cache miss occurs, when data that is assumed to be in the cache is not in the cache
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INITSOLUTION() // initialize solution with 0
BARRIER() // synchronize all processors
/* iteration */
Loop iter = 0..(ITER_MAX-1)
/* update local solution */
Loop kk = 1..NP // loop through local bodies (rows)
Loop 1 = 1..N // loop through all bodies (columns)
If (iter % S[kk][1] == 0) // check if to update influence
/* influence from remote body 1 onto local body kk must be
updated */
If (C[kk][1] is not stored in memory)
/* sub matrix C_kl is calculated */
CREATE (C[kk] [1])
End If
/* check out yold[1l] from global shared memory in packages
according to the cache blocks */
CHECK_OUT (yold[1])
ycom = yold[1] // access global yold and copy it to local ycom
/* check in yold[1] into global shared memory in packages
according to the cache blocks */
CHECK_IN(yold[1ll)
/* dot product */
dot = C[kk][1] . ycom
y[kk] += dot - z[kk][1] // update by difference
z[kk][1] = dot // store dot product for next update
End If
End Loop 1
/* check out yold[(me-1)*NP+kk] from global shared memory in packages
according to the cache blocks */
CHECK_OUT (yold [ (me-1) *NP+kk])
yold[(me-1) *NP+kk] = y[kk] // copy local y[kk] to global yold
/* check in yold[[(me-1)*NP+kk] into global shared memory in packages
according to the cache blocks (invalidate) */
CHECK_IN(yold[[(me-1)*NP+kk])
End Loop kk
End Loop iter
BARRIER() // synchronize all processors

Figure 5.11: Iteration algorithm in CSM.
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but has to be fetched from main memory or from shared memory — rather than using exclusive
check-outs check_out_X. The phase in which more than one processor access the same memory
block simultaneously is kept small by fetching the global data at one location, copying it into
local memory for further reference, and flushing the associated cache blocks by issuing check-in
directives check_in. The same idea is used for updating a processor’s solution subvector by
first updating the solution subvector in local memory, and then copying it to shared memory
at the end of the iteration step using check_out_X and check_in.

In comparison to the other two implementations, mainly the CMMD version, the imple-
mentation in CSM is the easiest and the most transparent, and has the fewest lines of code.
Keeping read-only data in shared memory reduces the amount of memory and makes the code
more transparent and easier to maintain. The CICO model allows us to analyze and optimize
the code with respect to shared-memory accesses independent of the program’s functionality.
Furthermore, the implementation of the CSM code on the Dir).SW hardware has the most

promising performance of all three implementations.



Chapter 6

N Bodies in a Spherical Container

So far we have considered N bodies in an unbounded domain. In this chapter the boundary
integral equations (3.57) are modified to describe the double layer densities on N bodies that are
placed inside a closed spherical container. The bodies are surrounded by vacuum and are perfect
conductors as in the unbounded case. The spherical container is also a perfect conductor, so
that its exterior region does not influence the interior system. By using the method of tmages a
new Green’s function G(z, €) and a new double layer kernel K(z,¢) are derived. The domain
for the unknown double layer densities on the bodies’ surfaces stays the same. Thus, upon
descretization the number of unknowns — there is one unknown collocated double layer density
per boundary element — stays the same. The fact that there is a spherical container surrounding
the bodies is completely accounted for by the modified Green’s function and the new double
layer kernel. The resulting discretized algebraic equation system is exactly of the same form

as the one in Chapter 4, except that the elements in the system matrix A and in the constant
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vector b have changed. Thus, the same iteration algorithm and its same implementations can
be used. However, the routines for setting up the system matrix A and the vector b have to be
modified. The net result of this approach is that the amount of inter-processor communication
stays the same, but the computation to communication ratio increases significantly — a good
portent for parallelism.

In electrostatics the method of images is a well known trick for matching BCs on boundaries
of simple shape by placing virtual point charges in the domain in addition to the physically
existing point charges [25]. The boundary conditions on these boundaries determine the mag-
nitudes and the positions of these point charges. To apply the method of images to charged
bodies not only virtual point charges but also the image of the double layer is needed. However,
the image of the double layer can be derived from the virtual point charges in a straightforward
way.

This approach is used to calculate the macroscopic dielectric constants and thermal conduc-
tivities of two-phase materials. The N perfectly conducting bodies are inclusions in an isotropic
medium which is surrounded by a spherical perfect conductor. For instance, the dielectric con-
stant of this medium is changed by the polarization effect of the inclusions. The final section
describes a numerical approach for calculating this dielectric constant by using the dipole mo-
ments of the bodies. The same method yields the thermal conductivity of an isolating matrix
with N perfectly conducting bodies as inclusions, since the time-independent heat conduction

is also described by the Laplace equation.
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6.1 Image of a Point Charge

Figure 6.1: Image of a point charge. The point charge is at y. Its image is at y*. The spherical
container with radius a has zero potential.

First the image of a point charge is derived. Figure 6.1 shows the geometry of a perfect spherical
conductor of radius a whose surface S¢ is the equipotential ¢(n) = 0 ,n € S¢, and a point
charge outside the conductor. The image of this point charge is sought, so that the potentials
of the original and its image charge cancel each other on the boundary Sc. The image of
the original point charge could be any distribution of singularities, but it turns out that the
image is also a point charge. If y is the position vector of the original point charge and @) is
its magnitude, then y* and @ describe the image location and charge. The electric potential

created by the original point charge is

(6.1)
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and the unknown image potential is denoted as ¥*(2). The boundary condition on the container
surface is: ¥(n)+¢*(n) = 0. The potential of the original point charge is expanded by Legendre

expansion about the center of the spherical container:

x 2n+1 . V n 1
V() = Q Z |Bln+1 (d-V) L

|:B—y| = n! ||’

(6.2)

where R = |y| and d = £. The potential of the image point charge is written as a multipole

R
expansion
V= L= (63
|:1: —vl D Jo]
Considering the boundary condition on the container surface |®| = a a comparison of the

coefficients of both sums yields the coefficients A,,:

2n+1

Now we have the solution for the image potential as a multipole expansion, but we are looking
for a singularity representation for ¢*. The symmetry of the problem implies that the image of
the point charge has to be a distribution of singularities placed on the straight line connecting y
and the sphere center. The location of these singularities is reduced to the line section between
the sphere’s center and the point y* in Figure 6.1, which is given by |y*| = %2. This is a guess,
but a reasonable one looking at the analogous problem of the image system for the Stokeslet

[31]. Let f(z) represent the singularity distribution along this line section, then the image
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potential is given by the integral

a2

1

v = [ 16 g % - (6.5)

m is expanded as a Taylor series about the sphere’s center:

| o (d-V) 1
e ed -2t (6.6)

n=0 |ZE|

Thus,

v =3 ( IGS d€) T (6.7

The comparison of this representation for ¢* to its multipole expansion, Equation (6.3), yields

further constraints for the coefficients A, :

2n+1 a®

= / T pe)en de (6.9)

a

Rn+1

The integral of Dirac’s delta function § resolves this identity:

2

[T oe- e de =1 (69
Thus,
J(@) = ~Qzba — =) (6.10)
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This proves, that the distribution of the singularities is exactly one point charge of magnitude
Q" = —Q+ and at the position y* = d% = y%

Since the image of a point charge outside the container is also a point charge, we can
reverse the problem and look for the image of a point charge inside the container, which is the
actual problem we want to solve. Note that this is not a valid approach for the image system
of a Stokeslet, since the image of a Stokeslet outside the container is a whole distribution of

singularities inside the container [31]. The position of the point charge inside the container is

given by y and its magnitude by ). The equations for its image are the same as in the problem

above:
a? a?
y =d— =y , 6.11
aaimE (611
a a
Q' =-Q-=-0Q— . 6.12
®= 9% (612)

Since the Green’s function for one point charge in an unbounded domain is given by

1

Gz, )

the Green’s function for the combination of one point charge and its image is readily given by:

- 1 a 1 a

G7 - - - - ’
O TR e e FR-d HER-€

(6.14)

where ¢* = %5.
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To apply the method of images to CDLBIEM, the image of the double layer is needed as well.

Now a dipole can be obtained by a limiting process of coalescence of two point charges, so the

dipole image can be derived in a straightforward way. In mathematical terms, we note that

the double layer kernel is obtained as a normal derivative (with respect to &) of the Green’s

function:

K (2, ) = 2VG(x, €) - a(€)

The same operations are now applied to the image terms. We start with

where

7‘:|$—€|:\/($i—fi)($i—fi)a 7"*:|$—€*|:\/($i—5;‘)($i—€f)~

Now use the following expressions for differentiation with respect to €,

d l_%’—fi
o&r  r3
da a

— gia

(6.15)

(6.16)

(6.17)

(6.18)
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(95; B a_2
o9& 1€

(8;; — 2e;€5) . (6.19)

Here the unit vector e is defined as e; = Igf_l Using these derivatives the expression for the new

double layer kernel is obtained:

) xj — &
—€71(6; — 26&;’)@ + ei] } : (6.20)

P 1 T — & ¢

]/\ (113, €) = — Ny 3 | | 3
27 |2 — & |z — &*|a

Note, that the first term of K (z, &) is the contribution of the original double layer and its second

term is all contributed from its image. Note also, that the boundary integral equations, such as

(3.57), stay the same, except that the contribution of the image point charge has to be added in

the kernel of the double layer integral. Thus, the boundary integral equation (3.57) turns into:

) = U - § ele)dSe (6:21)

z{ @ /B K(nf)@(@dss}

N — |wl|‘77_|afT$l‘ S

The integration domain of the double layer integral is unchanged. The discretization and
numerical treatment of this modified boundary integral equation is the same as for the original
boundary integral equation. This ensures that only minor changes have to be made in the
program codes, namely in the routines that calculate the system matrix A and the constant

vector b.
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6.3 Dielectric Constant

The method described in the previous sections provides an efficient numerical approach for
solving the electric potential of N bodies as inclusions in a container. This method may be
extended to calculate the effective dielectric constant of these perfectly conducting inclusions
in a void' matrix according to the lines in [4].

The dielectric constantis a 2nd order tensor e in the general case of anisotropic inclusions. It
describes the relation between the macroscopic electric displacement (D) and the superimposed
electric field (E):

(D) =¢-(E) . (6.22)

The brackets < and > indicate that the quantities are volume averages over the whole domain
of the container.
In order to derive an expression for €, we start with the multipole expansion of the double

layer potential for one body & around the point O

Via) = § Kla€ple) S

= ¢ 2V G(x, &) - n(¢)p(€) dS;

Sk
— 20040 a5 TeGle Ol
1

1 -l [

=Pk

'The analysis is readily extended to a dielectric matrix by introducing the relative electric permittivity.
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where p,, is the dipole moment of body k and is evaluated by using the double layer density,
which is returned by CDLBIEM as described in Chapter 5.
The electric polarization (P) of N bodies is the volume average of the dipole moments over

all bodies
1
P)=— P - 6.24
)= Y om (6:24

Vg is the volume of the container including the bodies. The definition of the electric displacement
is

(D) =(E)+ 47 (P) . (6.25)
By substituting e with & + ¢8, we rewrite Equation (6.22) as

(D) = (6 +cB) - (E) . (6.26)

4 is the unit matrix, 8 the electric susceptibility, and ¢ the volume fraction of the bodies:

1 N
c=—> V. (6.27)
Vi k=1

The comparison of Equation (6.26) to Equation (6.25) yields an expression for the electric
susceptibility:

B-(E)=—=> . (6.28)

The tensor 8 has 9 unknowns. By running the algorithm three times, each time setting the
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electric field (E) to a different unit vector e;, the 9 unknowns are obtained by

RSO (Ziim), 6.29
Bi = Viee; ' (6.29)

The dielectric constant is then given by
e=4d+cB. (6.30)

This analysis may also be used to obtain the thermal conductivity of an inclusion of N perfect
thermal conductors in a conducting matrix, which is surrounded by a perfectly conducting
container. Assuming that the heat conduction in the matrix obeys Fourier’s law and the isotropic

matrix has the constant thermal conductivity &, the heat flux in the matrix is

J(@) = -k, VT'(x) (6.31)

where T is the temperature in the matrix. From the energy balance we obtain the Laplace

equation for the temperature, the same equation which describes the electric potential:

VT (x) =0 . (6.32)

We look for the thermal conductivity k, which is (analogous to the dielectric constant) also a

2nd order tensor in the anisotropic case, and which describes the relation between the heat flux



113

dielectric constant thermal conductivity
€ k

B B

E -vT

D J

) T

P P

Dx Dx

Table 6.1: Correspondence between the dielectric constant and the thermal conductivity prob-
lems.

of the whole system and a superimposed temperature gradient:
(J) = —k-(VT) . (6.33)

The problem for the thermal conductivity and the problem for the dielectric constant are iden-
tical. The quantities for both problems correspond as listed in Table 6.1.
The parameter 8 for the thermal conductivity problem is identical to 8 for the dielectric

constant problem:

B-(-V %wE:m’ (6.34)

and the thermal conductivity is given as

k=kid+cB . (6.35)



Chapter 7

Performance Analysis and Results

In this section the performance of the completed double layer boundary integral method CDL-
BIEM, the parallel implementation of the iteration algorithm, and the performance of the
different programming models are discussed. Furthermore, results for N bodies as inclusions
in a spherical container are presented. In Section 7.1 the result obtained by CDLBIEM is veri-
fied to be numerically accurate. In the subsequent section the performance (execution time) of
the parallel iteration algorithm as a function of the CS matrix is investigated for the message-
passing program. The communication in the Split-C program is shown to be faster than in the
message-passing program. Then, the scaleup of the algorithm is investigated using the CSM
implementation. Finally, results for NV bodies as inclusions in a spherical perfect conductor and

the dielectric constants and the thermal conductivities of those systems are presented.
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7.1 Accuracy of CDLBIEM

CDLBIEM is a numerical method that includes a numerical error. This section investigates the
reliability of the results obtained by CDLBIEM. A direct comparison with experimental data is
not appropriate for these model calculations. However, a detailed comparison with established
analytic or numerical results is possible for special geometries. First, the CDLBIEM solution is
compared to the analytic solution in the case of two equally sized and equally charged spheres.
Second, the CDLBIEM solution is compared to the boundary collocation solution for 32 equally
sized and equally charged spheres placed on a straight line.

The first comparison uses the analytic solution for two spheres, which is readily available
in bispherical coordinates. The data of the spheres for this comparison is listed in Table 7.1.
The electric potential on both spheres’ surfaces calculated by CDLBIEM is compared to the
analytic solution in Figure 7.1. The key error of CDLBIEM is caused by the discretization of
the surfaces by boundary elements. Since the interaction between the almost touching spheres
is very strong, CDLBIEM with four boundary elements has a large relative error. However, this
error is decreased by three orders of magnitude by using 320 boundary elements and CDLBIEM
gives a good approximation for the solution.

The second test compares CDLBIEM’s result to the boundary collocation solution. In order
to use the boundary collocation method, all 32 spheres are placed on a straight line with equal
distances as described in Table 7.2. The agreement between both methods is good and improves

with boundary element mesh refinement as shown in Figure 7.2.
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Figure 7.1: Numerical error of CDLBIEM for two spheres. The relative error of the electric
potential on two equally sized and equally charged spheres versus different numbers of boundary
elements.
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number of spheres 2
radii of the spheres 1.0
distance between the spheres’ centers 2.2
distance between the spheres’ surfaces 0.2
net charge of one sphere 1.0
no superimposed electric field

Table 7.1: Input data for numerical error of CDLBIEM for two spheres. Data of the two spheres
used to compare CDLBIEM to the analytic solution.

number of spheres 32
radii of the spheres 1.0
distance between the spheres’ centers 2.5
distance between the spheres’ surfaces 0.5
net charge of one sphere 1.0
no superimposed electric field

Table 7.2: Input data for numerical error of CDLBIEM for 32 spheres. Data of the 32 spheres
used to compare CDLBIEM to the boundary collocation method.

7.2 Performance of the CMMD Implementation

This first implementation is mainly used to analyze the asynchronous iteration algorithm and
its speedup as a function of the CS matrix. A detailed scaleup analysis has not been feasible,
vet, since the CM-5 partition we used has only 32 nodes and is too small for an exhaustive
scaleup analysis. Thus, detailed scaleup analyses are limited to the CSM implementation.

To illustrate the problems which have been solved with the CMMD implementation an array
of 256 spheres is illustrated in Figure 7.3 with the input data as in Table 7.3. The spheres are
randomly distributed in a 3-dimensional cube; their graylevel represents their surface potential

ranging from light-gray (low potential) to dark-gray (high potential). In this example, there is
ging ght-gray p gray (high p p
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Figure 7.2: Numerical error of CDLBIEM for 32 spheres. The relative error of the electric
potential on 32 equally sized and equally charged spheres versus the position of the spheres.

no superimposed ambient electric field and the electric potential is generated only by the net
charges on the spheres, and therefore, the highest potential is near the center of the cube.

As anticipated in Section 5.4.3, we expect a tremendous speedup of the execution by reducing
the frequency of interaction updates. The problem, which leads to the result in Figure 7.3, has
been run with different CS matrices. Reducing the frequency of updates as given a prior: in
the CS matrix, is expected to reduce the amount of computation and communication and still
lead to the correct solution. Although the data for 256 spheres fits into the memory of the
CM-5 (see Table 7.4) even when all submatrices are permanently stored in memory, in order
to test the performance of the program and to extrapolate its behavior to larger problem sizes,

only a part of the submatrices is stored, while the rest is calculated during the execution of
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Figure 7.3: Electric potential of 256 spheres, which are randomly distributed in a cube. Light-
gray corresponds to low potential and dark-gray corresponds to high potential.
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number of spheres 256
radii of the spheres 1.0
minimal distance between the spheres’ surfaces 0.1
net charge of one sphere 1.0
no superimposed electric field

domain: cube with sidelength 30

number of boundary elements per sphere 20

number of processors 32

Table 7.3: Input data for 256 spheres.

CM-5 partition size 32 processors
DRAM on one node 32 MByte
vector units not used

message-passing library CMMD 3.0
C compiler gce

Table 7.4: Machine parameters for the CMMD runs.

the iteration, as discussed in Section 5.4.4. There are two sets of runs: The first set, where
half of the matrix is stored in memory and the other half is calculated. The second set has one
quarter of the matrix stored and the other three quarters are calculated. The first set includes
5 runs with different CS matrices, where the maximal entry in the CS matrix is either set to
1, 10, 20, 40, or 80. This maximal entry corresponds to the interaction between the two most
distant bodies. The other entries are fractions of this maximal entry, where one fraction is the
ratio of the distance between the corresponding bodies and the maximal distance occuring in
the system. The second set, where one quarter of the matrix is stored, includes runs with 1, 40,
and 80 for the maximal entry.

The less frequent updates of the solution subvectors and the partial dot products lead to
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more iteration steps needed for convergence. Suppressing updates basically sets submatrices
in the system matrix C to zero, which might increase the spectral radius of C. Since the
eigenvalues and the spectral radius of C are dominated by its diagonal submatrices, which are
never set to zero, the matrix C is still stable (its spectral radius is less than one), and the
iteration still converges.

For instance, C for the problem of two spheres in an unbounded domain (see Figure 7.11)
has a spectral radius of 0.296. By setting any of the two off-diagonal submatrices, which describe
the interaction between the two bodies, to zero, the spectral radius decreases to 0.178.

Figure 7.4 shows the relative error of the double layer density versus the iteration number
for the 5 different runs, when half of the matrix is permanently stored in memory. This relative
error is not based on the accurate solution, but on the converged solution of a prior run with
a high number of iterations. Thus, the relative error does not include the systematic error of
CDLBIEM that is discussed in Section 7.1. For this reason, the asymptotic relative error is of
the order O(107*%), which corresponds to the numerical accuracy of double-precision floating-
point numbers (8 Bytes). As anticipated, the number of iteration steps needed for convergence
increases, when the frequency of interaction updates decreases.

However, the execution time of the iteration is reduced. The interactions between far apart
bodies do not contribute as much to the convergence of the solution as the interactions between
near bodies do. Thus, updating the communication and the computation for these far-body
interactions is more expensive than suppressing them. While these far-body interactions are

being suppressed, the iterative solution converges to a “local” fixed point and waits until “global”
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Figure 7.4: Relative error versus iteration number. Half of the system matrix C is stored. One
error curve represents one run for one CS matrix with its maximal entry € {1, 10,20, 40, 80}.

information arrives that nudges it towards the “global” fixed point, the final solution of the
iteration. This behavior is observed in the step-like shape of the error curves in Figure 7.4,
which shows the relative error versus the execution time of the iteration, when half of the matrix
is permanently stored in memory. There is a trade-off between the reduced communication and
computation time and the increased number of iteration steps: The total execution time is the
product of the decreased execution time spent in one iteration step and the increased numbers
of iteration steps. By over-suppressing the updates, the total execution time increases. For this
reason there is an optimal CS matrix. As can be seen in Figure 7.5, the optimal execution time
is obtained by setting the maximal entry of the CS matrix to a value around 40.

In the case, where only a quarter of the matrix is stored, even a better improvement in the
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Figure 7.5: Relative error versus execution time in sec. Half of the system matrix C is stored.
One error curve represents one run for one CS matrix with its maximal entry € {1, 10, 20, 40, 80}.

execution time is observed. Figure 7.6 compares the number of iterations needed for convergence

to the number of iterations in the case, where half of the matrix is stored. The relative error

versus the iteration number is the same in both cases, since the frequency of the updates is the

same. However, since there is twice as much time spent in setting-up the submatrices, one of

these updates also takes longer and leads to the comparison in Figure 7.7. The results in this

figure are very promising, since the execution times in the case, where a quarter of the matrix

is stored, get close to the execution times in the case, where half of the matrix is stored. This is

of great advantage for huge problem sizes, where only a small part of the matrix can be stored

in memory.
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Figure 7.6: Relative error versus iteration number. Half (1/2) or a quarter (1/4) of the system
matrix C is stored. One error curve represents one run for one CS matrix with its maximal en-
try € {1,40,80}.
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Figure 7.7: Relative error versus execution time in sec. Half (1/2) or a quarter (1/4) of the
system matrix C is stored. One error curve represents one run for one CS matrix with its
maximal entry € {1,40, 80}.
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7.3 Performance of the Split-C Implementation

The performance of the Split-C implementation is very similar to the performance of the CMMD
implementation. Split-C provides a static shared-memory programming model and its under-
lying communication is based on active messages. Its performance is directly related to this
message-passing and the results presented in Section 7.2 are not repeated. Instead, the iteration
is broken down into four phases: the communication, the matrix calculation, the dot product,
and the arranging of output data. The three times of main interest are the overall time spent in
the iteration, the time spent in the communication, and the time spent in the matrix calculation.
The other two times are small compared to these times.

Table 7.6 compares these times between the CMMD and the Split-C implementation using
the parameter set listed in Table 7.5. Note the significant decrease in communication time in the
Split-C implementation as compared to the CMMD implementation. This is due to the efficient
implementation of the message-passing layer using active messages as discussed in Section 5.6.2.
However, the decrease in the overall iteration time is not as big. We believe this is due to the
optimizer in the Split-C compiler not being as good as that in the “gec” compiler on the CM-5

(a problem that can be corrected) [50].

7.4 Performance of the CSM Implementation

This section presents scaling results of the CSM implementation. First of all, the underlying

hardware is discussed. The CSM code is run on a cache-coherent shared-memory parallel
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number of spheres 256
radii of the spheres 1.0
minimal distance between the spheres’ surfaces 0.1
net charge of one sphere 1.0
no superimposed electric field

domain: cube with sidelength 30
number of boundary elements per sphere 20
number of iterations 40
maximal entry in CS matrix 5
number of processors 32

Table 7.5: Input data for comparison of Split-C code to CMMD code.

Phase Split-C CMMD
40 iterations 108 149
communication 3.5 75
matrix calculation | 68 68

Table 7.6: Comparison of Split-C code to CMMD code. Execution time in sec for the whole
iteration, the communication phase, and the matrix-calculation phase. The shown execution
times are the maxima over all processors.

machine. An architecture which closely fits the CSM programming model is a distributed-
memory machine with the cache-coherence protocol Dury SW. These results are also presented

in our paper [51].

7.4.1 DiriSW: An Implementation of CSM

Although the underlying hardware has distributed memory similar to the architecture in Fig-
ure 5.1, the Dir; SW protocol provides a shared-memory model on the programming level.
Diry SW maintains cache-coherence, which prevents a processor from reading a cached copy

of data, when another processor has updated the original memory location. Diry SW logically
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associates a small amount of memory — called a directory entry — with each cache-block-sized
piece of the memory. Dir; SW uses this directory entry to record that the block is either idle (no
cached copies), one writable copy exists, or to store the number of read-only copies. The cache
coherence protocol uses a combination of hardware and low-level runtime software (trap han-
dlers) to insure that a processor can obtain a copy of a block regardless of the block’s prior state.
Diry SWis designed so that the transitions favored by CICO have the highest performance.
All the results presented in this section use the specific implementation assumptions for

Diry SW listed in Table 7.7.

7.4.2 The Wisconsin Wind Tunnel

One challenge for performing experiments on the Diry SW computer is that it does not exist,
yet. For this reason, the measurements in this paper are performed on the Wisconsin Wind
Tunnel (WWT), a virtual prototype for cache-coherent, shared-memory computers [46]. WW'T
runs parallel shared-memory programs on a parallel message-passing computer (a Thinking
Machines CM-5 [48]) and uses a distributed, discrete-event simulation to concurrently calculate
the programs’ execution times on a proposed target computer. Wherever possible, WWT
exploits the similarities between Dir SW and the CM-5 to run faster.

Each processor in the simulated Diry SW computer (the target system) executes SPARC
binaries. The execution time for each instruction is fixed. Instruction fetches and stack accesses
require no additional cycles beyond the basic instruction time. Other memory locations are

cached in a node’s cache. A cache hit takes no additional cycles, while a cache miss invokes a
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processors
cache
block size

TLB
page size

message latency
barrier latency

cache miss

cache invalidate

check_out
check_in

directory

trap

8-256 SPARCs

256 KB, 4-way set-associative
32 bytes

64 entries, fully associative,

FIFO replacement
4 KB

100 cycles remote, 10 cycles to self
100 cycles from last arrival

19 cycles + 5 if block is replaced

+ 8 if replaced block was exclusive copy

3 cycles + 5 if block is invalidated

+ 8 if invalidated block was exclusive copy

Same as cache miss, plus 1 cycle

for check_out issue

Same as cache invalidate, plus 1 cycle
for check_in issue

10 cycles + 8 if cache block is received
+ 5 if message is sent

+ 8 if cache block is sent

255 cycles + 5 for each message sent + 8
for each block sent

(directory hardware locked out

for first 55 cycles)

Table 7.7: Dir; SW assumptions.

coherence protocol that sends messages, accesses a directory entry, etc. Each message, cache or
directory transition has a cost. Caches and directories process messages in first-come-first-serve
order. Queuing delay is included in the cost of a cache miss. Network topology and contention
are ignored, and all messages are assumed a fixed latency.

There are two important drawbacks to using WW'T. First, when WWT predicts the per-
formance of the proposed Diry SW computer, it actually runs programs about 100 times slower
[46]. This means that full-scale data sets cannot be used in practice. Second, any model of a

real physical system may fail to include key aspects of that system.
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WWT, however, provides several advantages for this research. First, we can perform the
research prior to the existence of a Diry SW computer. Second, we can easily vary system
parameters, such as the number of processors and the cache size. The number of processors can
even exceed the number of physical processors on the CM-5, so that several virtual processors
are simulated on one physical processor. Third, the performance predictions are repeatable and
indicate where the execution time is spent. Fourth, virtual prototypes for other computers can

be built and the results can be compared in controlled experiments.

7.4.3 Speedup

In order to analyze the scaling of the parallel iteration algorithm, we evaluate the speedup of
its CSM implementation according to the lines in Section 5.2.1. We solve a problem with 256
bodies, which is too large for the memory and speed of one processor. However, it can be solved
on 16 processors and we use a modified speedup based on the execution time T¢(/N) on these
16 processors instead of the sequential execution time 7™ (N):

5100 = 7

For an ideal parallel implementation of an algorithm the speedup is equal to the number of
processors: Sp(N) = P or Sp(N) = P/16. Using the constant input set listed in Table 7.8
the iteration algorithm has been executed on 16, 32, 64, 128 and 256 processors. The resulting
speedup is shown in Figure 7.8 and is quite close to the ideal straight line. The speedup of

the run on 128 processors compared to the run on 16 processors is 7.74. However, the run on
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256 processors has a speedup of 12.37 (the ideal speedup is 16). The scaling of the program
breaks down on 256 processors since the load balancing routine has no effect for this run. Each
processor computes only one body so that there is no degree of freedom in distributing the
bodies. With decreasing numbers of bodies per processor, the degrees of freedom decrease,
the load balance deteriorates (see Table 7.9), and the scaling of the program gets worse. In
production runs we will have a large number of bodies per processor, so that this effect will

become less important.
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number of processors 16, 32, 64, 128, 256
no container

number of bodies 256

number of boundary elements per body 20

stored part of system matrix 240/256

maximal number of suppressed updates maxx,;sp 5

Table 7.8: Input data for speedup. 240/256 of the system matrix is stored.

P fastest processor slowest processor load balance speedup
16 413487228 420940543 1.0180 1.0

32 206406117 213151123 1.0327 1.9748
64 102472027 108515008 1.0590 3.8791
128 51451454 54358375 1.0565 7.7438
256 21075391 34020965 1.6143 12.373

Table 7.9: Load balance and speedup for the runs on 16, 32, 64, 128, and 256 processors.
The execution time of the iteration is given in clock cycles for the “slowest” and the “fastest”
processor. Load balance is the ratio of slowest processor to fastest processor. Speedup is based
on slowest processor.

7.4.4 Time-Constraint Scaleup

As discussed in Section 5.2.1, the time-constraint scaleup of the CSM code is evaluated. The
calculation of the system matrix, which has (N M)? elements, is of the order O((N M)?). Since
the time spent in setting-up the system matrix dominates the execution time of the iteration,
this execution time is estimated a priori to behave as O((NM)?).

According to this estimation the input sets for the runs on the different partition sizes are
chosen as listed in Table 7.10. The rest of the parameters, for instance the number of boundary
elements M, are chosen as listed in Table 7.8. Because of the limitations for the partition

sizes there are two different sets of runs, both as presented in Figure 7.9. Both sets show the
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Figure 7.8: Speedup w.r.t. 16 processors. 240/256 of the system matrix is stored.

almost perfect scaleup of the CSM code. However, the scaleup is much worse for the run on
256 processors. This is due to the effect already discussed in Section 7.4.3, where the degree of

freedom in distributing the bodies to get a good load balance is zero.

number of processors number of bodies stored part
8 64 60/64

32 128 120/128

128 256 240/256

16 64 60/64

64 128 120/128

256 256 240/256

Table 7.10: Input data for time-constraint scaleup.
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Figure 7.9: Time-constraint scaleup. The curve “8-32-128” is the scaleup of the runs on §,
32, and 128 processors. The curve “16-64-256" is the scaleup of the runs on 16, 64, and 256
processors.
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7.5 N Bodies as Inclusions in a Container

N perfectly conducting spheres are embedded inside a spherical perfectly conducting shell. This
section shows results for the electric potential in the vacuum surrounding the inclusions and
the corresponding dielectric constants. As derived in Section 6, the computation also yields the

thermal conductivity.

7.5.1 Electric Potential

After the double layer density on all body surfaces has been calculated by the parallel iteration
algorithm, the electric potential on the bodies and in the vacuum surrounding the bodies is
readily available by evaluating the integrals in Equation (3.50) and Equation (3.54). In order
to illustrate the equipotential lines, the potential is calculated on planar cross section through
the 3-dimensional space.

Since the potential created by one charged sphere in an unbounded infinite domain is given
by

(x) = = | (7.1)

the equipotential surfaces are spheres and in the cross sections circles. Now place this sphere as
an eccentric inclusion within a perfectly conducting spherical container. The potential lines are
the thin lines as depicted in Figure 7.10. The thick lines represent boundaries of the container
and the included sphere. The data of the spheres for this result is listed in Table 7.11. Note

the high density of equipotentials in the upper right and the upper left corners of Figure 7.10,
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radius of container 2.0
potential on container’s surface 0.0

center of container (0.0,0.0,0.0)
radius of included sphere 1.0

net charge of included sphere 1.0

center of included sphere (0.0,0.0,0.1)
number of BEs per included sphere 320

no ambient electric field

normal vector of planar crossection  (0.0,1.0,0.0)

Table 7.11: Input data for “An eccentric sphere inside a spherical conducting shell”.

no container

radii of spheres 1.0

net charge of one sphere 1.0

center of 1. sphere (0.0,0.0,—1.1)
center of 2. sphere (0.0,0.0,1.1)
number of BEs per sphere 320

no ambient electric field
normal vector of planar crossection (0.0, 1.0,0.0)

Table 7.12: Input data for “T'wo spheres in an unbounded domain”.

which is due to the image of the included sphere. This potential field outside the spherical
container is not of physical relevance. The real exterior equipotential surfaces are spheres, since
the spherical container is a perfect conductor and its interior does not influence its exterior.
Figures 7.11 and 7.12 compare the equipotential lines of two spheres in an unbounded domain
to the equipotential lines of two spheres included in a spherical container. The data for these
problems is listed in Table 7.12 and Table 7.13.
Figure 7.13 shows the potential field generated by 64 charged spheres as inclusions in a

spherical perfect conductor. The spheres are randomly distributed inside the conductor. Note



137

Figure 7.10: An eccentric sphere inside a spherical conducting shell.
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Figure 7.11: Two spheres in an unbounded domain.
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Figure 7.12: Two spheres inside a spherical container.
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radius of container

potential on container’s surface
center of container

radii of included spheres

net charge of one included sphere
center of 1. sphere

center of 2. sphere

number of BEs per sphere

no ambient electric field

normal vector of planar crossection

3.0
0.0
(0.0,0.0,0.0)
1.0

1.0

(0.0,0.0, —1.1)
(0.0,0.0,1.1)
320

(0.0,1.0,0.0)

Table 7.13: Input data for “T'wo spheres inside a spherical container”.

radius of container

potential on container’s surface
center of container

radii of included spheres

net charge of one included sphere
number of BEs per sphere

no ambient electric field

normal vector of planar crossection

30
0.0
(0.0,0.0,0.0)
1.0 to 2.0
1.0

20

(0.0,0.0,1.0)

Table 7.14: Input data for “64 spheres inside a spherical container”.

that the cross sections of the spheres are circles and only 5 out of the 64 spheres are intersected

by this cross section. However, the spheres which are close to this cross section influence the

shown equipotential lines significantly. The object outside the container in the lower left corner

of the figure is the image of one of the included spheres. The data for this figure is listed in

Table 7.14.
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number of spheres 32

radii of the spheres 0.25-0.75
distance between the spheres’ centers 2.0

net charge of one sphere 0.0
superimposed electric field 1.0
domain: spherical container with radius 5.0
number of boundary elements per sphere 320
number of processors 32

Table 7.15: Input data for “32 spheres inside a spherical container”.

7.5.2 Dielectric Constant and Thermal Conductivity

In order to verify the method calculating the dielectric constant and the thermal conductivity
as described in Section 6, we placed 32 spheres as inclusions into a spherical container with
a small volume fraction ¢. Analytical results were obtained by Zuzovsky and Brenner [53] for
a two-phase material with a regular distribution of spherical inclusions in an unbounded 3-
dimensional domain. The matrix surrounding the spheres is a vacuum and has the dielectric
constant 1, the spheres are perfect conductors and have infinite dielectric constants. The 32
spheres are regularly distributed in a simple cubic array, as listed in Table 7.15 and shown in
Figure 7.14.

Zuzovksy’s and Brenner’s formula for the effective dielectric constant for a regular distribu-

tion of spheres in a simple cubic lattice is:

-1

1.306¢°/3
C _ _0.022* 0| (7.2)

=1 | —em —0P¢
e=1+3c T 120407473

There are three runs with different sphere sizes and volume fractions ¢ as listed in Table 7.16,
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Figure 7.14: 32 spheres inside a spherical container, regular distribution in a simple cubic array.
The graylevels represent the electric potential on their surfaces. Light-gray corresponds to low
potential and dark-gray corresponds to high potential. The container with radius is not shown.
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sphere radii ¢ CDLBIEM Zuzovsky and Brenner relative error
0.25 0.004 1.01178 1.01205 0.00027
0.5 0.032  1.09697 1.09917 0.00020
0.75 0.108 1.35551 1.36355 0.00590

Table 7.16: Dielectric constant e for different volume fractions ¢. Comparison of the results
from CDLBIEM to the analytical results from Zuzovsky and Brenner.

which compares our results to the analytical results in Equation (7.2). Both results agree with
a maximal relative error of 0.6% and propose CDLBIEM as a numerical method to investigate

transport properties of two-phase materials.



Chapter 8

Summary and Conclusions

The Completed Double Layer Integral Equation Method (CDLBIEM) has been applied to the
Laplace equation, in order to solve for the electric double layer density on N perfect conductors
distributed in a 3-dimensional domain. The input data for CDLBIEM are the geometrical data
and the net charges of the bodies and the superimposed electric field. The result for the double
layer density returned by CDLBIEM has been used to calculate the electric potential on the
bodies’” surfaces and in the medium surrounding the bodies.

CDLBIEM has been implemented in three programming models on parallel machines:
message-passing, static shared memory, and cooperative shared memory. The different aspects
for writing our programs in these programming models have been discussed, and their perfor-
mance has been analyzed.

CDLBIEM yields a linear algebraic equation system with a system matrix which has a small

spectral radius. For this reason, this equation system has been solved very efficiently by Jacobi

145
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iteration. The Jacobi iteration has been parallelized by distributing the N bodies onto the P
processors. Each processor runs the Jacobi iteration simultaneously and asynchronously. The
communication between the processors has been implemented either in the form of a request-
and-send scheme or in the form of shared memory access.

This communication has been improved by implementing a communication schedule which
naturally corresponds to the degree of physical interaction between the bodies. It reduces the
amount of communicaton and computation since the interactions between distant bodies are
not updated in every iteration step. Since the eigenvalues of the system matrix are dominated
by the interactions between close bodies, this modified iteration still converges to the same
solution, but about three times faster.

In order to solve for the double layer density on N bodies as inclusions in a spherical perfect
conductor, CDLBIEM has been extended by using the method of images which yields zero
potential on the surface of the spherical conductor. The resulting boundary integral equations
for the double layer density have been solved by the same programs, but the routine which
sets up the equations had to be modified. However, since the number of unknowns stays the
same, there is neither more communication nor more memory usage than in the original case
of an unbounded domain. The solution for the double layer density has been used to calculate
the macroscopic dielectric constants and thermal conductivities of two-phase material which is
surrounded by the spherical conductor.

CDLBIEM is a very efficient numerical method with a high accuracy. For instance, we have

shown that its relative error is less than 0.5% for two almost touching spheres. The relative
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error of the macroscopic dielectric constant is less than 0.6% compared to the result obtained
by Zuzovsky and Brenner [53].

The comparison between the different implementations has shown that the cooperative
shared memory model is the most promising of the three programming models for a standard
programming model, which will allow the application programmer to easily port his or her
programs from one computer to another. The program in the CSM model shows a 7.7-fold
speedup from 16 to 128 processors and its time-constraint scaleup is almost perfect. The major
advantage of the CSM model is its separation of the performance and the functionality of
the communication. It provides a cost model for application programmers to optimize their
algorithms and for computer architects to build parallel computers. Furthermore, its uniform
address space provides transparent object names and easy programming.

Implementing programs on the message-passing model or in Split-C is more difficult, since
the functionality and the performance of the communication are closely coupled. In the CMMD
version the request-send-scheme had to be implemented in the form of message loops and in the
Split-C version we had to insert low-level polling function calls in order to get good performance.
In our case, Split-C is the better choice because of its very eflicient implementation of point-to-
point messages, in the form of active messages.

Virtual prototyping is a very good concept for developing parallel machines. On the Wiscon-
sin Wind Tunnel it is easy to change system parameters, such as network latency, cache sizes,
partition sizes, and to vary the algorithm and the computer architecture, in order to optimize

the combination of both.
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A widely accepted high-level programming model, for example CSM, will have a similar
impact on parallel computing, as Fortran had in the early days of electronic digital computing.
More application programmers, especially in the chemical engineering community, will be able

to solve their computational expensive problems on high-performance parallel machines.

8.1 Future Work

The algorithm has been very efficiently implemented and executed in the CSM model. We have
been able to run this program on a wide range of partition sizes and have obtained scaling
results. However, we have not been able to obtain scaling results for the program in Split-C or
the message-passing versions. In order to compare the performance of the three versions, we
also need results on partitions larger than 32 processors for the Split-C and the message-passing
versions.

So far, our program has solved problems with spheres. For these problems, linear planar
triangles as boundary elements and one collocation point for the double layer density on one
boundary element have been sufficient. Curved boundary elements, a collocation of higher
order, and quadratures of higher order might be necessary to solve problems with bodies of
more complex shapes.

The programs can be easily modified to solve the Stokes equations, the Navier equation, or
the Stokes equations and the Laplace equation simultaneously (in order to simulate electrorhe-
ological fluids).

The behavior of CDLBIEM on the three discussed programming models and on other pro-
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posed programming models has to be investigated in more detail. Our results should then affect

the architecture of parallel computers.



Appendix A

Units in Electrostatics

All values of the electrostatic quantities discussed in this work are given in electrostatic units,
esu. This appendix describes the conversion of electrostatic units to rationalized MKSA units
or SI units.

Table A.1 lists some electrostatic quantities, their elecrostatic units, and their corresponding

MKSA units according to [25].

Quantity Symbol MKSA esu

Charge Q 1C =1As 10c statcoulombs
Charge density p 1Cm™ 10~%¢ statcoulombs cm™
Potential 1) 1V 10%~T statvolt

Electric field E 1Vm™? 10*c " Tstatvolt cm ™!

Table A.1: Electrostatic units and MKSA units. ¢ is the speed of light, ¢ = 2.998 - 10®m s™! =
2.998 - 10%.
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Appendix B

CSM Program

In this appendix we give a tutorial on how to compile and run the CSM program on the WWT.
The source code, the make file, the shell scripts, and templates for the input data are listed.
Please refer to “A Programming Tutorial (Or How to Survive Your First Few Days on the
Wisconsin Wind Tunnel)” by Alain Kaegi and Shubhendu S. Mukherjee (Computer Sciences
Department, University of Wisconsin — Madison) for a general introduction into the WWT. The
programming structure of the WWT may change, so please contact the people who develop the
WWT for up-to-date information. Please contact me if you are interested in a diskette with the
source files for the message-passing, the Split-C, or the CSM programs. My Internet address is:

traenkle@luther.che.wisc.edu.
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B.1 Benchmark Tree and Source Files

First of all, a benchmark tree has to be created in any directory accessible by the CM-5.
This benchmark tree is a hierarchical structure of subdirectories and contains the source codes,
the make files, the shell scripts, and the input and output files of several benchmarks. A
benchmark is a program for testing the performance of a computer. For example, our program
is a benchmark. The benchmark tree as shown in Figure B.1 has to be created by hand using
the UNIX command mkdir. The arrows are links which are created by 1n -S. All the bold
names are directory names, the other names are file names. The files listed in this appendix
have to be placed into the locations according to Figure B.1. The name of the benchmark root
directory can be chosen arbitrarily, we chose BM. The other names are fixed.

The source code for the benchmark lap, which is our CSM code, consists of two modules:

lap.U CSM source code
geometry.c C source code

Both modules include the C header files:

my.h C header file
geometry.h C header file

lap.mak.include is a general make file which is included by the make file Makefile.
lap.mak.include should not be changed, whereas Makefile should be changed to set C macros
or to choose between different cache coherence protocols. The C macros supported by lap.U

are:
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BM
— Benchmar ks. src
— lap
—dirlsw
L Makefile
— src -
— lap. U
— geonetry. c
—my. h
— geonetry. h
— | ap. mak. i ncl ude

—inputs -
— | ap. quad
— | ap. geo
— | ap. num
— | ap. sol

— further benchmarks

— Benchmar ks
— | ap

i nputs

src

runs

— di rlsw
Makefil e
experiment _settings
lap.in

— further experinents
— prepare_defaults
—run_defaults

— further benchnarks

Figure B.1: Benchmark tree. Bold names are directories, other names are files. The arrows are

UNIX links.
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WWT The WWT related source lines are activated. Note
that 1lap.U can also be used as a sequential code.

cIco check_out_S is used to check out the remote solution
subvectors.

CICO_X check_out_X is used to check out the remote solution
subvectors.

LOCK_ The remote solution subvectors are locked while ac-

cessing them.
TIMERS The virtual timers of WW'T are activated.
CONTAINER  The linear algebraic equation system is set up, in order
to model N bodies in a container.
SINGLEPREC Single-precision is used for floating-point numbers.

experiment_settings (Figure B.2) is a shell script which sets the run-time arguments.
The default run-time arguments are defined in run_defaults (Figure B.3). prepare_defaults

defines the default way how to create new directories for experiments (runs).

B.2 Compiling the Executable

The following C-shell environmental variables have to be set or appended by the UNIX com-

mands setenv or set respectively:

WWT_ROOT /p/WWT

BMTREE BM

path (/p/WWT/Bin /p/WWT/Scripts)
Then, the executable lap.Z can be created by running the command

wwt_build -t$BMTREE -blap dirlsw. The compressed executable lap.Z is written to the

directory BM/Benchmarks/lap/runs/dirlsw.
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B.3 Input and Output Files

The main input file lap.in contains the names of all other input and output files. Each row
contains a file name and controls whether an output file is created. If a row for an output file
name is left blank, the corresponding output file is not created and its data is not calculated.

A sample for lap.in is in Figure B.4. The rows have the following functions:

1. 240 240/256 of the system matrix is stored in memory

2. ../../inputs/lap.quad input file for quadrature points and weights

3. ../../inputs/lap.num input file for numerical data

4. ../../inputs/lap.geo  input file for geometrical data

5. lap.psi output file for potential on spheres’ surfaces

6. lap.phi output file for double layer density on boundary
elements

7. lap.err output file for relative error

7. ../../inputs/lap.sol  thiserror is based on the accurate solution in this input
file

8. lap.time output file for virtual timers

9. 1loadbalance switches the load balancing routine on or off

Templates for the other input files are given in Figure B.5 for lap.quad, in Figure B.6 for

lap.num, in Figure B.7 for lap.geo, and in Figure B.8 for lap.sol.

B.4 Running the Executable

By calling wwt_run -nowait -t$BMTREE -blap dirlsw, a job is submitted to the job manager
of the CM-5. The output files are written to the directory BM/Benchmarks/lap/runs/dirlsw.
Note that new directories for different runs can be created in BM/Benchmarks/lap/runs,

for example for different input sets, different program versions, or different cache coherence
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protocols. By setting C macros in the different make files, the same source code lap.U can be

used for all cases. wwt_build creates different executables for different runs and places them

into the corresponding directories.

setenv EXP_FLAGS "-NPT -RO1 -n 64 -nl 100 -ql 100"
setenv CMD_ARGS "lap.in"

setenv JSUB_CPU "-cputime 60min"

setenv JSUB_MEM "-memory 300mb"

Figure B.2: Shell script experiment_settings.

#!/usr/misc/tcsh -f

H H H H H HH HH S H

if
if
if
if
#i
if
if
if
if
if
if

Defaults values for the various experiment parameters.

Don’t make any change to this file, if you need different values
for the variables below, define them in the script calling
l|runl| .

EXPERIMENT has no longer a default, this way once can detect
unintentional use of ./run.

CMD_IN is defined only if input is to be read from stdin.

if (
(!
(!
(!
(!

f (

~ N AN S~

! $7EXPERIMENT ) setenv EXPERIMENT "dirisw"
$7SIM_NAME ) setenv SIM_NAME "{$WWT_ROOT}/Bin/dirisw"
$7SIM_ARGS ) setenv SIM_ARGS ""

$7CMD_NAME ) setenv CMD_NAME '"lap"

$7CMD_ARGS ) setenv CMD_ARGS "../../inputs/lap.in.64.20.64.d1"
! $7CMD_IN )

$7JSUB_NPROC ) setenv JSUB_NPROC "-nproc 32"
$7JSUB_CPU ) setenv JSUB_CPU '"-cputime 30min"
$7JSUB_MEM ) setenv JSUB_MEM '"-memory 300mb"
$7JSUB_ME ) setenv JSUB_ME "-mail_end"

$7JSUB_EXP ) setenv JSUB_EXP '"-export"

$7JSUB_XTRA ) setenv JSUB_XTRA "-server mendota'

Figure B.3: Shell script run_defaults.
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240
../../inputs/lap.quad
../../inputs/lap.num
../../inputs/lap.geo

lap.psi

lap.sol

lap.err ../../inputs/lap.sol
lap.time

loadbalance

Figure B.4: Main input file lap.in.

(number of quadrature points Q)
Q rows of (quadrature point, corresponding weight, separated by a space)

Figure B.5: Input file lap.quad.

(number of spheres N)

(number of elements of initial polyhedron)

(number of tesselation steps to create final polyhedron)

(number of iteration steps)

(CS matrix) (N#N entries, separated by spaces or carriage returns)

Figure B.6: Input file lap.num.

(number of spheres N)
(superimposed electric field, 3 entries, separated by spaces)
N rows of (x, y, z coordinates, radius, net charge) for each sphere

Figure B.7: Input file lap.num.

N * M rows of (double layer density on boundary element)

Figure B.8: Input file lap.sol.




B.5 Listings

B

/*
#i
#
#
fe

#i
it
fe

.5.1 Module lap.U

lap.U / lap.c

5.0

used modules:

geometry.c

programmed by Frank Traenkle

last modification: 11/20/93 19:41
WWT version and serial version combined
Ready for Container Problem

each processor has subset of rows
buffered submatrices

N particles in 3D-space

advanced output

Deflation Version, solved by Jacobi Iterations
No Gaussian Quadratures if elements are not near neighbors.

serial version */

fndef WWT

define XX_NUM_NODES 1

define G_MALLOC(ulSize) malloc(ulSize);
ndif

fdef CICO_X
define CICO
ndif

#tdefine FILENAM_SIZE 80
#define STRING_SIZE 80

/*

virtual timers */

#define VT_SOLVE O
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#define VT_SOL_READ 1

#define VT_SOL_WRITE 2

#define VT_RECREATEMATRICES 3

#define VT_DOTPRODUCT 4

#define VT_CALCPSI 5

#define VT_CALCERR 6

#define VT_CREATEMATRICES 7

#define VT_WORK 8

f#tdefine VT_ 9 /* maximal number of virtual timers */

/* virtual timer macros */

#ifdef TIMERS

# define VTTYPE unsigned

# define VTSTART(); \
avtStart [ulVT++] = wwt_get_vt_lo();

# define VTSTOP(ulVTSym); \
avt [ulVTSym] += wwt_get_vt_lo() - avtStart[--ulVT];

/*

# define VTSTART(); \
avtStart [ulVT++] = wwt_get_vt_dbl();

# define VTSTOP(ulVTSym); \
avt [ulVTSym] += wwt_get_vt_dbl() - avtStart[--ulVT];

*/

#else

# define VTSTART(); ;

# define VTSTOP (ulVTSym); ;

#endif

#ifdef WWT
# define PRINT_ADDRESS(sz, p) \

fprintf (pFileStd, "%20s %12u %12u\n", sz, p, (ULONG)p % (ULONG)BLOCK_SIZE);
#tendif

#ifdef CONTAINER
# define CONTAINER_1 \
fpRy = AABS(afpY);\
afpD[0] = afpY[0] / fpRy;\
afpD[1] = afpY[1] / fpRy;\
afpD[2] = afpY[2] / fpRy;\
fpRz = pg->fpR2 / fpRy;\
afpZ[0] = afpD[0] * fpRz;\
afpZ[1] = afpD[1] * fpRz;\
afpZ[2] = afpD[2] * fpRz;\
afpXmZ[0] = afpX[0] - afpZ[0];\
afpXmZ[1] = afpX[1] - afpZ[1];\
afpXmZ[2] = afpX[2] - afpZ[2];\
fpRxz = AABS(afpXmZ);\
for (ulIl = 0; ulll < 3; ulll++)\
0O
afpSuml[ullI] = 0.;\
for (ulJJ = 0; ulJJ < 3; ulJJ++)\



0

afpSuml[ulII] += (DELTA(ulII, ullJJ) - 2. * afpD[ullIl] =*\

afpD[ulJJ]) * afpXmZ[ulJJ];\
N
}
#define CONTAINER_2 \

((pgeoJ->afpN[0] *afpXmY[0] +\
pgeoJ->afpN[1]*afpXmY[1] +\
pgeoJ->afpN[2]*afpXmY[2]) /\
(fpRxy * fpRxy * fpRxy) +\
(-fpRz *\

(pgeoJ->afpN[0] * afpSumi[0] +\
pgeoJ->afpN[1] * afpSumi[1] +\
pgeoJ->afpN[2] * afpSum1[2]) /\
SQR (fpRxz) +\
pgeoJ->afpN[0] * afpD[0] +\
pgeoJ->afplN[1] * afpD[1] +\
pgeoJ->afpN[2] * afpD[2]) *\
SQR(fpRz) / (fpRxz * pg->fpR3));
#endif

#ifdef WWT

ENV

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#tinclude <assert.h>
#ifdef WWT

#include <align.h>
#endif

#include "my.h"
#include "geometry.h"

/* body data */

typedef struct _BODY

{
ULONG ulNumber; /* original number #*/
FPTYPE afpZ[3]; /* center */
FPTYPE fpR; /* radius */
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FPTYPE £pQ; /* charge */
} BODY, *PBODY;

#ifdef WWT
/* lock declaration */
typedef LOCKDEC (XLOCK)
#endif
/* global data space */
typedef struct _GLOBAL
{
/* --- R/0 data during calculation --- */
/* Gaussian-Legendre Quadrature */
USHORT usQuadN;
FPTYPE *afpQuadX;
FPTYPE *afpQuadW;
FPTYPE *afpQuadXt;
FPTYPE *afpQuadWt;
/* Stored Element Data */
PGED ageo;
FPTYPE fpGeoA;
#ifdef CONTAINER
/* radius of spherical container */
FPTYPE fpR;
/* its square, cube */
FPTYPE fpR2;
FPTYPE fpR3;
#endif
/* Superimposed Electric Field */
FPTYPE afpE0[3];
/* Geometrical Data of Particles %/
PBODY abody;
/* ——- elements in iteration */
/* numbers */
ULONG ulN;
ULONG ulM;
ULONG ulNM;
ULONG ulNP;
ULONG ulNMP;
ULONG ulNBuf;
/* output mode */
USHORT fOutMode; /* flag word for output modes
0000 (bit mask)
I
I T > output psi
| | === > output final solution
| ———————- > output error
——————————— > output timers
*/
/* number of iteration steps */
ULONG ullterN;
/* priority matrix */
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ULONG *aulBufPrio;
/* exact solution vector */
FPTYPE *afpXSol;
/* ——- elements in initialization, output --- */
#ifdef WWT
/* processor number (unique) */
ULONG ulProc;
/* lock on node number */
XLOCK xulProc;
#endif
/* Numerical Data */
USHORT usPolyN;
USHORT usTessN;
#ifdef WWT
/* —==-- dummy variable to align next cache block to 32 bytes --- %/
ifdef CONTAINER
ifdef SINGLEPREC
ULONG aulDummy [5];
# else
ULONG aulDummy[6];
endif
else
ifndef SINGLEPREC
ULONG aulDummy[4];
# endif
# endif
#endif
/* —-- read and write data --- */
/* whole solution vector of previous iteration */
FPTYPE *afpX01d;
#ifdef WWT
/* locks for different parts of this vector */
XLOCK *axafpX01ld;
#endif
/* surface potential */
FPTYPE *afpPsi;
/* error in each iteration */
FPTYPE *afpXErr;
#ifdef WWT
/* lock this vector */
XLOCK xafpXErr;
#endif
/* virtual timers */
#ifdef TIMERS
VITYPE (*avt) [VT_];
#endif
} GLOBAL, *PGLOBAL;

= =

H =



/* standard output file */

static FILE

*pFileStd;

/* output files */

static char
static char
static char
static char

szFileOutPsi[FILENAM_SIZE];
szFileOutSol [FILENAM_SIZE];
szFileOutErr [FILENAM_SIZE];
szFileOutTime [FILENAM_SIZE];

/* input files */

static char
static char
static char
static char
static char

szFileIn[FILENAM_SIZE];
szFileInSol[FILENAM_SIZE];
szFileQuad [FILENAM_SIZE];
szFileNum[FILENAM_SIZE];
szFileGeo [FILENAM_SIZE];

/* my processor number */
static ULONG ulProc;

/* range of rows on processor ¥/

static ULONG ulRowStart, ulRowStop;

/* range of particles on processor */

static ULONG ulParticleStart, ulParticleStop;
/* reference to buffered submatrices in afphA */

static ULONG *aulABufRef;
/* system matrix A */
static FPTYPE *afpi;

/* RHS vector b %/
static FPTYPE *afpB;

/* virtual timers */
#ifdef TIMERS

static VITYPE avtStart[VT_];
static ULONG ulVT;

static VITYPE avt[VT_];
#tendif

/* load balance flag */
static BOOL fLoadBalance;

/* global data space */
PGLOBAL pg;

static void Initialize();
static void StoreElements();

static void AdjustGeometry();

static void LoadBalance();
static void OutputInfo();
static void OutputPsi();
static void OutputSol();

/* array for start times */
/* current timer */
/* times on current node */
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static void OutputErr();
#ifdef TIMERS

static void OutputVT();
static void OutputVT1();
static void VTMinMax();
#tendif

void Work();

static void InitializeWork();
static void ExitWork();
static void CreateMatrices();
static void CreateAnn();
static void CreateAkl();
static void CreateBn();
static void Solve();

int main(iAN, szA)

int iAN;

char *szA[];

{

#ifdef WWT
/% init WWT environment */
INITENV

#tendif

/* get general input file name from argument list */
assert (iAN == 2);

strcpy(szFileln, szA[1]);

/* open standard output file */

/*
pFileStd = fopen('out", "w");

*/
pFileStd = stdout;
fprintf (pFileStd, "--- Initialize ---\n");
Initialize();
fprintf (pFileStd, "--- CreateGeometry ---\n");
CreateGeometry (pg->usPolyN, pg->usTessN);
fprintf (pFileStd, "--- StoreElements ---\n");
StoreElements();
fprintf (pFileStd, "--- AdjustGeometry ---\n");
AdjustGeometry () ;
fprintf (pFileStd, "--- CloseGeometry —---\n");
CloseGeometry();
if (fLoadBalance)
{

printf ("'--- LoadBalance ---\n");

LoadBalance();



}
/* start parallel code */

fprintf (pFileStd, "--- CREATE_ALL ---\n");

#ifdef WWT

CREATE_ALL (Work)

#tendif

Work () ;

#ifdef WWT

/* synchronize nodes */
WAIT_FOR_END ()

#tendif

/* do output */
if (pg->fOutMode & 1)
{

fprintf (pFileStd, '"--- OutputPsi ---\n");

QutputPsi();
}
if (pg->fOutMode & 2)
{

fprintf (pFileStd, "--- OutputSol ---\n");

OutputSol();
}
if (pg->fOutMode & 4)
{

fprintf (pFileStd, "--- OutputErr ---\n");

OQutputErr();
}

#ifdef TIMERS

if (pg->f0OutMode & 8)
{

fprintf (pFileStd, '"--- OutputVT ---\n");

DutputVT();
}

#tendif

}

return 0;

static void Initialize()

{

char sz[FILENAM_SIZE * 3];
FILE *pFileln;

FILE *pFileQuad;

FILE *pFileNum;

FILE *pFileGeo;

FILE *pFileInSol;

USHORT usI, uslJ;

FPTYPE fpXtMax;

ULONG ulI;
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ULONG *pul;
ULONG ulN;

/* allocate global data space */
pg = (PGLOBAL)G_MALLOC(sizeof (GLOBAL))
assert (pg !'= NULL);

#ifdef WWT
/* initialize processor number */
pg->ulProc = 0;

#endif

/* at first no output mode */
pg—>f0utMode = 0;
/* open general input file */
pFileIn = fopen(szFilelIn, "r");
assert (pFileIn != NULL);
/* number of buffered sub matrices per particle row */
fgets(sz, sizeof (sz), pFileln);
pg->ulNBuf = (ULONG)atol(sz);
/* get file names */
fgets(szFileQuad, sizeof (szFileQuad), pFilelIn);
szFileQuad[strlen(szFileQuad) - 1] = ’\0’;
fgets(szFileNum, sizeof (szFileNum), pFileln);
szFileNum[strlen(szFileNum) - 1] = ’\0’;
fgets(szFileGeo, sizeof (szFileGeo), pFileln);
szFileGeo[strlen(szFileGeo) - 1] = ’\0’;
fgets(szFileOutPsi, sizeof (szFileOutPsi), pFileln);
szFileOutPsi[strlen(szFileOutPsi) - 1] = ’\0’;
if (strlen(szFileOutPsi) > 0)
{
/* output surface potentials for each iteration */
pg->f0utMode |= 1;
¥
fgets(szFileOutSol, sizeof (szFileOutSol), pFileln);
szFileOutSol[strlen(szFileOutSol) - 1] = ’\0’;
if (strlen(szFileOutSol) > 0)
{
/* output final phi vector */
pg->f0utMode |= 2;
¥
fgets(sz, sizeof (sz), pFileln);
sz[strlen(sz) - 1] = ’\0’;
if (strlen(sz) > 0)

{
/* output error for each iteration */
pg->f0utMode |= 4;
sscanf(sz, "%s %s", szFileOutErr, szFileInSol);
}

fgets(szFileOutTime, sizeof (szFileOutTime), pFileln);
szFileOutTime[strlen(szFileOutTime) - 1] = ’\0’;
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if (strlen(szFileOutTime) > 0)
{
/* output times */
pg->f0utMode |= 8;
¥
/* Load Balance 7 */
fgets(sz, sizeof (sz), pFileln);
sz[strlen(sz) - 11 = ’\0’;
if (strlen(sz) > 0)
{
fLoadBalance
¥
else
{
fLoadBalance
¥
/* close general input file */
fclose(pFileIn);

1;

0;

/*
printf ("%s\n", szFileQuad);
printf ("%s\n", szFileNum) ;
printf ("%s\n", szFileGeo);
*/

/* read input file for Gaussian-Legendre Quadrature parameters */
pPFileQuad = fopen(szFileQuad, "r");
assert (pFileQuad !'= NULL);
fscanf (pFileQuad, "%hu", &pg->usQuadN);
/* allocate memory for data */
pg->afpQuadX = (FPTYPE *)G_MALLOC(pg->usQuadN * sizeof (FPTYPE))
assert (pg->afpQuadX '= NULL);
pg->afpQuadW = (FPTYPE *)G_MALLOC(pg->usQuadN * sizeof (FPTYPE))
assert (pg->afpQuadW '= NULL);
for (usI = 0; usI < pg->usQuadlN; usI++)
{
#ifdef SINGLEPREC
fscanf (pFileQuad, "%f %f", &pg->afpQuadX[usI], &pg->afpQuadW[usI]);
#telse
fscanf (pFileQuad, "%1f %1f", &pg->afpQuadX[usI], &pg->afpQuadW[usI]);
#endif
}
fclose(pFileQuad) ;
/* calculate scaled parameters */
pg->afpQuadXt = (FPTYPE *)G_MALLOC (pg->usQuadN * pg->usQuadN * sizeof (FPTYPE))
assert (pg->afpQuadXt != NULL);
pg->afpQuadWt = (FPTYPE *)G_MALLOC (pg->usQuadN * pg->usQuadN * sizeof (FPTYPE))
assert (pg->afpQuadWt !'= NULL);
for (usI = 0; usI < pg->usQuadN; usI++)
{
fpXtMax = 1. - pg->afpQuadX[usI];
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for (usJ = 0; usJ < pg->usQuadlN; usJ++)

{
* (pg->afpQuadXt+usI*pg->usQuadN+usJ) = pg->afpQuadX[usJ] * fpXtMax;
* (pg->afpQuadWt+usI*pg->usQuadN+usJ) = pg->afpQuadW[usJ] * fpXtMax;

}
}

/* read input file for numerical data */
pFileNum = fopen(szFileNum, "r");
assert (pFileNum !'= NULL);
fscanf (pFileNum, "%u", &pg->ull);
/* pg->ullN must be multiple of XX_NUM_NODES */
assert (pg->ulll % (ULONG)XX_NUM_NODES == 0);
/* pg->ulN must be greater or equal than pg->ulNBuf */
assert (pg->ulll >= pg->ullNBuf);
fscanf (pFileNum, "%hu", &pg->usPolyN);
fscanf (pFileNum, "%hu", &pg->usTessN);
fscanf (pFileNum, "%u", &pg->ullterN);
/* read priority matrix */
pg->aulBufPrio = (ULONG *)G_MALLOC(pg->ulN * pg->ullN * sizeof (ULONG))
assert (pg->aulBufPrio !'= NULL);
for (ull = 0, pul = pg->aulBufPrio;
ull < pg->ulll * pg->ull;
ull++, pul++)

{

fscanf (pFileNum, "%u", pul);
}
fclose(pFileNum) ;

/* loop boundaries */
pg->ulM = pg->usPolyN;
for (usI = 0; usI < pg->usTessN; usI++)
{
pPg—>ulM *= 4;
}
pg->ulliM = pg->ullN * pg->ulM;
pg->ullP = pg->ulN / XX_NUM_NODES;
pg->ullMP = pg->ulNM / XX_NUM_NODES;
/* allocate memory */
pg->ageo = (PGEO)G_MALLOC(pg->ulM * sizeof (GED))
assert (pg->ageo !'= NULL);
pg->abody = (PBODY)G_MALLOC (pg->ulll * sizeof (BODY))
assert (pg->abody != NULL);
pg->afpX01d = (FPTYPE #*)G_MALLOC (pg->ullNM * sizeof (FPTYPE))
assert (pg->afpX01d != NULL);
#ifdef WWT
pg->axafpX0ld = (XLOCK *)G_MALLOC(pg->ulN * sizeof (XLOCK))
assert (pg->axafpX0ld !'= NULL);
#endif
#ifdef TIMERS
pg->avt =



(VITYPE (%) [VT_])G_MALLOC (XX_NUM_NODES # VT_ * sizeof (VTTYPE))

assert (pg->avt != NULL);
#endif
#ifdef WWT
/* initialize locks */
LOCKINIT (pg->xulProc)
for (ull = 0; ull < pg->ullN; ull++)

{

}

LOCKINIT (pg->axafpX01d[ulI])

LOCKINIT (pg->xafpXErr)
#endif
/* Superimposed Electric Field */
/* if output of psi */
if (pg->fOutMode & 1)

{

}

/* allocate memory for surface potential */
pg->afpPsi = (FPTYPE *)G_MALLOC(pg->ullterN * pg->ull * sizeof (FPTYPE))
assert (pg->afpPsi !'= NULL);

/* if output of error */
if (pg->fOutMode & 4)

{

/* allocate memory for error */
pg->afpXErr = (FPTYPE #)G_MALLOC(pg->ullterN # sizeof (FPTYPE))
assert (pg->afpXErr != NULL);
/* initialize it with Os */
for (ull = 0; ull < pg->ullterN; ull++)
{
pg->afpXErr[ulll = 0.;
}
/* allocate memory for exact solution vector */
pg->afpXSol = (FPTYPE *)G_MALLOC (pg->ulliM * sizeof (FPTYPE))
assert (pg->afpXSol != NULL);
/* read it from file */
pFileInSol = fopen(szFileInSol, "r");
for (ull = 0; ull < pg->ulliM; ull++)
{

#ifdef SINGLEPREC

fscanf (pFileInSol, "%f", &pg->afpXSol[ulll);

f#else

fscanf (pFileInSol, "}1f", &pg->afpXSol[ulll);

#tendif

}

}
fclose(pFileInSol);

/* read input file for geometrical data */
pFileGeo = fopen(szFileGeo, "r");

assert (pFileGeo !'= NULL);

fscanf (pFileGeo, "%u", &ull);
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/* check if geo file is consistent to num file */

assert (pg->ulll == ullN);
#ifdef SINGLEPREC
fscanf (pFileGeo, "%f %f %f",

&pg->afpEO[0], &pg->afpE0[1], &pg->afpE0[2]);

#telse
fscanf (pFileGeo, "%41f %1f %1f",

4pg->afpEO[0], &pg->afpE0[1], &pg->afpE0[2]);

#tendif
for (ull = 0; ull < pg->ullN; ull++)
{
#ifdef SINGLEPREC
fscanf (pFileGeo, "U%f %f %f %f %f",

&pg->abody [ulIl.afpZ[0], &pg->abody[ulll.afpZ[1],

&pg->abody [ull].afpZ[2],

&pg->abody [ull].fpR, &pg->abody[ull]l.fpQ);

#else
fscanf (pFileGeo, "%41f %1f %1f %1f J1f",

&pg->abody [ulIl.afpZ[0], &pg->abody[ulll.afpZ[1],

&pg->abody [ull].afpZ[2],

&pg->abody [ull].fpR, &pg->abody[ull].fpQ);

#endif
pg->abody [ulI].ulNumber = ull;

}
#ifdef CONTAINER
# ifdef SINGLEPREC

fscanf (pFileGeo, "%f", &pg->fpR);
# else

fscanf (pFileGeo, "%1f", &pg->fpR);
# endif

/* its square, cube */

pg->fpR2 = SQR(pg->fpR);

pg—>fpR3 = pg->fpR2 * pg->fpR;
#endif

fclose(pFileGeo);

#tifdef WWT
PRINT_ADDRESS ("usQuadN", &pg->usQuadN) ;
PRINT_ADDRESS ("afpQuadX", &pg->afpQuadX);
PRINT_ADDRESS ("afpQuadW", &pg->afpQuadW);
PRINT_ADDRESS("afpQuadXt", &pg->afpQuadXt);
PRINT_ADDRESS("afpQuadWt", &pg->afpQuadWt) ;
PRINT_ADDRESS (''ageo", &pg->ageo);
PRINT_ADDRESS("fpGeoA", &pg->fpGeoAd);

#ifdef CONTAINER
PRINT_ADDRESS("fpR", &pg->fpR);
PRINT_ADDRESS("fpR2", &pg->fpR2);
PRINT_ADDRESS("fpR3", &pg->fpR3);

#tendif
PRINT_ADDRESS("afpE0", &pg->afpE0[0]);
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PRINT_ADDRESS ("abody", &pg->abody);
PRINT_ADDRESS ("ulN", &pg->ull);
PRINT_ADDRESS ("ulM", &pg->ulM);
PRINT_ADDRESS("ulNM", &pg->ulNM);
PRINT_ADDRESS("ulNP", &pg->ulNP);
PRINT_ADDRESS ("ulNMP", &pg->ullMP) ;
PRINT_ADDRESS ("ulNBuf", &pg->ulNBuf);
PRINT_ADDRESS ("fOutMode", &pg->f0OutMode) ;
PRINT_ADDRESS("ullterN", &pg->ullterN);
PRINT_ADDRESS("aulBufPrio", &pg->aulBufPrio);
PRINT_ADDRESS("afpXSol", &pg->afpXSol);
PRINT_ADDRESS("ulProc", &pg->ulProc);
PRINT_ADDRESS("xulProc", &pg->xulProc);
PRINT_ADDRESS("usPolyN", &pg->usPolyN);
PRINT_ADDRESS ("usTessN", &pg->usTessN);

#if 'defined(SINGLEPREC) || defined(CONTAINER)
PRINT_ADDRESS ("aulDummy", &pg->aulDummy[0]);

#tendif
PRINT_ADDRESS("afpX01d", &pg->afpX01ld);
PRINT_ADDRESS("axafpX01d", &pg->axafpX01d);
PRINT_ADDRESS("afpPsi", &pg->afpPsi);
PRINT_ADDRESS("afpXErr", &pg->afpXErr);
PRINT_ADDRESS("xafpXErr", &pg->xafpXErr);

#ifdef TIMERS
PRINT_ADDRESS("avt", &pg->avt);

#tendif

#tendif

¥

static void StoreElements()

{
ULONG ulI;

pg—>fpGeoA = 0.;

for (ull = 0; ull < pg->ulM; ull++)

{
GetElementAll(ull, &pg->ageo[ulll);
pg->fpGeoA += pg->ageo[ull].fpDA;

}

static void AdjustGeometry()
{

ULONG ulT;

FPTYPE fpRadiusPolyInv;
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}

PGEQ pgeo;

fpRadiusPolyInv = sqrt((4. * PI) / pg->fpGeod);

for (ull = 0; ull <
{

pg->ulM; ull++)

pgeo = &pg->ageo[ull];

pgeo->afpP1[0] *=
pgeo->afpP1[1] *=
pgeo->afpP1[2] *=
pgeo->afpP2[0] *=
pgeo->afpP2[1] *=
pgeo->afpP2[2] *=
pgeo->afpP3[0] *=
pgeo->afpP3[1] *=
pgeo->afpP3[2] *=
pgeo->afpU1[0] *=
pgeo->afpUl[1] *=
pgeo->afpUl[2] *=
pgeo->afpU2[0] *=
pgeo->afpU2[1] *=
pgeo->afpU2[2] *=
pgeo—>afpX[0] *=

pgeo->afpX[1] *=

pgeo—>afpX[2] *=

pgeo->fpDA *= fpRadiusPolyInv * fpRadiusPolyInv;
pgeo->fpJacob #= fpRadiusPolyInv * fpRadiusPolyInv;

}

pg->fpGeoA *= fpRadiusPolyInv * fpRadiusPolylInv;

fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;
fpRadiusPolyInv;

static void LoadBalance()

{

ULONG ulI, ulJ, ulK
ULONG ulP;

ULONG *aulCrit;
ULONG *aulCritSum;
ULONG *aulll;

ULONG *aulPrio;
ULONG ulCritMax;
ULONG ulIMax;

ULONG ulCritSumMin;
ULONG ulPMin;

BODY bodyTemp;
FPTYPE fpTemp;
ULONG ulTemp;

ULONG ulSum;

ULONG ulMin, ulMax;

H
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aulCrit = (ULONG #)malloc(pg->ulll * sizeof (ULONG)) ;

assert (aulCrit '= NULL);

aulCritSum = (ULONG *)malloc(XX_NUM_NODES * sizeof (ULONG));
assert (aulCritSum '= NULL);

aulN = (ULONG *)malloc(XX_NUM_NODES * sizeof (ULONG));

assert (aulN '= NULL);

aulPrio = (ULONG #)malloc(pg->ulll * pg->ulN * sizeof (ULONG)) ;
assert (aullN !'= NULL);

/* calculate criterion for each body */
for (ull = 0; ull < pg->ullN; ull++)

{
aulCrit[ulI] = 0;
for (ulJ = 0; ulJ < pg->ull; ulJ++)
{
aulCrit[ulI] += *(pg->aulBufPrio+ulIl*pg->ull+ull);
}
}

/* initialize counts of every p */
for (ulP = 0; ulP < XX_NUM_NODES; ulP++)
{
aulCritSum[ulP] = 0;
aulN[ulP] = 0;
¥

/* redistribute bodies on every processor, so that every p
has same load */
for (ull = 0; ull < pg->ullN; ull++)
{
ulCritMax = 0;
/* look for body with greatest criterion */
for (ulJ = 0; ulJ < pg->ull; ulJ++)
{
if (aulCrit[ulJ] > ulCritMax)
{
ulCritMax = aulCrit[ulJ];
ulIMax = ullJ;
}
}
ulCritSumMin = 2147483647;
/* look for p with least work so far */
for (ulP = 0; ulP < XX_NUM_NODES; ulP++)

{
if (aulN[ulP] < pg->ulNP &% aulCritSum[ulP] < ulCritSumMin)
{
ulCritSumMin = aulCritSum[ulP];
ulPMin = ulP;
}
¥

/* exchange bodies */



ulK = ulPMin * pg->ulNP + aulN[ulPMin];

bodyTemp = pg->abody[ulK];

pg->abody[ulK] = pg->abody[ulIMax];

pg->abody[ulIMax] = bodyTemp;

for (ulJ = 0; ulJ < pg->ulM; ulJ++)

{
fpTemp = pg->afpXSol [ulK+pg->ulM+ull];
pg->afpXSol [ulK*pg->ulM+ulJ] = pg->afpXSol[ulIMax*pg->ulM+ullJ];
pg->afpXSol[ulIMax*pg->ulM+ulJ] = fpTemp;

aulCrit[ulIMax] = aulCrit[ulK];
aulCrit[ulK] = 0;
aulCritSum[ulPMin] += ulCritMax;
aulN[ulPMin] ++;
¥
/* copy old CS matrix to temporary buffer */
for (ull = 0; ull < pg->ullN; ull++)

{
for (ulJ = 0; ulJ < pg->ull; ulJ++)
{
* (aulPrio+ulI*pg->ullN+ulJ) = *(pg->aulBufPrio+ulIl*pg->ulN+ull);
}
}

/* map temporary buffer to new distribution of bodies */
for (ull = 0; ull < pg->ullN; ull++)
{

for (ulJ = 0; ulJ < pg->ull; ulJ++)

{

* (pg->aulBufPrio+ulI*pg->ulN+ull) =
*(aulPrio + pg->abody[ull].ulNumber * pg->ulll
+ pg->abody[ulJ] .ullNumber) ;

}
}
free(aulCrit);
free(aulCritSum);
free(aull);
free(aulPrio);

/* test output */
ulMin = 2147483647;
ulMax = 0;
ulSum = 0;
for (ull = 0; ull < pg->ullN; ull++)
{
ulTemp =
for (ull
{
ulTemp += #*(pg->aulBufPrio+ull*pg->ulN+ull);
}
printf ("%3u %3u %5u\n", ull, pg->abody[ull].ulNumber, ulTemp) ;
ulSum += ulTemp;

0;
= 0; ulJ < pg->ullN; ulJ++)
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if ((ulI + 1) % pg->ulNP == 0)

{

if (ulSum > ulMax)

{

ulMax = ulSum;

}

if (ulSum < ulMin)

{

ulMin = ulSum;

}
printf ("%5u\n"
ulSum = 0;
}
}
printf ("min = %5u

}

static void OutputIn
FILE *pFileOut;
{
fprintf (pFileOut,
fprintf (pFileOut,
fprintf (pFileQut,
fprintf (pFileOut,
fprintf (pFileOut,
fprintf (pFileQut,
XX_NUM_NOD
fprintf (pFileQut,
if (fLoadBalance)
{
fprintf (pFileOut
}
else
{
fprintf (pFileQut
}

#ifdef CICO
# ifdef CICO_X
fprintf (pFileOut
# else
fprintf (pFileOut
# endif
#else
fprintf (pFileQut,
#endif
#ifdef LOCK_
fprintf (pFileOut,

, ulSum);

max = %5u\n'", ulMin, ulMax);

fo(pFileQut)

"\n#-————————— \n") ;

"# # particles = %lu\n", pg->ullN);

"# # buffered particles = }lu\n", pg->ullNBuf);

"# # elements/particle = %lu\n", pg->ulM);

"# # iteration steps = %lu\n", pg->ullterN);

"# # processors = %lu\n",

ES) ;

"# floating-point precision = %u\n", sizeof (FPTYPE));

, "# load balance = yes\n");

, "# load balance = no\n");

, "# cico=X ");

, "# cico=S ");

"# cico=0 ");

"lock=1");

175



#else

fprintf (pFileOut, "lock=0");
#endif

fprintf (pFileOut, "\n");
#ifdef CONTAINER

fprintf (pFileOut, "# Container R = %21.12g\n", pg->fpR);

f#else

fprintf (pFileQut, "# No Container\n");

#tendif

fprintf (pFileOut, "# EO = (%21.12g,%21.12g,%21.12g) \n#\n",

pg->afpE0[0], pg->afpE0[1], pg->afpE0[2]);

fprintf (pFileQut, "# In Files
fprintf (pFileOut, "# In Quad
fprintf (pFileQut, "# In Num
fprintf (pFileQut, "# In Geo
fprintf (pFileQut, "# In Sol
fprintf (pFileQut, "# Out Psi
fprintf (pFileQut, "# Out Sol
fprintf (pFileQut, "# Out Err

fprintf (pFileQut, "# Out Time =

static void OutputPsi()
{
FILE *pFileOutPsi;
ULONG ullter, ulkK;
FPTYPE *pfpPsi;

%s\n", szFileln);

= %s\n", szFileQuad);

%s\n", szFileNum);
%s\n", szFileGeo);
%s\n", szFileInSol);
%s\n", szFileOutPsi);
%s\n", szFileOutSol);
%s\n", szFileOutErr);
%s\n", szFileOutTime);

pFileOutPsi = fopen(szFileQutPsi, "w");
/* init pointer to psi array */

pfpPsi = pg->afpPsi;
/* iteration */

for (ullter = 0; ullter < pg->ullterN; ullter++)

{

fprintf (pFileQutPsi, "--- Iteration %3hu ---\n", ullter + 1);

fprintf (pFileQutPsi,
"Sphere Q X

Y Z R

for (ulK = 0; ulK < pg->ull; ulK++)

{
fprintf (pFileOutPsi,

"%41lu %7.3g %7.3g %W7.3g %7.3g %7.3g %21.12g\n",
pg->abody[ulK].ulNumber, pg->abody[ulK].fpQ,

pg->abody[ulK].afpZ[0],
pg->abody[ulK].afpZ[1],

pg->abody[ulK].afpZ[2], pg->abody[ulK].fpR, *pfpPsi);

pipPsi++;
}
fprintf (pFileOutPsi, "\n");
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}
OQutputInfo(pFileOutPsi);
/* close output file */
fclose(pFileOutPsi);

static void OutputSol()
{
FILE *pFileOutSol;
ULONG ulK, ulL;
ULONG ulT;

pFileOutSol = fopen(szFileQutSol, "w'");
/* output x on every element */
for (ulK = 0; ulK < pg->ullN; ulK++)
{
/* search for body with original number ulK */
for (ullL = 0; ulL < pg->ull; ulL++)
{
if (pg->abody[ull].ulNumber == ulK)
{
break;
}
}
for (ull = ull * pg->ulM; ull < (ull + 1) * pg->ulM; ull++)
{
fprintf (pFileOutSol, "%28.22g\n", pg->afpX01d[ulll);
}
}
OutputInfo(pFileOutSol);
/* close output file */
fclose(pFileOutSol);

static void OutputErr()
{
FILE *pFileOutErr;
ULONG ullter;
FPTYPE fpLambda;
FPTYPE fpXErr;
#ifdef TIMERS
VTTYPE vtMin, vtMax;
#endif

pFileOutErr = fopen(szFileQutErr, "w");
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fprintf (pFileQutErr,
"# Iter Error Lambda Time\n") ;
#ifdef TIMERS
VTMinMax (VT_SOLVE, &vtMin, &vtMax);
#endif
for (ullter = 0; ullter < pg->ullterN; ullter++)
{
fpXErr = pg->afpXErr[ullter] / (FPTYPE)pg->ullNM;
fpLambda = pow(fpXErr, 1. / (FPTYPE) (ullter + 2));
#ifdef TIMERS
fprintf (pFileOutErr, "%3u %21.12g %21.12g %21.12g\n", ullter + 1,
fpXErr, fpLambda,
(double)vtMax * (double) (ullter + 1) / (double)pg->ullterN);
#telse
fprintf (pFileOutErr, "%3u %21.12g %21.12g\n", ullter + 1,
fpXErr, fplLambda);
#endif
}
OQutputInfo(pFileOutErr);
/* close output file */
fclose (pFileOutErr) ;

#ifdef TIMERS

static void OutputVT()
{
FILE *pFileOutTime;

/* open output file for append */

pFileOutTime = fopen(szFileOutTime, "a");

fprintf (pFileOutTime, "#\n# --- Timers ---\n");

fprintf (pFileOutTime, "# Timer min max\n") ;
OutputVT1(pFileOutTime, "Work", VT_WORK);

OutputVT1(pFileOutTime, "CreateMatrices'", VT_CREATEMATRICES) ;
OQutputVT1(pFileOutTime, "Solve'", VT_SOLVE);
OQutputVT1(pFileOutTime, "Communicate Read", VT_SOL_READ);
OutputVT1(pFileOutTime, "Communicate Write", VT_SOL_WRITE);
OutputVT1(pFileOutTime, "RecreateMatrices'", VT_RECREATEMATRICES) ;
OutputVT1(pFileOutTime, "Dotproduct", VT_DOTPRODUCT) ;
OutputVT1(pFileOutTime, "CalcPsi", VT_CALCPSI);
OutputVT1(pFileOutTime, "CalcErr", VT_CALCERR);

/* close output file */

fclose(pFileOutTime) ;
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static void OutputVT1(pFileOutTime, sz, ulVTSym)
FILE *pFileOutTime;
char *sz;
ULONG ulVTSym;
{
VTTYPE vtMin, vtMax;

/* get minimal and maximal time */

VIMinMax (ulVTSym, &vtMin, &vtMax);

/* print out */

fprintf (pFileOutTime, "# %-20s %21.12g %21.12g\n", sz, (double)vtMin,
(double) vtMax) ;

static void VTMinMax (ulVTSym, pvtMin, pvtMax)
ULONG ulVTSym;
VTTYPE *pvtMin, *pvtMax;
{
VITYPE vtMin, vtMax;
ULONG ulI;
VITYPE vt;

/* get minimal and maximal time */
vtMin = pg->avt[0] [ulVTSym];

vtMax = (VTTYPE)O;

for (ull = 0; ull < XX_NUM_NODES; ull++)

{
vt = pg->avt[ull] [ulVTSym];
if (vt < vtMin)
{
vtMin = vt;
¥
if (vt > vtMax)
{
vtMax = vt;
}
¥

¥pvtMin = vtMin;
*¥pvtMax = vtMax;
}
#endif /+ TIMERS #*/

void Work()
{

InitializeWork();



VTSTART () ;
VTSTART () ;
if (ulProc == 0)
{
fprintf (pFileStd, "--- CreateMatrices ---\n");
}

CreateMatrices();
VTSTOP (VT_CREATEMATRICES) ;
if (ulProc == 0)
{
fprintf (pFileStd, "--- Solve ---\n");
¥
Solve();
VTSTOP (VT_WORK) ;
ExitWork();

static void InitializeWork()

{
ULONG ulI;

/* get node number */

#ifdef WWT
LOCK (pg->xulProc)
ulProc = pg->ulProc++;
UNLOCK (pg->xulProc)

#telse
ulProc = 0;

#endif
/* row range */
ulParticleStart = ulProc * pg->ullP;
ulParticleStop = (ulProc + 1) * pg->ulliP;
ulRowStart = ulParticleStart * pg->ulM;
ulRowStop = ulParticleStop * pg->ulM;
/* allocate memory for local memory blocks */
aulABufRef = (ULONG *)malloc(pg->ulNP # pg->ullN * sizeof (ULONG));

afpA = (FPTYPE *)malloc (pg->ullNMP * pg->ulNBuf # pg->ulM * sizeof (FPTYPE));

afpB = (FPTYPE *)malloc (pg->ulllMP # sizeof (FPTYPE));
/* initialize timers */
#ifdef TIMERS

ulVT = 0;
for (ull = 0; ull < VT_; ull++)
{
avt[ulI] = (VTTYPE)O;
¥
#tendif

}
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static void ExitWork()
{
ULONG ulI;

/* if output of timers */
#ifdef TIMERS
if (pg->fOutMode & 8)
{
/* copy them to shared memory */
for (ull = 0; ull < VT_; ull++)
{
pg->avt [ulProc] [ull] = avt[ulll;
}
}
#endif
}

static void CreateMatrices()
{
ULONG ulK, ull, ulKK;
ULONG ull;
ULONG ulBufPrioMin;
ULONG ulLMin;
ULONG #pulBufPrioK, *pulBufPrioL;
ULONG *pulABufRefKK, *pulABufRefL;

/* loop through rows of particles */
for (ulKK = 0, ulK = ulParticleStart,
pulBufPrioK = pg->aulBufPrio + ulParticleStart * pg->ull,
pulABufRefKK = aulABufRef;
ulKK < pg->ullP;
ulKK++, ulK++, pulBufPrioK += pg->ulll, pulABufRefKK += pg->ulll)

/* initialize aulABufRef */

for (ullL = 0, pulABufReflL = pulABufRefKK;
ull < pg->ull;
ull++, pulABufRefL++)

*pulABufRefl. = pg->ulNl;
}
/* loop through buffered submatrices */
for (ull = 0; ull < pg->ullNBuf; ull++)
{
/* store diagonal matrix in any case */
if (ulIl == 0)
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{
ullLMin = ull;
}
else
{
/* initialize ulBufPrioMin with highest possible priority */
ulBufPrioMin = pg->ulN * pg->ulll;
/* search for submatrices with highest priority and buffer these */
for (ull = 0, pulBufPriol = pulBufPrioK, pulABufReflL = pulABufRefKK;
ull < pg->ull;
ull++, pulBufPriolL++, pulABufRefL++)
{
/* if submatrix is not buffered yet, and its priority is greater
than the priorities of all other submatrices */
if (*pulABufRefL == pg->ulll &%
*pulBufPriol < ulBufPrioMin)
{
ulBufPrioMin = *pulBufPrioL;
ullLMin = ulL;
}
}
}
* (pulABufRefKK + ullMin) = ull;
/* check if diagonal block matrix */
if (ulK == ullLMin)

{
/* diagonal block matrix */
CreateAnn(ulK, afpA + (ulKK * pg->ulNBuf + ull) * pg->ulM * pg->ulM,
pg->ulM);
}
else
{
/* off-diagonal block matrix */
CreateAkl (ulK, ulLMin,
afpA + (ulKK # pg->ulNBuf + ull) * pg->ulM * pg->ulM,
pg->ulM);
}

}
/* create RHS subvector */
CreateBn(ulK, &afpB[ulKK # pg->ulM]);
}
}

#ifdef CONTAINER
CREATEANN parallel
ulN - particle number
pfpA - position of submatrix

ullncr - increment from row to row

static void CreateAnn(ulN, pfpA, ullncr)



ULONG ulN;

FPTYPE *pfpA;

ULONG ullncr;

{
static ULONG ulIl, ullJ;
static USHORT usIXs, usIXt;
static FPTYPE afpXmY[3];
static FPTYPE fpRxy2;
static FPTYPE fpRxy;
static FPTYPE fpSum;
static FPTYPE afpX[3];
static FPTYPE afpY[3];
static FPTYPE xpfpAA, *pfpAAA;
static PGEOD pgeol, pgeolJ;
static PBODY pbodyN;
static FPTYPE fpS1;
static FPTYPE fpNR2;
static ULONG ulII, ulJJ;
static FPTYPE fpRy;
static FPTYPE afpD[3];
static FPTYPE fpRz;
static FPTYPE afpZ[3];
static FPTYPE afpXmZ[3];
static FPTYPE fpRxz;
static FPTYPE afpSumi[3];

pbodyN = &pg->abody [ull];

fpNR2 = SQR(pbodyN->fpR) ;
£pS1 = .5 % £pNR2 / PI;

/* loop through rows */
for (ull = 0, pfpAA = pfpA; ull < pg->ulM; ull++, pfpAA += ullncr)
{
pgeol = &pg->ageo[ulll;
afpX[0] = pgeoI->afpX[0] * pbodyN->fpR + pbodyN->afpZ[0];
afpX[1] = pgeoI->afpX[1] * pbodyN->fpR + pbodyN->afpZ[1];
afpX[2] = pgeol->afpX[2] * pbodyN->fpR + pbodyN->afpZ[2];
/* loop through columns */
for (ulJ = 0, pfpAAA = pfpAA;
ullJ < pg->ulM;
ulJ++, pfpAAA++)

pgeolJ = &pg->ageo[ulJ];

afpY[0] = pgeoIl->afpX[0] * pbodyN->fpR + pbodyN->afpZ[0];
afpY[1] = pgeoI->afpX[1] * pbodyN->fpR + pbodyN->afpZ[1];
afpY[2] = pgeoIl->afpX[2] * pbodyN->fpR + pbodyN->afpZ[2];
afpXmY[0] = afpX[0] - afpY[0];

afpXmY[1] = afpX[1] - afpY[1];

afpXmY[2] = afpX[2] - afpY[2];

fpRxy2 = afpXmY[0]*afpXmY[0] + afpXmY[1]*afpXmY[1] +
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}

afpXmY[2] *afpXmY [2] ;

/* check if large distance */
if (fpRxy2 > 18. * pgeoJ->fpDA * fpNR2)

{

}

/* 1-point Gaussian-Legendre Quadrature */
fpRxy = sqrt (fpRxy2);
CONTAINER_1
*pfpAAA = -pgeoJ->fpDA / pg->fpGeol -
fpS1 * pgeoJ->fpDA *
CONTAINER_2
/* check if large distance */

else

{

/* Gaussian-Legendre Quadrature */

fpSum = 0.;

for (usIXs = 0; usIXs < pg->usQuadN; usIXs++)

{
for (usIXt = 0; usIXt < pg->usQuadN; usIXt++)
{

afpY[0] = (pg->afpQuadX[usIXs] * pgeoJ->afpU1[0] +
* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) #
pgeoJ->afpU2[0] +
pgeoJ->afpP2[0]) * pbodyN->fpR + pbodyN->afpZ[0];
afpY[1] = (pg->afpQuadX[usIXs] * pgeoJ->afpUl[1] +
* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) *
pgeoJ->afpU2[1] +
pgeoJ->afpP2[1]) * pbodyN->fpR + pbodyN->afpZ[1];
afpY[2] = (pg->afpQuadX[usIXs] * pgeoJ->afpUl[2] +
* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) *
pgeoJ->afpU2[2] +
pgeoJ->afpP2[2]) * pbodyN->fpR + pbodyN->afpZ[2];
afpXmY[0] = afpX[0] - afpY[0];
afpXmY[1] = afpX[1] - afpY[1];
afpXmY[2] = afpX[2] - afpY[2];
fpRxy = AABS (afpXmY);
CONTAINER_1
fpSum += pg->afpQuadW[usIXs] *
* (pg->afpQuadWt+usIXs*pg->usQuadN+usIXt) *
pgeoJ->fpJacob *
CONTAINER_2
}
}
*pfpAAA = -pgeoJ->fpDA / pg->fpGeoA - fpSum * fpSi;

} /* check if large distance */

} /* loop through columns */
} /* loop through rows */

CREATEAKL parallel
ulK - particle number (x)
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ull -

particle number (y)

pfpA - position of submatrix
ullncr - increment from row to row

static void Createlkl (ulK, ulL, pfpA, ullncr)
ULONG ulK;

ULONG ulL;

FPTYPE *pfph;

ULONG ullIncr;

{
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

pbodyK
pbodyL

fpLR2 =

fpsS1 =

ULONG ull, ullJ;
USHORT usIXs, usIXt;
FPTYPE afpXmY[3];
FPTYPE fpRxy2;
FPTYPE fpRxy;

FPTYPE fpSum;

FPTYPE afpX[3];
FPTYPE afpY[3];
FPTYPE *pfpAA, *pfpAAA;
PGED pgeol, pgeol;
PBODY pbodyK, pbodyL;
FPTYPE fpSi;

FPTYPE fpLR2;

ULONG ulII, ullJ;
FPTYPE fpRy;

FPTYPE afpD[3];
FPTYPE fpRz;

FPTYPE afpZ[3];
FPTYPE afpXmZ[3];
FPTYPE fpRxz;

FPTYPE afpSum1[3];

= &pg->abody [ulK];
= &pg->abody [ulL];

SQR (pbodyL->fpR) ;
.5 % fpLR2 / PI;

/* loop through rows */

for (ull = 0, pfpAA = pfpA; ull < pg->ulM; ull++, pfpAA += ullncr)

{

pgeol = &pg->ageo[ulll;
afpX[0] = pgeoI->afpX[0] * pbodyK->fpR + pbodyK->afpZ[0];

afpX[1]
afpX[2]

pgeol->afpX[1] * pbodyK->fpR + pbodyK->afpZ[1];
pgeol->afpX[2] * pbodyK->fpR + pbodyK->afpZ[2];

/* loop through columns */
for (ulJ = 0, pfpAAA = pfphA;

{

ullJ < pg->ulM;
ulJ++, pfpAAA++)

pgeolJ = &pg->ageo[ull];
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afpY[0] =
afpY[1] =
afpY[2] =
afpXmY [0]
afpXmY[1]
afpXmY [2]

pgeol->afpX[0] * pbodyL->fpR + pbodyL->afpZ[0];
pgeol->afpX[1] * pbodyL->fpR + pbodyL->afpZ[1];
pgeol->afpX[2] * pbodyL->fpR + pbodyL->afpZ[2];
= afpX[0] - afpY[0];
= afpX[1] - afpY[1];
= afpX[2] - afpY[2];

fpRxy2 = afpXmY[0]*afpXmY[0] + afpXmY[1]*afpXmY[1] +

afpXmY[2] *afpXmY [2] ;

/* check if large distance */
if (fpRxy2 > 18. % pgeoJ->fpDA * fpLR2)

{

/* 1-point Gaussian-Legendre Quadrature */

fpRxy =

sqrt (fpRxy2) ;

CONTAINER_1
*pfpAAA = -fpS1 * pgeoJ->fpDA *

CONTAINER_2

} /* check if large distance */

else

{

/* Gaussian-Legendre Quadrature */

fpSum =

0.;

for (usIXs = 0; usIXs < pg->usQuadN; usIXs++)

{

/* FRANK: factor out w_s */
for (usIXt = 0; usIXt < pg->usQuadN; usIXt++)

{

afpY[0] = (pg->afpQuadX[usIXs] * pgeoJ->afpU1[0] +

* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) #*
pgeoJ->afpU2[0] +
pgeoJ->afpP2[0]) * pbodyL->fpR + pbodyL->afpZ[0];

afpY[1] = (pg->afpQuadX[usIXs] * pgeoJ->afpUli[1] +

* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) #*
pgeoJ->afpU2[1] +
pgeoJ->afpP2[1]) * pbodyL->fpR + pbodyL->afpZ[1];

afpY[2] = (pg->afpQuadX[usIXs] * pgeoJ->afpUl[2] +

* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) #*
pgeoJ->afpU2[2] +
pgeoJ->afpP2[2]) * pbodyL->fpR + pbodyL->afpZ[2];

afpXmY[0] = afpX[0] - afpY[0];
afpXmY[1] = afpX[1] - afpY[1];
afpXmY[2] = afpX[2] - afpY[2];
fpRxy = AABS (afpXmY);
CONTAINER_1

fpSum += pg->afpQuadW[usIXs] *

}
}

* (pg->afpQuadWt+usIXs*pg->usQuadN+usIXt) #*
pgeoJ->fpJacob *
CONTAINER_2

*pfpAAA = —-fpSum * fpS1;
} /* check if large distance */
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} /* loop through columns */
} /* loop through rows */

CREATEANN parallel

ulN - particle number

pfpA - position of submatrix
ullncr - increment from row to row

static void CreateAnn(ulN, pfpA, ullncr)
ULONG ulN;
FPTYPE *pfpA;
ULONG ulIncr;
{
static ULONG ull, ullJ;
static USHORT usIXs, usIXt;
static FPTYPE afpXmY[3];
static FPTYPE fpR;
static FPTYPE fpRxy2;
static FPTYPE fpRxy;
static FPTYPE fpSum;
static FPTYPE afpY[3];
static FPTYPE xpfpAA, *pfpAAA;
static PGED pgeol, pgeolJ;

/* radius of particle ulN */
fpR = pg->abody[ullN].fpR;

/* loop through rows */
for (ull = 0, pfpAA = pfpA; ull < pg->ulM; ull++, pfpAA += ullncr)
{
pgeol = &pg->ageo[ulll;
/* loop through columns */
for (ulJ = 0, pfpAAA = pfpAA;
ullJ < pg->ulM;
ulJ++, pfpAAA++)

pgeoJ = &pg->ageo[ull];
/* check if diagonal element */
if (ulJ == ull)
{
*pfpAAA = -pgeoI->fpDA / pg->fpGeol;
} /* check if diagonal element */

else
{
afpXmY[0] = (pgeoI->afpX[0] - pgeoJ->afpX[0]) *
fpR;
afpXmY[1] = (pgeoI->afpX[1] - pgeoJ->afpX[1]) *
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fpR;
afpXmY[2] = (pgeoI->afpX[2] - pgeoJ->afpX[2]) *
fpR;
fpRxy2 = afpXmY[0]*afpXmY[0] + afpXmY[1]*afpXmY[1] +
afpXnY [2] *afpXmY [2] ;

/* check if large distance */
if (fpRxy2 > 18. * pgeoJ->fpDA * fpR * fpR)

{

{

/* no Gaussian-Legendre Quadrature */
fpRxy = sqrt (fpRxy2);
*pfpAAA = -pgeoJ->fpDA * fpR * fpR *

.5 %

(pgeoJ->afpN[0]*afpXmY[0] +

pgeoJ->afplN[1]*afpXmY[1] +
pgeoJ->afpN[2]*afpXmY[2]) /

(PI *

fpRxy * fpRxy * fpRxy) -

pgeoJ->fpDA / pg->fpGeoA;
} /* check if large distance */
else

/* Gaussian-Legendre Quadrature */
fpSum = 0.;
for (usIXs =

{

0; usIXs < pg->usQuadN; usIXs++)

for (usIXt = 0; usIXt < pg->usQuadN; usIXt++)

{

afpY[0] =

afpY[1] =

afpY[2] =

afpXmY [0]

afpXmY[1] =

afpXmY [2]

pg->afpQuadX[usIXs] * pgeoJ->afpU1[0] +

* (pg->afpQuadXt+usIXs*pg->usQuadi+usIXt) *
pgeoJ->afpU2[0] +

pgeoJ->afpP2[0];

pg->afpQuadX[usIXs] * pgeoJ->afpUl[1] +

* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) #
pgeoJ->afpU2[1] +

pgeoJ->afpP2[1];

pg->afpQuadX[usIXs] * pgeoJ->afpUl[2] +

* (pg->afpQuadXt+usIXs*pg->usQuadi+usIXt) *
pgeoJ->afpU2[2] +

pgeoJ->afpP2[2];

= (pgeoI->afpX[0] - afpY[0]) * fpR;
(pgeoI->afpX[1] - afpY[1]) * fpR;

= (pgeoI->afpX[2] - afpY[2]) * fpR;

fpRxy = sqrt(afpXmY[0]*afpXmY[0] +

afpXmY[1]*afpXmY[1] +
afpXmY[2] *afpXmY[2]) ;

fpSum += pg->afpQuadW[usIXs] *
* (pg->afpQuadWt+usIXs*pg->usQuadN+usIXt) #*
pgeoJ->fpJacob *

(pgeoJ->afpN[0]*afpXmY[0] +

pgeoJ->afpN[1]*afpXmY[1] +
pgeoJ->afpN[2]*afpXmY[2]) /

(fpRxy * fpRxy * fpRxy);
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}
*pfpAAA = -fpSum * .5 * fpR * fpR / PI -
pgeoJ->fpDA / pg->fpGeoA;
} /* check if large distance */
} /* check if diagonal element */
} /* loop through columns */
} /* loop through rows */
}

CREATEAKL parallel

ulK - particle number (x)

ull - particle number (y)

pfpA - position of submatrix
ulIncr - increment from row to row

static void Createlkl (ulK, ullL, pfpA, ullncr)
ULONG ulK;
ULONG ulL;
FPTYPE *pfpA;
ULONG ullIncr;
{
static ULONG ulIl, ullJ;
static USHORT usIXs, usIXt;
static FPTYPE afpXmY[3];
static FPTYPE fpRxy2;
static FPTYPE fpRxy;
static FPTYPE fpSum;
static FPTYPE afpX[3];
static FPTYPE afpY[3];
static FPTYPE xpfpAA, *pfpAAA;
static FPTYPE afpZdst[3];
static PGEOD pgeol, pgeolJ;
static PBODY pbodyK, pbodyL;

pbodyK = &pg->abody[ulK];
pbodyL = &pg->abody[ull];
/* distance between particle centers */

afpZdst[0] = pbodyK->afpZ[0] - pbodyL->afpZ[0];
afpZdst[1] = pbodyK->afpZ[1] - pbodyL->afpZ[1];
afpZdst[2] = pbodyK->afpZ[2] - pbodyL->afpZ[2];

/* loop through rows */
for (ull = 0, pfpAA = pfpA; ull < pg->ulM; ull++, pfpAA += ullncr)
{

pgeol = &pg->ageo[ulll;

afpX[0] = pgeoI->afpX[0] * pbodyK->fpR;

afpX[1] = pgeoI->afpX[1] * pbodyK->fpR;

afpX[2] = pgeoI->afpX[2] * pbodyK->fpR;

/* loop through columns */

for (ulJ = 0, pfpAAA = pfpAA;
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ulJ < pg->ulM;
ulJ++, pfpAAA++)

pgeolJ = &pg->ageo[ulJ];
afpXmY[0] = afpX[0] -
pgeoJ->afpX[0] * pbodyL->fpR +
afpZdst [0];
afpXmY[1] = afpX[1] -
pgeoJ->afpX[1] * pbodyL->fpR +
afpZdst[1];
afpXmY[2] = afpX[2] -
pgeoJ->afpX[2] * pbodyL->fpR +
afpZdst[2];
fpRxy2 = afpXmY[0]*afpXmY[0] + afpXmY[1]*afpXmY[1] +
afpXmY [2] *afpXmY [2] ;
/* check if large distance */
if (fpRxy2 > 18. * pgeoJ->fpDA * pbodyL->fpR * pbodyL->fpR)
{

/* no Gaussian-Legendre Quadrature */

fpRxy = sqrt (fpRxy2);

*pfpAAA = -pgeoJ->fpDA * pbodyL->fpR * pbodyL->fpR *
.5 * (pgeoJ->afpN[0]*afpXmY[0] +
pgeoJ->afplN[1]*afpXmY[1] +
pgeoJ->afpN[2]*afpXmY[2]) /

(PI * fpRxy * fpRxy * fpRxy);
} /* check if large distance */
else
{

/* Gaussian-Legendre Quadrature */

fpSum = 0.;

for (usIXs = 0; usIXs < pg->usQuadN; usIXs++)

{

for (usIXt = 0; usIXt < pg->usQuadN; usIXt++)
{
afpY[0] = pg->afpQuadX[usIXs] * pgeoJ->afpU1[0] +
* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) *
pgeoJ->afpU2[0] +
pgeoJ->afpP2[0];
afpY[1] = pg->afpQuadX[usIXs] * pgeoJ->afpUl[1] +
* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) *
pgeoJ->afpU2[1] +
pgeoJ->afpP2[1];
afpY[2] = pg->afpQuadX[usIXs] * pgeoJ->afpUi[2] +
* (pg->afpQuadXt+usIXs*pg->usQuadN+usIXt) #
pgeoJ->afpU2[2] +
pgeoJ->afpP2[2];
afpXmY[0] = afpX[0] -
afpY[0] * pbodyL->fpR +
afpZdst[0];
afpXmY[1] = afpX[1] -
afpY[1] * pbodyL->fpR +



afpZdst[1];
afpXmY[2] = afpX[2] -
afpY[2] * pbodyL->fpR +
afpZdst[2];
fpRxy = sqrt(afpXmY[0]*afpXmY[O] +
afpXmY[1]*afpXmY[1] +
afpXmY[2] *afpXmY[2]) ;
fpSum += pg->afpQuadW[usIXs] *
* (pg->afpQuadWt+usIXs*pg->usQuadN+usIXt) *
pgeoJ->fpJacob *
(pgeoJ->afpN[0] *afpXmY[0] +
pgeoJ->afplN[1]*afpXmY[1] +
pgeoJ->afpN[2]*afpXmY[2]) /
(fpRxy * fpRxy * fpRxy);
¥
}
*pfpAAA = -fpSum * .5 * pbodyL->fpR * pbodyL->fpR / PI;
} /* check if large distance */
} /* loop through columns */
} /* loop through rows */
}
#endif

CREATEBN parallel
ulN - particle number
pfpB - position of subvector

static void CreateBn(ulK, pfpB)
ULONG ulkK;
FPTYPE *pfpB;
{
static ULONG ulI;
static ULONG ulL;
static FPTYPE fpSum;
static FPTYPE afpX[3];
static FPTYPE afpXmZ[3];
static FPTYPE *pfpBB;
static PBODY pbodyK, pbodyL;
#ifdef CONTAINER
static FPTYPE fpRz, fpRy;
static FPTYPE afpD[3];
#endif

pbodyK = &pg->abody [ulK];

/* loop through rows */

for (ull = 0, pfpBB = pfpB; ull < pg->ulM; ull++, pfpBB++)
{

afpX[0] = pg->ageo[ull].afpX[0] * pbodyK->fpR + pbodyK->afpZ[0];
afpX[1] = pg->ageo[ull].afpX[1] * pbodyK->fpR + pbodyK->afpZ[1];
afpX[2] = pg->ageo[ull].afpX[2] * pbodyK->fpR + pbodyK->afpZ[2];
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fpSum = 0.;

/* loop through particles */

for (ullL = 0; ulL < pg->ullN; ulL++)

{
pbodyL = &pg->abody[ull];
afpXmZ[0] = afpX[0] - pbodyL->afpZ[0];
afpXmZ[1] = afpX[1] - pbodyL->afpZ[1];
afpXmZ[2] = afpX[2] - pbodyL->afpZ[2];
fpSum += pbodyL->fpQ / AABS (afpXmZ);

#ifdef CONTAINER
fpRy = AABS(pbodyL->afpZ);
afpD[0] = pbodyL->afpZ[0] / fpRy;
afpD[1] = pbodyL->afpZ[1] / fpRy;
afpD[2] = pbodyL->afpZ[2] / fpRy;
fpRz = pg->fpR2 / fpRy;
afpXmZ[0] = afpX[0] - afpD[0] * fpRz;
afpXmZ[1] = afpX[1] - afpD[1] # fpRz;
afpXmZ[2] = afpX[2] - afpD[2] * fpRz;
fpSum -= pbodyL->fpQ * fpRz / (AABS(afpXmZ) * pg->fpR);
#endif
}
*pfpBB = -fpSum + pg->afpE0[0] * afpX[0] + pg->afpEO[1] * afpX[1] +
pg->afpEO[2] * afpX[2];

static void Solve()
{
ULONG ulI, ulII, ulJJ, ulK, ulKK, ulL;
ULONG ullter;
FPTYPE fpSum;
FPTYPE xafpX;
FPTYPE *afpXCom;
FPTYPE *afpATemp; /* non buffered temporary submatrix */
FPTYPE *pfpl; /* pointer to submatrix */
FPTYPE *afpXBuf;
FPTYPE *pfpPsi, *pfpPsil;
FPTYPE *pfpXBuf, *pfpXBufl;
FPTYPE *afpXErr;
FPTYPE *pfpXErr;
#ifdef WWT
ULONG ulBarrier;
#endif
ULONG *pulABufRefKK, *pulABufRefL;
ULONG #pulBufPrioK, *pulBufPrioL;
FPTYPE *pfpXCom, *pfpX0ld;
FPTYPE *pfpXKK, #pfpXII;
FPTYPE *pfpXSol;
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/* allocate memory for local solution vector */
afpX = (FPTYPE *)malloc (pg->ulllMP # sizeof (FPTYPE));
/* allocate memory for received data */
afpXCom = (FPTYPE *)malloc(pg->ulM * sizeof (FPTYPE));
/* allocate memory for buffer solution matrix */
afpXBuf = (FPTYPE *)malloc(pg->ulNMP * pg->ullN # sizeof (FPTYPE));
for (ull = 0, pfpXBuf = afpXBuf; ull < pg->ulNMP * pg->ullN; ull++, pfpXBuf++)
{
*pfpXBuf = 0.;
}

/* allocate memory for temporary sub matrix of a */
afpATemp = (FPTYPE *)malloc (pg->ulM * pg->ulM * sizeof (FPTYPE));

/* if output of psi */

if (pg->fOutMode & 1)

{
/* pfpPsi points to first element in pg->afpPsi */
pfpPsil = &pg->afpPsil[ulParticleStart];

}

/* if output of solution error */

if (pg->fOutMode & 4)

{
/* allocate memory for locally stored error */
afpXErr = (FPTYPE *)malloc(pg->ullterN * sizeof (FPTYPE));
/* pfpXErr points to first element in afpXErr */
pfpXErr = afpXErr;

/* initial guess */
for (ulIl = 0, ull = ulRowStart; ulll < pg->ulNMP; ulII++, ull++)
{

pg->afpX01d[ull] = afpX[ulIl] = afpB[ulll];

}

#ifdef WWT
/* synchronize all nodes */
BARRIER (ulBarrier, XX_NUM_NODES)
#endif

VTSTART() ;
/% iteration */
for (ullter = 0; ullter < pg->ullterN; ullter++)
{
/* if on proc 0 */
/*
if (ulProc == 0)
{
fprintf (pFileStd, "Iteration %4u\n", ullter);
¥



*/
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/* if output of psi */
if (pg->fOutMode & 1)
{
pfpPsi = pfpPsil;
pfpPsil += pg->ull;
}
/* pfpXBuf points to first element in afpXBuf */
pfpXBuf = afpXBuf;
/* loop through rows (particles) */
for (ulKK = 0, ulK = ulParticleStart, pulABufRefKK = aulABufRef,
pulBufPrioK = pg->aulBufPrio + ulParticleStart * pg->ull,
PIpXKK = afpX;
ulKK < pg->ullP;
ulKK++, ulK++, pulABufRefKK += pg->ulN, pulBufPrioK += pg->ull,
pfpXKK += pg->ulM)
{
/* loop through columns (particles) */
for (ull = 0, pulABufRefL = pulABufRefKK, pulBufPriol = pulBufPrioK;
ull < pg->ull;
ull++, pulABufReflL++, pulBufPrioL++)
{
/* if sub solution vector is to be updated */
if (ullter % *pulBufPriol == 0)
{
/* if submatrix is not buffered */
if (*pulABufRefL == pg->ullN)
{
VTSTART () ;
/* create submatrix */
/* check if diagonal block matrix */
if (ulK == ull)
{
/* diagonal block matrix */
CreateAnn(ulK, afpATemp, pg->ulM);
}
else
{
/* off-diagonal block matrix */
CreateAkl(ulK, ull, afpATemp, pg->ulM);
}
VTSTOP (VT _RECREATEMATRICES) ;
pfpA = afpATemp;
} /* if submatrix is not buffered */
else
{
pfpA = afpA + (ulKK # pg->ulNBuf + #pulABufRefL) *
pg->ulM * pg->ulM;
¥
/* get global old sub solution vector */
VTSTART () ;
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#ifdef LOCK_
LOCK (pg—>axafpX01d[ulL])
#endif
for (ulJJ = 0, pfpXCom = afpXCom,
pfpX0ld = pg->afpX01d + ull * pg->ulM;
ulJJ < pg->ulM;
ulJJ++, pfpXCom++, pfpX01ld++)
{
#ifdef CICO
# ifdef CICO_X
ALIGNED_CO_X (pfpX01d) ;
# else
ALIGNED_CO_S (pfpX01d) ;
# endif
#endif
*pfpXCom = *pfpX01d;
#ifdef CICO
ALIGNED_CI (pfpX01d, sizeof (FPTYPE));
#endif

/*
for (ulJ = 0, pfpXCom = afpXCom,
pfpX01ld = pg->afpX0ld + ull * pg->ulM;
ullJ < pg->ulM;
ulJ += ALIGN_FACTOR)

CO_X (p£pX01d)

for (ulJJ = ulJ;
ulJJ < ulJ + ALIGN_FACTOR && ulJJ < pg->ulM;
ulJJ++, pfpXCom++, pfpX0ld++)

*pfpXCom = *pfpX01d;
}
CI(pfpX01d - 1)

*/
#ifdef LOCK_
UNLOCK (pg->axafpX01d[ulL])
#endif
VTSTOP (VT_SOL_READ) ;
VTSTART () ;
/* loop thru rows */
for (ulIIl = 0, pfpXBufl = pfpXBuf, pfpXII = pfpXKK;
ulIl < pg->ulM;
ulll++, pfpXBufl++, pfpXII++)

fpSum = 0.;

/* loop thru cols */

for (ulJJ = 0, pfpXCom = afpXCom;
ulJJ < pg->ulM;
ulJJ++, pfpXCom++)



196

{
fpSum += *(pfpA++) * xpfpXCom;
}
*pfpXII += fpSum - *pfpXBufl;
*pfpXBufl = fpSum;
}
VTSTOP (VT_DOTPRODUCT) ;
} /* if sub solution vector is to be updated */
pfpXBuf += pg->ulM;
} /* loop through columns (particles) */
/* copy solution to global old vector */
VTSTART () ;
#ifdef LOCK_
LOCK (pg—>axafpX01d [ulK])
#endif
for (ulll = 0, pfpXII = pfpXKK,
pfpX0ld = pg->afpX0ld + ulK * pg->ulM;
ulIl < pg->ulM;
ullT++, pfpXII++, pfpX0ld++)
{
#ifdef CICO
ALIGNED_CO_X (pfpX01d) ;
#endif
*pfpX01ld = *pfpXII;
#ifdef CICO
ALIGNED_CI (pfpX01d, sizeof (FPTYPE));
#endif
}
/*
for (ull = 0, pfpXII = pfpXKK,
pfpX01ld = pg->afpX01ld + ulK * pg->ulM;
ull < pg->ulM;
ull += ALIGN_FACTOR)

CO_X (pfpX01d)

for (ulIl = ull;
ulll < ull + ALIGN_FACTOR && ulII < pg->ulM;
ulIT++, pfpX0ld++, pfpXII++)

{

*pfpX01ld = *pfpXII;
}
CI(pfpX01d - 1)

*/
#ifdef LOCK_

UNLOCK (pg->axafpX01d [ulK])
#endif

VTSTOP (VT_SOL_WRITE) ;

/* if output of psi */

if (pg->f0OutMode & 1)

{



/* compute surface potentials */
VTSTART () ;
fpSum = 0.;
for (ulIl = 0, pfpXII = pfpXKK; ulll < pg->ulM; ulll++, pfpXII++)
{
fpSum += *pfpXII * pg->ageo[ulII].fpDA;
}
*pfpPsi = -fpSum / pg->fpGeoA;
pfpPsi++;
VTSTOP (VT_CALCPSI) ;
}
} /* loop through rows (particles) */
/* if output of solution error */
if (pg->fOutMode & 4)
{
/* compute error on current processor ¥/
VTSTART () ;
fpSum = 0.;
for (ulIl = 0, pfpXII = afpX, pfpXSol = pg->afpXSol + ulRowStart;
ulIl < pg->ullMP;
ullT++, pfpXII++, pfpXSol++)
{
fpSum += fabs ((*pfpXII - *pfpXSol) / *pfpXSol);
}
* (pfpXErr++) = fpSum;
VTSTOP (VT_CALCERR) ;
}
} /* iteration */
VTSTOP (VT_SOLVE) ;

/* if output of solution error */
if (pg->fOutMode & 4)
{
/* copy it to shared memory */
#ifdef WWT
/* lock vector */
LOCK (pg->xafpXErr)
#endif
/* add local error to global error */
pPfpXErr = afpXErr;
for (ullter = 0; ullter < pg->ullterN; ullter++)
{
pg->afpXErr[ullter] += *(pfpXErr++);
}
#ifdef WWT
/* unlock it */
UNLOCK (pg->xafpXErr)
#endif
/* free local memory */
free(afpXErr);
}
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/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

#i
#i
#i
#i
#i

st
st
st
st
st

/* free memory */
free(aulABufRef) ;
free(afph);
free(afpB);
free(afpXBuf);
free(afpX);
free(afpXCom) ;
free(afpATenp) ;

.5.2 Module geometry.c

lap.c

creates boundary elements for
sphere of radius 1

nclude <stdio.h>
nclude <math.h>
nclude <stdlib.h>
nclude "../tools/my.h"
nclude '"geometry.h"

———————————————————————————— */
DEFINEs */
———————————————————————————— */

———————————————————————————— */
PROTOTYPEs */

atic void CreateTetrahedron();
atic void CreateOctahedron();
atic void Createlcosahedron();
atic void Tesselate();
atic void Bisector();
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static void NewElements();
static void AddElement () ;
static void RenameElement () ;

[ R */
/* VARIABLEs */
[ K */

static FPTYPE (*afpNode) [3];
static USHORT (*ausElement) [3];
static USHORT usLastElement;
static USHORT usLastNode;
static USHORT ausNewNode[3];

extern USHORT CreateGeometry(usMstart, usNtess)
USHORT usMstart;
USHORT usNtess;

{

USHORT usI;
USHORT usM;

/* check if number of elements is too high */

usM = usMstart;

for(usI = 0; usl < usNtess; usI++)

{
usM *= 4;

}

if (usM > M_MAX)

{
/* not enough memory for this order of tesselation */
return 0;

}

/* allocate memory */
afpNode = (FPTYPE (%) [3])malloc(usM * sizeof (*afpNode));
ausElement = (USHORT (%) [3])malloc(usM * sizeof (*ausElement)) ;

/* create starting polyhedron */
switch(usMstart)
{
case 4:
CreateTetrahedron();
break;
case 8:
Createlctahedron() ;
break;
case 20:
Createlcosahedron();
break;
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default:
/* usMstart is not valid */
return 0;

/* tesselate usNtess times */
for(usI = 0; usI < usNtess; usI++)

{
Tesselate();

¥

return usM;
}
[ K e e e e */
/* FUNCTION CloseGeometry */
[ R */
extern void CloseGeometry()
{

free(afplNode) ;

free(ausElement) ;
}
[ R */
/* FUNCTION CreateTetrahedron */
g e Rt */
static void CreateTetrahedron()
{

FPTYPE fpTheta;

fpTheta = PI - acos(l. / 3.);

0;
0;
0

H

afpNode[0][0] = 0.
afpNode[0][1] = 0.
afpNode[0][2] = 1

afpNode[1]1[0] = sin(fpTheta) * sin(0.0);

afpNode[1]1[1]
afpNode[1][2]

afpNode[2][0]
afpNode[2][1]
afpNode[2][2]

afpNode[3]1[0]
afpNode[3]1[1]
afpNode[3]1[2]

sin(fpTheta) *
cos (fpTheta) ;

sin(fpTheta) *
sin(fpTheta) *
cos (fpTheta) ;

sin(fpTheta) *
sin(fpTheta) *
cos (fpTheta);

ausElement [0][0] = 0;
ausElement [0][1]
ausElement [0][2] = 2;

1]
—

cos (0.

sin(2.
cos(2.

sin(4.
cos(4.

~N N
w w

~N N
w w

* %

* ¥

PI);
PI);

PI);
PI);
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static void CreateOctahedron()

{

ausElement[1][0]
ausElement[1][1]
ausElement[1][2]
ausElement [2] [0]
ausElement[2][1]
ausElement [2][2]
ausElement [3][0]
ausElement[3][1]
ausElement [3][2]

usLastElement =
usLastNode = 4;

afpNode[0][0] =

afpNode[0][1] = 0

afpNode[0][2] =

afpNode[1][0] =

afpNode[11[1] = 0

afpNode[1][2] =

afpNode[2][0] = 0

afpNode[2][1] =

afpNode[2][2] = 0

afpNode[3][0] = -

afpNode[3][1] =
afpNode[3][2] =

afpNode[4][0] =
afpNode[4][1] =
afpNode[4][2] =

afpNode[5][0] =
afpNode[5][1] =
afpNode[5][2] =

ausElement [0] [0]
ausElement [0][1]
ausElement [0] [2]
ausElement[1][0]
ausElement[1][1]
ausElement[1][2]
ausElement [2][0]
ausElement[2][1]

4;

-

W N R WNOWRO

WO WNONRO
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ausElement [2] [2]
ausElement [3][0]
ausElement[3][1]
ausElement [3][2]
ausElement [4][0]
ausElement[4][1]
ausElement [4][2]
ausElement [5][0]
ausElement[5][1]
ausElement [5][2]
ausElement [6][0]
ausElement[6][1]
ausElement [6][2]
ausElement [7][0]
ausElement [7]1[1]
ausElement [7][2]

usLastElement =
usLastNode = 6;

1]
o 0T R WO W N TN R 0RO

8;

static void CreateIlcosahedron()

{

FPTYPE fpDihedr
FPTYPE fpSide =

= 138.1897222 / 180. #* PI;

4. / sqrt(2. * (5. + sqrt(5.)));

FPTYPE fpHeight = fpSide % .5 * sqrt(3.);

FPTYPE fpChord = sqrt (2. # fpHeight # fpHeight *

FPTYPE fpThetal

afpNode[0][0] =
afpNode[0][1] =
afpNode[0][2] =

afpNode[1][0]
afpNode[1][1] =
afpNode[1][2]

afpNode[2][0]
afpNode[2][1] =
afpNode[2][2]

afpNode[3]1[0]
afpNode[3]1[1]
afpNode[3][2]

afpNode[4]1[0]

(1. - cos(fpDihedr)));

= PI - acos((2. - fpChord * fpChord) * .5);
FPTYPE fpTheta2 = PI - fpThetal;

0.0;
0.0;
1.0;

sin(fpThetal) *
sin(fpThetal) *

cos(fpThetal);

sin(fpThetal) *
sin(fpThetal) *
cos(fpThetal);

sin(fpThetal) *
sin(fpThetal) *
cos (fpThetal);

sin(fpThetal) *

sin(0.
cos (0.

sin(2.
cos(2.

sin(4.
cos (4.

sin(6.

0);
0);

/5.
/5.

/5.
/5.

/5.

*PI1);
*PI);

*PI);
*PI);

*PI1);
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afpNode[4][1] =
afpNode[4][2] =

afpNode[5][0] =
afpNode[5][1] =
afpNode[5][2] =

afpNode[6][0] =
afpNode[6][1] =
afpNode[6][2] =

afpNode[7][0] =
afpNode[7][1] =
afpNode[7][2] =

afpNode[8][0] =
afpNode[8][1] =
afpNode[8][2] =

afpNode[9][0] =
afpNode[9][1] =
afpNode[9][2] =

sin(fpThetal) *
cos(fpThetal);

sin(fpThetal) *
sin(fpThetal) *
cos(fpThetal);

0.0;
0.0;
-1.0;

sin(fpTheta?2) *
sin(fpTheta?2) *
cos (fpTheta?2);

sin(fpTheta?2) *
sin(fpTheta?2) *
cos (fpTheta?2);

sin(fpTheta?2) *
sin(fpTheta?2) *
cos (fpTheta?2);

afpNode[10] [0]
afpNode[10] [1]
afpNode[10] [2]

afpNode[11] [0]
afpNode[11][1]

afpNode[11][2]

ausElement [0] [0]
ausElement [0][1]
ausElement [0] [2]

ausElement[1][0]
ausElement[1][1]
ausElement [1][2]

ausElement [2][0]
ausElement[2][1]
ausElement [2][2]

ausElement [3][0]
ausElement[3][1]
ausElement [3][2]

ausElement [4][0]
ausElement[4][1]
ausElement [4][2]

= sin(fpTheta2) *
= sin(fpTheta2) *
cos (fpTheta2);

= sin(fpTheta2) *
= sin(fpTheta2) *
cos (fpTheta2);

cos(6./5.%PI);

sin(8./5.%PI);
cos(8./5.%PI);

sin(1./5.%PI);
cos(1./5.%PI);

sin(3./5.4%PI);
cos(3./5.%PI);

sin(PI);
cos(PI);

sin(7./5.
cos(7./5.

sin(9./5.
cos(9./5.

*PI);
*PI);

*PI);
*PI);
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ausElement [5][0]
ausElement[5][1]
ausElement [5][2]

ausElement [6][0]
ausElement[6][1]
ausElement [6][2]

ausElement [7][0]
ausElement[7]1[1]
ausElement [7][2]

ausElement [8][0]
ausElement[8][1]
ausElement [8][2]

ausElement [9][0]
ausElement[9][1]
ausElement [9][2]

ausElement[10] [0]
ausElement[10] [1]
ausElement [10] [2]

ausElement[11] [0]
ausElement[11] [1]
ausElement[11] [2]

ausElement[12] [0]
ausElement[12] [1]
ausElement[12] [2]

ausElement[13] [0]
ausElement[13] [1]
ausElement[13] [2]

ausElement[14] [0]
ausElement[14] [1]
ausElement[14] [2]

ausElement[15] [0]
ausElement[15] [1]
ausElement[15] [2]

ausElement[16] [0]
ausElement[16] [1]
ausElement[16] [2]

ausElement[17] [0]
ausElement[17] [1]
ausElement[17] [2]

204



st
{

static void Bisector (usK, usI, usJ)

Us
Us
Us
{

ausElement[18] [0] = 6;
ausElement[18] [1] = 10;
ausElement[18] [2] = 11;

ausElement[19] [0] = 6;
ausElement[19] [1]
ausElement[19][2] = 7;

1]
—
—

usLastElement = 20;
usLastNode = 12;

atic void Tesselate()

USHORT usLocalLastElement;
USHORT usK;

usLocalLastElement = usLastElement;
for(usk = 0; uskK < uslocallLastElement; usK++)

{
Bisector(usK, 0, 1);
Bisector(usK, 1, 2);
Bisector(uskK, 2, 0);
NewElements (usk) ;

HORT usK;
HORT usI;
HORT usJ;

USHORT usEndX1, usEndX2;
FPTYPE fpNorm;

FPTYPE fpE00, fpEO1, fpE02, fpE10, fpE1ll, fpE12;

FPTYPE afpX[3];

usEndX1 = ausElement [usK] [usI];
usEndX2 = ausElement [usK] [usJ];

fpE00 = afpNode[usEndX1][0];
fpE01 = afpNode[usEndX1][1];
fpE02 = afpNode[usEndX1][2];
fpE10 = afpNode[usEndX2][0];
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fpE1l = afpNode[usEndX2] [1];
fpE12 = afpNode[usEndX2] [2];

afpX[0] = £pE00 + fpE10;
afpX[1] = fpE01 + fpEil1;
afpX[2] = fpE02 + fpE12;

/* project new node onto surface */

fpNorm = sqrt (afpX[0]*afpX[0] + afpX[1]xafpX[1] + afpX[2]*afpX[2]);
afpX[0] /= fpNorm;

afpX[1] /= fpNorm;

afpX[2] /= fpNorm;

afpNode [usLastNode] [0] = afpX[0];
afpNode [usLastNode] [1] = afpX[1];
afpNode [usLastNode] [2] = afpX[2];

ausNewNode[usI] = usLastNode;

usLastNode++;

static void NewElements (uskK)

USHORT usk;

{
USHORT usNewNodeX1 = ausNewNode[0];
USHORT usNewNodeX2 = ausNewNode[1];
USHORT usNewNodeX3 = ausNewNode[2];

USHORT us0l1dNodeX1 = ausElement[usK][0];
USHORT us0l1dNodeX2 = ausElement[usK][1];
USHORT us0l1dNodeX3 = ausElement[usK][2];

AddElement (us01dNodeX1, usNewNodeX1, usNewNodeX3);
AddElement (us01dNodeX2, usNewNodeX1, usNewNodeX2);
AddElement (us01dNodeX3, usNewNodeX2, usNewNodeX3);

RenameElement (usK, usNewNodeX1, usNewNodeX2, usNewNodeX3);

static void AddElement (usI, usJ, usk)
USHORT usI;

USHORT usJ;

USHORT uskK;

{

ausElement [usLastElement] [0] = usI;



ausElement [usLastElement] [1] = usJ;
ausElement [usLastElement] [2] = usK;
usLastElement++;

¥

[ K */

/* FUNCTION RenameElement */

[ K e e e e */

static void RenameElement (usK, usL, usM, usN)

USHORT uskK;

USHORT usL;

USHORT usM;

USHORT usN;

{
ausElement [usK][0] = usL;
ausElement [usK][1] = usM;
ausElement [uskK][2] = usN;

¥

[ */

/% FUNCTION GetElementAll */

[ K */

extern void GetElementAll (usK, pgeo)

USHORT uskK;

PGED pgeo;

{
USHORT usNodel = ausElement [usK][0];
USHORT usNode?2 = ausElement [usK][1];
USHORT usNode3 = ausElement [uskK][2];
FPTYPE afpP1[3], afpP2[3], afpP3[3];
FPTYPE afpU1[3], afpU2[3];
FPTYPE afpX[3];
FPTYPE afpN[3], fpDot, fpNorm;

/% vertices x/

pgeo->afpP1[0] = afpP1[0] = afpNode[usNode1][0];
pgeo->afpP1[1] = afpP1[1] = afpNode[usNode1][1];
pgeo->afpP1[2] = afpP1[2] = afpNode[usNodel][2];
pgeo->afpP2[0] = afpP2[0] = afpNode[usNode2][0];
pgeo->afpP2[1] = afpP2[1] = afpNode[usNode2][1];
pgeo->afpP2[2] = afpP2[2] = afpNode[usNode2][2];
pgeo->afpP3[0] = afpP3[0] = afpNode[usNode3][0];
pgeo->afpP3[1] = afpP3[1] = afpNode[usNode3][1];
pgeo->afpP3[2] = afpP3[2] = afpNode[usNode3][2];

/* vectors of edges */

pgeo->afpU1[0] = afpU1[0] = afpP1[0]
pgeo->afpU1[1] = afpUi[1] = afpP1[1]
pgeo->afpU1[2] = afpU1[2] = afpP1[2]
pgeo->afpU2[0] = afpU2[0] = afpP3[0]
pgeo->afpU2[1] = afpU2[1] = afpP3[1]

afpP2[0];
afpP2[1];
afpP2[2];
afpP2[0];
afpP2[1];
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pgeo->afpU2[2] = afpU2[2] =

/* centroid */
pgeo->afpX[0]
pgeo->afpX[1]
pgeo->afpX[2]

afpX[1]
afpX[2]

/* jacobian, area, normal */

afpN[0] = afpUl[1]*afpU2[2] - afpUi[2]*afpU2[1];
afpU1[2]*afpU2[0] - afpU1l[0]*afpU2[2];
afpN[2] = afpU1[0]*afpU2[1] - afpUi[1]*afpU2[0];
pgeo->fplacob = fpNorm = sqrt (afpN[0]*afpN[0] + afpN[1]*afpN[1] +

afpN[1]

pgeo->fpDA = fpNorm * .5;
afpN[0] /= fpNorm;
afpN[1] /= fpNorm;
afpN[2] /= fpNorm;

fpDot = afpX[0]l*afpN[0] + afpX[1]*afpN[1] + afpX[2]*afpN[2];

if (fpDot < 0.)

{
pgeo—>afpN[0] = -afpN[0];
pgeo—>afpN[1] = -afpN[1];
pgeo->afpN[2] = -afpN[2];

}

else

{
pgeo->afpN[0] = afpN[0];
pgeo->afpN[1] = afpN[1];
pgeo->afpN[2] = afpN[2];

}

}

afpP3[2] - afpP2[2];

afpN[2] *afpN[2]);

B.5.3 C Header File my.h

[ R */
/* my.h */
[ K= e e e */
/* C header file with */
/* general definitions */
[ K */

#ifdef SINGLEPREC

# define FPTYPE float
# define FPMASK "Yf"
f#else

# define FPTYPE double
# define FPMASK "%1f"
#tendif

afpX[0] = (afpP1[0] + afpP2[0] + afpP3[0]) / 3.;
(afpP1[1] + afpP2[1] + afpP3[1]) / 3.
(afpP1[2] + afpP2[2] + afpP3[2]) / 3.;

3
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#define USHORT unsigned short
#define SHORT short

#define ULONG unsigned long
#define LONG long

#define INT long

#define BOOL unsigned short

ftdefine PI 3.14159265358979323844
#tifndef RAND_MAX

# define RAND_MAX 2147483648
#tendif

#tdefine max(a,b) ( ((a)>(b)) ? (a)
#define min(a,b) ( ((a)<(b)) ? (a)
#define SQR(x) ((x)*(x))

#define AABS(x) sqrt(SQR(x[0]) + SQR(x[1]) + SQR(x[2]))

() )
() )

#define DELTA(i,j) (((i) == (j)) ? 1.0 : 0.0)

#define FILENAM_SIZE 80
#define STRING_SIZE 80

#ifndef WWT

# ifndef XX_NUM_NODES

# define XX_NUM_NODES 1

# endif

# ifndef G_MALLOC

i define G_MALLOC(ulSize) malloc(ulSize);
# endif

#tendif

B.5.4 C Header File geometry.h

/* geometry.h

[
/* header file for geometry.c

/* and lap.c

[
[ R */

/* STRUCTs */

g e ittt */
typedef struct _GEO

{

FPTYPE afpP1[3]; /% vertices */

*/
*/
*/
*/
*/
*/
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FPTYPE afpP2[3];
FPTYPE afpP3[3];
FPTYPE afpU1[3]; /* vectors of edges */
FPTYPE afpU2[3];

FPTYPE afpX[3]; /* centroid */
FPTYPE afpN[3]; /* normal vector */
FPTYPE fpDA; /* area */

FPTYPE fpJacob; /* Jacobian */

} GEO, *PGEOQ;

[ K */
/* PROTOTYPEs */
[ R */

extern USHORT CreateGeometry();
extern void CloseGeometry();
extern void GetElementAll();

B.5.5 Make File lap.mak.include

# included general file into makefiles for different
# protocols

.KEEP_STATE:

# Programming model used.
MODEL = parmacs

# gcc
CC = gcc

# Target name
TARGET = lap
TARGETDIR = .

# Invariants, you shouldn’t (typically) override these.
INC = -I$(WWT_ROOT)/Include/$(PROTOCOL) -I$(WWT_ROOT)/Include

STD_CFLAGS = $(INC)
STD_LDFLAGS = -n -dc -dp -e __wwt_startup_ -X

# You should not change these.
CFLAGS = $(STD_CFLAGS) $(OTHER_CFLAGS)
LDFLAGS = $(STD_LDFLAGS) $(OTHER_LDFLAGS)
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WWTLIBDIR = $(WWT_ROOT)/Lib

#LIBDIRS = -L$(WWTLIBDIR) -L$(WWTLIBDIR)/$(PROTOCOL)

#LIBS = -1$(MODEL) -1m -lc

# gcc

LIBDIRS = -L$(WWTLIBDIR) -L$(WWTLIBDIR)/$(PROTOCOL) \
-L/usr/local/lib/gcc-1ib/sparc-sun-sunos4.1.2/2.4.5

LIBS = -1$(MODEL) -1lm -1lgcc -lc

# /lib/crt0.o provides a pointer to the environment needed by some
# 1ib objects
0OBJS = lap.o geometry.o /lib/crt0.o

# PARMACS stuff
MACDIR = $(WWTLIBDIR)
MACROS = $(MACDIR)/c.m4.local $(MACDIR)/c.m4.monmacs $(MACDIR)/c.m4.smacs

.SUFFIXES:
.SUFFIXES: .o .c .U .h .H

.c.o: ; $(CC) -c $(CFLAGS) $*.c
.U.c: ; m4 $(MACROS) $x.U >$*.c
JH.h: ; m4 $(MACROS) $*.H >$*.h

$ (TARGET) : $(0BJS)

1d $(LDFLAGS) $(0BJS) -o $(TARGET) .no-vt $(LIBDIRS) $(LIBS)
vt -a $(TARGET) -d -w $(OTHER_VTFLAGS) $(TARGET) .no-vt

i wwt_strip $(TARGET)

compress $(TARGET)

rmtarget:
rm -f $(TARGETDIR)/$(TARGET) $(TARGETDIR)/$(TARGET).Z

install: $(TARGET)
cp $(TARGET).Z $(TARGETDIR)

# file dependencies.

lap.o: lap.c geometry.h
geometry.o: geometry.c geometry.h
# "clean" rule.

clean:
/bin/rm -f $(TARGET) $(TARGET).Z $(TARGET) .no-vt lap.o geometry.o

B.5.6 Make File Makefile

PROTOCOL = diriSW



# OTHER_CFLAGS = -02 -DWWT -DPAR_INIT -DDO_PRINT -DDIR1 -DSIZE=1026
OTHER_CFLAGS = -Wall -02 -DWWT -DDIR1 -DCICO -DTIMERS -DSINGLEPREC

OTHER_LDFLAGS

OTHER_VTFLAGS

include lap.mak

.include
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