
1

Lamport Clocks: Reasoning About Shared Memory Correctness1

Daniel J. Sorin, Manoj Plakal, Mark D. Hill and Anne E. Condon

Computer Sciences Department
University of Wisconsin - Madison

{sorin,plakal,markhill,condon}@cs.wisc.edu

Abstract

Modern shared memory implementations use many complex, interacting optimizations, forcing
industrial product groups to spend much more effort in verification than in design. Current formal
verification techniques are somewhat non-intuitive to system designers and verifiers, and these
formal methods do not scale well to practical systems.

This paper seeks to give verifiers and designers a reasoning technique that is precise (unlike
informal reasoning) and intuitive (unlike some formal models). To prove that a system obeys the
desired consistency model, we would like a tool that allows us to create a total order of events. We
modestly extend Lamport’s logical clock work from distributed systems and apply it to shared
memory systems. We use these so-called Lamport clocks to timestamp events and thereby create a
total order. This total order can then be examined to see if it satisfies the desired consistency
model. Lamport clocks are purely a reasoning tool, and they are never instantiated in hardware.

We demonstrate the value of Lamport clocks by showing that sequential consistency (SC) is
obeyed by a variety of snooping bus-based coherence protocols, ranging from a simple cache-less
system to a split-transaction out-of-order bus. We present timestamping schemes for all of the
above systems and, in the case of the split-transaction bus, we use the timestamps to formally
prove that the system satisfies SC.

1. This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF, under grant #F33615-94-1-
1525 and ARPA order no. B550, National Science Foundation with grants MIP-9225097, MIPS-9625558, CCR 9257241, and CDA-9623632, a
Wisconsin Romnes Fellowship, and donations from Sun Microsystems. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Wright Laboratory
Avionics Directorate or the U.S. Government.

We have written a companion paper to appear in the10th Annual Symposium on Parallel Algorithms and Architectures[18]. That paper uses Lam-
port clocks to study a directory protocol, while this paper examines a complex shared bus protocol. Together the two papers cover the two major
classes of coherence protocols. The complexity of both protocols, however, precludes presenting both in sufficient detail in one paper. .

2

1 Intr oduction

Many papers in the literature propose optimizations to improve computer system performance.

These papers often ignore the difficult problem of verifying whether new, more-complex imple-

mentations are completely correct. Nevertheless, industrial product groups spend much more

effort in verification than in design.

One area where the verification problem is acute is shared memory systems. Designers must

implement a memory consistency model, such as sequential consistency (SC), correctly and with

high performance. To be correct, an implementation of SC must insure that:

the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the order specified by its

program.[12]

To achieve high performance, memory system implementors now exploit a rich pallet of optimi-

zations, including snooping bus protocols, directory protocols, out-of-order buses, multiple buses,

arbitrary interconnects, write buffers, invalidation queuing, superscalar execution, out-of-order

execution, and speculative execution. Correctness is often demonstrated by intuitive arguments on

individual optimizations and extensive simulations of the complete system.

Let’s consider one example of an aggressive optimization. With a standard invalidation-based

directory protocol (like that of the Stanford DASH [14]), a store request to the directory that finds

many read-only copies outstanding causes an invalidation message to be sent to each copy and

then acknowledged. Scheurich observes that processors can queue invalidations, send acknowl-

edgments, and then perform invalidations, as long as the processors are “isolated” from the rest of

the system [20]. Thus, it is possible for processor P1 to perform its store at a physical time ptstore

before processor P2 does a load at physical time ptload (i.e., ptstore < ptload). P2 gets a “stale”

3

value, and yet everything is “ok”. While one can believe that Scheurich’s optimization works in

isolation, how can one be sure that it works when combined with some of the other optimizations

listed above?

This paper seeks to make a modest step towards providing designers and verifiers with a more for-

mal grounding for insuring that shared memory systems are correct. Lamport’s definition of SC

says an implementation must conform to an order “that exists”. We seek to think about an imple-

mentation as dynamically constructing an order against which we can verify correctness. Our pro-

cess works in three steps:

• The designer/verifier reasons about the system as concurrently performing events at some level

of detail (e.g., loads, stores, getEXCLUSIVE coherence permissions, and receive invalidation

messages).

• We give the designer/verifier rules to assign logical timestamps to all events that ensure that all

causal interactions flow to larger logical time. We call our methodLamport Clocks, because it

modestly extends Lamport’s work from distributed systems [11]. Our method conceptually

adds Lamport clocks to entities (e.g., processors, caches, directories, and buses) and conceptu-

ally adds Lamport timestamps to messages.In no case are Lamport clocks or timestamps

added to actual hardware.

• The designer/verifier can then use the timestamps to prove that an implementation meets the

requirements of a memory consistency model. With SC, for example, does a load always return

the value of the last store (in Lamport time) to the same address? The proofs can vary from

informal to reasonably formal to machine automated.

Recall that Scheurich’s optimization allowed a store at physical time ptstore to occur before a load

at physical time ptload even though the load returns the old value and is thus logically before the

4

store. With Lamport clocks, the load can get a logical timestamp ltload from before the logical

time of the invalidation (it has not been causally affected by the invalidation), while the store’s

logical timestamp ltstore will be larger than that of the invalidation, because it occurs causally after

it. Thus, ltload < ltstore even though ptstore < ptload. In logical time, the load correctly returns the

old value because it occurs logically before the store. This example is illustrated in Table1 and

Table2, where the arrow in Table1 shows the causal relationship between the invalidate and the

processing of this invalidate.

The rest of the paper is organized as follows. Section2 proposes the notion of coherence epochs

in a coherence protocol. We will use epochs as a tool for analyzing protocols, since protocol are

responsible for maintaining certain invariants with respect to epochs. Section3 explains the con-

cept of Lamport clocks and how we can use Lamport clocks to delineate coherence epochs.

Section4 examines a simple bus system with a write-invalidate protocol. Section5 analyzes a

system with a complicated bus and a write-invalidate protocol. Section6 analyzes a system with

TABLE 1. Scheurich’s example in physical time

P1 P2

invalidate

physical store

time load

process invalidation

TABLE 2. Scheurich’s example in logical time

P1 P2

load

logical invalidate

time process invalidation

store

5

multiple interleaved buses. Section7 shows how we can use Lamport clocks to show that a proto-

col is incorrect. Section8 discusses how our technique compares with other verification tech-

niques. Section9 discusses follow-on work, including how our technique can be extended to

directory protocols and how our technique can be applied to proving the correctness of protocols

that obey consistency models other than SC. Finally, Section10 summarizes our contributions.

2 Coherence Epochs

Memory coherence protocols in shared-memory multiprocessors ensure a global total order of

memory operations on any single block of memory. In a typical write-invalidate protocol, the total

order of operations on a block of memory is constructed as processors initiate transactions so as to

obtain the proper coherence permissions for performing memory operations. If a processor will be

reading a block, it makes a request for Read-Only access and receives the block in theSHARED state

in its cache, after which it can proceed to execute loads on this block. If a processor needs to write

to a block, it makes a request for Read-Write access and subsequently receives the block in the

EXCLUSIVE state in its cache (possibly invalidating otherSHARED copies or anotherEXCLUSIVE copy),

after which it can execute loads and stores on this block. Let us definememory operations to be

the loads and stores that are performed by a processor, and let us definecoherence transactions to

be events that cause processors to change their access permissions to blocks of data.

Most protocols insist that a processor wait until it actually has the data before it is allowed to exe-

cute a memory operation. This requirement led us to explore what it means to execute a memory

operation, and we found it convenient to split the execution into what we refer to as “binding” and

“performing”. A memory operation can bebound to a transaction if that transaction gains us the

appropriate coherence permission. Binding an operation is equivalent to reserving resources to

6

actually read data from or write data to the cache (i.e., perform the instruction). An operation can

then beperformed once the data for the operation is present in the cache.

This leads to a natural separation of memory operations from the coherence transactions that pro-

vide them with the block to operate on. Memory operations need to be bound and performed in a

manner consistent with their program order and the memory consistency model supported by the

system. However, coherence transactions can be performed in any order whatsoever without

affecting correctness. We view coherence transactions as definingcoherence epochs on blocks. A

coherence epoch for a block is a period of “time” during which a processor has certain coherence

permissions for that block and hence can bind memory operations on that block. For example, if a

processor executes a coherence transaction to get a block in the Read-Write state, then anEXCLU-

SIVE epoch for that block starts on that processor from the time when it can start binding memory

operations on that block. The epoch will end with the last operation it binds for that block.

A coherence protocol can now be viewed as a mechanism for demarcating andserializing these

epochs, thus ensuring that a valid copy of the block circulates among the processors and maintain-

ing a global order of all the memory operations performed so far on the block. Put another way, a

coherence protocol ensures a clean separation among epochs and that data gets correctly “handed

over”, like the baton in a relay race, from one epoch to the next. Of course, not all epochs need to

be separated in this way sinceSHARED epochs can overlap.

The preceding discussion has glossed over concepts like “time”, “next” epoch, and so on. Coher-

ence epochs will be a well-defined notion only after we resolve the issue of ordering operations

that occur on different processors of a multiprocessor system. Such a problem has already been

tackled in distributed systems by Lamport. In the next section, we explain how we adapt Lam-

7

port’s logical clocks to construct a scale oflogical time over which we can define coherence

epochs.

3 Lamport Clocks

The most intuitive approach to ordering events is to order them by the physical times at which

they occur. However, physical time is generally not a useful tool for ordering, since it is often dif-

ficult or impossible to determine which events happened before other events on different proces-

sors. For example, imagine two processors withSHARED data performing loads on the same cycle.

Moreover, ordering events in physical time is generally more restrictive than ordering themlogi-

cally. Using physical time, for example, would preclude Scheurich’s optimization. Logical order-

ing only restricts the order between events that arecausally related. Two causally related events

would be the sending of a message by one processor and the reception of that message at another

processor.

While determining an order in physical time is often difficult, an order in logical time can be

extracted if we know which events logically cause other events. If eventA causes eventB, then the

logical time of event A should precede that of event B. To construct a total order of events in a

multiprocessor system, we shall use an adaptation of the logical ordering scheme proposed by

Lamport [11]. Lamport logical clocks are purely conceptual devices for reasoning about event

ordering. References to logical clocks refer to the concept of a logical clock at a device and not to

any physical hardware.

The rules for assigning logical timestamps provide us with apartial order of the events in the sys-

tem, since causally unrelated events may be assigned the same logical timestamp at different pro-

cessors. To obtain atotal order, all ties are broken using an ID unique to each processor. Thus, the

logical timestamps and processor IDs produce a total ordering of all the events in the system.

8

We have adapted Lamport’s clocking scheme in a few ways so that we could apply it to our frame-

work for reasoning about protocols. We need to assign timestamps to memory operations and

coherence transactions. A coherence transaction is timestamped using a 2-tuple <global time, pro-

cessor ID> where the global time is used to order coherence transactions and epochs on different

processors. A memory operation is timestamped using a 3-tuple <global time, local time, proces-

sor ID>. The local time component is used to order the memory operations within an epoch while

respecting program order. Our notation for Lamport time is similar to software release notation.

For example, time 3.6.2 would refer to a global time of 3 and a local time of 6 at processor 2.

Since global time has precedence over local time, time 3.6.2 occurs after time 2.20.1.

We can imagine that each processor has a global clock that is incremented upon every transaction

that changes the state of any block in its cache. Bus transactions are timestamped with this global

time and a local time of zero. A memory operation is assigned a global time equal to either the

global time of the transaction to which it was bound or the global timestamp of the immediately

preceding memory operation in the program order (if any), whichever is greater. The local times-

tamp of a memory operation is one greater than the local timestamp of the operation immediately

before it in the program order or it is equal to one, if it is the first operation bound to a given trans-

action.

Lamport timestamps can be used to construct a partial order of the coherence transactions that

occur in a multiprocessor system, and we can now use this order to determine the intervals of time

over which coherence epochs are defined for memory blocks. Consider the example of a generic

bus-based coherence protocol running on a split-transaction bus (shown in Figure1 and Figure2).

Notice that only the loads and stores have Lamport timestamps that include processor ID, because

we only have to create a total order for these operations. Also observe that the binds of the load

9

and the store are within the epochs that are started when the global time is incremented to reflect

the request for new access permission.

FIGURE 1. An example of Coherence Epochs (in Physical time)

FIGURE 2. An example of Coherence Epochs (in Lamport time)

We see that the lifetime of each block (in Lamport time) can be divided into non-overlapping

coherence epochs. A coherence epoch starts when a processor starts binding memory operations,

and an epoch ends when it cannot bind any more operations. During each of its epochs, a block is

present in either theSHARED or EXCLUSIVE state in a cache and this state does not change during the

entire epoch. A processor may bind only loads on this block during aSHARED epoch, and it may

bind both loads and stores during anEXCLUSIVE epoch. There might be periods of Lamport time

Physical time P1 P2

 1 RequestSHARED
permission and bind
load

 2 Receive block from
owner

 3 RequestEXCLU-
SIVE permission
and bind store

 4 Queue invalidation Receive block from
owner

 5 Perform store

 6 Perform load, invali-
date block

 7 Send block to P3

Lamport time P1 P2

 1.0 Request SHARED
permission and
receive block from
owner

 1.1.1 Bind load

 2.0 Invalidate block RequestEXCLU-
SIVE permission
and receive block
from owner

 2.1.1 Bind store

 3.0 Send block to P3

10

when a block does not belong to any epoch: between the time when one epoch ends and another

epoch begins, during which it is resident only in memory. Also note how operations are performed

seemingly out-of-order in physical time while the logical view shows the load happening before

the store.

In summary, Lamport timestamping allows us to order events occurring at different processors

and delineate the coherence epochs for a block of memory in a shared-memory multiprocessor.

The role of a cache coherence protocol can be defined in terms of maintaining invariants involving

epochs. The Lamport framework allows protocols to be specified and verified in an easier and

more intuitive manner, and we will show that it also exposes optimizations in protocol implemen-

tations that may not have been evident earlier.

The next sections of this paper are examples of how to reason about protocol correctness by using

coherence epochs that are bounded in Lamport time. We will start with a simple shared bus proto-

col in Section4, and then we will build up to more realistic bus protocols in Sections 5 and 6.

4 Simple Bus Protocol

Consider a simple bus, where each processor has a cache, all data is cacheable, and the bus sup-

ports a write-invalidate coherence protocol with the following transactions: GetEXCLUSIVE (GX),

Get SHARED (GS), Upgrade fromSHARED to EXCLUSIVE (UPG), Writeback data to memory (WB),

and PutSHARED (PUTS, an eviction of SHARED data). A processor can change its cache access per-

mission to a block by issuing the appropriate transaction on the bus (in Section5, the PUTS trans-

action will not go on the bus, but we will keep this protocol simple). Table3 shows the behavior

of the five transactions. Note that the termowner refers to a processor that hasEXCLUSIVE access.

11

To keep our bus simple for now, assume that all data transfers and access permission changes

related to a transaction occur before the bus accepts the next transaction. Assume that the bus and

each cache have a Lamport clock, as shown in Figure3.

How does a processor bind a memory operation in this system? First, it looks in its cache to deter-

mine if a transaction is required. If the data is already present in the cache with the correct permis-

sions, then the processor can immediately bind the operation. If a transaction is required, the

processor issues it on the bus. The processor now re-tries the memory operation and succeeds in

binding it, because the data is now in the cache and has the correct permissions. Subsequent mem-

ory operations that hit in the cache can continue to be bound.

TABLE 3. Protocol Transactions

Transaction

Access
Precondition
for requester

Initial State
of other
cache(s)

Provider
of data
to
requester

Final
state of
other
cache(s)

Final state
of requester

GX INVALID INVALID memory INVALID EXCLUSIVE

SHARED memory INVALID EXCLUSIVE

EXCLUSIVE old owner INVALID EXCLUSIVE

GS INVALID INVALID memory INVALID SHARED

SHARED memory SHARED SHARED

EXCLUSIVE old owner SHARED SHARED

UPG SHARED INVALID INVALID EXCLUSIVE

SHARED INVALID EXCLUSIVE

WB EXCLUSIVE INVALID INVALID INVALID

PUTS SHARED INVALID INVALID INVALID

SHARED SHARED INVALID

12

FIGURE 3. Simple Bus with Caches

SC is maintained through several protocol policies, and it is instructive to use Lamport clocks to

examine these policies. Each processor binds loads and stores in program order. A cache with an

EXCLUSIVE block can assign timestamps to loads and stores (without consulting the bus), since the

coherence protocol guarantees that no other processor can access the block at this Lamport time.

A processor wishing to access the block would have to use the bus and, therefore, could only start

an epoch that began later in Lamport time. A cache with aSHARED block can hand out timestamps

to loads. If other caches have the same blockSHARED, they can hand out nearly identical times-

tamps without coordinating, because the loads do not affect each other.

Using Lamport clocks to order events reveals how epochs are delineated in this system. When a

cache places a GX on the bus, it begins an epoch in Lamport time in which it can freely timestamp

memory operations to the block. The epoch is terminated at the Lamport time given to the transac-

tion that causes the cache to change its permission fromEXCLUSIVE (external GX or GS). Simi-

larly, an GS begins aSHARED epoch, and the epoch ends, in Lamport time, at the timestamp given

to a local PUTS or an external UPG or GX.

Snooping bus protocols with caches reveal some of the utility of Lamport clocks. Consider the

pseudocode in Table4, where all processors initially have block B in theSHARED state and A is

equal to 7. It is not obvious when reasoning with physical time that we can implement Scheurich’s

proc proc proc

local
Lamport
clock

local
Lamport
clock

global
Lamport
clock

local
Lamport
clock

memory

bus

cache cache cache

13

optimization, which allows processors to buffer the invalidation of B caused by the upgrade per-

formed by P1. Using Lamport time, however, it is fairly straightforward to prove that we can

make this optimization. For this example, let us assume that we are only interested in allowing P3

to buffer upgrades. In this case, we would like to allow P3 to load B at physical time 4, even

though the upgrade has already been placed on the bus by P1 at physical time 2.

Table5 shows the Lamport order extracted by allowing buffering. Note that LD = Load and ST =

Store. The order maintains sequential consistency, and it permits P3 to perform a load at physical

time 4 that we might not have thought permissible before reasoning with Lamport time. Thus,

Lamport time is less restrictive than physical time.

We have shown that wecan buffer the invalidate, but how long can we wait before having to pro-

cess it? Once again, Lamport clocks help us to reason about this problem. A processor can buffer

TABLE 4. Can invalidates be buffered?

physical
time

P1 P2 P3

1 LD r1=B /* gets 7 */ LD r1=B /* gets 7 */

2 UPG B

3 ST B=9

4 LD r1=B /* can we do this and get 7? */

5 WB B

TABLE 5. Buffering In validates

Lamport
time

P1 P2 P3

2.3.2 LD r1=B

2.5.1 LD r1=B

2.9.3 LD r1=B /* gets 7 */

3.0 UPG B

3.1.1 ST B=9

4.0 WB B

14

invalidates indefinitely while it is performing local operations. It only needs to process the invali-

dates before it performs any coherence transaction (i.e., global operation), because a global oper-

ation forces the processor to synchronize with the rest of the system. In our example, P3 cannot

globally timestamp any operation until it has processed the invalidation, but it could bind as many

local operations (i.e., loads) as desired before handling the invalidate.

5 Complicated Bus Protocol

We will now discuss a protocol that is similar to several current bus protocols. The utility of Lam-

port clocks will be best shown in the analysis of this more complicated example.

5.1 Informal Description

To improve the performance of shared bus SMPs, designers incorporate more complicated bus

protocols. A common feature of more complicated buses is that a transaction does not have to be

completed before the next transaction can begin. In simple, circuit-switched bus protocols, coher-

ence transactions areserialized (i.e., if processor P1 has requested a block in theEXCLUSIVE state

and memory has not responded yet, then P1 will not release the bus until it receives the block

from memory). Until P1’s transaction has completed, a circuit-switched bus disallows other trans-

actions from this processor as well as transactions from other processors. Split-transaction buses,

on the other hand, allow systems to pipeline requests and responses. However, split-transaction

buses are more difficult to prove correct, because transactions are not always atomic. Many split-

transaction buses, such as Sun Microsystem’s Gigaplane [23], also permit data to be returned

out of order with respect to the requests for it.

In a split-transaction protocol, a transaction is composed of an action and zero or more reactions,

where the action is a request and the reaction consists of the responses of all processors and mem-

ory modules to the action. For example, if a processor needs a block in theEXCLUSIVE state, it arbi-

15

trates for the bus, makes a request on the bus, and then it releases the bus. If memory or another

processor has to respond, it will eventually send a reply on the bus, thus completing the transac-

tion. Bus utilization is improved by allowing multiple transactions to proceed in parallel. Table6

defines the actions and reactions for the protocol that we shall use in this section. All actions

except PUTS use the bus. Notice that the actions in this protocol correspond to the transactions in

the simple protocol, because the simple protocol waited for the reactions to complete before initi-

ating the next transaction.

The split-transaction nature of the protocol may require transfer of coherence permissions from

processor to processor even before the data has arrived in response to an original coherence

request. For example, suppose processor P1 makes a request for block B in theEXCLUSIVE state.

Before memory has a chance to respond, processor P2 can make a request for the same block B in

the EXCLUSIVE state. Now how do we handle this? One alternative would be to disallow it [13].

This prevents P2 from making a request for B until memory has responded to P1’s request.

Another possible alternative would be to let memory (or possible a dedicated bus controller) keep

track of outstanding transactions. This agent could then send blocks to requesting processors. A

third alternative would be for ownership to transfer immediately upon requests [23]. In this case,

processor P1 becomes the owner of the block immediately after it makes its request. It then sees

P2’s request and records this fact so that it can send the block to P2 when it receives the block

from memory. The protocol would need to impose certain constraints to avoid livelock and ensure

forward progress. We pursue this last approach in our proposed protocol.

16

Our protocol will transfer permissions immediately upon requests, even though the data may not

get transferred for some amount of time after the transfer of ownership. This suggests the concept

of maintaining two separate states for each block -- one state (the address state) is maintained at

the bus interface while the other state (the data state) is maintained at the processor’s cache. The

address state (A-state) changes immediately on coherence actions while the data state (D-state)

may lag behind while waiting for the reaction(s).

The address tags at each processor maintain one of three states for each block: A_X (EXCLUSIVE),

A_S (SHARED), or A_I (INVALID). In addition, the memory node has an A-state for each block. For

the memory to be A_X means that all other nodes have the block A_I, and if the memory is A_I

then one node has the block in A_X.

Similarly, the data tags indicate D_X, D_S, or D_I. Furthermore, the data tags record information

regarding pending transactions for a block (e.g., an invalidation may have been received for a

block before the block has actually arrived at the cache from the bus). The D-state of the memory

node is not defined. The D-states, although sometimes useful as a reasoning tool, can be ignored

in the proof of the protocol. In SectionA.1, we will specify the protocol by providing tables indi-

TABLE 6. Protocol actions and reactions

Actions Reactions

Code Description Code Description

GX GetEXCLUSIVE INV Invalidate

GS GetSHARED DWG Downgrade
(EXCLUSIVE
to SHARED)

WB Writeback SEND Send data

PUTS PutSHARED

UPG Upgrade
(SHARED to
EXCLUSIVE)

17

cating how the address states are changed by a processor’s actions and by reactions received from

the bus. A queue is used to buffer messages from the bus (including a processor’s own messages)

before they are processed by the cache controller. The system is depicted in Figure4.

We contend that loads and stores can be bound as soon as we obtain the appropriate permission

for the A-state. The permission requirements are show in Table7. Once permission for a block B

has been obtained, the values associated with the words of B are deterministic. This does not

imply that these values have already been stored to B or even calculated yet - it simply means that,

from that moment until P gets the data, the value of Bwhen it arrives at P can only take on one

value. Once P has permission for B, it can bind a load or store (whose performance may have to

wait for the data to arrive) to a word of B and continue issuing subsequent instructions.

FIGURE 4. Cache coherence system

TABLE 7. Conditions for binding loads and stores

Action
Access
Precondition

What to do if precondition is
false

LD A_S or A_X GS

ST A_X GX

 $

data tags

address

tags

message

queue

BUS

18

Transactions other than PUTS on a given block are serialized by the bus. This sequence is referred

to as thetransaction serialization order. For each node N, a sequence of t bus transactions (i.e.,

excluding PUTS) on block B defines a unique sequence A1, A2, ..., At of associated A-states for

N, given some initial A-state value at N. If Ai is not equal to Ai-1 for some i≥ 1, we say that the ith

transaction in the sequence “potentially affects” node N. The following claim relates the order

that potential A-state changes are “considered” by a processor to the order in which transactions

appear on the bus. A processor “considers” a potential A-state change in response to the corre-

sponding transaction by checking its A-state and possibly changing it. Considerations are atomic

in the sense that a processor completely considers an A-state change before considering the next.

Claim 1: The sequence of potential A-state changes on block B at a node are considered in the

order implied by the serialization of the corresponding transactions on the bus.

In addition to considering A-state changes due to bus transactions, a processor also changes A-

state in response to a PUTS. The changes in A-state on a given block due to PUTS transactions

and the potential changes in A-state due to bus transactions are totally ordered at a processor. Cor-

responding to a sequence of t′ transactions (including PUTS) on a block at a processor, there is a

unique sequence A′1, A′2, ..., A′t′ of A-states of that block at the processor, given some initial A-

state value. If A′i is not equal to A′i-1, then the ith transaction “affects” N, and the transaction

“implies that N’s A-state for block B change from A′i-1 to A′i”.

For example, suppose that two nodes N1 and N2 are operating on block B. Let N1 make a GS

request on the bus before (in real time) N2 makes a GX request on the bus. If N1 does not do a

PUTS before N2 does the GX, then the sequence of A-states for B at N1 is A_S, A_I. The GX

both potentially affects as well as affects N1, and the GX implies that N1’s A-state changes from

19

A_S to A_I. However, if N1 does a PUTS before the GX, then the sequence is A_S, A_I, A_I. The

GX potentially affects N1 but it does not affect it.

Each transaction except PUTS implies an “upgrade” of A-state (i.e., change from state A_I to

A_S, from A_I to A_X, or from A_S to A_X) at exactly one node, where a node is either a pro-

cessor node or the memory node. Also, each transaction implies a “downgrade” of A-state (i.e.,

change from A_X to A_S, from A_X to A_I, or from A_S to A_I) at zero or more nodes.

5.2 Lamport timestamping scheme

Imagine that each processor and the memory have global clocks that are updated in real time.The

clock is updated upon every action that affects some block in pi’s cache. The clocks are used to

associate global timestamps with LD/ST operations and with transactions (thus defining epochs).

Suppose that the tth transaction T affects node N. If T is not a PUTS, at the moment that the A-

state changes, N adjusts its global clock to equal t, and it assigns a timestamp oft.0 to T.

Let OP be the kth LD/ST operation in the program order of processor pi. First we consider the glo-

bal component of OP’s timestamp. Suppose that OP is bound to the tth transaction on the bus.

Then, the global timestamp for OP is defined to be equal to the maximum of {t, global timestamp

of the (k-1)st LD/ST in pi’s program order (if any)}. The local timestamp of OP is defined to be 1

if OP is the first LD/ST operation of pi in program order with global timestamp t. Otherwise, it is

equal to 1 + local timestamp of the (k-1)st LD/ST operation of pi. The local time of PUTS transac-

tions is assigned identically to LD/ST operations. The global time of a PUTS transaction is the

same as the global time of the last (in real time) considered bus transaction. Thus, a processor cre-

ates a total order of local events (LD, ST, PUTS), and we think of a PUTS as occurring in this

order like LD/ST operations.

If G is the set of transactions and L is the set of LD/ST operations by all processors, then the

20

timestamping scheme defines a total ordering on (G∪ L) that is consistent with the local program

order of each processor and also with the times at which transactions go out on the bus.

5.3 Outline of Proof of Protocol

Appendix A contains a proof of the protocol described in this section. It begins with a formal

specification of the protocol, and it then states two facts about processor behavior requirements.

Two timestamping claims are also introduced, and they make precise the fact that global times-

tamps order memory operations relative to transactions “as intended by the designer”. These

claims allow us establish sequential consistency in a sequence of lemmas using the concept of

coherence epochs. The life of a block in logical time consists of a set of such epochs. One lemma

shows that, in Lamport time, operations lie within appropriate epochs. That is, each LD lies

within either a read-only or a read-write epoch, and each ST operation lies within a read-write

epoch. Another lemma shows that the “correct” value of a block is passed from one node to

another between epochs. The proofs of these lemmas build in a modular fashion upon the times-

tamping claims, thereby localizing arguments based on specification details. In other work [18],

we have proved the correctness of a directory protocol using the same proof structure; the proofs

of the lemmas for the directory protocol are exactly as for the directory protocol of this paper, and

only the proofs of the timestamping claims differ.

5.4 Reasoning with Lamport Clocks

Consider a processor wishing to execute two successive stores to different blocks, where the first

one is not in its cache but the second one is and it is alreadyEXCLUSIVE. Can this protocol allow the

processor to bind the second store and subsequent instructions before receiving the data for the

block of the first store? This optimization would improve performance by overlapping miss

latency with useful work, if we can show with Lamport clocks and coherence epochs that it does

21

not violate SC. Once the processor issues the GX for the first block on the bus, the coherence

epoch ends for any other processors that have the block. Even though the data for the block will

not arrive until later, theEXCLUSIVE epoch has begun for the processor. Therefore, the processor

can still bind the first store since no other processor will have access to the block until the writing

processor gets the data, writes the block, and relinquishes it to another processor. Therefore, the

second store can also be bound since the second block is already available inEXCLUSIVE state and

the store is not waiting for any previous instructions to be bound. This optimization which appears

so obvious when reasoning in Lamport time is not intuitive when analyzing the system in physical

time. In addition to reasoning about specific optimizations, Lamport clocks can be used to formu-

late a formal proof that an entire complicated memory system protocol obeys SC, as shown in

Appendix A.

6 Multiple Interleaved Bus Protocol

System designers have implemented coherence protocols on systems with multiple buses. The

Sun Ultra Enterprise 10000 [1], for example, uses four buses. Figure5 illustrates a system

with two split-transaction out-of-order buses. In a system with k buses, bus access is interleaved

by address such that traffic involving address A uses the bus with number A modulo k. A multiple

bus system could provide an increase in bus bandwidth, but it is not intuitively obvious what

restrictions must be applied to such a protocol to ensure that it obeys SC.

proc proc proc

local
Lamport
clock

local
Lamport
clock

local
Lamport
clock

cache cache cache

bus 0

bus 1

global
Lamport

global
Lamport

clock 0

clock 1

memory 0 memory 1

22

FIGURE 5. Multiple Interleaved Buses

How do we assign Lamport timestamps in a multiple bus system? Since the buses are independent

and synchronous, we can simply add a term to the global part of the timestamps. The timestamp-

ing is similar to the scheme used for the complicated bus protocol, but it uses the bus ID to arbi-

trarily order simultaneous events on different buses. For example, two events at global time 3 on

buses 0 and 1 would be arbitrarily ordered to have global times 3.0 and 3.1, respectively. But how

do we timestamp local events that do not depend on using a particular bus, such as cache hits?

Since we know what bus we would have to use if we missed in the cache, one option is to use the

global time of the last operation we did on that bus. The effect of this policy is the same as if each

processor had a separate cache for each bus and a separate Lamport clock at each cache.

With this timestamping scheme in place, we can just analyze a multiple bus protocol in the same

way that we analyzed the single bus protocol. Coherence epochs are still defined over the global

part of the timestamps (unless they end on a PUTS), but global time now consists of 2 terms. For

example, a coherence epoch could be bounded by the global times 3.4 and 4.4. In Lamport time,

we can think of this system as doing k sequential operations per bus clock. Since transactions

involving the same block must use the same bus, there is no reason why we cannot arbitrarily

order (in Lamport time) the physically concurrent events on different buses. Transactions on the

same bus are still ordered in the same manner as in the single bus protocol. The proofs of optimi-

zations and the complete protocol are now nearly identical to those of the single bus protocol.

7 Proof of Incorrectness of a Protocol

Let us now show how we can use Lamport clocks to demonstrate that a protocol does not obey

SC. Consider a shared bus protocol with first-in-first-out (FIFO) write buffers at each processor,

and assume that the processors are executing the code shown in Table8. A is initially equal to 7.

23

What value of A should P2 get from its load? For the system to obey SC, it must return the value

of the most recent store in Lamport time, and that value is 9. The write-back on P1 is logically

before the GS on P2 and, therefore, logically before the load on P2.

But what value will P2 actually get? If the store from P1 is still in its write buffer when P2 per-

forms its load, then P2 will get a value of 7. This protocol has a race condition, since the value of

the load by P2 depends on whether the store from P1 has passed through its write buffer. Refer-

ring back to SectionA.1, we can see that the protocol in this section violates Fact 2.

If we continue to reason with Lamport clocks, one solution to the inconsistency problem becomes

obvious. We see that the store must logically precede the writeback. Therefore, the system would

obey SC if processors flushed their write buffers before issuing writebacks. We assume that the

processor must have EXCLUSIVE access to a block to which it is writing before it sends the write

into the write-buffer.

8 Related Work1

Most of the related work in coherence protocol verification is based on formal methods [19] that

use state-space search of finite-state machines, and theorem-proving techniques. These are rigor-

1. Note to editors and referees: This section is an exact copy of the Related Work section in our companion paper in the 10th
Annual Symposium on Parallel Algorithms and Architectures (see footnote on first page).

TABLE 8. Write Buffer Example

physical
time

P1 P2

1 LD r1=A /* gets 7 */

2 UPG A

3 ST A=9

4 WB A

5 GS A

6 LD r1=A /* gets ? */

24

ous methods that can capture subtle errors but they are currently limited to small systems because

of the state space explosion for large, complicated systems. For example, the SGI Origin 2000

coherence protocol is verified for a 4-cluster system with one cache block in [7], the correctness

of the Stanford FLASH coherence protocol is verified for small test programs and small configu-

rations in [17], and the SPARC Relaxed Memory Order (RMO) memory consistency model is

verified for small test programs in [16]. Formal verification software, such as Murφ [5], is a useful

tool in the verification process, and techniques for handling the state space explosion [19] may

enable verification software to tackle larger systems. In contrast, though, our approach can pre-

cisely verify the operation of a protocol in a system consisting of any number of nodes and mem-

ory blocks.

A formal approach devised by Shen and Arvind uses term rewriting to specify and prove the cor-

rectness of coherence protocols [22]. Their technique involves showing that a system with caches

and a system without caches can simulate each other. This approach lends itself to highly succinct

formal proofs, yet it may be an intellectual challenge for system designers. Lamport clocks may

be easier to grasp, while not lacking expressive power. It is not clear whether or how the two tech-

niques complement each other. Term rewriting relies on an ordering of rewrite rules (each of

which corresponds to an event) and, as such, may benefit from the Lamport clock technique which

can order events in logical time.

There is another body of work that delves into memory consistency models that are more aggres-

sive than sequential consistency [2, 3, 4, 6, 8, 9, 10, 21]. Handling more aggressive models leads

to formalisms that are more powerful but more complex than we require (e.g., they must handle

non-atomic stores). Furthermore, much of this work seeks to characterize when programs will

25

appear sequentially consistent even when running on the more aggressive hardware, an issue that

is moot for us.

Informal intuitive reasoning is more tractable and easier to understand than formal analysis, but it

becomes less convincing as it becomes more informal. Moreover, the flaws in memory system

designs are generally the subtle types of flaws that would be missed by high-level intuitive reason-

ing. Informal reasoning is often combined with extensive simulation in an effort to explore the

state space for bugs in the protocol, but simulation is expensive and cannot be guaranteed to

uncover every obscure bug in a protocol. Reasoning with Lamport clocks is attractive because it

provides a “semi-formal” methodology that incorporates much of the thoroughness of formal

analysis and much of the intuitive appeal of informal reasoning. Lamport clocks also offer the

opportunity to analyze specific parts of the protocol to prove the validity of an optimization,

whereas other verification techniques often require complete analysis of the system before any

optimization can be validated. Lamport clocks have also been used in other research, including a

paper by Neiger and Toueg [15] that uses the clocks to determine what knowledge is available to

each processor in a parallel algorithm.

9 Follow-on Work

We now briefly discuss several issues that, due to space limitations, cannot not be fully explored

in this paper.

Lamport clocks are well-suited towards directory protocols, because the explicit messages that are

sent between processors correspond to the messages in Lamport’s original scheme. In other work

[18], we designed a directory protocol that is representative of several current protocols and, just

like with the bus protocols discussed in this paper, we developed a timestamping scheme for the

26

protocol. Once we had a timestamping scheme and we could create a total order of the loads and

stores, the analysis and formal proof of the system were similar to those of the bus protocols.

We can also allow the memory consistency model to restrict the orders of I/O references that are

allowed - a protocol that strictly obeys SC should require that I/O operations follow SC in the

same way that memory references do. Let us assume that our system has memory-mapped I/O

where I/O operations are treated as uncached memory operations. In order to create a Lamport

order for all references (memory and I/O), we must be able to timestamp I/O operations. Cur-

rently, though, the interaction of I/O with the memory consistency model in modern multiproces-

sors is not well defined.

As hardware optimizations have led to better performance, they have also caused memory system

designers to develop other memory consistency models that enable the programmer to understand

the behavior of such systems. Lamport clocks can be applied to other consistency models, but ver-

ifying systems that observe other consistency models requires that we devise new rules for what

value a load can return. We determine a Lamport timestamping scheme to produce a total order of

memory operations and show that the order satisfies the requirements of the memory consistency

model.

Another major issue in protocol design is ensuring the avoidance of deadlock and livelock. These

situations are generally caused by either request-reply circular dependencies or finite buffering

resources. Lamport clocks can be used to detect the possibility of deadlock or livelock. If no pro-

cessor cannot timestamp its oldest load or store, the system is deadlocked. Livelock is a bit subtler

to detect, since it requires that no processor can timestamp its oldest load or store for an indefinite

amount of time.

27

10 Conclusions

As memory systems have become increasingly complex, it is becoming more and more difficult to

verify that they implement the desired memory consistency models. We have developed a new

technique that uses the notion of Lamport clocks to reason about the correctness of shared mem-

ory systems. Our technique assigns timestamps to events of interest in a shared memory system

and uses the timestamps to arrange these events in a total order. This total order can then be

exploited to prove the correctness of the implementation. Lamport ordering also enables us to

clearly delineate the bounds of acoherence epoch for a block of memory in a shared memory sys-

tem. Coherence epochs allow us to define the role of coherence protocols, and they give a con-

crete foundation for arguing about the correctness of various optimizations. We have used the

Lamport clock technique to verify the implementation of sequential consistency in a number of

shared memory systems.

Acknowledgments

This paper started out as an idea proposed by Mark Hill and developed into a class project for CS

757: Advanced Computer Architecture II (Multiprocessor architecture), offered by Jim Goodman

in Spring’97 at the CS Dept., UW-Madison. We would like to thank Jim Goodman for his com-

ments and encouragement.

References

[1] The Ultra Enterprise 10000 Server. http://www.sun.com/servers/datacenter/whitepapers/E10000.ps.

[2] SaritaV. Adve and MarkD. Hill. Weak Ordering—A New Definition. InProceedings of the 17th Annual
International Symposium on Computer Architecture, pages 2–14, Seattle, Washington, May 28–31, 1990.

[3] Hagit Attiya and Roy Friedman. A Correctness Condition for High-performance Multiprocessors. In
Proceedings of the 24th Annual ACM Symposium on the Theory of Computing, pages 679–690, May 1992.

[4] William W. Collier.Reasoning About Parallel Architectures. Prentice-Hall, Inc., 1992.

[5] D. Dill, A. Drexler, A.Hu, and C.Yang. Protocol Verification as a Hardware Design Aid. InProceedings of
the IEEE International Conference on Computer Design : VLSI in Computers and Processors, pages 522–525,
1992.

[6] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory Access Buffering in Multiprocessors. In
Proceedings of the 13th Annual International Symposium on Computer Atchitecture, pages 434–442, June

28

1986.

[7] AsgeirTh. Eiriksson and KenL. McMillan. Using Formal Verification/Analysis Methods on the Critical Path
in Systems Design: A Case Study. InProceedings of the Computer Aided Verification Conference, Liege,
Belgium, 1995. appears as LNCS 939, Springer Verlag.

[8] Kourosh Gharachorloo, SaritaV. Adve, Anoop Gupta, JohnL. Hennessy, and MarkD. Hill. Specifying System
Requirements for Memory Consistency Models. Technical Report 1199, University of Wisconsin – Madison,
December 1993.

[9] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-memory Multiprocessors. InProceedings of the
17th Annual International Symposium on Computer Architecture, pages 15–26, May 1990.

[10] Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo. Proving Sequential Consistency of High-
Performance Shared Memories. InSymposium on Parallel Algorithms and Architectures, pages 292–303, July
1991.

[11] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.Communications of the
ACM, 21(7):558–565, July 1978.

[12] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.IEEE
Transactions on Computers, C-28(9):241–248, September 1979.

[13] JamesP. Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. InProceedings of
the 24th International Symposium on Computer Architecture, Denver, CO, June 1997.

[14] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The directory-
based cache coherence protocol for the DASH multiprocessor. InProceedings of the 17th Annual International
Symposium on Computer Architecture, May 1990.

[15] Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and Common Knowledge in Distributed Systems.
Journal of the Association for Computing Machinery, 40(2):334–367, April 1993.

[16] Seungjoon Park and DavidL. Dill. An Executable Specification, Analyzer and Verifier for RMO (Relaxed
Memory Order). InProceedings of the 7th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 34–41, Santa Barbara, California, July 17–19, 1995.

[17] Seungjoon Park and DavidL. Dill. Verification of FLASH Cache Coherence Protocol by Aggregation of
Distributed Transactions. InProceedings of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 288–296, Padua, Italy, June 24–26, 1996.

[18] Manoj Plakal, DanielJ. Sorin, AnneE. Condon, and MarkD. Hill. Lamport Clocks: Verifying a Directory
Cache-Coherence Protocol.10th Annual Symposium on Parallel Algorithms and Architectures, June 1998.

[19] Fong Pong and Michel Dubois. Verification Techniques for Cache Coherence Protocols.ACM Computing
Surveys, 29(1):82–126, March 1997.

[20] Christoph Scheurich. Access Ordering and Coherence in Shared Memory Multiprocessors. Ph.D. Dissertation
CENG 89-19, University of Southern California, May 1989.

[21] Dennis Shasha and Marc Snir. Efficient and Correct Execution of Parallel Programs that Share Memory.ACM
Transactions on Programming Languages and Systems, 10(2):282–312, April 1988.

[22] Xiaowei Shen and Arvind. Specification of Memory Models and Design of Provably Correct Cache Coherence
Protocols. Group Memo 398, Massachusetts Institute of Technology, June 1997.

[23] A. Singhal, D.Broniarczyk, F.Cerauskis, J.Price, L.Yuan, C.Cheng, D.Doblar, S.Fosth, N.Agarwal,
K. Harvey, E.Hagersten, and B.Liencres. Gigaplane: A High Performance Bus for Large SMPs.Hot
Interconnects IV, pages 41–52, 1996.

29

Appendix A: Proof of Split-Transaction Protocol

A.1 Formal Protocol Specification

Table9 illustrates the operation of the protocol with respect to changes in the A-state. The table is

to be read from left to right as a sequence of events in chronological order. These events are trig-

gered by a coherence request made by the “local” processor to a given block B. The first three col-

umns indicate the local processor’s initial state, the action it wishes to perform and the new local

state immediately after the request is made on the bus. Block B can be in state A_I, A_S, or A_X,

and this state is updated immediately upon a processor’s request for a new access state.

The next 3 columns describe the response of all other remote processors to the request made by

the local processor. The responses of the remote processors depend on their current address state.

Any actions that require waiting (such as an invalidate for a block whose data has not yet arrived

from memory) are placed into the message queue. Notice that a PUTS action does not generate

any responses since it is not issued on the bus.

The last 2 columns of Table9 indicate the response of memory to this action. Remote processors

have priority over memory in responding to a coherence request. Any remote processor that is in

the EXCLUSIVE (A_X) state will assert a common “owned” line on the bus to indicate this fact to

memory. Memory reacts to the request after all remote processors have had a chance to react to it.

Memory will provide data for a block only if no remote processor asserted the “owned” line.

Memory has a queue to buffer messages from the bus. Table11 describes how memory processes

this queue and eventually sends data.

What we have not defined yet are the reactions performed by processors after they queue mes-

sages. The reactions of processors are defined in Table10, and these reactions illustrate the behav-

ior of the processors with respect to the D-states. Observe that Table10 defines the behavior of a

30

processor with respect to the D-statefor one action for that block. In other words, there could be

more than one simultaneous D-state for a given block. For example, P1 could get A_X access to

block B, get invalidated by a remote GX (down to A_I), and then gets A_S access to B all before

the data comes back for either request. In this case, there are two D-states for B. Another impor-

tant point to mention about this table is the case where P1 has a request for data outstanding (say

from a GX) and an invalidate waiting in its queue. The table shows an initial and final state of

D_I, but P1 really has D_X permission until it decides to process the invalidate, and this could be

an indefinite amount of time. This situation is not reflected in the table due to the limited benefit

of doubling its size to cover these cases.

TABLE 9. Action Table

Init
Local
Proc
State

Local
Proc
Action

New
Local
Proc
State

Remote
Proc
State

Remote Proc
Action

New
Remote
Proc
State

Did Any
Proc
Assert
Owned?

Memory
Action

A_I GX and
queue
own GX

A_X A_I Y queue GX

A_X N queue GX

A_X A_S queue INV A_I Y queue GX

A_X N queue GX

A_X A_X queue INV,
assert owned

A_I Y queue GX

GS and
queue
own GS

A_S A_I Y queue GS

A_S N queue GS

A_S A_S Y queue GS

A_S N queue GS

A_S A_X queue DWG,
assert owned

A_S Y queue GS

A_S UPG
and
queue
own
UPG

A_X A_I N

A_X A_S queue INV A_I N

31

PUTS A_I any

A_X WB and
queue
own WB

A_I A_I N queue
WB

TABLE 10. Reaction Table

INITIAL ST ATE ACTION FINAL STATE

Initial
State

Pending
Transactions

Head of
Protocol
Message
Queue

Processor

Response
Final
State

New Pending
Transactions

D_I nothing own GX D_I data reply

nothing own GS D_I data reply

data reply empty D_I data reply

data reply INV D_I data reply,
INV

data reply,
INV

EXCLUSIVE

data reply
SEND D_I

data reply,
INV

SHARED data
reply

D_I

data reply DWG D_I data reply,
DWG

data reply,
DWG

EXCLUSIVE

data reply
SEND D_S

data reply SHARED data
reply

load into
cache

D_S

data reply EXCLUSIVE

data reply
load into
cache,

D_X

D_S nothing empty D_S

INV D_I

own UPG D_X

D_X nothing empty D_X

INV SEND D_I

DWG SEND D_S

own WB SEND D_I

TABLE 9. Action Table

Init
Local
Proc
State

Local
Proc
Action

New
Local
Proc
State

Remote
Proc
State

Remote Proc
Action

New
Remote
Proc
State

Did Any
Proc
Assert
Owned?

Memory
Action

32

In the case that ACTION is a GS at a processor other than pi, causing a downgrade at pi, we say

that when a processor pi downgrades, it sends the value of block B to itself and memory, as well

as to the other processor who issued the GS request. Also, when a processor does an UPG, we

consider that it receives a value from itself. Thus, corresponding to every upgrade action (GX, GS,

UPG) of pi, a value is received by pi (possibly from itself).

The following two facts state processor responsibilities. Fact 1 says that a processor must ensure

that a load returns the value of a store it just did (if any) or the value it obtained for the block oth-

erwise. Fact 2 says that, when a processor sends a block away, it must send the values of recent

processor stores to that block (if any) or the values it received.

Fact 1: Let LD-OP be a LD from word w of block B at pi that is bound to transaction T. Let ST-

OP be the last ST to word w of block B by pi (if any) prior to LD-OP in pi’s program order.

TABLE 11. Memory Actions/Reactions

INITIAL ST ATE FINAL STATE

Outstanding
WB

Outstanding
GX/GS

Head of
Queue Action

Outstanding
WB

Outstanding
GX/GS

N GX SEND N

N GS SEND N

N WB Y

Y GX Y GX

Y GS Y GS

Y GX data reply SEND,
commit
data

N

Y GS data reply SEND,
commit
data

N

Y data reply commit
data

N

33

 (a) If ST-OP is also bound to transaction T, then the value loaded by LD-OP equals the result of

ST-OP.

 (b) Otherwise, the value loaded by LD-OP equals the value of word w of block B received by pi

in response to transaction T.

Fact 2: Suppose that as a result of transaction T2, pi sends away block B. Let T be the most recent

transaction at pi prior to T2 (in real time) that caused pi to receive block B. Then, the value of

word w of block B sent by pi in response to T2 is the last ST to word w of block B in pi’s program

order that is bound to T, if any. If no ST to word w of block B is bound to T, then the value of word

w of block B sent by pi is the value received by pi in response to transaction T.

Note: As long as pi sends the correct value for each word w of block B, then it is not required to

perform all bound LD operations on block B before invalidating that block.

A.2 Timestamping Claims

We now make assertions about the timestamping in the following claims.

Claim 2: For a transaction T on block B,

(a) If T is not a PUTS, the timestamps of the downgrades associated with T are equal to the times-

tamp of the upgrade associated with T.

(b) If T is not a PUTS, the timestamp of the upgrade associated with T is less than the timestamp

of the upgrade associated with any transaction on block B occurring after T in the transaction seri-

alization order.

(c) If T is a PUTS, then let T0 be the last transaction at that node, prior to T in the transaction seri-

alization order, that caused the block’s A-state to change to A_S. Let T1 be any transaction for

34

block B that occurs later than T0 in the transaction serialization order. Then, the timestamp of T is

less than the timestamp of T1.

Note: The proof of Claim 2(b) relies on Claim 1 and the fact that the Lamport order of transac-

tions is the same as their order in real time.

Claim 3: Every LD/ST operation on block B at processor pi is bound to the most recent (in Lam-

port time at pi) transaction on block B that affects pi.

The proof of Claim 3 uses the fact that binding of operations is done in program order in real time.

This real-time property of the protocol can be relaxed somewhat while maintaining the correct-

ness of this claim. This issue is discussed and the claim is proved in Appendix B.

A.3 Proof of Sequential Consistency

By construction, the Lamport ordering of LDs and STs within any processor is consistent with

program order. Therefore, to prove sequential consistency, it is sufficient to show that the value of

every load equals the value of the most recent store.

We frame the proof of sequential consistency in terms of coherence epochs. An epoch is simply a

time interval [t1,t2) during which a node has access to a block. ASHARED or EXCLUSIVE epoch for

block B at node N starts at time t1 if a transaction with timestamp t1 (at N) implies that N’s A-state

for block B changes to A_S or A_X respectively. The epoch ends at time t2, where t2 is N’s times-

tamp of the next transaction on block B that implies a change in A-state at N. We build up to the

proof of sequential consistency using the two timestamping claims of SectionA.2.

The proof is constructed from three lemmas whose proofs can be found in Appendix B. Lemma 1

shows that two processors cannot have read-write permission to the same block at the same

(Lamport) time, nor can any processors have read-only permission if any processor has read-write

35

permission. Lemma 2 states that processors do LDs and STs within appropriate epochs. Finally,

Lemma 3 shows that the “correct” block value is passed among processors and the memory

between epochs.

Lemma 1: EXCLUSIVE epochs for block B do not overlap with eitherEXCLUSIVE or SHARED epochs

for block B in Lamport time.

Lemma 2:

(a) Every LD/ST operation on block B at pi is contained in some epoch for block B at pi and is

bound to the transaction that caused that epoch to start.

(b) Furthermore, every ST operation on block B at pi is contained in some exclusive epoch for

block B at pi and is bound to the transaction that caused that epoch to start.

Lemma 3: If block B is received by node N at the start of epoch [t1,t2), then each word w of block

B equals the most recent store to word w prior to t1 or the initial value in memory, if there is no

store to word w prior to global time t1.

The proof of the Main Theorem shows how sequential consistency follows from the lemmas.

Main Theorem: The value of every load equals the value of the most recent store or the initial

value, if there has been no prior store.

Proof: Consider a LD at processor pi. Let the LD be bound to transaction T1 which has timestamp

t1 at processor pi. There are two cases.

The first case is that the most recent ST has global timestamp at least t1. In this case, from Lem-

mas 1 and 2, this ST is also at processor pi. and is bound to transaction T1. Therefore, by Fact 1

(a), the value of the LD equals the value of the most recent ST.

36

The second case is that the most recent ST has global timestamp less than t1. In this case, by

Lemma 2, no ST prior to this LD is bound to transaction T1. Therefore, by Fact 1 (b), the value of

the LD equals the value received by pi in response to transaction T1. By Lemma 3, this value

equals the value of the most recent ST or the initial value if there has been no prior store.

Appendix B: Proofs of Claim 3 and the Lemmas

Claim 3: Every LD/ST operation on block B at processor pi is bound to the most recent (in Lam-

port time at pi) transaction on block B that affects pi.

Proof: Let OP2 be a LD or ST operation on block B with global timestamp t2. Since OP2’s times-

tamp is t2, OP2 cannot be bound to a transaction with timestamp greater than t2. Let T1 be the

transaction on block B with the largest timestamp, say t1, at pi such that t1 �≤ t2. We need to show

that OP2 is not bound to a transaction occurring earlier than T1; hence OP2 must be bound to T1.

Let OP1 be the earliest LD/ST operation (not necessarily to block B) in pi’s program order with

the global timestamp t2. Note that OP1 may equal OP2. Also, since OP1 is the first OP with global

timestamp t2, OP1 must be bound to the transaction with timestamp t2 at pi. The order in which

changes in A-state at a processor are written in real time is the same as the Lamport ordering of

the corresponding transactions at that processor. Hence, the value of the A-state for block B at the

real time that OP1 is bound must be the value implied by a transaction on block B occurring no

earlier than T1. Since OP2 is bound in real time no later than OP1 is bound, it cannot be bound to

a transaction occurring earlier than T1, as required.

Comment: the proof of Claim 3 uses two facts about the protocol relating real time to Lamport

time: (a) the order in which changes in A-state at a processor are written in real time is the same as

the Lamport ordering of the corresponding transactions at that processor, and (b) binding occurs

sequentially in real time. However, the protocol can be relaxed while maintaining the correctness

37

of Claim 3. For example, suppose that the A-states are updated periodically (using queues to order

pending updates) and that during an update of transactions with timestamps in the range [t1,t2),

the binding process is suspended. The order in which the A-states are updated need not agree with

the order of the corresponding actions, as long as at the end of the update period, the A-state value

of each block equals that implied by the most recent transaction prior to that with timestamp t2.

Once the A-states are up to date, binding of LD/STs can be resumed. Binds of the next contiguous

group of LD/ST operations on blocks for which the A-state is set appropriately can be performed

out of order, thus relaxing the real time ordering assumption for binds, as long as potential

changes in A-state are being queued until the binding process is again suspended.

Lemma 1: EXCLUSIVE epochs for block B do not overlap with eitherEXCLUSIVE or SHARED epochs

for block B in Lamport time.

Proof: Let [t1,t2) be anEXCLUSIVE epoch for block B at node N. Let transaction T1 cause the epoch

to begin. We claim that no node has an epoch for block B that overlaps with [t1,t2).

We first argue that no epoch for block B that starts prior to time t1 overlaps with [t1,t2). By Claim

2 (b), the start of such an epoch E would have to result from a transaction occurring before T1 in

the serialization order. Therefore, the end of epoch E would have to result from some transaction

T0 on block B occurring no later than T1 (possibly T0 = T1). If T0 is not a PUTS, then Claim 2 (a)

ensures that the end of epoch E must be less than or equal to the timestamp of T0 at a unique node,

say N2, that upgrades its A-state as a result of T0. Also, by Claim 2 (b), the timestamp of T0 by N2

must be less than the timestamp of T1 by N. If T0 is a PUTS, then by Claim 2 (c), the timestamp of

the PUTS (which is the end of the epoch) is less than the timestamp of T1. Hence, in any case, E

ends in Lamport time before [t1,t2) starts.

38

Clearly, the only epoch starting at time t1 is at node N, since N is the only processor whose A-state

is not A_I after transaction T1. To complete the proof, we note that the next transaction, say T2, on

block B after T1 must be assigned timestamp t2 by N. If node N2 upgrades its A-state as a result of

T2, Claim 2 (a) ensures that N2’s timestamp of T2 must be greater than t2. Therefore, by Claim 2

(b), if an epoch E starts as a result of transaction T2 or some transaction later than T2, E must start

at a time greater than t2, as required.

Lemma 2: (a) Every LD/ST operation on block B at pi is contained in some epoch for block B at

pi and is bound to the transaction that caused that epoch to start. (b) Furthermore, every ST opera-

tion on block B at pi is contained in someEXCLUSIVE epoch for block B at pi and is bound to the

transaction that caused that epoch to start.

Proof: Let OP be a LD/ST on block B with global timestamp t2. By Claim 3, OP is bound to the

most recent transaction at pi no later than t2, say T1, that affects block B of pi. Let t1 be pi’s times-

tamp of T1. Part (a) of Lemma 2 then follows for the following reasons: Since OP is bound to T1,

T1 must imply that pi’s A-state for block B changes to A_S or A_X and so an epoch for block B at

pi starts at time t1. Moreover, since T1 is the most recent transaction no later than t2 that affects

block B of pi, the epoch starting at t1 must end at some time later than t2. Therefore, OP is con-

tained in some epoch for block B at pi and is bound to the transaction that caused that epoch to

start. Part (b) follows from the further observation that if OP is a ST then T1 must cause anEXCLU-

SIVE epoch to start at pi.

Lemma 3: If block B is received by node N at the start of epoch [t1,t2), then each word w of block

B equals the most recent store to word w prior to t1 or the initial value in the memory, if there is no

store to word w prior to global time t1.

39

Proof: We prove the claim for all nodes by induction on epoch starting time t1. The basis case is

the first action that causes block B to be sent. In this case the block is sent from the memory and

equals the initial value of the block in the memory.

Suppose that the claim is true for all epochs with starting time less than t1, and suppose that block

B is sent from node N0 to node N1 in response to transaction T1, which has timestamp t1 at N1.

First, suppose that N0 is not equal to N1. Let transaction T0 be the most recent action on block B

prior to T1 in serialization order. Since N0 sends block B in response to T1, T0 must be cause an

EXCLUSIVE epoch to start at N0 and therefore affects N0. Let T0 have timestamp t0 at N0. From

Claim 2, N0’sEXCLUSIVE epoch for block B starting at time t0 must end prior to time t1. Moreover,

since T0 and T1 are consecutive transactions on block B in serialization order, there is no epoch at

any processor between the time that N0’s epoch ends and N1’s epoch begins at time t1.

We consider two cases. The first case is that the last ST to word w of block B prior to time t1 is

actually prior to t0. Therefore, no STs to word w of block B are bound to T1. By Fact 2, the value

W0 of word w of block B sent by N0 is the value received by N0 in response to T0. By the induc-

tion hypothesis, W0 equals the value of the most recent store to word w of block B prior to time t0

or the initial value of word w in the memory, if no prior store. Therefore, the value sent by N0

equals the value of the most recent store or the initial value in the memory, if no prior store.

The second case is that the last ST to word w of block B prior to time t1 occurs after time t0. By

Claim 3 and Lemma 2 (b), such STs must be done by node N0. By Fact 2, in this case the value of

word w of block B sent by N0 in response to T1 is the last ST to word w of block B in pi’s program

order that is bound to T0. Moreover, the last ST bound to T0 has global timestamp less than t1.

Therefore, the value sent by N0 equals the value of the most recent store to word w of block B.

40

This completes the proof of Lemma 3 in the case that, in response to T1, block B is sent by a node

other than pi.

The situation in which N0 = N1, (i.e., in response to T1, the value of block B is sent from pi to

itself) is similar, but only the first case above can arise.

