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each other’s identity. This form of prefetch abstracts away from machine-

specific timing requirements and, as shown in Section 3, has an efficient

implementation.

2.2 CICO Performance Model

After annotating a program with CICO annotations, a programmer can use

the CICO cost model described in this section to compute the cost of shared-

memory communication. This model attributes a communication cost to CICO

annotations. By analyzing a program to determine how many times an anno-

tation executes, a programmer can determine the cumulative communicat-

ion cost of the annotation. If an annotation accurately models the cache’s

behavior, the cost attributed to the annotation equals the communication

cost of the memory references that the annotation summarizes.

In the CICO cost model, the communication cost of CICO annotations is

modeled with the aid of an automaton with three states: idle, shared, or

exclusiue (see Figure 1). Each block has its own automaton. Initially, every

block is idle, which means that no cache has a copy. Transitions between

states occur at CICO annotations. Edges in the automaton are labeled with

the process and annotation that caused them. For example, if a block is idle,

a check_ out_X changes the block’s state to exclusive. The processor causing a

transition incurs the communication cost associated with an arc.

Communication costs can be modeled in three ways. The first uses values

from an actual machine. The advantage of this approach is that the costs

accurately model at least one machine. However, in many cases, these values

are too machine- and configuration-specific. A more general approach is to

use values that asymptotically represent the bandwidth or latency for a large

class of machines. Operations that execute asynchronously, such as prefetches

or check–in’s, are unit cost. Operations that require a synchronous message

exchange, such as check–out’s, require time proportional to a round-trip

message latency: 0( f( F’)), where f is a function, such as Iogz, that relates

the communication cost to P, the number of processors. Finally, the tran-

sition shared ~ exclusive has worst-case cost proportional to O(P) since all

extant copies must be invalidated by explicit messages or a broadcast, which

requires bandwidth proportional to the number of processors. The final

model, which suffices for many purposes, attributes a unit cost to each tran-

sition that requires synchronous communication. Table I compares the three

models.

2.3 Synchronization

Synchronization is communication that orders two or more program events in

distinct processes. Ordering events with shared memory requires at least two

accesses to a location, where one access modifies the location, and the other

reads it (and perhaps modifies it). The CICO directives described above are

unsuitable for synchronization constructs, which require competitive (i.e.,

unordered and unpredictable) memory access. Rather than extend CICO with

directives for unsynchronized accesses, we assume the existence of simple
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Fig. 1. CICO performance model A block can be in one of three states: zdle, shared, or
exclusive. Transitions between states occur at CICO annotations and are labeled with the

annotation (CO M check_out; CI is check_m; PF is prefetch) and processor (p or q ) that caused

the transition. In the diagram, processor p obtains a block in the idle state, and a dis-

tinct processor q operates on the block when it is not idle. A block becomes idle when the last

shared or only exclusive copy is checked in. The processor that causes a transition incurs a

communication cost.

Table I. Costs for Transitions in the CICO Performance Model for Directory-Based

Shared-Memory Computers. The concrete costs are best-case values

~or the DirlSW protocol.
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synchronization constructs such as locks and barriers. Section 3.3 shows that

Mellor-Crummey and Scott’s [ 1991] locks and barriers coexist easily with

simple hardware for CICO.

2.4 Compilers and CICO

Compilers, as well as programmers, can apply the CICO model to both

analyze and optimize program behavior. Shared-memory compilers generally

have not used accurate memory access cost models. CICO provides these

compilers with an easily applied metric for evaluating compilation strate-

gies. This metric can be applied either to restructure sequential programs or

optimize explicitly parallel programs.

CICO directives are well suited to compiler analysis since they do not affect

a program’s semantics. The analysis to employ a directive needs not be

conservative. Instead, a compiler can optimize the expected case without

considering the effects of directives on other possible executions, By contrast,

software cache coherence holds a compiler to a much higher standard

of ensuring that a program executes correctly, regardless of its dynamic

behavior. Because compiler analyses are inherently imprecise, software cache

coherence requires a compiler to always err on the conservative side and

insert memory system operations to avoid the worst case. This bias results in

correct programs that communicate too much.

2.5 Discussion

CICO provides shared-memory programmers with a performance model that

identifies the communication underlying memory references and accounts

for its cost. Message passing also provides programmers with a clear per-

formance model. A common message-passing model attributes a fixed cost to

each message independent of its length and destination. When necessary, this

model is elaborated to account for an underlying network’s topology and

transmission cost. Unlike CICO, message-passing models need not detect

communication, only account for its cost.

Unfortunately, applying the message-passing model to improve a program’s

performance is difficult, precisely because communication is explicitly and

inextricably linked with functionality. The linkage is so tight that a message-

passing program cannot be successfully developed without continual con-

sideration of performance implications because refinements are difficult to

incorporate after a program is written. Every communication must be evalu-

ated twice—once in the sender, once in the receiver—to determine if

it should be optimized and how the program should change to accomplish
this goal. A small change can cause a cascade of modifications since con-

trol and data dependence within a process force the reordering of other

communications.

CICO is an easier model for a compiler or programmer to apply, for the

following reasons:

—CICO directives are unnecessary for correct execution. Programmers
can incrementally employ them to understand and optimize time-critical

routines.
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—The directives can be used aggressively to optimize expected program

behavior since they do not affect program semantics. The other cases still

function correctly.

—The directives do not change a datum’s address. A programmer can opti-

mize one routine without changing all routines that interact with it.

—The directives never introduce functional bugs. Using them never breaks

correct programs.

3. Dir, SW HARDWARE

The CICO model can be used by computer architects to simplify hardware

and improve its performance. CICO is the abstraction through which pro-

grammers and architects communicate, much as instruction sets have been

the fundamental abstraction in uniprocessor design. As the analogy suggests,

a good abstraction enables programmers to understand and optimize their

programs and helps architects design fast, effective computers. RISCS have

shown that fast, cost-effective hardware requires hardware designers to

identify common cases and cooperate with programmers to find mutually

agreeable models that can be implemented with simple hardware [Hennessy

and Patterson 1990]. This combination permits hardware designers to devote

their attention to making common cases run fast. Message-passing comput-

ers, which are based on a simple model, are built from simple, scalable

hardware. Shared-memory multiprocessors, which currently lack a unifying

performance model, typically use complex cache coherence protocols to accom-

modate all programming style~s. By contrast, DirlSW relies on the CICO

model to describe program behavior and uses simple hardware to effectively

support it.

3.1 Dirl SW

The hardware base of our cooperative shared-memory machine is the same

as a message-passing machine. Each processor node contains a micropro-

cessor, a cache, and a memory module. The nodes are connected with a fast

point-to-point network.

Each processor node also has a small additional amount of hardware that

implements our directory protocol, Dirl S W, which associates two state bits, a

pointer/counter, and a trap bllt with each block in memory.1 Additionally,

each memory module is addre~wed in a global address space. In a slightly

simplified (base) form, a directory can be in one of three states: Dir_X, Dir_S,
and Dir– Idle. State Elir_X implies that the directory has given out an exclusive

copy of the block to the processor to which the pointer/counter points. State

Dir_S implies that the directory has given out shared copies to the number of

processors counted by the pointer/counter. State Dir_ldle implies that the

directory has the only valid cop~y of the block.

1We derived the name Du-lSW by extending the directory protocol taxonomy of Agarwal et al.

[1988]. They use Dw, B and Dir, NB to stand for directories with i pointers that do or do not use

broadcast. The SW in DlrlSW stands for our Soft Ware trap handlers.
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Table II. State Machine for Base DirlSW Coherence Protocol. Msg_Get_X and Msg-Get_S

obtain exclusive and shared copies of a block, respectively Msg _Put returns a copy of a

block Blank entries in action columns indicate no-ops; all traps set the trap bit; all

state transitions not listed are hardware errors (e.g., send a Msg_Put to Dir_ldle

block); and all hardware errors trap.

Me@age from Current Next Data Pointer/
Processor i State State Trap? Action Counter

Msg.Get_X Dir.Idle DirJ send to i pointer + i
DirI DirJ yes
Dir_S Dir-S yes

Msg_Get3 Dlr_Idle Dir_S send to i counter t- 1
Dir-S Dir.S send to i counter += 1
Dir.X Dir3 yes

Msg.Yut Dir_.X Dir-Idle store in
Dir-S Dir_S /Din-Idle counter –= 1

Table II illustrates state transitions for the base DirlSW protocol.

Msg_Get–X (Msg-Get–S, respectively) is a message to the directory request-

ing an exclusive (shared) copy of a block. Msg_Put is a message that relin-

quishes a copy. Processors send a Msg–Get–X (Msg–Get–S) message when

a local program references a block that is not in the local cache or performs

an explicit check–out. In the common case, a directory responds by sending

the data. The Msg_Put message results from an explicit check–in or a cache
replacement of a copy of a block.

Several state transitions in Table II set a trap bit and trap to a software

trap handler running on the directory processor (not the requesting proces-

sor), as in the MIT Alewife [Chaiken et al. 1991]. The trap bit serializes traps

on the same block. The software trap handlers will read directory entries

from the hardware and send explicit messages to other processors to complete

the request that trapped and to continue the program running on their

processor. Traps only occur on memory accesses that violate the CICO model.

Thus, programs conforming to this model run at full hardware speed. Note

that protocol transitions implemented in hardware require at most a single

request-response pair. State transitions requiring multiple messages are

always handled by system software. Shifting the burden of atomically

handling multiple-message requests to software dramatically reduces the

number of transient hardware states and greatly simplifies the coherence

hardware.
For programs that trap occasionally, the incurred costs should be small.

These costs can be further reduced by microprocessors that efficiently support

traps [Johnson 1990] or by adopting the approach used in Intel’s Paragon

computer of handling traps in a companion processor.

3.2 Prefetch Support

This section illustrates how lXr-lSW supports cooperative prefetch, which

allows communication to be overlapped with computation. I)irlS W currently
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provide richer options for reasoning about relinquishing data and initiating

prefetches.

Many researchers have investigated the use of directory protocols for

hardware cache coherence in large-scale shared-memory systems [Agarwal

et al. 1988]. Stanford DASH [Lenoski et al. 1992] connects n clusters ( n < 64)

with a mesh and the processors within a cluster with a bus. It maintains

coherence with a Dir. NB protocol between clusters and snooping within a

cluster. Each multiprocessor in Stanford Paradigm [Cheriton et al. 199 lb]

connects n clusters (12 < 13) with a bus and uses a two-level bus hierarchy

within a cluster. It uses a Dir~ NB protocol between clusters and a simi-

lar protocol within each cluster. IEEE Scalable Coherent Interface (SCI)

[Gustavson 1992] allows an arbitrary interconnection network between n

nodes ( ?2 < 64K). It implements a Dir. NB protocol with a linked list whose

head is stored in the directory and whose other list elements are associated

with blocks in processor caches. MIT Alewife [Chaiken et al. 1991] connects

multithreaded nodes with a mesh and maintains coherence with a Limit-

LESS directory that has four pointers in hardware and supports additional

pointers by trapping to software.

Dirl SW shares many goals with these coherence protocols. Like the other

four protocols, DirlSW interleaves the directory with main memory. Like

the DASH, SCI, and Alewife protocols, it allows any interconnection net-

work. Like the SCI and Alewife protocols, Dirl SW directory size is deter-

mined by main-memory size alone (and not the number of clusters). Dirl SW

hardware is simpler than the other four protocols, because it avoids the

transient states and races that they handle in hardware (see Section 3.1).

DirlSW relies on a model (CICO) to ensure that expensive cases (trapping)

are rare. If they are common, Dirl SW will perform poorly. All four other

protocols, for example, use hardware to send multiple messages to handle the

transition from up to four readers to one writer. DirlSW expects the readers

to check in the block and traps to software if this does not happen.

Both Baylor et al. [ 1991] and DirlSW use a counter to track extant shared

copies. On a write, invalidations are sent to all processors, but only acknowl-

edged by processors that had copies of the block (Chaiken [ 1990] calls this

approach a notifying implementation of Dir, B ). Unlike Dirl S W, Baylor

et al. do not discuss returning a block to the idle state when all copies are

returned, probably because this is unlikely to occur without CICO.

We are aware of two other efforts to reduce directory complexity. Archibald

and 13aer [1984] propose a directory scheme that uses four states and no
pointers, As mentioned above, Alewife uses hardware with four pointers and

traps to handle additional readers. Both are more complex than DirlSW,

because both must process multiple messages in hardware. Archibald and

13aer must send messages to all processors to find two or more readers, while

Alewife hardware uses multiple messages with 1-4 readers. DirISW’s trap-

ping mechanism was inspired by Alewife’s.
Du-lS W supports software-initiated prefetches [Callahan et al. 199 1; Gupta

et al. 1991] that leave prefetched data in cache, rather than registers, so data

prefetched early do not become incoherent. DirlS W‘s cooperative prefetch
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support also reduces the chance that data are prefetched too early since a

prefetch remains pending until a block is checked in. This avoids having the

block ping-pong from the prefekcher to the writer and back. Similar, but

richer support is provided by QCLSB [Goodman et al. 1989], now called QOLB.

QOLB allows many prefetchers to join a list, spin locally, and obtain the data

when it is released. lXrlS W supports a single prefetcher (per block) with

much simpler hardware than QOLB, but it does not provide good support for

multiple concurrent prefetchers (for the same block). Finally, cooperative

prefetch always maintains naive shared-memory semantics, whereas a pro-

cess issuing a QOLB must ensure that it eventually releases the block.

6. CONCLUSIONS

Shared memory offers many aclvantages, such as a uniform address space

and referential transparency, that are difficult to replicate in today’s

massively parallel, message-passing computers. We believe the absence

of massively parallel, shared-m emery machines follows from the lack of a

programming performance model that identifies both the common and

expensive operations so programmers and hardware designers can improve

programs and hardware.

In our view, the key to effective, scalable, shared-memory parallel comput-

ers is to address the software and hardware issues together. Our approach to

building shared-memory software and hardware, called cooperative shared

memory, provides programmers with a realistic model of which operations

are expensive; programmers and compilers with performance primitives that

can be used aggressively, because they do not change semantics; and hard-

ware designers with a description of which cases are common.

Our initial implementation of cooperative shared memory uses a simple

programming performance model, called Check_In/Check_Out (CICO), and

even simpler hardware called Dirl S W. CICO provides a metric by which

programmers can understand and explore alternative designs on any cache-

coherent parallel computer. In tlhe CICO model (Section 2), programs bracket

uses of shared data with check–out directives that indicate whether a process

expects to use a datum exclusively and check–in directives that terminate

an expected use. CICO’S new approach encourages programmers to identify

intervals in which data is repeatedly used, rather than focus on isolated uses,

and to explicitly acknowledge when data can be removed from local buffers.

An additional cooperative prefetch directive allows a program to anticipate an

upcoming check_ out and hide communication latency.

DirlS W is a minimal directory protocol that adds little complexity to the

hardware of a message-passing machine, but efficiently supports programs

written within the CICO model. It uses a single pointer/counter field to

either identify a writer or count readers. Simple hardware entirely handles

programs conforming to the Cl CO model by updating the pointer/counter

and forwarding data to a requesting processor. No case requires multiple

messages (beyond a single request-response pair) or hardware-transient
states. Programs not conforming to the model run correctly, but cause traps

to software trap handlers that perform more complex operations.
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An evaluation of CICO and DirlSW on the Wisconsin Wind Tunnel (WWT)

illustrates the effectiveness of the CICO programming model and the com-

petitive performance of the simple ~ii-lS W hardware. Furthermore, the

results provide strong evidence for the virtual prototyping method, since with

less than a person-year of effort we can run DirlSW programs and collect

statistics at speeds comparable to real machines.

We are seeking to refine cooperative shared memory and enhance WWT

[Reinhardt et al. 1993; Wood et al. 1993]. A promising approach, for example,

is to sequence directory operations in software to enable higher-level pro-

grammer or compiler directives (e.g., vector check–out). We are studying

cooperative prefetch, nonbinding prefetch, and other variants. We will study

programs running on kiloprocessor shared-memory systems by extending

WWT to simulate multiple nodes on each host node.
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