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Data-parallel programming languages provide a portable, high level abstraction to
support rapid parallel program development. Data-parallel languages are widely
applicable, and considerable research has been devoted to compiling them for effi-
cient execution. Much of this work has focused on implementing a shared address
space on a distributed-memory machine, particularly for programs with regular
communication patterns. Compiler support for non-regular applications has been
limited to iterative irregular applications, with dynamic repetitive communication
patterns.

This thesis describes three new compiler, language and run-time system tech-
niques targeting data-parallel programs with adaptive and dynamic communica-
tion patterns. These techniques have been implemented in a compiler for the

language C**, and include:

Implementing conflict-free data access C**’s semantics avoid data access con-
flicts between parallel functions. We explore and compare two complemen-

tary implementations of conflict-free access. For parallel functions with reg-



ular data access patterns, the compiler inserts code in the program to main-
tain copies. When compiler data access analysis is imprecise, the compiler
relies on a Loosely-Coherent Memory system to create transparent fine-grain

copies.

User-defined reductions Most data-parallel languages restrict reductions, which
combine values from parallel operations, to a predefined set of reduction op-
erators. User-defined reductions extend reductions in two ways, by allowing
new combining operations, and by applying reductions to user-defined data
types. This thesis motivates the need for user-defined reductions, and de-
scribes the design and efficient implementation of reductions in C** with

only message-passing support.

Compiler-directed shared-memory communication This thesis describes how
a compiler and a predictive cache-coherence protocol can implement shared-
memory communication efficiently for iterative adaptive applications. The
compiler uses data-flow analysis to identify points in a program where po-
tential repetitive communication patterns exist. An incremental predictive
protocol builds a communication schedule for one iteration and utilizes a
schedule to pre-send data in subsequent iterations. The protocol reduces

the number of remote data requests, and the total remote access latency.
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Abstract

Data-parallel programming languages provide a portable, high level abstrac-
tion to support rapid parallel program development. Data-parallel languages are
widely applicable, and considerable research has been devoted to compiling them
for efficient execution. Much of this work has focused on implementing a shared
address space on a distributed-memory machine, particularly for programs with
regular communication patterns. Compiler support for non-regular applications
has been limited to iterative irregular applications, with dynamic repetitive com-
munication patterns.

This thesis describes three new compiler, language and run-time system tech-
niques targeting data-parallel programs with adaptive and dynamic communica-
tion patterns. These techniques have been implemented in a compiler for the

language C**, and include:

Implementing conflict-free data access C**’s semantics avoid data access con-
flicts between parallel functions. We explore and compare two complemen-
tary implementations of conflict-free access. For parallel functions with reg-
ular data access patterns, the compiler inserts code in the program to main-
tain copies. When compiler data access analysis is imprecise, the compiler
relies on a Loosely-Coherent Memory system to create transparent fine-grain

copies.

User-defined reductions Most data-parallel languages restrict reductions, which
combine values from parallel operations, to a predefined set of reduction op-

erators. User-defined reductions extend reductions in two ways, by allowing
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new combining operations, and by applying reductions to user-defined data
types. This thesis motivates the need for user-defined reductions, and de-
scribes the design and efficient implementation of reductions in C** with

only message-passing support.

Compiler-directed shared-memory communication This thesis describes how
a compiler and a predictive cache-coherence protocol can implement shared-
memory communication efficiently for iterative adaptive applications. The
compiler uses data-flow analysis to identify points in a program where po-
tential repetitive communication patterns exist. An incremental predictive
protocol builds a communication schedule for one iteration and utilizes a
schedule to pre-send data in subsequent iterations. The protocol reduces

the number of remote data requests, and the total remote access latency.
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Chapter 1

Introduction

Parallel computers exploit the processing power of multiple CPUs connected by
a network to reduce the time it takes to execute a program. As CPU processing
speeds reach their limit, parallel processing will provide an increasingly impor-
tant and scalable way to utilize available processing power. Additionally, parallel
computers can run applications with larger data sets than are possible on unipro-
cessors. Parallel processing now encompasses a wide range of platforms varying in
cost and performance from multiprocessors to networks of workstations. Unfortu-
nately, rapid advances in hardware technology have left parallel software behind.
Writing programs for parallel computers is widely acknowledged to be a much
more difficult task than writing sequential programs. For example, the program-
mer must keep track of multiple asynchronous threads of control that interact in
a non-deterministic fashion.

Improved parallel programming languages reduce the difficulty of program-

ming parallel computers by making parallel programs easy to specify, less error



prone, and less machine specific. One promising approach is data-parallel lan-
guages, such as HPF [19], C* [41], or NESL [7], which provide a portable, high
level abstraction to support rapid parallel program development. These languages
implement the data-parallel programming paradigm, which expresses parallelism
through simultaneous operations on large sets of data [21]. Synchronization is
implicit in the division of a program into sequential and data-parallel phases. In
addition, a global name space of variables relieves a programmer of the burden
of distributing data and managing communication. The data-parallel program-
ming model is widely applicable — in a survey of 84 scientific applications, Fox
[16] found that 85% of those programs could be expressed easily using this model
— “the source of parallelism is essentially always domain decomposition or data
parallelism”.

The popularity of the data-parallel programming model has led to the de-
velopment of a large number of data-parallel programming languages, including
High Performance Fortran (HPF) [25], Fortran 90 [1], NESL [7] and pC++ [32]. In
addition to language development, considerable research has been devoted to com-
piling high-level data-parallel programs for efficient execution, and in particular
the problem of transforming shared address space operations into communication
primitives of a distributed-memory machine. Much of this work has focused on
reqular programs, which exhibit regular patterns of communication, i.e., static
communication patterns that can be identified at compile time using static com-
piler analysis techniques [3, 22, 40].

Compiler support for non-regular data-parallel applications on distributed-



memory machines has been limited to iterative irregular applications that fit the
Inspector-Executor model. These applications specify unpredictable communica-
tion patterns that cannot be analyzed at compile time, but the patterns, once
built, remain unchanged over a number of iterations. For each loop, the compiler
generates an inspector phase in the loop header, which builds a communication
schedule. The loop contains the executor phase, which uses the schedule to trans-
fer data required in the iteration efficiently with messages, followed by the loop’s
original computation [12, 24, 46]. Since the pattern varies infrequently, the over-
head of the inspector is amortized over multiple executor phases. The Inspector-
Executor paradigm works well for mostly-static communication patterns, but does
not extend to dynamic communication patterns.

This thesis presents three new compiler, language and run-time system tech-
niques that enable efficient execution of a larger class of data-parallel programs,
specifically, programs with dynamic adaptive communication patterns. These

techniques are:
1. Compiler and memory-system support to enforce conflict-free data access
2. User-defined reductions for efficient communication, and
3. Compiler-directed shared-memory communication for iterative applications

A novel feature of techniques 1 and 3 is that they rely on and exploit the flexibility
of user-level control over shared-memory coherence policies in a cache-coherent dis-
tributed shared-memory (DSM) system, which implements a shared-address space

on distributed-memory hardware using a combination of hardware and software



techniques [29, 38].User-defined reductions (technique 2) and compiler-directed
shared-memory communication (technique 3) both optimize communication in
dynamic data-parallel applications, but target distinct communication patterns,
and their effect is cumulative. User-defined reductions optimize many-to-one com-
munication with combining, whereas compiler-directed shared-memory communi-
cation optimizes one-to-many producer-consumer or migratory sharing patterns.

User-customizable DSMs enable a compiler and run-time system to tailor co-
herence policies to applications, both to implement higher-level functionality and
to improve performance [39]. A number of such systems exist (e.g., Tempest [38],
FLASH [29], TreadMarks [4], and Sequent’s STiNG [34]), and they are becoming
more popular. Some other compiling approaches also target flexible DSMs |8, 22],
but focus on efficient DSM support for regular applications.

This thesis demonstrates that our techniques are effective. Using a suite of
popular benchmark applications consisting of irregular and adaptive applications,
we show that programs written in a high-level data-parallel language can be
compiled to execute as fast as equivalent hand-optimized code on the CM-5, a
distributed-memory multiprocessor. Our benchmark suite does not include regu-
lar applications, although the communication optimization techniques also apply
to those applications. Furthermore, these three techniques focus on only two
facets of data-parallel program compilation for irregular and dynamic programs,
i.e., conflict-free data access and efficient communication. This thesis does not
tackle other important problems, such as automatic load balancing or efficient

data distributions.



We implemented these techniques in a compiler for the language C** [31]
that targets the Tempest interface. C** is a data-parallel language that provides
high-level language features like a global name space and parallelism through
simultaneous operations on data. C** provides coarse-grain parallelism in the
form of user-defined parallel operations. Tempest [38] is a programming interface
for a distributed-memory multiprocessor that provides the mechanisms to im-
plement fine-grain cache-coherent shared memory in addition to message-passing
primitives. Tempest combines good features of both message passing and shared
memory; a compiler can use the fine-grain shared memory mechanisms to im-
plement a global name space, and use custom coherence protocols or low-level

communication facilities to optimize known communication patterns [28].

1.1 Implementing Conflict-free Data Access

The first technique targets the implementation of conflict-free data access in C**’s
parallel operations [30]. C** supports coarse-grain user-defined parallel functions
(Section 2.2) and a global name space of variables, which together give rise to the
possibility of data access conflicts or data races. A data race occurs when two
distinct parallel tasks access a single global data item, and one of the accesses
is a write (Section 2.2.2). Data races are problematic because different temporal
access orderings could generate different results, causing errors that are extremely
difficult to reproduce and to correct.

C** clearly defines the semantics of conflicting memory accesses to avoid data-

access conflicts. When a data-parallel operation modifies a global data item, it



receives a private copy of that data item, which is not visible to other data-parallel
operations. When all operations complete, the private copies are merged into
the global state. Lack of conflicts translates into nearly-deterministic execution,
which is a desirable feature of some data-parallel programming languages. We
explore two ways in which a compiler and run-time system can use copy-on-write
to implement the high-level semantics of C**. For parallel functions with regular
data-access patterns that a compiler can analyze, the compiler inserts code in the
program to maintain copies. For functions with accesses that a compiler cannot
identify precisely (e.g., accesses through pointers), compiler-copying results in
excessive and potentially expensive run-time checks. Instead, the compiler relies
on a Loosely-Coherent Memory (LCM) system to create transparent fine-grain
copies. LCM is driven by runtime compiler directives (e.g., to identify modified
global data items) and uses a custom cache coherence protocol to create copies of
cache blocks at the same global address. The LCM protocol provides controlled
inconsistency of global data items during parallel execution, which matches the
semantic requirements of C**.

Using performance data from three variants of mesh relaxation codes, we show
that these two techniques complement one another. Compiler-copying is efficient
when compiler data access analysis is precise, and LCM works well when the anal-
ysis is imprecise. The benefit of providing two alternatives is that a compiler can
choose the efficient alternative based on the precision of its data access analysis,

and even use both in a program.



1.2 User-defined Reductions

The second part of the thesis describes the design and implementation of user-
defined reductions. Data-parallel languages typically allow reductions to combine
values from independent parallel operations (Section 2.1.2). Reductions are ex-
tremely common in parallel applications, and can be implemented efficiently in
parallel. However, most data-parallel languages restrict reductions to a prede-
fined set of reduction operators, typically arithmetic operations on basic types.
We demonstrate that parallel languages need not and should not arbitrarily limit
reductions in this way. User-defined reductions extend reductions in two dimen-
sions. First, they allow new operations to combine values, such as building a list
from colliding values. Second, they allow reductions to apply to user-defined data
types.

This thesis demonstrates the advantages of user-defined reductions, focusing
on the benefits of extending reductions to user-defined data types. To motivate
user-defined reductions, we describe and compare three real-life data-parallel im-
plementations of inter-cell particle movement in a particle-in-cell code. The first
method, which uses a parallel prefix operation, is both cumbersome to specify
and inefficient in practice. The second method, which uses a predefined APPEND
reduction, works well, but is not flexible, and does not directly specify a producer-
consumer pattern. The third method, user-defined reductions, allows the program-
mer to intuitively specify particle movement, and leads to an efficient implemen-
tation.

We also present a simple implementation of user-defined reductions in C**



to show that they can be implemented efficiently with message-passing support.
The basic implementation uses messages to transfer reduction data, and two well-
known optimizations, message vectorization and local combining, can be applied
to improve reduction performance. We compared the execution time of four C**
applications (with reductions) against equivalent hand-optimized versions. On a
32-node CM-5 and a 16-node Cluster of Workstations (COW), both versions were
comparable on 3 out of 4 benchmarks, all of which had dynamic communication
patterns. On the fourth benchmark, which exhibited a repetitive static communi-
cation, the message-passing hand-optimized version was considerably faster. C**’s
reduction implementation does not optimize static reduction patterns, using, for

example the Inspector-Executor compiling approach.

1.3 Compiler-Directed Shared-Memory Commu-
nication

The third technique describes how a data-parallel language compiler and a cus-
tom cache-coherence protocol can implement shared-memory communication effi-
ciently for applications with unpredictable but repetitive communication patterns.
This technique applies to a large class of scientific applications that are iterative
— each iteration simulates the evolution of a physical system over time. For ex-
ample, in static mesh calculations, nearest-neighbor communication is repeated
in each iteration. In some irregular problems, such as molecular dynamics codes

[46], communication changes infrequently, perhaps once every 20-30 iterations. In



adaptive problems, communication changes frequently, but incremental changes
between iterations are small. For example, structured adaptive meshes gradually
add mesh nodes for greater accuracy in each iteration [27], and gravitational N-
body problems represent bodies in a quad-tree, which undergoes small structural
changes between iterations.

This section shows that a compiler for a data-parallel language can cooperate
with a predictive cache-coherence protocol in a distributed shared-memory (DSM)
system to optimize shared-memory communication for applications with dynamic,
but repetitive communication patterns. The compiler uses data-flow analysis to
identify points in the program where potential repetitive communication patterns
exist. A predictive protocol in the runtime system augments the default shared-
memory protocol to build a communication schedule for one iteration and utilize
a schedule to pre-send data to satisfy data requests in following iterations. As a
result, the predictive protocol reduces the number of shared-memory data requests
that cannot be satisfied locally, and the total remote memory access latency.

Compiler-directed shared-memory communication uses a combination of two
techniques — a predictive cache coherence protocol, and simple compiler analysis
— for optimizing shared-memory communication. The predictive protocol builds
dynamic incremental communication schedules — new requests not satisfied by the
pre-send phase are added to the schedule for subsequent iterations. This approach
has the advantage that it can be applied to adaptive applications with repetitive
dynamic communication patterns that a compiler cannot analyze. Simple com-

piler analysis automatically applies the predictive protocol for applications with
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repetitive producer-consumer sharing patterns for which a sequentially-consistent,
memory coherence protocol would incur large overheads [9]. By contrast, compil-
ers targeting message-passing machines must identify and fully analyze run-time
communication patterns in applications. Our simple analysis only identifies pro-
gram points at which potentially repetitive communication takes place, but need
not identify the patterns themselves.

We measured the benefits of compiler-directed shared-memory communication
by comparing the execution time of optimized and non-optimized versions of three
applications (Adaptive, Water, and Barnes) on a 32-processor CM-5. In all cases,
the optimized version had significantly less remote latency. For Adaptive and
Water, the optimized version was faster than the best non-optimized version. For
Barnes, which shows excellent spatial locality, the optimized and non-optimized

versions are comparable.

1.4 Contributions

The important contribution of this thesis is to show that, for a larger class of
scientific applications that includes irregular and dynamic applications, programs
written in a high-level data-parallel language can be compiled to run as efficiently
as hand-optimized code on distributed-memory multiprocessors. Ideally, we would
have liked to compare the performance of data-parallel programs against equiva-
lent message-passing versions, which typically demonstrate the best performance.
However, message-passing versions are extremely difficult to develop, and we set-

tled for the best parallel version of each application that was available to us.
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Towards this goal, we present three new techniques for compiling data-parallel
programs, including compiler-copying and LCM to prevent data-access conflicts,
user-defined reductions for efficient communication and compiler-directed shared-
memory communication for iterative applications. We describe each technique
in detail, and demonstrate that they produce executable programs that run as
efficiently as equivalent hand-tuned codes.

We also show that these techniques apply to a wider class of applications,
i.e., those with irregular and dynamic communication patterns, than have been
previously considered. For example, our suite of benchmarks includes adaptive
structured mesh codes and a data-parallel implementation of the Barnes-Hut al-

gorithm, a dynamic hierarchical gravitational N-body code (Table A.1).

1.4.1 Generality of our Techniques

Although we have developed these techniques in the context of C** and Tempest,
they should readily extend to other data-parallel languages and DSM platforms.

All the compiler techniques developed in this thesis are also applicable to
other data-parallel languages with coarse-grain data parallelism, including pop-
ular languages such as HPF [25]. Compiler copying for conflict-free data access
(Chapter 3) is already required in a limited form for array assignment statements
by the HPF standard. The upcoming HPF-2 standard is considering allowing
user-defined reductions in HPF’s coarse-grain DO INDEPENDENT loops [14]. Since
C**s parallel functions and HPF’s coarse-grain DO INDEPENDENT loops provide

very similar functionality, our reduction implementation (Chapter 4) should di-
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rectly extend to supporting HPF programs. Finally, compiler analysis for opti-
mized shared-memory communication (Chapter 5) is designed for languages with
coarse-grain data parallelism.

Two of the techniques presented in this thesis (LCM and the predictive proto-
col), rely on the ability to customize cache-coherence protocols in a DSM system.
Many recent DSM systems provide this flexibility, although to varying degrees.
Tempest and TreadMarks provide maximum flexibility by implementing all co-
herence actions in user-level software. By contrast, FLASH and STiNG use pro-
grammable engines to implement protocol actions, allowing the moderate level of

protocol customization that is required by our techniques.

1.5 Thesis Structure

This thesis contains six chapters. Chapter 2 introduces background material ex-
plaining the data-parallel model, C**, and Tempest. Chapter 3 explores and
contrasts two possible implementations of conflict-free data access. Chapter 4
describes the implementation and performance of user-defined reductions in C**.
In Chapter 5, we show how a data-parallel language compiler can cooperate with
a custom protocol to implement shared-memory communication efficiently for it-

erative parallel applications. Chapter 6 concludes the thesis.
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Chapter 2

Background - Data Parallelism,

C**, and Tempest

This thesis presents three new techniques for compiling data-parallel programs for
efficient execution. To understand these techniques, it is necessary to understand
the context in which they apply, in particular, the language input to the compiler,
and the target machine. In this section, we describe these two interfaces for
the compiler that we developed as part of this thesis. The compiler takes as
input programs written in the data-parallel language C** and generates executable
programs targeting the Tempest parallel programming interface on distributed-
memory multiprocessors.

This section describes C** and Tempest in some detail, specifically from a lan-
guage implementor’s point of view. It begins with a brief description of the data-
parallel programming model and data-parallel programming language features,

both to fit C** in the larger data-parallel context, and to show that although we
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have developed these techniques in the context of C** they also apply to other

popular data-parallel programming languages.

2.1 Data Parallelism, Data-Parallel Languages

The distinguishing feature of the data-parallel programming model is in how a
programmer specifies parallelism: a data-parallel program is organized around
simultaneous operations on collections of data, in contrast to control-parallel pro-
gramming’s view of tasks, communication and synchronization [21]. In this model,
the programmer builds a (typically large) data collection and invokes a single par-
allel operation on the collection — the compiler and run-time system ensure that
the operation is replicated and applied in parallel on all elements of the collection.
The data-parallel programming model is popular because it provides a com-
mon abstraction underlying a large number of scientific applications [16]. As a
result, a number of programming languages are based on the data-parallel model
(Connection Machine Lisp [49], parts of HPF [19], ZPL [33], etc). In addition to
support for data collections and data-parallel operations, data-parallel languages
offer other high-level abstractions (e.g., a global name space) and potentially de-
terministic execution to support rapid high-level parallel program development.
This section outlines salient features of the data-parallel programming model
and data-parallel programming languages. More detailed descriptions can be

found elsewhere [17].
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Perallel

Time Sequential

Figure 2.1: Interleaved sequential and parallel phases in a data-parallel program’s

execution

A(1:N,1:N) = (AC(O:N-1,1:N)+A(2:N+1,1:N)+A(1:N,0:N-1)+A(1:N,2:N+1))/4.

Figure 2.2: Whole-array stencil operation in HPF

2.1.1 Parallelism - Data-Parallel Operations

A data-parallel program explicitly specifies parallel execution by invoking a data-
parallel operation on a data collection. Invoking a data-parallel operation creates
multiple operation invocations, one for each element of the collection. The par-
allel operation completes only when all individual invocations complete, clearly
dividing a program’s execution into distinct sequential and parallel phases (Fig-
ure 2.1). Whole-array operations in HPF provide a good example of data-parallel
operations. For example, the 4-point stencil in Figure 2.2 extends the primitive
addition operator to apply elementwise on array data aggregates. An analogous
4-point stencil in C** is outlined in Figure 2.2.2.

Data-parallel operations provide high-level abstractions for parallel processing.

Parallelism and synchronization are implicit in the execution of a data-parallel
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operation, and the language provides no other primitives for synchronization (such
as locks or mutual exclusion) that are commonly available in the Single Program
Multiple Data (SPMD) style of programming.

Data-parallel operations in data-parallel languages can be broadly character-
ized as fine-grain or coarse-grain, depending on the maximum granularity of each
parallel operation (i.e., the amount of work that can be done between synchro-
nization points). Fine-grain data-parallel operations originally evolved from SIMD
machines, such as the Connection Machine CM-2 [20], which execute individual
instructions in lockstep on multiple processing units. Fine-grain data-parallel
operations directly reflect this execution model in a data-parallel operation’s se-
mantics, limiting a data-parallel operation’s granularity to a primitive language
operation (e.g., addition, assignment). Fine-grain data-parallel operations inherit
both the advantages and disadvantages of the hardware model. The model offers
the simplicity of a single thread of execution and the absence of data races, but
suffers from the inefficiencies of conditional statements and from the synchroniza-
tion necessary to execute fine-grain operations on MIMD processors.

By contrast, coarse-grain parallel operations allow arbitrary user-defined code
to execute as part of a parallel operation between synchronization points. HPF’s
DO INDEPENDENT loops [19] and pC++’s parallel member functions [32] are good
examples of coarse-grain parallel operations. Coarse-grain parallel operations map
easily to MIMD execution, but asynchronous execution in a global address space
allows data races, which lead to errors that are difficult to reproduce and therefore

extremely difficult to debug.
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Finally, the distinction between fine-grain and coarse-grain operations is mean-
ingless for purely functional data-parallel languages, such as NESL [7], which do

not allow imperative updates to global variables.

Implementing Parallel Functions When a data-parallel operation is invoked,
the compiler and run-time system are responsible for replicating the operation and
applying it in parallel on each element of the data collection. On a multiprocessor
machine, this task can be divided into two parts, both of which are conceptually
simple. First, the total work for the parallel operation is partitioned among the
processors, usually following the data distribution for the data collection. Sec-
ond, each processor executes a loop iterating the data-parallel operation over all

elements of the data collection that it owns.

2.1.2 The Shared Address Space

Data-parallel languages provide a global name space of variables and data-parallel
programs specify communication through read and write accesses to variables in
this name space, just as shared-memory parallel programs do. For example, for a
4-point stencil operation on a 4x4 array distributed blockwise among 4 processors,
all interior elements of the array must be communicated between neighboring

processors (Figure 2.3).

Implementation Considerations On a distributed-memory multiprocessor,
the compiler and run-time system must implement a shared-address space, i.e.

they must implement a global name space by distributing data among processors,
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P2 P3
Stencil - 4x4 array, 4 processors

Figure 2.3: Example showing data distribution and communication (shaded ele-

ments) in a 4-point stencil implementation

and translate implicit communication through global variable access into explicit
communication directives. Our implementation relies on a distributed shared-
memory (DSM) machine, which transparently implements a shared address space,
but may not do so efficiently. Efficient communication is vital to achieving good
parallel application performance, and Chapters 4 and 5 explore techniques to

implement implicit communication efficiently on DSMs.

Reductions

Communication in a shared-address space only suffices for one-to-one or one-
to-many communication. Many-to-one communication causes data conflicts or
collisions, when multiple values are stored in a location. Data-parallel languages
typically use binary reduction operators to combine colliding values into a single
value that can be stored in a location. Reductions are extremely common in
parallel applications, even those written in languages that do not provide first-
class support for these operations. For example, the MAX reduction shown in

Figure 2.4 captures the maximum value in 2-dimensional array A in variable max.
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max = MAXVAL(A, 2)

Figure 2.4: MAX reduction operation in HPF

Most data-parallel languages restrict reduction operators to a limited set of
predefined reduction functions — typically, the associative arithmetic and logical
operations.

We explore the implementation of reductions in more detail in Chapter 4.

2.2 C**

C** is a data-parallel programming language based on C++ [31]. It includes
a number of desirable features of data-parallel programming languages — data
collections (called Aggregates), data-parallel operations (called parallel functions),
a global name space of variables, and sophisticated reduction operations. This
section introduces examples to briefly illustrate the syntax and semantics of C**

programs.

2.2.1 Data Collections - Aggregates

Data collections in C** are called Aggregates, and form the basis for parallelism.
An Aggregate declaration, which uses different syntax from class and array decla-
rations in C++, specifies an ordered collection of values, much like a multidimen-
sional array of objects, that can be operated on by a data-parallel operation. For

example, Figure 2.5 declares a two-dimensional collection of floating point values.
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class Grid(float) [J[]1) { /* Member functions */ s

Figure 2.5: Aggregate definition syntax in C**

void stencil (parallel Grid A) parallel
{
A[#0] [#1] = (A[#0-11[#1] + A[#0+1][#1] +

A[#0] [#1-1] + A[#0][#1+1]) / 4.0;

The size of an Aggregate may be specified in the Aggregate declaration, or at

runtime when an Aggregate object is created.

2.2.2 Data-Parallel Operations - Parallel Functions

C** provides coarse-grain data-parallel operations called parallel functions. A
parallel function is identified by the keyword parallel, and includes a parallel
argument, which indicates the Aggregate object to which the parallel function
is applied. Figure 2.2.2 specifies a stencil computation on the Grid Aggregate.
Since the data-parallel function is replicated and applied on all elements of the
two-dimensional grid, the pseudo variables #0 and #1 identify row and column

positions for the grid element allotted to an invocation of the parallel function.
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Figure 2.6: Example showing conflict-free data access semantics guaranteed by

C**
C**’g Parallel Function Semantics

C** allows coarse-grain parallel functions, but clearly defines the semantics of
conflicting memory access to avoid non-deterministic data races. C** specifies
that all parallel function invocations start from the same global state, and incur
no conflicts. When an invocation updates a global value, the new value is visible
only to that invocation until the data-parallel operation completes (Figure 2.6).
At that point, all changes are merged into a single consistent global state. In the
stencil parallel function (Figure 2.2.2), C**’s semantics specify that each point in
the stencil averages old values of neighboring points, because a neighbor’s changes

are not visible until the operation itself completes.
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void max_grid(parallel Grid A) parallel

{

max =%> A[#0] [#1];

Figure 2.7: Aggregate definition syntax in C**

2.2.3 Reductions in C**

C**, like other imperative data-parallel languages, provides reduction assignments
to combine colliding values. For example, Figure 2.7 assigns the maximum of a
two-dimensional grid A to variable max. Reductions use slightly different syntax
from other assignments, and also have slightly different semantics. In C** the
result of a reduction is available at the target of the assignment only when all data-
parallel operations complete. In other words, C** does not make intermediate
reduction results visible to the programmer. This design choice is explored in

more detail in Section 4.2.

2.3 Tempest

Tempest is a parallel programming substrate that provides a common program-
ming interface across a range of distributed-memory multiprocessors [38]. A key
feature of Tempest is that it provides the mechanisms to implement fine-grain user-
level distributed shared memory (DSM) on top of a message-passing machine, in

addition to message-passing primitives. Support for shared-memory mechanisms



23

on distributed memory multiprocessors is becoming increasingly popular [29].

A distributed shared-memory system implements transparent access to a shared
address space which is distributed among individual processors’ local memories.
The system identifies all accesses to remote shared data items, and includes a
memory coherence protocol that obtains and caches local copies of remote data
items to allow the computation to continue.

Tempest provides a DSM interface with two additions. First, sharing in Tem-
pest is fine-grain, with sizes between 32 and 128 bytes. Fine-grain sharing reduces
false sharing, and smaller block sizes improve performance for some applications
(Section 5.4). Second, and perhaps more important, Tempest allows user-level
control of memory coherence protocols, i.e., it allows memory coherence actions
(which obtain and release copies of remote shared data) to be implemented by
the user, or in our case, by the compiler. The default memory coherence protocol
in Tempest, called Stache, implements sequentially-consistent transparent shared
memory using a write-invalidate protocol. One of the techniques presented in this
thesis (Chapter 5) exploits user-level control over coherence protocols to augment

Stache to improve performance for iterative parallel applications.

2.3.1 Tempest Implementations

Tempest is designed to be a portable parallel programming substrate. Currently,
two implementations of Tempest exist, both named Blizzard, one for the Thinking
Machines CM-5 [45], and one for a Cluster Of Workstations (COW) connected by

an off-the-shelf Myrinet network [44].
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Blizzard-CM5 implements the Tempest interface on the distributed-memory
CM-5, using error correcting codes in memory to implement fine-grain access con-
trol [45]. The CM-5 uses 33 MHz Sparc processors connected by a custom network,
which is optimized for small messages. Satisfying a remote shared-memory access
for a 32-byte cache block on the CM-5 takes approximately 200 microseconds,
including protocol handler time and network round-trip time.

Blizzard-COW implements Tempest on a Cluster of Workstations (COW) con-
nected by a Myrinet [44]. Each COW node is a dual-processor SPARCStation 20,
which includes two 66 MHz ROSS HyperSPARC chips, a Myrinet interface chip,
and a TO hardware add-on board to implement fine-grain access control. Round-
trip network latencies for small messages on the Myrinet are on the order of 50
microseconds, and the remote shared-memory access latency for small cache blocks

(64 bytes) takes approximately 77 microseconds.
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Chapter 3

Implementing Conflict-free Data

Access for Parallel Functions

C** provides a number of high-level data-parallel programming language features,
including a global name space and coarse-grain data-parallel functions. The in-
teraction between these two features — unsynchronized data access in a shared
address space and multiple asynchronous threads of execution — allows the possi-
bility of data access conflicts, which are an undesirable feature of parallel program
execution .

Data access conflicts, or data races, arise when two distinct threads of execu-
tion (or, in our case, two distinct data-parallel operations) access a single global

datum, and at least one of the accesses is a write access which updates the da-

!This thesis does not consider synchronization races, which arise from different
temporal orderings of synchronization events, since data-parallel languages do not
allow explicit synchronization
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tum. In a program with data access conflicts, different temporal orderings of the
conflicting accesses during different runs of the program can generate different
results. Data races often lead to program errors that are extremely difficult to
find, primarily because the errors can only be reproduced if the same temporal
access ordering is maintained across different program runs.

Unlike most other data-parallel languages that provide few mechanisms to
address data access conflicts, C** defines a clear semantics for conflicting data ac-
cesses in data-parallel operations. C**’s semantics mandate that multiple parallel
function invocations (Section 2.2.2) appear to execute instantaneously and simul-
taneously, so that global accesses cannot conflict. All invocations start from the
global state in effect at the beginning of the parallel operation. When an invoca-
tion updates a global data item, the change is visible only to that invocation until
all data-parallel operations complete. At that point, all changes are merged into
the global state. In effect, each parallel function invocation receives its own copy
of any modified global data items, and all copies are reconciled when the data-
parallel operation completes. For example, in the 4-point stencil in Figure 2.2.2,
each stencil invocation only sees old values of neighboring elements.

High-level parallel language features like conflict-free data access in C** are
very useful, but are unlikely to be widely used unless they can be implemented
efficiently. In this chapter, we explore two different ways of implementing conflict-
free data access using two variants of a copy-on-write scheme with reconciliation.
Section 3.2 describes how a compiler can analyze a program to identify conflicting

data items and insert code to create and reconcile copies. Compiler copying
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works well for programs that a compiler can analyze, but could be expensive
for dynamic programs for which compiler analysis is imprecise and may lead to
unnecessary copying. In that case, Section 3.3 shows how a compiler can rely
on a Loosely-Coherent Memory (LCM) system to implement fine-grain copy-on-
write with reconciliation. Section 3.4 compares these two approaches and their
performance on four mesh relaxation codes and shows that they complement one
another. Compiler copying is more efficient for programs that permit precise
analysis, and LCM incurs less overhead for programs where data access analysis
is imprecise. The compiler can choose either technique to implement conflict-
free data access depending on the precision of its analysis, and even use both
techniques in a program. Section 3.1 compares our approaches with related work,

and Section 3.5 summarizes the chapter.

3.1 Related Work

Data-parallel languages handle data races in a variety of ways. Fine-grain data-
parallel languages, such as C*, use a SIMD execution model to avoid read-write
conflicts, and provide combining operations for write-write conflicts. Hatcher et
al. [18] have looked at ways to compile fine-grain languages for MIMD machines
by increasing the grain of parallelism. By contrast, C** directly allows large-grain
parallelism, but specifies a clear semantics for conflicting operations. Functional
data-parallel languages, such as NESL [7] do not allow side effects, and avoid the
problem entirely. Whole-array operations in HPF [19] require all input operands

to be read before any output is written, providing semantics similar to C** for
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a restricted subset of the language, and are usually implemented with compiler-
implemented copying. Finally, some coarse-grain parallel languages, such as Par-
alation Lisp [42] or HPF’s DO INDEPENDENT loops [19] require the program-
mer to specify conflict-free parallel operations and leave the semantics undefined
if conflicts occur.

The Myrias machine implemented a copy-and-reconcile operation similar to
the one in LCM [5]. However, copying and reconciliation were implemented in
hardware at the page granularity, and followed a fixed coherence policy. Munin
[6], like LCM, allows the programmer or compiler to adapt coherence policies to
data structures in an application. Unlike LCM, Munin only provides a fixed set

of policies, each tailored for a specific pattern.

3.2 Compiler Copying

In many simple parallel applications, a compiler can precisely identify all global
data accesses within a data-parallel program, and insert extra code to make copies
of global values on updates if necessary. A number of compiler-copying alternatives
exist depending on the precision of compiler data access analysis, and the number

of distinct invocations that read or write each global data item.

3.2.1 No Conflicts

The simplest case occurs when the data-parallel function invocations are indepen-

dent and each invocation updates a distinct portion of the global space. In other
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class Grid(float) [J[]1) { /* Member functions */ s

void stencil (parallel Grid A) parallel

{

A[#0] [#1] = (A[#0-1]1[#1] + A[#0+1]1[#1] +

A[#0] [#1-1]1 + A[#0] [#1+1]1) / 4.0;

Figure 3.1: 4-point stencil

words, no invocation attempts to read values that are possibly updated by other
invocations. In this case, no action from the compiler is necessary to maintain

conflict-free access.

3.2.2 Single Writer, Multiple Readers

Consider the 4-point stencil in Figure 3.1 that updates each interior point in a
2-dimensional grid with the average of its four neighboring points. Each grid
point is updated by only one invocation, and read by four invocations operating
on neighboring grid points.

Figure 3.2 lists a simplified version of the compiler-generated SPMD code for
the stencil function. To maintain conflict-free data access the compiler maintains
two copies of the grid, satisfying all read accesses from the old copy and updating
values in the new copy (schematically described in Figure 3.3). The reconciliation

phase, which is invoked by the compiler after the parallel phase, copies values
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void stencil_SPMD (Grid new_A, Grid A)

{

for all points (#0, #1) assigned to me do

{

new_A[#0] [#1] = (A[#0-1][#1] + A[#0+1][#1] +
A[#0] [#1-1] + A[#0][#1+1]) / 4.0;

}

barrier(); /* Before reconciliation phase */
for all points (#0, #1) assigned to me do

A[#0] [#1] = new_A[#0] [#1];

Figure 3.2: 4-point stencil with compiler-generated copying

from the new copy into the old copy.
If the compiler can also guarantee that all points in the Grid are updated,
the reconciliation can be accomplished with a simple pointer swap between A and

new_A.

3.2.3 Zero or One Writer

If only some fraction of all points in the grid is updated (e.g., in the threshold
stencil in Figure 3.4), the compiler must keep track of the updated points for
reconciliation (e.g., using a bit-vector), or conservatively propagate points that

do not satisfy the threshold value to the new copy (Figure 3.5). The conservative
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New

Figure 3.3: Schematic representation of compiler-copying for Stencil

copy can then be optimized using the pointer swap trick of Section 3.2.2.

3.2.4 Multiple Unknown Writers

If the compiler cannot analyze data accesses within parallel functions precisely,
it must create copies for individual data items (rather than entire arrays), and
include run-time checks to access the correct copy within a parallel function us-
ing a technique similar to run-time resolution [40]. Figure 3.6 shows a parallel
function with unstructured accesses (i.e., through indirection arrays). In function
unstructured (Figure 3.6), the compiler must conservatively assume that the two
accesses to A through indirection arrays may map to the same location.

Figure 3.7 describes how a compiler can maintain per-invocation copies for a
parallel function with unstructured accesses. The compiler creates and maintains
a mapping of copies using support routines for allocation, lookup and unmapping.
The allocation routine, alloc_and map, creates a new copy of a global data item

and updates it. The lookup routines, is_mapped and lookup_map, determine
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void threshold_stencil (parallel Grid A) parallel

{
if (diff (A[#0][#1]1, A[#0-1][#11, A[#0+1][#1],
A[#01 [#1-11, A[#0][#1+1]) > THRESHOLD)
{
A[#01[#1] = (A[#0-11[#1] + A[#0+11[#1] +
A[#0] [#1-1] + A[#0] [#1+11) / 4.0;
}
}

Figure 3.4: 4-point threshold stencil

whether a particular location is mapped and return its value respectively. The
unmap routine, unmap, removes mappings for per-invocation copies in preparation
for starting a new invocation. The reconciliation phase identifies all created copies

(using function lookup_alloced) and merges them into the global state.

3.3 LCM

Loosely-Coherent Memory (LCM) exploits program level control of memory coher-
ence protocols (Section 2.3) to implement fine-grain copy-on-write and reconcili-
ation to help implement C**’s language semantics [30]. LCM relies on directives
from the C** compiler to detect the need to copy shared data, and, at runtime,

creates transparent per-invocation copies at the cache block granularity that share



void threshold_stencil_SPMD (Grid new_A, Grid A)

{
for all points (#0, #1) assigned to me do
{
if (diff(A[#0] [#1], A[#0-1][#1], A[#0+1][#1],
A[#0] [#1-1], A[#0][#1+1]) > THRESHOLD)
{
new_A[#0] [#1] = (A[#0-1][#1] + A[#0+1][#1] +
AT#0] [#1-1] + A[#0][#1+1]) / 4.0;
}
else
new_A[#0] [#1]1 = A[#0] [#1];
}
barrier(); /* Before reconciliation phase */
for all points (#0, #1) assigned to me do
A[#0] [#1] = new_A[#0] [#1];
}

Figure 3.5: Threshold stencil

33
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void unstructured (parallel Grid A, int ind[][]) parallel

{

Alind[#0]] [ind [#11] = £(A[#0][#1]);

if (A[ind[#0+1]][ind[#1 -1]]1 > THRESHOLD)

{

Figure 3.6: unstructured - Parallel function with unstructured accesses

the global address of the original data item. LCM was developed by Brad Richards
and is described in detail in his thesis [39].

LCM provides the compiler with three directives. The first, mark modification,
marks a global data item that will potentially be modified and needs to be
copied. When the directive is executed, it causes LCM to create a per-invocation
copy of the global data item at the same global address. The second directive,
flush _copies removes per-invocation copies before starting a new invocation.
The final directive, reconcile_copies, implements a synchronized global recon-
ciliation phase and merges all changes into the global state. Figure 3.8 shows how
a compiler would use LCM directives to implement conflict-free data access for
the unstructured parallel function described in Figure 3.6.

LCM transparently creates a per-invocation copy at the same address as the



void unstructured (Grid A, int ind[][])

{

int tmp;

for all points(#0, #1) assigned to me do {

alloc_and_map_float (&A[ind [#0]] [ind [#1]]) = £(A[#0] [#1]1);

/* Personal copy or old value? */
if is_mapped(ind[#0+1], ind[#1-1])
tmp = lookup_map (&A[ind [#0+1]1] [ind[#1-11])

else

tmp = A[ind[#0+1]] [ind[#1 -11]1;
if (tmp > THRESHOLD) { ...; }
unmap (&A [ind [#0]] [ind [#1]1);
}
barrier(); /* Before reconciliation phase */
for all points (i, j) in A do {
if (alloced(i, j))

A[i][j] = lookup_alloc(&A[i][j1);

Figure 3.7: Compiler-generated pseudo-code for unstructured
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void unstructured (Grid A, int ind[][])

{
for all points(#0, #1) assigned to me do
{
mark_modification(&A[ind[#0]] [ind[#1]1]);
A[ind[#0]] [ind [#1]] = f£(A[#0] [#11);
if (A[ind[#0+1]] [ind[#1-1]] > THRESHOLD)
{
}
flush_copies();
}
reconcile_copies();
}

Figure 3.8: Compiler-generated pseudo-code for unstructured using LCM

36
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original data item. As a result, the compiler can refer to global variables directly,
and need not insert run-time checks to differentiate per-invocation copies from
the global state. It offers greater benefits for programs with dynamic behavior by

removing potentially expensive run-time checks [43].

3.4 Performance Comparison

We compared the performance of compiler copying and LCM with three mesh re-
laxation programs written in C** with varying degrees of dynamic behavior. Sten-
cil performs an iterative, regular 4-point stencil for 50 iterations on a 1024x1024
mesh (Figure 3.1). Threshold performs a similar 4-point stencil computation for
50 iterations over a 512x512 mesh, but does not modify all mesh elements in each
item (Figure 3.4). It modifies only points whose values has changed by more than
a threshold. Adaptive is also a stencil computation over a structured mesh, but
the mesh evolves over time to capture finer detail at points in the mesh where the
gradient is steep. Adaptive uses dynamically allocated quad trees at mesh points
to simulate subdivision of space for greater accuracy. In Adaptive, as in Stencil,
all interior points in the mesh are updated in each iteration.

Figure 3.9 displays and compares the relative execution speed of compiler-
copying and LCM versions of Stencil, Threshold and Adaptive. The copying
versions use two copies of the entire data set, and use a pointer swap to switch
between new and old versions (Section 3.2.3). Copying versions were generated au-
tomatically by the compiler for Stencil and Threshold, and by hand for Adaptive.

All programs were run on a 32-processor CM-5, using the Blizzard-E version of
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Figure 3.9: Relative execution speed for compiler-copying and LCM versions of 3

benchmarks — Stencil, Threshold and Adaptive

Blizzard-CM5 [45]. The compiler-copying versions used Blizzard’s default Stache
memory coherence protocol [38].

Stencil is a good example of a regular program on which precise compiler data
access analysis is possible. In this case, LCM provides no benefit; the copying
version is 1.5x faster than the LCM version. Compiler-copying is more conser-
vative for Threshold than for Stencil and copies some data items unnecessarily
(Section 3.2.3). LCM only creates copies of data items that are actually modi-
fied and improves the execution speed by a factor of 1.18x. LCM improves per-
formance significantly over copying for Adaptive, which includes data accesses
through pointers and dynamically allocated data for which compiler analysis is

imprecise. Adaptive-LCM is faster than Adaptive-copying by a factor of 1.36x.
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3.5 Summary

This chapter presented two different techniques, compiler-implemented copying
and LCM, that implement C**’s semantics of conflict-free data access, with the
aim of avoiding data races which lead to hard-to-find errors in parallel pro-
grams. Both techniques implement C**’s semantics using variants of copy-on-
write schemes with reconciliation.

Compiler-implemented copying inserts code in the program to create and main-
tain explicit copies of global data items. For regular programs with data access
patterns that a compiler can analyze, compiler copying provides an efficient al-
ternative to implement conflict-free data access. LCM, on the other hand, relies
on compiler directives to detect the need to copy shared data, and creates copies
that share the same global address as the original item. LCM implements conflict-
free access more efficiently for programs with dynamic data access behavior by
removing the necessity for run-time checks to distinguish between copies.

LCM and compiler-copying complement one another, thus enabling the C**
compiler to use the best of both worlds. The compiler can generate copying code
in parts of the program where its data access analysis is precise, and rely on LCM
to maintain C**’s semantics efficiently in other parts of the program that include

dynamic behavior.
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Chapter 4

User-defined Reductions for

Efficient Communication

Communication in imperative data-parallel languages occurs through read or write
operations in the shared address space. Although convenient and portable, com-
munication in a shared address space only suffices for one-to-one or one-to-many
communication. Many-to-one communication causes write-write conflicts or col-
lisions, when multiple values are stored in a location. Data-parallel languages
typically use binary reduction operators to combine colliding values into a single
value that can be stored in a location. Reductions, which specify both communi-
cation and combining, are extremely common in parallel applications, even those
written in languages that do not provide first-class support for these operations.
Unfortunately, most data-parallel languages limit reductions to a small set of pre-
defined reduction functions — typically, the associative arithmetic and logical

operations.
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The topic of this paper is user-defined reductions, which are a natural gener-
alization of reductions in data-parallel languages. User-defined reductions extend
reductions in two important ways. First, they allow new ways to combine values
that may not have been anticipated by a language designer. For example, user-
defined reductions can implement the tournament or location reduction [17, 25],
or build a list from colliding values (e.g., sendToQueue [23]) without additional
language support. Second, user-defined reductions allow a programmer to specify
reductions on user-defined data types.

This paper demonstrates the advantages of user-defined reductions in a data-
parallel language, focusing on the benefits, both to the programmer and to the
compiler, of extending reductions to user-defined data types. The programmer
benefits from being able to specify combining operations directly on structured
data types. By contrast, predefined reductions require the programmer to spec-
ify combining in three steps — map structured data types to primitive types,
combine primitive types, map results back to structured data types — (e.g., see
Section 4.3.3). We compare three ways in which data-parallel programmers typi-
cally specify particle movement in a particle-in-cell code, including parallel prefix
operations, predefined list-building reductions and user-defined reductions. In
comparison to the other two methods, user-defined reductions offer the benefits of
a simple, intuitive specification of direct producer-consumer particle movement.
Moreover, with simple support from the run-time system, a compiler can translate
reduction operations into direct producer-consumer data transfers on structured

data types that can be implemented efficiently using bulk messages on a message-
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passing machine.

This paper also presents a simple implementation of user-defined reductions
in the coarse-grain data-parallel language C**  although the results should di-
rectly apply to other languages such as HPF [25] or pC++ [32]. Our reduc-
tions implementation relies on message-passing support, and applies traditional
message-passing optimizations to reduce overhead. We analyze the performance
of user-defined reductions by comparing the execution time of two versions each
of four benchmark applications (Table 4.2), one in a data-parallel language with
user-defined reductions and the other SPMD code optimized with application-
specific communication for the reduction pattern on two hardware platforms, a
32-processor CM-5 and a 16-node Cluster of Workstations (COW) connected by
an off-the-shelf network. For applications with dynamic communication patterns,
the C** versions were faster by up to 25%. For applications with mostly static
communication patterns, the C** version was up to 2.6x slower than the SPMD
version.

User-defined reductions also allow the programmer to specify new reduction
operations. The obvious benefit of this extension, which we do not explore in
this chapter, lies in allowing powerful combining operations, such as the location
reduction [25], or to build a list or tree with multiple values. A drawback of user-
defined reductions is that they allow arbitrary user-defined code to execute in a
reduction operator, which allows the possibility of non-deterministic results either
due to data races, or due to reordered execution of non-commutative operations.

Section 4.4 explores these language design problems in more detail, and proposes
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solutions to some of them.

This chapter is organized as follows. Section 4.2 briefly describes communica-
tion and reductions in C**, and shows how they can be extended to user-defined
reductions. Section 4.3 uses the example of a particle-in-cell code to contrast three
different specifications of particle movement in a data-parallel language, includ-
ing parallel prefix operations, predefined list-building reductions and user-defined
reductions. Section 4.4 explores the consequences of extending reductions with
user-defined operators in a data-parallel language. Section 4.5 describes C**’s
reduction implementation. Section 4.6 describes our benchmarks and presents
detailed performance results. Section 4.1 covers related work and Section 4.7

summarizes the chapter.

4.1 Related work

Many previous papers have recognized the need for powerful reduction operators.
For example, Dataparallel C adds a tournament operator [17] to locate the position
of the maximum value in a list of elements. In comparing the message-passing and
data-parallel paradigms, Klaiber et al. [23] proposed the sendToQueue operator to
remedy the inefficiency of expressing a list-building reduction in C*. Sharma et al.
[46] proposed a similar APPEND operator for DSMC, a particle-in-cell application.
User-defined reductions subsume these specialized reduction operations under a
common framework, and do not require compiler or run-time system changes to
implement these operators.

Mukherjee et al. [35] noted that reductions form the dominant communica-
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tion pattern in many irregular applications. However, they used a variety of
application-specific protocols and implemented custom protocols for each applica-
tion to improve communication performance. The C** system uniformly handles
reduction patterns by implementing them using vectorized messages and is able
to run several of their applications as efficiently as the hand-tuned code.

Several applications in the HPF-2 motivating applications suite [14] note their
requirement for user-defined reductions. In addition, some languages allow user-
defined functions for reduction operations (e.g., Connection Machine Lisp [49],
Paralation Lisp [42], and Fortran D [15]). However, we are unaware of papers

describing implementations of user-defined reductions on parallel machines.

4.2 Reductions in Data-Parallel Languages

Recall from Section 2.1.2 that reductions augment assignment statements in a
parallel operation with a combining or reduction operator. When the reduction
assignment executes, the statement’s combining operator combines colliding val-
ues and updates the left-hand-side with the result. For example, Figure 4.1 uses

a reduction assignment to sum the values of a Grid object.

Reduction Result Availability

In coarse-grain data-parallel languages, a task may continue after executing a
reduction assignment. The language must specify the value of a reduction target
(e.g., g in parallel function sum in Figure 4.1) between the reduction assignment

and the end of the parallel function. Three approaches are possible:
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float g;

void sum(parallel Grid &A) parallel

{

g =h+ A[#0] [#1];

<

Figure 4.1: Sum reduction assignment

1. The language may prohibit accesses to g, except as a reduction target, as

does Fortran D [15]. Erroneous accesses can be identified syntactically. This
approach allows the runtime system to defer updating the target. However,
syntactic analysis may not identify all erroneous accesses, particularly those

involving arrays or pointers.

. The language may retain the old value of g after a reduction. When the data-

parallel operation completes, the colliding values can be combined and used

to update reduction targets. We call this approach deferred reductions.

. The language may defer combining, but update the local copy of g by

merging contributions from the local task. This approach is suitable for
a language like C**, which mandates local copies to enforce independence.
However, other data-parallel languages do not make such a clear distinction

between local and global values and are better off using deferred reductions.
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4.2.1 User-defined Reductions

In C**, user-defined reduction assignments required a minor syntax extension to
allow function names as reduction operations. For example, Figure 4.2 shows a
location reduction. Given an array of numbers, the location reduction identifies
the minimum (or maximum) value in the collection, along with its location in
the array. The location reduction is used, for example, in a parallel implementa-
tion of Dijkstra’s algorithm, to find the next node with the shortest path. The
find_min parallel function pairs the node’s distance and its position and applies
the user-defined min pos combining function to compute the minimum value and
its position.

Note that the reduction function min_pos in C** is not a symmetric binary
operator with type PosVal x PosVal — PosVal, but (PosVal #*) X PosVal —

void, and uses the first parameter for both input and output.

Combining and Update in Reductions

A reduction assignment comprises two actions, combining and update (Figure 4.3).
In many cases, both actions are identical and can be specified with a single function
(e.g., in the sum reduction in Figure 4.1, the colliding values are added together
and the resulting sum is added to g). It is sometimes useful to separate the two
operations, especially for user-defined reductions, to allow different types for the
target and colliding values, or when the combining operation itself is expensive.
One such example involves building an array from colliding values. Each value

carries a position field and a data field, and values that map to the same array
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struct PosVal { /* Data type for position reductions */

int value, position;

}s

void min_pos(PosVal *1lhs, PosVal rhs) /* Location reduction function */

{

if (lhs->value > rhs.value)

(*¥1hs) = rhs; /* RHS is the winner */

void find_min(parallel Vector &V) parallel

{

PosVal result = { V[#0].value, #0};

min =/min_pos result;

Figure 4.2: Minimum location user-defined reduction
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Figure 4.3: Two ways of visualizing a reduction of two values to a target: Com-

bining and Update, or Synchronized Accumulation

position must be added in the result [51]. One way to specify this pattern uses an
array addition reduction. Input values are entered into distinct zero-filled arrays,
which are combined using array addition. Clearly, this approach is expensive.
An alternative approach starts with a zero array, and specifies a reduction update
function, which merges values one-by-one into the array. This pattern, which
we call synchronized accumulation (Figure 4.3), is also applicable in cases when
the combining operator just collects colliding values (e.g., particle movement in
Section 4.3). C** allows the programmer to specify both combining and update

functions as part of a reduction.

4.3 A Motivating Example

An important aspect of user-defined reductions is that they extend reductions to
apply to user-defined data types. This section explores the benefit of this ex-
tension from the programmer’s point of view, i.e., simple and direct specification

of communication and combining. In this section, we demonstrate this benefit
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Figure 4.4: Schematic of the DSMC application

by comparing three real-life data-parallel specifications of particle movement in
a particle-in-cell code called Discrete Simulation Monte Carlo (DSMC). First,
we briefly describe DSMC, its implementation in a data-parallel language, and
the problem of particle movement in DSMC. We describe and contrast three ap-
proaches to specifying particle movement in a data-parallel language — using par-
allel prefix operations, with a predefined append operation and with user-defined

reductions.

4.3.1 DSMC

DSMC simulates particle movement and collision in a three dimensional domain
using a Discrete Simulation Monte Carlo method [46]. DSMC divides the domain
into cells in a static Cartesian grid and distributes molecules among cells (Fig-
ure 4.4). Each time step of the algorithm consists of three phases for each cell,
the move phase, which moves molecules according to their velocities, the addi-
tion phase, which adds new molecules, and the collision phase, which simulates

molecule collisions.
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Figure 4.5: Schematic of DSMC data structures and the problem of synchronized

addition

The move phase updates each molecule’s position using its current velocity.
In the process, a molecule may move from one cell to another, which may require
communication if the cells are mapped to distinct processors. Recall that all com-
munication in an imperative data-parallel language occurs through global reads
and writes (Section 4.2). To transfer a molecule between two cells, the source cell
must write the molecule to a global location (typically, an “incoming” area for
the destination molecule), which is then read by the destination molecule. Fur-
thermore, multiple molecules entering a cell (e.g., from different neighbors) must
be synchronized (Figure 4.5).

Since data-parallel languages do not provide low-level synchronization primi-
tives such as locks or mutual exclusion primitives, we look at other methods of

specifying particle movement and synchronization.

4.3.2 Particle Movement using Parallel Prefix

Parallel prefix operations provide one solution to synchronizing multiple additions

to a cell (Figure 4.6). For each destination cell, all source cells enter a negotiation
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Figure 4.6: Schematic of DSMC synchronization with parallel prefix

phase to partition the Incoming list to prevent write-write conflicts. The nego-
tiation phase is itself implemented as a parallel prefix (or scan) operation that
adds the number of molecules from each source. In essence, this method uses a
lower-level reduction operation (the parallel prefix) to implement a higher-level
reduction pattern.

The negotiation phase is carried out for each destination cell, making this
approach cumbersome to specify. The implementation is also likely to be inefficient
on MIMD machines because it involves a negotiation phase (which is usually not
supported on MIMD hardware), followed by a transfer phase.

The negotiation phase must be specified for each destination cell, making this
approach cumbersome to specify. The implementation is also likely to be inefficient
on MIMD machines because it involves a negotiation phase (which is usually not

supported on MIMD hardware) followed by the source-destination transfer.
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Figure 4.7: Schematic of DSMC synchronization with APPEND

4.3.3 Particle Movement using a Predefined Reduction

The second approach uses a predefined APPEND reduction operator that builds a
list from colliding integer values [46] (Figure 4.7). In this approach, each cell
contains a list of indices into the global particle array where particles are stored
(squares in Figure 4.7).

The predefined APPEND operator combines negotiation and communication.
However, it separates particles from cells, and specifies communication indirectly
— the moving particle is written to the global array by a source cell and read in

a subsequent iteration by a destination cell.

4.3.4 Particle Movement with User-Defined Reductions

The final approach utilizes a user-defined reduction operator (add_particle),
which implements synchronized accumulation (Section 4.2.1) using knowledge of
particle and cell data types (Figure 4.8). This approach does not need an Incoming

list because the execution of reductions is deferred (Section 4.2).
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Figure 4.8: Schematic of particle movement with user-defined reduction

add_particle

Approach Specification | Flexible? | Direct transfer?
Parallel Prefix Cumbersome No Yes
APPEND Simple No No
User-defined Reduction Simple Yes Yes

Table 4.1: Comparing three approaches to particle movement

User-defined reductions are more flexible than the other two approaches, and

specify direct producer-consumer data transfer. Table 4.1 summarizes the three

approaches.

4.4 Semantics of User-Defined Reductions

User-defined reductions add expressive power to a data-parallel language, but the

combination of parallel execution and arbitrary user-defined operators gives rise

to the possibility of non-deterministic execution in two ways: data access conflicts

and non-associativity.
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4.4.1 Data races

In most data parallel languages, the built-in, primitive reduction functions are
side-effect free and cause no data access conflicts. However, user-defined reduction
functions need not share this property. User-defined reductions consist of arbitrary
user-defined code, which may execute in parallel with access to data in a global
address space. Chapter 3 shows how this combination allows data access conflicts,
which can undermine a data-parallel language’s semantic guarantees.

We see three approaches to avoiding data access conflicts with user-defined re-
ductions. First, user-defined reductions can be restricted to use only well-behaved
functions that a compiler ensures are side-effect free. Although plausible, this rule
is too restrictive because of limited compiler analyses in languages that support
pointers and aliasing. Second, a language may permit compiler directives, such as
HPE’s INTENT directive, that assert properties of user-defined reductions that
a compiler is unable to prove. This approach opens the door to difficult-to-find
errors if a directive is incorrect. Third, a language may allow general functions,
but require a run-time system to identify data access conflicts, as in Steele’s Par-
allel Scheme [48]. Run-time conflict identification can be expensive and complex.
The C** compiler relies on programmer guarantees that user-defined functions

are safe.

4.4.2 Reordering Combining Operations

Another issue is that user-defined reductions may not be commutative or associa-

tive, so that different combining orders lead to non-deterministic results. This is
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not a problem for two reasons. First, user-defined reductions are typically effec-
tively associative [42] functions, for which the absence of associativity does not
affect a program’s result. For example, for the combining function append, the
result list usually represents a set so that the order of elements is unimportant.
Second, a programmer can collect all values into a list, sort them, and then com-
bine to force a specific combining order. Mandating a combining order for all
reductions unnecessarily restricts language implementors and imposes overhead

on applications that do not require ordering.

4.5 Implementing Reductions

The C** compiler implements user-defined reductions with a small amount of
runtime support. This section describes how the compiler and runtime system
implement basic and update reductions (Section 4.5.1), exploit the deferred re-
duction model to vectorize messages (Section 4.5.2), and combine values locally

to reduce message traffic (Section 4.5.3).

4.5.1 Basic Reductions

A reduction assignment updates its target with the result of combining right-hand-
side values. The C** implementation involves two processors: the processor that
executes the reduction assignment (processor A) and the processor that owns
the target location (processor B). Processor A, which executes the reduction,

sends processor B a message containing three items: the right-hand-side value,
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the combining function descriptor, and the target location pointer. At the end
of a parallel phase, Processor B collects incoming reduction messages, combines
colliding values and updates target locations. For example, Figure 4.9 shows the
basic implementation of communication for DSMC (Section 4.3).

The “owner-updates” model is simple, and depends on the runtime system
to identify the home location of a target data item, which is usually available in

implementations that provide a global name space.

4.5.2 Bulk reductions

During a data-parallel operation, a processor may execute multiple reductions for
two reasons. First, the number of data-parallel tasks is usually much larger than
the number of processors, so each processor runs multiple tasks. Second, each
coarse-grain data-parallel task may execute multiple reduction assignments. The
deferred reduction model (Section 4.2) allows the compiler to defer sending reduc-
tion messages until the end of the parallel phase. This permits several messages to

the same destination processor to be bundled into a single message (Figure 4.9),
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which is typically far more efficient to send and receive. Message vectorization
is essential when the application program uses reductions to communicate large
amounts of data. As the graphs in Section 4.6 show, this optimization improved

program performance 6.76x for EM3D on the CM-5.

4.5.3 Local Combining

If a processor executes multiple reductions to the same target, the values can be
combined locally before being sent for global combining. Local combining requires
the runtime system to identify common targets locally, for which the C** system
uses a hash table of target addresses. Probing this table increases the overhead of
the reduction, but allows for a decrease in communication costs. This is a good
example of an optimization that trades off worse sequential performance for better
communication (and therefore parallel) performance.

On Moldyn, an application that benefited from local combining, (Section 4.6),

this optimization improved performance by 2.32x.

4.6 Application Comparisons

This section compares four parallel applications (DSMC, Barnes, Moldyn, EM3D)
written in C** with user-defined reductions against hand-optimized alternatives
written in an SPMD style. Table 4.2 describes the benchmarks, and their the
input data sets. The SPMD codes were previously written (by others) using a

hybrid of shared-memory and message-passing techniques, and used as the best
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Program | Scientific Domain | Application of reductions Data sets

DSMC Particle-in-cell Moving molecules between cells 9,720 cells, 20 iterations
initially 48,600 particles
finally 72,500 particles

EM3D Electro-magnetics Accumulating edge interactions 32,000/320,000 nodes,

20% remote edges

degree 5, 100 iterations

Moldyn Molecular dynamics | Accumulating interaction forces | 16,384/55,296 mols, 30 steps

Barnes Hierarchical N-body | Inserting bodies into a quad-tree | 16,384 bodies, 4 iterations

Table 4.2: High-level application description and data sets. The larger data sets

are for COW runs.

examples of hybrid coherence protocols in several published papers [13, 35]. These

programs use transparent shared memory as a basis, but communicate crucial

data structures through application-specific shared-memory or message-passing

protocols. User-defined reductions optimize the same communication patterns as

the application-specific protocols, but provide a simpler semantic model and use

a simple, unified implementation using messages. Mukherjee et al. demonstrated

that custom protocols compare favorably with the CHAOS library [12] for some

irregular applications, including DSMC and Moldyn [35]. We compared these

programs on both the CM-5 and the COW using Blizzard.
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Figure 4.10: Log-log scale graphs showing execution speeds of 2 or more versions
of DSMC on the CM-5 and COW. Numbers adjoining the curves are speedups

relative to a sequential version.

4.6.1 DSMC

DSMC, and its implementation in C** with user-defined reductions, are described
in detail in Section 4.3.

The hand-optimized implementation also uses bulk messages to move molecules
to neighboring processors, but uses single messages for molecules moving to distant
processors. Mukherjee et al. showed that the hand-optimized implementation of
DSMOC ran slightly faster than a DSMC version implemented with the well-known
communication library CHAOS [12] on the CM-5 [35] .

Figure 4.6.1 plots the speed of the hand-optimized version (DSMC-Hand) and
C**’s unoptimized and bulk reduction versions. On both platforms, DSMC-C** is

faster than DSMC-Hand (1.11x on CM-5 and 1.16x on COW), primarily because
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DSMC-Hand vectorizes messages only to neighboring processors (the common

case), since vectorization is tedious to apply by hand in all cases.

4.6.2 Barnes

Barnes [47] simulates the movement of bodies in a gravitational system over time.
The bodies are modeled as point masses that exert gravitational forces on other
bodies. The algorithm computes forces between bodies which are used to update
body positions in each time step. Rather than computing all N? forces, Barnes
approximates the force exerted by a distant collection of bodies by that of a point
mass at the center of mass of the collection.

Barnes uses an oct-tree to represent bodies in 3-dimensional space. Each node
in the tree represents a region in space, with a child representing one octant of
its parent’s space. The tree is unbalanced and deeper in regions of high body
density. To calculate the force on a body, the algorithm performs a depth-first
traversal of the tree. If an interior node is sufficiently far away from the body, the
bodies in that region are approximated by a point mass. Otherwise, the algorithm
continues to traverse the subtrees.

User-defined reductions target the tree-rebuild phase, which occurs in every
time step. In the SPMD implementation, processors insert bodies into the tree in
parallel, using locks to synchronize accesses to tree nodes. Data-parallel languages
lack explicit synchronization, which disallows a similar tree build method. The
C** data-parallel implementation of Barnes uses multiple pipelined parallel phases

to build the tree. To start with, bodies are inserted at the root of the (empty)
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tree. In each subsequent pipeline stage, bodies move one level down the tree
(extending the tree as necessary). The build phase ends when all bodies have
settled at the leaves of the tree. The C** implementation utilizes user-defined
reductions to move bodies between tree nodes, just as the DSMC implementation
moves particles between cells (Section 4.3). Subsequent iterations of the tree-build
algorithm are further optimized by starting from the tree structure generated in
the previous iteration with the bodies removed.

For the parameters described in table 4.2, the SPMD tree building phase takes
approximately 15% of the total execution time of the entire application (12.6
seconds out of 73.7). The data-parallel C** implementation takes 9.5 seconds for
all tree builds, not counting 9.5 seconds for the first tree build, which starts from
an empty tree.

The object of this section is to show that user-defined reductions help efficiently
implement an application that is typically thought to be “asynchronous”. The
data-parallel tree-build phase is competitive with the SPMD implementation and
a first step towards an efficient implementation of Barnes-Hut in a data-parallel

language.

4.6.3 EM3D

EM3D is an unstructured graph application that models the propagation of elec-
tromagnetic waves through objects in three dimensions [11]. The problem is for-
mulated as a bipartite graph of H nodes representing magnetic fields and E nodes

representing electric fields, with directed edges between H nodes and E nodes.
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Figure 4.11: Log-log scale graphs showing execution speeds of 2 or more versions
of EM3D on the CM-5 and COW. Numbers adjoining the curves are speedups

relative to a sequential version.

Each time step consists of two parts: first, each H node accumulates the effects of
neighboring E nodes, and then each E node accumulates the effects of neighboring
H nodes.

The message-passing version of EM3D efficiently implements the producer-
consumer sharing pattern in EM3D.

In C**, values are accumulated with primitive sum reductions. In the first
part of a time step, E nodes send their values (using reductions) to H nodes,
where they are collected and combined. The reduction implementation mimics
the producer-consumer data movement pattern of the program, which is essential
to good performance [13].

Figures 4.11 plots the speed of the message-passing version (EM3D-MP) and
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the simple and bulk-reduction C** versions. On both platforms, EM3D-MP is
significantly faster than EM3D-C** (1.9x on CM-5 and 2.6x on COW). There
are two reasons for this slowdown, both related to the fact that EM3D has a
static communication pattern. First, EM3D-C** transfers 1.5x more data than
EM3D-MP. EM3D-MP exploits the static communication pattern to only transfer
node values. C**’s reduction implementation is not optimized for static patterns,
and transfers a target address (4 bytes) along with each node value (8 bytes).
Second, EM3D-C** incurs the overhead of collecting reductions dynamically into

bulk messages, and testing for buffer overflow.

4.6.4 Moldyn

Moldyn is a well-known molecular dynamics code used to model macromolec-
ular systems [35]. Molecules are initially distributed uniformly in a cuboidal
region with a Maxwellian distribution of initial velocities, and exert forces on
other molecules within a cut-off radius. In Moldyn, interacting molecule pairs are
maintained on an interaction list which is updated infrequently. Evaluating an
interaction involves reading the positions of two molecules, computing the result-
ing force, and updating each molecule with the resultant force. The force on a
molecule is the sum of force increments from a number of interacting molecules,
and forms the reduction pattern in the application.

The hand-optimized implementation [35] uses a reduction implementation that
minimizes time at the expense of space. It stores local copies of force increments

for all molecules on each processor. Interactions modify the local copy, and the
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Figure 4.12: Log-log scale graphs showing execution speeds of 2 or more versions
of Moldyn’s force computation phase on the CM-5 and COW. Numbers adjoining

the curves are speedups relative to a sequential version.

reduction phase combines local copies in an efficient ring reduction using messages.

C** uses the bulk reduction implementation with local combining to imple-
ment Moldyn’s reduction pattern. C** only allocates space for reductions actually
executed on a processor, but incurs the overhead of building and maintaining a
hash table to identify candidates for local combining.

Figure 4.12 compares the speed of Moldyn’s force computation phase for the
hand-optimized version (Moldyn-Hand) and C** versions at three levels of op-
timization (simple reductions, bulk reductions and bulk reductions with local
combining). We compare only the force computation phase in Moldyn; the C**
version used a faster algorithm for building the interaction list and is faster overall.

On the CM-5, Moldyn-C** is only 1% slower than Moldyn-Hand. Bulk re-
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duction provides a 6.04x improvement in execution time and local combining
improves further by 2.32x. On COW, Moldyn-Hand is 1.5x faster than the best
C** version, because Moldyn-C** incurs significant overheads for creating and
mapping local copies. On the CM-5, the small 32K cache on each processor node
penalizes per-processor local copies of the entire force array, making both versions

comparable.

4.6.5 Discussion

The C** compiler provides a general reduction implementation for data-parallel
programs. As such, it works well for programs with dynamic communication
patterns (e.g., DSMC, Barnes), but incurs unnecessary data transfer and process-
ing overheads for programs with static communication patterns (e.g., Moldyn,
EM3D). In the case of EM3D, these overheads dominate execution, resulting in
significant slowdowns over a message-passing version. For static or mostly-static
communication patterns, the Inspector-Executor compiling paradigm [24], which
we have not implemented, should be successful in reducing reduction overheads.
The inspector phase identifies the reduction pattern in one iteration, and pre-
allocates buffer space and initializes a communication schedule for subsequent

executor phases. We have not implemented this optimization.
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4.7 Summary

Data-parallel languages mitigate the difficulty of parallel programming by pro-
viding high-level abstractions for concurrency, synchronization and communica-
tion. In data-parallel languages, reductions are the primary feature for expressing
many-to-one communication patterns by combining multiple colliding values using
a binary reduction operator. Unfortunately, many data-parallel languages limit
reductions to a pre-defined set of operations. This chapter demonstrates that
user-defined reductions are a useful addition to a data-parallel language.

User-defined reductions are useful because they generalize reductions in two
dimensions. First, they support powerful combining operations (e.g., location
reductions and list building) in a familiar framework. Second, they generalize
reductions to user-defined data types, with significant benefits, as we show in this
paper. The programmer benefits from being able to apply combining operations
directly to structured data types. The compiler can translate reductions into
direct producer-consumer data transfers that can be implemented efficiently with
messages. This paper also considers some drawbacks of this extension, such as
possible data access conflicts, and proposes some solutions.

This chapter describes the design and implementation of user-defined reduc-
tions in the coarse-grain data-parallel language C**.It also describes a simple, yet
general, reduction implementation that uses messages to communicate reduction
data. Two simple and well-known optimizations — message vectorization and
local combining — significantly improve the execution speed of applications using

reductions. We present performance results comparing C** versions of 4 applica-
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tions using reductions with equivalent, hand-optimized SPMD programs running
on a 32-node CM-5 and a 16-node COW. On 2 applications with dynamic com-
munication patterns, the C** versions were between and 15% and 25% faster. On
2 applications with mostly-static communication pattern, the C** versions were
up to 2.5x slower. The C** implementation is amenable to Inspector-Executor
style optimization, which we have not implemented. Given the complexity and

effort in tuning the SPMD codes, the C** programs are far more attractive.
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Chapter 5

Compiler-Directed
Shared-Memory Communication

for Iterative Applications

Many scientific applications are iterative with each iteration simulating the evo-
lution of a physical system along one dimension of the problem domain (typically
time). Each iteration of a problem is usually divided into multiple phases of
parallel execution separated by synchronization. Communication within a par-
allel phase may include both structured communication (e.g., nearest-neighbor
communication in Jacobi iteration) and unstructured communication (e.g., us-
ing indirection arrays or pointer dereferences). Many of these applications have
communication patterns that show little or no change between iterations. As a

result, even for irregular programs, for which static analysis is imprecise, a run-
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time system can detect communication patterns in one iteration and use them to
predict communication in the subsequent iterations.

There are many examples of programs with repeated patterns of communi-
cation. In static mesh calculations, nearest-neighbor communication is repeated
in each iteration. In some irregular problems, such as molecular dynamics codes
[46], communication changes infrequently, perhaps once every 20-30 iterations. In
adaptive problems, communication changes frequently, but incremental changes
between iterations are small. For example, structured adaptive meshes gradually
add mesh nodes for greater accuracy in each iteration [27], and gravitational N-
body problems represent bodies in a quad-tree, which undergoes small structural
changes between iterations.

This chapter shows that a compiler for a data-parallel language can cooperate
with a predictive cache-coherence protocol in a DSM system to implement shared-
memory communication efficiently for applications with dynamic, but repetitive
communication patterns. The compiler uses static analysis to place protocol direc-
tives at points in a program at which potentially repetitive communication takes
place. A two-part predictive protocol in the runtime system extends the standard
memory coherence protocol. The first part of the protocol identifies communica-
tion patterns at runtime and builds a communication schedule. The second part
uses a schedule to pre-send data that anticipates data requests in subsequent iter-
ations. As a result, the protocol can reduce the number of remote data requests,
total remote memory access latency, and program execution time. The predictive

protocol optimizes communication for repetitive producer-consumer or migratory



70

patterns; it does not target other sharing patterns (e.g., reductions, for which
high-level language support is available in data-parallel languages).

This chapter describes this combination of two techniques — a predictive cache
coherence protocol, and simple compiler analysis — for optimizing shared-memory
communication. The predictive protocol relies on and exploits customizable cache-
coherence protocols in a cache-coherent DSM system to build dynamic incremental
communication schedules — new requests not satisfied by the pre-send phase are
added to the schedule for subsequent iterations. This approach has the advantage
that it can be applied to adaptive applications with repetitive dynamic commu-
nication patterns that a compiler cannot analyze.

The second technique, simple compiler analysis, automatically applies a pre-
dictive protocol for applications with repetitive producer-consumer sharing pat-
terns for which a sequentially-consistent memory coherence protocol would incur
large overheads [9]. By contrast, compilers targeting message-passing machines
must identify and fully analyze run-time communication patterns in applications.
Our simple analysis only identifies program points at which potentially repetitive
communication takes place, but need not identify the patterns themselves.

We analyze the performance of cooperative communication optimization by
comparing the performance of optimized and non-optimized C** versions of three
applications on a 32-processor CM-5. They include Adaptive, an adaptive struc-
tured mesh relaxation, Barnes, a gravitational N-body code and Water, a molecu-
lar dynamics code. In all cases, the predictive protocol reduced total remote access

latency. In two cases, the optimized version is faster than the best non-optimized
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version (1.5x for Adaptive and 1.07x for Water). For Barnes, which shows excel-
lent spatial locality, the optimized and non-optimized versions are comparable.
This chapter proceeds as follows. Section 5.1 compares the approaches in
this chapter to previous work. Section 5.2 describes C**’s predictive protocol for
communication optimization, building on an outline of Blizzard’s default Stache
coherence protocol. Section 5.3 describes compiler analysis for C** programs to
identify repetitive communication patterns and place runtime system directives.
Section 5.4 shows how these optimizations can be applied to improve the perfor-

mance of three different applications. Section 5.5 concludes the chapter.

5.1 Related Work

Related work for repetitive communication support falls into four broad categories:
libraries, compilers, memory coherence protocols, and hardware.

A number of run-time libraries provide communication support for specific
classes of applications, and require explicit programmer actions to structure the
application using abstractions provided by the library. LPARX [26] and its
adaptive-mesh extension [27] provide a software infrastructure to support struc-
tured static and adaptive mesh methods on message-passing machines. By con-
trast, our approach implements automatic communication optimization for pro-
grams written in a data-parallel language running on customizable cache-coherent
DSMs (which also run on message-passing machines).

The most closely related work is the compiler-based Inspector-Executor ap-

proach that targets irregular communication patterns using the CHAOS [12] com-



72

munication library. For each parallel loop that specifies irregular communication
(e.g., using indirection arrays), the compiler generates an inspector and an ex-
ecutor. The inspector identifies non-local accesses at runtime and builds a com-
munication schedule, which the executor uses to transfer data before executing
the loop. A number of optimizations attempt to reduce the cost of the inspector
phase, which is typically expensive, and must be executed whenever the indi-
rection array changes. Ponnusamy et al. [36] note that if indirection arrays do
not change between iterations, the communication schedule need not be rebuilt.
Agrawal et al. [2] describe two optimizations that apply to distinct parallel loops
whose schedules overlap: coalescing, which merges the two schedules, or incremen-
tal schedules, which subtracts the common part from the second schedule. Our
work differs from the Inspector-Executor approach in three significant ways. First,
CHAOS targets message-passing multiprocessors while C** targets customizable
cache-coherent DSMs, which again can run on message-passing machines. Sec-
ond, our approach requires no separate inspector and executor code, because the
default protocol handles the problem of obtaining a copy of remote data which is
absent when the loop is executed. Third, our approach includes incremental com-
munication schedules, which are necessary for adaptive applications. Although
the CHAOS group has looked at means to build incremental schedules, we are
unaware of published descriptions of their approach or results.

Many DSM systems provide mechanisms to control a memory system to pro-
vide better support for parallel applications. Falsafi et al. [13] show that application-

specific protocols can significantly improve application performance, especially for
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repetitive producer-consumer sharing patterns for which write-invalidate policies
are inefficient. Their implementation included hand-written custom protocols for
each application. By contrast, C** uses a single protocol that is automatically
invoked by compiler directives.

Ramachandran et al. [37] propose additional hardware coherence primitives
(e.g, update and prefetch) to help the programmer optimize common sharing
patterns. Their SEL_.WRITE primitive provides functionality very similar to our
predictive protocol. Our approach adds compiler analysis for automatic predictive

protocol usage.

5.2 A Predictive Protocol for Repetitive Com-
munication Schedules

Blizzard’s default Stache coherence protocol provides sequentially consistent, trans-
parent shared memory using a write-invalidate protocol [38]. Shared memory pro-
vides a high level of abstraction, which makes compiler development easier, but
the write-invalidate policy incurs large overheads for producer-consumer sharing
patterns (which occur repeatedly in many iterative applications).

The C** predictive protocol optimizes shared-memory communication for repet-
itive producer-consumer and migratory sharing patterns in data-parallel programs.
It augments Stache to build communication schedules in one iteration and to pre-
send data using a schedule in subsequent iterations. If the application’s com-

munication pattern is repetitive, the predictive protocol reduces the number of
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high-latency, non-local shared data accesses. The predictive protocol builds in-
cremental communication schedules — new requests not anticipated previously
are identified through access faults and are added to the schedule for subsequent
iterations. The predictive protocol was developed using Teapot, a domain-specific
language that reduces the complexity of specifying and developing cache-coherence
protocols [10].

This section describes two parts of C**’s predictive protocol, the first part that
builds a communication schedule, and the second part that pre-sends data. Before
describing the predictive protocol, we outline Stache’s mechanisms and policies,
and briefly describe why a write-invalidate protocol is inefficient for producer-

consumer sharing patterns.

5.2.1 The Stache Shared-Memory Protocol

Stache implements sequentially-consistent shared memory using a directory-based
write-invalidate protocol[38]. Stache is built on Tempest, which is a parallel pro-
gramming substrate that supports fine-grain access control, i.e., at the cache block
granularity (32-128 bytes). Each cache block may be in one of three states: In-
valid, ReadOnly, or ReadWrite. Inappropriate accesses to a block (e.g., a
read access to an Invalid block) generate faults that are vectored to a user-level
handler in the Stache protocol.

Each shared-memory cache block in the system is mapped to its home node,
where it resides initially. The home node also maintains a block’s directory in-

formation, which lists multiple readers or a single writer, and is used to maintain
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consistency.

A read access to an invalid block invokes a user-level Stache fault handler,
which sends a message to the home node requesting a copy of the block. The
home node updates its directory information and sends a read-only block back to
the requesting processor. On a write access to an invalid or read-only block, the
home processor invalidates all outstanding read-only copies (to maintain sequen-

tial consistency) and sends a writable block to the requestor.

5.2.2 Inefficiencies in a Write-invalidate Protocol

It is widely known that write-invalidate protocols are inefficient for iterative
producer-consumer communication patterns (see, for example, [9]). Each data
transfer between producer and consumer involves four messages if a data item’s

home location is different from the producer and consumer:
1. The consumer requests a readable copy from the home node
2. The home node requests the producer to invalidate its copy
3. The producer returns its copy to the home node
4. The home node sends the consumer a readable copy

The producer follows a similar protocol to acquire a writable copy when it gener-
ates new values.
When producer-consumer sharing patterns can be identified in an application,

a write-update protocol can transfer a data item with one or two messages [13].
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However, update protocols do not ensure sequential consistency and cannot be

used in general.

5.2.3 Building Communication Schedules in the Predic-

tive Protocol

C**’s predictive protocol augments Stache to collect communication information
within a parallel phase. The protocol identifies, for each cache block requiring
communication due to faulting accesses, whether the block was read or written
(and the processors that read or wrote the block). The protocol relies on the
compiler to demarcate parallel phases in the program (Section 5.3).

Since all requests to a block are routed through the home node, the predictive
protocol augments Stache handlers at the home node. At run time, when the
home node receives a read (or write) request from a remote node for a cache
block, the augmented handler updates the communication schedule to mark the
block as read (or written) in that phase. If a block is read and written within
the same phase, it is marked as a “conflict” block. This can occur if there is false
sharing (i.e., when two processors access distinct parts of the block), or if parallel
tasks conflict.

The predictive protocol builds schedules incrementally, starting from an empty
schedule. During the first iteration, the protocol identifies faulting cache block
accesses and extends the schedule. In subsequent iterations, changes in the com-
munication pattern may cause faulting accesses to additional blocks, which are

identified and added to the original schedule. This allows the protocol to track
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evolving sharing patterns characteristic of adaptive applications.

The predictive protocol works well for incremental additions to a schedule,
but does not track deletions. When a processor no longer accesses a block, the
protocol transfers the block unnecessarily. For applications whose pattern changes
include a significant number of deletions, the schedule must be rebuilt often by

flushing the old schedule and building a new one.

5.2.4 Using Communication Schedules to Presend Data

At the beginning of a subsequent iteration of the parallel phase, compiler directives
invoke the pre-send phase of the predictive protocol on all processors to transfer
data according to the communication schedule. The goal of the pre-send phase is
to anticipate block requests and execute anticipated actions early.

Each processor executes one of two actions for blocks in the communication
schedule for which it is the home node. For a block marked “read”, the processor
sends invalidations to any current writer, and forwards readable copies to all pro-
cessors marked as readers. For a block marked “write”, the processor invalidates
current readers or writers, and forwards a writable copy to the marked writer.
Currently, there is no action for blocks marked “conflict”, since they occur very
rarely in programs with independent parallel threads of execution. One possible
action for such blocks is to anticipate the first stable block state (read or write)
before the conflict occurred.

Pre-sent copies are cached at remote nodes with appropriate access control tags

(ReadOnly or ReadWrite). Accesses to cached copies are handled transparently
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by Tempest, usually at full hardware speeds, without invoking the protocol or
other software intervention.

After all blocks in the schedule have been transferred, the protocol enforces
a global barrier synchronization to ensure that all protocol cache blocks states
are stable and match those expected by the default protocol. For efficiency, the
predictive protocol coalesces neighboring blocks and transfers them using bulk

messages to amortize message startup costs.

5.3 Identifying Potentially Repetitive Patterns

The predictive protocol relies on directives from the C** compiler to identify
points in the program where potentially repetitive communication patterns exist.
In C** as in other data-parallel languages, data-parallel operations clearly divide
a program’s execution into sequential and parallel phases (Section 2.1.1). The
C** compiler uses data-flow analysis to identify repetitive parallel phases that
require communication, and augments these phases with directives invoking the
predictive protocol.

Our simple compiler analysis is optimistic and conservative and does not at-
tempt to identify actual patterns of communication in the program (e.g., nearest-
neighbor communication), or even that the pattern is really repetitive in the sense
that data items requested in a previous iteration will be requested again in a fol-
lowing iteration. While such analysis is routine for programs with mostly static
communication patterns, it is infeasible for programs with dynamic communica-

tion patterns such as adaptive applications. Our analysis can wrongly identify
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a non-repetitive pattern as a repetitive one, leading to slower (but still correct)
execution of the program with the predictive protocol.

This section describes our data-flow analysis, which proceeds in two phases.
First, parallel functions are analyzed to broadly classify their access patterns. Sec-
ond, the sequential part of the program (which includes calls to parallel functions)

is analyzed to identify where annotations for parallel phases must be placed.

5.3.1 Parallel Function Analysis - Identifying Access Pat-

terns

Calling a parallel function on an Aggregate creates multiple function invocations,
one for each element of the Aggregate. Each parallel function invocation “owns”
the element of the Aggregate on which it operates. In addition to its “own”
element, each invocation may also access neighboring Aggregate elements or ele-
ments from other global Aggregates. For example, the parallel function update
in Figure 5.1 implements a simple unstructured mesh update on a bipartite mesh
(partitioned into primal and dual). The edge descriptors (and their correspond-
ing transfer coefficients) are stored with each mesh element.

The parallel function update in Figure 5.1 includes unstructured accesses to
the dual mesh, some of which require inter-processor communication. For each
parallel function, the C** compiler uses context-insensitive analysis to compile
a list of all Aggregate member accesses that potentially require communication.
Each access is (conservatively) categorized as a Home access (for example, access

to the “own” element), or a Non-Home access (for all other accesses). For



class Node {
double value;

int edges[MAX_EDGES]; double coeff[MAX_EDGES] ;

class Mesh(Node) [1) { /* Member functions */ +s

void update(parallel Mesh &primal, Mesh &dual) parallel
{
/* Loop over all in-edges */
for (int i = 0; i < primal[#0].in_degree; i ++)
primal [#0] .value -=

dual [primal [#0] .edges[i]] .value * primal[#0] .coeff[i];

Figure 5.1: Unstructured mesh update in C**

80
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example, the summary access list of function update in Figure 5.1 contains two

elements, (primal, Write access, Home), and (dual: Read access, Non-Home).

5.3.2 Compiler Analysis to Place Directives

The second step analyzes the sequential portion of the program which includes
calls to parallel functions. First, the compiler builds a flow graph of the sequential
program, mapping parallel function data access lists back to function call sites. As
our compiler currently does not support inter-procedural analysis, the sequential
portion is restricted to the main function. For example, Figure 5.2 displays the
control flow graph (CFG) for the main loop in the sequential portion of Barnes-
Hut (Section 5.4.2) annotated with access lists.

We perform data-flow analysis on the sequential section of the program to
determine, for each Aggregate at each program point, whether cached copies of
Aggregate elements may exist on remote processors due to unstructured read or
write accesses. If these copies cannot exist, a single copy of each element is present,
on its home processor, created by an owner write access. Analogous to reaching
definitions, we define the reaching unstructured accesses property, which is true
whenever cached copies of an Aggregate element may exist on remote processors.

The compiler uses a forward-flow, any-path data-flow analysis to compute
reaching unstructured accesses for each Aggregate at each program point, using a
framework identical to the reaching-definition problem. There are three transfer

functions for parallel function data accesses:

1. Owner write accesses kill reaching unstructured accesses, because the remote
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Figure 5.2: Control flow graph for the main sequential loop in Barnes-Hut. CFG

(a) is annotated with parallel function access patterns. CFG (b) is annotated with

runtime phase directives for the predictive protocol.
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copies are invalidated.

2. Unstructured write accesses kill reaching unstructured accesses, but generate

potentially new unstructured accesses.

3. Unstructured read accesses do not kill reaching unstructured accesses (be-
cause the protocol allows multiple readers), and generate unstructured ac-

cesses.

The compiler computes reaching unstructured accesses using an iterative bit-

vector based data-flow computation on the sequential control flow graph.
Results of the reaching unstructured access data-flow computation direct the

placement of run-time protocol directives. A parallel function call requires a com-

munication schedule and preceding predictive protocol phase if, for any Aggregate

1. The call is reached by unstructured accesses and includes owner write ac-

cesses, or

2. The call includes unstructured accesses itself, whether the reaching property

includes unstructured accesses or not.

The placement algorithm also includes one optimization to coalesce multiple
communication schedules. The compiler uses an inside-out pass on the CFG to
coalesce neighboring phases that include only home accesses, and moves schedules
out of loops that contain only home accesses (e.g., function center_of mass in
Figure 5.2). This optimization is analogous to communication schedule coalescing

in the inspector-executor model [2], and amortizes the overhead of the predictive
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protocol over multiple parallel functions. In Figure 5.2, this optimization allowed

a single directive for phase 3.

5.4 Measuring the Optimizations

In this section, we measure the effect of compiler-directed shared-memory commu-
nication on three iterative data-parallel scientific applications (Adaptive, Barnes,
and Water) which are described briefly in Table 5.1. Adaptive and Barnes have
dynamic repetitive communication patterns, and Water demonstrates a static
repetitive communication pattern. All three applications spend a non-trivial frac-
tion of execution time in remote access latency (Figures 5.3, 5.4, 5.5). We briefly
outline the algorithm for each application, and compare the performance of C**
versions with and without optimized communication. For Barnes, we also compare
both versions against a hand-optimized SPMD version (written by others) that
uses an application specific protocol for efficiency [13]. For Water, we compare
both versions against the Splash-2 version [50] that is optimized for transparent
shared memory.

Each performance graph compares the execution time of two or more versions
of each benchmark application relative to the fastest version of that application.
All execution times were measured on a 32-processor Thinking Machines CM-5

with Blizzard [45]. Each bar in the graph is divided into three sections:

Remote data wait Time spent waiting for non-local memory accesses to com-

plete
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Program Brief Description Data set

Adaptive | Structured adaptive mesh | 128x128 mesh, 100 iterations

Barnes Hierarchical N-body 16384 bodies, 3 iterations

Water Molecular dynamics 512 molecules, 20 iterations

Table 5.1: Benchmark applications
Predictive protocol Time spent in the pre-send phase of the predictive protocol

Compute+Synch Time spent in computation and synchronization. This por-
tion of the execution time varies between different versions of the same

program because of differences in synchronization time.

We also experimented with different cache block sizes for each application. In
general, the predictive protocol worked best for small cache blocks (the smallest
being 32-bytes), while the unoptimized or hand-tuned SPMD codes were able to
exploit larger cache blocks effectively. In addition to the 32-byte block compar-
ison between unoptimized and optimized codes, we also present execution times
using programs with larger cache block sizes which minimized execution time for

unoptimized or hand-optimized codes.

5.4.1 Adaptive

Adaptive is a structured mesh calculation that computes electric potentials in a
box. The program imposes a mesh over the box and computes the potential at

each point by averaging its four neighbors. At points where the gradient is steep,
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Figure 5.3: Execution time for 4 C** versions of Adaptive — C** versions with
and without optimized communication at 2 different cache block sizes. Numbers

in parentheses indicate cache block sizes.

finer detail is necessary and the program subdivides the cell into four child cells.
This process iterates until the mesh relaxes. Initially, the mesh is represented
by a two-dimensional array, and dynamically allocated quad trees capture cell
subdivision. Each iteration of the program consists of a red-black sweep over the
mesh computing averages. Within each sweep, each cell updates values in its quad
tree, reading values from neighboring points. The predictive protocol optimizes
data movement from neighbor reads in the quad tree.

Figure 5.3 shows that the predictive protocol successfully reduces shared-data
wait time by pre-sending data. The protocol also indirectly reduces synchroniza-
tion time in Adaptive, resulting in significantly lower total execution time. Syn-
chronization time is reduced because load imbalance in Adaptive implies that the
shared-data wait time is distributed unevenly among processors, and differences

in wait time contribute to synchronization time on lightly loaded processors. At a
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larger cache block size of 256 bytes (the best case for the unoptimized program),
the predictive protocol is less effective because it transfers larger amounts of data,
some of which may be redundant. The best optimized version of Adaptive is 1.56x

faster than the best unoptimized version.

5.4.2 Barnes

Barnes [47] simulates the movement of bodies in a gravitational system over time.
The bodies are modeled as point masses that exert gravitational forces on other
bodies. The algorithm computes forces between bodies which are used to update
body positions in each time step. Rather than computing all N? forces, Barnes
approximates the force exerted by a distant collection of bodies by that of a point
mass at the center of mass of the collection.

Barnes uses an oct-tree to represent bodies in 3-dimensional space. Each node
in the tree represents a region in space, with a child representing one octant of its
parent’s space. The tree is unbalanced and deeper in regions of high body density.
To calculate the force on a body, the algorithm performs a depth-first traversal
of the tree. If an interior node is sufficiently far away from the body, the bodies
in that region are approximated by a point mass at the tree node. Otherwise,
the algorithm “opens” up the interior node and traverses its subtrees. If the force
computation encounters a body at the leaf of the tree, it computes interactions
with that body.

The Barnes algorithm in C** includes unstructured accesses to tree nodes

during two phases, the force computation phase, and the tree-build phase, with
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Figure 5.4: Execution time for 5 versions of Barnes — C** versions with and
without optimized communication at 2 different cache block sizes, and hand-

optimized SPMD. Numbers in parentheses indicate cache block sizes.

the center-of-mass calculation in between. The compiler inserts directives for 4
parallel phases in the program where transitions between non-home and home
accesses occur (Figure 5.2).

Figure 5.4 shows that communication optimization reduces shared-memory
wait time significantly for 32-byte cache blocks. However, Barnes shows good
spatial locality and the unoptimized version benefits significantly from 1024-byte
blocks making it marginally faster than the optimized version. Both 1024-byte
versions are slightly faster than a hand-optimized SPMD version of Barnes [13]

that uses a write-update protocol for efficient shared-memory communication on

the CM-5.
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Figure 5.5: Execution time for 3 versions of Water — C** with and without
optimized communication, and shared-memory Splash. Numbers in parentheses

indicate cache block sizes.
5.4.3 Water

Water [47] evaluates forces and potentials in a system of water molecules over
a number of time steps. The potential of the system includes inter-molecular
potentials arising from interactions between molecules. The program computes
interactions between all pairs of molecules that lie within a spherical cutoff range
equal to half the length of the box enclosing all molecules. In the data-parallel
implementation of Water, each molecule potentially computes interactions with
half the remaining molecules following it in the ordered data set.

Compiler-directed communication optimizations target the interaction compu-
tation phase which uses a static repetitive producer-consumer sharing pattern —
a molecule’s position updated in one iteration is read by 5 other molecules in the
following iteration.

Communication optimization reduces shared-memory wait time for Water (Fig-
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ure 5.5), but results in small execution time improvements overall (1.05x). The
optimized version is 1.2x faster than the Splash version [50], which is optimized
for transparent shared memory, and does not utilize custom protocols or message-
passing primitives for communication. The cache block sizes were chosen to show

the best case for each version.

5.4.4 Discussion

The predictive protocol decreases remote memory access latency at the cost of an
extra pre-send phase and the cost of building communication schedules in aug-
mented protocol handlers. This technique is beneficial on multiprocessor machines
with significant remote memory access latency, such as Blizzard on the CM-5 (200
microseconds average remote access latency), or networks of workstations with-
out hardware support for shared memory. The tradeoff is likely to be different for
shared-memory multiprocessors or hardware-assisted DSMs, which have smaller
remote access latencies.

The predictive protocol also coalesces neighboring cache blocks in the pre-
send phase to amortize message startup costs over large messages. The benefits
of this optimization should extend uniformly to all classes of distributed-memory
multiprocessor machines, possibly with better results than on the CM-5 network

which is optimized for small messages.
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5.5 Summary

Many scientific applications simulate physical systems using iterative parallel com-
putations. Typically, these applications involve communication patterns that are
also repetitive. This chapter demonstrates that cooperation between a data-
parallel language compiler and a predictive protocol in a cache-coherent DSM can
automatically improve shared-memory communication for repetitive producer-
consumer or migratory communication patterns. The compiler uses simple static
analysis to identify points in the program where potentially repetitive communica-
tion patterns exist. The predictive protocol augments the default shared-memory
protocol to use communication schedules generated in one iteration to pre-send
data in subsequent iterations.

The combination of compiler-analysis and memory system support gives this
approach two advantages. First, dynamic run-time support from the memory sys-
tem allows our approach to optimize adaptive problems whose reference patterns
cannot be analyzed by a compiler and which incur large overheads in compiler-
implemented shared-memory approaches. Second, communication pattern anal-
ysis in the compiler enables automatic custom protocol usage. This approach
inherits some of the advantages of application-specific protocols, but is far sim-
pler for a programmer.

Experiments with three applications show that pre-sending data with this
approach effectively reduces the amount of time spent waiting for shared data
when compared to the request-response model of a write-invalidate coherence

protocol. In two cases, the optimized program was 1.05x and 1.50x faster than
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the unoptimized version. In the third case, the unoptimized program was able to

exploit a larger cache block size to run slightly faster than the optimized program.
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Chapter 6

Conclusion

Data-parallel programming languages provide a promising solution to the problem
of developing portable parallel applications. They include a number of high-level
abstractions, such as parallelism on data and global variable name space, that
support rapid parallel program development. The large number of data-parallel
programming languages (e.g., HPF [25], NESL [7] and pC++ [32]) is a good
testament to their popularity. However, languages by themselves are not useful
unless they can be compiled for efficient execution. Considerable research has been
devoted to compiling high-level data-parallel programs for scalable distributed-
memory parallel machines. Much of this work has focused on communication
optimization for programs that exhibit regular patterns of communication, which
a compiler can analyze precisely and transform to an efficient executable with
optimized communication.

This thesis presents three new techniques that enable efficient execution of a

larger class of data-parallel programs, specifically, programs with irregular and
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dynamic communication patterns. Two of these techniques exploit user-level
cache-coherence protocols in a cache-coherent distributed shared-memory system.
These techniques were developed for the data-parallel language C** [31] targeting
the Tempest interface [38]. Tempest provides both shared memory and message-
passing mechanisms on distributed-memory machines, allowing a compiler to im-
plement a shared address space easily, and optimize communication for specific
communication patterns.

The first technique targets the implementation of conflict-free data access in
C**’s parallel operations [30]. C** clearly defines the semantics of conflicting
memory accesses in coarse-grain parallel tasks to avoid data-access conflicts, and
allow nearly-deterministic execution. We explored two ways in which a compiler
and run-time system can use copy-on-write to implement the high-level semantics
of C**. For parallel functions with regular data-access patterns that a compiler
can analyze, the compiler can insert code in the program to maintain copies.
For functions with access that a compiler cannot identify precisely (e.g., through
pointers), the compiler cooperates with a Loosely-Coherent Memory (LCM) sys-
tem that extends the coherence protocol to create copies at a fine granularity.
Using performance data from three variants of mesh relaxation codes, we show
that these two techniques complement one another. Compiler-copying is efficient
when compiler data access analysis is precise, and LCM works well when the com-
piler cannot precisely identify data accesses in a program. The benefit of providing
two alternatives is that a compiler can choose the efficient alternative based on

the precision of its data access analysis, and even use both in a program.
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The second technique, user-defined reductions, describes how and why data-
parallel languages must extend reductions to allow user-defined operators. Reduc-
tions use a binary operator to combine multiple values that collide when assigned
to a target. Reductions are extremely common in parallel applications, but most
parallel languages only provide a predefined set of reductions. User-defined reduc-
tions extend reductions in two important ways: they allow powerful combining
operations, such as location reductions or building a list of colliding values, and
they extend reductions to user-defined data types. This thesis demonstrates the
advantages of user-defined reductions in a data-parallel language, focusing on the
benefits of extending reductions to user-defined data types. We show that they
provide a simple intuitive specification of particle movement in a particle-in-cell
code when compared to two other well-known methods. We also present a sim-
ple implementation of user-defined reductions in a coarse-grain data-parallel lan-
guage, which relies on simple message-passing support from the run-time system.
We analyze the performance of user-defined reductions by comparing the execu-
tion time of two versions each of four benchmark applications (Table 4.2), one in
a data-parallel language with user-defined reductions and the other SPMD code
optimized with application-specific communication for the reduction pattern. For
applications with dynamic communication patterns, the execution times of the
C** and SPMD programs differed by at most 10%. The C** version of EM3D,
which exhibits a static repetitive reduction pattern, was up to 2.6x slower than the
SPMD version, but could be optimized using the Inspector-Executor compiling

paradigm.
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The third technique describes how a data-parallel language compiler and a
predictive cache-coherence protocol can implement shared-memory communica-
tion efficiently for applications with unpredictable but repetitive communication
patterns. The compiler uses data-flow analysis to identify points in the program
where potential repetitive communication patterns exist. A predictive protocol
in the runtime system augments the default shared-memory protocol to build a
communication schedule for one iteration and utilize a schedule to pre-send data
to satisfy data requests in following iterations. As a result, the predictive proto-
col reduces the number of shared-memory data requests that cannot be satisfied
locally, and the total remote memory access latency. The predictive protocol is
incremental and applies to adaptive applications. Simple compiler analysis auto-
matically applies the predictive protocol for applications with repetitive producer-
consumer sharing patterns for which a sequentially-consistent memory coherence
protocol would incur large overheads [9]. We show that compiler-directed shared-
memory communication is effective at reducing remote latency on three appli-
cations (Adaptive, Water, and Barnes) on a 32-processor CM-5. For Adaptive
and Water, the optimized version was faster than the best-optimized version. For
Barnes, which shows excellent spatial locality, the optimized and non-optimized
versions are comparable.

All three techniques presented in this thesis target efficient execution of non-
regular applications that a compiler finds difficult to analyze. The variety of
benchmarks presented in this thesis shows that these techniques are effective,

and widens the class of data-parallel programs to include irregular and dynamic
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applications. Thus, this thesis takes one more step towards the goal of providing

portable, efficient, and high-level languages to help develop parallel applications.



Appendix A

C** Benchmarks
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Name Brief Description Speedup
CM-5 | COW

Stencil Structured mesh

Adaptive | Structured adaptive mesh 5.7

EM3D Unstructured mesh 11.8

Moldyn Molecular dynamics 23.9 5.1

Water Molecular dynamics 13.1

DSMC Particle-in-cell 18.8 8.7

FFT Fast Fourier Transform 8.3

Barnes Hierarchical N-body 21.7

FMM Hierarchical N-body

QCD Quantum chromodynamics

Table A.1: A list of benchmarks in C**
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