
APPLYING PROGRAMMING
LANGUAGE IMPLEMENTATION
TECHNIQUES TO PROCESSOR

SIMULATION

by

Eric C. Schnarr

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN — MADISON

2000

© Copyright by Eric C. Schnarr 2000
All Rights Reserved

i

ACKNOWLEDGMENTS

I am grateful to my advisor James R. Larus for his insights that helped define the direction of

my work, and his comments that helped me express it more eloquently. Without Jim’s support, I

would not have been able to pursue my ideas for applying programming language design and opti-

mization techniques to simulation. I am also grateful for Jim’s continued support, even after he

left academia for a job in industry.

I would like to thank Mark Hill for becoming my advisor in Jim’s absence, for his advice, and

for keeping me on track in finishing my Ph.D.

This research is supported in part by Wright Laboratory Avionics Directorate, Air Force

Material Command, USAF, under grant #F33615-94-1-1525 and ARPA order no. B550, NSF

NYI Award CCR-9337779, NSF Grants CCR-9101035, MIP-9225097, MIP-9625558, EIA-

9971256, and CDA-9623632, DOE Grant DE-FG02-93ER25176, an Intel Graduate Fellowship,

and donations from Compaq Computer Corporation, Intel Corporation, and Sun Microsystems.

ii

TABLE OF CONTENTS

List Of Figures viii

List Of Tables x

I. Introduction 1

1.1. Instruction-Level Simulation . 2

1.2. Programming Language Optimizations . 6

1.3. My Contributions . 8

II. Related Work 11

2.1. Accelerating Processor Simulation . 11

2.1.1. Instruction-Level Simulators . 12

2.1.2. Trace Sampling . 18

2.1.3. Compiler Optimization for Verilog and VHDL . 21

2.2. Relevant Programming Language Techniques . 22

2.2.1. Partial Evaluation . 23

2.2.1.1. What is partial evaluation? . 23

2.2.1.2. Examples of Partial Evaluation . 25

2.2.2. Run-Time Code Generation . 29

iii

2.2.3. Architecture Description Languages . 33

III. Memoization Of An Out-Of-Order Processor Simulator 38

3.1. The Structure of FastSim v.1 . 40

3.1.1. Direct-execution & OOO Simulation . 42

3.1.2. Simulating Speculative Execution . 44

3.2. Fast-Forwarding . 46

3.2.1. µ-architecture Simulator . 48

3.2.2. Memoization Cache and Fast-Forwarding . 51

3.2.3. Limiting Memoization Cache Size . 55

3.3. FastSim Performance . 56

3.4. Remarks on FastSim v.1 . 63

IV. Facile—The FastSim Simulation Language 67

4.1. Architecture Description . 69

4.1.1. Tokens and Token Fields . 71

4.1.2. Instruction “Pattern” Encodings . 73

4.1.3. Instruction Semantics . 78

4.2. Controlling Memoization . 82

4.2.1. Implicit Outer Loop . 82

4.2.2. Top-Level Simulation Function . 83

4.2.3. Static, run-time static, and dynamic code & data . 86

iv

4.3. Other Features . 92

4.3.1. Limitations to Simplify Compiler Analysis . 92

4.3.2. Special Datatypes . 95

4.3.3. A Simple interface to C . 97

V. Facile Compilation and Automatic Simulator Memoization 101

5.1. Facile Compilation . 101

5.1.1. The Facile Compiler . 103

5.1.1.1. Pattern Normalization . 104

5.1.1.2. Type Checking . 106

5.1.1.3. Converting Switch Statements . 109

5.1.1.4. Function Inlining . 110

5.1.1.5. Generate C Code . 113

5.1.2. The FastSim Run-time Library . 114

5.1.2.1. Layout of Simulator Memory . 115

5.1.2.2. Run-Time Support for Facile Features . 117

5.1.2.3. Support for the Solaris Operating System . 118

5.2. The Fast-Forwarding Optimization . 120

5.2.1. Overview of Simulator Memoization . 120

5.2.2. Binding Time Analysis (BTA) . 127

5.2.2.1. Binding-Time Data . 127

5.2.2.2. Fixed-Point Iteration . 129

v

5.2.2.3. External Functions & Variables . 132

5.2.2.4. Visualizing BTA Results . 133

5.2.3. The Memoization Cache . 134

5.2.3.1. Index Entries . 135

5.2.3.2. Action Numbers & Run-Time Static Data Records 137

5.2.3.3. Dynamic Result Lists . 138

5.2.4. The Fast Simulator . 140

5.2.4.1. Dynamic Control-Flow Analysis . 141

5.2.4.2. Dynamic Basic Blocks & Action Numbers 141

5.2.4.3. Generated C Code . 143

5.2.5. The Slow Simulator . 148

5.2.5.1. Two copies of every variable . 148

5.2.5.2. Writing actions to the memoization cache . 149

5.2.6. Recovering From a Memoization Cache Miss . 151

VI. Writing Efficient Memoizing Simulators (& Performance Results) 153

6.1. Out-Of-Order Processor Simulation . 154

6.1.1. Design of the Out-Of-Order Simulator . 155

6.1.2. Out-Of-Order Simulator Performance . 164

6.2. Performance Model for Fast-Forwarding Simulators . 169

6.2.1. The Fast-Forwarding Performance Equation . 170

6.2.1.1. Slow Simulator Performance . 175

vi

6.2.1.2. Fast Simulator Performance . 179

6.2.1.3. Memoization Miss Recovery . 182

6.2.2. Memoization Cache Size . 185

6.3. Designing an Efficient Memoizing Simulator . 187

6.3.1. Base Simulator Version . 190

6.3.2. More Simulation Per Call To Main . 192

6.3.3. Changing the Proportion of Dynamic Code . 199

6.3.4. Combining Run-Time Static Values . 202

6.3.5. Removing Actions Via Function Inlining . 204

VII. Future Optimizations 208

7.1. Run-Time Code Generation (RTCG) . 209

7.1.1. Implementation 1: Basic Block Code Templates . 209

7.1.2. Implementation 2: Optimization Across Basic Blocks 213

7.2. Further Optimization . 216

7.2.1. Partial Index Verification . 217

7.2.2. Live Variable Analysis . 218

7.2.3. Optimizing Instruction Decode . 220

VIII. Conclusion 222

8.1. Contributions . 222

8.2. Future Work . 228

vii

8.2.1. Memoization With Run-Time Code Generation (RTCG) 228

8.2.2. Memoizing Multi-Processor Simulators . 230

8.2.3. Memoizing Full System Simulators . 231

8.2.4. Memoizing Other Micro-Architecture Structures . 232

APPENDIX A: Facile Language Reference 234

APPENDIX B: A Complete Simulator in Facile 264

Bibliography 284

viii

LIST OF FIGURES

1Intr 2Rela FIG. 2.1: Sampling as vertical and horizontal time-space slices . 19

FIG. 2.2: On-line vs. Off-line partial evaluation . 24

3Memo FIG. 3.1: The dynamic execution micro-architecture modeled by FastSim 40

FIG. 3.2: Overview of the FastSim simulator . 42

FIG. 3.3: Instrumentation for speculative direct execution . 45

FIG. 3.4: Memoization of FastSim’s µ-architecture simulator. . 47

FIG. 3.5: A µ-architecture configuration and associated actions . 52

FIG. 3.6: Action chains in the memoization cache . 55

FIG. 3.7: Memoization performance under the cache flush replacement policy 61

4Faci FIG. 4.1: Arguments to main . 69

FIG. 4.2: Instruction Encoding Descriptions in Tables . 71

FIG. 4.3: SPARC & Intel x86 instruction tokens . 72

FIG. 4.4: SPARC-V9 token and field declarations . 73

FIG. 4.5: SPARC-V9 instruction encodings . 76

FIG. 4.6: Pattern cases in a Facile switch statement . 79

FIG. 4.7: Semantic declarations for several SPARC-V9 instructions . 81

FIG. 4.8: Simple Simulator #1 . 84

FIG. 4.9: Simple Simulator #2 . 85

FIG. 4.10: Simulator code with binding time labels . 89

FIG. 4.11: External function declarations . 99

5Faci FIG. 5.1: Stages of compilation . 102

FIG. 5.2: Normalizing pattern expressions . 105

FIG. 5.3: Type inference of variables and functions . 106

FIG. 5.4: Algorithm to simplify pattern cases . 111

FIG. 5.5: Address space organization . 115

FIG. 5.6: Structure of a fast-forwarding simulator . 121

FIG. 5.7: Binding-time division of a simple simulator . 122

ix

FIG. 5.8: Dynamic control flow graph and basic blocks . 122

FIG. 5.9: Sample of fast simulator code . 124

FIG. 5.10: Sample of slow simulator code . 125

FIG. 5.11: Fixed-point iteration algorithm for binding-time analysis . 130

FIG. 5.12: Structure of data in the memoization cache . 135

FIG. 5.13: Memoization Index Entries . 137

FIG. 5.14: Memoization Result Lists . 139

FIG. 5.15: Dynamic control-flow analysis . 142

FIG. 5.16: Dynamic basic blocks and action numbers . 143

FIG. 5.17: Sample of fast simulator C code . 144

6Writ FIG. 6.1: Out-Of-Order Processor Model . 156

FIG. 6.2: Sample Instruction Queue . 158

FIG. 6.3: Out-of-order simulator performance . 165

FIG. 6.4: Quantity of data memoized for out-of-order simulation . 166

FIG. 6.5: Breakdown of simulator execution time . 168

FIG. 6.6: Base simulator performance . 191

FIG. 6.7: Base simulator cache size . 192

FIG. 6.8: Looping simulator source . 193

FIG. 6.9: Looping simulator cache size . 195

FIG. 6.10: Performance vs. increased looping . 197

FIG. 6.11: Cache size vs. increased looping . 198

FIG. 6.12: Run-time static register window source . 200

FIG. 6.13: Performance with rt-stat windows . 201

FIG. 6.14: Cache size w/ rt-stat windows . 201

FIG. 6.15: Combining Run-Time Static Values . 203

FIG. 6.16: Performance with function inlining . 206

7Futu FIG. 7.1: C code for basic block templates . 211

8Concl

x

LIST OF TABLES

1Introduc 2Related TABLE 2.1: Summary of contemporary instruction level simulators. . 12

3Memoizat TABLE 3.1: FastSim’s processor model parameters. . 41

TABLE 3.2: Performance of FastSim on the SPEC95 benchmarks. 57

TABLE 3.3: FastSim vs. SimpleScalar . 58

TABLE 3.4: Simulation skipped over by memoization . 59

TABLE 3.5: Measurement of memoization details. . 60

4Facile—Th 5Facile 6Writing TABLE 6.1: Out-of-order processor model parameters. 155

TABLE 6.2: Out-of-order simulation work breakdown . 167

TABLE 6.3: Base simulator configuration. 190

TABLE 6.4: Looping simulator configuration. 194

TABLE 6.5: Looping simulator configuration (optimized) . 196

TABLE 6.6: Simulator configurations with increased looping. . 197

TABLE 6.7: Simulator configurations for run-time static windows experiments. 199

TABLE 6.8: Simulator configurations for value combining experiments. 204

TABLE 6.9: Simulator configurations for experiments with inlining. 205

7Future O 8Conclusio

1

CHAPTER I: Introduction

Instruction-level simulators are used for a variety of applications, where the target hardware is

either unavailable or lacks features only possible in simulation. But as processor designs have

grown more complex and contain more implicit and explicit parallelism, simulators for these

designs have become slower and more difficult to implement. For example, while improvements

in simulator design may allow a simulator of a simple in-order processor pipeline to run with less

than ten times slowdown, typical simulators for out-of-order processors suffer several thousand

times slowdown.

I develop several techniques to implement and optimize instruction-level micro-architecture

simulators. New variations of programming language optimizations, such as partial evaluation

and memoization, improve the performance of out-of-order processor simulation by an order of

magnitude over traditional simulation techniques. A new special-purpose programming lan-

guage—called Facile—simplifies the implementation and optimization of instruction-level simu-

lators. The result is that complex micro-architecture simulators can be written in Facile, then

automatically optimized using partial evaluation, memoization, and potentially even run-time

code generation to run faster than traditional, hand-coded simulators.

Section 1.1 describes what is meant by instruction-level simulation, what these simulators are

used for, and why optimizing their performance is so important. Section 1.2 describes program-

2

ming language techniques that I have adapted to micro-architecture simulation. Section 1.3 high-

lights my contributions and outlines the organization of this dissertation.

1.1. Instruction-Level Simulation

Instruction-level simulation focuses on emulating machine instructions rather than modeling

individual gates and wires. Instruction-level simulators model an instruction set architecture, but

can also include cycle accurate models of some or all of a target micro-architecture. By contrast,

logic-level simulators model hardware implementations in terms of logic gates and wires, and cir-

cuit-level simulators model circuits in even more detail. An instruction-level simulator can be

cycle accurate, but could not be used to determine a hardware implementation’s maximum clock

speed, for example, the way a detailed, circuit-level simulator can.

Instruction-level simulation is an essential part of research and development of new proces-

sors. In processor development, instruction-level simulators at several levels of detail are used to

refine processor designs. Multiple levels of simulation are necessary because simulators can exe-

cute faster by ignoring details that are not relevant in the early stages of processor design. ISA

simulators that only simulate instruction semantics are generally very fast and provide a reference

point for correct execution of instructions. They also allow development of compilers and other

system software before actual hardware is available.

Performance modeling of individual micro-architecture components—instruction and data

caches, the execution pipeline, etc.—slows down simulation, but allows designers to experiment

3

with various component designs. The most detailed instruction-level simulators model an entire

processor micro-architecture, which can show how components interact to affect overall processor

performance. Beyond this point, extremely slow logic-level and circuit-level simulators are used

to model the detailed processor implementation, and a sufficiently detailed circuit-level descrip-

tion can be automatically synthesized into a circuit layout suitable for etching onto a chip.

In research, simulators allow new technologies to be studied without the time and expense of

constructing real hardware. Instruction-level simulators can focus on the specific parts of a com-

puter system being studied (e.g. data cache implementation or branch predictors), or simulate an

entire computer system, including the operating system and device hardware [64][45]. Instruc-

tion-level simulators are commonly used by architecture researchers to study facets of processor

performance, because they are usually accurate enough to validate new architecture ideas and to

collect data about the components of existing processor architectures. Hardware counters or logic

probes are another way to study processor behavior, but these are limited by the counters imple-

mented in existing hardware and the signals visible to a logic probe. Another motivation for using

simulators in research is that their internal workings are more accessible than the internals of

actual hardware, and so more data on the internal behavior can be collected.

Architecture simulators are also useful in education. A simulator can provide students with a

simplified machine interface for learning about instruction sets and assembly language program-

ming. As with researchers, a simulator provides students with access to the internal working of a

4

processor’s micro-architecture. Students can use simulators to experiment with pipelines, caches,

branch predictors, and other basic hardware components.

Another use for instruction-level simulators is to run software on systems with hardware other

than that for which the software was compiled. Such simulation allows system software to be

developed before a working chip is available. Using this technique, operating systems, device

drivers, compilers, and other system tools have been developed concurrently with the develop-

ment of their target hardware, hence reducing the time to get a new system operational [9]. More-

over, a sufficiently fast emulator—e.g., FX!32 [15]—can allow software products written for one

architecture to run on a completely different host architecture.

Instruction-level simulators are used in these applications, rather than more detailed hardware

simulators because of their performance. Logic-level simulators are implemented using a fine

grained event-driven simulation that is difficult to optimize. Circuit-level simulators solve matri-

ces of equations relating circuit voltages, currents, and resistances, and execute even more slowly.

Instruction-level simulators, which model only interesting processor behaviors, are usually much

faster than these other simulators for the same micro-architecture. Instruction-level simulators

need only model the micro-architecture components of interest, and are usually written in a proce-

dural programming style using languages like C, which makes them inherently faster to execute.

An instruction-level simulator that emulates only the semantic behavior of an ISA can be

made to simulate target programs with little or no slowdown, compared to executing target pro-

5

grams on actual hardware. For example, FX!32 executes 4.4 Alpha instructions to emulate one

Intel x86 instruction on average. On a 500 MHz Alpha, FX!32 has performance between that of a

200 MHz Pentium and a 200 MHz Pentium Pro [15]. Adding more detail to the simulated proces-

sor model—e.g., simulating instruction and data caches or collecting the cycle count and other

statistics for a particular processor pipeline—slows down execution of the simulator and increases

the complexity of its implementation. Instruction-level simulation of a detailed, cycle accurate

model of a complex out-of-order processor (e.g. MIPS R10000) typically incurs a several thou-

sand times slowdown over execution on actual hardware [13][54][64], and it takes several man-

months to implement and debug the simulator.

Although the hardware used to run simulations is becoming faster, simulator complexity and

run-time cost is also increasing. Micro-architectures are becoming more complex, and this is

reflected in the increased complexity and greater execution cost of the simulators that model

them. Researchers also require larger, longer running benchmarks for studies of new hardware or

to validate new micro-architecture innovations. These factors combine to make processor simula-

tion more time consuming, and simulators more difficult to implement.

A variety of technologies have been used to increase the performance of instruction-level sim-

ulators. Some strategies focus on interpreting target instructions faster by transforming them into

more efficient representations. In the extreme, target instructions are re-compiled directly into the

native instruction set of the simulation host. Other strategies rely on statistical sampling to reduce

the simulation work needed to collect data from large benchmarks. Processor statistics can be col-

6

lected for a small set of randomly selected samples from the target execution, then results for the

entire execution inferred from these samples. Accuracy is a big concern with statistical simulation

techniques, since only part of a target program is simulated and the samples may be simulated

inaccurately due to cold-start bias1.

1.2. Programming Language Optimizations

My approach is to apply technologies developed to optimize programming languages to opti-

mize instruction-level processor simulators. Primarily, I have adapted memoization—a well-

known technique for optimizing functional programming languages—for use in micro-architec-

ture simulation. Additionally, I use algorithms, commonly used for partial evaluation, to find the

parts of a simulator that can be skipped over by memoization. These algorithms simplify the

implementation of a memoizing simulator, by adding memoization automatically to a simulator

implementation. Run-time code generation can also be used to further optimize a memoizing sim-

ulator. These technologies are briefly described below.

MEMOIZATION. Memoization involves caching the results of function calls, indexed by the func-

tion being called and the value of its arguments. When a function is called again with the same

argument values, then its result is looked up in the memoization cache rather then executing the

function a second time. Traditional memoization is most applicable to pure functional languages

because function calls in these languages have no side effects.

1. Cold-start bias refers to inaccuracies caused by micro-architecture state that is not maintained between
samples—e.g., the set of data in a cache or branch predictor—but is needed to accurately simulate sam-
pled instructions.

7

My variation—called fast-forwarding—detects and skip over repeated work in a simulator.

Unlike memoization, fast-forwarding caches simulation code rather than simple return values.

Given a subset of the simulated micro-architecture state, some parts of a simulator are guaranteed

to produce the same results and can be skipped over. What is cached is the parts of a simulator that

may not produce the same results, indexed by the given subset of micro-architecture state. Fast-

forwarding greatly accelerates some detailed micro-architecture simulation, because the same

instruction sequences are simulated many times, producing nearly the same micro-architecture

state and simulation results each time.

PARTIAL EVALUATION . This refers to the partial execution of a program given only part of its

input data. Consider a program p that accepts input . The effect of partial evaluation

is to specialize p together with part of its input in1 to produce a new program pin1 . The special-

ized program pin1 can then be called with input in2 to compute the same result as

 (i.e., p called with input). The benefit of partial evaluation is that

pin1 is often faster than the original program p.

Algorithms used in partial evaluation to direct how programs are specialized, direct which

code to cache in a fast-forwarding simulator. The idea is that a subset of the simulated micro-

architecture state is known and partial evaluation can be used to specialize the simulator for this

state. The difference between fast-forwarding and partial evaluation is that partial evaluation is a

compile time optimization, whereas simulator specialization must occur at run-time.

in1 in2[,]

p[[]] in1 in2[,] in1 in2[,]

8

RUN-TIME CODE GENERATION. Run-time code generation (RTCG) uses run-time data values to

produce specialized code at run-time. Because specialization is performed at run-time, more is

known about a program’s data values and faster specialized code can be produced. This is essen-

tially how fast-forwarding works: Simulator code is specialized with run-time data values at run-

time, using annotations computed at compile-time. The difference is that RTCG systems generate

machine instructions at run-time. Currently, my implementations of fast-forwarding interprets

memoized data rather than memoizing and executing machine instructions.

1.3. My Contributions

My contribution is the adaptation of several programming language techniques to improve the

performance of instruction level processor simulators and to simplify their implementation.

• Fast-forwarding is my new variation on memoization that accelerates the simulation of com-

plex micro-architectures.

• Facile is my new special purpose language for writing instruction-level micro-architecture

simulators. It is designed to both simplify simulator implementation, and constrain programs

to simplify the analyses and optimizations performed by Facile’s compiler.

• Partial evaluation algorithms allow the Facile compiler to add memoization to a micro-archi-

tecture simulator automatically. Run-time code generation could be used to further optimize

these memoizing simulators.

9

Chapter II discusses related work. There are many instruction-level simulators, and a variety

of implementation techniques have been used to make them run fast. Some techniques simulate

each instruction more efficiently, other techniques accelerate simulation by only simulating part

of a program’s execution trace. Chapter II also discusses partial evaluation and run-time code gen-

eration: what they are and some examples of their use. Finally, work related to architecture

description languages is discussed, including my previous work on SADL—the Spawn Architec-

ture Description Language [39].

Chapter III applies memoization, along with other techniques such as direct execution, to opti-

mize a detailed, cycle accurate simulator for an out-of-order processor. The resulting simulator—

FastSim v.1—runs an order of magnitude faster than the SimpleScalar out-of-order simulator

[13], while simulating a similarly complex microarchitecture. Most of this performance improve-

ment was the result of memoization. The drawback of this simulator is its complexity and inflexi-

bility. The implementation of memoization was difficult to get right and the resulting simulator is

difficult to modify without breaking it.

Chapters IV and V describe the special purpose language Facile and its compiler, which is

used to produce memoizing simulators, respectively. Facile is designed to make memoizing simu-

lators more flexible and easier to implement. Special syntax, derived loosely from the New Jersey

Machine Code Toolkit specification language [60], allows programmers to easily describe an

instruction set architecture. More general programming language constructs allow implementa-

tion of the rest of an instruction-level micro-architecture simulator. In the compiler, partial evalua-

10

tion algorithms automatically identify which parts of a simulator, written in Facile, can be skipped

over by memoization, then it generates an optimized simulator that uses memoization.

Chapter VI discusses the performance of memoizing simulators written in Facile. In an out-of-

order processor simulator, memoization was very effective at accelerating simulator execution.

An out-of-order processor simulator written in Facile executes an order of magnitude faster with

memoization than without it. Simple, in-order simulators written in Facile were not improved by

memoization. Not enough code could be skipped over by memoizing these simple simulators to

overcome the extra cost of memoization. Writing simulators that make effective use of memoiza-

tion requires an understanding of how memoization works and how to structure the simulator

code. By experimenting with several similar simulators that contain only small structural differ-

ences, Chapter VI demonstrates strategies for writing more efficient memoizing simulators.

Chapter VII discuses several optimizations that could make memoized code run more effi-

ciently. These include optimizations that were left out of the current compiler because they are too

complex to implement quickly or because their usefulness was not realized until after the com-

piler was written. Run-time code generation is an optimization that was not implemented in the

current compiler, because of time constraints. Chapter VII discusses two ways RTCG could be

implemented in a memoizing simulator. Other optimization are discussed as well.

Chapter VIII concludes.

11

CHAPTER II: Related Work

A combination of techniques for (micro-)architecture simulation, compiler optimization, and

architecture description form a starting point for the work described in later chapters. This chapter

discusses work that precedes my own in these areas. Section 2.1 covers many instruction-level

simulators and simulation technologies used to implement instruction-level micro-architecture

simulators efficiently. Section 2.2 discusses relevant programming language and compiler tech-

niques. These include partial evaluation, run-time code generation, and existing architecture

description languages.

2.1. Accelerating Processor Simulation

There are a large number of processor simulators and a wide variety of techniques for making

them run fast. This section describes some techniques that have been used to accelerate these sim-

ulations. Section 2.1.1 surveys non-statistical techniques that accelerate the decode-despatch-exe-

cute cycle of a typical instruction-level simulator. Section 2.1.2 discusses trace sampling, a

statistical technique that accelerates simulation by only simulating samples of a program trace.

The result of simulating an entire program trace is extrapolated from the results of simulating

these smaller samples. Although I am concerned primarily with instruction-level simulation,

much work has gone into improving logic-level simulators (e.g., written in Verilog or VHDL),

and I describe some of this work in Section 2.1.3.

12

2.1.1. Instruction-Level Simulators

The following table is an extended and updated version of a table taken from the 1994 SIG-

METRICS paper on Shade [17]. It gives a partial list of instruction-level simulators (and similar

tools) covering a variety of simulation technologies and other attributes.

TABLE 2.1: Summary of contemporary instruction level simulators.

Name Purpose
Input
Rep.

Detail MD MP Signals
SMC
OK

Technology
Bugs
OK

Accelerator[5] sim exe us Y N Y Y scc+gi Y

ATOM[69] tbC exe* u N N Y N aug N

ATUM[2] sim/atr exe us Y Y= Y Y emu Y

dis+mod+run[28] sim/atr asm u N N N N scc N

Dynascope[68] db/atr/otr hll u N N S Y pdi Y

EEL[39] tbC exe u N N Y Y aug Y

Executor[17] sim exe u N N Y Y pdi Y

FastSim v.1[65] sim exe u N N Y N aug+ffw Y

FastSim v.2 tbC exe u N N Y Y ddi+ffw Y

FX32[15] sim exe u N N Y Y ddi+scc Y

g88[9] sim/db exe usd Y N Y Y tci Y

gsim[43][44] sim/db/atr/otr/tbC exe usd Y Y1 Y Y tci+dcc Y

Mable[23] sim/db/atr exe u N Y1 N Y ddi N

Migrant[66] sim exe u Y N Y Y scc+emu Y

Mimic[46] sim exe u N N N N dcc N

MINT[73] atr exe u N Y1 Y N pdi+dcc Y*

Moxie[16] sim exe u N N Y N scc N

MPtrace[26] atr asm u N Y= S N aug N

MX/Vest[67] sim exe u N Y= Y Y scc+gi Y

Pixie[48] atr exe* u Y N Y N aug N

Pixie-II[17] atr/otr/db exe* us Y N Y S scc N

Proteus[12] atr hll u N Y1 N S aug N

Purify[32] db exe* u N N Y N aug Y

qp/qpt[38] atr/otr exe u N N N N aug N

RPPT[21] atr hll u N Y1 N N aug N

RSIM[54] sim/atr/otr exe u Y N N N emu Y

13

Purpose indicates the use for which the tool was intended: cross-architecture simulation (sim),

debugging (db), address tracing or memory hierarchy analysis (atr), or more detailed kinds of

tracing (otr). Tools marked tbC are tool-building tools and usually use C as the extension lan-

guage. Input describes the language of the target programs read by the simulator: high-level lan-

guage (hll), assembly code (asm), or executable code (exe). Some tools read executables but also

require symbol table information to work properly (exe*). Detail: most tools work with only user-

level code (u), some also run system-level code (s), and system mode simulation generally

requires device emulation (d). Some target machines have no system mode, so simulation can

avoid the costs of address translation and protection checks; these machines have the system mode

marked in parenthesis.

SELF[14] sim exe u N N Y Y dcc Y

Shade[17] sim/atr/otr/tbC exe u N N Y Y dcc N

SimICS[45] sim/atr/otr exe usd Y Y1 Y Y tci Y

SimOS[34] sim/atr/otr exe usd Y Y+ Y Y ddi+dcc Y

SimpleScalar[13] sim/atr/otr exe u N N N N pdi Y

SoftPC[52] sim exe u(s)d N N Y Y dcc Y

Spa[17] atr exe u N N S Y ddi N

SPIM[33] sim/atr exe u N N Y N pdi Y

ST-80[24] sim exe u N N Y Y dcc Y

Talisman[10] sim/db/atr/otr/tbC exe usd Y Y1 Y Y tci Y

Tango Lite[29] atr asm u N Y1 N S aug N

Titan[11] atr exe us Y N Y N aug N

TRAPEDS[71] atr asm us Y Y= S N aug N

WWT[62] atr/otr exe u Y Y+ Y N emu+aug+ddi Y

Z80MU[8] sim exe u(s) N N Y Y ddi Y

TABLE 2.1: Summary of contemporary instruction level simulators.

Name Purpose
Input
Rep.

Detail MD MP Signals
SMC
OK

Technology
Bugs
OK

14

MD reports whether the tool supports multiple protection domains and multi-tasking (i.e.,

multiple processes per target processor). MP tells whether the tool supports multiple processor

execution: only a single host processor (Y1), one target processor per host processor (Y=), or sev-

eral target processors per host processor (Y+). Signals indicates whether the tool can handle asyn-

chronous events like signals (Y or N) or only some of the possible events (S). SMC OK describes

whether the tool is able to operate on programs in which the instruction space changes dynami-

cally (e.g., dynamic linking). Bugs OK describes whether the tool is robust in the face of applica-

tion errors such as memory addressing errors or divide-by-zero. Y* indicates that checking can be

turned on but this degrades performance.

Technology describes the general implementation techniques used in the tool. The implemen-

tations appearing in this table are:

• Hardware emulation including both dedicated hardware and microcode (emu).

• The “obvious” implementation, a decode and dispatch interpreter (ddi).

• Pre-decode interpreters (pdi) that pre-convert to a quick-to-decode intermediate representa-

tion. The IR can be many forms; a particularly fast, simple, and common form is threaded

code (tci).

15

• Static cross-compilation (scc) decodes and dispatches instructions during cross-compilation,

essentially avoiding all run-time dispatch costs. As a special case, where the host and target

are the same, the static compiler merely annotates or augments (aug) the original program.

• Dynamic cross-compilation (dcc) is performed at run-time and can work with any code

including dynamically-linked libraries.

• Fast-forwarding (ffw) is a variation on memoization, a well known optimization technique

commonly applied to functional programming languages. Fast-forwarding caches simulator

results and reuses them to accelerate subsequent simulator execution.

• Where interpreter specifics are unavailable the tool is listed as using a general interpreter (gi).

As the above table shows, instruction-level simulators have used a number of different tech-

nologies. Logically, all simulators must decode, dispatch, and execute each instruction in turn, but

few of them are written using this straight-forward implementation. Instead, most tools use alter-

nate strategies to perform these operations more quickly. One of the fastest alternatives is to use

hardware or microcode emulation of the target machine. For example, ATUM uses special micro-

coded versions of load/store instructions to perform cache simulation without modifying the tar-

get executable [2]. WWT uses existing hardware features (e.g., ECC bit on memory) or special

purpose hardware (i.e., the Typhoon-0 hardware [63]) to simulate cache coherent shared memory.

16

This approach can execute programs quickly, but building hardware is expensive and time con-

suming, and existing hardware lacks the flexibility to handle many kinds of simulation.

A common software approach to accelerating simulation is to translate the target program into

a faster form, perhaps even a form that can run directly on host hardware. Several of the above

tools pre-decode target instructions—either when a target program is loaded, while it executes, or

after execution (e.g., FX!32) for use the next time it is run—to speedup the decode and dispatch

loop. This commonly involves converting an instruction opcode into a pointer to a function that

simulates that opcode, and listing the register and literal operands in byte or word aligned fields.

Cross-compilation and, in the case where the host and target instruction sets are nearly identical,

augmentation, go a step further by compiling the target and simulator into a single executable.

This technique executes target instructions using equivalent host instructions and performs simu-

lator actions (e.g., counting cache misses) or other behavior (e.g., run-time error checking) with

extra code inserted among the translated target instructions. WWT[62], Purify[32], and qpt[38]

directly execute code from target executables augmented with code snippets that simulate distrib-

uted shared memory, detect various run-time errors, and profile/trace execution respectively.

Tools like Shade[17] use a more dynamic approach, in which target instructions are translated

into host code as they are first encountered in the dynamic instruction stream. Dynamic cross-

compilation allows a tool to only translate instructions that actually execute, thereby reducing the

possible code explosion caused by translating an entire executable. This approach also allows a

cross-compilation based system to change its behavior, while a simulation is running. For exam-

17

ple, the simulator can collect minimal statistics for the first 10,000,000 instructions and then col-

lect more detailed information, once the program enters its main phase of computation.

SimpleScalar [13], RSIM [54], and MXS [34] are contemporary simulators for out-of-order

processors. They all execute thousands of host cycles per simulated cycle. SimpleScalar, one of

the fastest out-of-order simulators using traditional technology, simulates a MIPS-like architec-

ture and runs target programs with a 4,000 times slowdown [13]. RSIM emulates a multi-proces-

sor with a SPARC-like architecture and typically simulates 10,000–15,000 instructions per second

on a SUN Ultra 1/140 workstation [54]. MXS is the detailed, dynamic execution processor simu-

lator from SimOS. It executes approximately 20,000 instructions per second, with a “several thou-

sand times slowdown [34].”

Cross-compilation has not previously been applied to simulators of out-of-order micro-archi-

tectures, because it is difficult to reconcile the dynamic behavior of an out-of-order execution

engine with statically scheduled cross-compiled instructions. These simulators are slow. Often

suffering thousands of times slowdown relative to program execution on native hardware. But

even with cross-compilation, out-of-order simulators would still be slow because most of their

time is spent simulating the complex micro-architecture, not the functional behavior of instruc-

tions. Fast-forwarding is my new technique for accelerating the simulation of complex micro-

architecture, and combined with cross-compilation produced an out-of-order simulator with only

a 190–360 times slowdown.

18

2.1.2. Trace Sampling

My simulator memoization technique improves simulator performance by trading memory for

speed. Another common approach is to trade accuracy for speed. This is the idea behind trace

sampling. A simulator that uses trace sampling only simulates a fraction of a program’s entire

execution trace. The behavior of the entire program execution is extrapolated from the data col-

lected on the much smaller sample. Just as a memoizing simulator must be designed carefully to

get the best performance for the least increase in memory, trace sampling simulators are carefully

designed to get both good performance and reasonably accurate results.

Laha, Patel, and Iyer first applied statistical sampling techniques to program address traces for

the purpose of cache simulation in 1988 [37]. They showed at that time that 35 randomly selected

samples containing just tens-of-thousands of instructions each were sufficient to approximate the

distribution of cache misses for an entire target program. This approach avoided the need for

traces containing data from millions of memory references, thereby saving disk space to store the

traces and allowing simulation results to be computed in much less time. By sampling throughout

the execution of a program, cache simulation results were significantly more accurate than naive

measurements taken only at the beginning of a program trace. Trace sampling has since been the

subject of much research and further refinements, including its application to the simulation of

other processor components [20][56][40]. The next few paragraphs describe how trace sampling

has evolved to handle more modern micro-architecture constraints.

19

Since trace sampling was introduced, cache sizes and hardware complexity have increased.

The original techniques described by Laha, Patel, and Iyer [37] are no longer sufficient to effi-

ciently approximate cache and processor behavior. Kessler, Hill, and Wood compared several

trace sampling techniques for their ability to meet a “10% sampling goal”—i.e., could they esti-

mate a trace’s true misses per instruction with ≤10% relative error, using ≤10% of the trace, at

least 90% of the time—in the presence of multi-megabyte caches [36]. They focused on two basic

strategies—set sampling and time sampling—illustrated in figure 2.1. Their results showed trace

sampling using a set sampling strategy met the 10% sampling goal. However, set sampling is not

applicable in all situations, such as for caches that have time-dependent behavior (e.g., prefetch-

ing) or when structures are shared by many sets (e.g., write buffers).

FIGURE 2.1: Sampling as vertical and horizontal time-space slices. This figure (taken from
[36]) shows a time-space diagram of a simulation with a very short trace. An observation in
set sampling is the cache performance of references that occur in a horizontal slice of this fig-
ure. An observation in time sampling is the cache performance of references in a vertical slice.

Time

C
a

ch
e

S
et

s

x x

x

x

x

x

x

x

x

x

x

x

xx x x

x x

x

x

x

x

x

x

x

x

Vertical Slice

Horizontal Slice

20

Time sampling can be used where set sampling cannot, but the results in [36] showed that time

sampling techniques did not meet the 10% sampling goal when applied to multi-megabyte caches

in the multi-billion instruction traces studied. The main problem is simulation error caused by

cold cache misses—called the cold-start bias—because changes to the cache state could not be

determined between samples. Several existing techniques, each with different strategies for reduc-

ing cold-start bias were compared: COLD—each sample starts with a cold cache, HALF—initial-

ize the cache during the first half of each sample and only collect data from the second half,

PRIME—only simulate the cache on accesses to sets that are initialized by earlier references in

the sample [37][70], STITCH—reuse the cache state from the end of the previous sample [1], and

INITMR—estimate the fraction of cold-start misses that would have missed even if the cache

state were known [80]. The results showed that, for the given traces, INITMR was the most effec-

tive at reducing cold-start bias, although HALF also performed well. But large observation inter-

vals were still needed, in the range of tens-of-millions to hundreds-of-millions of instructions for

each observation. The result was that time sampling did not meet the 10% sampling goal.

Partial sampling is another trace sampling technique, but uses non-clustered sampling, and

limits the effect of unknown states—i.e., the cold-start bias. Vengroff, Simpson, and Gao

described a technique for non-clustered trace sampling for simulating multiple cache designs [74].

They eliminated cold-start bias and allowed individual cache references to be sampled in isolation

by constructing a compact record for each sample observation, with enough information to deter-

mine, with absolute certainty, whether the reference would hit or miss in a simulated cache. The

same records could be used simultaneously to simulate many different cache designs. Since their

21

only results were for relatively small cache sizes, it is uncertain how well their technique scales to

multi-megabyte caches and other sources of cold-start bias. Also, their technique does not work

for out-of-order processors, because loads and stores can be re-ordered by these processors in

response to changes in cache behavior.

2.1.3. Compiler Optimization for Verilog and VHDL

Willis and Siewiorek described a variety of compiler optimizations used in their experimental

simulator—Auriga—to reduce run-time complexity and promote concurrency in the simulation of

VHDL models [79]. Their temporal analysis used a data-flow analysis adapted to the event driven

nature of VHDL to find patterns in the sequence of values assumed by signals (e.g., the regular

on/off pattern of a clock signal) and the set of values that could get bound to signals and variables

during simulation. Although the authors don’t make the connection, this analysis and the gram-

mars they use to encode the sets of possible signal and variable values is similar to techniques

used for off-line partial evaluation. Off-line partial evaluators use data-flow analysis to find the set

of values that can be passed as arguments to each function, and these sets of values are sometimes

encoded as grammars [76].

Willis and Siewiorek used other analyses as well: waveform propagation propagates the infor-

mation about signal patterns found by temporal analysis from output ports to all input ports that

may receive those values, and finds the output ports whose data is never used; concurrent evalua-

tion determined which parts of the model could be simulated in parallel; input desensitization

finds events that can be ignored during simulation. Input desensitization is an extension of earlier

22

clock suppression techniques [61], but not as selective as later techniques in [55]. With these anal-

yses and several common compiler optimizations—e.g., function-inlining, loop unrolling, and

constant propagation—optimized simulators executed up to 35 times fewer machine instructions,

compared to an early, un-optimized VHDL simulator.

Park and Park optimized VHDL simulation by suppressing insensitive events in the simulation

of both sequential and combinational circuits [55]. Typical VHDL simulation uses events, sorted

by time, to trigger the evaluation of parts of a circuit model. Due to programming styles, the

VHDL language, and synthesis tools, many parts of a VHDL program are triggered by events that

cause no visible effect. By analyzing VHDL programs to find the set of insensitive events for each

part of the program, and applying source-to-source translations to suppress these events, the

authors achieved an almost two times speedup in simulation. Earlier work by Devadas et al., sup-

pressed events in synchronous circuits only [25], and Razden et al., eliminated unnecessary activ-

ity caused by clocks [61]. But the analysis and optimization in this later work on insensitive event

suppression subsumed the benefits uncovered by these earlier techniques.

2.2. Relevant Programming Language Techniques

This section gives an overview of the programming language techniques I apply to instruc-

tion-level simulation. Partial evaluation (PE) and run-time code generation (RTCG) are defined in

Sections 2.2.1 and 2.2.2 respectively, along with several examples of their use and implementa-

tion. Later chapters describe how I apply PE (and potently RTCG) to processor simulation. Sec-

tion 2.2.3 discusses special purpose languages for describing instruction set architectures.

23

2.2.1. Partial Evaluation

My fast-forwarding optimization is a variation of memoization, but instead of only caching

function return values it caches partially evaluated simulator code. The idea is that cached code

skips operations that behave the same as when the code was cached, and only executes operations

that do something different. The operations that do something different are called dynamic. Tech-

niques from partial evaluation are used to select the dynamic operations that are memoized by

fast-forwarding.

2.2.1.1. WHAT IS PARTIAL EVALUATION ?

Consider the program p that accepts input . The effect of partial evaluation is to

specialize p together with part of its input in1 to produce a new program pin1 that can then be

called with input in2 to compute the same result as (i.e., p called on input

). The correctness of pin1 can be described for all in2 by the equation

. The technique is to pre-compute all the expressions in p that

rely only on values in in1 , unfolding recursive calls, unrolling loops, etc. The chief motivation

for partial evaluation is speed: the specialized program pin1 is often faster that p, and this can be

advantageous when in2 changes more frequently than in1 .

ON-LINE AND OFF-LINE PARTIAL EVALUATION . On-line partial evaluation works in one pass. It

specializes program parts as they are encountered, making decisions “on the fly” using only (and

all) the data available. On-line partial evaluation can often produce more efficient code than off-

line PE, because it uses the values of static data to help drive specialization, whereas off-line PE is

in1 in2[,]

p[[]] in1 in2[,]

in1 in2[,]

p[[]] in1 in2[,] pin1[[]] in2=

24

driven by annotations derived without using static data values. Although on-line partial evaluators

produce more specialized code, it is more difficult to guarantee their termination. Figure 2.2 dem-

onstrates how more specialization can be performed with static data values than without them.

Off-line partial evaluation uses two passes: an initial pass to annotate the subject program,

then another pass to specialize the program using these annotations. The first pass performs bind-

ing-time analysis, described below, and generates annotations for the later specialization pass. A

typical set of annotations are: evaluate statically computable code, unfold at specialization time

static function calls, generate residual code for expressions containing dynamic components, and

generate residual function calls for functions containing some dynamic code. The specialization

pass then uses these annotation to produce a specialized program.

/* Select between static value S and dynamic value D
** using the static value given in x. */

int F(int x, int S, int D)
{

if(x == 0) return S;
else return D;

}

FIGURE 2.2: On-line vs. Off-line partial evaluation. Function F tests the value of its first
argument to decide which of its next two argument values to return. Suppose that for some call
to F, the arguments x and S are static (i.e., known at specialization time) and D is dynamic. An
on-line partial evaluator would know the value of x and, if its value was 0, could reduce the
call to its result—S—and remove the call to F at specialization time. An off-line partial evalu-
ator would not be aware of the value of x when deciding how to specialize this code. So the
call to F would not be eliminated with off-line PE.

25

BINDING-TIME ANALYSIS (BTA). Binding-time analysis is used by off-line partial evaluators to

divide a subject program into expressions that are static, meaning they depend only on informa-

tion known at specialization time (e.g., the input data in1 that p is specialized for), and expres-

sions that are dynamic, because they depend on some information that is only available at run

time. In some versions of BTA, the binding-time information for each function can have different

divisions of a function’s arguments for different call instances—called poly-variant division—or

BTA may require all calls to the same function to have the same division—mono-variant division.

The division of a program into static and dynamic parts can be computed, like other abstract

interpretation problems, using fixed point iteration. The idea is to interpret the program, but use

binding times instead of actual data values. For example, if a variable x is set to the static literal

value 5, then the abstract interpreter only records that x is static and ignores the value 5. When a

program point is reached from two different control flow paths, binding time data from the two

paths is merged. This abstract interpretation continues, perhaps iterating multiple times over code

contained in loops, until the binding times of all variables at every program point stops chang-

ing—i.e., it reaches a fixed-point. These final binding-times represent a division of the program

into static and dynamic components. Fixed-point iteration has potential problems with termina-

tion—especially when using poly-variant divisions—but these problems can be overcome [35].

2.2.1.2. EXAMPLES OF PARTIAL EVALUATION

The potential benefits of partial evaluation have been studied for some real world applications

that demonstrate the ability of partial evaluation technology to handle more than simple toy

26

benchmarks. Ray tracing is an algorithm in computer graphics that calculates every pixel in a ren-

dered image by back-tracing the paths imagined light rays would take from each image pixel back

to any light source, reflecting off objects in the scene. Partial evaluation was applied to ray-tracing

by Mogensen [49], and again by Andersen who optimized an already efficient ray tracing algo-

rithm to achieve a 1.3 to 3.3 times speedup depending on the scene and degree of specialization

[4]. Baier, Glück, and Zöchling describe the effect of partial evaluation applied to numerical pro-

grams in Fortran [7]. By taking advantage of the statically determinable control flow common in

these programs, their off-line partial evaluator for Fortran 77 achieved speedups on three numeric

algorithms: Fast fourier transform (3.1-4.0x speedup), N-body problem (1.3-1.4x), and cubic

splines interpolation (4.0-6.0x).

Lars Ole Anderson developed the first partial evaluator for a significant subset of the C pro-

gramming language [3]. Anderson’s partial evaluator—called C-Mix—uses off-line partial evalu-

ation with poly-variant divisions. C-Mix handles such issues as structured data stored in C

structures and unions, C pointers (using an inter-procedural alias analysis to determine the set of

objects that may be pointed to by each pointer object), and separate compilation by dealing with

the effects of external functions and data on C-Mix’s analyses. C-Mix is self-applicable (i.e., can

specialize itself) and achieved significant speedups in several toy benchmarks.

Tempo [18] is a modern partial evaluator for the C programming language, primarily targeted

at the specialization of system software. It uses more mature analyses than C-Mix, and has been

applied to some real applications. Tempo has been shown effective at optimizing file system

27

access in the Synthetix kernel [58], and in optimizing the Sun RPC protocol [50]. A key advan-

tage of this partial evaluation system is its ability to both specialize programs at compile time and

at run-time. Run-time specialization (discussed in section 2.2.2) can make use information that is

only available at run-time, to produce more highly specialized code.

Muller, Volanschi, and Marlet applied partial evaluation to the Sun commercial RPC protocol

[50]. Remote Procedure Call (RPC) is a protocol that makes a remote procedure look like a local

one, and primarily involves the marshaling/unmarshaling (i.e., encoding/decoding) of call argu-

ments and managing the exchange of messages through the network. Because the Sun RPC proto-

col is implemented in a highly generic way, it offered multiple opportunities for specialization.

Using Tempo’s partial evaluation and making small changes in the RPC code, they achieved a

3.75 times speedup in client encoding procedures, which translates to a 1.35 times speedup on

complete remote procedural calls. In their conclusions, the authors stated that partial evaluation

can be applied to realistic programs with non-trivial results, but recognized that good knowledge

of the application domain is needed to find the opportunities for specialization.

Pu, Massalin, and Ioannidis introduced the Synthesis operating system kernel in 1988 [59].

One of the important contributions of Synthesis was its generation of specialized—thus short and

fast—versions of kernel routines for specific situations. For example, the open system call syn-

thesized new versions of the read and write system calls, specialized for accessing a particular

file or device. These specialized routines were optimized by factoring invariants to bypass redun-

dant computations, collapsing layers to eliminate unnecessary procedure calls and context

28

switches, and executable data structures that shorten data structure traversal time. Synthesis’ opti-

mizations, especially collapsing layers, allowed a more layered operating system implementation,

with a high-level interface, to run efficiently. Their results showed that specialized kernel routines

could significantly improve system call performance, while simultaneously allowing a high-level

operating system interface.

Synthesis is an early example of program specialization being applied to an operating system

kernel, although it did not use actual partial evaluation. Instead, kernel routines that had been spe-

cialized by hand were strung together using threaded code. Subsequent work on Synthesis

(renamed Synthetix) used partial evaluation to specialize the operating system interface. In [57],

domain-specific microlanguages allowed clients to tell Synthetix how base operating system func-

tionality would be used. Then partial evaluation was used to construct specialized kernel routines

from code written in a microlanguage, which optimized for the predicted sequences of operations.

These specialized kernel routines significantly improved system performance when the actual

program behavior matched the behavior predicted by mircolanguage code.

Partial evaluation has also been applied to hardware design. Wang and Lewis described their

compiler—PECompiler—which used partial evaluation to automatically design field-programma-

ble custom compute machines (FCCMs) to accelerate the execution of the program being com-

piled [77]. PECompiler optimizes programs written in a subset of C using partial evaluation (and

several other techniques) to: 1) generate a residual program given part of the program’s input data,

then 2) collect the remaining computations into a data dependence graph (DDG), from which a

29

VHDL description of hardware functional units can be generated. The result is a compiled pro-

gram that uses a special purpose VLIW co-processor, implemented on FPGAs, to accelerate the

computationally intensive core of a source program. This technique was demonstrated by compil-

ing a program that implemented a timing simulation of digital circuits. In experiments specializ-

ing this program for several different input circuits, the automatically generated FCCMs were

comparable to hand designed FCCMs that accelerated the simulation of the same digital circuits.

2.2.2. Run-Time Code Generation

With more information about a program’s data values, program code can be more highly spe-

cialized and run faster. Run-time code generation (RTCG) uses run-time data values to produce

specialized code at run-time. This is essentially how fast-forwarding works: Simulator code is

specialized with run-time data values at run-time, using annotations computed at compile-time.

The difference is that RTCG systems generate machine instructions at run-time. So far, my imple-

mentations of fast-forwarding interpret memoized data rather than memoizing and executing

native machine instructions.

A key issue is the efficiency of a run-time specializer, since spending too much time in the

specializer can negate any benefit from executing the specialized code. This efficiency must be

balanced with the need to generate good specialized code. A common technique, used in the

examples below, is to compute code templates at compile time, then instantiate them at run-time

by making a copy of the needed templates and filling in the holes with run-time static data. Other

30

issues include managing run-time generated code, and specifying which parts of the subject pro-

gram should be run-time generated.

Work done at the University of Washington includes a technique for generating code tem-

plates at compile time that are later used in dynamic code generation, based on annotations pro-

vided by the programmer (Auslander et al. [6]). Annotations added to C source code identify

exactly which regions of code should be generated at run-time, and which inputs to consider as

run-time static when specializing the code. Although other systems provide more automatic

approaches to creating dynamic code templates, this work had the advantage of handling the full

functionality of C. Subsequent work at the University of Washington continued to use programer

annotation in C programs to drive specialization, but automated more of the specialization process

[30]. Programmer annotations still identified the run-time data to use as static input for run-time

specialization, but the choice of regions to specialize and construction of dynamic code templates

for those regions was handled automatically by the compiler. Run-time generated code was then

cached automatically by the run-time specializer.

At the University of Rennes / IRISA, Consel and Nöel used off-line partial evaluation to auto-

matically generate efficient templates for run-time generated code from C programs [19]. Bind-

ing-time analysis determined the static and dynamic parts of a program, then action analysis

determined how each piece of code should be specialized (e.g., reduced (removed) from special-

ized code or rebuilt to contain only the dynamic components of computation). After BTA, per-

formed at compile time, the values of run-time static data are still unknown, hence the effects of

31

loop unrolling or specializing static branches is still unknown. This means the structure of the

dynamic code templates cannot be fully determined. To solve this problem the authors introduced

specialization grammars that represent a safe approximation of the set of possible code layouts

for specialized code, represented by a grammar. C code templates were then generated for the spe-

cializations described by the specialization grammar. The templates generated for a given source

function were all generated as C code within a single C function that was then compiled and opti-

mized by gcc. The compiled templates were extracted from the gcc output, and hence benefit from

the optimizations in a real compiler, including optimizations between templates. Finally run-time

specializers were generated in C code that emitted sequences of binary code templates, using run-

time static data to control which templates were generated, and to fill in the template holes with

run-time static values. The advantages of this technique over previous RTCG systems were its use

of partial evaluation to generate templates automatically using program analysis, and its ability to

efficiently optimize the run-time generated code across template boundaries.

Lee and Leone described a low cost RTCG system for a pure subset of ML that did not use

templates [41]. Their system—Fabius—used currying to naturally annotate run-time static data

without adding any new syntax to the language for the purpose of annotation. For example, a

function , with infrequently changing arguments S1, S2 and frequently changing

arguments D1, D2, could be redefined as . The call would then return

the function f , specialized for the run-time static data S1 and S2. Fabius did not use code tem-

plates to generate specialized code. Instead, it used a technique the authors call deferred compila-

tion [42] that works by specializing a program specializer to the given ML program. These

f S1 D1 S2 D2, , ,()

f S1 S2,() D1 D2,() f S1 S2,()

32

specialized run-time specializers were able to emit dynamic instructions at an average cost of 4.8-

6.2 run-time specializer instructions for each dynamic instruction emitted, when used in simple

benchmarks.

Some important issues in controlling RTCG are: specifying the parts of a program to special-

ize, when to use specialized code, and which data values to consider run-time static. Tempo

[19]—a partial evaluator for C programs capable of both compile-time and run-time specializa-

tion—uses a separate description of the specialization context, and the run-time specialized code

Tempo generates must be managed entirely by the user. In the C dynamic compiler developed at

the University of Washington [30], the programmer marks replacable components by directly

annotating a program with syntactic extensions to C. The management of run-time specialized

blocks is done automatically. In Fabius [41], run-time static data is specified by currying in ML—

i.e., run-time static function arguments are identified by passing them as the first set of arguments

to a curried function. The user generates specialized code by calling a function with only its first

(i.e., run-time static) arguments, and manages specialized functions by explicitly storing and later

using them as needed. Volanschi et al. [75] describe specialization classes as a way to control

compile-time and run-time specialization of programs written in an extension of Java. Specialized

versions of object methods are declared using specialization classes that use inheritance to extend

existing classes in a program and identify the (run-time) static data used in specialization. Special-

ized code is automatically generated, cached, and selected for use, with only minor hints provided

by a programmer as part of the specialization class definitions.

33

Fast-forwarding is similar to RTCG in that it automatically generates, caches, and selects spe-

cialized code, although current implementations generate interpreted actions rather machine

instructions. Fast-forwarding simulators generate many different specialized copies of the simula-

tor’s code, so the size of specialized code is critical. Special techniques are used to save space and

allow fast lookup of specialized code. To save space, only control flow paths that are actually exe-

cuted are specialized. No code is stored for control flow paths that are not executed. Code lookup

is optimized by linking each instance of specialized code to the specialized code that executes

next, eliminating a hash table lookup to find the next specialized code sequence.

2.2.3. Architecture Description Languages

One of my contributions is a new special purpose programming language—called Facile—for

writing instruction-level micro-architecture simulators optimized with fast-forwarding. An impor-

tant component of this language is syntax that concisely describes an instruction set architecture.

Several previous architecture description languages have been developed to describe instruction

set architectures. Facile is loosely based on the New Jersey Machine Code Toolkit language.

The New Jersey Machine-Code Toolkit [60] is designed to help programmers write applica-

tions that manipulate machine code—e.g., assemblers, disassemblers, code generators, tracers,

profilers, and debuggers. Its specification language is very general, and is suitable for describing

both CISC and RISC ISAs; The authors have written specifications for the MIPS R3000, SPARC,

and Intel 486 instruction sets. Specifications are built using sequences of fixed width tokens to

form patterns that describe the binary encodings of instructions. RISC instruction sets, such as

34

MIPS R3000, and SPARC are specified with one token per instruction, but CISC ISAs need mul-

tiple tokens to encode variable width instructions. Patterns for several instructions can be speci-

fied simultaneously in tabular format, similar to the tables found in many architecture manuals

[72], compacting the descriptions and reducing the potential for programmer error. Finally, con-

structors map between assembly language and machine language representations. This toolkit

produces encoding procedures for each assembly instruction that represents a corresponding

machine code instruction. To decode binary instructions, matching statements, embedded into C

or Modula-3 programs, execute C or Modula-3 code for instructions that match constraints on

their binary encoding. The ISA descriptions used by this toolkit are compact, needing only 127,

193, and 460 lines to describe the MIPS, SPARC, and Intel 486 instruction sets respectively.

Önder and Gupta from the University of Pittsburgh described the UPFAST system that auto-

matically generates instruction level simulators from a special purpose architecture description

language [53]. Their language—called ADL—can represent simulators ranging from a five stage

in-order pipeline to an implementation of Tomosulo’s algorithm (one algorithm used to imple-

ment out-of-order execution) for the MIPS ISA. From a machine description in ADL, UPFAST

automatically generates an assembler, dissassembler, a cycle level simulator, and a debugger.

Compared to some other architecture description languages, UPFAST’s ADL is not concise,

requiring over 4,500 lines to represent the relatively simple MIPS ISA. Because all the UPFAST

specifications discussed are for MIPS architectures, I am uncertain whether ADL is general

enough to represent other ISAs, including other RISC architectures such as recent specifications

of SPARC.

35

I designed a language called SADL—short for the Spawn Architecture Description Lan-

guage—which is the immediate predecessor of my new language, Facile. SADL descriptions

were processed by the Spawn tool that automatically generated the back-end machine manipula-

tion routines used by EEL [39]. SADL descriptions included both instruction encodings and a reg-

ister-transfer level (RTL) semantic description of most instructions in an ISA. Spawn analyzed

instruction encodings and semantic information written in SADL, then replaced various annota-

tions embedded in C code with ISA specific code that performed the actions required by EEL.

Operations that could be specified by these annotations include decoding a binary instruction to

determine what kind of instruction it is (e.g., branch, load, etc.), determining which registers are

read from and written to, and computing branch targets or retargeting existing branch instructions.

My subsequent work on Spawn and SADL incorporated information about in-order pipeline

hazards into the language, and used this information to generate a micro-architecture specific

instruction scheduler for EEL. The purpose of an instruction scheduler is to arrange the instruc-

tions in a program to minimize its execution time by minimizing the number of pipeline stalls. By

scheduling instructions in EEL, the cost of executing added instrumentation could be reduced.

Experiments with basic-block profiling instrumentation on two superscalar SPARC processors

showed that instruction scheduling hid an average of 13% and 33% of instrumentation overhead

in the Spec95 integer and floating-point benchmarks respectively. One of the lessons learned dur-

ing my work on SADL, was that structural hazards for in-order pipelines are easy to encode in a

specification language and to use for timing simulation. But specifications for more dynamic out-

of-order pipelines could not be so easily encoded.

36

Several techniques exist to accelerate the detection of structural hazards in “in-order” pipe-

lines and are used in instruction schedulers. Reservation tables are a common way to represent

instruction resource usage for in-order pipelines [22]. Reservation tables list the pipeline

resources on one axis and time (in cycles) on the other axis, and the table cells are filled to indi-

cate which resources are used by an instruction in each cycle of execution. Pipeline hazards are

detected by overlaying the reservation table for each instruction onto the combined tables of all

previous instructions such that no resource is simultaneously in use by more than one instruction.

One strategy for optimizing hazard detection—proposed by Eichenberger and Davidson in [27]—

is to compress these reservation tables into smaller, but equivalent, tables that take less time to

check for hazards. Gyllenhaal, Hwu, and Rau proposed another technique, where reservation

tables are transformed into AND/OR-trees to more efficiently check resource constraints [31].

Müller proposed another pipeline hazard detection technique, where reservation tables were

transformed into a deterministic finite automata (DFA) [51]. Starting with the reservation tables

for a given in-order micro-architecture, a DFA was generated that takes as input the next instruc-

tion in an instruction sequence and returns the number of pipeline stalls that result. Using this

technique, Müller reported an 18 times speedup in pipeline simulation, over simulation using un-

optimized reservation tables.

I considered using a statically generated DFA to accelerate the simulation of an out-of-order

pipeline, but a quick calculation shows that this is impractical. Consider an out-of-order pipeline

with N patterns of instruction resource usage (i.e., every instruction exhibits one of these pat-

37

terns), and an instruction window that is M instructions long. The automata to statically encode all

possible instruction sequences that could fit in the instruction window could need states.

Such an automaton would be extremely large, and unlikely to fit in any simulator’s virtual address

space. Despite this exponential size explosion, using finite state automata to accelerate processor

simulation is a good idea. The solution for out-of-order processor simulation is to only generate

the parts of an automata that are needed by a simulator at run-time. Fast-forwarding is my tech-

nique to do this.

O NM()

38

CHAPTER III: Memoization Of An Out-Of-Order
Processor Simulator1

Most simulators of out-of-order processors run programs thousands of times slower than

actual hardware. But most of this time is spent repeating work performed earlier in the simulation.

By applying a technique often used to optimize functional programming languages—memoiza-

tion—the cost of out-of-order processor simulation can be reduced by up to an order of magni-

tude, with no effect on the simulator’s accuracy.

FastSim Version 1 is a direct-execution simulator of a speculative, out-of-order uniprocessor

with non-blocking caches. Its two primary contributions are speculative direct-execution, which

efficiently performs the functional simulation of a program, and a variation of memoization,

which dramatically accelerates the time-consuming simulation of an out-of-order micro-architec-

ture.

Direct-execution simulators run machine code from a target program directly on a host pro-

cessor, and use a variety of methods to interleave simulation code. This widely used technique

allows functional simulation to run at near-hardware speed. Direct-execution, however, has not

been previously used to simulate out-of-order processors, because of the difficulty of reconciling

the fixed behavior of an executing program with the fluid behavior of a speculative out-of-order

micro-architecture. FastSim solves this problem by decoupling the simulation of out-of-order exe-

1. This chapter is mostly taken from my conference paper, “Fast Out-Of-Order Processor Simulation Using
Memoization” appearing in ASPLOS-VIII [65].

39

cution from the functional execution of instructions. With a new technique called speculative

direct-execution, FastSim allows mispredicted branch paths to be executed directly, then rolled

back. Without further optimization (e.g., memoization), FastSim runs 1.1–2.1 times faster then the

well-known SimpleScalar out-of-order simulator, which does not use direct-execution.1

FastSim’s primary contribution is the application of memoization—result caching—to the

expensive process of simulating an out-of-order micro-architecture. Traditionally, memoization is

used to optimize functional programming languages by caching function return values. Expensive

computation can be avoided by returning a previously cached value, when available.

FastSim records micro-architecture configurations and the simulator actions that result from

them. When a previously recorded configuration is encountered, the associated actions can be

replayed at high speed until a previously unseen configuration is encountered. This memoization

makes the simulator run 5–12 times faster, with no change in simulation results (e.g., cycle count).

Combining direct-execution and memoization, FastSim simulates a MIPS R10000-like micro-

architecture with a 190–360 times slowdown (i.e., simulation time over native benchmark execu-

tion time on the host), which is an order of magnitude faster than SimpleScalar.

1. There is no version of FastSim without direct-execution. Instead, SimpleScalar is used as a surrogate, as it
simulates a comparable processor at an equivalent level of detail.

40

3.1. The Structure of FastSim v.1

FastSim v.1 is a cycle-accurate, direct-execution simulator of an out-of-order uniprocessor.

Like RSIM, it models a SPARC v.8 [72] instruction set running on a MIPS R10000-like [81]

micro-architecture—Figure 3.1—although, unlike RSIM, FastSim only simulates a single proces-

sor. FastSim’s processor model supports out-of-order instruction execution, speculative execution,

and an aggressive non-blocking cache. Table 3.1 lists the processor parameters used in this simu-

lator.

Instr.
Fetch

Instr.
Decode

Branch

FP
Queue

Address
Queue

Integer
Queue

FP
Register

File

Integer
Register

File

FP Adder

(16 entries)

(16 entries)

(16 entries)

(64x32) or
(32x64)

Load
Store

(64x32)

Load
Store

Align Add/N Pack

Div
Sqrt

FP Multiplier
Mult Sum/N Pack

Address Calc.

Integer ALU1

Integer ALU2

Data
Cache

16 KBytes

FIGURE 3.1: The dynamic execution micro-architecture modeled by FastSim.

41

Direct-execution is not easily applicable to speculative, out-of-order processor simulation.

The first problem is simulating out-of-order execution using direct-execution, which is inherently

in-order. As discussed in Section 3.1.1, FastSim directly executes groups of instructions in pro-

gram order, then subsequently simulates their timing with respect to the out-of-order pipeline

model. This is possible in FastSim, because loads, stores and other instructions do not require pre-

cise timing information to execute correctly on a uniprocessor machine.

Section 3.1.2 discusses FastSim’s speculative direct-execution. Briefly, FastSim saves register

and memory state at branches, then allows mispredicted branches and consequent execution paths

to directly execute. Feedback from the µ-architecture simulator tells direct-execution when to

restore register and memory state and restart execution at the corrected branch target. Hence

mispredicted execution paths are directly executed, and data is collected for use in FastSim’s

micro-architecture simulator.

TABLE 3.1: FastSim’s processor model parameters.

Decode 4 instructions per cycle.

2 integer ALUs, 2 FPUs, and 1 load/store address adder.

64 physical 32-bit integer registers, and
64 32-bit (or 32 64-bit) floating point registers.

2-bit/512-entry branch history table for branch prediction.

Speculatively execute instructions through up to 4 conditional branches.

Non-blocking L1 and L2 data caches, 8 MSHRs each.

16 KByte 2-way set associative write through L1 data cache.

1 MByte 2-way set associative write back L2 data cache.

8 byte wide, split transaction bus

42

3.1.1. Direct-execution & OOO Simulation

Figure 3.2 shows the major components of the FastSim simulator. FastSim uses a binary

rewriting tool (fs) based on the Executable Editing Library (EEL) [39] to instrument a statically

linked SPARC program executable and link it with FastSim’s µ-architecture and cache simulators.

The key to using direct-execution in out-or-order processor simulation is to separate func-

tional—in order—execution of target instructions from simulation of the out-of-order pipeline.

This is possible for two reasons. First, FastSim simulates a uniprocessor, hence loads and stores

can be executed before their precise timing is known without affecting their result. Second, out-

FIGURE 3.2: Overview of the FastSim simulator. 1)The tool fs rewrites a target executable.
2) The edited executable directly executes target instructions. 3) Instrumentation records
information about loads, stores, and branches that is later used for µ-architecture and cache
simulation. 4) The µ-architecture and cache simulators are called periodically to simulate
FastSim’s processor model.

fs

E
xe

cu
ta

bl
e

E
xe

cu
ta

bl
e*

lQ
sQ

bQ

taken?
mispredicted?

Branch
Predictor

w/ memoization

µ−architecture
Simulator

Cache & Memory
Simulator

1

2 3

4

43

of-order pipelines preserve the appearance of executing instructions in program order. FastSim

exploits these properties by directly executing groups of instructions in program order, then simu-

lating their behavior with respect to FastSim’s out-of-order pipeline model.

A target executable is instrumented to record the addresses accessed by every load and store,

and the target of every conditional branch and indirect jump. Load and store addresses are put in

queues, called lQ and sQ respectively, for FastSim’s cache simulator. Instrumentation also calls

FastSim’s µ-architecture simulator at every conditional branch and indirect jump (including return

instructions). Since FastSim’s µ-architecture simulator is invoked at every control transfer instruc-

tion having more than one possible target, a single variable records whether a branch is taken or

not-taken or records the target of an indirect jump.

FastSim’s µ-architecture simulator decides when the processor being modeled would have

fetched, decoded, executed, and retired instructions previously executed via direct-execution. This

simulator does not manipulate program data values or compute any functional results of the target

program. These tasks are handled by direct-execution. When invoked, the µ-architecture simula-

tor advances the out-of-order pipeline simulation up to fetching the current branch or indirect

jump. Control flow information previously recorded for the last conditional branch or indirect

jump is used to fetch instructions along the same execution path as direct-execution. When µ-

architecture simulation catches up with direct-execution, the simulation is suspended and direct-

execution continues to the next branch or indirect jump.

44

The µ-architecture simulator in turn calls FastSim’s cache simulator. Queued load and store

addresses along with timing information provided by the µ-architecture simulator permit accurate

simulation of an aggressive non-blocking cache. The µ-architecture simulator computes the cycle

at which load and store instructions are issued to the cache simulator. The cache simulator then

models the cache’s behavior for loads and stores, and informs the µ-architecture simulator how

long each load will take to produce the requested data. Note that no program data is returned by

the cache simulator, only the time taken to obtain the data.

3.1.2. Simulating Speculative Execution

In the behavior described so far, direct-execution drives FastSim’s µ-architecture and cache

simulators and no information flows in the other direction. Speculative execution, however,

requires feedback from the µ-architecture simulator. The decision when to roll-back, following a

mispredicted branch, is made by the µ-architecture simulator and must control direct-execution.

On the other hand, the µ-architecture and cache simulators require data collected by direct-execu-

tion before they can run. Speculative direct-execution is FastSim’s new technique to solve this

problem. The idea is to directly execute mispredicted execution paths, while recording enough

information to restore processor and memory state after a misprediction is detected by the µ-

architecture. Figure 3.3 shows where instrumentation is inserted into a target executable to per-

form speculative direct-execution.

45

All conditional branches in a target executable are replaced with instrumentation that first

calls the µ-architecture simulator, then consults FastSim’s branch predictor and branches in the

predicted direction. Mispredictions are detected immediately by comparing the original branch

condition to the predicted branch direction. Instrumentation along the two arcs out of each branch

detects mispredictions—the original branch instruction is used as part of this instrumentation. If

mispredicted, all register values—integer, floating point and control registers—are saved in

FastSim’s bQ data structure. The bQ can hold register data for up to four mispredicted branches,

which is all that is required by FastSim’s simulated processor model. In the common case, where

FIGURE 3.3: Instrumentation for speculative direct execution. Instrumentation is inserted
among the original program instructions by fs to maintain FastSim’s data structures, call the
µ-architecture simulator, and support speculative execution. The instrumentation needed for
speculative execution is shown in italics.

Instruction Types

computation

load or store

branch or jump

conditional
branch load

store

indirect jump

advance simulation &
call branch predictor

save registers
if mispredicted

save address
of load

save registers
if mispredicted

save address of store
& save old data

advance simulation
& save jump target

ORIGINAL

INSTRUMENTED

46

a branch is predicted correctly, no state is saved, as the simulation never rolls-back a correctly pre-

dicted branch.

The bQ allows FastSim to restore register values when the µ-architecture simulator detects a

misprediction. Other techniques are used to restore memory. To restore memory to its state before

the mispredicted branch, instrumentation is added before every store instruction that records the

value in memory before the store is executed (its pre-store value) and puts this data in the same sQ

entry as the store’s effective address. When a misprediction is detected, all pre-store memory val-

ues following the mispredicted branch are restored, in reverse order.

Using these techniques, mispredicted execution paths directly execute on a host processor,

thereby collecting information needed by FastSim’s µ-architecture and cache simulators. Condi-

tional branches are executed based on the results of prediction rather than using target program

values, and sufficient information is recorded to roll-back execution of a mispredicted branch.

When the µ-architecture simulator discovers a misprediction, FastSim rolls-back execution of the

target program by restoring host memory and registers, then continues direct-execution of the tar-

get program from the corrected target of the mispredicted branch.

3.2. Fast-Forwarding

FastSim’s primary contribution is the application of memoization to micro-architecture simu-

lation. FastSim uses a new variation on memoization—called fast-forwarding—that caches µ-

47

architecture configurations and the resulting simulator actions for use in subsequent simulation.

Figure 3.4 shows the structure of FastSim’s fast-forwarding µ-architecture simulator.

The next section (3.2.1) describes the construction of FastSim’s µ-architecture simulator,

focusing on the techniques used to centralize simulator state and reduce the space requirements

for encoding this state—necessary first steps for implementing fast-forwarding. Section 3.2.2

describes how simulator configurations (i.e., µ-architecture state) and the resulting simulator

actions are further compressed and cached into FastSim’s memoization cache. This memoization

cache is subsequently used to fast-forward simulation. Fast-forwarding produces the same result

Detailed
µ−architecture Sim.

Fast-
Forwarding

Memoization
Cache

Encode Decode

E
xe

cu
ta

bl
e*

Branch
Predictor

Cache &

Memory

Simulator

1

2 3

FIGURE 3.4: Memoization of FastSim’s µ-architecture simulator. 1) A detailed simulator
models the out-of-order micro-architecture. 2) Actions of the detailed simulator are recorded
in the memoization cache, indexed by µ-architectural configurations. 3) Cached simulator
actions are replayed for previously simulated configurations, thereby avoiding expensive
detailed simulation.

48

as detailed simulation, since µ-architecture simulator state stored in the memoization cache com-

pletely determines consequent actions of the detailed simulator. Finally, Section 3.2.3 discusses

strategies for further reducing the size of the memoization cache.

3.2.1. µ-architecture Simulator

FastSim’s µ-architecture simulator has been carefully designed to minimize the space needed

to represent the state of its out-of-order pipeline—approximately 16 bytes plus 2 bytes per

instruction in the pipeline—without reducing the complexity of its processor model. At the same

time, it minimizes the amount of interaction between the µ-architecture simulator and other

FastSim components (e.g., direct execution and cache simulation). These are necessary first steps

to perform fast-forwarding simulation. Larger state encodings consume more space in the

memoization cache, while interactions between the µ-architecture simulator and other simulator

components result in more states needing to be cached.

FastSim’s µ-architecture simulator is simplified by only simulating the timing of instructions,

not their functional behavior. For example, values in registers and memory are not considered by

the µ-architecture simulator, although the cache simulator does use addresses recorded in the lQ

and sQ for load and store instructions respectively.

Another simplification is that FastSim’s cache simulator is not memoized. The cache simula-

tor is called by the µ-architecture simulator as infrequently as possible through a simple interface.

The cache simulator is invoked each time a load or store is chosen from FastSim’s R10000-like

49

address queue and begins its simulated execution. For loads, the cache simulator immediately

returns the shortest interval (in cycles) before the requested data could become available, consid-

ering all other loads and stores already executing. The µ-architecture waits for this interval before

again invoking the cache simulator for this load, although the cache simulator may be called in the

meantime to handle other loads and stores. These calls to the cache simulator either return that

data is now available or return a new interval for the µ-architecture to wait. A common example is

a load that first misses in the L1 cache (usually a 6 cycle delay), then misses in the L2 cache

resulting in an additional delay depending on the current state of the cache and memory bus. With

this interface, the µ-architecture simulator is oblivious to the internal workings of its associated

non-blocking cache simulator.

FastSim’s µ-architecture simulator is built around one central data structure, the iQ, which

contains one entry for every instruction currently in the out-of-order pipeline. Between simulated

cycles, the iQ contains the entire configuration of the µ-architecture simulator, which can be used

to index into FastSim’s cache of memoized actions. The iQ is only an abstraction in FastSim’s µ-

architecture simulator used to centralize simulator state. It can be easily adapted to model a vari-

ety of pipeline designs.

Entries remain in the iQ from the time an instruction is fetched until it is retired. The iQ

records an instruction’s address—from which the instruction itself can be looked up—and a small

amount of additional state information. This per-instruction state information identifies in which

pipeline stage an instruction resides and the minimum number of cycles before this stage might

50

change. For example, an integer divide instruction may be executing—in the execute stage—with

up to 34 cycles before it finishes executing and can be retired.

At every simulated cycle, FastSim’s µ-architecture simulator makes a complete pass over

instructions in the iQ, in program order, from oldest to newest. Retired instructions are removed,

state information for each instruction is updated for one cycle of execution, and new instructions

are fetched into the queue. Most implementation constraints in FastSim’s µ-architecture model

can be implemented with simple counters. One constraint is that R10000’s integer instruction

queue (see Figure 3.1) holds at most 16 instructions. FastSim counts the number of integer

instructions already in the queue stage before allowing later integer instructions to move into this

stage. Similarly, a simple counter limits the pipeline to at most four speculative branches. Since

these kinds of constraints are recomputed every cycle, they are not part of the µ-architecture state

carried between cycles.

Other constraints are more complex, but can still be implemented without explicit state infor-

mation. Consider the R10000 register renaming scheme. FastSim recomputes register renaming

information every cycle. This is possible, since the actual map of logical to physical registers does

not affect the simulated time. The only consideration is the number of physical registers required

to hold all output values of enqueued and executing instructions. FastSim builds up a new logical

to physical register map every cycle, which models the physical register limitation of an R10000

and finds all true data dependencies between instructions.

51

3.2.2. Memoization Cache and Fast-Forwarding

FastSim’s memoization cache stores a map from µ-architecture configurations to simulator

actions that result from those configurations. A µ-architecture configuration is simply a snapshot

of the iQ taken between cycles. Simulator actions are events, such as calling the cache simulator

for a load or store, returning to direct-execution, or updating the simulation cycle counter. In gen-

eral, actions stored in the memoization cache represent the ways in which FastSim’s µ-architec-

ture simulator interacts with direct-execution and cache simulation, or updates counters, such as

the simulation cycle counter. Figure 3.5 shows one possible µ-architecture configuration and

some of the actions resulting from this configuration.

At the start of simulation, FastSim’s memoization cache is empty. µ-architecture simulation

starts by running FastSim’s detailed µ-architecture simulator. Whenever the detailed simulator

interacts with either direct-execution or FastSim’s cache simulator, it allocates a new action,

describing the interaction, in the memoization cache. These actions are linked to the most recent

µ-architecture configuration, which captures the simulator state before these actions executed.

When FastSim encounters a configuration already stored in the memoization cache, it looks

up and replays the associated actions rather than using the detailed (slow) µ-architecture simulator

to recompute them. This process is called fast-forwarding, and it produces exactly the same

results as detailed µ-architecture simulation. Actions are replayed in the same order—calling the

52

FIGURE 3.5: A µ-architecture configuration and associated actions. The instructions on
the left are taken from a dynamic instruction stream. The top 11 instructions are currently in
the simulated out-of-order pipeline and are considered part of this µ-architecture configura-
tion. This configuration can be packed into 38 bytes in the memoization cache, since only the
underlined data is needed to uniquely encode it. In subsequent simulation, as a result of this
configuration, the µ-architecture will execute for 6 cycles, then call the cache simulator for the
load at 0x10078. These actions are encoded in the memoization cache, indexed by the com-
pressed µ-architecture configuration.

Addr. Instruction Tag1 Tag2

0x10074 clr %fp done

0x10078 ld [%sp + 0x40], %l0 cache 6

0x1007c add %sp, 0x44, %l1 exec 1

0x10080 sub %sp, 0x20, %sp queue

0x10084 tst %g1 queue

0x10088 be 0x10098 queue

0x1008c mov %g1, %o0 queue

0x10098 sethi %hi(0x5b000), %o0 fetch

0x1009c or %o0, 0x148, %o0 fetch

0x100a0 call 0x3f378 fetch

0x100a4 nop fetch

0x3f378 save %sp, -96, %sp

0x3f380 sethi %hi(0x75c00), %o0

0x3f384 call 0x56ce8

0x3f388 or %o0, 0x2e0, %o0

0x56ce8 save %sp, -96, %sp

0x56cec sethi %hi(0x77000), %g1

0x56cf0 ld [%g1 + 0x17c], %g1

0x56cf4 call %g1

0x56cf8 restore

Previous Action

Retire Queues
cycle_counter += 6

Issue Load
addr = lQ[0]
width = 4

Miss
Hit

Unknown
Next Action

delay=18

Encoded

Configuration

16+11*2 = 38 bytes

µ-architectural

Memoization Cache Entries

53

cache simulator, returning to direct-execution, and updating simulation statistics—as when they

were first generated.

The only variations in µ-architecture behavior arises from different cache behavior (caused by

the unpredictable internal state of the cache simulator or different values in lQ and sQ) and from

different control flow in the direct-execution. These variations are checked when the actions are

replayed, and previously unseen behaviors terminate fast-forwarding, so that the detailed simula-

tor can simulate the new scenario.

Configurations stored in the memoization cache are a compressed representation of data in the

iQ. This compression takes advantage of having instructions listed in program order. To encode

the sequence of instruction in the iQ, FastSim only saves the starting addresses (PC and nPC) of

the oldest instructions in the iQ, plus one bit per conditional branch (taken/not-taken), plus the tar-

get address of any indirect jumps. The iQ’s per instruction state information can be compressed

into 1.5 bytes per instruction, which subsumes the 1 bit of taken/not-taken information needed for

conditional branches. Including some additional header information, this compresses a configura-

tion to 16 bytes plus 4 bytes per indirect jump plus 1.5 bytes per instruction. New configurations

are allocated at the end of a cycle in which an action was allocated. Hence at most one configura-

tion is stored per simulated cycle, but several simulated cycles are often associated with a single

configuration. Note that all interactions between the µ-architecture simulator and other FastSim

components take place in the last cycle associated with a configuration because of the way config-

urations are allocated.

54

Multiple actions can be associated with a single configuration. FastSim allocated 2.9–5.7

actions per configuration while simulating the SPEC95 benchmarks. The first action following a

configuration identifies the number of simulated cycles associated with that configuration. Other

actions, such as calling the cache simulator or returning to direct-execution, are linked in the order

in which they were produced by the detailed simulator. The last action in a chain of actions asso-

ciated with a configuration is linked to the first action of the following configuration, forming an

unbroken chain of actions.

Variations in behavior, caused by different values from the cache simulator or changes in con-

trol flow following a branch or indirect jump, cause the fast-forwarding simulator to choose one

of several possible successor actions in the action chain. For example, there are four possible out-

comes following a conditional branch in direct-execution (i.e., taken/predicted, taken/mispre-

dicted, not-taken/predicted, and not-taken/mispredicted) and arbitrarily many return values for a

load event sent to the cache simulator (i.e., possible intervals before data becomes available). If

the action for a particular outcome is not in the memoization cache (e.g., the outcome has not yet

occurred for the current configuration), fast-forwarding stops and detailed simulation resumes.

Subsequent detailed simulation computes the µ-architecture behavior for this new outcome, and

generates actions along a new branch of the action chain to handle this outcome in the future.

Figure 3.6 illustrates the graph structure of the memoization cache in terms of configurations and

action chains, and shows how new configurations and actions are linked into the existing graph

structure to handle new outcomes.

55

3.2.3. Limiting Memoization Cache Size

Fast-forwarding accelerates µ-architecture simulation at the cost of increased memory con-

sumption. Without limitation, the memoization cache can grow to hundreds of megabytes for the

more complex SPEC95 benchmarks (e.g., 889MB for go, 296MB for gcc). Test results presented

in the next section were collected on a host machine with 2GB of physical memory, but few peo-

ple will have machines this large. Consequently several techniques are investigated for handling

FastSim’s memory consumption.

Encoded µ-architecture
Configurations

Encoded
Actions

Not yet computed

?

?

?

...

...

...

A branch action

?

?

...

...

...

New actions for a
new branch outcome

FIGURE 3.6: Action chains in the memoization cache. The upper diagram is a sample graph
of configurations and actions in the memoization cache. The lower diagram shows how new
configurations and actions might get linked into the existing graph when the detailed simula-
tor is invoked to handle an alternate branch outcome.

...

56

My first trivial memoization cache replacement policy allows unbounded growth of the

memoization cache. This policy produces fast simulation times, providing the memoization cache

fits in physical memory. If it does not fit in physical memory, then the OS will page (and likely

thrash). A better replacement policy is to flush the memoization cache when full. This cache-flush

policy is easy to implement and can limit the memoization cache to any size, but there is a perfor-

mance trade-off. Whenever the cache is flushed, FastSim must use detailed (slow) µ-architecture

simulation to recompute actions and configurations.

A drawback of the cache-flush policy is that useful actions are flushed along with never to be

uses ones. An alternative policy, which also maintains pointers and avoids fragmentation, is to use

a copying garbage collector. Only actions that were accessed since the last garbage collection are

copied. This policy incurs extra overhead—the cost of copying—which one would hope could be

offset by increased reuse of cached actions. A further refinement is to use a generational garbage

collector, so frequently replayed actions will not be copied by the garbage collector as often—

hopefully reducing garbage collection overhead.

3.3. FastSim Performance

This section describes some performance measurements of FastSim v.1 running the SPEC95

benchmarks. Experiments were run on a Sun Microsystems Ultra Enterprise E5000 with 167MHz

UltraSPARC processors and 2 GBytes of physical memory. All programs, except compress, were

57

run using their “test” input sets to reduce simulation time. Compress, which requires less time,

used its “train” data set.

Table 3.2 shows the performance of FastSim, as compared against the original benchmarks

(before they were instrumented) and against a direct-execution simulator without memoization.

SlowSim is FastSim with memoization disabled—the fast-forwarding simulator was turned off

and no configurations were encoded or put in the memoization cache. The table shows that

memoization improves overall simulation performance by a factor of 4.9–11.9 times. Despite this

dramatic speedup, the cycle counts—and all other processor statistics—generated by FastSim are

identical.

TABLE 3.2: Performance of FastSim on the SPEC95 benchmarks. “Program” is time (in
seconds) to execute the original, un-instrumented executables. The two simulator slowdowns
show how many times slower the benchmarks ran in FastSim without memoization
(SlowSim) and with memoization (FastSim). The final column is the factor by which
memoization improved the simulation.

Benchmark Program SlowSim / FastSim / Slow / Fast

099.go 138.2 1,554.2 248.4 6.3
124.m88ksim 2.9 1,363.3 249.5 5.5
126.gcc 12.3 1,122.7 215.1 5.2
129.compress 0.3 1,304.4 218.2 6.0
130.li 8.6 1,435.6 293.5 4.9
132.ijpeg 3.3 1,837.5 199.4 9.2
134.perl 18.0 1,115.9 177.8 6.3
147.vortex 82.2 1,310.7 221.8 5.9
101.tomcatv 12.6 1,322.3 199.8 6.6
102.swim 4.5 1,460.4 191.3 7.6
103.su2cor 6.9 1,934.6 251.4 7.7
104.hydro2d 9.1 2,174.1 232.8 9.3
107.mgrid 33.3 2,569.6 215.9 11.9
110.applu 122.7 1,982.8 292.5 6.8
125.turb3d 114.1 1,992.9 254.5 7.8
141.apsi 66.8 2,758.1 357.7 7.7
145.fpppp 14.9 2,423.7 322.9 7.5
146.wave5 36.6 2,169.4 303.8 7.1

58

Table 3.3 compares FastSim against the SimpleScalar out-of-order simulator [13] modeling

similar processor and cache parameters. Despite their differences—e.g., SimpleScalar models a

different instruction set—SimpleScalar provides a good baseline for measuring FastSim’s perfor-

mance and demonstrating the benefit of its techniques. With only direct-execution, FastSim runs

1.1–2.1 (mgrid–gcc) times faster than SimpleScalar. With fast-forwarding, FastSim runs 8.5–14.7

(fpppp–ijpeg) times faster than SimpleScalar.

One reason for memoization’s large benefit is that FastSim was able to replay simulator

actions for almost all instructions. Table 3.4 shows the fraction of instructions simulated in detail

TABLE 3.3: FastSim vs. SimpleScalar. Program cycles and insts. are the total number of
cycles and retired instructions resulting from out-of-order simulation in FastSim. Next are the
average instructions retired per second by the SimpleScalar simulator, FastSim without
memoization (SlowSim), and FastSim with memoization (FastSim). The last column shows
FastSim’s performance improvement relative to SimpleScalar.

Benchmark cycles insts.
099.go 1.14E+10 1.64E+10 76.2 477.0
124.m88ksim 2.78E+08 4.81E+08 58.4 121.8 665.5 11.4
126.gcc 9.27E+08 1.41E+09 47.2 102.8 536.6 11.4
129.compress 2.74E+07 4.43E+07 51.9 104.5 624.6 12.0
130.li 8.87E+08 1.24E+09 100.4 491.0
132.ijpeg 2.61E+08 4.81E+08 50.2 80.4 740.6 14.7
134.perl 1.34E+09 1.93E+09 48.1 96.5 605.6 12.6
147.vortex 5.76E+09 1.09E+10 101.1 597.3
101.tomcatv 9.83E+08 1.55E+09 57.9 93.0 615.7 10.6
102.swim 2.35E+08 4.23E+08 55.3 64.5 492.3 8.9
103.su2cor 5.48E+08 9.14E+08 56.1 68.7 528.8 9.4
104.hydro2d 6.28E+08 8.46E+08 42.7 399.0
107.mgrid 2.96E+09 5.26E+09 56.5 61.4 731.1 12.9
110.applu 8.53E+09 1.51E+10 61.9 419.8
125.turb3d 8.87E+09 1.59E+10 70.0 547.8
141.apsi 6.28E+09 8.57E+09 46.5 358.7
145.fpppp 1.20E+09 1.99E+09 48.9 55.1 413.6 8.5
146.wave5 2.59E+09 4.64E+09 58.4 417.3

FastSim /
SimpleScalar

Program
SimpleScalar SlowSim

FastSim
Kinsts/sec.

59

compared against the much larger proportion of instructions for which actions were replayed. For

all benchmarks except gcc and ijpeg, FastSim used its detailed µ-architecture simulator for fewer

than 0.1% of target instructions. However, the performance improvement does not appear to be

directly attributed to this fraction (compare ijpeg).

Table 3.5 reports measurements of the memoization process. The first column reports size of

the memoization cache. In many programs, it was manageably small. However, in five applica-

tions it grew to over one hundred megabytes. The go benchmark generated nearly 900MB of

memoized data, by far the most. Fortunately, a simple cache replacement policy, discussed later,

was sufficient to greatly reduce the memory requirements for simulating most benchmarks.

TABLE 3.4: Simulation skipped over by memoization. Instructions that FastSim simulated
by fast-forwarding (Replay) and by detailed simulation (Detailed). The last column is the frac-
tion of instructions that FastSim simulated in detail.

Benchmark
099.go 1.61E+07 1.64E+10 0.099%
124.m88ksim 6.49E+04 4.81E+08 0.013%
126.gcc 4.40E+06 1.41E+09 0.311%
129.compress 3.41E+04 4.42E+07 0.077%
130.li 4.17E+04 1.24E+09 0.003%
132.ijpeg 9.78E+05 4.80E+08 0.203%
134.perl 4.34E+05 1.93E+09 0.022%
147.vortex 8.37E+05 1.09E+10 0.008%
101.tomcatv 4.02E+04 1.55E+09 0.003%
102.swim 9.93E+04 4.23E+08 0.023%
103.su2cor 2.35E+05 9.14E+08 0.026%
104.hydro2d 2.41E+05 8.46E+08 0.028%
107.mgrid 6.72E+04 5.26E+09 0.001%
110.applu 1.40E+05 1.51E+10 0.001%
125.turb3d 8.75E+04 1.59E+10 0.001%
141.apsi 1.52E+05 8.57E+09 0.002%
145.fpppp 2.53E+05 1.99E+09 0.013%
146.wave5 2.39E+05 4.64E+09 0.005%

Detailed
(insts.)

Replay
(insts.)

Detailed /
Total

60

Table 3.5 also reports the number of actions and configurations statically generated for each

program. Although the number of actions and configurations varied greatly between programs,

the dynamic number of actions per configuration remains relatively consistent—between 3.4 and

4.9—for all benchmarks. This number is a measure of how much work can be directly replayed at

a memoized configuration. By dividing the actions per configuration by the dynamic cycles per

configuration, we get an indication of how much simulated work is performed by the µ-architec-

ture each cycle. The average actions per cycle over all the integer benchmarks is 2.4, compared to

3.9 for floating-point benchmarks, which corresponds to this pipeline’s ability to execute more

instructions in parallel if there is a mix of integer and floating point operations. The final two col-

TABLE 3.5: Measurement of memoization details. “Memoization Cache” is the total mem-
ory used to record configurations and actions. The next two columns report the static number
of configurations and actions allocated. “Actions/Config.” is the average dynamic number of
actions replayed per configuration, and “Cycles/Config.” is the dynamic number of simula-
tion cycles simulated per configuration. The final two columns report average and maximum
lengths of action chains played back without stopping to perform detailed simulation.

Benchmark Avg. Max.
099.go 889.4 5,096,560 14,764,742 3.5 1.5 17,300 1,882,101
124.m88ksim 4.6 26,660 89,180 3.6 1.5 190,974 592,750,035
126.gcc 296.0 1,774,016 5,353,318 3.5 1.5 5,354 1,618,693
129.compress 2.8 13,475 57,429 3.5 1.4 35,711 5,231,549
130.li 3.2 18,944 60,581 3.4 1.4 645,873 49,204,501
132.ijpeg 199.5 816,075 3,343,805 3.7 1.5 19,142 2,679,671
134.perl 142.9 559,449 3,205,519 3.6 1.6 51,189 13,495,080
147.vortex 108.6 557,362 2,037,172 3.7 1.3 259,160 32,527,035
101.tomcatv 5.6 27,191 114,445 3.9 1.4 1,934,565 619,213,774
102.swim 16.8 79,002 262,422 4.5 1.2 426,471 491,018,150
103.su2cor 32.8 156,603 642,213 4.1 1.1 178,467 182,556,421
104.hydro2d 35.5 174,422 679,767 4.5 1.2 244,809 194,389,159
107.mgrid 9.5 47,035 192,098 3.4 1.0 3,788,172 322,900,913
110.applu 19.5 94,893 375,606 4.7 1.0 7,414,106 38,010,020,845
125.turb3d 10.4 50,275 205,181 4.1 1.2 10,490,459 2,555,810,836
141.apsi 20.3 98,550 409,502 4.7 1.0 5,122,367 784,023,417
145.fpppp 25.4 127,051 460,440 3.8 1.0 272,104 27,784,740
146.wave5 38.3 180,398 752,237 4.9 1.0 1,049,836 458,444,554

Cycles /
Confi g.

Dyn. Chain LengthMemoization
Cache (MB)

Static
Confi gs.

Static
Actions

Actions /
Confi g.

61

umns report the average and maximum number of chained actions that fast-forwarding was able to

replay without calling the detailed simulator. The large values in both these columns reflects the

extremely long intervals during which only previously cached configurations were encountered.

Figure 3.7 shows the result of limiting memoization cache size using the cache-flush replace-

ment policy. The graph shows simulator speed-up (non-memoized/memoized time) for memoiza-

tion cache sizes ranging from 512KB to 256MB. Most benchmarks could tolerate an order-of-

0.0

2.0

4 .0

6 .0

8 .0

10.0

12.0

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B

25
6M

B

099.go

124.m 88ks im

126.gcc

129.com pres s

130.li

132.ijpeg

134.perl

147.vortex

101.tom catv

102.s w im

103.s u2cor

104.hydro2d

107.m grid

110.app lu

125.turb3d

141.aps i

145.fpppp

146.w ave5

FIGURE 3.7: Memoization performance under the cache flush replacement policy. This
graph shows FastSim’s speedup due to memoization, when memoization cache space is lim-
ited using the cache-flush replacement policy.

62

magnitude reduction in memoization cache size with little or no impact on simulator performance.

This includes the go benchmark, which naturally uses 889MB but shows no slowdown when lim-

ited to 256MB and only moderate slowdown at 64MB. A few benchmarks did not perform well

with reduced cache sizes—notably ijpeg, which slowed dramatically with only moderate cache

reductions—although even these benchmarks ran several times faster than simulations without

memoization for all but the most restrictive cache sizes.

Experiments were also tried using a garbage collector to clean up the memoization cache,

keeping only those configurations and actions that had been used since the last garbage collection.

Despite the potential savings from keeping useful actions in the cache, FastSim’s performance

with garbage collection was nearly identical to its performance using the simple flush on full pol-

icy. Furthermore, since a copying garbage collector was used, the total memory in use during a

collection could be up to twice the maximum allowed memoization cache size. Taking this into

account, garbage collecting the memoization cache is almost always worse than simply flushing

it. Experiments with a generational garbage collector were no better. The additional complexity—

e.g., handling pointers from older generations back to younger generations—offset any savings

from copying smaller portions of the cache.

The garbage collector’s poor performance can be attributed to two factors: Garbage collec-

tions (or cache flushes) are infrequent and few actions survive each collection. 1-4 garbage collec-

tions or cache flushes occur when the memoization cache is sized just smaller than the maximum

space used by a benchmark. For each factor of two decrease in cache size there is only a 3.8 times

63

increase in the number of collections on average. Infrequent collections mean that few configura-

tions are discarded over a program’s execution and that the amortized cost of regenerating them is

small. Another factor is that only 18% of the memoization cache survives each garbage collection

on average. Little is gained by finding and copying these actions over flushing the cache and

regenerating them, when compared to the total simulation time.

3.4. Remarks on FastSim v.1

FastSim v.1 uses two, well-known, but previously un-applied techniques to greatly speed the

detailed, cycle-accurate simulation of an out-of-order uniprocessor. FastSim demonstrated that

direct-execution is compatible with out-of-order simulation, although the benefits are small

because of the much greater cost of simulating a complex micro-architectural model.

FastSim also directly attacked this cost, using memoization to dramatically reduce the cost of

detailed simulation. A key observation is that out-of-order micro-architecture configurations are

often repeated and result in identical simulator behavior. By caching these configurations and

their corresponding simulator actions, subsequent visits to a configuration can be replayed many

times faster. This fast-forwarding optimization speeds processor simulation by a factor of 5–12

times, at the cost of increased memory consumption.

Experiments with cache replacement policies show that most benchmarks only need a fraction

of the memoized data they generate over the course of simulation. A simple flush on full policy is

sufficient to limit the memoization cache size without a large impact on performance. More com-

64

plex cache replacement policies, such as copying garbage collection, are not worth the effort,

since they are difficult to implement and perform no better than the simple flush on full policy.

FastSim v.1 showed that memoization can be a highly effective optimization in processor sim-

ulation, but it has a significant drawback: the complexity of its implementation. A memoizing

simulator is actually two simulators that must cooperate perfectly, so they both perform exactly

the same actions in the same order. Beyond the complexity of simulating an out-of-order proces-

sor, much work was needed to implement these two cooperating simulators. The contents of a pro-

cessor configuration and the set of dynamic action types had to be determined, a fast-forwarding

simulator implemented to execute actions of these types, and a detailed simulator implemented to

generate actions into the memoization cache. The detailed simulator was especially difficult to

implement, since it also had to recover from memoization cache misses, seamlessly switching

from fast-forwarded simulation back to detailed simulation.

In addition to the typical errors encountered when developing any instruction level simulator,

fast-forwarding simulators introduce some new ones. One kind of memoization error involves

miscommunication between the two synchronized simulators. In developing FastSim, synchroni-

zation errors could usually be detected with assertions in the simulator code, although in a few

cases no assertion was broken and the simulation simply got the wrong result. A second, and more

subtle kind of error, involves dynamic behavior of the simulator that was not captured by any fast-

forwarding action type. For example, an early version of FastSim v.1 did not generate actions to

insure loads and stores to the same address were executed in the correct order, although the

65

detailed simulator did order loads and stores correctly. When fast-forwarding, memory operations

were executed in whichever order they executed the first time they were encountered—i.e., when

actions were generated into the memoization cache—which may not be correct for the current

addresses being accessed. This kind of error is more difficult to detect, since FastSim usually sim-

ulated benchmarks to completion and even computed the benchmark results correctly. These

errors were often only detected by discrepancies between the simulation statistics reported with

and without memoization. In many cases, meticulous (and time consuming) comparison of simu-

lator executions with and without memoization was needed to debug the memoizing simulator.

One solution to the complexity of implementing memoizing simulators, is to automate the

application of this optimization. Chapter IV introduces a new special purpose language—Facile—

for writing simulators that are optimized to use memoization, and Chapter V discusses how a Fac-

ile simulator is compiled and automatically optimized to used memoization. The result is that a

programmer writes a single (un-memoized) simulator, and the Facile compiler automatically gen-

erates the two synchronized simulators needed for memoization. Analyses used in this compiler

insure that all dynamic simulator actions are handled by the fast-forwarding simulator and that the

two simulators generated by compilation communicate perfectly. Thus reducing the complexity of

implementing a memoizing simulator and removing the potential for many memoization errors.

The simulation strategy used in FastSim v.1 has another drawback, orthogonal to memoiza-

tion: Instruction timing is simulated separately from instruction semantics. This separation was

necessary to implement FastSim’s speculative direct-execution, since instruction semantics are

66

simulated by directly executing target instructions on the host processor. Unfortunately, this sepa-

ration makes it difficult to verify the correctness of the out-of-order processor timing simulation.

Benchmarks can simulate correctly, and the simulator produce simulated execution statistics, even

if the timing simulation is wrong. Section 6.1 of Chapter VI describes the implementation and

performance of a memoized out-of-order processor simulator that evaluates instruction semantics

out-of-order, as part of the dynamic execution pipeline simulation. This implementation lends

greater credibility to the assertion that out-of-order simulation is correct.

Multi-processor simulation is not supported by FastSim, partly because of the separation of

semantic simulation from timing simulation. In order to simulate multi-processor memory

accesses correctly, a simulator needs to know the exact cycle in which a load or store executes.

But in FastSim, this timing information is not known until later, since the timing simulator is not

run until after the instructions have been directly executed. One solution to this problem, would be

to execute memory operations speculatively, then rollback the simulation if the timing simulator

determined an incorrect value had been loaded. These rollbacks should be infrequent, because

speculation can only fail when there is a race condition. A better solution would be for the simula-

tor to evaluate instructions at their correct time—i.e., in the order they are executed by the proces-

sor being modeled. The out-of-order simulator in Chapter VI is an example of an out-of-order

simulator that executes instructions at their correct time, although multi-processor simulation is

not studied in this dissertation.

67

CHAPTER IV: Facile—The FastSim Simulation
Language

FastSim Version 2 addresses some of the problems of the original FastSim simulator by pro-

viding a flexible simulation system, rather than a single optimized simulator. Simulators are writ-

ten in Facile—FastSim’s new simulation language—then analyzed and automatically transformed

to use memoization. The primary contribution of Facile’s language design is its support for imple-

menting memoization in detailed micro-architecture simulators. From a single Facile simulator

description, the two halves of a fast-forwarding simulator—the slow/complete simulator version

and a fast/residual version—are generated. They are guaranteed to cooperate correctly and imple-

ment the fast-forwarding optimization discussed in Chapter III. This approach allows program-

mers to concentrate on modeling processor micro-architecture, while the details of memoization

are largely handled automatically.

A simulator written in Facile consists of an instruction set architecture (ISA) description and

general programming constructs that model micro-architecture behavior. A Facile ISA description

contains both instruction binary encodings and instruction semantics. From an ISA description the

Facile compiler automatically generates code to decode instructions and simulate their behavior.

ISA descriptions in Facile are compact: For example, all the user level SPARC Version 9 instruc-

tion encodings, register sets, and instruction semantics can be described in just 689 lines of Facile

code. General programming constructs (e.g., functions, loops, array) are used to program a micro-

architecture simulator on top of an ISA description, or within the code describing instruction

68

semantics. Facile is general enough to model complex micro-architecture features, such as, an

out-of-order execution pipeline.

Restrictions built into the language dictate the general structure of simulator code—which

constrains how a simulator is memoized—and simplify the compiler analyses needed to imple-

ment fast-forwarding. For example, in Facile there are no pointers and there is no recursion. The

restriction on pointers greatly simplifies alias analysis, while the absence of recursion is necessary

to efficiently switch between fast-forwarded and detailed simulation.

The structure of a simulator written in Facile directs how the simulator gets memoized. Simu-

lators are written within the context of an implicit outer loop, provided by the run-time system.

The main simulator function—written in Facile and called main —is called repeatedly, advancing

simulation one step each time it is called. The amount of work performed in each of these steps is

determined by the programmer—e.g., a step could simulate a single instruction or several instruc-

tions. Part of the data passed from one simulation step to the next (i.e., passed between calls to

main) is used as an index into the memoization cache. All simulation work that depends only on

this index can be skipped over by fast-forwarding. Facile simulators express the set of data to

include in a memoization index in a natural way by encoding it as arguments to main (see Figure

4.1). Like conventional memoization systems, a Facile simulator is memoized by caching result

data indexed by the arguments to the main function. Fast-forwarding is different from conven-

tional memoization in that cached results represent residual dynamic computations instead of sim-

ple values.

69

The rest of this chapter describes the Facile programming language. Syntax for specifying

binary encodings and the semantics of instructions in an ISA is discussed in section 4.1.

Section 4.2 explains how Facile simulator code is structured to control the way memoization is

used in the resulting compiled code. Finally, section 4.3 discusses other features of the language

and how they are either useful in implementing simulators or in simplifying compiler analyses. A

reference manual for the Facile programming language is given in Appendix A. Most of the

examples used in this chapter are excerpts from an actual simulator for the SPARC-V9 ISA, the

complete text of which is given in Appendix B. The next chapter (Chapter V) continues the

description of FastSim v.2 by describing how Facile is analyzed and compiled, and the run-time

support needed to produce a memoizing simulator.

4.1. Architecture Description

Facile’s architecture description syntax is based on my earlier work with Spawn and the

Spawn Architecture Description Language (SADL) [39], which in turn is similar to the New Jer-

sey Machine Code Toolkit architecture description language developed by Ramsey and Fernandez

[60]. The NJ Machine-Code Toolkit describes instruction encodings with tokens, fields, patterns,

fun main(pc, npc)
{

// Code to simulate an instruction at the given pc
}

FIGURE 4.1: Arguments to main. This example shows the declaration of a Facile main
function. Argument values for the function parameters pc (program counter) and npc (next
program counter) are used to index into the memoization cache. This code fragment is taken
from the complete simulator in Appendix B.

70

and constructors. Patterns associate instruction names with streams of fixed width tokens and

conditions on bit fields contained in those tokens. Constructors map between literals in assembly

language and their encoding in corresponding binary instructions. From descriptions in this lan-

guage, the NJ Machine Code Toolkit automatically generates code that encodes and decodes

binary machine instructions.

Facile also uses tokens, fields, and patterns to associate instruction names with their binary

encodings. Facile’s token declaration defines a fixed-width token that can appear in an instruction

encoding, and also declares a set of field names for accessing sub-fields within the token. Facile’s

pattern declarations map mnemonic names to streams of tokens, with conditions on the values of

fields in those tokens. Instead of constructors that define bidirectional mappings from assembly to

machine language, Facile uses a new feature—semantic declarations—that associate instruction

names (previously defined in pattern declarations) to the semantic code that simulates them. From

an ISA specification built from pattern and semantic declarations, Facile automatically generates

code to decode binary instructions and simulate their behavior.

Architecture descriptions in Facile are compact, reducing the opportunity for error, and are

similar to some descriptions found in architecture manuals. Architecture manuals, such as the one

for SPARC Version 9 [78], often use tables to describe the binary encodings of several instruc-

tions simultaneously. Facile, like Ramsey and Fernandez’s architecture description language, can

describe instruction encodings in similar tables (see Figure 4.2). This approach should reduce

errors by making descriptions in Facile look similar to descriptions in the source reference man-

71

ual, and by sharing parts of the description code among several simultaneous pattern declarations.

One advantage is that an error in one instruction is likely to reoccur in several instructions, mak-

ing the error easier to detect and fix. Facile also allows the semantics of several instructions to be

declared simultaneously in tabular format. Although architecture manuals do not usually define

semantics in this way, the resulting semantic specifications are more compact and errors are again

easier to find and fix.

4.1.1. Tokens and Token Fields

Instructions are described as streams of fixed width tokens. Figure 4.3 shows how instructions

may be built up from fixed width tokens for the SPARC (fixed width instruction) and Intel x86

(variable width instruction) ISAs. In architectures with fixed instruction widths—e.g., SPARC,

MIPS, PowerPC, etc.—each instruction can be described by a single token. Multiple tokens are

pat [_trap _bpcc bicc bpr sethi fbpfcc fbfcc _]
= op==0 && op2 in [0..7];

FIGURE 4.2: Instruction Encoding Descriptions in Tables. This example shows the same
instruction encoding description as it appears in The SPARC Architecture Manual (Version 9)
and in the Facile simulator in Appendix B. These tables distinguish between several categories
of instructions, mostly branches. Additional tables for each category of branch (not shown
here) describe the encodings of individual branch instructions in the SPARC ISA.

op2 [2:0]

0 1 2 3 4 5 6 7

ILLTRAP BPcc Bicc BPr SETHI
NOP

FBPfcc FBfcc —

72

needed to describe instruction set architectures with variable width instructions, such as VAX or

Intel x86 processors.

Facile’s token declaration defines a single token type and a set of names used to access con-

tiguous bit-fields within that token. These field names are used in subsequent pattern expressions

to describe instruction encodings and in semantic code to access field values from an instruction.

Figure 4.4 shows the token and field declarations used to describe the SPARC Version 9 ISA. It

defines a single 32 bit wide token called “instruction ” and several field names, e.g., “op” in

bits 30 and 31, “op2 ” in bits 22 through 24, etc. Note that token bits are numbered in big-endian

order1—i.e., the right-most bit is number 0, and the left most bit is number .

r1 r2

0 rs2rs1ADDrd10 1 simm13rs1SUBrd10

Add 2 registers (32 bits) Subtract an immediate from
from a register (32 bits)

instruction #1 instruction #2

ADD r2SUB imm

Add 2 regs.
(16 bits)

Subtract immediate
(24 bits)

instruction #1 instruction #2

SPARC

Intel x86

FIGURE 4.3: SPARC & Intel x86 instruction tokens. Two instructions from possible
instruction streams for SPARC and Intel x86 processors—an ADD that adds two registers fol-
lowed by a SUB that subtract an immediate from a register. Each instruction is divided into
fixed width tokens. Since SPARC instructions are all 32 bits wide, each instruction is repre-
sented by a single token. Intel x86 instructions are variable width, so the ADD is represented
with two tokens, and the SUB uses three.

width 1–

73

Facile interprets an executable’s binary instruction stream as a sequence of tokens starting at a

given program address. This sequence is called a token stream. The token types that occur in a

token stream are determined by matching bit values in the stream against a pattern that identifies

the first one or more token types. After a simulator has decoded the tokens in the first matching

pattern, the simulator normally advances the token stream to the next program address, and

another pattern is matched against the next instruction.

4.1.2. Instruction “Pattern” Encodings

Facile patterns describe the binary bit patterns that distinguish between instructions in an ISA.

These bit patterns are described as conditions on the token fields within a short sequence of

tokens. For example, the SPARC call instruction is described as a single token with the op field

(bits 30:31) set to the value 1. The remaining 30 bits of a call instruction are not constrained by

this pattern, and are instead read by subsequent semantic code to interpret the instruction’s target

address.

1. Facile’s bit ordering is an artifact of designing the language for a SPARC host processor, which also uses
a big-endian bit ordering. There is some support for using little-endian bit ordering in the form of a com-
mand line argument to the Facile compiler. This command line argument would instruct the Facile com-
piler to interpret all bit numbers as little-endian, but it is not fully implemented at this time.

token instruction[32] fields
op 30:31, op2 22:24, op3 19:24, opf 5:13, rd 25:29, rs1 14:18, rs2 0:4,
opf_cc 11:13, opf_low 5:10, cond 25:28, mcond 14:17, rcond 10:12,
disp30 0:29, disp22 0:21, disp19 0:18, d16hi 20:21, d16lo 0:13,
imm22 0:21, simm13 0:12, simm11 0:10, simm10 0:9, imm_asi 5:12,
shcnt32 0:4, shcnt64 0:5, sw_trap 0:6,
movcc2 18:18, movccr 11:12, movcc1 12:12, movcc0 11:11,
bpccr 20:21, bpcc1 21:21, bpcc0 20:20,
a 29:29, p 19:19, i 13:13, x 12:12;

FIGURE 4.4: SPARC-V9 token and field declarations.

74

A pattern is represented in disjunctive normal form as an OR-list of AND-lists of conditions

on token fields. An individual condition identifies one token at some offset from the start of the

token stream, a field within that token, a literal value to compare against, and a comparison opera-

tor (e.g., ==, <=, !=, etc.) The token may be offset from the start of the token stream when it fol-

lows one or more previous tokens in a multi-token pattern. Individual conditions are satisfied, if

the field value in the token stream satisfies the given test. An AND-list of conditions is satisfied

only if all the conditions in the AND-list are satisfied. Finally, a single pattern can include several

alternate AND-lists in an OR-list, and the entire pattern matches data in a token stream if any one

of these alternate (OR’ed) clauses is satisfied.

Patterns are described in Facile with pattern expression trees, which are transformed into pat-

terns by normalizing them into disjunctive normal form. The leaves of a pattern expression com-

pare token fields against constant integer values, and normalize to OR-lists with one AND-list

containing one condition. Pattern expression operators (|| , &&, $) combine the OR/AND-lists of

their operands to create more complex patterns.

• Single conditions are written as where the operator (op) can be one of <,

<=, ==, !=, >=, or >. A single condition is converted to a pattern (in disjunctive normal form)

as an OR-list containing one AND-list containing the condition.

• Several alternate conditions on the same field can be written as ,

where the value list contains explicit values or sequences of values expressed as

field-name op value

field-name in [value-list]

75

. This syntax is interpreted as an OR-list with one entry for each value

in the value list. Each entry in the OR-list is an AND-list containing a single condition of the

form . The order of entries in an OR-list corresponds to the order of values

given in the value list.

• Two patterns can be OR’ed together (). The OR-lists of the two pat-

terns are simply concatenated to form the resulting pattern. OR-list entries from pattern1 are

listed first, then OR-list entries from pattern2.

• Two patterns can be AND’ed together (). This is interpreted as a cross-

product of the two patterns. Every AND-list in pattern1 is concatenated with every AND-list

in pattern2, and all the resulting AND-lists are OR’ed together. Facile requires that the total

widths of the token sequences encoded by the AND-lists in both pattern1 and pattern2 must be

the same, otherwise the resulting pattern would not make sense. Entries in the resulting OR-

list are ordered lexicographically based on the ordering in pattern1 and pattern2.

• Two patterns can also be AND’ed together with the token sequences specified by the second

pattern following the tokens occurring in the first pattern (). As with the

&& operator, this concatenation operator is like a lexicographically ordered cross-product of

the two patterns, but the offsets of all the conditions in pattern2 are incriminated by the sum of

the token widths in pattern1. Facile requires that the widths of the token sequences specified

start.. end by step

field-name==value

pattern1 || pattern2

pattern1 && pattern2

pattern1 $ pattern2

76

by all AND-lists in pattern1 be the same. This is necessary in order to compute the new offsets

of conditions from pattern2.

• Finally, previously defined pattern names can be referred to by name in subsequent pattern

expressions.

Facile’s pat (short for pattern) declarations associate mnemonic names, like instruction

names in assembly language, to patterns that are constructed with a pattern expression. Figure 4.5

shows how pat declarations can describe the binary encoding of several SPARC instructions.

These instructions have a value of 2 in the op field (bits 30:31) and values in the range 0x00

through 0x3f in the op3 field (bits 19:24). The reg_imm13 pattern name does not correspond to

any SPARC instruction, but is used here to represent a sub-expression within the pattern associ-

ated with each instruction. This sub-expression constrains the pattern for each instruction, requir-

ing that bits 5:12 equal 0 if the instruction does not use an immediate value (i.e., if the i flag in bit

13 equals 0, then bits 5:12 must also be zero).

pat reg_imm13 = (i==0 && instruction?bits(5,12)==0) || i==1;

pat [add and or xor sub andn orn xnor
addc mulx umul smul subc udivx udiv sdiv
addcc andcc orcc xorcc subcc andncc orncc xnorcc
addccc _ umulcc smulcc subccc _ udivcc sdivcc
taddcc tsubcc taddcctv tsubcctv mulscc _ _ _
_ _ _ _ _ sdivx _popc _
wr _ _ _ _ _ _ _
jmpl _retrn _ _flush save restore _ _]

= op==2 && op3 in [0x00..0x3f] && reg_imm13;

FIGURE 4.5: SPARC-V9 instruction encodings.

77

An important feature of these declarations is their ability to declare several pattern names

simultaneously in a tabular format that is similar to tables found in architecture manuals. In a pat

declaration where several names are declared simultaneously, each name is associated to a single

element of the OR-list described by the pattern expression. The number of elements in the pattern

OR-list must be the same as the number of names being declared. The wildcard name (_) can be

used instead of a pattern name to skip an element in the OR-list, without giving it a name. The

order of elements in a pattern’s OR-list determines which clause maps to which name.

A potential problem with simultaneous declaration of several pattern names is that names may

need to be associated with patterns that contain more than one element in their OR-list. To handle

this, Facile does not expand previously declared pattern names in a pattern expression until after

all the names in a simultaneous declaration have been associated with AND-lists. After the names

have been associated to the corresponding parts of the given pattern, previously declared pattern

names are expanded and the associated pattern expressions are re-normalized into disjunctive nor-

mal form. In Figure 4.5 above, reg_imm13 is not expanded until after all the instruction names

are bound, so each instruction name is bound to a pattern containing two OR’ed AND-lists.

Given a set of pattern declarations and a list of which patterns represent actual instructions in

an ISA1, the Facile compiler automatically generates code to decode a token stream. The gener-

ated code consists of nested switch and if statements written in C, with code at the leaves to exe-

cutes the semantic behavior of each instruction. (The C code to decode target instructions is

1. Pattern names represent actual instruction names if the name appears in both a pattern (pat) declaration
and a semantic (sem) declaration.

78

described in more detail in section 5.1.1.3 of the next chapter.) Semantic behavior is specified

using semantic declarations or a Facile switch statement. Both are described in the next section.

4.1.3. Instruction Semantics

Facile has two syntactic constructs that identify patterns to use when parsing a token stream,

and that associate semantic code with each pattern. These are semantic declarations, used to

declare the semantic behavior of instructions in an ISA, and switch statements that are used in

general simulator code to select among patterns that may or may not encode actual instructions in

an ISA.

First, Facile’s switch statement is similar to the switch statement in C, in that it selects

between a list of cases. But Facile’s switch statement selects between both integer and pattern val-

ued cases. Normal, C-like, switch cases that test integer values are written using the case

reserved word followed by the value1 and a colon (i.e.,) and cases that test for patterns

are written using the pat reserved word (i.e.,). The pattern in a pat case can be

any pattern expression, although it is typically a single name declared by an earlier pat declara-

tion.

Figure 4.6 shows a contrived switch statement that selects between several possible control

transfer instructions to appropriately compute a control transfer instruction’s target address.

1. Facile switch statements can also select between more complicated datatype values (e.g., structures and
tuples) and bind variable names to part or all of the condition value. See Appendix A for a complete
description of the Facile switch statement.

case N:

pat pattern:

79

Notice that cases are tested sequentially—i.e., if two pattern cases match the given token stream,

then the first matching case is selected. In this example, we assume that previous code has already

determined that the instruction is a call , jmpl , or branch instruction. If a token stream does not

match the patterns for either direct or indirect call instructions (call and jmpl respectively),

then this switch statement assumes it has a branch instruction, and only the a field need be tested

to distinguish between annulled and non-annulled branches.

Token field names can be used in semantic code associated with a pattern case, so long as the

bits represented by each field name can be uniquely determined. In the above example, field

names like disp30 , disp22 , and rs1 are used to access bit values from the first instruction in

the token stream. It may not be possible to uniquely determine the bits associated with a field

// Assume we already know the instruction at PC is a control
// transfer instruction; Compute the branch target address.
switch(PC) {
 pat call:

target = PC + (disp30?ext(32) << 2);
 pat jmpl:

target = (R4[rs1] + SRC2)?cvt(stream);

// Only branch patterns remain

 pat a==0b1: // this is an annulled branch
if(taken) target = PC + (disp22?sext(32) << 2);
else target = PC + 8;

 pat a==0b0: // this branch is not annulled
 target = PC + (disp22?sext(32) << 2);
}

FIGURE 4.6: Pattern cases in a Facile switch statement. The variables PC and target are
token streams, and taken is a boolean. Other names used in code associated with each case
are token field names, which are implicitly declared in pattern cases where the matched token
types are known and the bits represented by named fields can be uniquely determined.

80

name, if the field’s token type occurs more than once in the matched pattern or if the token occurs

at conflicting offsets in alternate conditions in the pattern. When field names cannot be uniquely

determined, they are not defined and cannot be used in semantic code.

Semantic (sem) declarations provide another syntax for matching patterns and selecting

semantic code to execute. They behave much like pattern cases in a switch statement, but their

syntax is specialized for associating simulation code with pattern names for instructions. In the

Facile compiler, semantic declarations are actually translated into pattern cases in a single switch

statement, with one pattern case for each instruction name. All instruction semantics in an entire

Facile file are collected into the same switch statement, which is then accessed using the ?exec

attribute call in Facile. Given a token stream variable—e.g., PC—the expression

evaluates the generated switch to decode and simulate the first instruction in the token stream PC.

Figure 4.7 shows sem declarations for several SPARC instructions. A call instruction calcu-

lates its target address and stores the current PC address in integer register 15 (register %o7 in

SPARC assembly language syntax). The next five instructions compute various integer operations

and are declared together because their semantic code is nearly identical. The last five instructions

compute the same five operations as before, but also set the condition code register (CCR). Fac-

ile’s built-in ?cc attribute computes a standard set of condition code values for the attributed

expression. The functions Rx (with one or two arguments) and get_src2 are defined elsewhere,

and are used to read integer operands and write the integer result register. As in explicit pattern

PC?exec()

81

cases, semantic code in a sem declaration can access fields in the token stream using token field

names, such as i , rs1 , rs2 , simm13 , and disp30 .

Unlike pattern cases in an explicit switch statement, sem declarations, like those above, can

declare the semantics of several instructions simultaneously. Semantic code for several similar

instructions is parameterized using a where clause. By sharing code in this way, ISA semantics

are expressed more compactly and errors are more readily detected and fixed. In Figure 4.7, op

maps to an operator in a list of operators, where the operator corresponds to the instruction name

being defined.

Although Facile normally does not allow pointers to functions or for operators to be treated as

functions, the where clause is an exception. A parameter defined in a where clause can be

#define SRC2 get_src2(i,rs2,simm13)

sem call {
nPC2 = PC + disp30?sext(32)<<2;
Rx(15,PC?addr?ext(64));

};

sem [add sub and or xor]
{ Rx(rd, op(Rx(rs1),SRC2)); }
where op in [+ - & | ^];

sem [addcc subcc andcc orcc xorcc]
{ Rx(rd, op(Rx(rs1),SRC2)?cc(CCR)); }
where op in [+ - & | ^];

FIGURE 4.7: Semantic declarations for several SPARC-V9 instructions. The first sem
declaration associates semantics with the call instruction pattern. The next two declarations
define the semantics of several arithmetic instructions that share related behavior, by parame-
terizing the code on the value of op .

82

bound to an operator name (interpreted as a function of one or two arguments as appropriate), to a

function name declared earlier in the code, to a single atomic value, or to any more complicated

expression enclosed in parenthesis. The usefulness of this exception can be seen in the example,

where semantic code is parameterized on the operation being computed. These operations are

most easily expressed using Facile’s built-in operator names.

4.2. Controlling Memoization

The structure of a simulator written in Facile controls how memoization is used to optimize its

execution. Fast-forwarding—my term for memoization as used in simulator optimization—works

by caching data that represents the residual, unavoidable parts of simulator execution, indexed by

a carefully chosen subset of the micro-architecture state. The structure of a Facile simulator iden-

tifies, in a natural way, which subset of data to include in the memoization cache index and how

often an index entry should be generated.

4.2.1. Implicit Outer Loop

All Facile simulators are written with an implicit outer loop that calls the simulation code

repeatedly to step through the execution of a simulator. Whether written in Facile or not, a top

level loop is a common component, at least conceptually, of every instruction-level simulator. In

simple fetch-decode-execute style simulators, and most simulators that pre-decode instructions,

the outer loop is explicitly written in simulator code. Cross-compilation style simulators (e.g.,

using direct-execution) and some threaded-code implementations do not use an explicit outer

83

loop, but they still have an implicit evaluation cycle in which instructions are fetched, decoded,

executed, and extra simulation work is performed.

Facile uses its implicit outer loop to control when memoization index entries are generated. At

the beginning of each iteration of the implicit loop, a fast-forwarding optimized simulator gener-

ates a memoization cache index entry. If the index entry already exists in the memoization cache,

then the residual—fast—version of a simulator is executed, otherwise the complete—slow—ver-

sion of the simulator is called. The slow simulator, if called, caches data that drives later fast sim-

ulation, and associates that data with the current iteration’s index entry. By controlling how much

work is done in each iteration, the programmer controls how often a memoization cache index is

generated and how often it is possible to switch to fast simulation.

4.2.2. Top-Level Simulation Function

Simulators are written as code contained in or called from a single function that is called once

for each iteration of the implicit outer loop. This top-level simulation function is called main 1 in

Facile. Just as conventional memoization systems cache function results indexed by the function’s

name and argument values, FastSim caches residual simulation indexed by the arguments of

main . The programmer decides which data to pass as arguments to main and which data to pass

in global variables. The values in main ’s arguments are packed into a memoization cache index

entry, which is used to look for repeated work in subsequent simulation.

1. When compiled into C code by the Facile compiler, this function is renamed xmain (for slow simula-
tion) or ff_main (for fast simulation). The main function in C is implemented within the FastSim run-
time library, and is responsible for calling xmain or ff_main as needed.

84

The number and types of arguments passed to main is specified by the programmer. Argu-

ment data values are taken from a special global variable—called init —that holds data for all of

main ’s parameters. Figure 4.8 shows the main function and init variable declarations used in

a simple SPARC simulator. This function executes exactly one instruction from the target execut-

able for each iteration of Facile’s implicit outer loop. Memoization index entries are generated

before simulating each target instruction, and contain two token stream values: the current pro-

gram counter (pc) and next program counter (npc) of the instruction to be executed. At the start

of every call to main , the values in main ’s parameters are copied to global variables so they can

be referenced by semantic code associated with branch and call instructions, and then the current

instruction is simulated. Finally, the next program counter (nPC) and next-next program counter

(nPC2) are stored in init for use as arguments to main in the next iteration.

val init = (system?start_pc, system?start_pc+4);

fun main(pc, npc)
{

// Copy argument values to global variables
PC = pc; nPC = npc;

nPC2 = nPC + 4; // default next nPC
PC?exec(); // execute instruction

// Set init for next call to main
init = (nPC, nPC2);

}

FIGURE 4.8: Simple Simulator #1. This code fragment is taken from a variation of the com-
plete simulator in Appendix B. It shows the main function for a very simple SPARC simula-
tor, and the init variable where argument values for main are stored between calls. This
function simulates exactly one target instruction, then sets up argument values for the next
iteration and returns. Note that init is initialized with the entry point of the target program,
but is reassigned by main each time main is called.

85

Figure 4.9 shows how a programmer can vary the content and frequency of memoization

index entries. This main function simulates several instructions before returning. In particular, it

simulates instructions until the next sequence of straight line code (i.e.) fol-

lowing a taken control transfer instruction. The boolean variable taken is set in the semantic

code associated with control transfer instructions (not shown) when a branch is taken. By simulat-

ing more instructions per call to main , this implementation generates fewer index entries, and

saves space in the memoization cache. Space is also saved by only passing the current program

counter (pc) as an argument to main , so less data is stored in each index entry. This savings is

val init = system?start_pc;

fun main(pc)
{

PC = pc; // copy pc to global variable PC
nPC = PC + 4; // compute nPC from PC value
taken = false; // initialize branch taken flag

while(!taken || nPC != PC + 4) {
nPC2 = nPC + 4; // default next nPC
PC?exec(); // execute instruction
PC = nPC; nPC = nPC2; // update PC and nPC

}

// Set init for next call to main
init = PC;

}

FIGURE 4.9: Simple Simulator #2. This code fragment is from a more efficient version of the
simple simulator in Figure 4.8. This main function simulates several instructions, looping
until a branch has been taken and the next PC follows the current PC sequentially. The global
variable taken is set to true in semantic code (not shown) associated with branch, call, and
indirect jump instructions, when the control transfer is taken. This implementation generates
fewer memoization index entries, with less data stored per entry.

nPC == PC + 4

86

possible because of the simulator design guarantees that at the start of each

call to main .

Although simulators can be designed to generate arbitrarily few memoization index entries,

care must be taken. Each memoization index entry represents a potential for finding repeated sim-

ulation that can be replayed by fast-forwarding. If there are too few index entries, opportunities to

start fast simulation may be missed. A more serious problem is the cost associated with recover-

ing when fast-forwarding fails. This happens when some execution path is encountered by the fast

simulator that was not previously encountered by the slow simulator, so no data for it exists in the

memoization cache. To recover, simulation is rolled back to the beginning of the current call to

main and restarted. A long running main function can be very expensive to roll back. Perform-

ing more work in a each call to main also increases the probability that a given iteration will fail

when fast-forwarding, because there are more decision points where memoized data may be miss-

ing. The effect of design decisions like these are explored more fully in Chapter VI on perfor-

mance and writing efficient memoizing simulators.

4.2.3. Static, run-time static, and dynamic code & data

In addition to controlling the content and generation frequency of memoization index entries,

a Facile programmer must also consider how a memoizing simulator will be split into its two

complementary versions. The fast version of a simulator contains only the code that cannot be

skipped by fast-forwarding. The less code contained in this residual version, the faster it will run.

By careful simulator design and a small amount of additional annotation, the programmer can

nPC == PC + 4

87

control how much work is performed in the fast simulator, and how much is skipped over by fast-

forwarding.

The key to understanding how the Facile compiler generates a fast-forwarding simulator is to

understand the division of Facile code and data into binding time classes. The binding time of a

data value is the earliest time at which that value can be computed. Similarly, the binding time of

a piece of code is the earliest time that code can be evaluated to produce its result value. For

example, a literal constant (e.g., 5 or 0x1f) is known at compile time, as is any expression that

depends only on literal values (e.g.,).

For fast-forwarding, there are three relevant binding time classes: Static code and data is

known at compile time (e.g., literal expressions like 5+1). Run-time static values are computed by

the slow version of a simulator, but are considered known constant values when fast-forwarding

(e.g., the arguments to main). Finally, dynamic values cannot be known until the moment they

are computed by either the slow or fast versions of a simulator. Obviously, dynamic code cannot

be skipped over by fast-forwarding, since its result cannot be pre-computed. But static and run-

time static code can be skipped, so it is left out of the fast version of a simulator, leaving only

dynamic code to be executed.

The Facile programmer controls which code and data belong to each binding time class. An

expression is made static by writing it so it depends exclusively on literal values and other static

expressions. Not all simulation code cannot be made static—i.e., known at compile time—but the

(5*6)+7

88

programmer has absolute control in deciding whether the remaining, non-static code should be

run-time static or dynamic. This is accomplished through the choice of arguments to main , place-

ment of conditional expressions, and occasional use of binding time annotations. Figure 4.10 con-

tains code fragments from a simple simulator that show how binding time classes are assigned. In

general, this simulator is designed so that instruction decode is run-time static, but most instruc-

tion semantic code is dynamic. The next few paragraphs explain briefly how this division is com-

puted.

At the start of every iteration of Facile’s implicit loop, main ’s arguments and the init vari-

able are assumed to be run-time static, while all other global variables are dynamic. The binding

time classes of subsequent code are largely determined by this initial division. Any subsequent

expression that is not static but depends only on static and run-time static data is itself run-time

static. Variables on the left hand side of an assignment take on the binding time class of the

expressions they are assigned from. For example, the first two lines of the main function in

Figure 4.10 are run-time static, because they compute values based only on literal constants and

the run-time static parameter pc . Note that the global variables PC and nPC contain run-time

static data after these assignments, even though they started out dynamic when main was called.

The rest of the code in main is mostly run-time static because it also depends only on literal val-

ues and the parameter pc , although some dependencies are more complex. Also, the ?exec

attribute call in the expression is labeled dynamic in this example because it calls a

function containing both run-time static and dynamic code, although the code to decode target

instructions is entirely run-time static because the variable PC is run-time static.

PC?exec()

89

fun Rx(i0) { // get 64-bit register value
val ii = i0?ext(32);
if(ii == 0) return 0?ext(64);
else if(ii < 8) return global_registers [ii-1];
else {

val win = (CWP?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); return register_windows [win][ii];

}
}

sem jmpl {
nPC2 = (Rx (rs1) + SRC2)?cvt(stream)?static ;
Rx(rd,PC?addr?ext(64)); taken = true;

};

#define i_ne (!CCR?bit(2))
#define i_e (CCR?bit(2))

sem [bne be bg ble bge bl
bgu bleu bcc bcs bpos bneg bvc bvs] {

if (cond) { nPC2 = PC + disp22?sext(32)<<2; taken = true; }
else if(a) annul();

} where cond in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

sem [add sub and or xor]
{ Rx (rd, op (Rx (rs1),SRC2)); }
where op in [+ - & | ^];

fun main(pc)
{

PC = pc; // copy pc to global variable PC
nPC = PC + 4; // compute nPC from PC value
taken = false; // initialize branch taken flag

while(!taken || nPC != PC + 4) {
nPC2 = nPC + 4; // default next nPC
PC?exec() ; // execute instruction
PC = nPC; nPC = nPC2; // update PC and nPC

}

// Set init for next call to main
init = PC;

}

FIGURE 4.10: Simulator code with binding time labels. This code is taken from a variation
of the simple SPARC simulator given in Appendix B. Dynamic code is underlined. All non-
underlined code is either static or run-time static. Some functions contain both dynamic and
non-dynamic code, and calls to these functions are underlined.

90

A second way data can become run-time static is through conditional statements—e.g., if

and switch . A dynamic conditional statement—i.e., one that tests a dynamic condition—con-

verts the result of its conditional expression to a run-time static value before it tests the condition.

Hence, the direction of control flow following a dynamic conditional statement is run-time static.

One result is that variables assigned run-time static values along one branch of a dynamic condi-

tional statement remain run-time static at the end of the conditional statement, when the alternate

control flow paths merge back together. To make a dynamic condition run-time static, the fast ver-

sion of a memoizing simulator verifies that the dynamic condition evaluates to the same result as a

previously cached result value, otherwise fast-forwarding will fail and control be passed back to

the slow simulator. By verifying the dynamic result, Facile makes all control flow choices run-

time static.

Consider the semantic code for branch instructions in Figure 4.10. The first if statement is

dynamic because it tests the dynamic value of the condition code register variable (CCR). In the

“true” branch of this statement, the variable nPC2 is assigned a run-time static value. If Facile did

not verify the value of the dynamic condition when fast-forwarding, then it could not know

whether the assignment to nPC2 occurred or not, and nPC2 would be dynamic at the end of the if

statement.

Finally, any dynamic variable or expression result can be made run-time static by explicit use

of the ?static attribute. In Figure 4.10, ?static is used to make the target address of an indi-

rect call instruction (jmpl) run-time static. Without this annotation, indirect call target addresses

91

would be dynamic because they depend on the dynamic values of simulated integer registers. As

with dynamic conditional statements, a dynamic value is made run-time static by verifying it

against values previously stored in the memoization cache. If there is no matching value in the

cache, then fast simulation fails and control is passed back to the slow simulator. If a matching

value is found, then simulator behavior has already been memoized for this dynamic value and the

fast simulator can continue to replay memoized simulation.

An efficient memoizing simulator must balance the desire to skip over as much code as possi-

ble against the amount of memoization index and result data stored into the cache. Increasing the

portion of run-time static code in a simulator often leads to an increase in the amount of memoiza-

tion data generated. Putting more data into a memoization index (i.e., by adding values to main ’s

list of arguments) can increase memoization cache consumption for two reasons: Each index entry

is larger, and more index entries may get generated because they are less likely to match existing

entries. Similarly, dynamic conditional statements and ?static annotations can increase cache

consumption and increase the probability of a memoization miss, causing fast simulation to fail

and a return to slow simulation.

Another source of memoized data comes from using run-time static values in dynamic compu-

tation. Every run-time static value that is used as an operand in a dynamic expression must be

cached, so it will be available in subsequent fast simulation. Since static values are available at

compile time, they are generated directly into the code for the fast simulator version, and only

run-time static data takes up space in the cache. Hence, to reduce consumption of memoization

92

cache space, it is desirable to minimize the amount of run-time static data used in dynamic code

by designing dynamic expressions that use only static and dynamic values wherever possible.

An ideal memoizing simulator design reduces the quantity of memoization data while simul-

taneously skipping as much run-time static code as possible and using this small amount of resid-

ual code as often as possible. This is accomplished by careful selection of data to include in the

memoization cache index and careful crafting of the structure of simulator code. Chapter VI dis-

cusses various alternative simulator designs and their affect on performance.

4.3. Other Features

The Facile programming language incorporates several features that either help a programmer

write memoizing instruction level simulators or simplify analyses in the Facile compiler. These

features include language constraints that simplify analysis, built-in datatypes that can be

memoized and are useful for implementing micro-architecture simulators, and a simple interface

for calling non-Facile code to handle tasks that are difficult to implement in Facile and do not

need to be memoized.

4.3.1. Limitations to Simplify Compiler Analysis

Facile has no pointer types. This restricts the coding style used in Facile programs, and makes

it easier to perform accurate alias analysis. Alias analysis determines the storage locations

referred to by each variable at each point in a program, and if multiple variables refer to the same

storage location. The results of this analysis are used to determine the data dependencies in a Fac-

93

ile program, so each expression can be labeled with its appropriate binding time class. Too conser-

vative an alias analysis may cause unnecessary data dependencies, resulting in potentially run-

time static code being labeled dynamic by the compiler. Pointer variables are often difficult to

analyze, because the storage location they point to may not be known until run-time and can

change as the program executes. If the storage locations of all variables are known at compile

time, then aliases can be accurately determined, improving the accuracy of the data dependence

graph.

Unfortunately, there are other sources of aliasing in Facile, namely array and queue lookup

expressions, and reference variables and parameters. All of these are included in the Facile lan-

guage because they are needed for writing efficient micro-architecture simulators. Because the

index value used to access an array or queue may not be known at compile time, the element

accessed may not be known. This is an example of aliasing, because the result of a lookup may

refer to any element of the array or queue. Unlike aliasing with pointers, aliasing in arrays is more

controlled: the compiler knows that the storage location referenced must be one of the array’s ele-

ments. Facile’s compiler uses this information to limit the number of extra dependencies in its

conservative data dependence graph.

Although Facile does not have pointers, it does have reference variables and allows function

parameters to be passed by reference. Reference variables may refer to the same storage location

as another variable, and changes to one are visible in the others. The difference between reference

variables and pointers is that a reference variable cannot be changed to point to a different storage

94

location after it is initially bound. Hence the storage location referred to by a reference variable is

known at compile time, unless other factors make the analysis inexact. For example, a reference

variable initialized to the result of an array lookup may not be statically known, but this is a result

of the unknown array lookup not the reference.

A second restriction of the language is the absence of recursion. A Facile function cannot call

itself either directly or indirectly. This restriction simplifies some inter-procedural compiler anal-

yses, but it is primarily needed for efficient recovery from failed fast-forwarded execution. When

the fast version of a simulator cannot find data it needs in the memoization cache—i.e., a

memoization miss—it fails and returns control to the slow simulator version. The no-recursion

restriction allows local function variables to be stored in the global scope, so values computed by

a failed fast simulation can be transferred to the slow simulator in global variables and not on a

stack.

The memoization miss recovery mechanism is discussed more fully in Chapter V, but it can be

described briefly as follows. All variables in a simulator have two storage locations, one when the

value is dynamic and the other when the value is static or run-time static. Whether a Facile vari-

able was declared locally or globally, the dynamic version of its storage location is always allo-

cated globally in C, so it is accessible from any function. This is why there can be no recursion;

FastSim never stores more than one copy of a variable’s dynamic data during recovery. After a

memoization miss the slow simulator is restarted with arguments taken from the last index entry

encountered by the fast simulator, i.e., the last call to main . While the slow simulator is recover-

95

ing from a memoization miss it only executes static and run-time static code, which only reads

and writes the run-time static versions of variables. Once the slow simulator catches up to the

point where fast simulation failed, the run-time static and dynamic data is exactly the same as if

the fast simulator had never been run, and slow simulation can continue normally.

4.3.2. Special Datatypes

In addition to data types common to many programming languages, Facile also has several

data types that are explicitly included to support micro-architecture simulation, and allow their

data to be memoized. The token stream type (just called stream in Facile) works with token ,

pat , and sem declarations and Facile’s switch statement to easily decode instructions found in a

target program. Variables of type cc represent condition codes, a common architecture feature of

many ISAs. The ?cc annotation allows condition code variables (of type cc) to be efficiently set

with condition code values resulting from arithmetic operations. To support the implementation of

out-of-order processor simulators—one of the driving examples for the design of FastSim v.2—

Facile also provides a built-in double ended queue datatype. Including these types into the lan-

guage, ensures Facile is able to analyze them and memoize their data.

The token stream type represents a stream of instruction tokens starting at a given program

address. The primary operation on a token stream is to decode and evaluate the semantics of the

first instruction in the stream, using the ?exec attribute. Instructions are decoded and evaluated

based on information provided in token , pat , and sem declarations, as described in section 4.1.

96

Other operations include adding (+) or subtracting (-) an integer offset to the token stream’s base

address, and converting the stream address into an integer using the ?addr attribute.

Condition codes are sometimes generated to denote various conditions on the result of some

arithmetic operator, in addition to the operator’s result value. Typical integer condition codes

include 1-bit flags to indicate if a result is negative (N), equal to zero (Z), caused an overflow (V),

or incurred a carry (C). Typical floating-point condition codes indicate if the first operand was

equal to (=), less than (<), greater than (>), or unordered (?) with respect to the second operand in

a floating point compare. These condition code results are efficiently generated using the ?cc

attribute and a variable of type cc to hold the condition code result. For example, the expression

 returns the sum of integer variables op1 and op2 , while simulta-

neously setting the variable CCR to the integer condition codes resulting from this summation.

Condition code values are then accessed by extracting bits from the condition code variable (e.g.,

 extracts the Z flag from CCR).

For efficient implementation on a SPARC host, FastSim v.2 implements the ?cc attribute for

all of Facile’s integer binary operators using the corresponding native SPARC instructions that

produce these condition codes. Hence the condition codes generated are a near perfect match for

the condition codes needed in a simulator of the SPARC instruction set. Facile’s condition codes

may not work as smoothly for modeling other ISAs, although the kinds of condition codes used in

other architectures are very similar to those implemented here. Condition codes used in other

ISAs that do not correspond to SPARC condition codes can be programmed in Facile.

(op1+op2)?cc(CCR)

CCR?bit(2)

97

Finally, double ended queues act much like arrays, but elements can be added or removed

from both the beginning and end of a queue, and a queue dynamically grows and shrinks as

needed. The motivation for the queue datatype is primarily for use in simulators that model hard-

ware buffers, like in the instruction window of an out-of-order micro-architecture. Queues are a

common construct in hardware, and Facile’s queue type should be useful in other parts of a micro-

architecture simulator. Queue elements can be accessed just like array elements, with an index in

square brackets (e.g.,). Other queue operations include the attributes ?push_front ,

?push_back , ?pop_front , ?pop_back , ?length , and ?clear .

The advantage of defining double ended queues and Facile’s other datatypes as language built-

ins, is that they can be analyzed by the Facile compiler. Facile also allows external datatypes to be

defined. These external datatype definitions give a Facile type name to C’s void* type, and

objects of these types are manipulated exclusively by external (non-Facile) function calls. Facile

variables can reference data with an external type, but the data cannot be stored in the memoiza-

tion cache, and will always have a dynamic binding time class. Facile’s built-in datatypes and

types made using Facile’s type constructors (e.g., struct , array , and queue) can be

memoized, and values having these types can be skipped over by fast-forwarding.

4.3.3. A Simple interface to C

Facile contains many common programming language constructs (e.g., functions, while loops,

and if statements) and data types (e.g., integers, records, and arrays), but it may not be appropriate

for all the tasks required of a complex simulator implementation. It may also not be appropriate to

Q[i]

98

use memoization in all the components of a simulator. For these reasons, Facile provides a simple

interface for linking a Facile simulator to external code, possibly written in a non-Facile language

such as C. Using Facile’s extern declarations, Facile code can call functions and access vari-

ables implemented in C, and C code can access functions and variables written in Facile.

External function and variable declarations provide type information that Facile needs to com-

municate with external code. Once variable and function names have been declared external and

their types specified, they can be used in Facile code to call the named functions or to access

external variables. Alternatively, externally declared names can be given code in Facile, then

called from external code. In this way, not only can Facile code call out to code written in another

language, but that code can call back into Facile.

Functions implemented in external code, and accessed via Facile’s external declarations, are

not memoized. But a simulator written in Facile can still be memoized, even though it may call

external functions and access external variables. Conservative assumptions are used in place of

actual analysis of external code. The Facile compiler detects all the ways external code can influ-

ence the Facile code in a simulator through its externally defined interfaces, and binding-time

analysis takes this into account. All external code is considered dynamic, and any change to Facile

data that may result from external code is also dynamic. Hence, every call out to external data is

dynamic and cannot be skipped by fast-forwarding, any value returned by a call to an external

function is dynamic, and any Facile variable that may be changed by external code becomes

dynamic after every external call. Facile variables may be changed by external code if they are

99

declared external (i.e., made visible to external code) or are set by some Facile function that is

declared external.

Figure 4.11 shows an external declaration of the trap_sparc function that is implemented

in a separate C file, and several Facile functions declared external so they can be called from C.

These Facile functions are made external to allow C code access to the Facile variables that repre-

sent integer registers and integer condition codes in the simulated SPARC ISA. The

trap_sparc function emulates system calls of the Solaris operating system, as is invoked by a

simulated trap instructions. Semantic code in Facile that simulates trap instructions calls

extern set_CCR(cc) : void;
fun set_CCR(CCR1 : cc) : void { CCR = CCR1; }

extern get_R4(cwp_t,ulong) : ulong;
extern set_R4(cwp_t,ulong,ulong) : void;

fun get_R4(cwp : cwp_t, i0 : ulong) {
val ii = i0?ext(32);
if(ii == 0) return 0?ext(32);
else if(ii < 8) return global_registers[ii-1]?bits(32);
else {

val win = (cwp?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); return register_windows[win][ii]?bits(32);

}
}

fun set_R4(cwp : cwp_t, i0 : ulong, vv : ulong) {
// Similar to get_R4 except it sets register i0
// in register window cwp to values vv.

}

extern trap_sparc(ulong,cwp_t,cwp_t): void;

FIGURE 4.11: External function declarations. These declarations are taken from the simple
simulator in Appendix B. They are used to interface Facile code for this simulator with C code
that emulates SPARC Solaris operating system calls.

100

trap_sparc , passing in a trap number and current values of the simulated CWP and CANRE-

STORE registers, used to maintain the register window state. The trap_sparc function, written

in C, calls get_R4 to get integer register values used by the system call, then emulates the sys-

tem call1. Finally, set_R4 and set_CCR are called from C to update the simulated registers

with results from the system call.

1. Since the host machine is also running Solaris, system call emulation is accomplished
by copying the simulated register values to actual host registers and executing a ta
(trap always) instruction on the host.

101

CHAPTER V: Facile Compilation and Automatic
Simulator Memoization

FastSim Version 2 simplifies the implementation of fast-forwarding by automatically optimiz-

ing simulators written in Facile to use memoization. The Facile compiler generates two cooperat-

ing versions of a simulator, guaranteeing that they communicate memoization data correctly and

can correctly transition both from slow to fast and from fast to slow simulation. The two simulator

versions are linked to a run-time library that helps manage the memoization cache and imple-

ments the rest of FastSim’s simulation framework. A programmer need only write one version of

a simulator, with hints to the compiler about how memoization should be used, and the compiler

will automatically implement the fast-forwarding optimization.

Section 5.1 introduces the Facile compiler and run-time library, discussing features not related

to memoization. Section 5.2 continues by detailing the implementation of the fast-forwarding

(memoizing) optimization.

5.1. Facile Compilation

The Facile compiler translates Facile code into equivalent C code, then calls gcc to compile

the C code and link it with FastSim’s run-time library. Figure 5.1 shows the general stages for

compiling and linking a FastSim simulator. Facile source first passes through the C preprocessor

102

(cpp) then through the Facile compiler (fs1) to produce C source code. Note that Facile’s com-

piler only optimizes a single source file to use memoization, because it must analyze all

memoized code at the same time. If other files contain code to be memoized, they must be

included—using the #include preprocessor directive—into a single Facile source file. Finally,

C code produced by fs1 is compiled by gcc and linked to the FastSim run-time library (libfs.a).

External code written in languages like C can also be linked at this time.

gcc
Facile
Source fs1

(Facile Compiler)

#include

Facile
Source

Other Source

libfs.a

A
FastSim

Simulator

FIGURE 5.1: Stages of compilation. The Facile compiler (fs1) translates preprocessed Facile
source code into C source code. The generated C code is compiled and linked to the FastSim
library (libfs.a), and other simulator object code, to produce a complete simulator executable.

Other

cpp

ld

Compilers

103

5.1.1. The Facile Compiler

Facile code is transformed to C code by the Facile compiler. Most Facile language features

have analogous counterparts in C—e.g., if statements, assignments, function calls, and most

expression operators—and are translated in an obvious way. Other features are not so simple. For

example, pattern cases in a Facile switch statement are translated into several embedded switch

and if statements in C. Facile’s type system also differs from C: In addition to having different

base types and type constructors, Facile types do not have to be specified when variables and

functions are declared. The compiler uses type inference to determine appropriate types for all

variables, functions, and expressions from the context of their declaration and usage.

Ignoring the memoization optimization for now, the significant stages of compilation are:

• PARSING: Lexical analysis and parsing are implemented with flex and bison respectively.

• PATTERN NORMALIZATION : Pattern expressions—describing the binary encoding of instruc-

tions—are normalized into disjunctive normal form, i.e., OR-lists of AND-lists of conditions

on token fields.

• TYPE CHECKING: Type inference assigns types to every variable, function, and expression.

This analysis is complicated by potentially polymorphic and overloaded function definitions.

104

• CONVERTING SWITCH STATEMENTS: Pattern cases in Facile switch statements are converted

into nested switch and if statements that can easily be translated into C code.

• FUNCTION INLINING : Calls to local functions and functions explicitly annotated as inlined are

replaced with the text of the called function, removing the function call from the code.

• GENERATE C CODE: One C source file is generated that contains all the global variable and

function definitions translated from a Facile source file. A C header file is also generated, con-

taining variable, function, and type names declared external in Facile source code.

5.1.1.1. PATTERN NORMALIZATION

Pattern expressions appear in pat declarations and in pattern cases of switch statements. A

pattern expression is a tree of pattern operators (e.g., &&, || , and $) with conditions on token

fields at the leaves. The compiler normalizes these trees into OR-lists of AND-lists of conditions

on token fields, i.e., disjunctive normal form. Individual conditions in the expression tree become

OR-lists containing one AND-list containing the single condition. The || operator is normalized

by appending the OR-list of its right-hand operand to the end of the OR-list from its left-hand

operand. The && and $ operators are normalized by taking a cross product of their operands—i.e.,

every AND-list on the right-hand side is appended to every AND-list on the left-hand side and all

the resulting AND-lists are OR’ed together. The $ operator also adds an offset to conditions in its

right-hand side operand, so these conditions test fields belonging to tokens later in the token

stream, after the all the left-hand side operand’s tokens.

105

Pattern expressions are normalized in two passes. The first pass normalizes all operators and

conditions in a pattern expression, but does not expand any pattern names defined by earlier pat

declarations. The second pass expands previously defined pattern names and re-normalizes the

pattern. Two passes are needed because pat declarations that define more than one pattern name

need to associate each new name with one element of the pattern OR-list before any named pat-

terns are expanded. Figure 5.2 illustrates the normalization process for two simple pattern expres-

sions.

pat bicc = op == 0 && (op2 == 1 || op2 == 2);

pat be = bicc && cond == 1;

&&

||1: op == 0

2: op2 == 1 3: op2 == 2

4: cond == 1bicc

&&

1 2 1 3

AND AND

OR

OR

AND

bicc 4 1 2 1 3

AND AND

OR

4 4

(same)
Pass #1 Pass #2

Pass #1 Pass #2

FIGURE 5.2: Normalizing pattern expressions. Pass #1 normalizes a pattern expression tree
without expanding any previously declared pattern names. Pass #2 expands pattern names and
re-normalizes the pattern. Individual conditions are represented by numbers (1 through 4) in
this figure to save space.

106

5.1.1.2. TYPE CHECKING

Facile is a strongly typed language, but uses type inference to reduce the number of types that

must be explicitly specified by a programmer. In the absence of explicit type information, Facile’s

type checker infers the types of variables from the contexts in which they are used. Function types

are partially inferred from the code that defines a function, but may also be influenced by the con-

text in which a functions is called. Figure 5.3 shows how variable and function types are inferred

from their context, and how a function can have different types when used in different contexts.

Function types are more complex than variable types, because functions names can be over-

loaded (i.e., declared several times with different types) and polymorphic (i.e., part of the function

type is represented by a type variable rather than an explicit type). When an overloaded function is

// 5 is of type ulong, so x is of type ulong
val x = 5;

// Parameter y has type ulong, which can be inferred either of two ways:
// It is added to the ulong value 1 or because the result is assigned
// into the ulong variable x. Hence function f has type .
fun f(y) { x = y + 1; }

// Function ident is a polymorphic function of type .
fun ident(y) { return y; }

// Function ident is instantiated here with type ,
// so z1 has type ulong.
val z1 = ident(5);

// Function ident is instantiated here with type ,
// so z2 has type float.
val z2 = ident(1.0);

FIGURE 5.3: Type inference of variables and functions.

ulong void→

α α→

ulong ulong→

float float→

107

called, the types of its arguments and expected return value are tested against all overloaded ver-

sions of the function to determine which version should be used. If a called function is polymor-

phic, a copy of the function is made in which its free type variables are instantiated with explicit

types corresponding to the types used in the call. After type checking an entire program, all poly-

morphic type variables will have been replaced by explicit types, and overloaded function ver-

sions renamed to distinguish between them.

The Facile type checker uses an extension of the polymorphic type inference algorithm—

algorithm W—described in [47]. Algorithm W walks through a source tree with a depth first tra-

versal, assigning types to each expression. Type variables represent unknowns in the current type

information for the already traversed expressions. A type environment (E) maps type variables to

more explicit types, as the explicit type information becomes known. For example, to type check

the expression , y is initially given type α (an unbound type variable), and 1 is given explicit

type ulong (the 32-bit unsigned integer type). Then the + operator, with initial type ,

is unified with type , which corresponds to applying + to the operands y and 1.

As a result of unification, type environment E is changed by adding the bindings ,

, and . So y has type ulong and the expression produces a result

of type ulong .

Facile’s type checking algorithm is similar, except it maintains a set of type environments

(E*). Each type environment in E* corresponds to using different versions of overloaded func-

tions and operators in the traversed code. For example, Facile actually defines + as an overloaded

y+1

β β,() β→

α ulong,() γ→

α ulong❘→

β ulong❘→ γ ulong❘→ y+1

Ei

108

operator, with one version for integer operands and another version for floating-point operands.

To type check the expression , Facile’s type checker starts by giving + type α, and creates a

new environment set that contains multiple copies of each environment from the original

environment set E*, but with different bindings for α. One copy of each appears in

with α bound to the type of the integer version of +, and another copy has α bound to the type of

the floating-point version of +. Subsequent unification may discover that some type environments

in are illegal—e.g., the floating-point version of + cannot be used on the ulong constant

1—and remove them from the type environment set. Type inference succeeds, so long as there is

at least one legal type environment in the set E*.

Function bindings can be overloaded by either writing multiple explicit function definitions

with the same function name, or by a single function definition that type checks with more than

one legal type environment, or both. If a single definition has multiple legal type environments,

then the function’s type must be different under each type environment, otherwise it would not be

possible to distinguish between these overloaded versions. Overloaded functions are renamed to

eliminate the overloading.

Polymorphic functions contain at least one type variable in their inferred type, which is free

(i.e., not bound) in the type environment. Code for polymorphic functions is not generated by the

compiler. Instead, the compiler waits until it discovers a call site for the function and can infer

explicit types for the free type variables. Then a monomorphic instance of the polymorphic func-

tion is generated using explicit types from the call site. Different calls, with different explicit

y+1

E* ′ Ei

Ei E*∈ E* ′

E* ′

109

types, will generate different instances of the function. Different calls, with the same explicit

types, share the same monomorphic instance. As with overloaded functions, monomorphic

instances of a polymorphic function are renamed to identify which instance is used by each call.

5.1.1.3. CONVERTING SWITCH STATEMENTS

Facile switch statements are similar to C switch statements, testing the switch condition

against several alternate constant values and selecting code to execute. But unlike C switch state-

ments, Facile can test an instruction stream for a patterns containing multiple conditions on fields

of a token stream. To select between these pattern cases, several conditions may need to be tested.

The compiler rewrites Facile’s pattern cases into multiple nested switch and if statements that

only test one condition at a time. This transformed code can easily be written as C code by later

stages of the Facile compiler.

Pattern expressions for each pattern case are normalized into OR-lists of AND-lists of condi-

tions on token fields, as described in section 5.1.1.1. Token fields identify contiguous sequences

of bits at fixed offsets from the start of a token stream. Conditions compare the value in a field

against a given constant value, using one of the operators: <, <=, ==, != , >=, or >. A pattern case

matches the data in a token stream if every condition in at least one AND-list is satisfied. If more

than one pattern case matches the bits in a given token stream, then the first matching pattern case

listed in the switch statement is selected.

110

Pattern cases are transformed into simpler, C-like if and switch statements in two stages. First,

each element of a pattern’s OR-list is given its own pattern case. Code associated with the original

pattern case is associated with only the first of the new pattern cases. The other new pattern cases

simply goto the code associated with the first new case. After this first stage of transformation,

each pattern case contains a single AND-list. The second stage transforms these simpler pattern

cases into C-like if and switch statements.

Figure 5.4 details the algorithm for transforming pattern cases with single AND-lists into sim-

pler, C-like statements. The algorithm recursively selects a condition, then generates nested

switch and if statements to test that condition and divide up the list of pattern cases. Once tested,

conditions are removed from their associated AND-lists, until all the conditions for a pattern case

have been tested and removed. When there are no more conditions for a pattern case, the code

associated with that case is inserted. The compiler detects unreachable pattern cases when the first

case in a list of pattern cases has no more conditions, making all but the first case in the list

unreachable.

5.1.1.4. FUNCTION INLINING

Function inlining is a program transformation that removes function calls by replacing them

with the text of the called function. This optimization eliminates some call overhead—e.g., it

removes call and return instructions, and a function’s prologue and stack frame—and allows the

called function’s code to be optimized together with code in the calling function. Hence register

111

function convert_switch
argument Clist (a list of a pattern cases, with 1 AND-list each)
{

if the first case in Clist has no conditions {
generate code associated with the first case in Clist
return from convert_switch

}

let cond = the first condition in the first case in Clist
let field = the token field tested by cond

if cond tests for equality (i.e., field == value) {
split Clist into two parts (C1 and C2) so that

(C1 followed by C2) == Clist
all the elements of C1 contain a condition that

tests for equality on the field named in field
the first element of C2 does not contain

a condition on field that tests for equality

generate a switch statement to test the value of field
group elements of C1 by the value they test field against
for each group of elements in C1 {

generate a case to test for the value used in this group
remove the condition that tests against field from each case
call convert_switch on the elements of this group

}
end the generated switch statement

call convert_switch on C2 (to handle the fall-through case
where none of the cases in C1 match)

} else cond does not test for equality {
split Clist into two parts (C1 and C2) so that

(C1 followed by C2) == Clist ,
all the elements of C1 contain condition cond , and
the first element of C2 does not contain cond

generate an if statement to test condition cond
remove cond from all elements of C1
call convert_switch on C1
end the generated if statement

call convert_switch on C2 (to handle the fall-through case
where none of the cases in C1 match)

}
}

FIGURE 5.4: Algorithm to simplify pattern cases. This algorithm takes a list of pattern
cases, where each case contains a single AND-list of conditions, and translates them into C-
like if and switch statements.

112

allocation, instruction scheduling, and other intra-procedural optimizations can produce more

efficient code than could be generated when calling a separate function. But function inlining may

cause code blowup—a dramatic increase in code size—which decreases program performance by

making less effective use of hardware caches.

The Facile compiler uses function inlining for two reasons: 1) to help convert Facile language

features into C, and 2) to aid in generating the fast-forwarding optimization. Facile allows local

functions to be defined within the definition of another function. Local functions are not allowed

in C, where all function definitions must be made in the global scope. It is difficult to translate

local functions into global functions, since they can access local variables belonging to the enclos-

ing function. The Facile compiler handles local functions by inlining all calls to them. After func-

tion inlining, there are no calls to local functions, only calls to functions defined in the global

scope.

In the initial design of the Facile compiler, I assumed that all functions would have to be

inlined into a single monolithic function to implement the fast-forwarding optimization. It is pos-

sible to inline all function calls into a single function, because Facile functions are not recursive.

The resulting monolithic function was inevitably very large and very slow, because indiscriminate

inlining causes an exponential blowup in code size. Further thought revealed that it is sufficient

for functions to be non-recursive, and they do not need to be inlined to implement fast-forwarding.

Even though it is not necessary, inlining of selected functions can improve the performance of a

memoizing simulator. The fast-forwarding optimization, and the reason for prohibiting recursion,

113

is explained in detail in section 5.2. The effect of inlining on performance is demonstrated in sec-

tion 6.3.5 of Chapter VI.

5.1.1.5. GENERATE C CODE

After applying the transformations above, and when not applying the fast-forwarding optimi-

zation, it is straight forward to generate C code for corresponding Facile source code. Facile if and

while statements and rewritten switch statements translate into C if, while, and switch statements

respectively. Function calls that are not inlined translate into function calls in C. Most arithmetic

operators in Facile translate to corresponding C operators. Finally, some operators and annota-

tions in Facile translate into function calls in C that are implemented by FastSim’s run-time

library or are generated by the compiler. For example, functions that operate on queue typed

objects are generated by the compiler, because different versions of the code are needed for

queues with different element types.

All translated Facile code is put into a single C source file, except for external function, vari-

able, and type declarations that are put in a separate C header file. The C source file contains type

declarations for all structured types (i.e., structure, tuple, array, and queue types), global variable

declarations for both static and external variables, static function declarations for all non-external

functions, and global function definitions containing translated Facile code. The C header file

defines the external interface to translated Facile code, and can be included by other C files to

access external Facile variables and functions. An ‘x’ is added to the front of every external vari-

114

able and function name to avoid name conflicts with other generated code. For example, Facile’s

main function and init variable are called xmain and xinit respectively in C.

Additional functions are also put into the generated C source file to manipulate queue type

objects, and to initialize global variables. Queue manipulation functions—e.g., constructing a new

queue, pushing elements onto the front or back, popping from the front or back, and clearing a

queue—are generated for each different element type, but only if that function is needed some-

where in the translated Facile code. To initialize global variables, expressions on the right hand

sides of each global variable definition are collected into a single function, called init in C, that

is called by the FastSim run-time library at the start of simulation. This initialization function is

necessary, because initialization expressions for global variables in C must be computable at com-

pile time, but Facile allows more complex initialization expressions and evaluates them at run-

time.

5.1.2. The FastSim Run-time Library

The FastSim run-time library (libfs.a) loads a target executable, calls the top level Facile sim-

ulator function (called xmain in C), and implements Facile operations that are not generated by

the Facile compiler. Libfs.a also implements the C main function that is the entry point for the

entire simulator. In a memoizing simulator, this library also switches between slow and fast ver-

sions of a simulator and manages the memoization cache, but this will be discussed in section 5.2.

115

5.1.2.1. LAYOUT OF SIMULATOR MEMORY

At simulator start-up, a simulator’s address space is reorganized to make room for the target

executable. Figure 5.5 shows the usual organization of a Solaris executable and how the address

space is reorganized in a FastSim simulator. First, a simulator’s environment variables and stack

kernel memory

environment variables
command line arguments
stack

dynamic linker data
dynamic linker text
loaded DLLs

heap
uninitialized data (BSS)
executable data
executable text
first page unmapped

0xF0000000

stack ulimit

0x80000000

0x00000000

kernel memory

target environment
target command line
target stack

target dyn. linker data
target dyn. linker text
target DLLs

simulator heap
simulator BSS
simulator data
simulator text
first page unmapped

target heap
target BSS
target data
target text
first page unmapped

simulator environment
simulator command line
simulator stack

Target E
xecutable

Typical Executable FastSim Simulator

FIGURE 5.5: Address space organization. The figure on the left depicts the memory organi-
zation of a typical Solaris executable; The dynamic linker and loaded DLLs are optional, and
do not occur in statically linked executables. The figure in the right depicts memory organiza-
tion in a FastSim simulator: The simulator’s text, data, and stack are located below
0x80000000, and the simulated target executable is loaded above 0x80000000.

116

frames are moved below address 0x80000000, into the lower half of the virtual address space. The

upper half of the address space (not counting kernel addresses, 0xF0000000 and above) is used to

simulate a target executable’s address space. Target addresses are translated to simulator addresses

by or’ing the target address with the value 0x80000000.

After a simulator’s environment variables and stack frames have been relocated, a target exe-

cutable is loaded by mmap’ing its text and data segments into simulator memory at address

0x80000000 and above. Then the environment variables, command line arguments, and an initial

stack frame are constructed below address 0xF0000000. Target environment variables are given

the same values as a simulator’s environment variables, and target command line arguments are

taken form the end of a simulator’s command line arguments.

If a target executable is statically linked, then its start address is simply read from the execut-

able header. If a target executable is dynamically linked, then a dynamic linker is loaded that will

load all the other DLLs. The path name of a dynamic linker is read from a dynamically linked tar-

get executable, and FastSim mmap’s the named dynamic linker into the target address space

immediately below the lowest possible stack address (determined by subtracting the stack ulimit

from 0xF0000000). The start address of a dynamically linked executable is the start address of the

mmap’ed dynamic linker. Note that FastSim simulators are statically linked, so the only DLLs are

those loaded by a target executable.

117

In subsequent simulator execution, memory access for the target executable is performed by

or’ing every target address with 0x80000000. This translates all target addresses into simulator

addresses in the upper half of the simulator’s virtual address space. Memory references for a tar-

get executable never conflict with memory used for other simulator operations. This address

translation also removes half the target executable’s available address space (from 0x40000000 to

0xC0000000), but few executables use these addresses.

This memory layout has the following advantages: Address translation is fast (accomplished

with a single bit-wise or). A simulated executable cannot access simulator data by mistake, since

all target addresses are translated above 0x80000000 and all internal simulator data is located

below address 0x80000000. And simulator code is compiled and executed normally without any

code relocation. It is easier to relocate code from the target executable, because it is just data to

the simulator, than it is to relocate simulator code that actually executes on the host. The disadvan-

tage is that half of the target address space cannot be simulated, i.e., addresses 0x40000000 to

0xC0000000.

5.1.2.2. RUN-TIME SUPPORT FOR FACILE FEATURES

The FastSim run-time library implements Facile’s outer simulation loop, operators that com-

pute condition code values, functions for accessing data from a token stream, and other functions

with no direct C equivalent like sign extension. Before any calls to xmain (the Facile main func-

tion), the init function, generated by Facile’s compiler, is called to initialize global Facile vari-

118

ables. Then the run-time library enters a loop that repeatedly calls xmain . Other FastSim library

code is called from the compiled Facile code.

The ?cc attribute in Facile can be applied to many of Facile’s built-in operators to get the

condition codes associated with execution of the operator. For example, the expression

 computes the result -2, and also saves condition codes for the subtraction into

variable CCR. FastSim simulators run on SPARC hosts, so the SPARC condition code setting

instructions are used to generate condition code values for Facile. Hand coded assembly language

functions for each arithmetic operator in Facile use native SPARC instructions to compute the

operator result and generate its condition code values. Then condition codes are read from the

host %ccr or %fsr registers and saved in the given Facile condition code variable, while the

operator result is returned.

5.1.2.3. SUPPORT FOR THE SOLARIS OPERATING SYSTEM

FastSim simulators run on SPARC processors under the Solaris operating system. FastSim is

not host independent, because it relies on SPARC ISA features (e.g., SPARC condition codes) and

the particular way Solaris lays out process memory. For simplicity, my simulated target architec-

tures have also modeled a SPARC ISA under Solaris. Common functions to simulate the SPARC/

Solaris interface are included in FastSim’s run-time library. These functions emulate Solaris sys-

tem calls, register window spills and restores, and access to special architecture registers like the

SPARC floating-point state register (FSR). To emulate different operating systems or ISAs, pro-

grammers can write their own emulation routines.

(5-7)?cc(CCR)

119

In a normal executable, Solaris system calls are made using the SPARC trap instructions, e.g.,

trap always (ta), trap on equal (te), etc. To simulate these instructions, Facile simulator code

calls the external library function trap_sparc (called xtrap_sparc in C and implemented

in libfs.a). This function expects the Facile simulator code to implement a function—get_R4 —

that gets simulated register values, and uses this function to get the system call arguments. Then it

translates any pointer arguments into simulator addresses (by or’ing them with 0x80000000), and

calls an assembly language routine that contains a native ta (trap always) instruction. Finally,

trap_sparc translates any pointer return values back into the simulated address space and calls

set_R4 (provided by the Facile programmer) to copy result values back into Facile variables.

The SPARC ISA uses hardware register windows to optimize function calls and returns.

SPARC’s save and restore instructions push and pop the register window stack respectively.

Since there are a limited number of register windows implemented in hardware, the operating sys-

tem must spill and restore these windows whenever the function call depth exceeds the number of

hardware register windows. The external library functions save_regs and restore_regs

(called xsave_regs and xrestore_regs in C) spill and restore simulated register windows

respectively. Like trap_sparc , these functions use get_R4 and set_R4 to access simulated

registers stored in Facile variables. The algorithms to spill and restore registers are identical to the

algorithms used in the Solaris operating system, so the register windows behave the same when

simulated as when the target is executed directly.

120

Some special purpose registers are easier to emulate in C and assembly code than to model

completely in Facile. An example of this is the floating-point state register (FSR). Among other

things, the FSR controls the floating-point round direction and whether to trap for various float-

ing-point exceptions. The external functions get_FSR and set_FSR (implemented in SPARC

assembly code as xget_FSR and xset_FSR) maintain the FSR value for a SPARC simulator.

The simulated FSR value is stored in the actual host FSR register, so subsequent floating-point

operations behave correctly for the simulated executable.

5.2. The Fast-Forwarding Optimization

One example of a memoizing simulator was described in Chapter III, but that simulator was

painstakingly optimized by hand. This section describes how the Facile compiler and the FastSim

run-time library generate the fast-forwarding optimization automatically. The idea is to generate

two simulator versions (as in figure 5.6): a slow but complete version that stores result data in the

memoization cache, and a fast version that uses memoized results to skip over repeated parts of

the simulation. When combined with run-time support for switching between the two simulator

versions, this implements fast-forwarding.

5.2.1. Overview of Simulator Memoization

The primary contribution of the Facile compiler it its automatic separation of a simulator into

slow and fast versions. First, the compiler performs binding-time analysis to determine which

121

parts of a simulator can be left out of the residual (fast) simulator—i.e., skipped over by fast-for-

warding. Code that cannot be skipped—i.e., labeled dynamic by binding-time analysis—is then

split into single-entry/single-exit basic blocks, and each block is assigned an action number. A fast

version of the simulator is generated, which loops over a single C switch statement that has one

case for each action number. Every iteration of the loop reads one action number from the

memoization cache and executes the dynamic basic block code associated with that action num-

ber. Additional data may be read from the memoization cache for run-time static data values that

are used in dynamic basic-block code.

Fast Simulator

Slow Simulator

Memoization
Cache

Target

Executable

(as data)

FIGURE 5.6: Structure of a fast-forwarding simulator. Two versions of the same source
simulator cooperate to simulate a target executable. The slow simulator version stores result
data into the memoization cache, which is later used by the fast simulator to skip repeated
simulation. Only one simulator versions runs at any given time.

122

fun main(pc)
{

val npc = pc + 4;
switch(pc) {
 pat add:

if(i) R[rd] = R[rs1] + simm13?sext(32);
else R[rd] = R[rs1] + R[rs2] ;

 pat beq:
if(CCR?bit(2))

npc = pc + disp22?sext(32)<<2;
}
init = npc;

}

FIGURE 5.7: Binding-time division of a simple simulator. For simplicity, only two kinds of
instructions are simulated: add and branch-on-equal. The instructions are encoded like
instructions in the SPARC ISA, but their semantics are simplified to ignore register windows,
branch delay slots, and other complexities. Dynamic code is underlined. All other code is
either static or run-time static.

FIGURE 5.8: Dynamic control flow graph and basic blocks. This is the dynamic control
flow graph for the example simulator in figure 5.7. It has four dynamic basic blocks numbered
1 through 4.

b3: CCR?bit(2)

exit

entry

b1: R[s]=R[s]+ s

b2: R[s]=R[s]+R[s]

b4: init= s

123

Figure 5.7 illustrates run-time static and dynamic code in a simple simulator example. Under-

lined code is dynamic and cannot be skipped by fast-forwarding. The remaining code is either

static or run-time static and can be skipped.

Figure 5.8 shows the control flow graph and basic blocks corresponding to the dynamic code

in figure 5.7. In this example, each dynamic statement has its own block. In a richer simulator, a

dynamic basic block would contain multiple statements. These basic blocks contain only dynamic

code; the run-time static sub-expressions are replaced by the place-holder s . Notice that block b3

differs from the others. This block contains a condition expression in an if statement. The result of

this dynamic expression determines the simulator’s control flow path, so this action can have

more than one successor action sequence stored in the memoization cache.

Figure 5.9 shows the fast simulator generated for the simulator in figure 5.7. For simplicity,

this example is written in Facile-like pseudo code, although Facile’s compiler actually generates C

code. Important elements of this code include: a function name—ff_main —known to the run-

time library, an outer loop that executes dynamic basic blocks until there is a memoization miss,

and a switch statement that selects dynamic basic blocks associated with action numbers read

from the memoization cache. Regardless of the original scope of variables in Facile, the variables

used by ff_main are all declared the global scope, so their values will be available to the slow

simulator following a memoization miss.

124

Figure 5.10 shows the slow simulator generated for the Facile code in figure 5.7. Extra code

that is not directly translated from Facile source code is shown in bold. The slow simulator con-

tains a complete copy of the simulator’s code, plus additional code to write data into the memoiza-

tion cache and restart the slow simulator after a memoization cache miss. Dynamic basic-block

code that also appears in the fast simulator is only a subset of the code in the slow simulator, and

is mixed in with a simulator’s static and run-time static code. Additional code writes action num-

bers into the memoization cache before the first statement of each dynamic basic block. Run-time

static data that is used in dynamic expressions is also written into the memoization cache. These

fun ff_main(action) {
while(true) {

switch(action.number) {
 case INDEX_ACTION:

verify_static_input();
 case 1:

read_static_data(r1, r2, t1);
R[r1] = R[r2] + t1;

 case 2:
read_static_data(r1, r2, r3);
R[r1] = R[r2] + R[r3];

 case 3:
val t2 = CCR?bit(2);
ff_find_result_1(t2);

 case 4:
read_static_data(npc);
init = npc;

}
action = get_next_action();

}
}

FIGURE 5.9: Sample of fast simulator code. The above example shows fast simulator
pseudo-code for the simulator in figure 5.7. This code is written in a Facile-like syntax,
although the Facile compiler actually generates C code.

125

cached actions and run-time static data values are interpreted by the fast simulator to accelerate

later simulation.

The FastSim run-time system switches between slow and fast simulation, using the fast simu-

lator whenever memoized data is available. In each iteration of FastSim’s implicit outer loop,

fun xmain(s_pc) {
val s_npc = s_pc + 4;
switch(s_pc) {
 pat add:

if(s_i) {
ff_write_action(1);
val s_t1 = s_simm13?sext(32);
ff_alloc(s_r1, s_r2, s_t1);
if(!recover) R[s_r1] = R[s_r2] + t1;

} else {
ff_write_action(2);
ff_alloc(s_r1, s_r2, s_r3);
if(!recover) R[s_r1] = R[s_r2] + R[s_r3];

}
 pat beq:

ff_write_action(3);
val s_t2;
if(recover) {

ff_recover_result_1(s_t2);
} else {

s_t2 = CCR?bit(2);
ff_write_result_1(t2);

}
if(s_t2) s_npc = s_pc + s_disp22?sext(32)<<2;

}
ff_write_action(4);
ff_alloc(s_npc);
s_init = npc;
if(!recover) init = s_init;

}

FIGURE 5.10: Sample of slow simulator code. The above example shows slow simulator
pseudo-code for the simulator in figure 5.7. This code is written in a Facile-like syntax,
although the Facile compiler actually generates C code. Extra code added to implement fast-
forwarding is shown in bold. Static/run-time static versions of variable names are preceded by
“s_ ”.

126

main ’s argument values are looked up in the memoization cache index. If an existing entry is

found, then the fast simulator is called and interprets actions already stored in the memoization

cache to execute the simulation. If main ’s argument values are not found in the memoization

cache index, then a new index entry is created and the slow simulator is called to execute the sim-

ulation and write more actions into the cache.

Dynamic conditions in the fast simulator (e.g., if or switch statements that test a dynamic

value) may result in a memoization cache miss. Dynamic results from previous executions of a

condition by the slow simulator are listed in the memoization cache and associated with the action

sequences that follow each different result. When the fast simulator encounters a dynamic condi-

tion, it calculates a result value and looks for that value in the list of previously encountered

results. If the result has already been encountered, then fast simulation continues. Otherwise there

is a memoization miss, the fast simulator fails, and simulator execution switches back to the slow

simulator.

Recovering from a memoization cache miss is difficult. FastSim rolls back simulation to the

beginning of the most recent memoized call to main , gets main ’s current arguments from the

memoization cache index, then calls main in the slow simulator. The difficulty is that the fast

simulator may have already updated global variables with new dynamic data, or called external

functions that execute an unknown amount of dynamic code and cannot be rolled back. The solu-

tion is to not execute any dynamic code until the slow simulator catches up to the point where fast

simulation failed.

127

In order to temporarily skip dynamic code in the slow simulator, there are two versions of

every variable: one for dynamic values and the other for non-dynamic values. Whenever a vari-

able is dynamic, its value is stored in the dynamic version, otherwise its value is stored in the non-

dynamic version. All dynamic variable versions are declared in C’s global scope so they can be

shared between the fast and slow simulators. Non-dynamic variables are declared normally, in

local or global scopes as specified by the Facile source code. To recover from a memoization

miss, the slow simulator only executes non-dynamic code until reaches the point where fast simu-

lation failed, so it only reads and writes non-dynamic variables. Once the slow simulator catches

up, all dynamic and non-dynamic variables contain up to date values for that point in the simula-

tion and the slow simulator continues normally, executing both dynamic and non-dynamic code.

5.2.2. Binding Time Analysis (BTA)

Binding time analysis is performed by the Facile compiler. Its purpose is to label every expres-

sion in a subject program as static (i.e., computable at compile time), run-time static (i.e., comput-

able by the slow simulator but skipped by the fast simulator), or dynamic (i.e., must be executed

every time). This labeling is accomplished by iterating over a program’s control flow graph until

the binding-time information reaches a fixed-point and no longer changes. The following sections

describe Facile’s binding time analysis in more detail.

5.2.2.1. BINDING-TIME DATA

Binding-time labels used in this analysis are: KNOWN for static data whose value is known to

the compiler, STATIC for static data that the compiler did not bother to compute, RT-STAT for

128

run-time static data, and DYNAMIC for dynamic data. Structured data, such as in arrays and

structures, can have different binding time labels for each element of the array or structure. Struc-

tured data that has different binding-time labels for different elements is said to have a mixed

binding time.

One reason for using KNOWN labels is so binding-time analysis can use the value of static

data to analyze binding-times more accurately. For example, consider an array with mixed bind-

ing times. If an element is selected from this array using a KNOWN index value, then the binding

time of the actual array element can be determined. If the index value is not KNOW, then the

binding time of the selected element must be the worst case binding time of all the array elements.

Facile’s compiler uses a polyvarient binding-time analysis. This means that functions can have

different binding-time labelings—called divisions—when called from different call sites. If func-

tions were only allowed one division (i.e., monovarient division), then dynamic data passed to the

function at one call site could force all call sites for the same function to be labeled dynamic.

Polyvarient divisions allow more code to be labeled with earlier binding times (e.g., KNOWN,

STATIC, and RT-STAT indicate earlier binding times than DYNAMIC), since late binding times

at one call site do not influence other call sites. But polyvarient division can also increase the size

of generated code. This increase occurs because different versions of a function are generated for

each different division of the function used in a program.

129

5.2.2.2. FIXED-POINT ITERATION

Binding-time analysis is performed using fixed-point iteration, an algorithm used to solve

many data-flow analysis problems. The idea is to propagate binding-time data through the pro-

gram’s control-flow graph (CFG), and iterate over loops in the CFG until the binding-time data

stops changing. Figure 5.11 outlines the fixed-point iteration algorithm used for Facile’s BTA.

Inter-procedural binding-time analysis is simplified by the absence of recursion in Facile pro-

grams. Because there is no recursion, there are no cycles in the function call graph. Facile’s inter-

procedural binding-time analysis starts at the top of the call graph (with the main function) and

calls BT_analysis recursively for any function calls it encounters. A limited form of memoiza-

tion is used in the compiler to optimize this process. The result of each analysis is cached, indexed

by the called function’s name and its initial binding time division. If the called function has

already been analyzed with the same initial division, then the cached results are used instead of re-

analyzing the called function.

To start off binding-time analysis, the BT_analysis routine is called to analyze main —

Facile’s top level simulator function. The binding-time division at the start of main labels global

variables as DYNAMIC, and main ’s parameters as RT-STAT. As analysis progresses, KNOWN

values arise from integer constants and integer operators applied to KNOWN values. STATIC val-

ues arise from non-integer constants and operations on other STATIC values. RT-STAT values

130

let start_set = a set for storing pointers to statements
in a control-flow graph, initially empty.

function BT_analysis
argument CFG (the control flow graph of the current function)
argument BTD_start (the binding time division at the start of this function)
{

store BTD_start with the first statement in the CFG
start_set = a singleton set containing

the first statement in the given CFG.

while start_set is not empty {

let start = any one element in start_set
remove start from start_set

let BTD = the binding-time data associated with statement start
call iteration_helper on CFG, start , and BTD

}
}

function iteration_helper
arguments CFG, start , and BTD
{

let S = start
loop {

if S != start and S has > 1 predecessors in CFG {
merge BTD with the binding time data associated with S

and associate the new binding-time data with S

if the binding-time data for S has changed then
add S to start_set

return from iteration_helper
}

evaluate statement S for its effect on the binding-time data in BTD

if S does not have exactly 1 successor in CFG {
for each successor of S in CFG

call iteration_helper on CFG, S, and BTD

return from iteration_helper

} else
S = the successor to S

}
}

FIGURE 5.11: Fixed-point iteration algorithm for binding-time analysis.

131

arise from code that depends only on KNOWN, STATIC, or RT-STAT data. Finally, DYNAMIC

values result from any code that depends on at least one DYNAMIC value.

A vital step in the binding time analysis algorithm is the merging of two sets of binding time

data. In order to guarantee termination of the analysis, the set of possible binding time divisions

and the merge operation define a lattice with finite ascending chains. That is, binding time data

can only be merged with other binding time data to produce different binding times a finite num-

ber of times, before a fixed point is reached. Facile’s binding time data has this lattice property

because: 1) The result of merging individual binding time labels is the label with the later binding

time;1 2) An individual binding time label can change at most three times before it is DYNAMIC,

and cannot change any more after that; And 3) for any given program, there are a finite number of

program variables for which binding time data is calculated. The lattice property guarantees that

BTA’s fixed point iteration will terminate, although it could take a long time to do so. In practice,

the performance of Facile’s BTA is not a problem, and it is fast enough to analyze complex micro-

architecture simulators in an acceptable amount of time.

In addition to calculating a division of a program’s data, Facile’s BTA labels every statement

and expression as either STATIC, RT-STAT, or DYNAMIC. STATIC code can be evaluated at

compile time (although the current Facile compiler does not do this). RT-STAT code is executed

by the slow simulator, and skipped by the fast simulator. DYNAMIC code is executed by both the

slow and fast simulator versions. Unlike data labels, code is never labeled KNOWN, since code

1. Except for when two KNOWN labels are merged. The result is KNOWN only if the two
values are the same, otherwise it is STATIC.

132

labels indicate the earliest time it can be evaluated and not its result value. Code labels are used by

later compiler stages to generate fast and slow versions of a simulator.

5.2.2.3. EXTERNAL FUNCTIONS & VARIABLES

One complication in BTA is the handling of external functions and variables, because external

code is not analyzed by the Facile compiler and its effects are unknown. The worst case must be

assumed. A call to external code may change values stored in external variables, or call other Fac-

ile functions that are externally visible. Hence, after any call to a function that is implemented

externally, all external variables become dynamic and all global variables written to by external

functions in Facile also become dynamic.

Global variables that may be read by an external function in Facile must also be made

dynamic before any call to external code. This is because variables all have two versions, to sup-

port recovery from a memoization miss: one version is used to store dynamic values, and the other

version stores non-dynamic values. Facile functions that are called from external code can only

access the dynamic versions of variables. Hence any variable that may be read by Facile code

called from an external source, must be made dynamic before any call to external code.

Before starting binding-time analysis, the Facile compiler finds the set of all variables that are

declared external. It then traverses the Facile code for each function to find every global variable

accessed by that function or by a function it calls. All global variables accessed by an externally

visible Facile function are added to the set of external variables. Binding-time analysis labels all

133

the variables in this set of external variables DYNAMIC whenever a call to external code is

encountered.

5.2.2.4. VISUALIZING BTA RESULTS

Although the effect of individual pieces of source code on binding-time data is easy to under-

stand, it is difficult to predict the results of BTA when applied to an entire simulator. A program-

mer usually has a general idea how binding-time analysis should turn out, but small errors in

simulator design or implementation can result in more code being labeled dynamic then expected.

For this reason, the Facile compiler optionally generates an annotated version of simulator source

code, showing the binding-time labels derived for every piece of Facile code. By iteratively

changing the source code and re-generating this annotated output, a programmer can arrive at the

desired division of code into static, run-tim static, and dynamic binding-times.

Annotated Facile source is written out in HTML format, suitable for viewing with any web

browser. Code labeled STATIC by BTA is colored black in the HTML file, RT-STAT code is col-

ored green, and DYNAMIC code is colored red. Code with a mixed binding-time—i.e., it pro-

duces data that is part dynamic and part non-dynamic—is colored turquoise. Each annotated

function definition is put in its own HTML file, and function calls are marked as hyper-text links

to the HTML file for the called function. By examining this annotated Facile source, it is easy to

see the binding-time division derived by the Facile compiler.

134

Annotated code, in HTML files, has the same spacing and line breaks as in the Facile source

file. To accomplish this, the compiler keeps track of the precise character positions of every code

fragment parsed from a Facile source file. This position information is kept throughout all stages

of compilation, and is also used to produce informative error messaged and #line directives in

generated C files. After BTA, a simulator’s code tree is traversed and color annotations are com-

puted for every statement, expression, and sub-expression, with the annotation’s color determined

by the code’s binding-time label. After computing all the color annotations, the Facile source file

is re-read from disk and written out as HTML, with extra HTML tags adding color at the character

positions corresponding to each annotated code fragment.

5.2.3. The Memoization Cache

The memoization cache is a single contiguous region of memory, plus a hash table for fast

lookup of cache index entries. It is managed jointly by code generated by the Facile compiler and

routines implemented in FastSim’s run-time library (libfs.a). Figure 5.12 illustrates the structure

of data as it is stored in the memoization cache. The kinds of data stored in the memoization cache

include: index entries, action numbers, run-time static data records, and dynamic result lists. Most

of these entries are stored sequentially in memory in the order they were generated by the slow

simulator.

At the start of simulation, the memoization cache is empty. During slow simulation, new

entries are allocated onto the end of previously cached data by simply incrementing a pointer.

135

Entries are not removed from the memoization cache until the cache is full. When the cache is full

and more space is needed, the entire cache is flushed by resetting the allocation pointer back to the

beginning of the cache and clearing the index hash table. New data, or a new copy of old data that

was flushed, is generated by the slow simulator in subsequent simulation. This and other replace-

ment policies were studied with FastSim Version 1 (discussed in chapter III), and this cache flush

replacement policy was found to be both easy to implement and the most efficient alternative of

those studied.

5.2.3.1. INDEX ENTRIES

Index entries in the memoization cache represent all the places where the simulator can switch

from slow to fast simulation. Index entries are generated for each call to main in the slow simula-

tor, and each entry contains a copy of the argument values for that call. To accelerate index

index action rt-stat data

result

action action result

action action rt-stat data

action rt-stat data

index action action rt-stat data index action rt-stat dataaction . . .

. . .

FIGURE 5.12: Structure of data in the memoization cache. The cache contains index
entries, action numbers, run-time static data records, and result lists. These entries are usually
arranged sequentially in memory. Result lists and lists of index entries represent alternative
paths that could be taken by an execution, and are represented non-sequentially by linked lists.
Loops in the data may occur when the slow simulator finds an existing index entry. When this
happens, a pointer to the matching index entry is appended to the end of the current action
sequence, and the fast simulator is started for the first action following the matched index.

136

lookup, index entries are pointed to by a hash table, although the index entries themselves are

stored in the memoization cache. Cached simulation results associated with an index entry are

located sequentially after the index entry in memoization cache memory.

When the slow simulator finds an existing index entry (at the start of a call to main), a pointer

to the existing entry is appended to the end of the current action sequence in the memoization

cache and control is passed to the fast simulator. The fast simulator reads the sequence of actions

following the matched index entry and interprets them. Fast simulation does not stop when

another index entry is encountered at the end of an action sequence in the cache. Instead, it veri-

fies that the current values of main ’s arguments match the values stored in the index entry. If the

values match, then the fast simulator skips past that index entry to the next action number.

Because it is possible for an index value to not match, alternate index entries for this point in the

simulation are arranged in a linked list. If none of the index entries in this linked list match, then a

new index entry is created, added to the list, and control is passed back to the slow simulator

which generates action sequences for the new index.

Figure 5.13 shows a sequence of index entries in the memoization cache, corresponding to

three SPARC instructions simulated by the simulator in Appendix B. Each index entry contains a

copy of main ’s arguments—pc and npc . The left most index entry corresponds to the call to

main that simulated the tst instruction at address 0x11194. The next index entry corresponds to

simulating the be (branch on equal) instruction. The last two index entries correspond to execut-

ing the ld instruction in the branch delay slot, when the branch fell through and when the branch

137

was taken respectively. This example assumes that the branch fell through the first time it was

simulated, and was taken in some later simulation, so the fall-through case is listed first. The

index entry for the branch-taken case does not follow the previous action sequence sequentially in

the memoization cache, because it is generated later. Instead it is pointed to by the fall-through

index entry, forming a linked list of possible successor indexes.

5.2.3.2. ACTION NUMBERS & RUN-TIME STATIC DATA RECORDS

An action number identifies a dynamic code fragment to execute in the fast simulator. These

dynamic code fragments are single-entry/single-exit basic blocks in the dynamic control flow

0x11194: tst %o0
0x11198: be 0x111a8
0x1119c: ld [%l0 + 0x1e0], %g1

FIGURE 5.13: Memoization Index Entries. This figure shows the sequence of index entries
that are generated by the simulator in Appendix B, corresponding to the given 3 target instruc-
tion sequence. The three SPARC instructions test a register, branch if zero, and load a value
respectively. Index entries are shown as large boxes, and their associated action sequences are
abbreviated as short boxes with ellipses (...). Note that the action sequence associated with the
second index entry has two successors. Its first successor corresponds to the branch not taken,
and its second successor is generated later when the branch is taken.

pc = 0x11194

npc = 0x11198 . . .
pc = 0x11198

npc = 0x1119c

pc = 0x1119c

npc = 0x1119d

pc = 0x1119c

npc = 0x111a8 . . .
(null)(null)

(null)

138

graph. A sequence of action numbers stored in the memoization cache strings together several

dynamic basic blocks to replay the dynamic simulation originally executed by the slow simulator.

Hence, a fast simulator can be thought of as an interpreter that evaluates code specified by

sequences of action numbers.

Some action numbers are followed by a structure containing run-time static data stored in the

memoization cache. This data is used by the dynamic basic block associated with the given action

number. Whenever code in one the these dynamic basic blocks uses a run-time static value, that

value must be stored in the memoization cache. A structure is allocated following the basic

block’s action number in the cache, and every run-time static value used by the basic block is

given a field in this structure.

5.2.3.3. DYNAMIC RESULT LISTS

Sometimes a dynamic value must be changed into a run-time static value. This happens at the

start of a call to the main function, since dynamic values generated by a previous call to main

may be passed as run-time static arguments to this call. (This is why index entries are grouped

into linked lists, to handle alternate dynamic values to main .) Dynamic data is also made run-

time static for every if or switch statement that tests a dynamic condition, so the control flow of a

memoized program is always run-time static. These dynamic results are also grouped into linked

lists, with each entry corresponding to a dynamic value that has already been seen by the slow

simulator and has an action sequence associated with it (see figure 5.14). Finally, dynamic data

can be made run-time static by explicit use of the ?static attribute in Facile, and this is also

139

handled with a linked list of previously simulated values. The difference between lists of index

entries and other dynamic result lists is that only index entries can be looked up in the memoiza-

tion cache index.

When making a dynamic value run-time static, the fast simulator tries to match the current

dynamic value with one of the values listed in the memoization cache. If a match is found, then

the action sequence that follows the matching list entry is used. A memoization miss occurs when

the current dynamic value does not match any value in the list. When this happens, FastSim’s run-

time library searches backward through the previous action sequences to find the most recently

visited index entry, then restarts the slow simulator with the argument values found in that index

entry.

true1

2

3

result:result:

result:

result:

N Valued Result List Boolean Result List

FIGURE 5.14: Memoization Result Lists. This figure shows how result lists are laid out in
memoization cache memory. The first entry in a result list follows the previous action
sequence sequentially, and points to a linked list of alternate result list entries. Result lists to
test boolean values only need to list the first value, because there are only two possible bool-
ean values (true and false). The action sequence associated with each dynamic result
value follows the corresponding result list entry sequentially.

140

The FastSim run-time library supports three different representations of dynamic result lists in

the memoization cache. These representations correspond to boolean results (i.e., with only two

possible values), results values that fit in 8 bits or less, and other values of arbitrary width. Differ-

ent representations are used for these three cases to minimize the space required to store these

results, and to optimize the code needed to generate them in slow simulation and test them in fast

simulation. For example, most dynamic result lists are for if statements that test dynamic boolean

expressions. These boolean results lists do not have to store a result value with every element of

the list, because there are at most two list elements and if the first one does not match then the sec-

ond one will.

5.2.4. The Fast Simulator

The fast simulator reads previously generated result data from the memoization cache and

skips over repeated (i.e., run-time static) work in the simulation. The Facile compiler generates

the fast simulator with the following steps: 1) Build a control-flow graph that contains only

dynamic simulator code (dCFG); 2) Assign action numbers to basic-blocks within a dCFG; And

3) generate C code for each basic-block and put it in a switch case labeled by the block’s action

number. The resulting fast simulator loops over this switch statement, repeatedly reading an

action number from the memoization cache then executing the code associated with that action,

skipping all run-time static simulator code.

141

5.2.4.1. DYNAMIC CONTROL-FLOW ANALYSIS

After binding-time analysis, the compiler has control-flow graphs for all functions in a subject

simulator, and has binding-time labels that identify which code is dynamic. The next step is to

construct a control-flow graph for the entire simulator that contains only (and all) the dynamic

code. First a control flow graph of the entire program is constructed from the program’s call graph

and the control-flow graphs of each individual function. Then dynamic control-flow analysis

traverses the program’s CFG, editing out non-dynamic nodes to produce a dynamic control-flow

graph (dCFG) for the entire program.

Figure 5.15 describes the algorithm for calculating a program’s dCFG. This is another fixed-

point iteration algorithm. It computes the set of dynamic predecessors—the last dynamic state-

ments seen prior to the current statement in the full CFG—for every statement in a program. The

dCFG is then constructed by adding graph edges to each dynamic statement from its dynamic pre-

decessors.

5.2.4.2. DYNAMIC BASIC BLOCKS & ACTION NUMBERS

Action numbers are assigned to every single-entry/single-exit basic block in the dCFG. These

dynamic basic blocks are the building blocks for fast-forwarded simulation. Fast simulation

involves executing sequences of these basic blocks directed by sequences of action numbers

stored in the memoization cache.

142

let start_set = a set for storing pointers to statements
in a control-flow graph, initially empty.

function dynamic_cfa
argument CFG (the program control flow graph)
{

store an empty predecessor set with the first statement in the CFG
start_set = a set containing one element,

the first statement in the given CFG.

while start_set is not empty {

let start = any one element in start_set
remove start from start_set

let pred_set = the predecessor set associated with start
call iteration_helper on CFG, start , and pred_set

}
}

function iteration_helper
arguments CFG, start , and pred_set
{

let S = start
loop {

if S != start and S has > 1 predecessors in CFG {
union pred_set with the predecessor set associated with S

and associate the new predecessor set with S

if the predecessor set for S changed then
add S to start_set

return from iteration_helper
}

if S is labeled DYNAMIC then
pred_set = the singleton set { S }

if S does not have exactly 1 successor in CFG {
for each successor of S in CFG

call iteration_helper on CFG, S, and pred_set

return from iteration_helper

} else
S = the successor to S

}
}

FIGURE 5.15: Dynamic control-flow analysis.

143

Basic blocks are found, and action numbers assigned, with a depth first traversal of the dCFG.

Every dCFG node is visited exactly once, and a new action number is assigned to each node that

has multiple predecessors or that follows a node with multiple successors. Pseudo-code for this

algorithm is given in figure 5.16.

5.2.4.3. GENERATED C CODE

Figure 5.17 shows part of the fast simulator code generated for the Facile code in Appendix B.

Important elements of this code include: a function name—ff_main —known to the run-time

let next_action = 1

function dynamic_split
argument dCFG (a dynamic control flow graph)
argument start (a statement in the dCFG)
{

if start already has an action number then
return from dyn_split ;

associate the action number next_action to statement start
next_action = next_action + 1

let S = start_action
while S has exactly 1 predecessor and 1 successor in dCFG

S = the successor to S in dCFG

if S has > 1 predecessor {
call dynamic_split on dCFG and S
return from dyn_split

}

if S has > 1 successor in dCFG {
for each successor S’ of S in dCFG

call dynamic_split on dCFG and S’
}

}

FIGURE 5.16: Dynamic basic blocks and action numbers.

144

void
ff_main(action_t* ff_action)
{

void *ff_current;
for(;;) {

ff_current = (char*)(ff_action + 1);

switch(ff_action->action) {

 case INDEX_ACTION:
tuple_1556_pack_data(xinit);
ff_current = ff_index_action(ff_action);
break;

 case 3:
 L_3: {

 if(fs_cond_xcc_206) {
 ff_current = ff_find_result_1(ff_current,1);

 } else {
 ff_current = ff_find_result_1(ff_current,0);
 goto L_933;

 }
 break;

 }

 case 933:
 L_933: {

 record_2386 *ff_rts_data = (record_2386*)ff_current;
 (char*)ff_current += (sizeof(record_2386) + 3) & ~0x3;
 fs_nPC2_2 = ff_rts_data->t_2385;
 break;

 }
}

ff_action = (action_t*)ff_current;
}

}

FIGURE 5.17: Sample of fast simulator C code. The above example shows selected parts of
the fast simulator C code generated for the simulator in Appendix B. Function ff_main
takes a pointer to the first action following a matched index entry and runs until a memoiza-
tion miss occurs. The INDEX_ACTION case handles subsequent index entries in the inter-
preted action sequence by calling the run-time library routine ff_index_action . The two
action cases shown in this example implement part of the dynamic code for simulating a
SPARC branch instruction. Case 3 tests a condition code value and calls
ff_find_result_1 to find memoized data for the boolean result (either 0 or 1) or to han-
dle a memoization miss with a longjmp back to slow simulation. Case 933 updates the Facile
variable nPC2 (called fs_nPC2_2 in C) with a run-time static branch target address.

145

library, an outer loop that executes dynamic basic blocks until there is a memoization miss, and a

switch statement that selects dynamic basic blocks associated with action numbers read from the

memoization cache. Not shown here are all the simulator variable and type declarations. Regard-

less of the original scope of variables in Facile, the variables used by ff_main are all declared

the global scope, so their values will be available to the slow simulator following a memoization

miss.

During slow simulation, the memoization cache index is checked before every call to the

main simulator function (called xmain in C). If this function’s current arguments match an

index entry in the memoization cache, then FastSim’s run-time library calls ff_main instead of

xmain . A pointer to the first action number following the matched index entry is given as an

argument to ff_main . Once started, ff_main runs until there is a memoization miss—i.e.,

until there is no data in the memoization cache for some dynamic result. ff_main has no return

statements, since returning to slow simulation is handled by a jongjmp in the run-time library

code that handles memoization misses.

The fast simulator iteratively reads action numbers from the memoization cache and executes

the dynamic basic block associated with each action number. The code for a dynamic basic block

typically executes just the dynamic expressions from the dynamic statements in the block, then

breaks out of the switch statement to fetch another action number from the memoization cache.

Some blocks have extra features. If a dynamic expression has a run-time static argument, then the

value of that argument is also stored in the memoization cache. When run-time static data is

146

needed, basic block code begins by declaring a pointer to a run-time static data record stored in

the memoization cache immediately after the current action number. In figure 5.17, the case for

action number 933 reads a run-time static branch target address from the memoization cache.

If a dynamic basic block ends with a dynamic test—e.g., a Facile if or switch statement that

tests a dynamic condition—then code is generated that finds the current condition value among a

list of values already stored in the memoization cache. Code for a dynamic test is put at the end of

the dynamic basic block. Each branch of the dynamic test calls a function in the run-time library

to search the memoization cache for the condition value, then breaks out of the switch to fetch the

next action number. Run-time library routines ff_find_result_1 , ff_find_result_8 ,

and ff_find_result_N search for 1 bit (boolean), 2-8 bit, and larger result values respec-

tively. Different library functions exist, since these three cases are encoded differently in the

memoization cache (see section 5.2.3 for a description of memoization cache organization). If the

current result is found in the memoization cache, then a pointer to the corresponding action

sequence is returned. Otherwise, there is a memoization miss and the run-time library prepares for

return to slow simulation and uses a jongjmp to exit from the fast simulator.

As an optimization, some dynamic basic blocks jump directly to the next dynamic basic

block, without reading an action number from the memoization cache. This saves time by not

reading a new action number and not executing ff_main ’s switch statement to select the next

block. It also saves space by omitting the action number from the memoization cache. An action

number for a basic block is omitted from the memoization cache, if every predecessor to the block

147

in the dCFG has exactly 1 successor. If any predecessor block has more than 1 successor, then the

action number for the current block is needed to distinguish it from the other possible successors.

At the end of a dynamic basic block that has only one successor, and if that successor’s action

number is omitted, then a goto statement is generated to go directly to the successor block. This

optimization can be seen in the code for action number 3 in figure 5.17 above.

In the processes of generating code for the dynamic basic blocks of a program, the Facile

compiler also constructs structure types to hold the run-time static values used by each basic

block. Each basic block that uses run-time static data has its own structure type. Each piece of

run-time static data used in a dynamic basic block is given its own field in the structure. The slow

simulator stores run-time static data into the memoization cache by allocating the appropriate

structure type in the memoization cache before the first statement of a dynamic basic block, and

populating its fields with the results of run-time static expressions.

To optimize memoization cache size, run-time static data is stored in fields that are often

smaller than the width of the data’s type. Often, small run-time static values—e.g., register num-

bers and small immediate values—are converted to larger types before being used in dynamic

expressions. But only the bits belonging to the original smaller value are significant. For example,

in the SPARC ISA, many immediate values are stored in 13 bit wide instruction fields, but are

sign extended to 64 bit integers before being used. Only the first 13 bits are significant in this

case, and they can easily be stored in a 2 byte field in the memoization cache, saving 6 bytes. Size

hints are calculated during binding-time analysis, and provide a conservative approximation of the

148

number of significant bits in each piece of static and run-time static data. When a run-time static

value is used in a dynamic expression, this size hint (if available for the particular value) is used

instead of the value’s type to determine the width of data stored into the memoization cache.

Dynamic basic block code in the fast simulator extends these value (with sign extension if neces-

sary) to restore the value to its proper type.

5.2.5. The Slow Simulator

The slow version of a simulator executes all Facile simulator code, skipping nothing, and

writes data into the memoization cache for later fast simulation. Slow simulator code is similar to

the code generated for a simulator that is not optimized with memoization (as described in section

5.1), but extra code is added to write memoization data and recover from memoization misses.

This extra code includes calls to the run-time library that write action numbers and dynamic result

values into the memoization cache, extra assignment statements to copy run-time static data into

the cache, if statements around dynamic code, and two versions of every variable with extra

assignments to copy data between these two versions.

5.2.5.1. TWO COPIES OF EVERY VARIABLE

Every variable has two possible storage locations: one for dynamic values, and the other for

static and run-time static values. The dynamic versions of variables are also used by the fast simu-

lator. Regardless of the scope of a variable’s declaration in Facile, its dynamic version is declared

in C’s global scope, so dynamic values computed by the fast simulator are accessible to the slow

149

simulator after a memoization miss. Run-time static versions of variables are declared in the C

scope corresponding to their original Facile scope, and are only used in slow simulator code.

The dynamic version of a variable is used when the variable contains a dynamic value, and the

run-time static version is used when the variable contains static or run-time static values. Nor-

mally, values move from run-time static storage to dynamic storage locations as a result of

dynamic code that uses (run-time) static operands. But run-time static values also become

dynamic when two or more control flow paths come together and run-time static values from one

path are merged with dynamic values for the same variables from another path. These run-time

static to dynamic transitions do not correspond to any statements in Facile source code, so new

assignment statements are generated by the Facile compiler to move values from their run-time

static to dynamic storage locations.

5.2.5.2. WRITING ACTIONS TO THE MEMOIZATION CACHE

Action numbers and dynamic result values are written into the memoization cache to direct

subsequent fast simulation. Action numbers are associated with basic blocks in the dynamic con-

trol flow graph (dCFG). The code in these basic blocks is mixed in among run-time static code in

the slow simulator. Just before the first statement of each dynamic basic block, a call to the library

function ff_write_action is inserted into the slow simulator to write the basic block’s action

number into the memoization cache. The sequence in which action numbers are written into the

memoization cache controls the sequence that dynamic basic blocks will be replayed by the fast

simulator.

150

If a dynamic basic block uses any run-time static operand values, then space for a structure to

contain these run-time static values is allocated—by calling ff_alloc —immediately after the

action number is written. A different structure type is defined for each dynamic basic block that

needs one. The value of each run-time static operand that is used in a dynamic operation is

assigned to a field in the allocated structure, then used to evaluate the dynamic operation in the

slow simulator.

It is not always necessary to store the entire run-time static operand value into the memoiza-

tion cache, if the entire value can be reconstructed from a subset of its bits. For example, small

integer values are often read from a simulated instruction, but are extended to a 32 or 64 bit inte-

ger representation before being used in a dynamic calculation. In addition to labeling a program

with binding-time labels, Facile’s binding-time analysis computes a conservative approximation

of the minimum number of bits needed to represent static or run-time static values. Space is con-

served in the memoization cache by only allocating space for these smaller value widths.

To convert dynamic values into run-time static values (e.g., if and switch statements that test a

dynamic condition, or explicit uses of Facile’s ?static attribute) the dynamic values encoun-

tered by the slow simulator are written into the memoization cache. Fast simulator code tests its

value against the values stored in the memoization cache to verify that memoized results exist for

the fast simulator’s dynamic result. The slow simulator calls the library functions

ff_write_result_1 , ff_write_result_8 , and ff_write_result_N to store 1 bit

151

(boolean) values, 2-8 bit values, and arbitrary length values respectively. These functions write

dynamic values into the memoization cache, and return a run-time static version of the variable.

During recovery from a memoization cache miss, the functions above return the dynamic

value encountered by the failed fast simulation. These values cannot be computed by the slow

simulator, since dynamic data in the slow simulator is unreliable until slow simulation catches up

to the failed fast simulation. Dynamic code in the slow simulator is also guarded with extra if

statements to prevent it from executing during memoization miss recovery. The next section dis-

cuses FastSim’s memoization miss recovery mechanisms more fully.

5.2.6. Recovering From a Memoization Cache Miss

A memoization cache miss occurs when the fast simulator calls ff_find_result_1 ,

ff_find_result_8 , or ff_find_result_N for a result value that does not yet exist in the

memoization cache. When this happens, FastSim’s run-time library searches backward through

the cached action sequences until it finds the most recent index entry. Action numbers and

dynamic result values encountered in this backwards search are pushed onto a stack—called the

recovery stack—for subsequent use in memoization miss recovery. Since each index entry corre-

sponds to a call to Facile’s main function, the data associated with the most recent index entry is

unpacked to recover main ’s argument values. The slow simulator is then restarted by calling

main with these unpacked argument values.

152

The slow simulator can not immediately begin normal execution. Dynamic versions of vari-

ables may contain values from later in the execution, and external functions may have already

been called by the fast simulator for this call to main . This dynamic behavior was already per-

formed by the fast simulator and cannot be rolled back. Ideally, the slow simulator should be

started at the same point that fast simulation failed, but this is not possible, because run-time static

values that were not computed by the fast simulator are needed by the slow simulator.

The solution is to only execute static and run-time static code in the slow simulator, until it

catches up to the failed fast simulation. To do this, every dynamic statement in the slow simulator

is guarded by an if statement, and is only allowed to execute after the slow simulator has caught

up. Library calls that allocate action numbers in the memoization cache simply compare the

requested allocations against the action numbers in the recovery stack, constructed just after the

fast simulator failed. The sequence of action numbers encountered by the slow simulator should

be exactly the same as the sequence executed by fast simulation, up to the point where the

memoization miss occurred. Dynamic result values cannot be computed by the slow simulator

during recovery, so the values used in fast simulation are read from the result stack as needed.

After all action and result values on this stack have been replayed by the slow simulator,

memoization miss recovery is finished and the slow simulator is allowed to execute dynamic as

well as static and run-time static code.

153

CHAPTER VI: Writing Efficient Memoizing
Simulators (& Performance Results)

Fast-forwarding is a very effective optimization for accelerating out-of-order micro-architec-

ture simulation. This was demonstrated with FastSim Version 1 (in Chapter III), where memoiza-

tion achieved an order of magnitude speedup over simulation without memoization. FastSim

Version 2 automatically optimizes simulators written in Facile to use memoization, and for out-of-

order simulation it also achieves and order of magnitude speedup over simulation without

memoization. This result and an out-of-order simulator implemented in Facile are discussed in

section 6.1.

Although FastSim v.2 makes memoization accessible to simulator writers, they may not have

the background to effectively use this optimization. Designing a simulator that uses memoization

effectively requires an understanding of the fast-forwarding optimization, and a knowledge of

simulator implementation alternatives and their affect on performance. Section 6.2 catalogs the

factors that influence the performance of a fast-forwarding simulator, and derives the equation

governing fast-forwarding performance. Section 6.3 discusses how to design a simulator in Facile

to get the most out of FastSim’s fast-forwarding optimization. Experimental results with varia-

tions on the simple simulator in Appendix B are used to illustrate the effect of several simulator

design decisions.

154

6.1. Out-Of-Order Processor Simulation

As shown in Chapter III, memoization greatly improves the performance of an out-of-order

micro-architecture simulator. The same is true of an out-of-order micro-architecture simulator

written in Facile and optimized with memoization automatically. My original memoizing simula-

tor—FastSim v.1—ran with a 2,000 times slowdown without memoization and only a 250 times

slowdown with memoization. An out-of-order simulator written in Facile is not as fast, due to

inefficiencies in the compiled code produced by the Facile compiler and because it does not use

direct execution, but it still out-performs contemporary out-of-order simulators, such as SimpleS-

calar, which has approximately a 4,000 times slowdown. Without memoization, my out-of-order

micro-architecture simulator written in Facile simulates target executables with a 15,000 times

slowdown on average. With memoization it simulates with an average slowdown of only 1,500, an

order of magnitude improvement over simulation without memoization, which makes it faster

than SimpleScalar.

Besides being optimized automatically, this out-of-order simulator in Facile executes target

instructions in the order specified by the out-of-order pipeline model. This is an improvement

over FastSim v.1, which executed target instructions in program order using direct execution and

simulated the out-of-order pipeline timing separately. Since correct execution of a target program

now depends on correct implementation of the simulated out-of-order execution engine, measured

behavior of the modeled micro-architecture is more likely to be correct. This does not imply that

the simulator correctly models a particular processor micro-architecture, but that the modeled

architecture is actually capable of correct out-of-order execution.

155

As with program optimization using partial evaluation, programmer knowledge about out-of-

order micro-architecture simulation and the implementation of fast-forwarding is needed to effec-

tively use this optimization. Section 6.1.1 describes the design of the out-of-order simulator in

Facile to make effective use of FastSim v.2’s fast-forwarding optimization. An analysis of the per-

formance and other execution statistics for this simulator are given in Section 6.1.2.

6.1.1. Design of the Out-Of-Order Simulator

This simulator models a hypothetical out-of-order micro-architecture for the SPARC-V9 ISA.

It models an 32 instruction out-of-order window, register renaming, a two-level non-blocking data

cache, and a fixed number of integer and floating-point arithmetic units. Figure 6.1 shows the

major components in this micro-architecture model, and table 6.1 lists various model parameters.

Multiple instructions are fetched and decoded each cycle. While decoding, conditional

branches are predicted and architectural registers are renamed, mapping them to physical regis-

ters. Each cycle, instructions are chosen from the out-of-order instruction window to execute on

TABLE 6.1: Out-of-order processor model parameters.

Decode 4 instructions per cycle.

Buffer up to 32 instructions for out-of-order execution.

2 integer ALUs, 2 FPUs, and 1 load/store address adder.

2-bit/512-entry branch history table for branch prediction.

Speculatively execute instructions following multiple conditional branches.

Non-blocking L1 and L2 data caches, 8 MSHRs each.

16 KByte 2-way set associative write through L1 data cache.

1 MByte 2-way set associative write through L2 data cache.

156

available functional units: integer operations execute on ALUs, floating point operations execute

on FPUs, and loads and stores use the Address Adder. After computing their memory address,

loads get their value via a two-level non-blocking data cache, and stores write their value to a

write buffer (WBuf) that manages the asynchronous transfer of data to memory. Instructions retire

(and are removed from the window) in program order. An instruction is retired when it is finished

executing and all older instructions in the window have also finished executing.

L1 Cache

L2 Cache

MSHR

MSHR

W
B

uf

OOO Instruction Window

Register File

Fetch & Decode

Physical

Memory

Branch

Rename

Address
Adder

ALU1

ALU2

FPU1

FPU2

FIGURE 6.1: Out-Of-Order Processor Model.

157

Part of the challenge in designing this simulator in Facile was to make effective use of fast-

forwarding. While the data structures and algorithms used in this implementation are faithful to

the micro-architecture model, they are often different from the obvious implementations that

would be used in a simulator without memoization.

THE INSTRUCTION QUEUE. As with the simulator in Chapter III, the way to memoize an out-of-

order simulator is to cache residual simulation indexed by the set of instructions in the current out-

of-order window. Nearly all the data needed to specify the timing and order of execution of

instructions in the pipeline is collected into a single data structure called the instruction queue.

The instruction queue is not an actual component in the micro-architecture model, just a conve-

nient data structure used in the simulator to centralize the run-time static part of simulated micro-

architecture state. The instruction queue lists all instructions in the current instruction window, in

program order, along with additional information about the current state of each instruction in the

out-of-order pipeline. Every cycle of execution of the target micro-architecture, the simulator

updates its instruction queue by 1) fetching new instructions, 2) scheduling instructions to execute

on available simulated functional units, 3) evaluating instruction semantics for instructions that

have spent sufficient time executing on a function unit, and 4) retiring instructions by popping

them off the queue.

Figure 6.2 show a snapshot of the instruction queue taken between simulated machine cycles.

In this example, the first nine instructions in the target instruction sequence are currently in the

158

out-of-order execution window. In the next simulated cycle the next four target instructions will

be fetched, the conditional branches at 0x1247c and 0x1248c will be evaluated (both were pre-

dicted correctly), and the oldest six instructions will be retired.

Many micro-architecture model parameters are implemented with simple counters. E.g., At

most 4 instructions are fetched per cycle and at most 32 instructions are allowed in the instruction

window. Counters keep track of the number of instructions fetched and the total number of

instructions in the window. The simulator stops fetching instructions when either of these limits is

FIGURE 6.2: Sample Instruction Queue. The first nine instructions are in the current out-of-
order instruction window, so have corresponding records in the instruction queue. The instruc-
tion queue lists each instruction’s pc, npc, an internal operator identifier (op), where to find
each source operand (srcq), where to write results (destq), which functional unit to execute on
(ftype), how long to execute on the functional unit (ftime), and several other fields. Note that
the srcq and destq fields in the instruction queue only record where to read and write data
respectively. Actual data values are stored in other simulator data structures.

Instruction Queue

Source Instructions pc npc op srcq destq ftype ftime other...

bne 0x124d4 0x1247c 0x12480 BNE ALU 1 ...

sethi %hi(0x24000), %o0 0x12480 0x12484 NOP DONE 0 ...

ld [%o0 + 0x238], %o0 0x12484 0x12488 LDUW DONE 0 ...

cmp %o0, 0 0x12488 0x1248c SUBCC DONE 0 ...

bne 0x124d4 0x1248c 0x12490 BNE ALU 1 ...

sethi %hi(0x13800), %l0 0x12490 0x12494 NOP DONE 0 ...

add %l0, 0x28c, %o0 0x12494 0x12498 ADD ALU 1 ...

call 0x23c64 0x12498 0x1249c NOP DONE 0 ...

mov %i5, %o2 0x1249c 0x23c64 OR ALU 1 ...

sethi %hi(0x48000), %g1

sethi %hi(0xef763400), %g1

jmp %g1 + 0x308

sethi %hi(0x4b000), %g1

159

reached. A limited number of function units is implemented in the same way. The internal work-

ings of each functional unit are not modeled by this simulator. Counters simply enforce a limit of

2 integer ALUs, 2 FPUs, and 1 Address Adder by counting the number of instructions using each

kind of functional unit as the instruction queue is scanned from oldest to newest instructions. This

gives priority to the oldest instructions in the instruction window. Note that the implementation of

these limitations does not pass any extra data from one simulated cycle to the next, since each lim-

itation is computed from scratch each cycle.

REGISTER RENAMING. Register renaming is more difficult to model in a memoization friendly

way. If there are only 32 architectural registers and 64 physical registers, then there are 6432 pos-

sible register renamings. My original simulator—FastSim v.1—noted that the precise mapping of

logical to physical registers is not needed to simulate the effect of register renaming on pipeline

timing, so it simply recomputes data dependencies each cycle and uses a simple counter to limit

the number of physical registers that can be allocated.

In the out-of-order simulator written in Facile, data values are maintained by the micro-archi-

tecture simulator, so storage locations are needed to store the register values. But pipeline timing

still does not depend on the actual map from logical to physical registers. To implement register

renaming in a memoization friendly way, the simulator stores result values of each instruction in a

data structure called the destination queue. Like the instruction queue, the destination queue is

just a convenient data structure for collecting data associated with instructions in the current out-

of-order window.

160

Each element of the destination queue corresponds to one instruction in the instruction queue.

It may contain multiple values, if an instruction assigns to more than one result register. Instead of

maintaining a map from logical registers—the way they appear in a target instruction—to physi-

cal registers, the simulator maps each instruction operand to either the result of some previous

instruction stored in the destination queue or to an architectural register file in the case that the

register does not depend on any previous instruction in the queue. Newer instructions are not

allowed to execute until the instructions they depend on have finished executing and have written

their results into the destination queue. As in FastSim v.1, the number of physical registers can be

limited with simple counters, while register values are managed by the destination queue and data

dependencies are managed by the instruction queue. As instructions retire out of the instruction

queue, their result values are popped from the destination queue and written into appropriate

architectural register files.

The destination queue is labeled dynamic by BTA in the Facile compiler because it contains

actual register values. But the data dependencies between instructions—stored in the instruction

queue—are run-time static, since the data dependencies do not depend on register values. Register

dependency information, describing which instruction operands depend on which previous

instruction results, are computed as each instruction is fetched, and is stored in the instruction

queue. The instruction queue is labeled run-time static by the Facile compiler. This means that the

fast simulator magically knows where to read instruction operand values from—e.g., a particular

index in the destination queue or from an architectural register file—when replaying cached simu-

lation results. Note that data dependencies can be recomputed at any time by re-decoding the

161

instruction in the instruction window, so this information does not have to be passed from one call

to main to the next. I.e., it is not a part of the memoization cache index.

NON-BLOCKING CACHE SIMULATION . The two-level non-blocking cache simulation is not

memoized. The cache simulator is written in C and called using Facile’s external function call

interface. Note that the cache simulator in this implementation does not manipulate actual data

values, it only simulates the time to access data under its simulated cache and memory model.

The interface between the memoized pipeline simulator and the non-memoized cache simula-

tor is designed to minimize their interaction. A call to the cache simulator is made when a mem-

ory access instruction first accesses the cache. This call either returns that the access succeeded, or

it returns a number of cycles for the pipeline simulator to wait before calling the cache simulator

again for the same load or store.

For load instructions, the first call to the cache simulator either returns that the load hit in the

L1 cache, missed in the L1 cache and will take N1 cycles to access the L2 cache (usually 6

cycles), or missed in the L1 cache but failed to allocate a MSHR. A load that misses in the L1

cache is retried after N1 cycles, and the cache simulator returns a hit if the address is in the L2

cache, or it returns a miss and another delay N2 cycles, i.e., the time to access memory. Besides

the variability of hitting or missing in each level of the cache, the length of a delay can vary, e.g.,

when loads are coalesced with other loads already in progress. Cache behavior also changes based

on address dependencies between loads and stores currently submitted to the cache simulator.

162

Store instructions require special treatment when executing along a speculative branch path.

For non-speculative stores, the cache simulator simply allocates a simulated write buffer and

returns. The store will complete silently with no further calls from the pipeline simulator to the

cache simulator. The write buffer is released automatically after the store has had time to make it

out to simulated memory. Cache simulator calls for speculative stores also allocate a write buffer

and return, but a subsequent call to the cache simulator is needed to either commit or rollback the

store after the speculative branch is evaluated. If the branch was predicted correctly, then specula-

tive stores following that branch are committed when the prediction is verified, and the store val-

ues can begin their trip out to simulated memory. Otherwise, speculative stores are rolled back

and their write buffers are freed.

Actually loading and storing data from and to memory is handled by the pipeline simulator

written in Facile. After the cache simulator returns that a load has hit in the L1 cache, L2 cache, or

memory, or after a store has committed, the memory access is executed by the pipeline simulator.

Hence, values are loaded and memory is modified out-of-order based on pipeline and cache

behavior.

MEMOIZATION CACHE INDEX ENTRIES. In order to save space in the memoization cache, data in

the instruction queue is compressed before it is stored into the init variable for the next call to

main . At the start of a call to main , the instruction queue is reconstructed from the compressed

data passed in main ’s arguments.

163

Most data in the instruction queue can be reconstructed by re-decoding the corresponding tar-

get instructions. To begin this reconstruction, the simulator must know the pc and npc addresses

of the oldest instruction in the queue, the length of the instruction queue (i.e., number of instruc-

tions), the target addresses of indirect jumps, and the direction taken by each conditional branch.

This is enough information to identify exactly which instructions are in the instruction queue. By

re-decoding target instructions, the simulator reconstructs most other instruction queue fields

(e.g., op, srcq, destq). The ftype and ftime fields record the execution progress of each instruction,

and cannot be reconstructed from the source instructions. A list of ftypes and ftimes is also passed

as arguments to main .

The parameters to main in this out-of-order simulator are pc , npc , cwp, cansave , can-

restore , fuQ , and jmpQ. Parameters pc and npc (4 bytes each) are the program counter and

next program counter of the first instruction in the instruction queue. Parameters cwp, cansave ,

and canrestore (1 byte each) are not related to the instruction queue, but are included in

main ’s argument list to make the SPARC register window calculations run-time static. The func-

tion-unit queue—fuQ —contains the ftype and ftime fields for every instruction in the com-

pressed instruction queue. For conditional branch instructions ftype also encodes the branch

direction. The length of fuQ is the length of the instruction queue. Each entry in fuQ consumes 2

bytes in the memoization cache. The indirect jump queue—jmpQ—contains one entry for each

indirect jump in the instruction queue, recording the indirect jump target addresses (4 bytes per

address).

164

At the start of each call to main , the instruction queue is reconstructed from its compressed

form, passed in main ’s arguments. The simulator executes for a while using the reconstructed

instruction queue. Then, just before main returns, it compresses the instruction queue again and

stores this compressed representation into the init variable. In this way, all the data in the

instruction queue is run-time static, while storing a minimum amount of data in each memoization

index entry.

6.1.2. Out-Of-Order Simulator Performance

Measurements of the out-of-order simulator were made for the SPEC95 benchmarks, with and

without memoization. To save time, all the benchmarks were run using their “test” input set,

except for compress, which was run with its “train” input set. The host system for all these exper-

iments was a Sun Microsystems Ultra Enterprise E5000 with 167MHz UltraSPARC processors

and 2 GBytes of physical memory. When memoizing, a 256 MByte memoization cache was used.

The cache is flushed when full, and new actions are memoized into the empty cache as needed.

With memoization the simulator is 11.6 times faster on average than without memoization.

Figure 6.3 shows the how memoization accelerates simulator performance for each of the

SPEC95 benchmarks1. Without memoization simulation slowdown ranges from 8,600 (vortex) up

to 22,600 (turb3d). The slowdown tends to be worse for floating-point benchmarks (the 10 bench-

1. Un-memoized execution of applu failed after executing for more than two weeks, so SlowSim perfor-
mance for applu is not shown. Since applu ran with memoization, this failure was probably due to some
event on the host beyond the control of the simulator.

165

marks on the right) than for integer benchmarks (the 8 benchmarks on the left), because floating-

point benchmarks tend to have more instructions in the out-of-order window on average, and this

simulator implementation loops over the out-of-order window once per simulated cycle.

With memoization, simulator slowdown ranges from 940 (for fpppp) up to 3,150 (for gcc).

Among other things, memoization removes the loop that scans through the instruction window

each cycle, so floating-point benchmarks no longer perform worse than integer benchmarks. On

the contrary, floating-point benchmarks tend to be more regular and are more likely to repeat pre-

viously memoized simulation. They out perform the integer benchmarks on average. The two

worst slowdowns belong to go (3,020 times slowdown) and gcc (3,150 times slowdown). Both

these benchmarks memoized significantly more data than fit in the 256 MByte memoization

cache used for these experiments. They were forced to frequently flush the cache and re-memoize

FIGURE 6.3: Out-of-order simulator performance. SlowSim is the out-of-order simulator
without memoization. FastSim is the simulator with memoization.

0

5000

10000

15000

20000

25000

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

S
lo

w
do

w
n

vs
. h

os
t e

xe
cu

tio
n

SlowSim

FastSim

166

data needed for fast simulation. Despite this, memoization still improved their rate of simulation

by a factor of 3.9 and 2.8 for go and gcc respectively.

Figure 6.4 shows the amount of data memoized for each benchmark. The memoization cache

size for these experiments was 256 MBytes. Benchmarks that overflow this limit flush the

memoization cache and start over memoizing new simulator actions. Go, gcc, vortex, and wave5

flushed the memoization cache 271, 29, 4, and 6 times respectively. The amount of data

memoized for a benchmark that overflows the cache increases sharply, since new data must be

memoized to replace the discarded data.

FIGURE 6.4: Quantity of data memoized for out-of-order simulation. The memoization
cache was limited to 256 MBytes. The cache is flushed when full and new actions are
memoized as needed.

0

32

64

96

128

160

192

224

256

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

M
B

yt
es

167

Compared to the hand coded simulator discussed in Chapter III—FastSim v.1—the simulator

written in Facile generated from 7.3 (ijpeg) times less to 14.1 (turb3d) times more memoized data

(not counting those benchmarks that overflowed the cache). On average, the Facile simulator allo-

cated 4.9 times more data in the memoization cache than FastSim v.1 on benchmarks that fit in the

256 MByte memoization cache.

TABLE 6.2: Out-of-order simulation work breakdown. This table lists the percentage of
calls to main that are handled in slow, fast, and miss recovery mode. %Wslow is the percent-
age of calls to main in slow simulation. %Wfast is the percentage of calls to main replayed
by the fast simulator without a memoization miss. %Wmiss is the percentage of calls that result
in a memoization miss in the fast simulator.

Benchmark %Wslow %W fast %W miss

099.go 2.52% 95.40% 2.07%

124.m88ksim 0.02% 99.97% 0.01%

126.gcc 3.45% 94.92% 1.63%

129.compress 0.20% 99.73% 0.07%

130.li 0.02% 99.97% 0.01%

132.ijpeg 0.04% 99.94% 0.02%

134.perl 1.91% 97.59% 0.51%

147.vortex 0.06% 99.89% 0.05%

101.tomcatv 0.01% 99.99% 0.00%

102.swim 0.23% 99.29% 0.48%

103.su2cor 0.04% 99.91% 0.04%

104.hydro2d 0.04% 99.94% 0.02%

107.mgrid 0.07% 99.89% 0.03%

110.applu 0.00% 99.99% 0.00%

125.turb3d 0.00% 99.99% 0.00%

141.apsi 0.01% 99.98% 0.00%

145.fpppp 0.11% 99.83% 0.05%

146.wave5 0.02% 99.92% 0.07%

168

Table 6.2 lists the percentage of calls to main that were executed by the slow simulation, fast

simulator, or by a combination of both slow and fast simulator to handle memoization misses. The

vast majority of calls to main are fast-forwarded. The gcc benchmark executes the largest per-

centage of work in the slow simulator (3.45%), but the go benchmark has the largest percentage of

memoization misses (2.07%). On average, the benchmarks performed 0.49%, 99.23%, and 0.28%

of their work in slow, fast, and miss recovery mode respectively.

Figure 6.5 breaks down the execution time for simulating each benchmark, showing the con-

tribution from each of the slow, fast, and miss recovery modes. Even though very little work is

performed in slow and miss recovery modes, these modes are sometimes responsible for a signifi-

FIGURE 6.5: Breakdown of simulator execution time. This chart shows the simulation
slowdown of the memoized out-of-order simulator with respect to executing benchmarks
directly on the host. Each bar is divided into the fraction of execution time spent in each of the
three simulation modes: slow, fast, and miss recovery.

0

500

1000

1500

2000

2500

3000

3500

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

S
lo

w
do

w
n

vs
. h

os
t e

xe
cu

tio
n

miss

fast

slow

169

cant fraction of the execution time. This is because slow simulation is 51 times slower than fast

simulation, and memoization miss recovery is 66 times slower than fast simulation. Compared to

the non-memoized version of this out-of-order simulator, the fast simulator is 12.3 times faster,

the slow simulator is 4.2 times slower, and miss recovery is 5.1 times slower on average.

6.2. Performance Model for Fast-Forwarding Simulators

Memoization makes the trade-off of increasing memory consumption to accelerate program

execution. The hope is that by caching and reusing results from earlier in a program’s execution,

the time required to complete the entire execution will be decreased. The effectiveness of this

optimization depends on several factors, including: 1) the fraction of a program’s work that can be

replayed using cached data, 2) the cost of using cached data relative to the rate of execution with-

out memoization, 3) the cost of generating cached data, and 4) the amount of data generated into

the memoization cache.

FastSim’s fast-forwarding optimization is similar to traditional memoization, but it caches

actions that control a residual/dynamic simulator instead of just caching function return values.

With traditional memoization, the cost of looking up and reusing a previously cached result is

constant. But with fast-forwarding, the cost of replaying cached actions is often much greater than

looking up a single value. This cost changes from one simulator design to another and even varies

within a single simulator’s execution, depending on the fraction of executed code that can be

skipped over when replayed.

170

Fast-forwarding also has a variable cost for handling memoization misses. The cost of a

memoization miss in traditional memoization is constant. Memoization simply fails to find a pre-

vious instance of a function call in the cache, so it calls the function and caches its new result for

later use. Fast-forwarding uses a more costly memoization miss recovery mechanism, with a vari-

able cost depending on the amount of simulation that must be rolled back and recomputed by the

slow simulator.

6.2.1. The Fast-Forwarding Performance Equation

A fast-forwarding simulator (Sff) produces exactly the same results as an un-optimized ver-

sion (S0) of the same simulator, only the running time and memory consumption are different. Let

T0 and Tff be the execution times of S0 and Sff respectively, when applied to the same target exe-

cutable with identical starting conditions (e.g., identical command line arguments and environ-

ment variable values). Fast-forwarding is an effective optimization of a simulator if and only if Tff

is less than T0.

Both simulators—S0 and Sff—perform the same simulation work, e.g., they simulate the same

sequences of target instructions and compute the same target processor statistics. One way to mea-

sure simulation work performed by a Facile simulator, is to count calls to the simulator’s main

function. Note that in a fast-forwarding simulator the main function is not actually called during

fast simulation, but logically each index entry encountered by the fast simulator corresponds to a

call to main .

171

Let W be the work performed by a simulator, measured in calls to main (or index entries

encountered) during the simulation of a target executable. The execution time of an un-optimized

simulator S0 can be described as , where t0 is the average time taken to execute one

call to main . Describing the execution time of a fast-forwarding simulator Sff is more compli-

cated. Some work in Sff is performed by a slow version of the simulator, more work is performed

by a fast simulator version, and the remaining work is performed by a combination of the fast and

slow simulators working together to handle a memoization cache miss.

• Let Wslow = the number of times the slow simulator’s main function is executed, when not

recovering from a memoization miss.

• Let Wfast = the number of index entries replayed by the fast simulator, where a memoization

miss does not occur before the next index entry is encountered.

• Let Wmiss = the number of memoization cache misses encountered by the fast simulator. Each

miss results in activation of FastSim’s memoization miss recovery mechanism.

For a given target executable and target input data, the number of calls to main in S0 is the

same as the sum of these three components in Sff (i.e.,).

The performance of a fast-forwarding simulator can be described as follows:

T0 Wt0=

W Wslow Wfast Wmiss+ +=

Tff Wslowtslow Wfasttfast Wmisstmiss+ +=

172

Where tslow, tfast, and tmiss represent the average time to execute main in the slow simulator, fast

simulator, and during miss recovery respectively.

In a simulator that makes effective use of the fast-forwarding optimization, the fast simulator

is faster than the un-optimized simulator (i.e.,) because run-time static code is skipped.

But the slow simulator is slower (i.e.,) because of extra overhead from memoizing result

data. A memoization miss is even more time consuming to simulate than slow simulation, because

a portion of the call to main is executed twice—once in the fast simulator, then again in the slow

simulator—and extra time is spent in FastSim’s run-time library managing the transition back to

slow simulation.

The amount of work performed in each mode of simulation—Wslow, Wfast, Wmiss—depends

on the likelihood that memoized data can be reused by the simulator. Simulator designers nor-

mally have some intuition about how often memoized data will be reused. They know that some

design changes will increase (or decrease) the likelihood of encountering repeated work, or

change the rate of execution in one or more of the three modes of execution.

The following definitions are used to describe the probability that work can be replayed by the

fast simulator and how much work is replayed before returning to slow simulation.

• Let Nfast = the number of times Sff transitions from slow simulation to fast simulation. This

happens when main ’s argument values match an existing index entry. Note that

tfast t0<

tslow t0>

173

, because every transition to fast simulation eventually leads to a transition

back to slow simulation following a memoization miss.

• Let θ = the probability that arguments to main will match an existing index entry during slow

simulation. calls to main in the slow simulator result in a transition to the fast simu-

lator, so .

• Let α = the probability that the value in Facile’s init variable matches an existing index

entry during fast simulation. This index check is performed whenever the fast simulator

reaches the end of an action sequence associated with the previous index entry.

• Let β = the probability that a dynamic result value matches one of the values already listed in

the memoization cache. These tests transform dynamic result values into run-time static val-

ues by comparing dynamic results computed by the fast simulator against a set of values pre-

viously witnessed by the slow simulator. Several dynamic results can be tested when replaying

the action sequence associated with a single index entry.

• Let rf = the average number of dynamic result values that are tested when replaying the action

sequence associated with an index entry. This is the number of dynamic results tested per

index entry replayed by the fast simulator. A similar value describes result value tests per

index entry generated by the slow simulator (rs), and is used in the equations describing

memoization cache size discussed in section 6.2.2.

Nfast Wmiss=

θWslow

θWslow Nfast Wmiss= =

174

• Let ϕ = the probability that a memoization miss occurs during fast simulation (i.e.,

). A memoization miss occurs if no matching index entry is found anywhere

in the memoization cache or if a dynamic result value is not found in the current action

sequence. Hence .

The following relationships are used to derive a new fast-forwarding performance equation

based on the probabilities of transitioning to and from fast simulation, and the execution speed of

each of the three modes of simulation:

1.

2. , where

3.

Hence , , and .

4.

By substituting values for Wslow, Wfast and Wmiss in equation 4 we get a description of fast-

forwarding performance with respect to the performance of the simulator’s three modes of opera-

Wmiss ϕWfast=

ϕ 1 αβ
rf–=

Wmiss θWslow=

Wmiss ϕWfast= ϕ 1 αβ
rf–=

W Wslow Wfast Wmiss+ +=

Wslow
ϕ

ϕ θ ϕθ+ +
--------------------------W= Wfast

θ
ϕ θ ϕθ+ +
--------------------------W= Wmiss

ϕθ
ϕ θ ϕθ+ +
--------------------------W=

Tff Wslowtslow Wfasttfast Wmisstmiss+ +=

175

tion and the probabilities of transitioning to and from fast simulation. This is the fast-forwarding

performance equation:

, where , θ is the hit rate

for slow simulation, α is the hit rate for fast simulation, and β is the hit rate for dynamic values.

6.2.1.1. SLOW SIMULATOR PERFORMANCE

The first mode of fast-forwarding simulator operation is slow simulation. The performance of

the slow simulator is described by tslow—the average time to execute one call to main during

slow simulation. The slow simulator (Sslow) performs the same operations as the un-optimized

simulator (S0) skipping nothing. Sslow also generates data into the memoization cache and looks

for previously memoized data so it can hand off execution to the fast simulator. The average time

taken to execute each call to the slow simulator’s main function can be broken down into the fol-

lowing components:

CORE SIMULATION . As defined earlier, t0 is the average time taken by a call to main when fast-

forwarding is not used. This is the same time taken to execute a call to main in the un-optimized

simulator S0. It includes the time to execute all code (static, run-time static, and dynamic) that is

in or called by main , but does not include the time to execute any extra code that supports

memoization.

Tff
W

ϕ θ ϕθ+ +
-------------------------- ϕtslow θtfast ϕθtmiss+ +[]= ϕ 1 αβ

rf–=

tslow t0 tlookup astgen-action dstgen-data rstgen-result+ +() textra+ + +=

176

INDEX LOOKUP. tlookup represents the average time to lookup main ’s arguments in the memoiza-

tion cache. Note that this lookup fails, since a successful lookup would result in calling the fast

simulator instead of the slow simulator.

The memoization cache index is accessed via a hash table. A hash value for main ’s argu-

ments—stored in Facile’s init variable—is generated, looked up in the hash table, and all index

entries in that hash bucket are compared to the current argument values. Hence tlookup depends on

the amount of data in init and the number of index entries in a hash bucket. Increasing the

amount of data in init increases to time required to compute the hash function and compare the

current value against values in existing index entries. Increasing the size of the hash table1 reduces

the average number of index entries in each hash bucket.

CACHING DATA. The time to write an action sequence into the memoization cache is primarily

related to the amount of code in Sslow that was labeled dynamic by Facile’s BTA and executes in a

typical call to main . More specifically, time to cache a memoized action sequence is

. as and rs represent the average number of actions and

dynamic result tests respectively that occur in an action sequence generated by the slow simulator.

tgen-action and tgen-result are the average times to allocate a single action (with associated run-time

static data) and single dynamic result respectively. ds is the average number of bytes of run-time

1. A hash table size can be specified on the command line of any memoizing simulator generated by
FastSim v.2. The default hash table size is 1/256th of the size of the memoization cache. The size of the
memoization cache can also be specified on the simulator command line.

astgen-action dstgen-data rstgen-result+ +

177

static data associated with all the actions in an action sequence, and tgen-data is the average time to

write a byte of run-time static data into the cache.

The number of actions (as) depends on the complexity of a simulator’s dynamic control flow

graph (dCFG). Simulator designs that have more complex dynamic control flow graphs typically

generate more actions per action sequence. Careful programming of a Facile simulator can some-

times reduce the number of actions stored in the memoization cache by simplifying the dCFG

without altering the proportions of dynamic and run-time static code.

The total amount of run-time static data in an action sequence (ds) depends on the amount of

dynamic simulator code that uses run-time static values. Simulator designs that use fewer run-

time static values in dynamic expressions generate less run-time static data into the memoization

cache. Run-time static data records are associated with individual actions, but increasing the num-

ber of actions does not necessarily increase the amount of run-time static data. If the same amount

of run-time static data is used in dynamic expressions, then increasing as simply decreases the

average amount of run-time static data associated with each action.

The number of dynamic result values in an action sequence (rs) depends on the number of

dynamic conditional statements (e.g., if or switch statements) or explicit uses of Facile’s

?static attribute that are encountered by a typical call to main in the slow simulator. Simula-

tor designers can influence rs by changing the proportion of dynamic code in a simulator or

changing the number of instructions simulated per call to main .

178

EXTRA COSTS. textra represents other costs incurred by the slow simulator. These extra costs result

mostly from support added to Sslow for memoization miss recovery. Extra statements copy data

between run-time static and dynamic variable versions, and extra if statements disable dynamic

code during miss recovery. Because of all this extra code and duplicate variables, Sslow cannot be

optimized as highly by the C compiler as S0. The extra time needed to execute this less efficiently

compiled code is also included in textra.

Extra statements—to copy run-time static variables to dynamic version of the same vari-

ables—occur along a control flow path wherever run-time static values are merged with dynamic

values from a different control flow path. For example, the then-clause of an if statement may set

a variable x with a run-time static value, while the else-clause leaves x with a dynamic value.

When this if statement ends, and the two control flow paths merge back together, the run-time

static value in x at the end of the then-clause becomes dynamic and must be copied into the

dynamic version of x . This transition from run-time static to dynamic does not correspond to any

statement in the Facile source code, so an extra statement is generated.

The number of extra statements that copy from run-time static to dynamic variables can be

reduced by designing a simulator so that variables that store dynamic values always store dynamic

values. Similarly, variables that store run-time static values should always be used to store run-

time static values. It is only when some control flow path changes a variable from run-time static

to dynamic that these extra statements are inserted into the code.

179

A cost not related to miss recovery is Facile source statements that are rewritten as two or

more C statements, because memoization support code is needed in the middle of the source state-

ment. For example, if Facile’s ?static attribute is used in a sub expression of a larger expres-

sion, the larger expression is split into multiple statements. One statement computes the dynamic

value that will be made static and stores that value in a temporary variable. Then a run-time

library call is made to write the dynamic value into the memoization cache. The remainder of the

original expression is written as another C statement. Multiple C statements, with extra temporary

variables to store intermediate results, may be generated to implement the same order of evalua-

tion as in the source simulator code. These multiple statements and extra temporary variables can

not be compiled as efficiently as a single C statement.

6.2.1.2. FAST SIMULATOR PERFORMANCE

Fast simulator performance is represented by tfast, the average time to replay a single index

entry and its associated action sequence. tfast can be broken down into the time to check an index

entry and the time to replay all the actions and dynamic results associated with that index.

INDEX VERIFICATION. tindex represents the average time to find an index entry for the next

sequence of actions that should be replayed. Verifying an index entry in the fast simulator serves

the same purpose as looking-up main ’s argument values in the slow simulator. Part of the work

performed by a replayed action sequence is to set up Facile’s init variable with a value for the

tfast tindex af taction rf tresult+ +=

180

next index/call to main . This value is checked against the next expected index entries in the

memoization cache to verify that relevant actions exist, and fast simulation can continue.

Logically, the fast simulator looks for an index entry to match main ’s current argument val-

ues just like the slow simulator does. But index lookup in the fast simulator is optimized by listing

all the index entries that are known to follow the previous action sequence at the end of that previ-

ous action sequence. When the fast simulator finishes executing an action sequence, it first

searches that sequence’s list of known successors to find an index entry that matches the current

value of init . Often a successor list has only one element and that element matches the value in

init , so this optimization saves time over looking for an index entry in the hash table. If the cur-

rent value of init does not match any index entries in the successor list, then the fast simulator

looks for an index entry using the hash table to search among all index entries in the memoization

cache, just like the slow simulator. If an index entry is not found anywhere in the memoization

cache, then it is a memoization miss and control is passed back to the slow simulator via

FastSim’s miss recovery mechanism.

A simulator designer can reduce the length of index successor lists and reduce the number of

hash table lookups performed by the fast simulator by storing less dynamic data into the init

variable. A simulator design that only stores run-time static data into init will generate succes-

sor lists with exactly one element that always matches the index value searched for by the fast

simulator. In general, multiple successor index entries differ only in the values of the dynamic

parts of init . Note that in FastSim’s current implementation the entire value of init is com-

181

pared against each possible index entry, even if some of the data is run-time static and guaranteed

to match. A better implementation would only test the dynamic parts of init when comparing it

to the index entries in a successor list.

REPLAYING ACTIONS. Action sequences associated with an index entry encode dynamic computa-

tion that is not skipped by fast forwarding. Each action number identifies a dynamic basic block

implemented in the fast simulator’s switch statement, and data following an action number in the

cache provides run-time static data values used by dynamic basic block code. Hence, the time

needed to replay actions associated with an index entry depends on the average number of actions

in an action sequence encountered by the fast simulator (af) and the average time to execute a sin-

gle action (taction).

Replaying a single action involves reading the action number from the memoization cache,

jumping to the dynamic basic block code associated with that action, then executing the dynamic

code. The total amount of dynamic code associated with all the actions in an action sequence

depends only on the fraction of a simulator’s execution that is dynamic. A simulator design with a

more complex dCFG but the same fraction of dynamic code will replay more actions but has less

dynamic code per action. Even if the total amount of dynamic code stays the same, changes in the

number of actions replayed will effect performance, because of the overhead of reading an action

number and jumping to its associated dynamic code.

182

REPLAYING DYNAMIC RESULTS. The fast simulator converts dynamic values into run-time static

values by comparing a dynamic result value to a list of previously seen result values already

stored in the memoization cache. Dynamic results are made run-time static when evaluating any

dynamic conditional statement—because all control flow in a fast-forwarding simulator is made

run-time static—and when dynamic data is explicitly made run-time static using the ?static

attribute in Facile. Dynamic result lists are intermixed with actions numbers and run-time static

data records in an action sequence. The time spent converting dynamic values depends on the

average number of conversions (rf) associated with a replayed index entry and the average time to

find a previously computed value in a result list (tresult).

The time to convert a dynamic result value depends on the length of the result list, which

depends on the number of different dynamic values that were previously encountered at this point

in the action sequence. When an action sequence is first generated by the slow simulator, each

dynamic result list in that action sequence contains exactly one result value. New entries are

added to a result list when the fast simulator encounters a dynamic value that is not yet in the list.

When this happens a new list entry is appended to the end of the list, and the slow simulator is

restarted via the memoization miss recovery mechanism. The slow simulator associates new

actions to this new result list entry, so the fast simulator can handle this result value in the future.

6.2.1.3. MEMOIZATION MISS RECOVERY

The third and final mode of execution in a fast-forwarding simulator is memoization miss

recovery. tmiss represents time spent processing a memoization miss and returning to slow simula-

183

tion. A memoization miss occurs when data needed to continue replaying memoized simulation

cannot be found in the memoization cache. This happens when either no index entry is found that

matches data in the init variable or a dynamic result is tested whose value is not listed in the

current action sequence.

FastSim’s recovery mechanism performs several steps to return from fast simulation to slow

simulation: 1) It searches backward through the replayed action sequences to find the most

recently checked index entry. During this search it also pushes action numbers and replayed

dynamic result values onto a stack—called the recovery stack—for later stages of recovery. 2) The

slow simulator’s main function is started in recovery mode, with argument values taken from the

last index value. In recovery mode, the slow simulator does not execute any dynamic code.

Instead of putting new data in the memoization cache, it simply verifies action numbers and reads

dynamic result values from the recovery stack. 3) When all the actions and dynamic results in the

recovery stack have been replayed by the slow simulator, the slow simulator leaves recovery mode

and returns to normal execution. The call to main that started in recovery mode finishes execut-

ing in normal slow simulation mode.

PARTIAL FAST SIMULATION . Before a memoization miss, part of the action sequence associated

with the last checked index value is replayed by the fast simulator. Time spent in this partial

replay is represented by where f is the average fraction of an action sequence that is replayed

before a miss and tfast is the average time to replay the entire action sequence when no miss

tmiss ftfast ftrollback ftrecover+ + 1 f–()tslow+=

ftfast

184

occurs. Note that, if memoization misses only occur when checking index values, then no actions

are replayed and . f is greater than 0 when memoization misses result from missed dynamic

result values.

ACTION SEQUENCE ROLLBACK. represents the time to roll back the fraction of an action

sequence that was executed by the fast simulator before a memoization miss. Action numbers and

dynamic result values that were used in fast simulation are pushed onto the recovery stack for use

in slow simulation while in recovery mode. If misses only occur when checking index values, then

, no rollback is needed, and no actions are pushed onto the recovery stack.

RECOVERY MODE SIMULATION . trecover represents the average time to execute the slow simula-

tor’s main function in recovery mode. represents the average time to execute the fraction

of the slow simulator’s main function in recovery mode that occurs before the memoization miss

being recovered. When in recovery mode the slow simulator does not execute any dynamic code.

All dynamic statements in the simulator are guarded by C if statements that only allow dynamic

code to execute when not in recovery mode. The slow simulator also skips extra statements that

were inserted by the Facile compiler to move data from run-time static variables into the corre-

sponding dynamic variables.

In recovery mode, the slow simulator still calls run-time library functions to put action num-

bers, run-time static data, and dynamic result values into the memoization cache. But these func-

tions do not actually write data into the cache. For action numbers, the run-time library simply

f 0=

ftrollback

f 0=

ftrecover

185

verifies the numbers generated by the slow simulator against action numbers in the recovery

stack.1 For run-time static data, the run-time library just throws away the generated data. For

dynamic result values the run-time library returns the value used by the fast simulator, since these

dynamic values cannot be computed reliably by the slow simulator until recovery is finished.

PARTIAL SLOW SIMULATION . After the slow simulator, executing in recovery mode, reaches the

point where the memoization miss occurred, it returns to normal slow simulation. rep-

resents the time to execute the slow simulator’s main function following the point where the

memoization miss occurred. As defined earlier, tslow is the time to execute main , when the slow

simulator is in normal execution mode.

6.2.2. Memoization Cache Size

The amount of data put into the memoization cache during simulation of a given target execut-

able can vary greatly among different simulator designs. The amount of memoized data depends

on the number of index entries that are written into the cache and the amount of data associated

with each index entry. Let S stand for the total amount of memoization data allocated by a fast-

forwarding simulator. , where Nindex is the number of index entries allocated and s1

is the average size of an index entry and associated action sequences up to the next index entry.

Note that the number of index entries allocated equals the number of calls to main in the slow

simulator, so and .

1. This error checking was useful for debugging FastSim and does not add much to simu-
lator execution time. It was left in as a sanity check, since it verifies that the two simula-
tor versions—fast and slow—are communicating correctly.

1 f–()tslow

S Nindexs1=

Nindex Wslow= S Wslows1=

186

In the worst case, the amount of data associated with a cached index entry is proportional to

the size of an index entry plus the size of the tree of possible action sequences following that

index. , where x is the average size of an index entry. as, ds, and rs are

the average number of actions (4 bytes each), bytes of run-time static data, and dynamic results1

respectively in an action sequence generated by the slow simulator. l is the average length of a

dynamic result list. Note that a tree of action sequences is associated with each index entry,

because each alternate dynamic result value is followed by a different sequence of actions. Hence,

the worst case size of data associated with an index entry increases exponentially as rs increases in

alternate simulator implementations.

A worst case estimate of s1 is useful for designing simulators that memoize less data. The big-

gest effect on the size of s1 comes from reducing the number of dynamic results tested and the

number of values in each dynamic result list. Note that moving dynamic result tests into the index

check can reduce s1, but increases the number of index entries, so it may not reduce the total

amount of memoized data. Changes in the number of actions or bytes of run-time static data is the

next biggest effect in determining s1, and these changes can sometimes be accomplished without

changing the number of index entries allocated (see 6.3.5, “Removing Actions Via Function Inlin-

ing”). Finally, the amount of data passed to main and stored in each index entry contributes to the

size of s1.

1. Each dynamic result consumes at least 8 bytes. Result values less than or equal to 8 bits wide are included
in the 8 byte header. Wider values consume 8 bytes plus space to store the value.

s1 x 4as ds 8rs+ +()l
rs+∼

187

In an actual simulator execution . This is the size

of the index entry itself (x) plus the average size of its associated tree of action sequences. An

action sequence without any branches has size . An additional branch is added to

the action sequences associated with one index entry in the cache each time there is a memoiza-

tion miss. But only the actions, run-time static data, and dynamic results following the miss are

added. Hence the average size of a tree of action sequences is .

Therefor , or in terms of ϕ and θ:

6.3. Designing an Efficient Memoizing Simulator

The structure of a simulator written in Facile controls how the fast-forwarding optimization is

applied by the Facile compiler. Choices made in the design of a memoizing simulator influence

different components of fast-forwarding performance in different ways. For example, passing

more data in arguments to main may increase the amount of run-time static code skipped by fast

simulation, i.e., decreasing tfast. But at the same time this change may also decrease the fraction of

calls to main that are executed by the fast simulator, i.e., decreasing θ (the probability of transi-

tioning to fast simulation) or increasing ϕ (the probability of transitioning back to slow simula-

tion).

s1 4as ds 8rs+ +() 1 1 f–()
Wmiss

Wslow
--------------+

 x+=

4as ds 8rs+ +

4as ds 8rs+ +() 1 1 f–()
Wmiss

Wslow
--------------+

S 4as ds 8rs++() Wslow 1 f–()Wmiss+() xWslow+=

S ϕW
ϕ θ ϕθ+ +
-------------------------- 4as ds 8rs++() 1 1 f–()θ+() x+[]=

188

This section explores several implementation options and their effect on fast-forwarding per-

formance in a simple functional simulator of the SPARC-V9 ISA. The simulator designs used in

these experiments are all simple variations on the simulator given in Appendix B. These simula-

tors do not model any micro-architecture details, and only simulate the functional behavior of

SPARC-V9 user-level instructions. Below is the list of design variations used in these experi-

ments:

• ARGS-TO-MAIN changes the proportion of simulator code that is run-time static (i.e., can be

skipped over) versus dynamic code that cannot be skipped. This proportion is changed by

passing more data as arguments to main , which makes the argument data and all computa-

tions that depend on it run-time static.

• COMBINING changes the amount of run-time static data used in dynamic computations. In the

SPARC simulators in these experiments, the SPARC’s integer register windows are repre-

sented by a two dimensional array. When registers are read and written, both the window

number and the register number within that window are run-time static (in some versions of

the simulator). These two values can be stored separately in the memoization cache, or they

can be combined into a single run-time static value to save space.

• INLINING changes the number of actions per index entry. The semantic code for many SPARC

instructions uses a function (get_src2) to get either an immediate value or a register value

for the instruction’s second operand. Function inlining removes one action for each time

189

get_src2 is called, compared to when get_src2 is called as a separate function. Unfortu-

nately, inlining also increases code size, possibly decreasing simulator performance.

• INSTS. PER MAIN changes the number of instructions simulated by each call to main . The sim-

ulator in Appendix B simulates exactly one target instruction per call to main . To simulate

more instructions per call to main , the simulator is altered to count the number of taken

branches, calls, or indirect jumps. By placing a loop around the call to ?exec —the call that

decodes and simulates a target instruction—main runs until a number of taken branches have

been simulated.

Measurements of all simulator versions were taken for the SPEC95 benchmarks, with and

without memoization. To save time, all the benchmarks were run using their “test” input set,

except for compress, which was run with its “train” input set. The host system for all these exper-

iments was a Sun Microsystems Ultra Enterprise E5000 with 167MHz UltraSPARC processors

and 2 GBytes of physical memory. When memoizing, a 256 MByte memoization cache was used.

The cache is flushed when full, and new actions are memoized into the empty cache as needed.

Note that fast-forwarding is not an effective optimization for the simple simulators used in

these experiments. In the most efficient versions, the simulator runs just as fast with memoization

as without it. Most versions of the simple simulator ran slower, when using memoization. The

problem is that not enough code can be skipped over to justify the extra cost of fast-forwarding.

190

Despite this problem, these simulators are useful for illustrating design decisions that produce

more efficient memoizing simulators.

6.3.1. Base Simulator Version

Appendix B contains source code for the simulator used in these experiments in its simplest

form. Call this the base simulator. The base simulator executes one instruction per call to main ,

has no function inlining, and accesses simulator registers with separate register window and regis-

ter number values (i.e. no combining). By passing the simulated pc and npc values as arguments

to main , the code to decode simulated instructions is run-time static in the base simulator. Most

code to simulate the semantics of each instruction is dynamic.

Figure 6.6 graphs the execution slowdown of the base simulator (with and without memoiza-

tion) versus executing benchmarks directly on host hardware. Without memoization, the base sim-

ulator suffers an average 112 times slowdown. With memoization, the simulator is 2.7 times

slower than simulation without memoization.

The memoized base simulator spends nearly all its time in fast simulation: All but one bench-

mark spends ≤ 0.02% of time in slow simulation. The perl benchmark spends 0.21% of its execu-

TABLE 6.3: Base simulator configuration.

Simulator Args-to-main Combining Inlining Insts./main

base pc, npc no no 1

191

tion time in slow simulation. Memoization miss recovery time is also negligible, ≤ 0.01% of total

simulation time. Unfortunately, the fast simulator is slower than the simulator without memoiza-

tion (i.e.,) because of extra overhead from interpreting memoized action sequences and

because not enough run-time static code can be skipped. Moreover, 28% of fast simulation time is

spent verifying index entries, so reducing the number of index verify operations is a good place to

start to design a more efficient memoizing simulator.

Figure 6.7 shows the amount of memoization cache data allocated. The amount of memoized

data ranges from 704 KBytes (compress) to just over 12 MBytes (gcc). In the base simulator, the

amount of memoized data corresponds to the number of different PC addresses simulated. In

other simulator versions, the amount of memoized data may depend on other factors in addition to

FIGURE 6.6: Base simulator performance. Base simulator slowdown vs. execution directly
on the host processor. The two bars for each benchmark represent the slowdown without
memoization (SlowSim) and with memoization (FastSim).

0

50

100

150

200

250

300

350

400

450

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

sl
ow

do
w

n
vs

. h
os

t e
xe

cu
tio

n

SlowSim

FastSim

tfast t0>

192

the number of different PC addresses simulated. These factors are discussed in the following sec-

tions.

6.3.2. More Simulation Per Call To Main

Increasing the number of instructions simulated per call to main decreases the relative time

spent looking for memoization index entries. The time to lookup an index entry does not change,

but the time spent in other parts of the simulation is increased. Hence the fraction of execution

time spent in index lookup is inversely proportional to the number of instructions simulated per

call to main . But simulating more instructions per call to main also increases the average num-

ber of dynamic result values tested per index entry. Increasing the number of result values tested

increases ϕ, hence it increases the number of memoization misses and the amount of work per-

formed in miss recovery mode.

FIGURE 6.7: Base simulator cache size. The base simulator allocates between 704KB (com-
press) and 12MB (gcc) of data into the memoization cache.

0

2

4

6

8

10

12

14

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

M
B

yt
es

193

Figure 6.8 shows how the base simulator is modified to simulate more instructions per call to

main . The idea is to simulate instructions until a taken branch, call, or indirect jump instruction is

simulated. Call this the looping simulator. Note that several non-control transfer instructions are

simulated by each call to main before the taken variable is incriminated and main returns. There

sem call {
nPC2 = PC + disp30?sext(32)<<2;
Rx(15,PC?addr?ext(64)); taken = taken + 1;

};

sem jmpl {
nPC2 = (Rx(rs1) + SRC2)?cvt(stream)?static;
Rx(rd,PC?addr?ext(64)); taken = taken + 1;

};

sem [bne be bg ble bge bl
bgu bleu bcc bcs bpos bneg bvc bvs] {

if(cond) { nPC2 = PC + disp22?sext(32)<<2; taken = taken + 1; }
else if(a) annul();

} where cond in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

fun main(pc, npc)
{

PC = pc; nPC = npc;
nPC2 = 0?cvt(stream); taken = 0;

while(taken == 0) {
nPC2 = nPC + 4; // default next nPC
PC?exec(); // execute instruction
PC = nPC; nPC = nPC2;

}

init = (PC, nPC);
}

FIGURE 6.8: Looping simulator source. The global variable taken is incremented when-
ever a call, indirect jump, or a taken conditional branch is simulated. The main function loops
while taken is equal to 0.

194

are 7.2 (gcc) to 226 (mgrid) instructions simulated per call to main , with an average of 36.2

instruction per call to main across all the benchmarks.

The looping simulator design significantly improves memoized simulator performance over

the base simulator. The memoized looping simulator suffers only 146 times average slowdown

across all benchmarks, compared to 296 times slowdown in the memoized base simulator. Only

5.3% of fast simulation time is spent verifying index entries, compared to 28% in the base simula-

tor. Additional performance is gained because the looping simulator design reduces the average

number of actions associated with each simulated instruction by 43% over the base simulator.

This effect on action’s per instruction is difficult to predict, since it depends on the structure of the

dynamic control flow graph produced by complex compiler analyses.

The looping simulator memoized less data than the base simulator in general (figure 6.9). This

is because there are fewer index entries and actions. The exception is go: The go benchmark

memoized slightly more data in the looping simulator than in the base simulator. The reason is

because there are more dynamic results tests in the simulator than just testing whether a condi-

tional branch is taken. In particular, save and restore instructions perform one or more dynamic

TABLE 6.4: Looping simulator configuration.

Simulator Args-to-main Combining Inlining Insts./main

looping pc, npc no no ~36.2 (1br.)a

a. Looping until 1 taken control transfer instruction is encoun-
tered simulates 36.2 instructions on average for the SPEC95
benchmarks.

195

result tests to determine whether the simulated register windows must be spilled or restored

respectively. The go benchmark makes many function calls to short functions, which begin with a

SAVE instruction and end with a RESTORE instruction, and has a deep call stack that results in

frequent register window spills and restores. Hence the action sequences generated for go contain

a higher percentage of dynamic result tests that fail than in other benchmarks. More frequent and

less predictable result tests causes more memoization misses (i.e. increase ϕ), causing the slow

simulator to run more often and memoize more data.

The looping simulator can be further optimized by reducing the number of arguments to

main , with little or no impact on the number of index entries, actions, dynamic results, or run-

time static data. The idea is to only exit from main if nPC equals PC+4. Then drop npc from the

list of arguments to main , since it can be recomputed from the value of pc by adding 4.

FIGURE 6.9: Looping simulator cache size. This chart shows the amount of data memoized
for each benchmark in the base, looping, and optimized looping simulators.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s
13

0.
li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
plu

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wav
e5

M
B

yt
es

base

looping

looping (opt.)

196

The optimized looping simulator runs at approximately the same speed as the un-optimized

looping simulator. The difference is in memoization cache consumption (figure 6.9). The opti-

mized looping simulator memoizes 17% less data than the un-optimized lopping simulator on

average. The reason is twofold: 1) Index entries are smaller by 4 bytes each—the size of the token

stream value npc —and 2) less work is performed by the slow simulator. The optimized simulator

had 6% fewer memoization misses than the un-optimized simulator—1.2% fewer memoization

misses per fast-forwarded index entry (i.e., smaller ϕ)—resulting in 25% percent less slow simu-

lation work (i.e., 25% smaller Wslow).

By simulating even more instructions per call to main , the proportion of time spent looking

for index entries can be reduced further. But there is a limit to how much performance can be

gained this way, since index lookup only accounts for part of the overall simulation time. Increas-

ing the instructions simulated per call to main also increases the number of dynamic result tests

per index entry, increasing the number of memoization misses per index and the average length of

action sequences that must be rolled back and replayed by the slow simulator in recovery mode.

Figure 6.10 shows how overall performance is affected by increasing the number of instruc-

tions simulated per call to main . At first, performance improves due to fewer index entries being

TABLE 6.5: Looping simulator configuration (optimized)

Simulator Args-to-main Combining Inlining Insts./main

looping (opt.) pc no no ~36.2 (1br.)

197

TABLE 6.6: Simulator configurations with increased looping.

Simulator Args-to-main Combining Inlining Insts./main

looping w/ 1br. pc, cwp, cansave, canrestore yes yes ~34 (1br.)

looping w/ 3br. pc, cwp, cansave, canrestore yes yes ~102 (3br.)

looping w/ 5br. pc, cwp, cansave, canrestore yes yes ~171 (5br.)

looping w/ 10br. pc, cwp, cansave, canrestore yes yes ~342 (10br.)

looping w/ 15br. pc, cwp, cansave, canrestore yes yes ~512 (15br.)

looping w/ 20br. pc, cwp, cansave, canrestore yes yes ~683 (20br.)

FIGURE 6.10: Performance vs. increased looping. This chart shows how memoizing simula-
tor performance changes as looping—and the average number of dynamic result values tested
per index entry—increases.

50

70

90

110

130

150

170

190

210

230

250

0 5 10 15 20 25 30 35

Result tests per call to main

S
lo

w
do

w
n

vs
. h

os
t e

xe
cu

tio
n

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

198

generated and replayed, but index lookup is only part of the execution, so there is a limit to how

much the performance can improve. Increasing the number of instructions simulated per call to

main increases the amount of memoized data, and this affects performance in two ways: As a the

simulator memoizes more data, but before it overflows the memoization cache, performance

degrades slowly, because less of the working set of memoized data fits in the host processor’s data

cache. When a simulation overflows the memoization cache (i.e., memoizes more than 256

MBytes of data) performance drops sharply. Some benchmarks memoize more data than others,

so their slowdown spikes upward earlier than those benchmarks that memoize less data.

FIGURE 6.11: Cache size vs. increased looping. This chart shows the amount of data allo-
cated in the memoization cache as looping—and the average number of dynamic result tests
per index entry—increases. Note that simulations were run with a 256 MByte memoization
cache. When the cache is full, it is cleared and new data is allocated into the empty cache.

1

10

100

1000

10000

100000

1000000

0 5 10 15 20 25 30 35

Result tests per call to main

M
B

yt
es

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

199

Figure 6.11 shows how the amount of memoized data increases with increased looping. A

simulator’s memoized data increases exponentially until it overflows the cache. When the

memoization cache overflows, the amount of memoized data increases dramatically, forming a

hump in the graph of cache usage for benchmarks that exceed the 256 MByte cache size.

6.3.3. Changing the Proportion of Dynamic Code

The proportion of dynamic code in a simulator can be changed by changing the set of argu-

ments passed to main . The base simulator passes pc and npc as arguments to main , making the

decoding of target instructions run-time static. One option would be to also pass cwp (the current

window pointer), cansave , and canrestore as arguments to main . This is a simple change

that makes the handling of simulated register windows run-time static, but increases the size of an

index entry and may increase the number of index entries in the cache. Figure 6.12 shows how the

base simulator is modified to implement this option.

TABLE 6.7: Simulator configurations for run-time static windows experiments.

Simulator Args-to-main Combining Inlining Insts./main

base pc, npc no no 1

base + cwp pc, npc, cwp, cansave, canrestore no no 1

looping (opt.) pc no no ~34.2 (1br.)

looping + cwp pc, cwp, cansave, canrestore no no ~34.2 (1br.)

200

Figure 6.13 shows how simulator performances changes with these added arguments.

Figure 6.14 shows the increase in the amount of data memoized.

Adding arguments to the base simulator hurts its performance. The base simulator spends a

significant fraction of its execution time looking up index entries, so increasing the size of each

index entry further increases the cost of index lookup. The amount of memoized data is also much

greater, because each index entry consumes more space and more index entries are generated.

There are more index entries because it is less likely that the augmented arguments will match an

existing index entry (i.e., lower probability θ and higher probability ϕ). The increase in memoized

fun initialize()
{
 R4(14,system?start_sp);
 return (system?start_pc, system?start_pc + 4,

 0b0?ext(5), (NWINDOWS-2)?cvt(cwp_t), 0b0?ext(5));
}

val init = initialize();

fun main(pc, npc, cwp, cansave, canrestore)
{
 PC = pc; nPC = npc; CWP = cwp;
 CANSAVE = cansave; CANRESTORE = canrestore;

 nPC2 = nPC + 4; // default next nPC
 PC?exec(); // execute instruction

 init = (nPC, nPC2, CWP, CANSAVE, CANRESTORE);
}

FIGURE 6.12: Run-time static register window source.

201

FIGURE 6.13: Performance with rt-stat windows. This chart shows the effect of adding
cwp, cansave , and canrestore parameters to main on the performance of both the base
and optimized looping simulators. This is an average across all SPEC95 benchmarks. Each
simulator design is run without memoization (SlowSim) and with memoization (FastSim).

112
131

114 115

296

380

148 139

0

50

100

150

200

250

300

350

400

base base + cw p looping (opt.) looping + cw p

S
lo

w
do

w
n

vs
. h

os
t e

xe
cu

tio
n

Slow Sim

Fas tSim

FIGURE 6.14: Cache size w/ rt-stat windows. this chart shows the effect of adding cwp,
cansave , and canrestore parameters to main on the amount of data memoized by both
the base and optimized looping simulators.

409082 4149

0

2

4

6

8

10

12

14

16

18

20

09
9.g

o

12
4.

m
88

ks
im

12
6.g

cc

12
9.c

om
pr

es
s

13
0.l

i

13
2.i

jpe
g

13
4.p

er
l

14
7.v

or
tex

10
1.t

om
ca

tv

10
2.s

wim

10
3.s

u2
co

r

10
4.h

yd
ro

2d

10
7.m

gr
id

11
0.a

pp
lu

12
5.t

ur
b3

d

14
1.a

ps
i

14
5.f

pp
pp

14
6.w

av
e5

M
B

yt
es

base

base + cwp

looping (opt.)

looping + cwp

202

data also slows simulator performance by making the host processor’s data cache less effective.

All these effects overwhelm any benefits gained from executing less dynamic simulator code.

Adding arguments to the optimized looping simulator (from section 6.3.2) hurts performance

when not using memoization, but improves performance with memoization. When not memoiz-

ing, adding arguments to main just adds code to copy the arguments to global variables at the

start of main without skipping any code. When memoization is used, part of the code that

accesses simulated register windows is skipped over because it is run-time static. Since several

instructions are simulated per call to main , the fraction of simulation time spent looking up index

entries and the fraction of memoization cache space consumed by index entries is much less than

in the base simulator. So adding arguments to main in the looping simulator results in an overall

improvement in memoized simulator performance.

6.3.4. Combining Run-Time Static Values

One way to reduce the amount of run-time static data written into the memoization cache is to

combine two or more run-time static values into a single run-time static value before using them

in dynamic code. When this kind of optimization is possible, it reduces the amount of data written

into and read from the memoization cache, and may improve the execution rate of both the slow

and fast simulators. It does not affect the number of index entries, actions, or dynamic results allo-

cated or replayed, just the amount of cached run-time static data.

203

Many instructions in the SPARC ISA read and write integer registers arranged in register win-

dows. In the base simulator, these register windows are modeled as a two dimensional array,

where the first dimension is the window number and the second dimension is the register number

within a window. If the base simulator is modified to make the current window pointer (CWP)

run-time static (as in section 6.3.3) then both the window number and register number are run-

time static and are used in a dynamic expression to look up the desired register. These two run-

time static values can be combined by modeling register windows as a one-dimensional array and

computing the array index from the window number and register number before performing the

array lookup. Figure 6.15 shows how the simulator code is changed to combine the window num-

ber and register number.

In experiments using the simulators in table 6.8, combining had no effect on the amount of

data memoized. Combining, as implemented in these experiments, does reduce the number of

val register_windows = array(128) { 0?ext(64) };

fun Rx(i0) { // get 64-bit register value
val ii = i0?ext(32);
if(ii == 0) return 0?ext(64);
else if(ii < 8) return global_registers[ii-1];
else {

val win = (CWP?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); return register_windows[16*win+ii];

}
}

FIGURE 6.15: Combining Run-Time Static Values. This code fragment shows how the array
register_windows is redefined and the function Rx (used to read integer registers) is
rewritten to combine the window number and register number before using them to lookup a
register. The function to write an integer register is modified in a similar way.

204

run-time static data values being memoized, but alignment restrictions within the memoization

cache hide any space savings from storing less data. FastSim stores data into the memoization

cache at word (4 byte) aligned addresses. Hence, the combined register index consumes the same

4 bytes as the 1 byte window number and 1 byte register number do separately.

If more run-time static data values that are used in dynamic expressions could be combined

into a single value, then less cache space would be consumed. Unfortunately there are few oppor-

tunities for this kind of combining in the base simulator or its variations.

6.3.5. Removing Actions Via Function Inlining

If a function that returns a dynamic value is called from more than one call site, then it gener-

ates an action into the memoization cache just after it returns. This action specifies what dynamic

code (normally the code that copies the function call’s return value) to replay following the called

function. If a function is only called from one call site, then an action need not be generated when

the function returns, since the function can only return to one place.

TABLE 6.8: Simulator configurations for value combining experiments.

Simulator Args-to-main Combining Inlining Insts./main

base + cwpa pc, npc, cwp, cansave, canrestore no no 1

combining pc, npc, cwp, cansave, canrestore yes no 1

looping + cwp pc, cwp, cansave, canrestore no no ~34.2 (1br.)

looping + combining pc, cwp, cansave, canrestore yes no ~34.2 (1br.)

a. This and the “looping + cwp” simulators are the same as in section 6.3.3.

205

Inlining a function has the effect of making a copy of the function that is only called from one

call site. If the function returns a dynamic value, it does not need an extra action to identify its

return site. This reduces the number of actions in an action sequence, if an action is being gener-

ated after the function call anyway to distinguish between other control flow branches in the

dynamic control flow graph. Unfortunately, function inlining also increases code size, and too

great an increase in code size may degrade simulator performance.

In the simple simulator in Appendix B, the function get_src2 is used to get the second

operand for most integer arithmetic instructions. The dynamic control flow graph following most

calls to get_src2 necessitates an action number in addition to the action number identifying the

function’s return site. Hence, inlining get_src2 eliminates one action from the action

sequences generated to simulate most integer arithmetic instructions. In Facile, all calls to a func-

tion can be inlined simply by inserting the keyword inline before the function’s definition.

TABLE 6.9: Simulator configurations for experiments with inlining.

Simulator Args-to-main Combining Inlining Insts./main

base pc, npc no no 1

base + inlining pc, npc no yes 1

looping (opt.) pc no no ~34.2 (1br.)

looping + inlining pc no yes ~34.2 (1br.)

206

Figure 6.16 shows how function inlining affects simulator performance. When not using

memoization, inlining degraded the performance of both the base and looping simulators. This is

because of increased code size and because the Facile compiler does not inline functions effi-

ciently. With memoization, inlining the selected function calls improves overall performance,

despite the slowdown from increased code size and inefficient inlining. The base simulator

replays 8.4% fewer actions per index entry with inlining, and the looping simulator replays 14.9%

fewer actions per index entry. This results in 3.6% and 8.3% reductions in the amount of data

memoized by the base and looping simulators respectively. Note that the number of index entries,

number of dynamic result tests, and the amount of cached run-time static data used in dynamic

expressions are all unchanged. Only the number of actions is reduced, and more simulation is per-

FIGURE 6.16: Performance with function inlining. This chart shows the effect of select
function inlining on the performance of both the base and optimized looping simulators. This
is an average across all SPEC95 benchmarks. Each simulator design is run without memoiza-
tion (SlowSim) and with memoization (FastSim).

112
128

120
129

296 294

157
143

0

50

100

150

200

250

300

350

base base + inlining looping (opt) looping + inlining

S
lo

w
do

w
n

vs
. h

os
t e

xe
cu

tio
n

SlowSim

FastSim

207

formed per action. The increased performance from generating fewer actions in slow simulation

and from reading and interpreting fewer actions in fast simulation outweighs the slowdown from

increased code size. Hence, overall simulator performance was improved by inlining.

208

CHAPTER VII: Future Optimizations

Several optimizations were not implemented in the current version of the Facile compiler and

run-time system, either because of limited time or because their usefulness was not realized until

later. Run-time code generation (RTCG) is an obvious optimization to apply to fast-forwarding

simulators, since fast-forwarding works by interpreting actions stored in the memoization cache.

Generating native machine instructions directly into the memoization cache in place of interpreted

action numbers would improve performance the same way compiling code improves performance

over interpreting it. Run-time code generation was not implemented in the current system because

of its complexity, but two possible implementations are discussed in section 7.1.

Other opportunities for optimization were discovered after FastSim v.2 was mostly imple-

mented. Some of these optimizations and the analyses they rely on were added to the implementa-

tion because performance was too poor without them. For example, initially all function calls

were inlined. Selective inlining improved performance, but required enhancing several analyses

(e.g., control-flow and binding-time analysis) to work inter-procedurally. Optimizations that were

implemented in FastSim v.2 are discussed in Chapter V. Other optimizations and analyses were

not added to FastSim v.2. These future optimization are discussed here, in section 7.2. They

include partial index verification, live variable analysis, and optimizing pattern cases in switch

statements.

209

7.1. Run-Time Code Generation (RTCG)

In the current implementation of FastSim, the fast version of a memoizing simulator interprets

sequences of action numbers stored in the memoization cache. Fast simulation could be optimized

further by compiling dynamic code directly into the memoization cache at run-time, and execut-

ing that code instead of interpreting action numbers. With RTCG there would be no fixed fast sim-

ulator function, since fast simulation would execute run-time generated code stored in the

memoization cache. This eliminates the overhead of reading action numbers and executing a

switch statement to select dynamic basic block code.

RTCG is not currently implemented in the FastSim v.2 simulation system, but I have consid-

ered two possible implementations that could be used. Section 7.1.1 describes a simple technique

for generating run-time code templates and stringing them together in the memoization cache.

Code templates for each dynamic basic block are written directly into the memoization cache in

place of the action numbers and run-time static data records used in the current implementation.

Section 7.1.2 describes a more complex run-time code generator that optimizes register allocation

across several dynamic basic blocks to generate more efficient and more compact run-time code.

7.1.1. Implementation 1: Basic Block Code Templates

Consel and Nöel described a way to generate code templates for RTCG, which could be used

in FastSim [19]. The basic idea is to generate dynamic basic blocks as C code, compile the C code

into native host instructions, then extract compiled basic block code from the object file. Consel

and Nöel used tree grammars to encode a conservative approximation of the dynamic control flow

210

graph of a program. The C code they generate is constructed using these tree grammars, so its

control flow graph is also a conservative approximation of the source program’s dynamic control

flow graph. In this way, a C compiler can perform optimizations between basic block templates

(e.g., inter-block register allocation and instruction scheduling) at compile time. At run-time,

compiled code templates are simply strung together and populated with run-time static data to

produce run-time specialized code.

FastSim v.2 could be modified to use a variation of Consel and Nöel’s technique with relative

ease. The Facile compiler already generates C code for dynamic basic blocks as individual cases

in a switch statement within an outer loop. With minor modifications, similar C code can be com-

piled and turned into code templates for run-time code generation. In this implementation, com-

piled C code templates contain the correct instructions to access dynamic variables and call

external functions, with efficient register allocation and instruction scheduling within each block.

A simple analysis of the compiled code and symbol table identifies the instructions corresponding

to each dynamic basic block—extracted to form a code template—and the address relocations that

are needed when the template is copied into the memoization cache. More analysis would be

needed to identify holes in the code templates where run-time static data is inserted. These holes

are filled by the slow simulator, when a template is copied into the memoization cache and run-

time static data becomes available.

With C code for each basic block being put in a separate case in a switch statement in a loop,

the C compiler cannot allocate registers, schedule instructions, or perform other optimizations

211

between code templates. Consel and Nöel allowed the C compiler to optimize across some block

boundaries by generating C code that implements a conservative approximation of a subject pro-

gram’s dynamic control flow graph. Figure 7.1 demonstrates how this is accomplished. A C com-

piler can use the declarations of y and l in template t1, and the result computed by t2 or t3 can be

left in a register and used by template t4.

A similar technique can be used for RTCG in FastSim, but there is an added limitation. Typi-

cal RTCG systems generate specialized code for an entire function, but RTCG for a fast-forward-

ing simulator only generates code for the control flow paths that are executed by the slow

simulator. When fast simulation tests a dynamic result value, a memoization miss may occur,

because code for the current value is not yet generated. Run-timed generated code must flush data

int f(int x, int y) {
int l ;
l = 2 * x;
if(l == 2)

l = l + y;
else l = y + x;
return l ;

}

int f_t(int y) {
int l;
switch(unknwon) {
 case 1:

l = [h1] + y;
break;

 case 2:
l = y + [h2];
break;

}
return l;

} t4

t3

t1

t2

FIGURE 7.1: C code for basic block templates. This subject code and template source is
taken from examples in [19]. Dynamic subject code is underlined; Other subject code is either
static or run-time static. Four code templates are generated. This template source is compiled
and binary code templates are extracted from the object file. h1 and h2 are holes where run-
time static data can be inserted.

Subject Code Generated Template Source

212

from host registers back to memory before miss recovery can commence. Hence, the C code gen-

erated for templates cannot allow any register allocation assumptions to persist beyond the end of

a template that tests a dynamic result. One way to accomplish this is to generate C code for these

templates that ends in a return statement. Since the fast simulator stores all its values in global

variables, a return will result in all global variable values being flushed to memory.

At run-time, instead of writing action numbers, code templates for a dynamic basic block are

copied to the memoization cache just before the first statement of the block is executed by the

slow simulator. In addition to copying template code, relocations are applied to fix up any variable

or function addresses used by the template. Then, as run-time static values that are used in

dynamic expressions become available, the holes in the code template are filled in by encoding

computed values as literal data into the template’s instructions.

Index entries and dynamic result data would still be stored as data in the memoization cache,

with a function call in the run-time generated code to verify an index or result value respectively.

As in the current (non-RTCG) implementation, these functions verify that the current dynamic

data matches data already in the memoization cache, then jump to the next sequence of run-time

generated code. To allow recovery from memoization misses, these functions must also record the

sequence of dynamic values tested since the last index entry was encountered. If there is a

memoization miss, the sequence of dynamic values already tested by memoized code is needed to

execute the slow simulator in recovery mode until it catches up to the failed fast simulation.

213

7.1.2. Implementation 2: Optimization Across Basic Blocks

The RTCG implementation discussed in the previous section uses an existing compiler to gen-

erate compiled code templates, but misses many opportunities to optimize between code tem-

plates. A more complex implementation involves compiling code at run-time from an

intermediate representation of the dynamic Facile code. At run-time, intermediate code for several

dynamic basic blocks is strung together, then converted to native machine instructions by the sim-

ulator. Register allocation and simple optimizations are applied to dynamic sequences of opera-

tions from several basic blocks, not just block sequences known at compile time, so more compact

and efficient run-time code can be generated.

To make the run-time compiler as efficient as possible, most compilation decisions should be

made by the Facile compiler before a simulator is executed. For example, specific SPARC instruc-

tions can be selected by the Facile compiler for all dynamic operations in a simulator other than

loading and storing values of Facile variables. The slow simulator would emit these pre-selected

instructions, plus extra instructions to load and store variable values as directed by a run-time reg-

ister allocator. This register allocator is responsible for remembering which variables are already

loaded into registers, and emitting extra instructions to store modified values and load values that

are not already in registers. Registers to retain intermediate expression results can be allocated by

the Facile compiler at compile-time, with the run-time register allocator designed to work around

these previous allocation decisions. Alternatively, registers for intermediate values could be allo-

cated at run-time, increasing the cost of run-time compilation but benefiting from a more uniform

register allocation.

214

Consider a simulator that simulates several target instructions in each call to the Facile main

function. If a simulated target instruction computes a value and stores it in a Facile variable and

the next simulated target instruction reads that Facile variable, then run-time generated code may

not have to load that variable to simulate the second target instruction. Similarly, if a variable is

modified more than once, the run-time generated code may eliminate all but the last store to save

the variable’s final value. An ideal RTCG implementation would generate code that loads each

simulated register that is read by a single call to main once, simulate each target instruction with

a single host instruction, then store modified simulated registers with one instruction each.

The advantage of performing register allocation at run-time is that variables used in more than

one dynamic basic block can be left in registers, eliminating some loads, stores, and address cal-

culations from the run-time generated code. This differs from the inter-block register allocation

performed by a C compiler described in the previous section, because the particular linear

sequence of dynamic basic blocks is known—i.e. all run-time static control flow decisions have

been made. The disadvantages are slower generation of run-time code and a more complex imple-

mentation.

With FastSim’s memoization cache organization, all variables stored in registers have to be

flushed out to memory before reaching the next memoized index entry (i.e., the next call to

main). No register can remain allocated following an index entry, and variable values must be

loaded from memory before they can be used. This is because the code that precedes an index

entry changes dynamically every time the slow simulator matches the index entry’s data, adds a

215

jump to the code associated with the matched entry, and transitions to fast simulation. The register

allocation map prior to an index entry cannot be determined, so all registers are flushed to mem-

ory and new register allocations made as needed.

A similar problem occurs when dynamic results are tested against previously cached results to

make them run-time static. In this case, the register allocation map prior to the dynamic test is

known, but it may not be possible to store modified variable values back to memory after a

memoization miss. Normally, when not testing a dynamic result, modified values are written back

to memory in subsequent run-time generated code. But there may not be any more run-time gen-

erated code following a dynamic result test, so another mechanism is needed. One alternative is to

generate extra run-time code to save variable values in the case of a memoization miss, but this

would generate extra code into the memoization cache for every instance of a dynamic result test.

Another alternative is to flush modified variable values back to memory before the dynamic test.

Subsequent run-time generated code could still use loaded register values without having to

reload them, but extra stores may be generated if a modified variable is modified again before the

next index entry.

Other optimizations that could be performed by run-time code generation include instruction

scheduling and combining operations from separate dynamic basic blocks into single host instruc-

tions. The exact linear sequence of dynamic basic blocks is known to the run-time code generator,

so a run-time instruction scheduler could schedule instructions better than any compile-time code

generator. Some operations in separate dynamic basic blocks that are not combined because of

216

unknown control-flow at compile-time, could be combined at run-time. Combining operations

from separate dynamic blocks at run-time could reduce the amount of code in the memoization

cache by generating two or more operations as a single host instruction.

An ideal RTCG system, applied to a simulator that only models the functional behavior of an

ISA, would generate one host instruction for each target instruction plus a few extra loads and

stores to access simulated registers stored in simulator variables. Applied to a simulator with addi-

tional behavior, e.g., modeling micro-architecture or collecting execution statistics, instructions

for additional behavior would be intermixed (or even combined) with re-compiled target instruc-

tions. This is similar to existing simulators that use dynamic cross-compilation (e.g., Shade [17]),

but allows greater flexibility in the kinds of simulation: Any simulator that can be written in Facile

could be optimized with memoization and RTCG to behave like a dynamic cross-compiling simu-

lator.

7.2. Further Optimization

The experience gained implementing and analyzing the memoizing simulators in Chapter VI

revealed several compiler optimizations that could improve performance of memoizing simulators

in Fastsim v.2. These optimizations were not implemented in the current version of the Facile

compiler to simplify its implementation or because their importance was discovered too late.

One optimization is for the fast simulator to only verify the parts of an index entry that may

contain dynamic data. Another optimization is to avoid generating extra statements to copy data

217

from run-time static variables to their dynamic versions, when the variable is not live. A third

optimization is to generate more efficient code to decode instructions. Facile switch statements

are translated into C code that is reasonably efficient, but a couple optimizations could further

improve their performance.

7.2.1. Partial Index Verification

When the fast simulator reaches the end of the action sequence associated with an index entry,

it looks for the next index entry, so it can continue replaying memoized simulation. The fast simu-

lator first compares the current init value against the index entries listed as known successors to

the completed action sequence. If none of these index entries matches init , then the fast simula-

tor looks in the index for the entire memoization cache, or if this fails, it switches back to slow

simulation. Either way, the new matching index entry is added to the list of known successors for

the completed action sequence. In Chapter VI, verifying index entries in the base and out-of-order

simulators accounted for 28.1% and 1.2% of fast simulator execution time respectively.

In the current implementation, the entire value of init is compared against the entire value

stored in each known successor. But the only parts of init that can miss-match a known succes-

sor are the parts that are set with dynamic data. Run-time static data stored in init will always

match the corresponding parts of the index entries listed as known successors. Hence, index veri-

fication in the fast simulator can be optimized by only comparing the dynamic parts of init to

the corresponding parts of the index entries listed as known successors. Note that index lookup in

218

the full memoization cache index must still compare the entire value of init , since the context

that generated these index entries is unknown.

To implement this optimization, the Facile compiler would generate a function to compare

only the dynamic parts of init to an index entry. Then FastSim’s run-time library would use this

function—instead of its generic index compare function (i.e., memcmp)—to look in the list of

known successors. Only if init ’s current value is not found among the known successors, would

the run-time library compute a hash value and use the generic compare function to find a match-

ing entry in the index hash bucket.

7.2.2. Live Variable Analysis

Extra statements are generated when the fast-forwarding optimization is applied. Many of

these extra statements copy run-time static variable values to the dynamic version of the same

variables. Copying occurs whenever a control flow path with run-time static variables merges

with another control flow path, where the same variables are dynamic. These extra statements are

part of the dynamic code in a simulator, so they appear in both the slow and fast simulator ver-

sions. These statements also use run-time static data in dynamic code, so the copied data is also

stored in the memoization cache. But these statements are sometimes unnecessary, because the

variable’s value at that point is never used by subsequent code. A more efficient implementation

would not bother copying variables if their values are never used.

219

A variable v is considered live at some point in a program p, if v is read before it is written

along some control flow path reachable from p. The set of live variables at every point in a pro-

gram can be computed with a fixed-point iteration algorithm, similar to the algorithms used for

BTA and to construct a dynamic control flow graph (see Chapter V, sections 5.2.2.2 and 5.2.4.1

respectively). The difference is that live variable analysis must move backwards through the con-

trol flow graph, from later statements to earlier statements. Each variable that is read is added to

the set of live variables in earlier code, and each variable that is written is subtracted from the set

of live variables in earlier code. Extra statements to copy run-time static variables to their dynamic

versions must still be generated, but only if the variable being copied is live.

In the current implementation, non-live variables are frequently copied by extra statements.

One primary example involves global variables that are assigned run-time static values at the start

of main and remain run-time static throughout the entire main function. When main returns,

these variables become dynamic, so extra statements are generated to copy all run-time static data

in global variables into the corresponding dynamic variables. Most of this copying is unnecessary,

since the next call to main writes new run-time static data into the global variables without read-

ing them first. With live variable analysis, extra statements like these could be eliminated from the

slow and fast simulators, reducing the amount of dynamic code and the amount of run-time static

data stored in the memoization cache.

220

7.2.3. Optimizing Instruction Decode

Instruction decoding is handled by Facile’s switch statement or a collection of semantic (sem)

declarations that are interpreted as cases in an implicit switch statement. The Facile compiler

transforms pattern cases in a Facile switch statement or instruction/pattern names in sem declara-

tions into a collection of nested if and switch statements in C. This transformation closely follows

the structure of the patterns given in the pattern cases. It tests conditions on token fields in the

order the conditions are listed in the source pattern expressions, generating separate tests for each

condition in an AND-list. Two ways to optimize the transformed switch would be 1) to reorder the

conditions in all the tested AND-lists to perform the most important tests first, and 2) to combine

some conditions in an AND-list into a single test.

A possible strategy for reordering conditions is to find a test that applies to the largest number

of cases in the pattern case list, and perform that test first. For example, every SPARC instruction

must test the op field (bits 30:31), so generate a switch statement to test this field first. Once that

test is performed, and conditions on the op field have been removed from the AND-list of every

pattern case, find the next largest number of cases that share the same test, and so on. In my

SPARC simulator implementations, I have been careful to arrange the conditions in pattern

expressions to produce this optimized ordering. The Facile compiler could be made to reorder

conditions this way automatically, in case the programmer wrote less optimal code.

Often, several pattern cases contain conditions on the same subset of token fields. It may be

more efficient to test the combined values of all these fields simultaneously, with a single test,

221

than to generate a separate nested test for each field. For example, a single switch could be used to

test the op2 field (bits 22:24) and the cond field (bits 25:28) simultaneously, when decoding

SPARC branch instructions. Simply extract the op2 and cond fields and concatenate them

together (or just extract bits 22:28 to get both fields at once) and switch on their combined value.

This is a common optimization performed in hand written C code to decode binary instructions,

but is not currently performed by the Facile compiler.

A difficulty with combining field tests is that the set of fields tested for each instruction may

be different. E.g., branches test the op2 field (bits 22:24) but many other instructions test the op3

field (bits 19:24) instead. One solution is for the compiler to combine field tests only if some sub-

set of conditions on fields is the same in all listed pattern cases. This is unlikely to occur in the

first test performed on a token stream, but may occur in nested tests that distinguish between sim-

ilar instruction types. For example, to decode a SPARC instruction the Facile compiler may first

generate a C switch statement to test the op field. Then in the op==0 case—mostly branch

instructions—it can test the combined values of the op2 and cond fields to determine exactly

which branch instruction should be simulated.

222

CHAPTER VIII: Conclusion

This work has advanced the implementation of instruction-level micro-architectural simula-

tors with innovative techniques to improve simulator performance. My primary contribution is a

form of memoization that accelerates the execution of complex micro-architecture simulators.

This optimization—called fast-forwarding—produces an order-of-magnitude speedup in the sim-

ulation of out-of-order processors.

The next section (section 8.1) summarizes each of the contributions made in this dissertation.

While much work has gone into this research, there are still many opportunities for further

research. Section 8.2 discusses potential future work and how it relates to what I have already

done.

8.1. Contributions

The contributions in this dissertation include:

• A technique, called fast-forwarding, for memoizing an out-of-order processor simulator to

speed its execution.

• A technique—called speculative direct execution—for using direct execution in a speculative

out-of-order processor simulator to speed its execution.

223

• A special purpose programming language design that both simplifies micro-architecture simu-

lator implementation and simplifies the automatic translation and optimization of these simu-

lators to use memoization.

• Compiler techniques for generating memoizing simulators.

• An explanation of the performance factors in a memoizing simulator, with experimental result

to illustrate how simulator design changes affect performance.

• Descriptions of how run-time code generation could be implemented in future versions of my

memoizing simulation system.

A prototype simulator—FastSim v.1—demonstrated that memoization is very effective at

speeding the simulation of complex micro-architecture, but also that fast-forwarding is a difficult

optimization to implement by hand. To overcome the complexity of implementing fast-forward-

ing, I developed a special purpose programming language and optimizing compiler that generates

fast-forwarding simulators automatically. The language—Facile—combines syntax for architec-

ture description with general program constructs for programming the rest of an instruction-level

micro-architecture simulator. A compiler analyzes Facile simulator code and transforms it into the

two cooperating simulator versions needed to implement fast-forwarding.

224

Facile extends previous work in architecture description languages to allow concise and flexi-

ble descriptions of instruction encodings, instruction semantics, and other architectural resources

(e.g., registers and memory). Ramsey and Fernandez’s New Jersey Machine Code Toolkit—upon

which Facile’s architecture description syntax is loosely based—could only describe the encoding

of binary instructions, and translate them to and from assembly language syntax. Facile describes

instruction semantics as well as instruction binary encodings, so Facile’s architecture descriptions

can be used to simulate target instructions. General programming language constructs in Facile—

e.g., functions, loops, and arrays—allow programmers to model arbitrarily complex micro-archi-

tectures, including processors with out-of-order execution pipelines.

In addition to supporting the implementation of a micro-architecture simulator, Facile also

simplifies the compiler analyses needed to produce a memoizing simulator. Analyses typically

used for partial evaluation enable the compiler to identify Facile simulator code that can be

skipped over by fast-forwarding, and to generate cooperating slow and fast versions of the simula-

tor. The two primary omissions are pointers and recursion. Neither are necessary for writing sim-

ulators. The absence of pointers simplifies alias analysis and allows the compiler to better analyze

a subject program’s data flow. The absence of recursion simplifies compiler analyses, but is

mainly needed to implement an efficient memoization miss recovery mechanism.

The very structure of a Facile simulator identifies the run-time static code and data, which is

skipped over by fast-forwarding, in a natural way. The main function in a Facile simulator is

called repeatedly by the FastSim simulation framework (i.e., by FastSim’s run-time library).

225

Arguments to main are assumed to be run-time static and all computation and data that depends

only on these arguments and other static data is also run-time static. Action sequences, describing

the residual dynamic computation (not skipped by fast-forwarding), are written into the memoiza-

tion cache by the slow simulator as it executes. The fast simulator replays these action sequences

and skips over run-time static code when main is called with the same arguments as some previ-

ous call.

Facile simulators are optimized using techniques from partial evaluation. Binding-time analy-

sis (BTA) is commonly used in off-line partial evaluators to determine which parts of a program

can be evaluated at compile time. The Facile compiler uses a new form of polyvarient BTA to

determine which parts of a simulator can be evaluated once at run-time, then skipped by subse-

quent execution. As in off-line partial evaluation, the Facile compiler uses annotations derived by

BTA to generate a residual (fast) version of the subject simulator that only contains dynamic code.

Unlike traditional partial evaluation, a slow version of the simulator that does not skip any simula-

tor code is also generated, to run first and generate action sequences that the fast simulator can

replay later.

To reduce the opportunity for programmer error, Facile is strongly typed. To reduce the size of

programs and ease the burden on programmers, the Facile compiler uses a polymorphic type

inference algorithm to typecheck Facile programs. Variable, parameter, and return types are

inferred by the compiler and do not have to be specified by a programmer. Facile’s type inference

algorithm extends the well-known type inference algorithm—algorithm W [47]—to allow opera-

226

tor overloading and user defined function overloading. Functions with the same name but differ-

ent types are allowed. Type inference finds all possible instantiations of overloaded operator and

function names that produce legal typings of a given piece of code.

Although function inlining is not necessary for miss recovery, it can improve memoized simu-

lator performance and is useful for compiling local function definitions from Facile into global

functions in C. C does not allow local function definitions—i.e., functions defined within the

scope of another function—but Facile does. All calls to local functions in Facile are inlined, and

the local function definitions are removed. When fast-forwarding, function calls that contain

dynamic code often increase the length of memoized action sequences, because an action number

is needed to identify the function’s return site. Inlining these functions eliminates some memoized

actions, saving space in the memoization cache and speeding up the execution of the fast simula-

tor. A programmer can specify which global functions to inline, potentially improving simulator

performance, but care must be taken not to inline too much or performance will suffer.

Experiments with various designs of a simple simulator illustrate the effects of techniques that

use memoization as a simulator optimization. Select inlining of functions reduced the number of

memoized actions, combining run-time static values before using them in dynamic expressions

reduced the number of values stored in into the memoization cache, and adding select parameters

to main increased the amount of code skipped by fast-forwarding. Unfortunately, inlining

increases code size and is difficult to predict its effect on compiler analyses, limited combining of

run-time static values does not necessarily reduce memoization cache size, and adding to main ’s

227

arguments may increase the cost of index verification more than reducing the cost of fast simula-

tor execution.

The most effective design change to the base simulator (in Appendix B) was to simulate more

target instructions per call to main . This reduced the number of index lookups in the slow simula-

tor and index verifies in the fast simulator. Index lookup and index verify were responsible for a

significant portion of the execution time in the memoized base simulator. Reducing them initially

improved simulator performance. But, simulating more instruction’s per call to main increases

the chance of a memoization miss and the cost of memoization miss recovery. It also increases the

amount of data in the memoization cache, which degrades data cache performance on the host and

slows down the entire simulation. A careful balance between fewer index entries and fewer

memoization miss opportunities achieved the best performance.

Fast-forwarding was proven very effective at speeding up the simulation of an out-of-order

pipeline. FastSim v.1 used a hand coded implementation of the fast-forwarding optimization to

achieve an order of magnitude speedup in out-of-order micro-architecture simulation over a con-

temporary out-of-order simulator, i.e., SimpleScalar. FastSim v.2 provides a flexible system for

writing instruction-level simulators—using Facile—and automatically compiles them to use fast-

forwarding. An out-of-order processor simulator written in Facile also achieved an order of mag-

nitude speedup with fast-forwarding over the same simulator without this optimization. However,

inefficiencies in the compiled Facile code made the simulator slower than the hand-coded simula-

tor—FastSim v.1 written in C—but it still out performs SimpleScalar.

228

8.2. Future Work

Potential future work related to this dissertation includes, but is not limited to improvements

in the Facile compiler and FastSim simulation system. The Facile compiler does a good job of

adding memoization to source simulators, but additional optimizations or further tuning of exist-

ing compiler stages could produce more efficient simulator code. One significant optimization

would be to use run-time code generation (RTCG) to generate specialized simulation code at run

time. Run-time generated code would execute faster than interpreting action sequences, in the

same way a compiled program executes faster than evaluating the same program through an inter-

preter. Section 8.2.1 discusses the potential for RTCG in FastSim.

Simulator fast-forwarding can be applied in other simulation environments, not just

FastSim v.2. FastSim only simulates target instructions from user level execution on a single pro-

cessor. Memoization has not yet been applied to simulators of parallel processor machines or

multi-threaded processor micro-architectures. Section 8.2.2 comments on memoizing simulators

of multi-processor/multi-threaded systems. Another direction is to combine memoized micro-

architecture simulation with full system simulation—like that in SimOS and Simix—to accelerate

simulation of both user-level and kernel instructions. Some issues of memoizing both user and

kernel instruction simulation are discussed in section 8.2.3.

8.2.1. Memoization With Run-Time Code Generation (RTCG)

Run-time code generation (RTCG) is an important topic of research for programming lan-

guage optimization. Instruction-level micro-architecture simulation is a domain in which RTCG

229

could be very effective. Instead of memoizing action numbers and interpreting them to replay pre-

vious simulation, specialized compiled code could be generated directly into the memoization

cache. Run-time generated code would run faster that an action sequence interpreter, just as a

compiled program runs faster than a program evaluated in an interpreter. Two possible implemen-

tations of RTCG in a memoizing simulator are discussed in Chapter VII section 7.1.

Instruction-level micro-architecture simulation is a good application for RTCG, because simu-

lation is far more often replayed by the fast simulator than executed without optimization by the

slow simulator. Hence, the cost of generating code at run-time can be amortized over many uses

of the generated code. Reasonably efficient run-time generated code would execute faster than

interpreting sequences of action numbers. Because the vast majority of simulation is replayed by

the fast simulator, RTCG could easily improve overall simulator performance.

RTCG for simulator fast-forwarding is different from traditional partial evaluation and RTCG

systems. Traditionally, specialized code is generated for an entire function either at compile time

(partial evaluation) or at run time (RTCG). Fast-forwarding only generates code (or action

sequences) for control flow paths in the simulator that actually execute. This is a necessary feature

to save space in the memoization cache, since many run-time specialized versions of a function

are generated. For example, the memoizing version of the simulator in Appendix B generates a

specialized version of the main function for each different target pc address simulated. But

actions are generated only for the control flow paths that actually execute.

230

8.2.2. Memoizing Multi-Processor Simulators

Multi-processor systems or multi-threaded processors would not memoize effectively in the

current FastSim v.2 simulation system. If a single processor with a single thread caches simulator

actions with index entries capable of N possible values, then a multi-processor system with P pro-

cessors would need memoization cache index entries chosen from NP possible values. There is no

particular reason to expect multiple processors to have strongly correlated run-time micro-archi-

tecture states—i.e., a pair of processors is unlikely to repeatedly execute the same pairs of instruc-

tions. So expect the number of index entries actually generated to be O(nP), where n is the

expected number of index entries generated when simulating a single processor. Even with just

two processors, the blowup in memoized data would make memoizing multi-processor simulation

in FastSim v.2 infeasible.

A better approach is to simulate each processor separately, but share the cache of memoized

actions. When separate processors are running the same program, they are likely to call the same

instructions with similar micro-architecture simulation results. By sharing a single memoization

cache, each processor could generate actions for its particular micro-architecture state, and all the

processors could share those actions to fast-forward their simulations. An implementation of this

approach may simulate each processor in a separate host thread (or find another way to interleave

the simulation of the modeled processors) with a memoization cache shared by all the threads.

Multi-threaded processor simulation shares the problems of multi-processor simulation, but

may not be as easy to fix. Multi-threaded micro-architectures execute multiple target instruction

231

sequences (i.e., from multiple threads) within the same processor. In this case, micro-architecture

behavior depends on the combination of more than one instruction sequence. The micro-architec-

ture behavior resulting from one thread cannot be computed without considering instructions in

other threads, likely generating too many index entries in the memoization cache. Other tech-

niques are needed to reduce the amount of memoized index and result data in this case.

8.2.3. Memoizing Full System Simulators

Today’s (micro-)architecture research is increasingly relying on benchmarks taken from real

world applications, such as commercial databases (e.g., Oracle or Informix) and commercial user

applications (e.g., Microsoft Word or Excel). Unlike simple micro-benchmarks and scientific

applications historically used for benchmarking, commercial application performance is strongly

affected by operating system and hardware device performance. Application performance may

depend on how the operating system provides access to protected resources (e.g., databases

accessing the disk), manages virtual memory, implements process scheduling, etc.

Just as memoization accelerates the simulation of a complex micro-architecture on user-level

instructions, it could also accelerate the simulation of system-level instructions. One problem is

dealing with changes to the instruction text in memory—e.g., resulting from mapping a new pro-

cess image, changes in the mapping of virtual to physical memory, etc. FastSim v.2 assumes that

instruction text cannot change, so the instruction text does not need to be included as part of the

run-time static state stored in memoization index entries.

232

FastSim has a special case for handling instructions in the jump table for dynamically linked

library calls. These instructions do change1, so special dynamic result tests are added to the

memoized action sequences verifying that instructions in the jump table have not changed. These

extra result tests are only needed when memoizing actions for instruction that can change, and do

not affect memoized performance when simulating instructions that cannot change (i.e., they are

in read-only memory). In a full system simulator, any instruction can change (e.g., after an exec

system call or from re-mapping virtual pages). A similar mechanism could be used to verify the

memoized results for all simulated instructions, but this would hurt memoized simulator perfor-

mance. A better mechanism would be to assume that instructions do not change, and invalidate the

entire memoization cache when something happens that violates this assumption.

8.2.4. Memoizing Other Micro-Architecture Structures

Memoization is an effective technique for accelerating the execution of an out-of-order micro-

architecture pipeline. How this optimization applies to other micro-architecture structures remains

largely unexplored. Other micro-architecture structures include instruction and data caches,

branch predictors, value prediction and instruction reuse buffers, etc. For many of these structures,

the set of data needed to encode a useful memoization index entry is large and it is impractical to

index a data cache simulator on the values stored in the data cache, or even on the addresses of

data in the data cache.

1. The first time a DLL function is called the jump table changes to jump directly to the
dynamically linked function code.

233

Although cache-like structures cannot be fully memoized, sometimes parts of their behavior

can be memoized. For example, a non-blocking data cache simulator can have complex timing

results. This behavior depends partly on whether an address is found in each level of cache, but

also on the pattern of address dependencies in a sequence of cache accesses independent of the

actual memory addresses. The effect of these address dependencies may be memoizable, even

though looking up an address in each level of cache would still be a dynamic action. Similarly, the

out-of-order simulators in Chapter III (FastSim v.1) and in Chapter VI section 6.1 memoize the

register renaming map—another buffer with many possible values—by only considering the

dependencies between instructions.

Memoization is not a universally applicable optimization for all micro-architecture simula-

tion, but it is effective at accelerating some costly types of micro-architecture simulation. Creative

simulator designs can memoize parts of seemingly intractable micro-architecture structures. The

important property to look for is where a small set of frequently repeated micro-architecture states

determines a significant part of simulated behavior. Anywhere this happens, there is an opportu-

nity for improved performance through memoization.

234

APPENDIX A: FACILE LANGUAGE REFERENCE

This appendix contains a complete reference for the Facile programming language as imple-

mented by the current Facile compiler. It describes Facile’s lexical specification, architecture

description features, types, and semantic statements and expressions. Note that Facile source files

are passed through the C pre-processor (cpp) before being given to the Facile compiler, so C pre-

processor directives (e.g., #define or #include) can be used in Facile source files.

TYPOGRAPHICAL CONVENTIONS. The following typographical conventions are used in this refer-

ence:

• fixed-width for Facile code, and for reserved words and punctuation in Facile grammar

descriptions.

• italic for non-terminals in Facile grammar descriptions.

• bold for terminal symbols that can have many values (e.g., name, int , and float).

Lexical Specification

Facile is case sensitive. Whitespace—e.g., space, tab, newline—is ignored except where it is

needed as a token separator. Comments are treated as white space and are either written as // to

the end of line, or between /* and */ delimiters. Comments written as /* … */ do not nest.

235

Below are lists of all the reserved words and all punctuation used in Facile:

Function, variable, type, and attribute names are any alpha-numeric words that are not already

defined as reserved words. Names are separated by whitespace or punctuation (except for the

wildcard mark ‘_’ which can be part of a name). They can not have a numeric digit as their first

character, although numeric digits can be used later in a name. I.e., names are of the form

.

Literal values are integers (in decimal, octal, hexadecimal, binary, or character form), floating

point constants, and strings. Decimal and octal constants are written as and

 respectively, and are interpreted as 32-bit unsigned values. Hexadecimal and binary

constants are written as and respectively, and are interpreted as

unsigned values with a bit-widths just large enough to encode all the digits appearing in the literal.

E.g., 0xFF represents the 8-bit wide integer with value 255, and 0b11001 is the 5-bit wide integer

array continue fun return val

as default if sem var

break else in struct where

by extern inline switch while

case fields pat token

const for queue type

() , . .. : ; = ? [] _ { }

$ % & && * + - / << >> ^ ^^ | || ~

< <= == != >= >

A-Za-z_[] A-Za-z_0-9[]*

1-9[] 0-9[]*

0 0-7[]*

0x 0-9A-Fa-f[]*
0b 01[]*

236

with value 25. Character literals are interpreted as 1-byte (8-bit wide) unsigned integers, and are

written as ' c, where c is any single character or escape sequence. Escape sequences are newline

\n , tab \t , double-quote \" , backslash \\ , or any ASCII character number written in hexadeci-

mal as (e.g., 'A , '\n , '\13x).

Floating point values are written as and are inter-

preted as 8-byte (64-bit) IEEE floating point values. There must be at least one digit before or

after the decimal point. The following are some possible floating point literals: 5.0 , .15 , -7. ,

and 1.0e-9 .

String literals are written as sequences of characters and character escapes between double-

quote delimiters ("). The recognized character escapes are newline \n , tab \t , double-quote \" ,

backslash \\ , and any ASCII character number written in hexadecimal as

. Strings cannot span multiple lines. To include a newline in a string lit-

eral, use the \n character escape.

Architecture Description

An instruction set architecture (ISA) is described using token, field, pattern, and semantic dec-

larations. Tokens define fixed width groupings of bits in an instruction stream (also called a token

stream) and fields are contiguous sequences of bits within a token. Patterns are sets of conditions

on the values stored in fields within a token stream and are used to distinguish the binary encod-

\ 0-9A-Fa-f[] 1,2{ }
x

-?
0-9[]* . 0-9[]*

Ee[] -+[]?
0-9[]+()

?

\ 0-9A-Fa-f[] 1,2{ }
x

237

ings of instructions in an ISA. Semantic declarations map pattern names to semantic code. This

semantic code usually simulates target instructions, but can be anything the programmer desires.

global_stmt → token name [int] fields_opt ; token declaration

fields_opt → fields field_dec_list field declarations
→

fields_dec_list → fields_dec_list , field_dec
→ field_dec

field_dec → name int : int bit range field
→ name int single bit field

A token declaration statement defines a token with the given name and bit width. The token

name is also defined as a field name that refers to the entire token. Additional fields are defined

using an optional fields clause following the token definition. Field names are give in a comma

separated list, and each name is associated with a single bit or a range of bits within the token.

Token bits are numbered in big-endian order starting at 0 up to the token width minus 1—i.e., bit

number 0 is the right most (least significant) bit and bit numbers increase to the left. For example,

in a 32 bit token, the first byte (8-bits) contains bits 24:31, the second byte contains bits (16:23),

etc.

global_stmt → pat pnames = pat_exp ; pattern name declaration

pnames → [pname_list]
→ name

pname_list → pname_list pname
→ pname

238

pname → name
→ _

A pat declaration associates mnemonic names with patterns that describe the binary encod-

ings of instructions. A pattern is represented as a collection of conditions on token fields in dis-

junctive normal form—i.e., an OR-list of AND-lists of conditions on token fields. Patterns are

constructed with pattern expressions, called pat_exp in the grammar.

pat_exp → pat_field op int single condition
→ pat_field in [pint_list] multiple condition
→ pat_exp || pat_exp OR two patterns
→ pat_exp && pat_exp AND two pattern
→ pat_exp $ pat_exp concatenate patterns
→ name named pattern

pat_field → name ? name (int_list) attributed field name
→ name field name

int_list → int_list , int
→ int

pint_list → pint_list pint
→ pint

pint → int .. int by int range of integers with step
→ int .. int range of integers with step 1
→ int single integer

A single condition compares a token field to a single integer value using one of the compari-

son operators <, <=, ==, != , >=, or >. The in expression generates multiple comparisons OR’ed

together that test if the token field is equal to any of the listed integers. A range of integers can be

abbreviated using an ellipsis (..) with an optional step argument. For example, the pattern

239

expression is the same as OR’ing together 16 single compari-

sons, testing if the field cond is equal to the values 0 through 15.

Fields in a pattern expression can be referenced as field names defined in a previous token

declaration, or as a sub-field of a named token field. The attribute operators ?bit and ?bits can

be used in pattern expressions to select a single bit or a range of bits from the named token field.

These attributes are describe more on page 259. When used in a pattern expression the ?bit

attribute operator can only be called with a literal integer operand.

The || operator concatenates the OR-lists of its two operands to generate a new pattern in

disjunctive normal form. && returns the cross product of its operands, concatenating every AND-

list from the left-hand side with ever AND-list from the right-hand side. The concatenation opera-

tor ($) behaves like the && operator, but $ also adds an offset to all the tokens in its right-hand

side operand so they follow the left-hand side tokens in a matched token stream.

If a pat declaration is used to define multiple pattern names, then each pattern name is

mapped to one element of the OR-list described by the pattern expression. The number of pattern

names being defined must be the same as the number of elements in the OR-list described by the

pattern expression, or it is an error. The wildcard pattern name (_) can be used to skip an element

of the OR-list without associating it to a name.

cond in [0x0 .. 0xf]

240

To allow multiple pattern names to be defined with more than one OR’ed AND-list, previ-

ously declared pattern names are not expanded until after the new pattern names, listed in the cur-

rent pat declaration, have been defined. Once defined, previously declared pattern names in the

pattern expression are expanded, and the patterns associated with each new pattern name are re-

normalized into disjunctive normal form.

global_stmt → sem snames scope where_opt ; instruction semantic declaration

snames → [name_list]
→ name

name_list → name_list name
→ name

scope → { stmt_list }

where_opt → where where_bind_list
→

where_bind_list → where_bind_list , where_bind
→ where_bind

where_bind → name = exp
→ name in [wexp_list]

wexp_list → wexp_list wexp
→ wexp

wexp → w_op
→ name
→ aexp

A sem declaration associates a list of previously declared pattern names with semantic code.

These are the pattern names that correspond to instructions in a target ISA. Other pattern names,

those without semantics, just describe miscellaneous conditions on token streams that do not nec-

241

essarily correspond to instructions. Note that token field names can be used in semantic code to

reference the value of bit fields within the instruction, with the same restrictions as in pattern

cases of a Facile switch statement (described on page 250).

Multiple pattern names (instructions) can be associated with semantic code using a single sem

declaration. Each pattern name is bound to a different copy of the semantic code. An optional

where clause parameterizes the semantic code, and these parameters can be bound to different

expressions for each instruction being defined. The list of expressions associated with each

parameter must have the same length as the list of instruction names being defined.

Although Facile usually forbids function pointers or pointers to operators, expressions in the

list of values for parameters in a where clause are an exception. Elements in these lists can be

Facile operators (w_op can be one of ! , %, &, &&, * , +, - , / , <<, >>, ̂ , ̂ ^ , | , || , ~, <, <=, ==,

!= , >=, >), function names, or an atomic expressions (aexp is defined on page 253). More com-

plex expressions can be listed, but must be enclosed in parentheses, as per the definition of aexp.

Facile Types

Facile is a strongly typed language with a type system inspired by the programming language

ML. As in ML, functions can be defined with incomplete—i.e., polymorphic—types. Polymor-

phic functions can be instantiated with different concrete types at different call sites. For example,

the identity function (takes a single argument and returns it) has type when

called with a floating-point argument, and type when applied to a 32-bit

float() float→

ulong() ulong→

242

unsigned integer1. Unlike ML, Facile also allows overloading. An overloaded function name can

be bound to two or more function bodies, so long as the overloaded versions can be distinguished

by the types of their parameters or return value.

Type expressions can optionally be associated with any semantic expression, variable declara-

tion, or function parameter or return value. Normally no types need to be specified, and the Facile

compiler infers complete type information from clues in the code. For example, literal constant 5

automatically has type ulong , and in the variable binding val x = 5 the variable x also has

type ulong . Occasionally though, Facile’s type inference algorithm needs some help determin-

ing types and disambiguating overloaded functions and operators. When disambiguation is

needed, types are specified by following an expression, declared variable name, or function

parameter with a colon (:) and the appropriate type expression.

bind_stmt → type type_param_list_opt name length_param_list_opt = type ;

type_param_list_opt→ type_param_list_opt type_param
→

length_param_list_opt→[lenght_param_list]
→

length_param_list → length_param_list , type_param
→ type_param

type_param → name
→ _

1. Facile has no explicit function types. Where function types are need in this reference they are written as
.arg-type-list() return-type→

243

A type declaration defines a new type name. The type name can optionally be parameterized

by one or more type parameters that stand for any type, or by length parameters that can get

instantiated with literal integer values. An example of a type declaration without any parameters

is , where the type cwp_t is defined to be the 5-bit unsigned

integer type. An example of a parametrized type name declaration is

, so the type would be the same as type

.

Length parameters are useful in types built from arrays (to specify the array length) or from

integer or floating point types (to specify the width). For example, to declare a type name for

arrays of unsigned integers, the following declaration could be used:

The wildcard name (_) can be used in place of a type or length parameter that is not actually

used in the type expression. For example, defines

my_queue so that it takes a length argument even though the length argument is not needed with

Facile’s built-in queue datatype.

type → type_arg_list name type_lengths_opt
→ type_arg_list array type_lengths_opt
→ type_arg_list queue
→ atype

type cwp_t = unsigned[5]

type T pair = (T,T) ulong pair

(ulong,ulong)

type uarray[dim,width] = unsigned[width] array[dim];

type T my_queue[_] = T queue

244

atype → name type_lengths_opt
→ struct { field_type_list_opt ellipsis_opt } structure type
→ (type , type_list) tuple type
→ (type)
→ _ wildcard (polymorphic)

type_arg_list → type_arg_list atype
→ atype

type_lengths_opt → [type_length_list]
→

type_length_list → type_length_list , type_length
→ type_length

type_length → name
→ int
→ _

Several base types are predefined: The types char , short , long , and llong are all signed

integer types with widths (in bits) 8, 16, 32, and 64 respectively. Types bool , uchar , ushort ,

ulong , and ullong are unsigned integers with widths (in bits) 1, 8, 16, 32, and 64 respectively.

Types float , double , and quad are IEEE floating point types with widths (in bits) 32, 64, and

128 respectively. Other predefined type names are void , string , stream (token streams),

system (the type of the system variable, described on page 254), cc (condition codes), and elf

(ELF file descriptors1).

Parameterized type names are instantiated by listing the type arguments before the parameter-

ized name and listing length arguments in square brackets after the type name. All type and length

parameters of a parameterized type must be given values when the type is instantiated. Array

1. ELF file descriptors are defined in the system C header file <libelf.h>.

245

types are specified with the array reserved word, given one type argument (the element type)

and one length argument (the array length). Multi-dimensional array types are written as arrays of

arrays. Facile also supports a double-ended dynamic queue datatype, that grows and shrinks as

needed at run-time. Queue types are specified using the queue reserved word preceded by one

type argument specifying the queue element type. The queue type does not have any length argu-

ments because a queue length can change at run-time.

There are two other predefined parameterized type names: The names signed and

unsigned stand for signed and unsigned integers respectively, and each takes one length argu-

ment specifying the width (in bits) of the integer. Signed integers must have width 8, 16, 32, or 64.

Unsigned integers can have any width from 1 to 64 inclusive.

The wildcard name (_) can be used to describe polymorphic types. The wildcard stands for an

unknown type that will be instantiated later by type inference. For example, unsigned[_] is an

unsigned type of any width.

atype → struct { field_type_list_opt ellipsis_opt } structure type
→ (type , type_list) tuple type

field_type_list_opt→ field_type_list_opt , field_type
→

field_type → name : type

type_list → type_list , type
→ type

246

Array and queue types are examples of complex types. Other complex types can be con-

structed using Facile’s tuple and structure type constructors. Tuple types are specified as comma

separated lists of types in parentheses, with at least two elements in the list. Structures are speci-

fied using the struct reserved word followed by a list of field name/type pairs in curly brackets.

Incomplete/polymorphic structure types are specified by including an ellipsis (..) at the end of

the field list. Incomplete structure types are not the same as subtypes: Once an incomplete struc-

ture type is instantiated to be a complete type, the type is fixed and no subtyping is allowed.

Semantic Statements

Semantic statements include variable, function, and type name declarations, and a variety of

control flow statements. Semantic declarations can be used in any scope—global or local—and

define a name that can be used anywhere after the declaration statement within the current scope

or in any subsequent sub-scope. Other statements are only allowed within a function body or in

instruction semantic code. Any expression (described in the next section) can also be written as its

own statement to ignore the expression’s result value. Multiple statements can be grouped within

curly brackets ({}), which delimit a new sub-scope. Variable names declared with a sub-scope or

in any enclosing scope out to and including the global scope can be accessed.

global_stmt → bind_stmt

bind_stmt → type type_arg_list_opt name length_arg_list_opt = type ;
→ inline_opt fun name (arg_list_opt) type_restrict_opt scope
→ const_opt val name type_restrict_opt bind_exp_opt ;
→ var name type_restrict_opt = exp ; reference variable

247

arg_list_opt → arg_list , arg
→

arg → var name type_restrict_opt
→ name type_restrict_opt

scope → { stmt_list }

stmt_list → stmt_list stmt
→ stmt

bind_exp_opt → = exp
→

inline_opt → inline
→

const_opt → const
→

type_restrict_opt → : type
→

Binding statements can appear in both the global scope and in local scopes, i.e., inside a func-

tion body or in the semantic code of a sem declaration. Type binding declarations are described

on page 242 in the section on Facile types. The remaining binding statements define function and

variable names. A fun declaration defines a function, a val declaration defines a variable, and a

var declaration defines a reference to any lvalue1. Although functions and variable names must

be declared before they are used, specifying types is optional if the type can be derived from the

context in which the function or variable is used.

1. As in C, an lvalue is an expression that identifies a particular storage location. For example, an array
lookup A[5] is an lvalue, but a computed value x+1 is not.

248

A function binding includes a function name, a list of parameter names, and a function body.

Function parameters can be passed by value or passed by reference. Reference parameters are pre-

ceded with the var reserved word. An optional type specification is allowed after each function

parameter to specify the parameter’s type, and between the parameter list and the function body to

specify the function return type. If a function declaration is preceded by the inline reserved

word, then all calls to the function are inlined. Regardless of the presence or absence of the

inline flag, all calls to local functions (i.e., functions declared within a scope other than the

global scope) are inlined.

Non-reference variables are defined using val declarations. Once declared, a variable can be

used in subsequent statements of the same scope or sub-scopes. An optional initial value can be

given in the declaration. A val declaration preceded by the const reserved word cannot be

changed by subsequent assignments. Constant variables must have an initial value given in their

declaration. Reference variables are defined using var declarations, and are interpreted as an

alias to the value they are a reference for. A reference variable must be initialized with an lvalue

expression.

249

stmt → bind_stmt
→ if (exp) stmt
→ if (exp) stmt else stmt
→ while (exp) stmt
→ for (name type_restrict_opt in exp) scope
→ switch (exp) { case_list }
→ continue int_opt ;
→ break int_opt ;
→ return exp_opt ;
→ exp ;
→ scope
→ ;

int_opt → int
→

exp_opt → exp
→

Facile’s control flow statements are if , while , for , switch , continue , break , and

return . An if statement switches between two possible control flow paths based on the result

of an expression with type bool . The else clause is optional. A while statements test a condi-

tional expression of type bool , and loops until the condition evaluates to false . A for loop

iterates through the elements of an array or queue. The variable named in a for loop is only

defined within the associated scope, and it refers to the elements of the given array or queue, one

element per iteration in ascending index order.

A continue statement causes the control flow to jump to the next iteration of an enclosing

while or for loop. A break statement jumps to just after an enclosing loop. An optional inte-

ger literal can follow a continue or break , specifying which enclosing loop to continue or

break from. A value of 1 specifies the innermost loop, 2 is the second innermost loop, etc. If omit-

250

ted, the default is to continue or break from the innermost loop. A return statement returns

from the current function. If the function return type is anything other than void , then a return

value must be given.

An expression can be written as a statement. This is useful for expressions with a void result

type (e.g., assignment expressions and function calls with no return value). A statement can also

be empty (just a ; with no other code), or multiple statements grouped within curly brackets ({}).

Every group of statements within curly brackets is a sub-scope. All variable, function, and type

names defined in enclosing scopes can be used in a sub-scope provided they are not masked by

other variable, function, or type names. Note that function and variable names can be overloaded,

so a function name may not get masked by later bindings, unless the type of the new binding

masks the type of bindings for the same function name in enclosing scopes.

stmt → switch (exp) { case_list }

case_list → case_list case_clause
→ case_clause

case_clause → case match1 : stmt_list normal case
→ pat pat_exp : stmt_list pattern case
→ default : stmt_list default case

match → match : type type specification
→ name as match declare alias name
→ pat pat_exp pattern sub-case
→ match1

251

match1 → name declare variable or reference
→ int_match match an integer
→ (match , match_list) match a tuple
→ { match_field_list ellipsis_opt } match a record
→ (match) grouping
→ _ wildcard

int_match → - int negative signed integer
→ + int positive signed integer
→ int unsigned integer

match_list → match_list , match
→ match

match_field_list → match_field_list , match_field
→ match_field

match_field → name = match

ellipsis_opt → ..
→

Facile switch statements are similar to case statement in ML, because they can extract indi-

vidual elements of complex data structures and bind them to variable names, in addition to select-

ing between multiple cases based on data values. A Facile switch statement can also select

between multiple patterns in a token stream. For example, instructions in an ISA could be

decoded using a switch statement with pattern cases, and the Facile compiler internally trans-

forms instructions defined with pat and sem declarations into a Facile switch .

Following the switch reserved word and the condition expression is a list of case clauses.

Logically, a switch statement is evaluated by first evaluating its condition expression, then step-

ping through the list of case clauses in program order until one of the clauses matches the value of

252

the condition. Then the statements associated with the matching case clause are evaluated. The

statements associated with a case clause do not fall through to the next case, as in C.

A case clause with the case reserved word is used to match data with types other than

stream (the token stream type). These clauses can match simple signed and unsigned integer

values, or deconstruct complex types to match the values of one or more fields. If variable names

are given in a case clause’s match expression and the case clause is matched when evaluating the

switch statement, then the named variables are bound to their corresponding component of the

condition expression. These variable bindings are only valid within the scope of the case clause. If

the condition expression is an lvalue, then variable names are bound as reference variables, other-

wise the variable names are bound to a copy of the selected data. The wildcard name (_) can be

used in place of a variable name to match any value without binding it to a name.

A case clause with the pat reserved word matches data of type stream . The pattern expres-

sions used here are the same as the pattern expressions used in pat declarations, described on

page 237. The statements associated with a pattern case can use token field names to access bit

fields within the matched token stream. Token field names are defined for the case clauses state-

ments if the token is in the matched pattern and the field name uniquely identifies a sequence of

bits in the token stream. Field names for token not in a matched pattern and field names that can-

not be uniquely determined are not defined. Patterns in a token stream can also be matched as part

of the match expression in a case clause with the case reserved word, but no field names will be

defined.

253

A case clause with the default reserved word is the same as a case clause with the case

reserved word and a wildcard (_) match expression (i.e.,). Case clauses

following the default case are never matched. In general, case clauses are tested in the same order

as they appear in the switch statement. Earlier case clauses may mask later case clauses if every

value that would match in a later case is matched by earlier cases.

Semantic Expressions

Adding two values, calling a function, and assigning to a variable are all examples of expres-

sions. All expressions that have type other than void produce one result value. void typed

expressions have no result value.

exp → exp : type type restriction
→ exp op2 exp binary operator
→ aexp1

aexp1 → op1 aexp1 unary operator
→ name (exp_list_opt) function call
→ aexp1 ? name arg_list_opt attribute
→ aexp

aexp → name variable name
→ int literal unsigned integer
→ float literal 64-bit float
→ string literal string
→ array length_arg_opt { exp_list } array
→ queue length_arg_opt { exp_list_opt } queue
→ struct { struct_field_list } structure
→ (exp , exp_list) tuple
→ aexp [exp] array/queue lookup
→ aexp . name record/tuple field selection
→ (exp) grouping

case _ : stmt-list

254

arg_list_opt → (exp_list_opt)
→

exp_list_opt → exp_list
→

exp_list → exp_list , exp
→ exp

length_arg_opt → (exp)
→

struct_field_list → struct_field_list , struct_field
→ struct_field

struct_field → name = exp

At the leaves of an expression tree are variable names and literal integer, floating-point, and

string values. Note that literal integers are all unsigned and literal floating-point values are all 64-

bits wide (type double). Literal values can be cast or converted to other types as needed. The

names true and false are predefined to be the constant 1-bit unsigned integers 1 and 0 respec-

tively. The name system is predefined as a value of type system , and provides access to vari-

ous system related attributes, including getting/setting memory values and accessing the raw ELF

file descriptor for a target executable.

An un-named array or queue value is constructed using the array or queue reserved word

respectively, followed by an optional length argument and an initializer list. When constructing an

array, the array length (if omitted) is inferred from the length of the initializer list. If an array

length is given and the initializer list has exactly one element, then the array is initialized with a

copy of the initializer value in every array element. Otherwise the array length and the initializer

255

list length must be the same. When constructing a queue, the length argument is only a hint to the

compiler, and a queue’s initial length is determined entirely from the length of its initializer list.

The length argument in a queue constructor should be the expected maximum number of elements

that will be stored in the queue, so Facile’s compiler can generate efficient queue allocation code.

Both array and queue elements are accessed by following an expression that evaluates to an array

or queue with an index enclosed in square brackets. In array lookup expressions, the index value is

an unsigned integer. In queue lookup expressions, the index value is a signed integer, and negative

values index backward from the back end of the queue (e.g., Q[-1] is the last element in queue

Q).

Structures are constructed with the struct reserved word followed by a list of field name/

value pairs enclosed in curly brackets ({}). Unlike structure types and structure matching expres-

sions in switch statements, structure values must be fully defined (i.e., no ellipsis). Tuple values

are constructed by enclosing a list of two or more expressions in parentheses. Structure fields are

accessed by following an expression that evaluates to a structure with a period (.) and a field

name. Tuples fields are access in the same way but an unsigned integer from 1 to the tuple length

is used, since tuples have no field names (e.g., (10,20).1 evaluates to 10).

Facile has several infix binary and prefix unary operators. Unary operators are ! (boolean

not), ~ (bit inversion), - (negation), and + (unsigned to signed type casting). The ! operator can

only be applied to values of type bool and returns bool values. The ~ operator can be applied to

any unsigned integer and returns a value of the same type. The unary - operator can be applied to

256

any signed integer, unsigned integer, or floating-point value and returns a value with the same

width. Negating an unsigned integer produces a signed integer of the same width. The unary +

operator can only be applied to unsigned integers and casts its operand to a signed value with the

same bit-width. Facile also pre-defines the function sqrt (called as a function, not as an opera-

tor) that takes one floating point argument and returns its square root.

The following table lists all of Facile’s boolean operators, and their (possibly overloaded)

types. These operators are listed in order of increasing precedence, with operators listed on the

same line having the same precedence. All binary operators are left associative.

Operators Type(s)

=

&& || ^^

< <= == != >= >

a

a. The name fp is used to describe a floating-point types with a width parameter. A special name is
needed here, since no such name is predefined in Facile.

+ -

* / %

 (* and / only)

& | ^

<< >>
 (>> only)

α α,() void→

bool bool,() bool→

unsigned[α] unsigned[α],() bool→
signed[α] signed[α],() bool→
fp[α] fp[α],() bool→

stream unsigned[α],() stream→
unsigned[α] unsigned[α],() unsigned[α]→
signed[α] signed[α],() signed[α]→
fp[α] fp[α],() fp[α]→

unsigned[α] unsigned[α],() unsigned[α]→
signed[α] signed[α],() signed[α]→
fp[α] fp[α],() fp[α]→

unsigned[α] unsigned[α],() unsigned[α]→

unsigned[α] unsigned[_],() unsigned[α]→
signed[α] unsigned[_],() signed[α]→

257

In addition to binary and unary operators, Facile also has attributes and attribute calls.

Attributes follow an expression and are written as ? and the attribute name. Attribute calls also

have a list of arguments in parentheses. Attributes perform special operations that either support

Facile’s built-in data types (e.g., queues and condition codes) or require non-standard syntax (e.g.,

type casting and bit selection). Facile makes no distinction between attributes and attribute calls

with no arguments. For example PC?exec is the same as PC?exec() . Below is a comprehen-

sive list of all the attributes and attribute calls recognized by Facile:

• exp?length returns the length of an array or queue.

• exp?width returns the bit-width of a signed, unsigned, or floating-point value.

• exp?start_pc applies to expressions of type system (normally only the predefined vari-

able system) and returns the start address of the target executable.

• exp?start_sp applies to expressions of type system (normally only the predefined vari-

able system) and returns the initial stack pointer for the target executable.

• exp?elf applies to expressions of type system (normally only the predefined variable

system) and returns the ELF file descriptor for the target executable.

258

• exp?exec() decodes the first instruction in the given token stream and evaluates its semantic

code. Instruction patterns and semantics are declared using pat and sem declarations. All

sem declarations must occur before the first call to ?exec in a Facile source file.

• exp?addr returns the target byte address of the beginning of a token stream.

• exp?cast(type) changes the type of a signed integer, unsigned integer, or floating-point

value to a signed integer, unsigned integer, or floating point type with the same width. The bits

of a value are not changed, only its type.

• exp?cvt(type) converts a value of any signed integer, unsigned integer, or floating-point

type to a value of any other signed integer, unsigned integer, or floating point type. Note that

the bit representation may be changed, although the represented value is preserved up to the

resolution of the new representation type.

• exp?ext(int) extends a signed or unsigned integer to the bit-width specified in the attribute

argument by padding the most significant bits with 0s. The given width must be equal to or

greater than the width of the integer being extended. The extended result is unsigned.

• exp?sext(int) sign extends a signed or unsigned integer to the bit-width specified in the

attribute argument. The sign of the value being extended is inferred from its most significant

bit (as in a 2s complement representation), even if the value has an unsigned type. The given

259

width must be equal to or greater than the width of the integer being extended. The extended

result is unsigned.

• exp?memory(int , exp) applies to expressions of type system (normally only the pre-

defined variable system) and provides access to a target executable’s memory. The first

attribute argument is a literal integer specifying the access width in bytes1, and the second

argument is the target virtual address. Note that the result of a ?memory attribute call is an

lvalue, so memory values can be both read and written.2

• (exp op2 exp)?cc(exp) computes the condition codes associated with a boolean operator

expression. The normal expression value is returned, but condition codes are stored into the

attribute call argument as a side effect. The attribute call argument must be an lvalue of type

cc . Facile can compute condition codes for the floating-point subtraction operator (-) and the

following integer operators: +, - , &&, || , ̂ ^ , &, | , and ̂ .

• exp?bit(exp) selects one bit from any signed, unsigned, floating-point, or condition code

value. Which bit is selected is specified by the attribute call argument.

• exp?bits(int , int) and exp?bits(int) select one or more bits from any signed, unsigned,

floating-point, or condition code value. The first version of this attribute call is called with the

1. FastSim’s current host processor is a SPARC, so unaligned memory accesses produce a bus error signal
(SIGBUS).

2. Some target memory is not mapped or is mapped read-only, as it would be in a real execution outside the
simulator. Attempting any access to an address that is not mapped, or assigning to read-only memory pro-
duce a segmentation violation signal (SIGSEG).

260

index of the first and last bits to select. The second version selects a given number of bits start-

ing from bit 0, the least significant bit. The attribute arguments are integer literals because the

number of bits selected must be known by the compiler to determine the result type. Results

are unsigned.

• exp?push_back(exp) and exp?push_back() push one new element onto the back end

of a queue. If an attribute argument is given, then it is used to initialize the new queue element.

This attribute call has no return value (return type void).

• exp?push_front(exp) and exp?push_front() push one new element onto the front

end of a queue. If an attribute argument is given, then it is used to initialize the new queue ele-

ment. This attribute call has no return value (return type void).

• exp?pop_back(exp) and exp?pop_back() pop element(s) off the back end of a queue.

The first version takes an unsigned integer as its attribute call argument, and pops the given

number of entries off the queue. This version has no return value (return type void). The sec-

ond version pops one element and returns it. Attempting to pop elements from an empty queue

produces a run-time error.

• exp?pop_front(exp) and exp?pop_front() pop element(s) off the front end of a

queue. The first version takes an unsigned integer as its attribute call argument, and pops the

given number of entries off the queue. This version has no return value (return type void).

261

The second version pops one element and returns it. Attempting to pop elements from an

empty queue produces a run-time error.

• exp?clear() removes all elements from a queue. No value is returned (return type void).

• exp?static causes a fast-forwarding simulator to make the attributed expression result

value run-time static. If the attributed value is an lvalue, then the ?static attribute also

makes the lvalue storage location run-time static. Note that, if a value is already static or run-

time static, or if the simulator is not compiled with the fast-forwarding optimization, then this

attribute is a no-op.

Facile pre-defines the function assert . assert takes a single argument of type bool. If the

argument evaluates to false at run-time, then the simulator exits with an assertion failed error.

External Code

Facile code can access variables and call functions written in other languages, or just linked

from separate object files. Conversely, external code can access facile variables and call facile

functions. A Facile file’s external interface is specified using external variable, function, and type

declarations.

bind_stmt → extern name : type ; external variable
→ extern name (arg_type_list_opt) : type ; external function
→ extern type name type_assign_opt ; external type

262

arg_type_list_opt → arg_type_list , targ
→

targ → var type
→ type

type_assign_opt → = type
→

Variable and function names that either refer to symbols in another file or provide external

access to values and code in a Facile file must be declared with an external variable or function

declaration respectively. These declarations define the type of an external variable or the types of

an external function’s parameters and return value. To export a global variable or function defined

in a Facile file, first declare the name with one of these external declaration, then bind the name

with a var or fun declaration. Note that only global variables and functions can be exported.

External function names cannot be overloaded or polymorphic.

External type declarations either provide a name for an external pointer type that can be stored

in Facile variables but cannot be not dereferenced, or a Facile type that may be used by external

code. To declare a type name for an external pointer type, declare an extern type name but omit

the optional type assignment. Values of this type can then be stored in Facile variables, but they

cannot be dereferenced and are always treated as dynamic values when fast-forwarding. To export

a Facile type, declare an external type name and assign it to a Facile type. Exported Facile types

are put in a C header file generated by the Facile compiler, and can be #include ’ed into other C

source files.

263

Simulator Layout

A Facile simulator must have a certain structure to work in the FastSim run-time environment.

Primarily, a simulator must define a global variable called init and a global function called

main . The main function is called repeatedly by the FastSim run-time environment. Each time

main returns, FastSim calls it again. main must have one or more parameters, with any types

except named external pointer types (since they cannot be memoized). The value of main ’s argu-

ments are used to index the memoization cache when fast-forwarding.

The argument values for each call to main are stored in init . Typically each call to main

will update the init variable to set up arguments for the next call to main . If main has one

argument, then init has the same type as main ’s one argument. If main has multiple argu-

ments, then init is a tuple, where each tuple field corresponds to one argument.

Call-by-reference parameters (declared with the var reserved word) can be used in the decla-

ration of main . A reference parameter refers to the corresponding tuple field in the init vari-

able. Hence the value in init can be modified by either assigning directly to init or by

assigning to one of main ’s reference parameters.

264

APPENDIX B: A COMPLETE SIMULATOR IN FACILE

A simple simulator for the SPARC-V9 instruction set is expressed in 701 lines of Facile code.

A complete listing of this simulator is given below. This example is intended to provide a context

for better understanding the Facile code examples used in this dissertation.

This simulator consists of four files: simple.fs (top-level simulation code),

sparc_v9_enc.fs (instruction encodings), sparc_v9_reg.fs (architectural registers),

and sparc_v9.fs (instruction semantics).

/***
** FILE: simple.fs
** Basic sparc istruction simulator (emulation only).
*/

#include "sparc_v9.fs"

fun initialize()
{

R4(14,system?start_sp); // set initial $sp
return (system?start_pc, system?start_pc + 4); // initiail $pc, $npc

}

// Init is the source of arguments for main. Declare and set its initial value.
val init = initialize();

// Main simulator function
fun main(pc, npc)
{

// Copy arguments to global variables
PC = pc; nPC = npc;

nPC2 = nPC + 4; // default next nPC (may get reset by branch insts)
PC?exec(); // execute 1 instruction

// Put next args-to-main in init
init = (nPC, nPC2);

}

265

/***
** FILE: sparc_v9_enc.fs
** Facile description file for the SPARC v.9 instruction encoding.
*/

//
// Declare token "instruction" and various token fields.

token instruction[32] fields
op 30:31, op2 22:24, op3 19:24, opf 5:13, rd 25:29, rs1 14:18, rs2 0:4,
opf_cc 11:13, opf_low 5:10, cond 25:28, mcond 14:17, rcond 10:12,
disp30 0:29, disp22 0:21, disp19 0:18, d16hi 20:21, d16lo 0:13,
imm22 0:21, simm13 0:12, simm11 0:10, simm10 0:9, imm_asi 5:12,
shcnt32 0:4, shcnt64 0:5, sw_trap 0:6,
movcc2 18:18, movccr 11:12, movcc1 12:12, movcc0 11:11,
bpccr 20:21, bpcc1 21:21, bpcc0 20:20,
a 29:29, p 19:19, i 13:13, x 12:12;

//
// Here are some patterns that will be useful in defining instructions later.

pat reg_imm13 = (i==0 && instruction?bits(5,12)==0) || i==1;
pat reg_imm11 = (i==0 && instruction?bits(5,10)==0) || i==1;
pat reg_imm10 = (i==0 && instruction?bits(5,9)==0) || i==1;

pat reg_shcnt64 = (i==0 && instruction?bits(5,11)==0) ||
(i==1 && instruction?bits(6,11)==0);

pat reg_trap = (i==0 && instruction?bits(5,10)==0) ||
(i==1 && instruction?bits(7,10)==0);

pat reg_imm13_inv = (i==1 && instruction?bits(5,12)==0) || i==0;

//
// Op0 instructions:

pat [_trap _bpcc bicc bpr sethi fbpfcc fbfcc _]
= op==0 && op2 in [0..7];

pat illtrap = _trap && rd==0;

pat [_ brz brlez brlz _ brnz brgz brgez]
= bpr && cond in [0x0..0x7];

pat [fbn fbne fblg fbul fbl fbug fbg fbu
fba fbe fbue fbge fbuge fble fbule fbo]

= fbfcc && cond in [0x0..0xf];

pat [fbpn fbpne fbplg fbpul fbpl fbpug fbpg fbpu
fbpa fbpe fbpue fbpge fbpuge fbple fbpule fbpo]

= fbpfcc && cond in [0x0..0xf];

266

pat [bn be ble bl bleu bcs bneg bvs
ba bne bg bge bgu bcc bpos bvc]

= bicc && cond in [0x0..0xf];

pat [bpn bpe bple bpl bpleu bpcs bpneg bpvs
bpa bpne bpg bpge bpgu bpcc bppos bpvc]

= _bpcc && cond in [0x0..0xf] && bpcc0==0;

//
// Op2 instruction:

pat [add and or xor sub andn orn xnor
addc mulx umul smul subc udivx udiv sdiv
addcc andcc orcc xorcc subcc andncc orncc xnorcc
addccc _ umulcc smulcc subccc _ udivcc sdivcc
taddcc tsubcc taddcctv tsubcctv mulscc _ _ _
_ _ _ _ _ sdivx _popc _
wr _ _ _ _ _ _ _
jmpl _retrn _ _flush save restore _ _]

= op==2 && op3 in [0x0..0x3f] && reg_imm13;

pat flush = _flush && rd==0;
pat flushw = op==2 && op3==0x2b && rd==0 && instruction?bits(0,18)==0;

pat impdep1 = op==2 && op3==0x36;
pat impdep2 = op==2 && op3==0x37;

pat [movfn movfne movflg movful movfl movfug movfg movfu
movfa movfe movfue movfge movfuge movfle movfule movfo]

= op==2 && op3==0x2c && mcond in [0x0..0xf] && i==0 && reg_imm11;

pat [movn move movle movl movleu movcs movneg movvs
mova movne movg movge movgu movcc movpos movvc]

= op==2 && op3==0x2c && mcond in [0x0..0xf] && i==1 && reg_imm11;

pat [_ movrz movrlez movrlz _ movrnz movrgz movrgez]
= op==2 && op3==0x2f && rcond in [0..7] && reg_imm10;

pat popc = _popc && rs1==0;

pat rd = op==2 && op3==0x28 && instruction?bits(0,13)==0;

pat retrn = _retrn && rd==0;

pat [sll srl sra]
= op==2 && op3 in [0x25..0x27] && x==0 && instruction?bits(5,11)==0;

pat [sllx srlx srax] = op==2 && op3 in [0x25..0x27] && x==1 && reg_shcnt64;

pat stbar = op==2 && op3==0x28 && rd==0 && rs1==0x0f &&
instruction?bits(0,13)==0;

267

pat [tn te tle tl tleu tcs tneg tvs
ta tne tg tge tgu tcc tpos tvc]

= op==2 && op3==0x3a && cond in [0x0..0xf] && a==0 && reg_trap;

//
// Floating-point instructions (also Op2):

pat fpop1 = op==2 && op3==0b110100;
pat fpop2 = op==2 && op3==0b110101;

pat [_ fadds faddd faddq _ fsubs fsubd fsubq]
= fpop1 && opf in [0x40..0x47];

pat [_ fcmps fcmpd fcmpq _ fcmpes fcmped fcmpeq]
= fpop2 && opf in [0x50..0x57] && instruction?bits(27,29)==0;

pat [fstox fdtox fqtox fstoi fdtoi fqtoi
fstod fstoq fdtos fdtoq fqtos fqtod
fxtos fxtod fxtoq fitos fitod fitoq]

= fpop1 && rs1==0 && opf in
[0x81 0x82 0x83 0xd1 0xd2 0xd3

0xc9 0xcd 0xc6 0xce 0xc7 0xcb
0x84 0x88 0x8c 0xc4 0xc8 0xcc];

pat [_ fmovs fmovd fmovq
_ fnegs fnegd fnegq
_ fabss fabsd fabsq]

= fpop1 && opf in [0x0..0xb] && rs1==0;

pat [fmuls fmuld fmulq fsmuld fdmulq fdivs fdivd fdivq]
= fpop1 && opf in [0x49 0x4a 0x4b 0x69 0x6e 0x4d 0x4e 0x4f];

pat [_ fsqrts fsqrtd fsqrtq]
= fpop1 && opf in [0x28..0x2b] && rs1==0;

pat [fmovfsn fmovfsne fmovfslg fmovfsul fmovfsl fmovfsug fmovfsg fmovfsu
fmovfsa fmovfse fmovfsue fmovfsge fmovfsuge fmovfsle fmovfsule fmovfso
fmovfdn fmovfdne fmovfdlg fmovfdul fmovfdl fmovfdug fmovfdg fmovfdu
fmovfda fmovfde fmovfdue fmovfdge fmovfduge fmovfdle fmovfdule fmovfdo
fmovfqn fmovfqne fmovfqlg fmovfqul fmovfql fmovfqug fmovfqg fmovfqu
fmovfqa fmovfqe fmovfque fmovfqge fmovfquge fmovfqle fmovfqule fmovfqo

] = fpop2 && opf_low in [1 2 3] && rs1 in [0x0..0xf] && i==0;

pat [movsn fmovse fmovsle fmovsl fmovsleu fmovscs fmovsneg fmovsvs
fmovsa fmovsne fmovsg fmovsge fmovsgu fmovscc fmovspos fmovsvc
fmovdn fmovde fmovdle fmovdl fmovdleu fmovdcs fmovdneg fmovdvs
fmovda fmovdne fmovdg fmovdge fmovdgu fmovdcc fmovdpos fmovdvc
fmovqn fmovqe fmovqle fmovql fmovqleu fmovqcs fmovqneg fmovqvs
fmovqa fmovqne fmovqg fmovqge fmovqgu fmovqcc fmovqpos fmovqvc]

= fpop2 && opf_low in [1 2 3] && rs1 in [0x0..0xf] && i==1 && movcc0==0;

268

pat [_ fmovrsz fmovrslez fmovrslz _ fmovrsnz fmovrsgz fmovrsgez
_ fmovrdz fmovrdlez fmovrdlz _ fmovrdnz fmovrdgz fmovrdgez
_ fmovrqz fmovrqlez fmovrqlz _ fmovrqnz fmovrqgz fmovrqgez]

= fpop2 && opf_low in [0x5..0x7] && rcond in [0..7] && i==0;

//
// Op1 instruction: CALL

pat call = op==1;

//
// Op3 instructions:

pat [casa casxa] = op==3 && op3 in [0x3c 0x3e] && reg_imm13_inv;

pat [ldf _ldfsr _ldqf lddf stf _stfsr _stqf stdf
_ _ _ _ _ prefetch _ _]

= op==3 && op3 in [0x20..0x2f] && reg_imm13;

pat [ldfsr ldxfsr] = _ldfsr && rd in [0 1];
pat [stfsr stxfsr] = _stfsr && rd in [0 1];
pat ldqf = _ldqf && rd?bit(1)==0;
pat stqf = _stqf && rd?bit(1)==0;

pat [ldfa _ _ldqfa lddfa stfa _ _stqfa stdfa
_ _ _ _ _ prefetcha _ _]

= op==3 && op3 in [0x30..0x3f];

pat ldqfa = _ldqfa && rd?bit(0)==0;
pat stqfa = _stqfa && rd?bit(0)==0;

pat [lduw ldub lduh _ldd stw stb sth _std
ldsw ldsb ldsh ldx _ ldstub stx swap]

= op==3 && op3 in [0x00..0x0f] && reg_imm13;

pat ldd = _ldd && rd?bit(0)==0;
pat std = _std && rd?bit(0)==0;

pat [lduwa lduba lduha _ldda stwa stba stha _stda
ldswa ldsba ldsha ldxa _ ldstuba stxa swapa]

= op==3 && op3 in [0x00..0x0f];

pat ldda = _ldda && rd?bit(0)==0;
pat stda = _stda && rd?bit(0)==0;

//
// UltraSPARC specific

pat alignaddress = impdep1 && opf==0x18;

269

/***
** FILE: sparc_v9_reg.fs
** Facile description file for the SPARC v.9 registers.
*/

#define NWINDOWS 8

val PC = 0?cvt(stream); // program counter
val nPC = 0?cvt(stream); // next program counter
val nPC2 = 0?cvt(stream); // next next program counter

val CCR = 0?cvt(cc); // integer condition codes
val fcc = array(4) { 0?cvt(cc) }; // FP condition codes

val Y : ulong = 0; // Y register for multiply & divide

// Floating status register (implemented externally)
extern get_FSR4() : unsigned[32];
extern get_FSR8() : unsigned[64];
extern set_FSR4(unsigned[32]) : void;
extern set_FSR8(unsigned[64]) : void;

//
// integer registers:

val global_registers = array(7) { 0?ext(64) };
val register_windows = array(NWINDOWS) { array(16) { 0?ext(64) } };

type cwp_t = unsigned[5];

val CWP = 0?bits(5); // current window pointer
val CANSAVE = (NWINDOWS-2)?bits(5);
val CANRESTORE = 0?bits(5);
val OTHERWIN = 0?bits(5);
val CLEANWIN = (NWINDOWS-1)?bits(5);

fun Rx(i0) { // get 64-bit register value
val ii = i0?ext(32);
if(ii == 0) return 0?ext(64);
else if(ii < 8) return global_registers[ii-1];
else {

val win = (CWP?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); return register_windows[win][ii];

}
}

fun Rx(i0,vv) { // set 64-bit register value
val ii = i0?ext(32);
if(ii >= 8) {

val win = (CWP?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); register_windows[win][ii] = vv;

270

} else if(ii > 0) {
global_registers[ii-1] = vv;

}
}

fun R4(ii) { return Rx(ii)?bits(32); } // get 32-bit register value
fun R4(ii,vv) { Rx(ii, vv?sext(64)); } // set 32-bit register value

fun R8(i0) { // make a 64-bit value from two 32-bit register
val ii = i0?ext(32);
val xx = (Rx(ii) & 0xffffffff?ext(64)) << 32;
return xx | (Rx(ii+1) & 0xffffffff?ext(64));

}

fun R8(i0,vv) { // set two 32-bit registers from a 64 bit value
val ii = i0?ext(32);
Rx(ii, vv >> 32);
Rx(ii+1, vv & 0xffffffff?ext(64));

}

//
// floating-point registers:

val fregs = array(64) { 0?ext(32) };

fun F4(ii) { return fregs[ii]?cast(float); }
fun F4(ii,vv) { fregs[ii] = vv?cast(unsigned[_])?cvt(ulong); }

fun F8(i0) { // get concatination of two 32-bit fp-registers
val ii = i0?ext(32)&(~1) | (i0?bit(0)?ext(32)<<5);
val xx = fregs[ii]?ext(64) << 32;
return (xx | fregs[ii+1]?ext(64))?cast(double);

}

fun F8(i0,vv) { // set two 32-bit fp-registers
val ii = i0?ext(32)&(~1) | (i0?bit(0)?ext(32)<<5);
fregs[ii] = vv?cast(unsigned[64])?bits(32,63);
fregs[ii+1] = vv?cast(unsigned[64])?bits(32);

}

//
// Memory access:

fun M1(a) { return system?memory(1,a)?ext(64); }
fun M1s(a) { return system?memory(1,a)?sext(64); }
fun M1(a,vv) { system?memory(1,a) = vv?cast(unsigned[_])?bits(8); }

fun M2(a) { return system?memory(2,a)?ext(64); }
fun M2s(a) { return system?memory(2,a)?sext(64); }
fun M2(a,vv) { system?memory(2,a) = vv?cast(unsigned[_])?bits(16); }

271

fun M4(a) { return system?memory(4,a)?ext(64); }
fun M4s(a) { return system?memory(4,a)?sext(64); }
fun M4(a,vv) { system?memory(4,a) = vv?cast(unsigned[_])?bits(32); }

fun M8(a) { return system?memory(8,a); }
fun M8(a,vv) { system?memory(8,a) = vv?cast(unsigned[64]); }

//
// External functions providing access to Facile data structures.
//

extern get_CCR() : cc;
extern set_CCR(cc) : void;
fun get_CCR() : cc { return CCR; }
fun set_CCR(CCR1 : cc) : void { CCR = CCR1; }

extern get_fcc(ulong) : cc;
extern set_fcc(ulong,cc) : void;
fun get_fcc(ii : ulong) : cc { return fcc[ii]; }
fun set_fcc(ii : ulong, CC1 : cc) : void { fcc[ii] = CC1; }

extern get_R4(cwp_t,ulong) : ulong;
extern set_R4(cwp_t,ulong,ulong) : void;

fun get_R4(cwp : cwp_t, i0 : ulong) {
val ii = i0?ext(32);
if(ii == 0) return 0?ext(32);
else if(ii < 8) return global_registers[ii-1]?bits(32);
else {

val win = (cwp?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); return register_windows[win][ii]?bits(32);

}
}

fun set_R4(cwp : cwp_t, i0 : ulong, vv : ulong) {
val ii = i0?ext(32);
if(ii >= 8) {

val win = (cwp?cvt(ulong) - (ii / 16) + NWINDOWS) % NWINDOWS;
ii = ii & 0xf?ext(32); register_windows[win][ii] = vv?sext(64);

} else if(ii > 0) {
global_registers[ii-1] = vv?sext(64);

}
}

272

/***
** FILE: sparc_v9.fs
** Facile description file for the SPARC v.9 instruction semantics.
** This file includes the SPARC v.9 encoding and register desriptions.
*/

#include "sparc_v9_enc.fs"
#include "sparc_v9_reg.fs"

// External routines to save and restore register windowsto the stack
extern save_regs(cwp_t,cwp_t) : void;
extern restore_regs(cwp_t) : void;

// Routines to flush all register windows to the stack
extern flush_windows(cwp_t,cwp_t) : void;
fun _flushw() {

flush_windows(CWP,CANRESTORE);
CANSAVE = (NWINDOWS - 2)?cvt(cwp_t);
CANRESTORE = 0?cvt(cwp_t);

}
#define FLUSHW _flushw()

// routines to simulate SPARC/Solaris system calls
extern trap_sparc(ulong,cwp_t,cwp_t): void;
fun _trap(iflag,rs2,imm7) {

val tnum;
if(iflag) tnum = imm7?ext(32);
else tnum = Rx(rs2)?cvt(ulong) & 0x7f?ext(32);

if(tnum == 3) FLUSHW;
else trap_sparc(tnum+256,CWP,CANRESTORE);

}
#define TRAP _trap(i,rs2,sw_trap)

#define TAG_OVERFLOW 0x23?ext(32) // tag-overflow trap number
#define INVALID 0x21?ext(32) // trap invalid trap number

fun annul() { // skip next instruction
nPC = nPC2;
nPC2 = nPC + 4;

}

// Get second source operand (used for most integer instructions)
fun get_src2(iflag,rs2,simm) {

if(iflag) return simm?sext(64);
else return Rx(rs2);

}
#define SRC2 get_src2(i,rs2,simm13)

//
// branch/call instructions

273

sem call {
nPC2 = PC + disp30?sext(32)<<2;
Rx(15,PC?addr?ext(64));

};

sem jmpl {
nPC2 = (Rx(rs1) + SRC2)?cvt(stream);
Rx(rd,PC?addr?ext(64));

};

sem retrn {
nPC2 = (Rx(rs1) + SRC2)?cvt(stream);
if(CANRESTORE?cvt(ulong) > 0) {

CANSAVE = (CANSAVE?cvt(ulong) + 1)?cvt(cwp_t);
CANRESTORE = (CANRESTORE?cvt(ulong) - 1)?cvt(cwp_t);

} else {
restore_regs(CWP);
if(CANSAVE?cvt(ulong) < NWINDOWS-2)

CANSAVE = (CANSAVE?cvt(ulong) + 1)?cvt(cwp_t);
}
CWP = ((CWP?cvt(ulong) + NWINDOWS - 1) % NWINDOWS)?bits(5);

};

sem [brz brlez brlz brnz brgz brgez] {
if(test(Rx(rs1),0?cvt(ullong)))

nPC2 = PC + ((d16hi?sext(32)<<16) | (d16lo?ext(32)<<2));
else if(a) annul();

} where test in [== <= < != > >=];

fun f_u(nn) { return fcc[nn]?bits(2) == 0b11; }
fun f_g(nn) { return fcc[nn]?bits(2) == 0b10; }
fun f_ug(nn) { return fcc[nn]?bit(1); }
fun f_l(nn) { return fcc[nn]?bits(2) == 0b01; }
fun f_ul(nn) { return fcc[nn]?bit(0); }
fun f_lg(nn) { val xx = fcc[nn]?bits(2); return xx==0b01 || xx==0b10; }
fun f_ne(nn) { return fcc[nn]?bits(2) != 0b00; }
fun f_e(nn) { return fcc[nn]?bits(2) == 0b00; }
fun f_ue(nn) { val xx = fcc[nn]?bits(2); return xx==0b00 || xx==0b11; }
fun f_ge(nn) { return !fcc[nn]?bit(0); }
fun f_uge(nn) { return fcc[nn]?bits(2) != 0b01; }
fun f_le(nn) { return !fcc[nn]?bit(1); }
fun f_ule(nn) { return fcc[nn]?bits(2) != 0b10; }
fun f_o(nn) { return fcc[nn]?bits(2) != 0b11; }

sem [fba ba] {
nPC2 = PC + disp22?sext(32)<<2;
if(a) annul();

};

sem [fbpa bpa] {

274

nPC2 = PC + disp19?sext(32)<<2;
if(a) annul();

};

sem [fbn fbpn bn bpn] { if(a) annul(); };

sem [fbu fbg fbug fbl fbul fblg
fbne fbe fbue fbge fbuge fble fbule fbo] {

if(cond(0)) nPC2 = PC + disp22?sext(32)<<2;
else if(a) annul();

} where cond in [f_u f_g f_ug f_l f_ul f_lg
f_ne f_e f_ue f_ge f_uge f_le f_ule f_o];

sem [fbpu fbpg fbpug fbpl fbpul fbplg
fbpne fbpe fbpue fbpge fbpuge fbple fbpule fbpo] {

if(cond(bpccr)) nPC2 = PC + disp19?sext(32)<<2;
else if(a) annul();

} where cond in [f_u f_g f_ug f_l f_ul f_lg
f_ne f_e f_ue f_ge f_uge f_le f_ule f_o];

// Access individual flags from the integer condition codes register (CCR)
#define C CCR?bit(0)
#define V CCR?bit(1)
#define Z CCR?bit(2)
#define N CCR?bit(3)
#define Cx CCR?bit(4)
#define Vx CCR?bit(5)
#define Zx CCR?bit(6)
#define Nx CCR?bit(7)

// Integer branch conditions
#define i_ne (!Z)
#define i_e (Z)
#define i_g (!(Z|(N^V)))
#define i_le (Z|(N^V))
#define i_ge (!(N^V))
#define i_l (N^V)
#define i_gu (!(C|Z))
#define i_leu (C|Z)
#define i_cc (!C)
#define i_cs (C)
#define i_pos (!N)
#define i_neg (N)
#define i_vc (!V)
#define i_vs (V)

// Integer conditions for 64-bit comparesons
#define x_ne (!Zx)
#define x_e (Zx)
#define x_g (!(Zx|(Nx^Vx)))
#define x_le (Zx|(Nx^Vx))

275

#define x_ge (!(Nx^Vx))
#define x_l (Nx^Vx)
#define x_gu (!(Cx|Zx))
#define x_leu (Cx|Zx)
#define x_cc (!Cx)
#define x_cs (Cx)
#define x_pos (!Nx)
#define x_neg (Nx)
#define x_vc (!Vx)
#define x_vs (Vx)

sem [bne be bg ble bge bl
bgu bleu bcc bcs bpos bneg bvc bvs] {

if(cond) nPC2 = PC + disp22?sext(32)<<2;
else if(a) annul();

} where cond in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

sem [bpne bpe bpg bple bpge bpl
bpgu bpleu bpcc bpcs bppos bpneg bpvc bpvs] {

if(bpcc1) {
if(cond_xcc) nPC2 = PC + disp19?sext(32)<<2;
else if(a) annul();

} else if(cond_icc) nPC2 = PC + disp19?sext(32)<<2;
else if(a) annul();

} where cond_xcc in [x_ne x_e x_g x_le x_ge x_l
x_gu x_leu x_cc x_cs x_pos x_neg x_vc x_vs],
cond_icc in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

//
// Conditional moves:

sem [fmovfsn fmovfdn fmovsn fmovdn] {};
sem [fmovfsa fmovfda fmovsa fmovda] { fd(rd,fs(rs2)); }
where fs in [F4 F8 F4 F8], fd in [F4 F8 F4 F8];

sem [fmovsne fmovse
fmovsg fmovsle fmovsge fmovsl
fmovsgu fmovsleu fmovscc fmovscs
fmovspos fmovsneg fmovsvc fmovsvs] {

if(bpcc1) { if(cond_xcc) F4(rd,F4(rs2)); }
else if(cond_icc) F4(rd,F4(rs2));

} where cond_xcc in [x_ne x_e x_g x_le x_ge x_l
x_gu x_leu x_cc x_cs x_pos x_neg x_vc x_vs],
cond_icc in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

sem [fmovdne fmovde
fmovdg fmovdle fmovdge fmovdl
fmovdgu fmovdleu fmovdcc fmovdcs

276

fmovdpos fmovdneg fmovdvc fmovdvs] {
if(bpcc1) { if(cond_xcc) F8(rd,F8(rs2)); }
else if(cond_icc) F8(rd,F8(rs2));

} where cond_xcc in [x_ne x_e x_g x_le x_ge x_l
x_gu x_leu x_cc x_cs x_pos x_neg x_vc x_vs],
cond_icc in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

sem [fmovfsu fmovfsg
fmovfsug fmovfsl fmovfsul fmovfslg
fmovfsne fmovfse fmovfsue fmovfsge
fmovfsuge fmovfsle fmovfsule fmovfso] {

if(cond(bpccr)) F4(rd,F4(rs2));
} where cond in [f_u f_g f_ug f_l f_ul f_lg

f_ne f_e f_ue f_ge f_uge f_le f_ule f_o];

sem [fmovfdu fmovfdg
fmovfdug fmovfdl fmovfdul fmovfdlg
fmovfdne fmovfde fmovfdue fmovfdge
fmovfduge fmovfdle fmovfdule fmovfdo] {

if(cond(bpccr)) F8(rd,F8(rs2));
} where cond in [f_u f_g f_ug f_l f_ul f_lg

f_ne f_e f_ue f_ge f_uge f_le f_ule f_o];

sem [fmovrsz fmovrslez fmovrslz fmovrsnz fmovrsgz fmovrsgez]
{ if(test(Rx(rs1),0?cvt(ullong))) F4(rd,F4(rs2)); }
where test in [== <= < != > >=];

sem [fmovrdz fmovrdlez fmovrdlz fmovrdnz fmovrdgz fmovrdgez]
{ if(test(Rx(rs1),0?cvt(ullong))) F8(rd,F8(rs2)); }
where test in [== <= < != > >=];

sem [mova movfa] { Rx(rd,Rx(rs2)); };
sem [movn movfn] {};

sem [movne move movg movle movge movl
movgu movleu movcc movcs movpos movneg movvc movvs] {

if(bpcc1) { if(cond_xcc) Rx(rd,Rx(rs2)); }
else if(cond_icc) Rx(rd,Rx(rs2));

} where cond_xcc in [x_ne x_e x_g x_le x_ge x_l
x_gu x_leu x_cc x_cs x_pos x_neg x_vc x_vs],
cond_icc in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

sem [movfu movfg movfug movfl movful movflg
movfne movfe movfue movfge movfuge movfle movfule movfo] {

if(cond(bpccr)) Rx(rd,Rx(rs2));
} where cond in [f_u f_g f_ug f_l f_ul f_lg

f_ne f_e f_ue f_ge f_uge f_le f_ule f_o];

sem [movrz movrlez movrlz movrnz movrgz movrgez]

277

{ if(test(Rx(rs1),0?cvt(ullong))) Rx(rd,Rx(rs2)); }
where test in [== <= < != > >=];

//
// System traps:

sem ta { TRAP; };
sem tn {};

sem [tne te tg tle tge tl
tgu tleu tcc tcs tpos tneg tvc tvs] {

if(bpcc1) { if(cond_xcc) TRAP; }
else if(cond_icc) TRAP;

} where cond_xcc in [x_ne x_e x_g x_le x_ge x_l
x_gu x_leu x_cc x_cs x_pos x_neg x_vc x_vs],
cond_icc in [i_ne i_e i_g i_le i_ge i_l
i_gu i_leu i_cc i_cs i_pos i_neg i_vc i_vs];

//
// Arithmetic ops:

#define C64 (CCR?bit(0)?ext(64))

sem [add sub and or xor]
{ Rx(rd, op(Rx(rs1),SRC2)); }
where op in [+ - & | ^];

sem [addcc subcc andcc orcc xorcc]
{ Rx(rd, op(Rx(rs1),SRC2)?cc(CCR)); }
where op in [+ - & | ^];

sem addc { Rx(rd, Rx(rs1) + SRC2 + C64); };
sem subc { Rx(rd, Rx(rs1) - SRC2 - C64); };

sem addccc {
val ccr = 0x00?cvt(cc);
val x1 = Rx(rs1); val x2 = SRC2;
val xx = ((x1 + x2)?cc(ccr) + C64)?cc(CCR);
CCR = ((CCR?bits(8) & 0b11011101) | (ccr?bits(8) & 0x11) |

(((x1?bit(31)==x2?bit(31))&&(xx?bit(31)!=x1?bit(31)))?ext(8)<<1) |
(((x1?bit(63)==x2?bit(63))&&(xx?bit(63)!=x1?bit(63)))?ext(8)<<5))

? cvt(cc);
Rx(rd, xx);

};

sem subccc {
val ccr = 0x00?cvt(cc);
val x1 = Rx(rs1); val x2 = SRC2;
val xx = ((x1 - x2)?cc(ccr) - C64)?cc(CCR);
CCR = ((CCR?bits(8) & 0b11011101) | (ccr?bits(8) & 0x11) |

(((x1?bit(31)!=x2?bit(31))&&(xx?bit(31)!=x1?bit(31)))?ext(8)<<1) |

278

(((x1?bit(63)!=x2?bit(63))&&(xx?bit(63)!=x1?bit(63)))?ext(8)<<5))
? cvt(cc);

Rx(rd, xx);
};

sem [andn orn xnor] { Rx(rd, op(Rx(rs1),~SRC2)); } where op in [& | ^];

sem [andncc orncc xnorcc]
{ Rx(rd, op(Rx(rs1),~SRC2)?cc(CCR)); }
where op in [& | ^];

sem [mulx udivx] { Rx(rd, op(Rx(rs1),SRC2)); } where op in [* /];
sem sdivx { Rx(rd,(+Rx(rs1) / +SRC2)?cast(ullong)); };

sem sll { Rx(rd, Rx(rs1) << SRC2?bits(5)); };
sem srl { R4(rd, R4(rs1) >> SRC2?bits(5)); };
sem sra { Rx(rd,(+R4(rs1) >> SRC2?bits(5))?sext(64)); };
sem sllx { Rx(rd, Rx(rs1) << SRC2?bits(6)); };
sem srlx { Rx(rd, Rx(rs1) >> SRC2?bits(6)); };
sem srax { Rx(rd,(+Rx(rs1) >> SRC2?bits(6))?cast(ullong)); };

sem taddcc {
val x1 = Rx(rs1); val x2 = SRC2;
Rx(rd, (x1 + x2)?cc(CCR));
if(x1?bits(2)!=0b00 || x2?bits(2)!=0b00)

CCR = (CCR?bits(8) | 0x02)?cvt(cc);
};

sem taddcctv {
val x1 = Rx(rs1); val x2 = SRC2;
Rx(rd, (x1 + x2)?cc(CCR));
if(x1?bits(2)!=0b00 || x2?bits(2)!=0b00)

CCR = (CCR?bits(8) | 0x02)?cvt(cc);
if(CCR?bit(1)) trap_sparc(TAG_OVERFLOW,CWP,CANRESTORE);

};

sem tsubcc {
val x1 = Rx(rs1); val x2 = SRC2;
Rx(rd, (x1 - x2)?cc(CCR));
if(x1?bits(2)!=0b00 || x2?bits(2)!=0b00)
CCR = (CCR?bits(8) | 0x02)?cvt(cc);

};

sem tsubcctv {
val x1 = Rx(rs1); val x2 = SRC2;
Rx(rd, (x1 - x2)?cc(CCR));
if(x1?bits(2)!=0b00 || x2?bits(2)!=0b00)

CCR = (CCR?bits(8) | 0x02)?cvt(cc);
if(CCR?bit(1)) trap_sparc(TAG_OVERFLOW,CWP,CANRESTORE);

};

279

fun u_div32(x1,x2,var ccr) {
val xx = x1 / x2?ext(64);
if(xx > 1?ext(64)<<32) { xx = 0xffffffff?ext(64); ccr = ccr | 0x02; }
return xx;

}

fun s_div32(x1,x2,var ccr) {
val xx = (+x1 / +x2?sext(64))?cast(ullong);
if(+xx > +(1?ext(64)<<31)) { xx = 0x7fffffff?ext(64); ccr = ccr | 0x02; }
else if(+xx < +((-1)?sext(64)<<31)) {

xx = 0x80000000?sext(64);
ccr = ccr | 0x02;

}
return xx;

}

sem [udiv sdiv] {
val ccr = 0x00;
val xx = ((Y?ext(64)<<32) | R4(rs1)?ext(64));
if(i) xx = _div(xx,simm13?sext(32)?ext(64),ccr);
else xx = _div(xx,R4(rs2)?ext(64),ccr);
Rx(rd,xx);

} where _div in [u_div32 s_div32];

sem umul {
val xx = (Rx(rs1)&0xffffffff?ext(64)) * (SRC2&0xffffffff?ext(64));
Y = (xx >> 32)?bits(32); R4(rd,xx?bits(32));

};

sem smul {
val xx = +Rx(rs1)?bits(32)?sext(64) * +SRC2?bits(32)?sext(64);
Y = (xx >> 32)?bits(32); R4(rd,xx?bits(32));

};

fun get_div_mul_cc(xx,ccr0) {
val ccr = ccr0 | xx?bit(63)?ext(8) << 7;
ccr = ccr | (xx==0?ext(64))?ext(8) << 6;
ccr = ccr | xx?bit(31)?ext(8) << 3;
return ccr | (xx?bits(32)==0)?ext(8) << 2;

}

sem [udivcc sdivcc] {
val ccr = 0x00;
val xx = ((Y?ext(64)<<32) | R4(rs1)?ext(64));
if(i) xx = _div(xx,simm13?sext(32),ccr);
else xx = _div(xx,R4(rs2),ccr);
CCR = get_div_mul_cc(xx,ccr)?cvt(cc);
Rx(rd,xx);

} where _div in [u_div32 s_div32];

sem umulcc {

280

 val xx = (Rx(rs1)&0xffffffff?ext(64)) * (SRC2&0xffffffff?ext(64));
 CCR = get_div_mul_cc(xx,0x00)?cvt(cc);
 Y = (xx >> 32)?bits(32); R4(rd,xx?bits(32));
};

sem smulcc {
 val xx = (+Rx(rs1)?bits(32)?sext(64) *

 +SRC2?bits(32)?sext(64))?cast(ullong);
 CCR = get_div_mul_cc(xx,0x00)?cvt(cc);
 Y = (xx >> 32)?bits(32); R4(rd,xx?bits(32));
};

sem mulscc {
 val y0 = Y?bit(0); Y = (Y>>1) | (R4(rs1)?bit(0)?ext(32)<<31);
 val xx = (R4(rs1)>>1) | ((CCR?bit(3)^CCR?bit(1))?ext(32)<<31);
 if(y0) R4(rd, (xx + SRC2?bits(32))?cc(CCR));
 else R4(rd,(xx+0)?cc(CCR));
};

sem popc {
val xx = Rx(rs2);
val ii=0; val count=0?ext(64);
while(ii < 64) {

count = count + ((xx >> ii) & 0x1?ext(64));
ii = ii + 1;

}
Rx(rd,count);

};

sem flush {};
sem flushw { FLUSHW; };

sem rd {
switch(rs1?ext(32)) {
 case 0: Rx(rd,Y?ext(64));
 case 2: Rx(rd,CCR?bits(8)?ext(64));
 case 5: Rx(rd,PC?addr?ext(64));
 case 15: assert(rd?ext(32)==0);
 default:

/* not implemented */
assert(false);

}
};

sem wr {
switch(rd?ext(32)) {
 case 0: Y = (Rx(rs1) ^ SRC2)?bits(32);
 case 2: CCR = (Rx(rs1) ^ SRC2)?cvt(cc);
 default:

/* not implemented */
assert(false);

281

}
};

sem save {
val xx = Rx(rs1) + SRC2;
if(CANSAVE?cvt(ulong) <= 0) {

save_regs(CWP,CANRESTORE);
CANSAVE = CANRESTORE; CANRESTORE = 0?cvt(cwp_t);

}
CWP = ((CWP?cvt(ulong) + 1) % NWINDOWS)?bits(5);
CANSAVE = (CANSAVE?cvt(ulong) - 1)?cvt(cwp_t);
CANRESTORE = (CANRESTORE?cvt(ulong) + 1)?cvt(cwp_t);
Rx(rd,xx);

};

sem restore {
val xx = Rx(rs1) + SRC2;
if(CANRESTORE?cvt(ulong) > 0) {

CANSAVE = (CANSAVE?cvt(ulong) + 1)?cvt(cwp_t);
CANRESTORE = (CANRESTORE?cvt(ulong) - 1)?cvt(cwp_t);

} else {
restore_regs(CWP);
if(CANSAVE?cvt(ulong) < NWINDOWS-2)

CANSAVE = (CANSAVE?cvt(ulong) + 1)?cvt(cwp_t);
}
CWP = ((CWP?cvt(ulong) + NWINDOWS - 1) % NWINDOWS)?bits(5);
Rx(rd,xx);

};

sem sethi { Rx(rd,imm22?ext(64)<<10); };

//
// Floating-point arithmetic:

sem [fadds fsubs fmuls fdivs]
{ F4(rd, op(F4(rs1),F4(rs2))); }
where op in [+ - * /];

sem [faddd fsubd fmuld fdivd]
{ F8(rd, op(F8(rs1),F8(rs2))); }
where op in [+ - * /];

sem [fcmps fcmpd] { (f(rs1)-f(rs2))?cc(fcc[cond]); } where f in [F4 F8];
sem [fcmpes fcmped] {

(f(rs1)-f(rs2))?cc(fcc[cond]);
if(f_u(cond)) trap_sparc(INVALID,CWP,CANRESTORE);

} where f in [F4 F8];

sem fstox { F8(rd,F4(rs2)?cvt(llong)?cast(ullong)); };
sem fdtox { F8(rd,F8(rs2)?cvt(llong)?cast(ullong)); };
sem fstoi { F4(rd,F4(rs2)?cvt(long)?cast(ulong)); };

282

sem fdtoi { F4(rd,F8(rs2)?cvt(long)?cast(ulong)); };
sem fstod { F8(rd,F4(rs2)?cvt(double)); };
sem fxtos { F4(rd,F8(rs2)?cast(llong)?cvt(float)); };
sem fxtod { F8(rd,F8(rs2)?cast(llong)?cvt(double)); };
sem fitos { F4(rd,F4(rs2)?cast(long)?cvt(float)); };
sem fitod { F8(rd,F4(rs2)?cast(long)?cvt(double)); };
sem fdtos { F4(rd,F8(rs2)?cvt(float)); };

sem [fmovs fmovd] { fd(rd,fs(rs2)); } where fs in [F4 F8], fd in [F4 F8];
sem [fnegs fnegd] { fd(rd,-fs(rs2)); } where fs in [F4 F8], fd in [F4 F8];
sem [fabss fabsd] { if(fs(rs2)<z) fd(rd,-fs(rs2)); else fd(rd,fs(rs2)); }
where fs in [F4 F8], fd in [F4 F8], z in [(0?cvt(float)) (0?cvt(double))];

sem fsmuld { F8(rd, F4(rs1)?cvt(double) * F4(rs2)?cvt(double)); };

sem [fsqrts fsqrtd] {fd(rd,sqrt(fs(rs2)));} where fs in [F4 F8], fd in [F4 F8];

//
// Load, store, etc.:

sem [ldf lddf ldfa lddfa
ldsb ldsh ldsw ldub lduh lduw ldx ldd
ldsba ldsha ldswa lduba lduha lduwa ldxa ldda] {

r(rd, m(Rx(rs1) + SRC2));
} where r in [F4 F8 F4 F8

Rx Rx Rx Rx Rx Rx Rx R8
Rx Rx Rx Rx Rx Rx Rx R8],
m in [M4 M8 M4 M8
M1s M2s M4s M1 M2 M4 M8 M8
M1s M2s M4s M1 M2 M4 M8 M8];

sem [stf stdf stb sth stw stx std
stfa stdfa stba stha stwa stxa stda] {

m(Rx(rs1) + SRC2, r(rd));
} where r in [F4 F8 Rx Rx Rx Rx R8

F4 F8 Rx Rx Rx Rx R8],
m in [M4 M8 M1 M2 M4 M8 M8

M4 M8 M1 M2 M4 M8 M8];

sem [casa casxa] {
val aa = Rx(rs1); val xx = ms(aa);
if(rsrc(rs2)?ext(64) == xx) md(aa,rsrc(rd)); rdest(rd,xx);

} where rsrc in [R4 Rx], rdest in [R4 Rx],
ms in [M4 M8], md in [M4 M8];

sem [ldstub ldstuba] { val aa=Rx(rs1)+SRC2; Rx(rd,M1(aa)); M1(aa,0xff); };

sem [prefetch prefetcha] {};

sem [swap swapa] {
val aa = Rx(rs1) + SRC2; val xx = M4(aa);

283

M4(aa,R4(rd)); R4(rd,xx);
};

sem ldfsr { set_FSR4(M4(Rx(rs1) + SRC2)?bits(32)); };
sem ldxfsr { set_FSR8(M8(Rx(rs1) + SRC2)); };
sem [stfsr stxfsr] { m(Rx(rs1) + SRC2, r()); }
where r in [get_FSR4 get_FSR8], m in [M4 M8];

284

BIBLIOGRAPHY

[1] A. Agarwal, J Hennessy, and M. Horowitz, “Cache Performance of Operating System and
Multiprogramming Workloads,” in ACM Transactions on Computer Systems, vol. 6, no. 4,
393-431, November 1988.

[2] Anant Agarwal, Richard L. Sites, and Mark Horowitz, “ATUM: A New Technique for Cap-
turing Address Traces Using Microcode,” in the Proceedings of the 13th International Sym-
posium on Computer Architecture, 119-127, June 1986.

[3] Lars Ole Andersen, Program Analysis and Specialization for the C Programming Language,
Ph.D. dissertation, DIKU, University of Compenhagen, Denmark, May 1994.

[4] Peter Holst Anderson, “Partial Evaluation Applied to Ray Tracing,” University of Copen-
hagen, DIKU, January 1993.

[5] Kristy Andrews and Duane Sand, “Migrating a CISC Computer Family onto RISC via
Object Code Translation,” in the Proceedings of the 5th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-V), 213-
222, October 1992.

[6] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N. Bershad,
“Fast, Effective Dynamic Compilation,” in the Proceedings of the ACM SIGPLAN confer-
ence on Programming Language Design and Implementation (PLDI), May 1996.

[7] Romana Baier, Robert Glük, Robert Zöchling, “Partial Evaluation of Numerical Programs in
Fortran,” in ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (, ed.), pp. 119-132, Volume 94/9 of Technical Report, University of Mel-
bourne, Australia, 1994.

[8] Robert A. Baumann, “Z80MU,” Byte, 203-216, Oct. 1986.

[9] Robert Bedichek, “Some Efficient Architecture Simulation Techniques,” USENIX’88.

[10] Robert C. Bedichek, “Talisman: Fast and Accurate Multicomputer Simulation,” MIT, 1995.

[11] Anita Borg, R. E. Kessler, and David W. Wall, “Generation and Analysis of Very Long
Address Traces,” in the Proceedings of the 17th Annual Symposium on Computer Architec-
ture, 270-279, May 1990.

[12] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl, “PRO-
TEUS: A High-Performance Parallel-Architecture Simulator,” MIT/LCS/TR-516, Massa-
chusetts Institute of Technology, 1991.

285

[13] Doug Burger, and Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Tech Report
#1342, University of Wisconsin-Madison, Department of Computer Sciences, June, 1997.

[14] Craig Chambers, David Ungar, and Elgin Lee, “An Efficient Implementation of SELF, a
Dynamically-Typed Object-Oriented Language Based on Prototypes,” OOPSLA '89 Pro-
ceedings, 49-70, October 1989.

[15] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony Tye, S.
Bharadwaj Yadavalli, John Yates, “FX!32 a profile-directed binary translator,” in IEEE
Micro, vol. 18, no. 2, 56-64, March-April 1998.

[16] F. Chow, M. Himelstein, E. Killian, and L. Weber, “Engineering a RISC Compiler System,”
IEEE COMPCON, March 1986.

[17] Bob Cmelik, and David Keppel, “Shade: A Fast Instruction-Set Simulator for Execution
Profiling,” in the Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May 1994.

[18] Charles Consel, Luke Hornof, François Noël, Jacques Noyé, and Nicolae Volanschi, “A Uni-
form Approach for Compile-time and Run-time Specialization,” Rapport de recherche N°
2775, Institut National de Recherche en Informatique et en Automatique (INRIA), France,
1996.

[19] Charles Consel and François Noël, “A General Approach for Run-Time Specialization and
its Application to C,” in the Proceedings of the 23rd Annual ACM SIGPLAN-SIGACT Con-
ference on Principles Of Programing Languages (POPL), St. Petersburg Beach, FL, 145-
156, January 1996.

[20] T. M. Conte, Systematic Computer Architecture Prototyping, Ph.D. Thesis, Department of
Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, 1992.

[21] R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair, “The Rice Parallel Pro-
cessing Testbed,” ACM SIGMETRICS, 4-11, 1988.

[22] E. S. Davidson, L. E. Shar, A. T. Thomas, and J. H. Patel, “Effective Control for Pipelined
Computers,” in the Spring COMPCON’75 Digest of Papers, 181-184, February 1975.

[23] Peter Davies, Philippe LaCroute, John Heinlein, and Mark Horowitz, “Mable: A Technique
for Efficient Machine Simulation,” (to appear), Quantum Effect Design, Inc., and Stanford
University.

[24] Peter Deutsch and Alan M. Schiffman, “Efficient Implementation of the Smalltalk-80 Sys-
tem,” in the Proceedings of the 11th Annual Symposium on Principles of Programming Lan-
guages, 297-302, Jan. 1984.

286

[25] S. Devadas, S Malik, K. Keutzer, and A. Wang, “Event Suppression: Improving the Effi-
ciency of Timing simulation for Synchronous Digital Circuits,” in IEEE Transactions on
Computer-Aided Design, vol. 13, 814-822, June 1994.

[26] Susan J. Eggers, David Keppel, Eric J. Koldinger, and Henry M. Levy, “Techniques for Effi-
cient Inline Tracing on a Shared-Memory Multiprocessor,” ACM SIGMETRICS, 37-47, May
1990.

[27] Alexander E. Eichenberger and Edward S. Davidson, “A Reduced Multipipeline Machine
Description that Preserves Scheduling Constraints,” in the Proceeding of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI), Phila-
delphia, PA, 12-22, May 1996.

[28] Richard M. Fujimoto and William B. Campbell, “Efficient Instruction Level Simulation of
Computers,” in Transactions of The Society for Computer Simulation, 5(2): 109-124, 1988.

[29] Stephen R. Goldschmidt and John L. Hennessy, “The Accuracy of Trace-Driven Simula-
tions of Multiprocessors,” CSL-TR-92-546, Stanford University Computer Systems Labora-
tory, Sepember 1992.

[30] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers,
“Annotation-Directed Run-Time Specialization in C,” in the Proceedings of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), 163-178, 1997.

[31] John C. Gyllenhaal, Wen-mei W. Hwu, and B. Ramabriohna Rau, “Optimization of Machine
Descriptions for Efficient Use,” in the Proceedings of the 29th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 349-358, 1996.

[32] Reed Hastings and Bob Joyce, “Purify: Fast Detection of Memory Leaks and Access
Errors,” in the Proceedings of the Winter Usenix Conference, 125-136, Jan. 1992.

[33] John Hennessy and David Patterson, Computer Organization and Design: The Hardware-
Software Interface (Appendix A, by James R. Larus), Morgan Kaufman, 1993.

[34] Steve Herrod, Mendel Rosenblum, Edouard Bugnion, Scott Devine, Robert Bosch, John
Chapin, Kinshuk Govil, Dan Teodosiu, Emmett Witchel, and Ben Verghese, “The SimOS
Simulation Environment,” Computer Systems Laboratory, Stanford University, 1996.

[35] N. D. Jones, C. Gomard, and P. Sestoft, Partial Evaluation and Automatic Program Genera-
tion, Prentice Hall, 1993.

[36] R. E. Kessler, Mark D. Hill, and David A. Wood, “A Comparison of Trace Sampling Tech-
niques for Multi-Megabyte Caches,” in IEEE Transactions on Computers, vol. 43, no. 6,
664-675, June 1994.

287

[37] Subhasis Laha, Janak H. Patel, and Ravishankar K. Iyer, “Accurate Low-Cost Methods for
Performance Evaluation of Cache Memory Systems,” in IEEE Transactions on Computers,
vol. 37, no. 11, 1325-1336, November 1988.

[38] James R. Larus and Thomas Ball, “Rewriting Executable Files to Measure Program Behav-
ior,” Software - Practice and Experience, 24(2): 197-218, February 1994.

[39] James R. Larus and Eric Schnarr, “EEL: Machine-Independent Executable Editing,” in the
Proceedings of the ACM SIGPLAN ‘95 Conference on Programming Language Design and
Implementation (PLDI), June 1995.

[40] G. Lauterbach, “Accelerating Architecture Simulation by Parallel Execution,” in the Pro-
ceedings of the 27th Hawaii International Conference on System Science, Maui, HI, January
1994.

[41] Peter Lee and Mark Leone, “Optimizing ML with Run-Time Code Generation,” in the Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 137-148, May 1996.

[42] Mark Leone and Peter Lee, “Lightweight Run-Time Code Generation,” in the Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM), 97-106, June 1994.

[43] Peter S. Magnusson, “A Design For Efficient Simulation of a Multiprocessor,” in the Pro-
ceedings of the First International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), La Jolla, California, January 1993.

[44] Peter S. Magnusson, “Partial Translation,” Swedish Institute of Computer Science, March
1994.

[45] Peter S. Magnusson, Fredrik Dahlgren, Håkan Grahn, Magnus Karlsson, Fredrik Larsson,
Fredrik Lundholm, Andreas Moestedt, Jim Nilsson, Per Stenström, and Bengt Werner,
“SimICS/sun4m: A Virtual Workstation,” in Usenix Annual Technical Conference, New
Orleans, Louisiana, June 1998.

[46] Cathy May, “Mimic: A Fast S/370 Simulator,” in the Proceedings of the ACM SIGPLAN
1987 Symposium on Interpreters and Interpretive Techniques; SIGPLAN Notices, 22(6): 1-
13, June 1987.

[47] Robin Milner, “A theory of Type Polymorphism in Programming,” in the Journal of Com-
puter and System Sciences, 17(3): 348-375, December 1978.

[48] MIPS, Languages and Programmer's Manual, MIPS Computer Systems, Inc., 1986.

288

[49] Torben Mogensen, The Application of Partial Evaluation to Ray Tracing, Masters Thesis,
DIKU, University of Copenhagen, Denmark, 1986.

[50] Gilles Muller, Eugen-Nicolae Volanschi, and Renaud Marlet, “Scaling up Partial Evaluation
for Optimizing the Sun Commercial RPC Protocol,” in the Proceedings of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), Amsterdam, The Netherlands, 116-126, June 1997.

[51] Thomas Müller, “Employing Finite Automata for Resource Scheduling,” in the Proceedings
of the 26th Annual International Symposium on Microarchitecture, 12-20, 1993.

[52] Robert D. Nielsen, “DOS on the Dock,” NeXTWorld, 50-51, Mar./Apr. 1991.

[53] Soner Önder and Rajiv Gupta, “Automatic Generation of Microarchitecture Simulators,” in
the IEEE International Conference on Computer Languages (ICCL98), Chicago, May 1998.

[54] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve, “RSIM: An Execution-Driven
Simulator for ILP-Based Shared-Memory Multiprocessors and Uniprocessors,” in the Pro-
ceedings of the 3rd Workshop on computer Architecture Education (held in conjunction with
the 3rd International Symposium on High Performance Computer Architecture), February
1997.

[55] Kwang Il Park and Kyu Ho Park, “Event Suppression by Optimizing VHDL Programs,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 17,
No. 8, 682-691, August 1998.

[56] A. Poursepanj, “The PowerPC Performance Modeling Methodology,” in communications of
the ACM, vol. 37, no. 6, 47-55, June 1994.

[57] Calton Pu, Andrew Black, Crispin Cowan, and Jonathan Walpole. "Microlanguages for
Operating System Specialization". in the Proceedings of the SIGPLAN Workshop on
Domain-Specific Languages, Paris, France, January 1997.

[58] Calton Pu, Tito Autrey, Andrew Black, Charles Consul, Crispin Cowan, Jon Inouye, Lak-
shmi Kethana, Jonathan Walpole, and Ke Zhang, “Optimistic Incremental Specialization:
Streamlining a Commercial Operating System,” in the Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), ACM Operating Systems Reviews, 29(5), 314-
324, December 1995.

[59] Calton Pu, Henry Massalin, and John Ioannidis, "The Synthesis Kernel", in Computing Sys-
tems, University of California Press, 1(1):11-32, Winter 1988.

[60] Norman Ramsey and Mary Fernandez, “The New Jersey Machine-Code Toolkit,” in the
Proceedings of the USENIX Technical Conference, New Orleans, LA, 289-302, January
1995.

289

[61] R. Razdan, G. P. Bischoff, and E. G. Ulrich, “Clock Suppression Techniques for Synchro-
nous Circuits,” in IEEE Transactions on Computer-Aided Design, vol. 12, pp. 1457-1556,
October 1993.

[62] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood, “The
Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers on Measurement and
Modeling of Computer Systems,” ACM SIGMETRICS, 48-60, June 1993.

[63] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood, “Decoupled Hardware Support
for Distributed Shared Memory,” in the Proceedings of the 23rd International Symposium
on Computer Architecture (ISCA), May 1996.

[64] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod, “Using the
SimOS Machine Simulator to Study Complex Computer Systems,” in ACM Transactions on
Modeling and computer Simulation, vol. 7, no. 1, 78-103, January 1997.

[65] Eric Schnarr and James R. Larus, “Fast Out-Of-Order Processor Simulation Using
Memoization,” in the Eighth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-VIII), San Jose, California, October
4-7, 1998.

[66] Gabriel M. Silberman and Kemal Ebciog–lu, “An Architectural Framework for Supporting
Heterogeneous Instruction Set Architectures,” IEEE Computer, 39-56, June 1993.

[67] Richard L. Sites, Anton Chernoff, Matthew B. Kerk, Maurice P. Marks, and Scott G. Robin-
son, “Binary Translation,” CACM, 36(2): 69-81, February 1993.

[68] Rok Sosic, “Dynascope: A Tool for Program Directing,” in the Proceedings of the 1992
ACM Conference on Programming Language Design and Implementation (PLDI), 12-21,
June 1992.

[69] Amitabh Srivastava and Alan Eustace, “ATOM: A System for Building Customized Pro-
gram Analysis Tools,” WRL Research Report 94/2, Western Research Laboratory, Digital
Equipment Corporation, 1994.

[70] H. S. Stone, High-Performance Computer Architecture, second ed., Reading, MA, Addison-
Wesley, 1990.

[71] Craig B. Stunkel, Bob Janssens, and W. Kent Fuchs, “Address Tracing of Parallel Systems
via TRAPEDS,” Microprocessors and Microsystems, 16(5): 249-261, 1992.

[72] Sun Microsystems, The SPARC Architecture Manual (Version 8), December 1990.

290

[73] Jack E. Veenstra and Robert J. Fowler, “MINT: A Front End for Efficient Simulation of
Shared-Memory Multiprocessors,” in the Proceedings of the Second International Work-
shop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 201-207, January 1994.

[74] Darren Erik Vengroff, Kenneth Simpson, and Guang R. Gao, “Non-Clustered Statistical
Trace Sampling for Large Cache Design Space Exploration,” in the Proceedings of the
Workshop on Performance Analysis and its Impact on Design (PAID), Denver, Colorado,
June 1997.

[75] Eugen N. Volanschi, Charles Counsel, Gilles Muller, and Crispin Cowan, “Declarative Spe-
cialization of Object-Oriented Programs,” in the Proceedings of the ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages and Applications (OOPSLA),
Atlanta, GA, 286-300, October 1997.

[76] Edward Wang and Paul N. Hilfinger, “Analysis of Recursive Types in Lisp-like Languages,”
in the Proceeding of the Conference on Lisp and Functional Programming, San Francisco,
CA, 216-225, June 1992.

[77] Qiang Wang and David M. Lewis, “Automated Field-Programmable Compute Accelerator
Design Using Partial Evaluation,” in the Proceedings of the IEEE Symposium on Field-Pro-
grammable Custom Computing Machines, 145-154, 1997.

[78] SPARC International, Inc., The SPARC Architecture Manual Version 9, edited by David L.
Weaver and Tom Germond, PTR Prentice Hall, 1994.

[79] John C. Willis and Daniel P. Siewiorek, “Optimizing VHDL Compilation for Parallel Simu-
lation,” in IEEE Design & Test of Computers, vol. 9, issue 3, 42-53, September 1992.

[80] D. A. Wood, M. D. Hill, and R. E. Kessler, “A Model for Estimating, Trace-Sample Miss
Ratios,” in the Proceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 79-89, 1991.

[81] Yeager, “The Mips R10000 Superscalar Microprocessor,” in IEEE Micro, April 1996.

