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Abstract

As processor cycle times decrease, memory system performance becomes ever more
critical to overall performance. Continually changing technology and workloads create a
moving taget for computer architects in theifat to design cost-é&fctive memory sys-
tems. Meeting the demands of ever changing workloads and technology requires the fol-
lowing:

» Efficient techniques for evaluating memory system performance,
e Tuning programs to better use the memory system, and

« New memory system designs.
This thesis makes contributions in each of these areas.

Hardware and software developers rely on simulation to evaluate new ideas. In this the-
sis, | present a new interface for writing memory system simulatorsaethee memory
abstraction—designed specifically for simulators that process memory references as the
application executes and avoids storing them to tape or disk. Active memory allows simu-
lators to optimize for the common case, e.g., cache hits, achieving simulation times only
2-6 times slower than the original un-instrumented application.

The eficiency of the active memory abstraction can be used by software designers to
obtain information about their prograsnmemory system behavior—called a cache pro-
file. In this thesis, using the CProf cache profiling system, | show that cache profiling is an
effective means of improving uniprocessor program performance by focusing a program-
mer's attention on problematic code sections and providing insight into the type of pro-
gram transformation to appl¥xecution time speedups for the programs studied range
from 1.02 to 3.46, depending on the machimaemory system.

The third contribution of this thesis dynamic self-invalidatiofDSI), a new technique
for reducing coherence overhead in shared-memory multiprocessors. The fundamental
concept of DSI is for processors to automatically replace a block from their cache before
another processor wants to access the block, allowing the directory to immediately
respond with the data. My results show that, under sequential consistency DSI can reduce
execution time by as much as 41% and under weak consistency by as much as 18%. Under
weak consistengyDSI can also exploit teaff blocks—which eliminate both invalidation
and acknowledgment messages—for a total reduction in messages of up to 26%.
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Chapter 1

Intr oduction

1.1 Motivation

Technological advances have enabled the implementation of microprocessors with clock
cycle times similar to supercomputers. As a current example, the Digital Equipment Cor-
poration Alpha 2164 microprocessor [21] has a 3.3ns clock cycle time, while the Cray
Research, Inc. T90 supercomputer has a 2ns cycle time [32]. The sfeadirdié in cycle
times, together with the ability to produce multiple floating point results per cycle [31],
implies that the peak performance of microprocessors is approaching that of supercomput-
ers.

Unfortunately the memory system performance of microprocessors is not comparable to
that of supercomputers, creating a significant gap in sustained execution rates. Fast pro-
cessors require fast memory accesses to achieve peak performance; supercomputers
achieve this by using vast amounts of expensive static RAM (SRAM). Unforturtaisly
approach is too expensive for most users, who require a more feasivefsolution.

Dynamic RAM (DRAM) is a cheapgbut slower alternative to SRAM. Howeyer
memory system built entirely out of DRAM could not satisfy the access time requirements
of fast processors. Instead, computer architects utilize cache memories to create a cost-
effective alternative to supercomputer memory systems. Caches are a technique for using
a small amount of fast SRAM in combination withgleramounts of slownexpensive
DRAM.
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Caches sit between the (fast) processor and (gh@wpensive) main memaqrgnd hold
regions of recently referenced main memdReferences satisfied by the cache—called
hits—proceed at processor speed; those unsatisfied—aualt=s®s—incur a cache miss
penalty to fetch the corresponding data from main ment@aghes work because most
programs exhibit significant localitfemporallocality exists when a program references
the same memory location multiple times in a short period. Caches exploit temporal local-
ity by retaining recently referenced dat@patial locality occurs when the program
accesses memory locations close to those it has recently accessed. Caches exploit spatial
locality by fetching multiple contiguous words—-eache block-whenever a miss occurs.

Since a cache satisfies most references, a destieé memory system can be designed
by using slowerless expensive memory chips for main memohys approach sacrifices
performance for lower costoTachieve supercomputer performance, multiple cdstef
tive microprocessors can be connected into a multiprocessor system [31]. Cache-coherent
shared-memory multiprocessors exploit the fast access times of cache memories by allow-
ing shared data to reside in a microprocésstache. Most of these systems implement a
coherence policy to ensure that a processor does not reference stale data.

Although caches are a cosfegftive alternative to supercomputer memory systems, no
single memory system design satisfies all requirements. Each generation of microproces-
sors places new constraints (e.g., chip area, access time) on cache design, and architects
continually search for the most costeetive solution. Meeting the demands of ever
changing technology and workloads, to achieve good memory system performance,
requires the following three components. First, new techniquesfffoiently evaluating
memory system performanoeustbe developed. Second, programiaenusttune their
programs memory system behavior to better use the memory system. Third, architects
mustcontinually design new memory systems.

This thesis makes contributions in each of these three areas, with a focus on cache mem-
ories.Active memorys a new approach for rapidly simulating memory systems, designed
specifically for on-the-fly memory system simulators that process memory references as
the application execute€Prof, my second contribution, is a tool that uses simulation to
provide insight on a programimemory system performance, allowing the programmer to
restructure their code to improve localitthe current implementation of CProf uses active
memory to diciently simulate the desired memory system. The final contribution of this
thesis isdynamic self-invalidationa new memory system design for cache-coherent
shared-memory multiprocessors that reduces the overhead of ensuring that a processor
does not reference stale data. The following sections describe each of these contributions
in more detail.



1.2 Active Memory

There are many alternatives for evaluating memory system performance, each having
advantages and disadvantages. At one extreme, hardware prototyping permits the accurate
evaluation of a particular design. Unfortunatélys expensive, time consuming, and only
allows evaluation of one design. At the other extreme is analytical modeling, which per-
mits rapid evaluation of a Ige design space. Howeydris difficult to accurately model
memory system behavidnstead, designers often use discrete event simulations that sim-
ulate the memory system behavior for each memory access in an application program.

Current simulation techniques are discouragingly slow; simulation times can be as much
as two or three orders of magnitude slower than the execution time of the original pro-
gram. Fortunatelysimulation times can be reduced using a new simulation abstraction.
This thesis examineactive memory47], a new memory system simulation abstraction
designed specifically for on-the-fly simulation.

Conventional simulators rely on theference traceabstraction: a reference generator
produces a list of addresses that are processed by the simUkese simulators incur
significant overhead for each memory reference, even though the common case in many
simulations—cache hits—require no action by the simuladative memory allows
implementations to optimize for this common case, by tightly integrating reference gener-
ation and simulation. In this abstraction, memory is logically partitioned into fixed-size
blocks, each with a useefined state. Each memory reference logically invokes a user
specified function depending on the referemdgpe and current state of the accessed
memory block. Simulators control which function gets invoked by manipulating the mem-
ory block states. The abstraction provides a predefined function that simulator writers can
specify for the common, no-action case. Active memory implementations can optimize
this no-action function depending on available system features (e.g., in-line software
checks, or error correcting code (ECC) bits and fast traps.)

Fast-Cache, my all software implementation of the active memory abstraction for
SFARC processors, eliminates unnecessary instructions for the no-action case. As few as
3 cycles are required for the critical no-action case on a SupR(SProcessor by using a
simple in-line table lookup of the appropriate memory block state. Using Fast-Cache, sim-
ple data cache simulations (i.e., counting misses for a direct-mapped cache) execute only
2 to 6 times slower than the original program on ARBPstation 10/51. This is two to
three times faster than published numbers for highly optimized trace-driven simulators
[71].

As the importance of memory hierarchy performance increases, hardware and software
developers will increasingly rely on simulation to evaluate new ideas. The active memory
abstraction provides the framework necessary ficiefitly perform these simulations
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when more than 80% of the memory references do not require action by the simulator
Most interesting memory system designs fall into this range.

1.3 CProf

New cache memory designs can improve performance on future machines but do not
help programmers that must use existing machines. Furthermore, caches only work well
for programs that exhibit sigient spatial and temporal localitiP?rograms with unruly
access patterns spend much of their time transferring data to and from the odalig. T
exploit the performance potential of fast processors, cache behavior must be explicitly
considered and codes restructured to increase locality

Although compilers can perform this restructuring for some codes (e.g. regular scientific
applications) [41,57] most programs are too complex for compilers to analyze. Therefore,
programmers must be aware of their progsao@che behavior and restructure their code
to better use the memory hierarciig accomplish this, programmers must be given more
than a simple indication of where their progranfemsffrom poor cache behaviopre-
grammers must be given insight on how to fix cache performaobkeprs

Traditional execution time profilers are infscient for this purpose, since they generally
ignore cache performance. Instead, the programmer needs a profile that focuses specifi-
cally on a prograns’ cache behavipidentifying problematic code sections and data struc-
tures and providing insight for determining which program transformations will improve
performance.

This thesis describes CProf, a cache profdad some of the techniques that program-
mers can use to improve cache performance [46]. CProf maps cache misses to individual
source code lines and data structures. It also provides information on the cause of the
cache misses by classifying them according to HHBIC model [30]. By knowing the
cause of the cache misses, programmers gain insight for determining which program
transformations are likely to improve cache performance. Most of the transformations are
well known and include array ngng, padding and aligning structures, structure and
array packing, loop interchange, loop fusion, and blocking.

Using CProf and the set of simple transformations, | show how to tune the cache perfor-
mance of six of the SPEC92 benchmarks. Restructuring their source code greatly
improves cache behavior and achieves execution time speedups ranging from 1.02 to 3.46.
The speedup depends on the macking@mory system, with greater speedups obtained in
the Fortran programs which generally produced non-sequential access patterns when tra-
versing arrays.

Cache performance will become more important as processor cycle times continue to
decrease faster than main memory cycle times. CProf provides cache performance infor-
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mation at the source line and data structure level allowing programtaedentify prob-
lematic code sections. The insight CProf provides helps programmers determine
appropriate program transformations that improve a prograathe performance. This
makes tools like CProf a valuable component of a prograisnaal box.

1.4 Dynamic Self-Invalidation

Microprocessors are designed for a high volume market and sacrifice performance for
lower cost. Therefore, a single microprocessor is unlikely to achieve sustained perfor-
mance equal to supercomputers. Instead, system designers attempt to achieve this perfor-
mance by connecting multiple microprocessors and exploiting parallelism. Although there
are many dierent approaches for designing multiprocessors (e.g., message passing,
shared-memorydata parallel), in this thesis | focus on the memory system of cache coher-
ent shared-memory multiprocessors.

Shared-memory multiprocessors simplify parallel programming by providing a single
address space even when memory is physically distributed across many workstation-like
processor nodes. Cache coherent shared-memory multiprocessors use caches to automati-
cally replicate and migrate shared data and implement a coherence protocol to maintain a
consistent view of the shared address space [9,28,40,49].

Conventional invalidation-based protocols send messages to explicitly invalidate out-
standing copies of a cache block whenever a processor wants to modify it. The perfor-
mance of these protocols could improve if we could eliminate the invalidation messages
without changing the memory semantics. This can be accomplished by having processors
replace the appropriate block from their cache just before another processor wants to mod-
ify it. This would allow the processor to immediately obtain the data, eliminating the need
to send an invalidation message. Having processelfsinvalidate blocks from their
cache, instead of waiting for an invalidation message, would reduce latency and band-
width requirements, potentially improving performance. Howeifethe block is self-
invalidated too earlyperformance could decrease because of additional cache misses.

This thesis investigatel/namic self-invalidatiogDSI) [48], a new technique for reduc-
ing cache coherence overhead in shared-memory multiprocessors. DSI eliminates invali-
dation messages by having a processor automatically invalidate its local copy of a cache
block before a conflicting access by another proceBsSiris applicable to software, hard-
ware, and hybrid coherence schemes. In this thesis | evaluate DSI in the context of hard-
ware coherence protocols.

| investigate several practical techniques for dynamically identifying which blocks to
self-invalidate and for the cache controller to self-invalidate the blocks. My results show
that DSI reduces execution time of a sequentially consistent [42] full-map coherence pro-
tocol by as much as 41%. This performance impact is comparable to using an implementa-
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tion of weak consistency [2,20,24] with a coalescing writddoufo allow up to 16
outstanding requests for exclusive blocks. When used in conjunction with weak consis-
tency DSI can exploit teaoff blocks—which eliminate both invalidation and acknowl-
edgment messages—for a total reduction in messages of up to 26%. Although my results
indicate that DSI decreases execution time in a limited number of cases, reducing the
number of messages in the system reduces contention in the network and at the directory
controller which may reduce execution time on other systems.

DSI is a general technique, applicable to hardware [49], software [36,63], and hybrid
[40,61] cache coherent shared-memory multiprocessors. Current trends in parallel archi-
tectures, e.qg., faster processors angelacaches, can make coherence overhead a signifi-
cant fraction of execution time. If this trend continues, DSI should be of increasing
benefit.

1.5 Thesis Organization

This thesis is @anized as follows. Chapt2rdescribes the active memory abstraction
and analyzes the performance of my implementation (Fast-Cache). Chajdeusses
cache profiling and shows how | used CProf to tune performance of six of the SPEC
benchmarks. Dynamic self-invalidation is examined in Chapt&hapters 2, 3 and 4 of
this thesis are based on previous publications. Ch&gjares conclusions and suggests
areas for future work. Appendix A provides details on Fast-Cadnglementation.
Appendix B describes the dynamic self-invalidation cache coherence protocols.



Chapter 2

Active Memory

2.1 Introduction

Simulation is the most-widely-used method to evaluate memory-system performance.
However current simulation techniques are discouragingly slow; simulation times can be
as much as two or three orders of magnitude slower than the execution time of the original
program. Gee, et al. [23], estimate th@tmonthsof processing time were used to obtain
miss ratios for the SPEC92 benchmarks [70].

Fortunately simulation times can be reduced using a new simulation abstraction. The
traditional approach—trace-driven simulation—employ®f@ence traceabstraction: a
reference generator produces a list of memory addresses that the program references and
is processed by the simulator (see FigreThis abstraction hides the details of reference
generation from the simulatdsut introduces significant overhead (10-21 processor cycles
on a SuperSARC processor) that is wasted in the common case, e.g., a cache hit, in which
the simulator takes no action on the reference. In the Gee, et al,, ¥eayf the refer-
ences required no simulator action for a 16 kilobyte cache.

This chapter examinesctive memory a new memory system simulation abstraction
designed specifically for on-the-fly simulators that process memory references as the
application executes. Active mempdescribed in Sectia® 3, provides a clean interface
that hides implementation details from the simulator wriet allows a tight coupling
between reference generation and simulation. In this abstraction, each memory reference
logically invokes a usespecified function depending upon the referentgpe and the
current state of the accessed memory block. Simulators control which function is invoked

1. “Active memory” has also been used to describe the placement of processing logic next to mem-
ory. There is no connection between these terms.



All Addresses
>

Application / Simulator

Tape or Disk
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by manipulating the states of the memory block. The abstraction provides a predefined
function (NULL) that simulator writers can specify for the common, no-action case.
Active memory implementations can optimize this NULL function depending on avail-
able system features (e.g., in-line software checks, or error correcting code (ECC) bits and
fast traps.)

Consider an active memory simulator that counts cache misses. It can represent blocks
that are present in the cachevafid, and all others asvalid. References twalid blocks
invoke the predefined NULL hand]ewxhile references tmvalid blocks invoke a user
written misshandler The miss handler counts the miss, selects a victim, and updates the
state of both the replaced and referenced blocks. Multiple alternative caches can be simu-
lated by only marking blockegalid if they are present in all caches. Since most references
are tovalid blocks, an active memory implementation with an optimized NULL handler (3
cycles for the Fast-Cache system described below) could allow an active memory simula-
tor to execute much faster than one using the traditional trace abstraction (10 cycles for the
no-action case).

| have implemented active memory in thast-Cachesimulation system, which elimi-
nates unnecessary instructions in the common no-action case. Measurements on a
SFARCstation 10/51 show that simple data-cache simulations run only 2 to 6 times slower
than the original program. This is comparable to many execution-time profilers and two to
three times faster than published numbers for highly optimized trace-driven simulators
[71].

As described in Sectiah4, Fast-Cache fgiently implements this abstraction by
inserting 9 SRRC instructions before each memory reference to look up a memory
block’s state and invoke the ussyecified handleif the lookup invokes the NULL han-
dler, only 5 of these instructions actually execute, completing in as few as 3 cycles
(assuming no cache misses) on a Sup&R&Pprocessor

Section2.5 analyzes the performance of Fast-Cache by modelingféotsedf the addi-
tional lookup instructions. | use this simple model to qualitatively show that Fast-Cache is
more eficient than simulators that use hardware support to optimize no action cases—
unless the simulated miss ratio is very small (e.g., less than 3%). Sinlilghigw that
Fast-Cache is morefefient than trace-driven simulation except when the miss ratio is
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very lage (e.g., greater than 20%). These results indicate that Fast-Cache is likely to be
the fastest simulation technique over much of the interesting cache memory design space.

Section2.6 extends this model by incorporating the cache pollution caused by the addi-
tional instructions inserted by Fast-Cache. For data caches, | use an approximate bounds
analysis to show that—for the Fast-Cache measurements onARECSHtion 10—data
cache pollution introduces at most a factor of 4 slowdown (over the original program). A
simple model—that splits the tBfence between the two bounds—predicts the actual per-
formance within 30%. For instruction caches, | show that the instrumented codes are
likely to incur at least 8 times as many instruction misses as the original code. For most of
the applications, the SuperSRC first-level instruction cache miss ratios were so small,
that this lage increase had no appreciablieef on execution time. Howeversne pro-
gram with a relatively laye instruction cache miss ratio incurs noticeable additional slow-
downs. D address this problem, | present an alternative implementation, Fast-Cache-
Indirect, that reduces code dilation to 2 static instructions at the expense of 3 more instruc-
tions for the “no action” case.

Section2.7 discusses how to use the active memory abstraction for simulation more
complex than simple miss counting.

2.2 Backgiound

Memory-system simulation is conceptually simple. For each memory reference issued
by the processpthe system must:
1. compute the ééctive address

2. look up the action required for that reference

3. simulate the action, if any

Traditionally, the first step was consideredfidiilt and ineficient, usually requiring
either expensive hardware monitors or slow instruction-level simulators [33]. The refer-
ence trace abstraction helped amortize this overhead by cleanly separating reference gen-
eration (step 1) from simulation (steps 2-3). As illustrated in Fibureference traces
can be saved and reused for multiple simulations, with the added benefit of guaranteeing
reproducible results.

Many techniques have been developed to improve trace-driven simulation time by
reducing the size of reference traces. Some accomplish this by filtering out references that
would hit in the simulated cache. Smith [66] proposed deleting referencesrtoribst
recently used blocks. The subsequent trace can be used to obtain approximate miss counts
for fully associative memories that use LRU replacement with morentb&tks. Puzak
[58] extended this work to set-associative memories by filtering references to a direct-
mapped cache.
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Figure 2: On-The-Fly Simulator

However software reference generation techniques have improved to the point that
regenerating the trace is nearly agcednt as reading it from disk or tape [43]. On-the-fly
simulation techniqgues—which combine steps 1-3—have become popular because they
eliminate I/O overhead, context switches, anddastorage requirements [19,57,13,6].

Most on-the-fly simulation systems work by instrumenting a program to calculate each
references efective address and then invoke the simulator (see FRjureor typical
RISC instruction sets, thefettive address calculation is trivial, requiring at most one
additional instruction per reference. Unfortunatehost on-the-fly simulation systems
continue to use the reference trace abstraction. Although simple, this abstraction requires
that the simulator either (i) perform a procedure call to process each reference, with the
commensurate overhead to save and restore registers [19,57], offéii)thefreference in
memory incurring bufer management overhead and memory system delays caused by
cache pollution [6,73]. Furthermore, this overhead is almost always wasted, because in
most simulations the common case requires no action. For example, no action is required
for cache hits in direct-mapped caches or many set-associative caches with random
replacement. Similarlyno action is required for references to the most recently used
(MRU) block in each set for set-associative caches with least recently used (LRU)
replacement.

Clearly, optimizing the lookup (step 2) to quickly detect these “no action” cases can sig-
nificantly improve simulation performance. MemSpy [51] builds on this observation by
saving only the registers necessary to determine if a reference is a hit or a miss; hits branch
around the remaining register saves and miss processing. Mamgpiymization
improves performance but sacrifices trace-driven simulaticiéan abstraction. The
action lookup code must be written in assembly language, so the appropriate registers may
be saved, and must be modified for eactedtht memory system. Thef®M cache sim-
ulator performs a similar optimization more cleaniging the OM liveness analysis to
detect, and save, callsave registers used in the simulator routines [71]. Howa¥&@M
still incurs unnecessary procedure linkage overhead in the no-action cases.

A recent alternative techniqueap-driven simulation[60,78], optimizes “no action”
cases to their logical extremerap-driven simulators exploit the characteristics of the
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Figure 3: Active Memory Simulator

simulation platform to implementfettive address calculation and lookup (steps 1 and 2)

in hardware using error correcting code (ECC) bits [60] or valid bits in the TLB [78]. Ref-
erences requiring no action run at full hardware speed; other references cause memory
system exceptions that invoke simulation software. By executing most references without
software intervention, these simulators potentially perform much better than other simula-
tion systems.

Unfortunately trap-driven simulation lacks the portability and generality provided by
trace-driven simulation. Portability $afs because these simulators require operating sys-
tem and hardware support that is not readily available on most machines. Generality is
lacking because current trap-driven simulators do not simulate arbitrary memory systems:
the Wisconsin Whd Tunnel [60] does not simulate stack references becauseA&RGP
register windows, while &peworm Il [78] does not simulate any data references because
of write bufers on the DECstation. Furthermore, as | show in Se2timrthe overhead of
memory exceptions (roughly 250 cycles [78,77,59] on well tuned systems) can over-
whelm the benefits of “free” lookups for simulations with non-negligible miss ratios.

Theactive memonrgabstraction—described in detail in the next section—combines some
of the eficiency of trap-driven simulation with the generality and portability of trace-
driven simulation. The central idea is to provide a clean abstraction between steps 1-2 and
step 3. Combining &fctive address generation and action lookup allows the simulation
system to implement the no-action cases without unnecessary overhead; only those refer-
ences requiring action incur the procedure call overhead of invoking the simulator (see
Figure3.) The active memory abstraction hides the implementation of steps 1-2 from the
simulator allowing a variety of implementations for these two steps and allowing the sim-
ulator to be written in a high-level language.

The next section describes the active memory abstraction in detail. S2dtaescribes
my implementation for the SIRC architecture.
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Active Memory Run-Time System Povided

read_state(address) Return block state.

write_state(address,state) Update block state.

User Written (Simulator Functions)

Multiple handlers invoked for

user_handlefaddress,pc) action. Separate handlers for loagds
and stores.

sim_init(agc,agv) Simulator start-up routine

sim_exit() Simulator exit routine

Table 1: Active Memory Interface

2.3 Active Memory

In the active memory abstraction, each memory reference conceptually invokes a user
specified function, called mandler Memory is logically partitioned into aligned, fixed-
size (power of two) blocks, each with a udefined state. Users—i.e., simulator writers—
specify which function gets invoked for each combination of reference kyaé (or
store ) and memory block state. A simulator is simply a set of handlers that control ref-
erence processing by manipulating memory block states, using the interface summarized
in Tablel. This interface defines the active memory abstraction.

Users can identify cases that do not require simulator action by specifying the pre-
defined NULL handlerMaking this case explicit allows the active memory system to
implement this case adfiefently as possible, without breaking the abstraction. The active
memory abstraction could be encapsulated in a trace-driven simulator (see4E)jgure
However eliminating the reference trace abstraction and directly implementing active
memory in on-the-fly simulators allows optimization of the NULL handléhile this
chapter focuses on software implementations, active memory can also be supported using
the same hardware required for trap-driven simulations (see Hgure

The example in Figur® illustrates how to use active memory to implement a simple
data-cache simulation that counts cache misses (more complex simulations are discussed
in Section2.7). The user specifies the cache block si§e@2 bytes) and the functions to
be invoked on each combination of reference and state; d@ada to aninvalid
block invokes theniss_handler  routine. The functiomoaction is the predefined
NULL handler The simple miss handler increments the miss count, selects a victim block
using a usewritten routine (not shown), and then marks the victim block statdid



13

y/////// Action

Active 7/ Cases Only :
Application éMemOfyZ ACté\i/r?r}Maetrgro Y

S stem/<
27

a) Native Active Memory System

N

Action
CasesOnly
ardwar / ases Unly Active Memory

Application Lookup Simulator
/////// -

b) Trap-Driven Implementation

Trace-Driven Simulator

J L Action
NN 7 -
o \Ref\ Trace | b2 Cases Only | active Memory
Application R Ger =¥ Simulator
/— /-
NN .

c) Trace-Driven Implementation

Figure 4: Active Memory Implementations

and the referenced block statid . The usessupplied termination routin@m_ exit
prints the number of misses at the end of thgetaprogram. Note that the simulator is
written entirely in uselevel code in a high-level language.

2.4 Fast-Cache

This section describes Fast-Cache, my implementation of active memoryABRCSP
processors. The active memory abstraction allows Fast-Cache to providieiantefet
general simulation framework by: (i) optimizing cases that do not require simulator
action, (i) rapidly invoking specific simulator functions when action is required, (iii) iso-
lating simulator writers from the details of reference generation, and (iv) providing simu-
lator portability
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I* Active Memory configuration for a simple cache simulation */

lg2blocksize 5 /* log base 2 of the blocksize */

LOADS /* Indicates start of handlers for LOADs */
invalid miss_handler [* user handler to call */

valid noaction [* predefined NULL handler */

STORES /* Indicates start of handlers for SREs */
invalid miss_handler [* user handler to call */

valid  noaction [* predefined NULL handler */

[* Simple Active Memory Handler (pseudo-code) */
miss_handler (Addr address)

{
Miss_count++;
victim_address = select_victim(address);
write_state(address,valid);
write_state(victim_address,invalid);

}

sim_exit()

{
printf(*miss count: %d\n”,miss_count);

}

Figure 5: Simple Data-Cache Simulator Using Active Memory

Conceptuallythe active memory abstraction requires gdaable to maintain the state
of each block of memoryBefore each reference, Fast-Cache checks a blatite by
using the dkctive address as an index into this table and invokes an action only if neces-
sary (see Figuré). Fast-Cache allocates a byte of state per block, thus avoiding bit-shift-
ing, and uses the UNDs$ignal and mmap facilities to dynamically allocate only the
necessary portions of the state table.

Fast-Cache achieves itdiefency by inserting a fast, in-line table lookup before each
memory reference. The inserted code (see Appendix A) computedabivefaddress,
accesses the corresponding state, tests the state to determine if action is required, and
invokes the usewritten handler if necessarfhe SRRC instruction set requires one
instruction to compute thefettive address: a singéeld instruction to compute base plus
offset. This instruction could be eliminated in the case of a zé&etphoweverl do not
currently implement this optimization. An additional instruction shifts tHect¥e
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Figure 6: Fast-Cache Implementation

address to a tablefeét. By storing the base of the state table in an otherwise unused glo-
bal registel1 a third instruction stites to load the state byte. Since the memory block
state indicates what, if angction is required, these three instructions implement steps 1—

2 in the taxonomy of Sectidh?2. | can avoid using the reserved registers by scavenging
temporarily unused registers and add a single instruction to set the table base. This addi-
tional instruction would not add any additional cycles to the lookup on the SWRECSP
processarsince it could be issued in the same cycle as fhetiee address computation

(add) or state table index computatish{ft ).

The code inserted to test the state and determine whether an action is required, depends
on whether the condition codes are live (i.e., contains a value that will be used by a subse-
guent branch instruction). The ARC architecture has a single set of condition codes
which are optionally set as a siddéeet of most ALU instructions. Unfortunatelyhe
SFARC v8 architecture does not provide a simple afidiefit way to save and restore the
condition codes in user mode. Thus, Fast-Cache generates tererdiftest sequences
depending upon whether the condition codes are live or not.

In the common case (50%-98%), the condition codes are dead, and Fast-Cache uses a
simple two instruction sequence that masks out the appropriate bits and branches (loads
and stores must check f@ifent state bits.) | expect the common case to be no action, so
the branch tayet is the next instruction in the original program. If an action is required, the

1. Register %5, %g6 and%g7 are specified as reserved in thdBE Application Binary Inter-
face.
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branch falls through into a four instruction “trampoline” that jumps to the handler stub.
Since | schedule the memory reference in the delay slot of the branch, the critical no-
action path requires 5 instructions for a total of 3 cycles on the SURESE cycles if

the efective address calculation cannot be issued with the preceding instruction). These
numbers are approximate, of course, since inserting additional instructions may introduce
or eliminate pipeline interlocks andfedt the superscalar issue rate [79]. This sequence
could be further optimized on the SupeARE by scheduling independent instructions
from the original program with the Fast-Cache inserted instructions.

If the condition codes are live, | cannot use a branch instruction. Instead, | use the block
state to calculate the address of a handler stub and perform a procedure call. No action
cases invoke a NULL handler (literallyreturn  and anop), which requires 9 instruc-
tions, taking 7 cycles on the SupeAHT.

When action is required, Fast-Cache invokes user handlers through a stub that saves pro-
cessor state. Most of the registers are saved in the normal way usind\RE€ &fgjister
windows. However the stub must save the condition codes, if live, and some of the global
registers because the simulator handlers and the application are created through separate
compilation.

The table lookup instructions could be inserted with any instrumentation methadology
Fast-Cache uses the EEL system [45], which takes an executARE€ ihary file, adds
instrumentation code, and produces an executable that runs on the same machine. Fast-
Cache minimizes perturbation by providing a separate data segment and library routines
for the simulatar

2.5 Qualitative Analysis

In this section | use a simple model to qualitatively compare the performance of Fast-
Cache to trace-driven and trap-driven simulators. In Se2t@nl extend this model to
incorporate cache interferencéeets and use it to analyze the performance of Fast-Cache
in more detail.

For the comparison in this section, | focus on a simple miss-count simulation for direct-
mapped data caches with 32-byte blocks—calledatgetcache. © simplify the discus-
sion, | lump eflective address calculation and action lookup into a siloglkeup term.
Similarly, I lump action simulation and metric update into a singks pocessingerm.

For trace-driven simulation, | consider two on-the-fly simulators: one invokes the simu-
lator for each memory reference (via procedure call) [71,51], and oferdefective
addresses, invoking the simulator only when théelous full. To maintain a clean inter-
face between the reference generator and the simubmtmessor state is saved before
invoking the simulator
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The procedure call implementation inserts two instructions before each memory refer-
ence that compute thefedtive address and jump to a stub; the stub saves processor state,
calls the simulatorthen restores the state. The stub uses tARGRegister windows to
save most of the state with a single instruction, but must explicitly save several global reg-
isters and the condition codes, if live. Since saving and restoring condition codes takes
multiple instructions on $H¥RC, my implementation jumps to a separate streamlined stub
when they are dead (see Appendix A). On a SupdREPprocessorthe lookup overhead
is roughly 21 cycles when | can use the streamlined stub. Most of this overhead is the pro-
cedure call linkage, which could be reduced using techniques similarQdM’A. The
actual lookup for a direct-mapped cache is little more than the shift-load-mask-compare
sequence used by Fast-Cache. Whengetaniss does occuthe additional overhead for
miss processing is very 10\8 cycles, because the lookup has already found the appropri-
ate entry in the cache data structure. Because trace-driven simulation incgesl@olaup
overhead, performance will depend primarily on the fraction of instructions that are mem-
ory references. Conversglgecause the miss processing overhead is soitlisvalmost
independent from the @&t cache miss ratio.

The bufered implementation inserts 7 instructions before each memory reference (see
Appendix A). Only 5 of these instructions are required to store an entry in fiee bafl
they execute in only 3 cycles on a Sup&iS€ (assuming no cache misses). These five
instructions compute the fettive address, store it in the feif increment the bédr
pointer compare the btdr pointer to the end of the hef, and branch if the bfdr is not
full. The fall through of the branch (the remaining two instructions) is a procedure call to
the simulator routine that processes the entries in tHerbReading an entry from the
buffer and checking the cache data structure requires 7 cycles with an additional 2 cycles
for a taget cache miss. The overhead of invoking the simulator is amortized over 1024
memory references, essentially eliminating it from the lookup overhead, resulting in a
total of 10 cycles to perform the lookup. An alternative implementation could use a signal
handler that is invoked when the farfis full. Howevey this approach would eliminate
only one cycle from the lookup and incur significanthg&aroverhead when the bberf is
full. Like the procedure call implementation, | expect this technique to be mostly depen-
dent on the fraction of instructions that are memory references with very little dependence
on the miss ratio. Howevgethis technique should be significantly fasgnce it has one
half the lookup overhead per reference.

Trap-driven simulators represent the other extreme, incurring no overhead for cache
hits. Unfortunatelytaiget cache misses cause memory system exceptions that invoke the
kernel, resulting in miss processing overhead of approximately 250 cycles on highly tuned
systems [78,77,59]. Therefore, trap-driven simulation performance will be highly depen-
dent on the tayet miss ratio. It will exceed the performance of alternative simulators only
for suficiently low miss ratios.



Miss Dependence Dependence
Method Lookup . on fraction of PE )
processing references on miss ratio
Procedure 21 3 High Low
Buffered 10 2 High Low
Trap-Driven 0 250 Low High
Fast-Cache 4 31 Moderate Moderate
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Table 2: Simulator Overhead

For typical programs, only a small fraction of memory references occur when condition
codes are live. Given this, and the uncertainty of the exact schedule for the lookup snippet
(3 or 4 cycles), we assume that Fast-Cach®kup overhead is 4 cycles. Howeuwbe
miss processing overhead, roughly 31 cycles, is higher than a trace-driven simulator
because the memory block states must be updated in addition to the regular cache data
structures. Thus, Fast-Cachsimulation time depends on both the fraction of instructions
that are memory references and thgeamiss ratio. dble2 summarizes this comparison
and the overhead for the various simulators.

| can obtain a simple model of simulation time by calculating the cycles required to exe-
cute the additional simulation instructions. This model ignores cache pollution on the host
machine, which can be significant, but Secf2dh extends the model to include these
effects. | use a metric calleslowdownto evaluate the dérent simulation techniques.
Slowdown is the simulation time divided by the execution time of the original, un-instru-
mented program. Ignoring cachdeets, the slowdown is the number of cycles for the
original program, plus the number of instruction cycles required to perform the lookups
and miss processing, divided by the number of cycles for the original program:

(rd_. [C (rd

orig [ D::miss)
C

orig Iookup) +

Slowdown = 1+ EQ 1.

orig orig

The first term is simply the normalized execution time of the original program. The sec-
ond term is the number of cycles to perform all lookups, WBgg&, is the overhead of
a single lookup, divided by the number of cycles for the original progapg, Since
these are data-cache simulations, the lookup is performed only or[ltg;@ data refer-
ences, where is the fraction of instructions that are memory references|ggds the
number of instructions in the original program.
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The numerator of the last term is cycles to process gktaache misses. The number
of misses for a given program is easily measured by running one of the simulators. Alter-
natively | express it as a function of thegat cache miss ratia), multiplied by the num-
ber of memory references,] orig and the overhead of simulating a singlgéarcache
mMiss,Chiss

| can simplify Equatiorl and express the slowdown as a function of tlggetamiss ratio
m:

r

Slowdown = 1+ W (Clookup +m [Cmiss) EQ 2.
orig
where CPYyiq is cycles-peinstruction, - ong
orig

| can use Equatio® to get a rough idea of the relative performance of the various simu-
lation techniques. Figuré shows simulator slowdown versusgetr miss ratio, using a
CPlyyig of 1.22 and reference ratio= 0.25 (derived from the SPEC92 benchmark pro-
gramcompress [70]). The simulator parameters are miss processing over@gad,of
250 for trap-driven, 3 for procedure call, 2 forfevéd, and 31 for Fast-Cache, and lookup
overheadCiyoxyp Of O for trap-driven, 21 for procedure call, 10 forfetéd, and 4 for
Fast-Cache.

The results in Figur@ confirm my expectationsrdce-driven simulation has very little
dependence on @&t miss ratio since it incurs very little overhead fagéacache misses.
Converselytrap-driven simulation has a very strong dependence @et taiss ratio, per-
forming well for very low miss ratios, but degrading quickly as miss processing overhead
dominates simulation time. Fast-Cache has less dependencgetmi#ss ratio because
its miss processing overhead is much lovidwnetheless, since Fast-Cashaiiss pro-
cessing overhead is muchdar than its lookup overhead, its slowdown is dependent on
the taget miss ratio.

It is important to note that Fast-Cache outperforms the other simulation techniques over
much of the relevant design space even for these very simple simulations. The model indi-
cates that Fast-Cache performs better than trap-driven simulation for miss ratios greater
than 2.5% and better than ferked trace-driven simulation for miss ratios less than 20%
given the costs above. This model suggests that Fast-Cache is superior to trace-driven
simulation for most practical simulations, since most caches do not require action for
more than 20% of the references.

Although bufering references will outperform Fast-Cache for programs wigfe lariss
ratios, it is not as general purpose as either Fast-Cache or the procedure call sifingator
model assumes a very simple simulator that counts misses in a direct-mapped cache. This
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for procedure call, 2 for bféred, and 31 for Fast-Cache, and lookup overt@ggly, of
0 for trap-driven, 21 for procedure call, 10 forfeuéd, 4 for Fast-Cache.

Figure 7: Qualitative Simulator Performance

represents the best-case for thefdnefd simulatqrsince it requires only the fettive
address of the memory reference and since the simulator performs only a single compare
to determine if a reference is a hit or miss. Many simulations require more information
than just the dééctive address of a reference. For example, simulating modified bits
requires the type of the memory reference (éogd vs.store ), and cache profiling
requires the program counter of the memory referencdefug this additional informa-

tion will inevitably slow down the simulation.

For these more complex simulations, each reference will incur additional overhead to
store this information in the bief and to extract the information in the simulafssum-
ing the additional store/load pair adds two cycles to the no-action case, simulator overhead
increases by 20%. In contrast, Fast-Cache and the procedure call simulator incur no addi-
tional overhead, since they can use static analysis and directly invoke specific simulator
functions for each reference type and pass the program counter garaeraralong with
the memory address. Simulating set-associative caches or multiple cache configurations
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Figure 8: Measued Simulator Performance

also increases the lookup overhead for trace-driven simulators since they may have to per-
form multiple compares to determine that no-action is required. Fiaaltlyperhaps most
importantly execution driven simulators [19,60] can not be implemented with tlie buf
ered simulator since the data may not be valid at the time of the reference. Therefore, | do
not discuss the bigred simulator after this section.

Trap-driven simulation will be morefefient than Fast-Cache for some studies, such as
large, second-level caches or TLBs. Howeueast-Cache will be better for complete
memory hierarchy simulations, since first-level caches are unlikely to be mgehttzain
64 kilobytes [35]. Furthermore, if the hardware is available, the active memory abstraction
can use the trap-driven technique as well. Thus the active memory abstraction gives the
best performance over most of the design space

To verify the simple model, | measured the slowdowns of Fast-Cache and the two trace-
driven simulators. The results, shown in Fig8rand Figur®, indicate that over the
range of taget caches | simulated (4KB-1MB), Fast-Cache is 0 to 1.5 times faster than the
buffered simulator and 2 to 4 times faster than the procedure call simiMat@ impor-
tantly, these measured slowdowns corroborate the general trends predicted by the model.
The trace-driven simulators have very little dependence on thet tauiss ratio, and the
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Figure 9: Measued Simulator Performance

higher lookup overhead of the procedure call implementation results in significagly lar
slowdowns. The measured performance of Fast-Cache also exhibits the expected behav-
ior; slowdowns increase as theger miss ratio increases. Howevdre model clearly

omits some important factors (e.g., memory system performance): the procedure call sim-
ulator is at least a full-factor slower than predicted, and Fast-Cache is up-to a factor slower

than predicted.
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2.6 Detailed Analysis

The model derived in Sectidh5 is useful for making qualitative comparisons between
simulation techniques. Howeveactual simulator performance depends on details of the
particular implementation and the specific host machine. In this section, | extend
Equation2 to incorporate the details of a Fast-Cache implementation executing on a
SFARCstation 10/51.

First, | refine lookup overhead, which depends on whether or not Fast-Cache can use the
SFARC condition codes. The lookup requi@s. = 3 cycles when the condition codes can
be used an€,,,..= 7 cycles when they cannotflfis the fraction of memory references
where the lookup can use the condition codes, then the number of lookup cycles is:
Crookun = foe e+ (11 [T Substituting into Equatiod yields a more accu-

F nocc*
rate slowdown model:

r
CPI

Slowdown, = 1+ (foe (Ceet (1—=F ) [C oo T MIC EQ 3.

) nocc miss)
orig

Slowdown), is still an optimistic estimate because it assumes no advéseseain the
host cache. Including terms for the additional host instruction and data cache misses
caused by Fast-Cache provides a more accurate model:

Slowdown = Slowdown, . + Slowdown + Slowdown EQ 4.

Inst D-Cache |-Cache

Section2.6.1 investigates Fast-Cach@npact on the host data cache, and computes an
estimate for its déct, SlowdowRy_c5che Section2.6.2 develops a model for Fast-Cashe’
instruction cache behavicnd an estimate for Slowdowyche It @also presents an alter-
native implementation, called Fast-Cache-Indirect, that trad@saoé instructions in the
common case for better instruction cache performance. S@cidghdiscusses the overall
performance of Fast-Cache and Fast-Cache-Indirect.

2.6.1 Data Cache Effects

The slowdown due to data cache interference, Slowgdgphe is simply the number
of additional host data cache misses multiplied by the host data cache miss @gpalty
miss | US€ asymptotic analysis to bound the number of misses, since modeling the interfer-
ence exactly is dicult.

The lower boundSlowdown:;)YVCe;he, is simply 0, obtained by assuming there are no

additional misses. The upper bound is determined by assuming that each data cache block
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Fast-Cache touches results in a miss. Furthermore, each of these blocks displaces a “live”
block, causing an additional miss later for the application.

Fast-Cache introduces data references in two places: action lookupgatartess pro-
cessing. Recall that action lookup, performed for each memory reference in the applica-
tion, loads a single byte from the state table. Thus in the worst case, Fast-Cache causes
two additional misses for each memory reference in the application. This results in an

additional2 [ O ; , [, 4miss CYClES for simulation.

orig
Processing a tget cache miss requires that the simulator t@&yaimnique blocks. These

blocks include tayet cache tag storage, the state of the replaced block, and storage for

metrics. For the direct-mapped simulator used in these experirBgritss. In the worst

case, each tget miss causes the simulator to inByrmost cache misses and displ&ge

live blocks. If each displaced block results in a later application miss, then

20 0, OnB, [C, «mis CYCles are added to the simulation time. Equdiamows

the upper bound on the slowdown resulting only from data cafdwtsef

200 [C :
h
Slowdowny e e = ——CTlogln—'is (1+mB,) EQ 5.
orig

To be a true asymptotic bound, | must assume that the additional misses atigsvin
els of the host cache hierarchiyhis seems excessively pessimistic given that the host
machine—a SRRCstation 10/51—has a unified 1-megabyte direct-mapped second-level
cache backing up the 16-kilobyte 4-way-associative first-level data cache. Instead, |
assumeCqsimisslS the first-level cache miss penalty 5 cycles [76].

To validate this model, | use 4 programs from the SPEC92 benchmark suiteojne]:
press , fpppp , tomcatv , andxlisp . All programs operate on the SPEC input files,
and are compiled witlycc version 2.6.0 of77 version 1.4 at optimization level -O4.
Program characteristics are shown ablg3.

To obtain a range of tget miss ratios | varied the ¢gat cache size from 16 kilobytes to
1 megabyte, all direct-mapped with 32-byte blocks. | also simulated a 4-kilobyte cache for
fpppp andxlisp , because of their low miss ratio on the other caches. | measure execu-
tion time by taking the minimum of three runs on an otherwise idle machine, as measured
with the UNIXtime command. System time is included because the additional memory
used by Fast-Cache mayeadt the virtual memory system.

Figurel0 plots the measured and modeled slowdowns as a functiogeif taiss ratio.
The lowest line is Slowdowpgy, the asymptotic lower bound. The upper line is the
approximate upper bound, assuming a perfect instruction cache and second-level data
cache. The measured slowdowns are plotted as individual data points. The results show
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program | "enictone | Retmences| | 1 [ cp
Compress 0.08 0.02 0.25] 0.95| 1.22
Fpppp 5.41 2.58 0.48| 0.83| 1.22
Tomcatv 1.65 0.67 0.41|0.52| 1.61
Xlisp 5.85 1.53 0.26| 0.98| 1.38

Table 3: Benchmark characteristics

two things. First, the upper bound approximations are acceptable because all measured
slowdowns are well within the bounds. Second, the upper bound is conservative, signifi-
cantly overestimating the slowdown due to data cache pollution.

The upper bound is overly pessimistic because (i) not all Fast-Cache data references will
actually miss, and (ii) when they do miss, the probability of replacing a live block is
approximately one-third, not one [83p Eompute a single estimator of data cache perfor-
mance, | calculate the mean of the upper and lower bounds:

u er
Slowdown-"P

= Slowdown, _ + D - Cache EQ 6.

Sl owdownS|OI it Inst >

As Figurel0 shows, this estimator—although simplistic—is quite accurate, predicting
slowdowns within 30% of the measured values.

2.6.2 Instruction Cache Effects

The Slowdowgy;; estimator is accurate despite ignoring instruction cache pollution.
This is because most of the SPEC benchmarks have extremely low instruction cache miss
ratios on the SKRCstation 10/51 [23]. Thus, Fast-Cachebde expansion has very little
effect on their performance. In contrast, for codes with more significant instruction cache
miss ratios, such dpppp , instruction cache behavior has a noticeable impact.

To understand the fefct of code dilation on instruction cache pollution, consider a 16-
kilobyte instruction cache with 32-byte blocks. Assume that the Fast-Cache instrumenta-
tion expands the applicatiamtdynamic code size by a factor of 4. Normathis cache
would hold 4096 of the applicatianinstructions; but with code dilation, the cache will
contain, on average only 1024 of the original instructions. Similadgh cache block
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Figure 10: Data Cache Model

originally held 8 instructions; after instrumentation each holds an average of 2 original
instructions. Intuitively| should be able to estimate the cache performance of the instru-
mented code by simulating a cache one-fourth @ |avith cache blocks one-fourth as

big.

This observation suggests that | can approximate instruction cache performance by
assuming that each instruction in the original program tisnes biggerwherekE is the
average dynamic code dilation. In other words, the cache performancersitthmented
application on theriginal instruction cache should be roughly the same as the perfor-
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mance of thein-instrumenteadpplication on a cache that hak limes the capacity and
1/E times the cache block size as the original instruction cache. | call tisisaieel cache
model.

| can estimate the fefct of a scaled cache using desigigeéamiss ratios [68] and other
available data [23]. Design tgat miss ratios predict that decreasing the cache size by a
factor of E increases the number of missesJfy. Data gathered by Gee, et al. [23] indi-
cates that decreasing the instruction cache block siEdrmreases the number of instruc-
tion cache misses Wy. Thus | expect that the number of instruction cache misses will be
equal toE./E times the original number of instruction cache misses. Since the original

program incurslorig [m, misses, Fast-Cache incurs an additional slowdown of:

_ (EJE-1) Om [T

ot
Slowdown, e = 5 ostmiss EQ 7.

orig

| compute Fast-Cache’code expansion by multiplying the number of instructions
inserted for the table lookup by the number of times the lookup is executed. If Fast-Cache
insertsl.. = 9 instructions when it can use the condition codeslg 7 instructions
when it cannot, then the total code expansion is simply:

E=1+r0(f, 0O+ (1-f) O EQS8.

nocc)

Since the total code expansion (se®l&4) is roughly a factor of 4, | expect the instru-
mented code to incur roughly 8 times as many instruction cache misses. Of course, these
are general trends, and any given increment in code size can makéetiemncif between
the code fitting in the cache or not fitting.

This analysis indicates that Fast-Cache is likely to perform poorly for applications with
high instruction cache miss ratios, such as the operating systemgeocdanmercial codes
[53]. To reduce instruction cache pollution, | present an alternative implementeditn,
Cache-Indiect, which inserts only two instructions—a jump-and-link plusedtve
address calculation—per memory reference. This reduces the code expansion from a fac-
tor of 4 to 1.6, for typical codes. Consequentfye model predicts that the instrumented
code will have only 1.6./1.6=2 times as many instruction cache misses. The draw-
back of this approach is an additional 3 instructions on the critical no-action lookup path,
however it will be faster for some ill-behaved codes. For the benchmarks | studied, Fast-
Cache-Indirect executes 3.4 to 7 times slower than the original program. This is 1.2 to 1.8
times slower than Fast-Cache (Figlge)

To validate the instruction cache models, | @ade[13] to measure the instruction
cache performance of the instrumented programecause the code expansion is not
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Shade
Benchmark Qriginal Misses Moﬁgﬁl(f’)/g of EA/_E CE(;de
Misses () Mea- Model (% of p
sured measured) measued) | (E)
Fast-Cache
Compress 329 (0.0%) 1,843 984 | 46% 1,848 0% | 3.16
Fpppp 336,224 (3.7%) 4,629,793| 4,361,246 6% | 3,929,520 15% | 5.15
Tomcatv 1,402 (0.0%)| 27,143 33,680 | 24% 12,414 | 54% | 4.28
Xlisp 1,538 (0.0%)| 578,773| 442,077| 24% 9,984 | 98% | 3.48
Fast-Cache-Indirect
Compress 329 (0.0%) 1,221 458 | 62% 592 | 50% | 1.48
Fpppp 336,224 (3.7%) 1,033,342| 954,609| 8% | 922,598| 10% | 1.96
Tomcatv 1,402 (0.0%) 5,935 7,847 | 32% 3,385| 42% | 1.80
Xlisp 1,538 (0.0%)| 13,670 14,890 9% 2,882 | 78% | 1.52

Table 4: Instruction Cache Performance

exactly a power of two, | validate the scaled model by simulating caches of the gext lar
and smaller powers of two and interpolatabl&4 shows how well the two models match
the measured values. Fpppp ,tomcatv andxlisp , the scaled model is within 32%
of the measured instruction cache performance. The relatieeeti€e is lager forcom-
press , but it has so few misses that a relativéedénce is meaningless.

The scaled model captures the general trend in instruction cache misses caused by code
dilation. However it assumes the dilation is uniform, hence it is not a precise predictor
Similarly, EJE captures general trends, but is not a precise predicoexample, the
instruction cache miss ratio femmcatv increases by a factor of 20 rather than the pre-
dicted factor of 9. This occurs because the instrumentatiorgesl#re instruction work-
ing set beyond the SuperSIRC cache size. Howevefor three of the benchmarks the
impact on performance is negligible because the applications have such low miss ratios
(i.e., less than 0.007%).

1. Due to Shads’lage slowdowns, | used smaller input data sets for fpppp, tonaratwlisp.
This should have little impact on the instruction cache performance.
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Figure 11: Overall Simulator Performance

Fpppp is the only benchmark with a non-negligible instruction cache miss ratio (3.7%)
and E.JE predicts the number of instruction cache misses within 15% for Fast-Cache
and 10% for Fast-Cache-Indirecto Turther evaluate this model | use the reference
counter of the Super8RC second-level cache controller [76] to measure the number of
level-one misses for the original data set. The count includes both data cache read misses
and instruction cache misses, dpppp is dominated by instruction cache misses.

E.JE predicts the number of misses within 36% for Fast-Cache and 4% for Fast-Cache-
Indirect.

2.6.3 Overall Performance

I now use the detailed model to revisit the comparison between Fast-Cache, trap-driven
and trace-driven simulation. Figut& compares the detailed performance model for Fast-
Cache and Fast-Cache-Indirect against the qualitative model (EgRpfimnboth trap-
driven and trace-driven simulation; the graph plots the regions of best performance as a
function of the original program’host instruction cache miss ratio and thgebdata
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cache miss ratio. Note that this comparison is biased against Fast-Cache, since | assume
that neither trap-driven nor trace-driven simulation incur any cache pollution. The com-
parison shows that either Fast-Cache or Fast-Cache-Indirect performs best over an impor-
tant region of the design space. Although trap-driven simulation performs best for low
data cache miss ratios, recall that it is not always an option. Therefore, with respect to
trace-driven simulation, Fast-Cache covers an evgeiarea of the design space.

Incorporating the cache pollution caused by Fast-Cachéditional instructions and
data references shows that Fast-Cachetformance can degrade for programs witlpelar
instruction cache miss ratios. Nonetheless, even for simple data cache simulations, the
model indicates that Fast-Cache covers most of the relevant design space. The model pre-
dicts Fast-Cachs’instruction cache performance on &ABEstation 10/51 to within 32%
of measured values, using the scaled cache model, and 36% EsiBg. For the pro-
grams | ran, instruction cache pollution has littleetfon Fast-Cache simulation time (see
Figurel2.) Howeverwhen simulating programs with ¢gar instruction cache miss ratios,
Fast-Cache-Indirect should be a better implementation.

2.7 Active Memory Applications and Extensions
2.7.1 Applications

The active memory abstraction enabldiieint simulation of a broad range of memory
systems. Complex simulations can benefit from both the NULL handler and direct invoca-
tion of simulator functions. For example, active memory can be used to simulate set-asso-
ciative caches as well. A particular simulator depends on the policy for replacing a block
within a set. Random replacement can use an implementation similar to the direct-mapped
cache, calling a handler only when a block is not resident in the cache. An active memory
implementation of least recently used (LRU) replacement can optimize references to the
most recently used (MRU) block since the LRU state does not change. References to
MRU blocks would invoke the NULL handlewhile all other references invoke the simu-
lator. This is similar to Puzag’trace filtering for set-associative caches [58]; the property
of inclusion [52] indicates the number of references optimized is equal to the number of
cache hits in a direct-mapped cache, with the same number of sets as the set-associative
cache. A further optimization distinguishes misses from hits to non-MRU blocks by using
more than two states per cache block. An example configuration is shown inJdgure

Many simulators that evaluate multiple cache configurations [30,74,52] use the property
of inclusion [52] to limit the search for caches that contain a given block. No action is
required for blocks that are containedalh simulated caches. An active memory imple-
mentation can optimize these references with the NULL handler
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Figure 12: Fast-Cache-Indiect Performance

This same technique can be used faiehtly simulate multiple cache configurations
thatdo notmaintain inclusion. The NULL handler is invoked only if no action is required
for any of the alternative caches (e.g, MRU block in all caches). When action is required,
the simulator can use the state to encode which caches contain a particular block and
directly invoke a function specialized to update the appropriate caches. Simple simula-
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STATE Handler Comment
0 miss_handler  /* called for blocks not in the cache */
1 non_mru_hit [* cache hits to non-mru blocks */
2 noaction [* cache hits to mru blocks */
3 noaction [* unused */

Figure 13: Set-Associative Cache with LRU Replacement

tions of a single cache benefit primarily from thicedncy of the predefined NULL han-
dler.

Finally, the active memory abstraction has been used to simulatgghech multipro-
cessor [61] and to provide low-cost portable fine-grain access control [63].

2.7.2 Extensions

A combination of table lookup and static analysis [81] can be usefidierfy simulate
instruction fetches. The program counter for each instruction is easily obtained when add-
ing instrumentation. For split instruction and data caches, at the beginning of each basic
block a table lookup is performed for only the instructions that occupy unique cache
blocks. For unified caches, exact simulation requires checking at a finer grain, however
the added accuracy is probably not worth the extra overhead.

Timing dependent simulations, such as prefetching, writéetsuf35] or lockup-free
caches [38], require accurate instruction cycle counts. Fast-Cache can easily add instruc-
tion cycle counts using techniques similar to QPT [43] or thecdvisin Wihd Tunnel
[60]. Although simulator overhead will increase to update the cycle count, the active
memory abstraction still permitsfiefent simulation of these complex memory systems.
For example, to simulate hardware initiated prefetches, a simulator similar to the one
shown in Figuréd of Sectior2.3, can be used. The miss handler would initiate the
prefetch according to some policy (e.g., next block), and mark the state of the prefetched
blockprefetch . If the application references a block in the spaisdetch  a separate
prefetch handler is invoked to increment time by the amount required for the prefetch to
complete and to mark the state of the bleakd . This eliminates the need to check the
prefetch bufler on every miss. If the prefetch completes before the application references
the block, then when servicing a miss, the simulator can simply mark the state of the block
valid

A similar approach can be used to simulate writdelosif Howeveraction is required
for eachstore instruction to update the write lbef. If writes can be meed, the state of
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the block can be used to indicate that agaeenay be required. This eliminates the need to
examine the write bédr on eactstore . Similarly, the state of a block can indicate what
action is necessary forlaad instruction. For example, thead may be required to
stall until the bufler drains.

Accurate cycle counts also permits the active-memory abstraction to supipeehef
simulation of lockup-free caches [38]. For static pipelines, the abstraction is extended to
support a limited form of “busy bits"—a bit associated with each register indicating its
contents are not available as an operand. The user controls the value of eachsregister
busy bit, marking a register busy when it is the destination of an outstdadthg The
bit is checked only at the first use of the register after the corresponding load; if it is busy
a simulator function is invoked to process outstanding requests until the register is no
longer busyPipelines that can issue instructions out of order present a more challenging
problem to any memory system simulatgince it is dificult to determine which instruc-
tions can be issued. One possible solution is to use static analysis and executable editing
[45] to determine and create groups of instructions—cédiekk—that can be issued inde-
pendently If a task experiences a cache miss, it is suspended until the load completes and
another task is selected to execute.

Currently the active memory abstraction provides a single predefined function—the
NULL handler The abstraction can be extended to support other predefined functions. For
example, it could provide a set of counters and predefined functions for incrementing par-
ticular counters.

Finally, to support simulation of unaligned memory accesses, implementations of the
abstraction may have to dynamically detect when a cache block boundary is crossed and
invoke the appropriate handlers. This may increase the lookup overhead for active mem-
ory, but a trace-driven simulator would also incur this additional overhead. For some
architectures, it may be possible to statically determine that some memory instructions are
aligned and eliminate the need for an alignment check.

2.8 Conclusion

The performance of conventional simulation systems is limited by the simple inter-
face—the reference trace abstraction—between the reference generator and the.simulator
This chapter examines a new interface for memory system simulatorsetittememory
abstraction—designed specifically for on-the-fly simulation. Active memory associates a
state with each memory block, and simulators specify a function to be invoked when the
block is referenced. A simulator using this abstraction manipulates memory block states to
control which references it processes. A predefined NULL function can be optimized in
active memory implementations, allowing expedient processing of references that do not
require simulator action. Active memory isolates simulator writers from the details of ref-
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erence generation—providing simulator portability—yet permiisieht implementation
on stock hardware.

Fast-Cache implements the abstraction by inserting 9 instructions before each memory
reference, to quickly determine whether a simulator action is required. | both measured
and modeled the performance of Fast-Cache. Measured Fast-Cache simulation times are 2
to 6 times slower than the original, un-instrumented program omARGRation 10; a
procedure call based trace-driven simulator is 7 to 16 times slower than the original pro-
gram, and a btdred trace-driven simulator is 3 to 8 times sloWwédre models show that
Fast-Cache will perform better than trap-driven or trace-driven simulation @t taiss
ratios between 5% and 20%yenwhen | account for cache interference for Fast-Cache
but not for the other simulators. Furthermore, the system features required for trap-driven
simulation are not always available, increasing the range of miss ratios where Fast-Cache
iS superior

The detailed model captures the general trend in cache interference caused by Fast-
Caches instrumentation code. The model indicates that code dilation may cause eight
times as many instruction cache misses as the original program. Although the instruction
cache miss ratios for the applications | studied were so low that this increase was insignif-
icant, lager codes may incur significant slowdowns. Fast-Cache-Indirect significantly
reduces code dilation at the expense of 3 extra cycles for the table lookup.

As the impact of memory hierarchy performance on total system performance increases,
hardware and software developers will increasingly rely on simulation to evaluate new
ideas. Chapte3 discusses cache profiling—an important application that requiiaeref
cache simulation for its wide-spread use. Fast-Cache provides the mechanisms necessary
for efficient memory system simulation by using the active memory abstraction to opti-
mize for the common case. In the future, as the ability of processors to issue multiple
instructions in a single cycle increases, the impact of executing the instrumentation that
implements the active memory abstraction will decrease, resulting in even better simulator
performance.
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Chapter 3

Cache Profiling

The active memory abstraction provides the mechanisms necessary to quickly execute
simulations required by both hardware and software designers. Hardware designers rely
on simulation to evaluate new memory systems. Software designers can use simulation to
obtain information about their prograsmmemory system behavior—called a cache pro-
file. A cache profile allows programmers to restructure their code to improve spatial or
temporal locality and improve overall performance.

The purpose of this chapter is to investigate cache profiling and tuning. | show that
CProf—a cache profiling system—is arfeefive tool for improving program perfor-
mance by focusing a programrigeattention on problematic code sections and providing
insightinto the type of program transformation to applithough many of the techniques
explored in this chapter have been used sporadically in the supercomputer and multipro-
cessor communities, they also have broad applicability to programs running on fast uni-
processor workstations. Using CProf | obtained execution time speedups for the programs
studied range from 1.02 to 3.46, depending on the masme&rnory system.

3.1 Motivation

Cache memories help bridge the cycle-time gap between fast microprocessors and rela-
tively slow main memories. By holding recently referenced regions of memaciies
can reduce the number of cycles the processor must stall waiting for data. As the disparity
between processor and main memory cycle times increases—by 40% per year or more—
cache performance becomes ever more critical.
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Unfortunately caches work well only for programs that exhibiffisiént locality Other
programs have reference patterns that caches cannot fully exploit, and spend much of their
execution time transferring data between main memory and cache. For example, the
SPEC92 [70] benchmaromcatv spends 53% of its time waiting for memory on a
DECstation 5000/125.

Fortunately for many programs small changes in the source code can radically alter
their memory reference pattern, greatly improving cache performance. Consider the well-
known example of traversing a two-dimensional FBRN array Since FORRAN lays
out arrays in column-major orderonsecutive elements of a column are stored in consec-
utive memory locations.réiversing columns in the inr&rop (by incrementing the row
index) produces a sequential reference pattern, and the spatial locality that most caches
can exploit. If instead, the inner loop traverses rows, each-lioogiteration references a
different region of memory

DO 20 K =1,100 DO 20 K =1,100
DO 20 1 = 1,5000 DO 20J=1,100
DO 20J=1,100 DO 20 1 = 1,5000
20 XA(ILJ)=2*XA(I,J) 20 XA(1,d) =2 * XA(1,J)
Row-Major Traversal Column-Major T raversal

By mentally applying the two d#rent reference patterns to the underlying cacba-or
nization, | can predict the prograncache performance. For example, for arrays that are
much lager than the cache, the column-traversing version will have much better cache
behavior than the row-traversing versiow. verify my prediction, | executed the above
code on a DECstation 5000/125 and the column-traversing version runs 1.69 times faster
than the row-traversing version on an array of single-precision floating-point numbers.

| call the above analysmentalsimulation of the cache behavidihis mental simulation
is similar to asymptotic analysis of algorithms (e.g., worst-case behavior) that program-
mers commonly use to study the number of operations executed as a function of input
size. When analyzing cache behayjmogrammers perform a similar analysis, but must
also have a basic understanding of cache operation (see Se2jion

Although asymptotic analysis isfettive for certain algorithms, analyzing darcom-
plex programs is very di€ult. Instead, programmers often rely on an execution-time pro-
file to isolate problematic code sections, and then apply asymptotic analysis only on those
sections. Unfortunatelyraditional execution-time profiling tools, e.g., gprof [26] are gen-
erally insuficient to identify cache performance problems. For the HMN array
example above, an execution-time profile would identify the procedure or source lines as a
bottleneck, but the programmer might erroneously conclude that the floating-point opera-
tions were responsible. Programmers would benefit from a profile that focuses specifically
on a prograns cache behavipidentifying problematic code sections and data structures.
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A cache profile can also provide insight into the cause of cache misses, which can help a
programmer determine appropriate program transformations to improve performance.

For cache profilers to become widely used, they must execute reasonably fast in addition
to providing insight on how to remedy poor cache behaVioe active memory abstrac-
tion (described in Chapt@) provides the framework necessary to quickly execute the
simulations required to obtain a cache profile. A Fast-Cache implementation of CProf
obtains detailed cache profiles of four programs with simulations executing only 3.4 to 15
times slower than the originah-instrumenteghrogram on a SW¥RCstation 10/51.

This chapter is @anized as follows. Sectiéh2 reviews how to reason about cache
behavior and shows how knowing the cause of a cache miss helps provide insight into
how to eliminate it. SectioB.3 presents a “cookbook” of simple program transformation
techniques for improving program cache behavraluding array meying, padding and
aligning structures, structure and array packing, loop interchange, loop fusion, and block-
ing. Sectior.4 briefly describes the CProf cache profiling system and its X-windows
based user interface. Secti®® presents a case study where | used CProf to tune the
cache performance of six programs from the SPEC92 benchmark cuiteress ,
dnasa7 , eqntott , spice , tomcatv , andxlisp . | show how CProf identified the
source lines and data structures that exhibit poor cache beranwdohow CProf helped
provide the insight necessary to select the appropriate program transformation. Execution
time speedups for these programs range from 1.02 to 3.46, depending on the machine’
memory system. Others used CProf to tune the cache performance of relational database
guery processing, and improve execution time by 8% to 200% [64]. S8diaoncludes
this chapter

3.2 Understanding Cache Behavior: A Brief Review

To reason about a prograantache behavipprogrammers must first recall the basic
operation of cache memories. Caches are characterized by three major parameters: Capac-
ity (C), Block Size B), and Associativity4). A caches capacity C) simply defines the
total number of bytes it may contain. The block sBedetermines how many contiguous
bytes are fetched on each cache miss. A cache may contain &/Bibgicks at any one
time. Associativity A) refers to the number of unique locations in the cache a particular
block may reside in. If a block can reside in any location in the cAct®&K) the cache is
called fully-associative if a block can reside in exactly one locatid&={) it is called
direct-mappedif a block can reside in exactiylocations, it is called\-way set-associa-
tive. Smith's survey [67] provides a more detailed description of cache design.

With these three parameters, a programmer can analyze the first-order cache behavior
for simple algorithms. Consider the simple example of nested loops where thopter
iterates L times and the inalmop sequentially accesses an array of N 4-byte integers.
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Cache Small array Large array
A(0) A0) | | A(8) | |A(16)
A1) AQ) | | AO) *
A(2) A(2) | |A(10) *
A(s) * * *

(@) (b) (€)

Sequentially accessing an array (b) that fits in cache (a) should produce M cache
where M is the number of cache blocks required to hold the #&cagssing an array tr
is much lager than the cache (c) should result ML cache misses, where L is the
of passes over the array

Figure 14: Determining Expected Cache Behavior

for (i=0;i<L;++i)
for (j = 0; j < N; +4j)
afj] +=2;

If the size of the array (4N) is smaller than the cache capacity (see Edp)rthe
expected number of cache misses is equal to the size of the array divided by the cache
block size, 4N/B (i.e., the number of cache blocks required to hold the entire array). If the
size of the array is lger than the cache capacity (see Fidure), the expected number of
cache misses is approximately equal to the number of cache blocks required to contain the
array times the number of outer loop iterations (4NL/B).

Someday compilers may automate this analysis and transform the code to reduce the
miss frequency; recent research has produced promising results for restricted problem
domains [57,41]. Howeveifor general codes using current commercial compilers, the
programmer must manually analyze the programs and perform transformations by hand.

To select appropriate program transformations, a programmer must first understand the
cause of poor cache behavidne approach to understanding the cause of cache misses, is
to classify each miss into one of three disjoint types: ¢8djpulsorycapacity conflict’

A compulsory miss is caused by referencing a previously unreferenced cache block. In the
small array example above (see Figidb), all misses are compulsoigliminating a
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compulsory miss requires prefetching the data, either by an explicit prefetch operation
[57] or by placing more data items in a single cache block. For instance, changing the inte-
gers in my example to 2 bytes rather than 4, cuts the misses in half. Hoswesercom-
pulsory misses usually constitute a small fraction of all cache misses [30], | do not discuss
them further

A reference that is not a compulsory miss but misses in a fully-associative cache with
LRU replacement is classified as a capacity miss. Capacity misses are caused by referenc-
ing more cache blocks than can fit in the cache. In tlge larray example above (see
Figurel4c), | expect to see many capacity misses. Programmers can reduce capacity
misses by restructuring the program to re-reference blocks while they are in cache. For
example, it may be possible to modify the loop structure to perform the l-loopettera-
tions on a portion of the array that fits in the cache and then move on to the next portion of
the array This technique, discussed further in the next section, is d¢ateelingor tiling,
and is similar to the techniques used to exploit the vector registers in some supercomput-
ers.

A reference that hits in a fully-associative cache but misses in an A-way set-associative
cache is classified as a conflict miss. A conflict miss to block X indicates that block X has
been referenced in the recent past, since it is contained in the fully-associative cache, but
at least A other cache blocks that map to the same cache set have been accessed since the
last reference to block X. Consider the execution of a doubly-nested loop on a machine
with a direct-mapped cache, where the inner loop sequentially accesses two arrays (e.g, a
dot-product). If the combined size of the arrays is smaller than the cache, | might expect
only compulsory misses. Howeydhis ideal case only occurs if the two arrays map to dif-
ferent cache sets (Figui&b). If they overlap, either partially or entirely (FigliEr),
they cause conflict misses as array elements compete for space in the set. Eliminating con-
flict misses requires a program transformation that changes either the memory allocation
of the two arrays, so that contemporaneous accesses do not compete for the same sets, or
that changes the manner in which the arrays are accessed. As discussed in the next section,
one solution is to change the memory allocation bygimgrthe two arrays into an array of
structures.

The discussion thus far assumes a cache indexed using virtual addresses. Many systems
index their caches with real or physical addresses, which makes cache behavior strongly
dependent on page placement. Howeweany operating systems use page coloring to
minimize this eflect, thus reducing the performancefeliénce between virtual-indexed
and real-indexed caches [37].

1. Hill defines compulsorycapacityand conflict misses in terms of miss ratios. When generalizing
this concept to individual cache misses, | must introduntieconflictmisses which miss in a
fully-associative cache with LRU replacement but hit in an A-way set-associative cache. Anti-
conflict misses are generally only useful for understanding the rare cases when a set-associative
cache performs better than a fully-associative cache of the same capacity
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Cache No conflict Conflicting mappings

(@) (b) ()

The presence of conflict misses indicates a mapping problem. BEfgoighows how tw
arrays that fit in cache with a mapping that will not produce any conflict misses, v
Figure1l5c shows two mappings that will result in conflict misses.

Figure 15: Conflicting Cache Mappings

3.3 Techniques for Improving Cache Behavior

The analysis techniques described in the previous section can help a programmer under-
stand the cause of cache misses. One of the primary contributions of this chapter is the
mapping of cache miss types to program transformations that reduce cache misses. In this
section, | present eookbookof simple program transformations that can help eliminate
some of the misses.

Program transformations can be classified by the type of cache misses they eliminate.
Conflict misses can be reduced by arraygimgy, padding and aligning structures, struc-
ture and array packing, and loop interchange [57]. The first three techniques change the
allocation of data structures, whereas loop interchange modifies the order that data struc-
tures are referenced. Capacity misses can be eliminated by program transformations that
reuse data before it is displaced from the cache, such as loop fusion [57], blocking [41,
57], structure and array packing, and loop interchange. In the following sections, | present
examples of each of these techniques, except loop interchange, which was discussed in
Section3.1.

Merging arrays. Some programs contemporaneously reference two (or more) arrays of
the same dimension using the same indices. Bgimgmultiple arrays into a single com-
pound arraythe programmer increases spatial locality and potentially reduces conflict
misses. In the C programming language, this can be accomplished by declaring an array of
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/* old declaration of two arrays */ C old declaration

int val[SIZE]; integer X(N,N)
int key[SIZE]; integer Y(N,N)
I* new declaration of */ C new declaration
[* array of structures */ integer XY(2*N,N)
struct mege {
int val; int key; C preprocessor macro
h C definitions to perform addressing

#define X(i,j) XY((2*)-1,N)
struct mege meged_array[SIZE]; #define Y(i,j)) XY((2*i),N)

() (b)

Figure 16: Merging Arrays in C (a) and FORTRAN77 (b)

structures rather than two arrays (Figliéa). This simple transformation can also be per-
formed in FORRAN90, which provides structures. Since FIBRANT77 does not have
structures, the programmer can obtain the saniectefusing complex indexing
(Figure16b).

Padding and Aligning Structures. Referencing a data structure that spans two cache
blocks may incur two misses, even if the structure itself is smaller than the block size.
Padding structures to a multiple of the block size and aligning them on a block boundary
can eliminate these “misalignment” misses, which generally show up as conflict misses.
Padding is easily accomplished in C (Figliv@) by declaring extra pad fields. Note that
padding may introduce additional capacity misses. Alignment is a little mdieuld;f
since the address of the structure must be a multiple of the cache block size. Statically-
declared structures generally require compiler support. Dynamically allocated structures
can be aligned by the programmer using simple pointer arithmetic (RigbyeNote that
some dynamic memory allocators (e.g., some versiomaatibc()) return cache-block
aligned memory

Packing. Packing is the opposite of padding; by packing an array into the smallest space
possible, the programmer increases spatial localibjch can reduce both conflict and
capacity misses. In the example in Figli& the programmer observes that the elements
of arrayvalueare never greater than 255, and hence could fit inuypgned charwhich
requires 8-bits, instead ainsigned intwhich typically requires 32-bits. For a machine
with 16-byte cache blocks, the code in Figl@&b permits 16 elements per block, rather
than 4 and reduces the maximum number of cache misses by a fact®tackhg may
introduce additional instructions to unpack the data.
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[* old declaration of a twelve */ [* original allocation does not */
[* byte structure */ [* guarantee alignment */
struct ex_struct { ar = (struct ex_struct *)

int vall,val2,val3; malloc(sizeof(struct ex_struct)
5 * SIZE);

/* new code to guarantee alignment
/* new declaration of structure */ [* of structure. */
[* padded to 16-byte block size */ r = (struct ex_struct *)
struct ex_struct { malloc(sizeof(struct ex_struct)
* (SIZE+1));

int vall,val2,val3;

char pad[4]; ar = ((int) ar + B-1)/B)*B
b [* B is the cache block size */

(a) (b)

Figure 17: Padding (a) and aligning (b) structues in C.

/* old declaration of an array */ /* new declaration of an array */
[* of unsigned integers. */ [* of unsigned characters. */
unsigned int values[10000]; [* Valid iff 0 <= value <= 255 */

unsigned char values[10000];
* loop sequencing through values */
for (i=0; i<10000; i++) [* loop sequencing through values *
values]i] =i % 256; for (i=0; i<10000; i++)
valuesl[i] =i % 256;

(@) (b)

Figure 18: Unpacked (a) and packed (b) array structwgs in C.

Loop Fusion Numeric programs often consist of several operations on the same data,
coded as multiple loops over the same arrays. By combining these loops, a programmer
increases the prograsntemporal locality and frequently reduces the number of capacity
misses. The examples in Figur@ combine two doubly-nested loops so that all operations
are performed on an entire row before moving on to the next.

Loop fusionis exactly the opposite ¢dop fission a program transformation that splits
independent portions of a loop body into separate loops. Loop fission helps an optimizing
compiler detect loops that exploit vector hardware on some supercomputers, or separates
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for (i=0; i < N; i++) for (i=0; i < N; i++)
for (j=0; j < N; j++) for (j=0; j < N; j++)
a[i]lil = 1/b[iLI*<[il; {
ali]li] = /b[i][T*<ilil;
for (i=0; i < N; i++) d[illi] = ali{l+chli;
for (j=0; j < N; j++) }
d[i]li] = ali]i]+c[iil;
(a) (b)

Figure 19: Separate (a) and fused (b) loops.

DO 110J=1, M DO110J=1, M, 4
DO 110K =1, N DO 110K =1, N
DO10I=1,L DO10I=1,L
C(I,K) = C(I,K) + C(1,K) = C(I,K) + A(1,d) * B(J,K)
A(1,J) * B(J,K) + A(1,J+1) * B(J+1,K)
110 CONTINUE + A(1,3+2) *B(J+2,K)

+ A(1,J+3) * B(J+3,K)

110 CONTINUE
(@) (b)

Figure 20: Naive (a) and SPEC column-blocked (b) matrix multiply

Blocking. Blocking is a general technique for restructuring a program to reuse chunks of
data that fit in the cache, and hence reduce capacity misses. The SPEC matrix multiply
(part of dnasa7 , a FOR'RAN77 program) implements a column-blocked algorithm
(Figure20b) that achieves a 2.04 speedup over a naive implementation (ZFgyren a
DECstation 5000/125. The algorithm tries to keep 4 columns of the A matrix in cache for
the duration of the outermost loop, ideally getting N-1 hits for each miss. If the matrix is
so lage that 4 columns do not fit in the cache, one could use a two-dimensional (row and
column) blocked algorithm instead.

3.4 CProf. A Cache Profiling System

The analysis and transformation techniques, described in the previous section, can help
a programmer develop algorithms that minimize cache misses. Howaetie misses
result from the complex interaction between algorithm, memory allocation, and cache
configuration; when the program is executed, the progrataneepectations may not
match reality| have developed a cache profiling system, CProf, that addresses this prob-
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Program | Time (Sec)| Slowdown
compress 44.5 15.0
fpppp 989.9 5.2
tomcatv 915.8 9.2
xlisp 911.2 3.4

Table 5: Slowdowns for an Active Memory Implementation of CRuf

lem by mapping cache misses to source lines and data structures and classifying the
misses as compulsqrgapacity and conflict. This provides the insight necessary for pro-
grammers to select program transformations that improve cache behavior

Cache and memory system profilerdatifrom the betteknown execution-time profil-
ers by focussing specifically on memory system performance. Memory system profilers
do not obviate execution-time profilers; instead, they provide supplementary information
necessary to quickly identify memory system bottlenecks and tune memory system perfor-
mance.

There are a number of cache and memory system profilers tfeatidithe level of
detail they present to a programmidigh-level tools, such as MOOL [25], identify pro-
cedures or basic blocks that incuglamemory overheads. Other cache profilers, such as
PFC-Sim [57] and CProf, identify cache misses at the source line level, allowing much
more detailed analysis. Of course this extra detail does not come for fr€)Miuns
much faster than profilers requiring address tracing and full cache simulation. However
full simulation permits a profiler to identify which data structures are responsible for
cache misses and to determine the type of miss, features provided by both Memspy [50]
and CProf. Furthermore, the active memory abstraction can be used to significantly reduce
simulation times. able5 shows that execution times for a CProf simulator implemented
using Fast-Cache, are between 3.5 and 15 times slower than the original program. How-
ever the results presented in this chapter were obtained using an implementation of CProf
that processes traces generated by QPT [43].

Memspy is very similar to CProf, the féifence being the granularity at which source
code is annotated and the miss type classification. Memspy annotates source code at the
procedure level and provides only two miss types for uniprocessors: compulsory and
replacement. Determining if a replacement miss is a result of referencing more data than
will fit into the cache—a capacity miss—or a mapping problem—a conflict miss—is left
to the userMemspy provides some insight into the cause of replacement misses by identi-
fying the data structures competing for space in the cache. CProf is an artifact of my con-
tributions to cache profiling: providing fine-grain source identification, data structure
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support, and classifying cache misses as compullsapgacity or conflict, thus providing
insight for fixing memory system bottlenecks.

3.4.1 CPof User Interface

CProf uses a flexible X-windows interface (see Fi@reto present the cache profile in
a way that helps the programmer determine the cache performance bottlenecks. The user
can list either source lines or data structures, sorted in descending order of importance,
allowing quick identification of poor cache behavibtisses are cross-referenced, so a
programmer can quickly determine which of several data structures on a source line is
responsible for most cache misses.

CProf's user interface is divided into three sections for data presentation and one section
for command buttons. The top section is the text windbes middle section is the data
window, and the bottom section is the detail windéwparticular windows use depends
on the selected command button.

The source button opens a pull-down menu with an entry for each source file and an
additional entry that allows a display of a list of source files sorted by the number of cache
misses. Selecting one of the files displays the source code in the text witatdwsource
line is labeled with the number of cache misses generated by that line. | highlight the line
with the most cache misses. The up-arrow and down-arrow buttons allow movement
within the source file to the line with the next higher or next lower number of misses,
respectively The detail window refines the cache misses for the highlighted line into the
miss type. Selecting a miss type opens a window that displays the data structures refer-
enced by this source line and the corresponding number of cache misses for the miss type
selected (Figur@l). Thesort linesbutton displays a list of source lines in the data win-
dow, sorted according to the number of cache misses. Each entry contains the file name,
the line numberthe number of cache misses, and the percent of the total misses. A sorted
list of data structures is displayed by 8wt varsbutton. Each entry in this list contains
the variable name, the count of the humber of misses and the percentage of total misses.
Selecting a miss type causes a window to open that displays the source lines that reference
this data structure and the corresponding number of cache misses for the miss type
selected. The user selects which reference typEAD WRITE IFETCH) to display with
theset metricdutton. Finallythe counts displayed in the data window can be written to a
file with thedump count$utton.

CProf annotates both static and dynamic data structures. Dynamically allocated struc-
tures are labeled by concatenating the procedure names on the call stack at the point of
allocation [84]. An end counter value allows unique identification of all dynamically allo-
cated structures.
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— Xcprof a2l
Line Read + Write + IFetch + Misc File: tomcatv.f
141 oo 401 J=2.M
142 7000 oo 401 I = I1IP,.IZM
143 1665300 R = AA(I. J)=D(I,J-1}
144 3343000 O (I.Jy = 1,/7(00(I,J:-AALI,J-11=R}
145 1676800 R¥({I.J) = Rx(I.J) — RX({I.J-1)«R
146 1673600 RY{I.J) = RY{(I.J) — RvY(I.J-1)«R
147 30700 401 CONTINUE
148 100 oo 411 I = I1IP,.IZM
149 1300 R¥(I M) = Re(I.MI=D{T, M)
150 1600 RY{I.M) = RY(I.MI=D{I, M}
151 400 411 CONTINUE
152 100 oo 501 J=2.M
153 4700 K = M-J+1
154 4800 oo 501

55 4574100
156 1673800

157 21400 501 CONTINUE

158 C

159 C ADD CORRECTIONS

160 C

161 L =20

162 juln] 290 J = J1P,J2M
163 L =L+l

164 3200 juln] 290 I = I1P,.IZM

Line Count of Read + Write + IFetch + Misc
11408100

&l tomoaty,

104 9812900 11,83%
105 5184700 9,86
99 6524700 E=1=F

4970900
4934300
4921700

3343000
3273200
166 3260100 3,938
110 1808200 2,18%

Miss Type Count for Line #155 of tomcatv.f

Capacity 4710200
Anticonflict 39200
HConflict 74700 H
— Xcprof -]
Data Structures referenced by Line #1553 of tomcatwv.f
DATA STRUCTURE COuUMT
Read Capacity Misses
aa 1599800
™ 1599800
=] 1510600

Write Capacity Misses
IFetch Capacity Misses

Misc Capacity Misses

Figure 21: CPof User Interface
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The text windowis used to view individual source files, where each line is annotated
with the corresponding number of cache misses. The X-windows user interface allows the
user to browse within the source file, moving to the line with the next higher or next lower
number of cache misses. Ttetail windowdisplays the number of each miss type for the
currently selected source line or data structure.

CProf is very dective at identifying where a program exhibits poor cache beharidr
the cache miss types help a programmer select what type of program transformation to
apply In the next section, | describe more about how to use CProf to tune program perfor-
mance.

3.5 Case Study: The SPEC Benchmarks

In this section, | describe a study where | use CProf and the cookbook of transformations
to tune the cache performance of six programs from the SPEC92 benchmarntosuite:
press , dnasa7 , egntott , spice , tomcatv , andxlisp . The purpose of this sec-
tion is two-fold. First, | show that | can obtain significant speedups using cache profiling,
even for codes that have been extensively tuned using execution-time profilers. Second, |
show how to use CProf to gain insight into the cache behardrdetermine which trans-
formations were likely to improve performance.

| present performance results in terms of speedup in user executidmtirtieee mod-
els of the DECstation 5000, the 5000/240, 5000/125, and 5000/200. Each of these
machines have separate 64-kilobyte direct-mapped instruction and data caches, 16-byte
blocks, and a write btdr. The 5000/125 and 5000/200 use a 25 MHz MIPS R3000 pro-
cessor chip. The major tefence between the memory systems of these two machines is
the cache miss penalty—16 processor cycles on the DECstation 5000/200 and 34 cycles
on the DECstation 5000/125—which helps illustrate the importance of cache profiling as
cache miss penalty increases. The 5000/240 uses a 40 MHZ MIPS R3000 processor chip
and has a 28 cycle miss penalty

These machines also have secondarfem@ihces with significant performance impact.
For example, the 5000/2xx have 4-deep writddraf while the 5000/125 has only a 2-
deep write buer. In addition, the 5000/240 performs sequential prefetch on cache misses,
reducing the ééctive miss penalty for long sequential accesses. While these secondary
factors can significantly fect execution time, | have not found it necessary to model these
factors in CPraf cache simulation.

1. System time accounts for very little of the total execution time for most of the prog@ms.
press is the exception where system time is relatively high because ofgleeal@ount of I/O.
In this case excluding the system time eliminates the bias introduced byf¢hendif/O sys-
tems.
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Restructuring &chnique

Merging Loop Loop Pad and . .
Program Arrays Fusion Interchange Align Packing - Blocking
btrix" * * *
choleskﬁ °
compress . .
eqgntott .
gmtryJr °
mxm' *
spice .
tomcatv . .
vpent& ° ° °
xlisp .

1 dnasa7

Table 6: Restructuring Techniques for Improved Cache Performance

To reduce experimental errdraveraged the execution time over five runs. The pro-
grams were compiled at optimization level -O3 using the MIB&ioh 2.1 C and F77
compilersspice was the one exception, which | compiled at optimization level -O2, per
the SPEC make file. Note that while run-times are all reported with full optimization, |
profiled most of the programs at optimization level -O1, with full symbolic debugging (-
g). Cache profiling at high optimization levelsfeu$ from the same di€ulties as debug-
ging (i.e., incorrect line numbers), since CProf uses the same symbol table information.

Table6 shows the applications that benefited from the various restructuring techniques.
The benchmarkdnasa7 consists of seven numerical kernels; | broke out five kernels
with poor cache performance and analyzed them separBtdly the original and tuned
times for dnasa? include the SPEC version of matrix multimpbnj.

Table7 and Figur@2 present execution time results for the six benchmarks. The full
programs execute as much as 90% faster when modified to improve cache behavior
Breaking out the kernels inasa7 shows even more striking results, with speedups as
much as 3.46 fovpenta on the DECstation 5000/240, 2.53 on the DECstation 5000/
125, and 2.14 on the DECstation 5000/200.
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Program DEC5000/125 DEC5000/200 DEC5000/240 Modification

Sec. S Sec. S Sec. S
compress 7.70 5.98 5.56 original

7.34 1.05 5.84 1.02 5.22 1.07 array mege

4.94 1.56 4.60 1.30 2.90 1.92 reduced hash table
dnasa7  1228.22 904.60 796.60 original

945.18 1.30 727.84 1.24 527.24 1.51 tuned kernels
btrix 144.06 114.50 82.52 original

109.50 1.32 89.92 1.27 55.94 1.48 loop interchange &
cholesky 188.90 141.14 97.14 original

162.16 1.16 12494 1.13 73.66 1.32 loop interchange
gmtry 177.06 141.98 128.42 original

119.78 1.48 95.82 1.48 50.92 2.52 loop interchange
mxm 248.44 184.56 91.36 naive

122.06 2.04 106.02 1.74 66.08 1.38 SPEC blocked
vpenta  264.78 169.86 203.80 original

126.38 2.10 9180 1.85 69.60 2.93 array mege

10454 253 79.42 214 5888 3.46 +loop fusion
egntott  67.56 58.70 39.96 original

60.98 1.11 5540 1.06 38.92 1.03 changed short to cha
spice 2242.10 1762.34 1557.90 original

1781.72 1.26 1406.04 1.25 1163.42 1.34 array mege
tomcatv  221.20 161.20 137.30 original

167.24 1.32 134.38 1.20 91.40 1.50 memgedarrays X & Y

150.88 1.47 126.36 1.28 86.08 1.60 +loop fusion
xlisp 385.24 286.56 205.72 original

361.96 1.06 277.18 1.03 190.30 1.08 pad node to 16 bytes

1

Table 7: Execution Time Speedups (S)
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2.53
1.56
1.50

145 -
1.40 -
135
1.30 [
1.25

Speedup

1.20 |
1.15 -
1.10 [
1.05 [

1.00

Figure 22: Speedups on a DECstation 5000/125

The remainder of this section discusses my experience cache profiling and modifying
each program. | provide a very brief description of the program, followed by the results of
the initial CProf execution. | then discuss the modifications | performed and the resulting
speedups.

3.5.1 compess

compress is a UNIX utility that implements the well-known Lempel-Ziv data com-
pression algorithm. For each input chargatempress searches a hash table for a prefix
key. When the key matches, another array is accessed to obtain the appropriate value. The
hash table is quite Ige (69001 entries), to reduce the probability of collisions. When a
collision does occuiia secondary probe is initiated.

CProf indicates two source lines that reference the data structure that stores the keys are
responsible for 71% of the cache misses. One source line is the initial probe into the hash
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table, which accounts for 21% of the cache misses. The other source line performs the sec-
ondary probe operation when there is a collision and accounts for 50% of the misses.
CProf also shows that most of the misses are capacity misses.

Recall that | can eliminate capacity misses by processing data in portions that fit in the
cache. Applying this insight toompress , | reduced the hash table size from 69001 to
5003, which is small enough to fit in the data caciibis change results in speedups of
1.92 on a DECstation 5000/240, 1.56 on a 5000/125, and 1.30 on a 5000/200. However
this modification actually changes the program output, since the compression ratio (origi-
nal file size / compressed file size) is related to the size of the hash table. The output is still
a compatible compressed file, but it does not match the standard SPEC output. Nonethe-
less, there is a clear tradd-bétween speed and compression ratio. The un-optimized ver-
sion has a compression ratio of 2.13, whereas the optimized version has 1.77.

| also tried to improve the cache performance of compress without changing the com-
pression ratio. Although compress has gdanumber of capacity misses, conflict misses
account for 13% of the misses to the key array and 19% of the misses to the value array;
the array index is the same for both of these arrays. Although separate arrays reduce the
total space requirements (the key is amtéger and the value is short ; alignment
restrictions in C require padding if these are combined into an array of structures), the
price is poor spatial localityfter referencing a kegompress is likely to reference the
corresponding value, which resides in the other array and henderardifcache block
(see Figur@3a).

Merging the two arrays into a single array of structures places the key and value in the
same cache block (see Fig@@b) and improves spatial localityith this modification,
accesses to the value always hit in the cache, assuming proper alignment, reducing the
number of conflict misses and providing speedups of 1.07 on the DECstation 5000/240,
1.05 on the 5000/125 and 1.02 on the 5000/200.

3.5.2 eqntott

The SPEC benchmasqgntott is a CAD tool that converts boolean equations into
their equivalent truth tables. Execution-time profiling shows é¢gatott  spends 95%
of its time in the quick-sort routine [56]. CProf further reveals that most of this time is
spent moving the sort keys from memory into the cache; over 90% of the misses are gen-
erated in one comparison routine. Th&epdling routine examines two arrays and gener-
ates mostly capacity misses, indicating that the program either needs to re-reference
blocks while they are in the cache, or bring in fewer blocks. CProf indicates that most of
these capacity misses are due to fetcBHg structures dynamically allocated at line #44
in pterm.c . TheBIT data type is a 16-bit integer (typkort in C), and inspection of

1. This transformation was suggested by James Larus.
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Cache set
key(0)[key(1)key(2) key(3) i key(0)| val(0)|key(1) val(1)
key(4)key(5)|key(6)(key(7) i+1 [key(2) val(2)|key(3)val(3)
i +2 |key(4) val(4)|key(5) val(5)
i+ 3 [key(6)| val(6)|key(7)| val(7)

val(0)|val(1)|val(2)|val(3) ]
val(4)|val(5)| val(6)|val(7) j+1

() 2

The initial allocation strategy for the key and value arrays (a) resulted in as man
cache misses for each successful hash table probgingleéhe two arrays into an ar
of structures (b) é&ctively interleaves the elements of the two arrays and results |
one cache miss per successful probe.

Figure 23: Cache mappings for com@ss.

the source code shows T data types only take on values in the set [0,1,2]. Changing
the type definition from 16-bit integer to 8-bit integendrt to char ) reduces the num-

ber of misses in this routine by half. The speedup in execution time is 1.03 on a 5000/240,
1.11 on a 5000/125 and 1.06 on a 5000/200. The prefetch capabilities of the 5000/240
exploit the sequential accesses of the compare routine, reducing the benefit of my modifi-
cation.

In egntott , the integer values actually represent the symbolic values ZERO, ONE,
and DASH. Although I did not implement this alternative, with the use of enumerated
types, a compiler could potentially allocate as few as two bits per array element, resulting
in one-eighth the number of cache misses. Howetiertrade-dfbetween fewer cache
misses and the time to unpack the data, is implementation dependent.

3.5.3 xlisp

The SPEC benchmaritisp is a small lisp interpreter solving the nine queens prob-
lem. To reduce computation requirements during profiling, | profilesp  solving the
six queens problem; howeydhe speedup results iraflle7 and Figure2 are for the
standard nine queens problem. Programmers should be aware that cache behavior is sensi-
tive to the input data; programs may exhibit good cache behavior with smaller input sizes,



53

and poor behavior for lger inputs. In this case the results obtained from the smaller input
data were sfitient to achieve reasonable speedups with tigetanput.

CProf shows that approximately 40% of the cache misses occur during the mark and
sweep garbage collection, most of which are conflict misses. During this phase, the pro-
gram first traverses the reachable nodes and marks them accessible, then sweeps sequen-
tially through the memory segment placing unmarked nodes on the free list. Mark and
sweep garbage collection has inherently poor localityl an alternate algorithm would
provide better cache behavidtowever such an extensive modification was outside the
scope of this study

CProf shows that 19% of the cache misses are generated by the single source line that
checks the flag (used to mark accessibility) during the sweep. Since conflict misses domi-
nate, | first improved the spatial locality of the sweep routine by separating the flags from
the rest of the node structure. By placing the flags in a single #reagequential sweep
exhibited excellent spatial locality: for every miss, the next 15 references hit—eliminating
most of the cache misses in the sweep routine. Unfortunételyxhange also increased
the number of misses in the mark routine which must first fetch a node, then the corre-
sponding flag. This modification increased spatial locality in the sweep at the expense of
spatial locality during the mark, resulting in a negligible change in performance.

Returning to CProf, | see that the node structures allocated on line #&ldineim.c
incur a lage number of conflict misses. Inspection of the source reveals each node struc-
ture occupies 12 bytes, or three-fourths of a 16-byte cache block. Consemqunthalf
of the nodes reside entirely within a single cache block (see FAgur&he remaining
half of the nodes reside in two contiguous cache blocks, potentially causing two cache
misses—when referenced—rather than one. By explicitly padding the original node struc-
ture to 16 bytes, the cache block size, and ensuring alignment on cache block boundaries,
| obtained a 1.08 speedup on the DECstation 5000/240, 1.06 on the 5000/125 and 1.03 on
the 5000/200.

It is important to realize that padding data structures without guaranteeing alignment can
be worse than not padding them at all. In this example, | might end uplivthdes gen-
erating two misses (if not in cache), rather than only half. Similatijie many memory
allocators (e.g., the UIRIX malloc()  routine) return cache-block-aligned memory
xlisp  pre-allocates Ige chunks and manages them itself, bypassing the alignment per-
formed within the allocatoApplication-specific memory managers certainly have a role,
but programmers should remember the impact of padding and alignment on cache perfor-
mance.

Padding data structures also wastes memory space: the xlisp node structures use only 10
bytes of information. Explicit padding increases the allocated size from the 12 bytes
required by C language semantics to 16 bytes, a 33% increase in storage. This increase
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Cache set
i Pad
1NN NN Pad

N\
[0 i+ 2 1 Pad
i+3 V//A///AV/A Pad

(a) (b)

Each pattern corresponds to afeliént node structure, whilpad indicates waste
storage. The initial allocation strategy (a) resulted in two cache misses for half
nodes not in the cache. Padding the structures to equal a cache block size and ¢
on cache block boundaries (b) reduces this to only one cache miss per node not
in the cache.

Figure 24: Cache Mappings for Xlisp Node Structues

could adversely &ct virtual memory performance for ¢gar programs, although it was
not an issue for the nine queens problem [56].

3.5.4 tomcatv

Tomcatv is a FORRAN 77 mesh generation program that uses seven two-dimen-
sional data arrays, each of which requires approximately 0.5 M-Byte. The algorithm (see
Figure19) consists of a forward pass in which two arrays are read and the other five writ-
ten (loops 1,2,3), a backward pass (loop 4) over two arrays to calculate errors, and finally
another forward pass (loop 5) to add in these errors.

Since the arrays are muchdar than the cache, and the arrays are sequentially accessed
| expect to see a lge number of capacity misses. HoweveProf shows that read
accesses to arrays X and Y during the first loop of the initial forward pass, are generating a
large number of conflict misses. It is easily observed from the source code that the two
arrays are always referenced with the same indices. Hence, to improve spatial locality
meiged them togetheplacing elements X(1,J) and Y(l,J) in the same cache block. This
modification results in speedups of 1.50 on the DECstation 5000/240, 1.32 on the 5000/
125 and 1.20 on the 5000/200.

Running CProf on the modifigdmcatv finds that capacity misses to the RX and R
arrays now dominate. As Figu?2® shows, the forward pass is actually composed of sev-
eral loops: loop 1 initially references six arrays, including writing RX anddétlowed by
loop 2 which computes the maximum values of the RX aridaRRays, and a final pass
(loop 3) over the RX andYRarrays to adjust the values. In addition to these disjoint for-
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for LL for LL
[* forward wave */ [* forward wave */
loop 1} forj loop 1. | forj
fori if j>1)
X, Y, RX, RY, AA, DD fori
X, Y, RX, RY
loop 2| for | fori
fori X, Y, RX, RY, AA, DD
RX, RY for i
loop 3| for | RX, RY
for i for i
AA, DD, RX, RY, D AA, DD, RX, RY, D

/* backward wave */
loop 2. | for ]
fori

RX, RY, AA, D
endfor /* LL */

/* backward wave */
loop 4| forj
fori

RX, RY, AA, DD

[* forward wave */
loop 5| forj

fori

X, Y, RX, RY
endfor /* LL */

(a) (b)

The originaltomcatv algorithm (a) contains several loops within a forward w
Although the same arrays are referenced in consecutive loops, the data access
beginning of the loop is displaced by data referenced at the end of the previous Ic
loop fused version adbmcatv (b) performs all operations of the forward wave on
row of the arrays. This results in speedups of 1.60, 1.47, 1.28 on the DECstatio
240, 5000/125, and 5000/200 respectively

Figure 25: Original tomcatv pseudocode (a), and loop-fused tomcatv (b).

ward pass loops, there is the additional forward pass (loop 5) to add the errors to the X and
Y arrays after the backward pass (loop 4) over the RX ahdrRiys. The RX and R

arrays are referenced in the same order in each loop of the forward pass (loops 1, 2, 3).
However recall that each array is 0.5M-Bytes in size, which is mugeitdahan the 64K-

Byte data cache. Hence, the elements referenced at the start of one loop are not in the
cache at the start of the next loop.
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The solution is to improve temporal locality by restructuring the program so that all
allowable operations are performed on an element when it is resident in the canke. T
forming the program via loop fusion (see FigRk meges these loops so that the pro-
gram contains only one forward loop and one backward loop. | can not perform the
operations of both the forward pass and backward pass in the same loop because of data
dependencies. Since the error corrections are not used in the last iteration, | can fold the
addition of error corrections into the forward pass after the first iteration. Loop fusion, in
addition to array meing, produced a speedup of 1.60 on the DECstation 5000/240, 1.47
on the 5000/125 and 1.28 on the 5000/200. These speedups are not as high as | expected
because of an increase in the number of conflict misses and a slight increase in the number
of instructions executed.

3.5.5 spice

spice (spice2g6 ) is an analog circuit simulator written in FORAN. The primary
data structure is a sparse matrix, which is implemented by several arrays. In particular
there are separate arrays for row pointers, row numbers, column pointers, column num-
bers, and values. CProf shows that two source lines accessing the row pointer and row
number arrays cause 34% of the cache misses. Another two source lines accessing the col-
umn pointer and column number arrays contribute an additional 12% of the cache misses.
Each pair of source lines is contained in a small loop that locates an element (1,J) in the
sparse matrix. CProf shows that the majority of the misses caused by these source lines are
conflict misses, indicating a mapping problem. Again, the X-windows interface of CProf
allows us to quickly observe that the row (column) pointer and row (column) number
arrays are nearly always accessed with the same indegingehe pointer and number
arrays to improve spatial localjtyesults in a speedup of 1.34 on the DECstation 5000/
240, 1.26 on the 5000/125 and 1.25 on the 5000/200.

3.5.6 dnasa7: The NASA kernels

dnasa7 is a collection of seven floating-point intensive kernels also known as the NAS
kernels:vpenta , cholesky , btrix , fft , gmtry , mxm andemit . Each kernel ini-
tializes its arrays, copies them to working arrays, then calls the application routine. | dis-
cuss the kernels separately better describe the cache optimizations. | did not study
emit , a vortex generation code, fiir , a fast Fourier transform codamit has a very
low miss ratio on a 64-Kbyte data cache (0.8%), andlsigFFTs have inherently poor
cache performance. The speedup | obtained for the entire collection of kernels is 1.51 on
the DECstation 5000/240, 1.30 on the 5000/125, and 1.24 on the 5000/200.
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3.5.6.1 vpenta

Thevpenta kernel simultaneously inverts three pentadiagonals, a routine commonly
used to solve systems of partialfdiential equations. CProf first finds that the miss ratio
is a startling 36%, mostly due to conflict misses. Using CProf to identify the mapping
problems, | discovered two nested loops responsible for over 90% of the cache misses.
One loop accesses three arrays while the other accesses eight arrays. Recall that | can
eliminate conflict misses by changing the allocation of data structures or changing the
order that they are accessed. Inspection of the source code reveals that both of these tech-
niques can be applied. | discovered that the loops could be interchanged to traverse the
arrays in column order and also identified three opportunities for arrayingeirhese
modifications result in speedups of 2.93 on a DECstation 5000/240, 2.10 on a 5000/125
and 1.85 on the 5000/200. It is interesting to note that the original code runs slower on the
5000/240 than on the 5000/200, despite the 60% faster processor cycle time. This is appar-
ently due to the higher miss penalty (the two machines use the same DRAMs, but the 240
incurs approximately 100ns additional delay due to an asynchronous interface). Loop
interchange not only increases spatial locabiyt results in a sequential access pattern
that the 24® prefetch logic can exploit. The 5000/240 has a speedup of 1.3 over the 5000/
200 on the modified code.

As with tomcatv , running CProf on the modified version gbenta shows that
capacity misses now dominate. Fusing loops to improve temporal locality by eliminating
multiple passes over the same arrays, results in speedups (over the original version) of
3.46, 2.53, 2.14 on the 5000/240, 5000/125 and 5000/200 respectively

3.5.6.2 cholesky

cholesky performs cholesky decomposition and substitution. CProf revealge lar
number of capacity misses in two nested loops. Inspection of the source code identifies an
array traversed in row-majorather than column-majoorder Statically transposing the
array (efectively performing loop interchange but with much simpler code modification),
results in speedups of 1.32 on the DECstation 5000/240, 1.16 on the 5000/125 and 1.13 on
the 5000/200. Blocking can also be applied to cholesky [41], but | chose to apply a much
simpler transformation.

3.5.6.3 btrix

btrix is a tri-diagonal solvelCProf shows that most of the misses are again capacity
misses that occur in two nested loops. As always, | first checked the array reference order
and immediately noticed that one array is traversed in row.drdkso observed that stat-
ically transposing this array would allow fusion of sixfeliént loops. Notice that | was
able to apply several transformations after a single run of CProf. On the DECstation 5000/
240, | obtain a speedup of 1.48, 1.32 on the 5000/125 and 1.27 on the 5000/200.
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DO 8 | = 1, MATDIM
RMATRX(I,1) = 1.D0 / RMATRX(1,1)
DO 8 J = I+1, MATDIM
RMATRX(J,1) = RMATRX(J,1) * RMATRX(l,)
DO 8K = I+1, MATDIM
RMATRX(J,K) = RMATRX(J,K)
- RMATRX(J,1) * RMATRX(I,K)

(@)

8 CONTINUE

DO 8 I|=1, MATDIM
RMATRX(1,1) = 1.D0 / RMATRX(,)
DO 81J = I+1, MATDIM
RMATRX(J,1) = RMATRX(J,1) * RMATRX(, )
81 CONTINUE
DO 8K = I+1, MATDIM
DO 8 J = I+1, MADIM
RMATRX(J,K) = RMATRX(J,K) - RMATRX(J,]) * RMATRX(I,K)
8  CONTINUE
(b)

Figure 26: Gaussian elimination loops: (a) original; (b) intezthanged.

3.5.6.4 gmtry

gmtry is a kernel dominated by a Gaussian elimination routine (see R@ur€Prof
finds that 99% of the misses, mostly capaaigcur in the Gaussian elimination loop;
inspection shows that the RMRX is traversed in row ordemterchanging the loops,
which is trivial in this case, results in a speedup of 2.52 on the DECstation 5000/240, and
1.48 on both the 5000/200 and 5000/125.

3.5.6.5 mxm

mxmis a matrix-matrix multiply routine. The naive matrix multiply algorithm is a well-
known “cache buster”, because there is little data re-use between loop iterations. The
SPECmxmimplementation does not use this simple algorithm, instead using a column-
blocked implementation (described earlier in the “cookbook”) that re-uses the same four
columns throughout the two innerost loops. It is interesting to note that improving
cache performance was not the original rationale for blogkixg instead, the intent was
to improve the opportunity for vectorizing compilers to reuse the contents of vector regis-
ters in Cray supercomputers. In this case, the same transformation improves performance
for both vector registers and caches. The standard SPEC column-blocked algorithm
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achieves a speedup of 1.38 over the naive algorithm on the DECstation 5000/240, 2.04 on
the 5000/125 and 1.74 on the DECstation 5000/200. Fgerlanatrices, a two-dimen-
sional (row and column) blocked algorithm would perform betiat for the standard
SPEC input size the extra overhead decreases performance.

3.5.7 Summary

| have demonstrated how cache profiling and program transformation can be used to
obtain significant speedups on six of the SPEC92 benchmarks. The speedups range from
1.02 to 3.46, depending on the mactsnaemory system, with greater speedups obtained
in the FOR'RAN programs. Since FORAN77 does not support structures, many of the
programs exhibit poor spatial localitynmproving the spatial locality by interleaving the
elements of disjoint arrays provided substantial improvements in most of tHERFDR
programs. Using FORRAN9O, which provides structures, would greatly simplify these
transformations. CProf was venyfetive at identifying when to mge arrays. Loop inter-
change also improved the spatial locality in the FRRN programs; in many programs,
loop interchange is a trivial transformation that can be easily identified by inspection or a
compiler The temporal locality of FORRAN programs was improved by loop fusion,
which requires programmers to perform all allowable operations on data while in the
cache, versus performing each operation in turn on all of the data. It is important to
remember that some of the transformations discussed in this chapter may bemaodnter
ductive on machines with vector registers.

The C programs benefited from padding and alignment of structuregingharrays
into an array of structures, and changing the declaration of a variable to pack more ele-
ments into a single cache block. Notice that padding and packing are opposite approaches,
and which to use is dependent on the program being profiled.

3.6 Conclusion

As processor cycle times continue to decrease faster than main memory cycle times,
memory hierarchy performance becomes increasingly important. Programmers can men-
tally simulate cache behavior to help select algorithms with good cache performance.
Unfortunately actual cache performance does not always match the progranaxeec-
tations, and many programs are too complex to fully analyze the interactions between
memory reference patterns, data allocation, and cagamiaation. In these cases, a tool
like CProf becomes an important element in a progransmeol box. A crucial factor for
the success of a tool like CProf is the time required to simulate the memory system. The
active memory abstraction satisfies this requirement by providing the framework neces-
sary to implement an ffient cache profileMy active memory implementation of CProf
executes only 3.4 to 15 times slower than the original application.
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CProf provides cache performance information at the source line and data structure
level, allowing a programmer to identify hot spots. The insight CProf provides, by classi-
fying cache misses as compulsargpacityand conflict, helps programmers select appro-
priate program transformations that improve a progsaspatial or temporal localjtgand
thus overall performance.
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Chapter 4

Dynamic Self-Invalidation

4.1 Introduction

Caches provide a costfettive alternative to supercompusdyle memories by alleviat-
ing the disparity between fast processors and,slwexpensive main memarynfortu-
nately caches do not work well for all access patterns. Furthermore, microprocessors are
designed for a volume market, sacrificing performance for lower cost, and are unlikely to
reach supercomputer levels of performance. This potential limitation is mitigated by con-
necting multiple cost-&fctive microprocessors, and exploiting parallelism to achieve
supercomputer performance, while exploiting the cdsteg¥eness of commodity micro-
processors.

Parallel processing introduces a plethora of complexities, perhaps the most important of
which is programming &rt. Shared-memory multiprocessors simplify parallel program-
ming by providing a single address space, even when memory is physically distributed
across many workstation-like processor nodes. Most shared-memory multiprocessors use
cache memories to automatically replicate and migrate shared data and implement a
coherence protocol to maintain a consistent view of the shared address space [9,28,40,49].

Write-invalidate protocols allow multiple processors to have copies of shared-readable
blocks, but force a processor to obtain an exclusive copy before modifying it [3,8,
9,29,49,75]. Directory-based protocols invalidate outstanding copies by sending explicit
messages to the appropriate processor nodes [3,8,75]. When a node receives an invalida-
tion message, it invalidates its local copy and sends an acknowledgment message back to
the directory (This message also contains the data for exclusive blocks).
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The performance of these protocols might improve significantly if | could eliminate the
invalidation messages (without changing the memory semantics). An oracle could do this
by simply making the processors replace blocks just before another processor makes a
conflicting access, allowing the directory to immediately respond with the data, and avoid-
ing the need to send invalidation messages. Thus, the processorsselbuthdalidate
their own blocks instead of waiting for the directory to send explicit invalidation mes-
sages. This would improve performance by reducing the latency and bandwidth required
to satisfy conflicting memory requests.

The principal contribution of this work is a practical approachljoramic self-invalida-
tion (DSI) of cache blocks. | show how the directory can dynamically identify which
blocks should be self-invalidated, how this information is conveyed to the cache in
response to a miss, and how the cache controller can later self-invalidate the selected
blocks at an appropriate time.

Self-invalidation cannot make a correct program incorrect, since it has exactly the same
semantics as a cache replacement. Howeedirinvalidating blocks too early can cause
unnecessary cache misses, hurting rather than helping performance. Therefore, the DSI
implementation must minimize the number of explicit invalidations without significantly
increasing the number of misses.

In this chapter | evaluate two methods for identifying which blocks to self-invalidate:
additional directory states and version numbers. My results indicate that 1-bit version
numbers generally performs better than the additional state method, and there is no benefit
from using lager version numbers.evsion numbers allow processors to identify blocks
for self-invalidation independent of other processors. In contrast, all processors make the
same decision using additional states.

| also investigate two techniques for the cache controller to self-invalidate the blocks:
using a FIFO bdér and using selective cache flushes at synchronization operations. Sim-
ulations show that selective flushing is more@fve because the FIF©Ofinite size can
cause self-invalidation to occur too eamgsulting in additional cache misses. | propose
two implementations for selectively flushing blocks from the cache: a modified flash clear
circuit and a hardware linked list. Both of these techniques process only blocks marked for
self-invalidation and can be implemented in the second level cache controller

The benefit of DSI is significant when coherencditrafominates communication. For
most of my benchmarks, a sequentially consistent memory system with DSI performs
comparably to a weakly consistent implementation that allows up to 16 outstanding
requests for exclusive blocks, but stalls on read misses. Execution times with the sequen-
tially consistent protocol improve by up to 41%, depending on the cache size and network
latency When used with a weakly consistent memory system, DSI can eliminate both
invalidation and acknowledgment messages by allowing nodes to obtain copies of a cache
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block without updating the directory state. My results show that while DSI improves the
performance of one benchmark (sparse) by 18%, it has litet&mn execution time for

most programs. Howevecombining DSI and weak consistency can eliminate 50-100%

of the invalidation messages, reducing the total number of messages by up to 26%. Note
that my implementations to do not require any changes to the processor chip. The results
presented in this chapter may not hold for implementations that change the processor chip.

This work evaluates DSI in the context of a conventional all hardware shared-memory
multiprocessarHowever DSI is applicable to many other types of shared-memory multi-
processors. In particulathe efectiveness of cache memories in shared-memory multipro-
cessors has produced systems that utilize a portion of main memory to cache remote data
[28,61]. In these systems, data is seldom replaced from the cache, and coherfance traf
dominates communication. DSI should be of increased benefit in these systems.

Another trend in multiprocessor design is to reduce cost by connecting existing worksta-
tions [5]. Howeverthese systems generally have relatively slow networks, and my results
indicate that DSI should have increased benefit because coherence overhead increases
with the network latency

This chapter is @anized as follows. Secti@gh2 reviews invalidation-based coherence
protocols and discusses related work. SeectiBnpresents dynamic self-invalidation and
discusses the design space. Sectidndescribes my implementations of dynamic self-
invalidation protocols, Sectioh5 evaluates their performance, and Sectiéreconcludes
this chapter

4.2 Backgound and Related Work

DSI technigues are applicable to hardware [49], software [63], and hybrid systems
[9,40,61]. In this chapted evaluate DSI in the context of a full-map, directory-based
hardware cache coherence protocol [3]. | assume a typical write-invalidate protocol with
three states (see Figu2&): no outstanding copies (Idle), one or more outstanding shared-
readable copies (Shared), or exactly one outstanding readable and writable copy (Exclu-
sive). A processor must obtain an exclusive copy of a block before modifying it; the direc-
tory enforces this by sending explicit invalidation messages to eliminate any outstanding
copies.

The overhead of these invalidation messages is particularly significantagugential
consistency42], the programming model most programmers implicitly assume. A multi-
processor is sequentially consistent if the execution corresponds to some interleaving of
the processes on a uniproces€wnventional directory-based write-invalidate coherence
protocols maintain sequential consistency by stalling a processor on a write miss until it
receives acknowledgment that all cached copies have been invafidaseshown in
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Figure 28: Coheence Overhead

Figure28. Unfortunatelythe latency of sending invalidations and collecting acknowledg-
ments may lie on the prograsrcritical path, and therefore degrade performance.

Self-invalidation techniques can eliminate the invalidation (Invalidate) and acknowledg-
ment (Ack) messages from the sequence, illustrated in Fa@ rsignificantly reducing
the latency required to obtain a cache block. When self-invalidation is performed per-
fectly, read requests always find the block in state Idle or Shared, and write requests
always find the block in state Idle.

Previous self-invalidation techniques rely on memory system directives inserted by the
compiler profile-based tools, or the programmeCompilerdirected cohence
[10,16,18,54] eliminates the directprglacing the entire burden of maintaining cache
coherence on the compildynfortunately this technique requires sophisticated analysis,
and has only been demonstrated to work well for regular scientific applications and one-
word cache blocks.

1. Itis possible to have P2 respond immediately with the data, and P3 send an acknowledgment
directly to P1 [49]. HoweveP1 stalls until the acknowledgment is received.
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Other self-invalidation techniqgues combine memory system directives with a conven-
tional directory-based write-invalidate protocol. In CICO, the programmer [29,82] or a
profile-based tool [1] annotates the program wittheck_in  directives to inform the
memory system when it should invalidate cache blocks. In contrast to cothpeleted
coherencecheck _in directives are only performance hints to the memory system; the
directory hardware is still responsible for correctness.

Self-invalidation can be used with other techniques that reduce the impact of coherence
overhead. Prefetching cache blocks before their expected use hides the latency to obtain a
cache block [55,27]. Multithreading [69,27] tolerates latency by rapidly switching to a
new computation thread when a remote miss is encountered. Migratory data optimizations
[14,72] speculate about future write requests by the same processor when responding to a
read request. Self-invalidation is complementary to these optimizations and could be com-
bined with them. For example, the/S®C V9 prefetch-read-once instruction [7]
indicates that a block should be prefetched, but then self-invalidated after the first refer-
ence.

Weak consistency models [2,20,24] also reduce the impact of coherence overhead. A
system that provides weak consistency appears sequentially consistent, provided that the
program satisfies a particular synchronization model [Zak\tonsistency models allow
the use of memory access tawing techniques—e.g., write Bafs. They also allow the
directory to respond with the data in parallel with the invalidation of outstanding copies,
and the processor can proceed as soon as it receives the data. The acknowledgments can
be sent directly to the requesting processor [49], or collected by the directory which for-
wards a single acknowledgment. The processor stalls at synchronization operations,
depending on the specific consistency model, until all preceding writes are acknowledged.
As discussed in Sectigh3.3, self-invalidation can eliminate acknowledgment messages
when combined with weak consisten@dve and Hill proposed a similar scheme for
sequential consistency [1]; howey#Treir technique requires modification of the level-one
cache to observe all cache accesses.

4.3 Dynamic Self-Invalidation

In this section, | present a general framework for performing dynamic self-invalidation
(DSI). Similar to other forms of self-invalidation, DSI attempts to ensure that data is avail-
able at the directory (home node) when another processor requests access.,Hifsvever
does not rely on programmer intervention; instead, self-invalidation is performed auto-
matically by the coherence protocol.

Write-invalidate coherence protocols generally involve the following operations (see
Figure29):
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Figure 30: DSI Decoupled Identification and Invalidation of Cache Blocks

1. identify that a cache block requires invalidation,

2. perform the invalidation, and

3. acknowledge the invalidation, if necessary

Conventional protocols tightly couple the identification of a block for invalidation (step
1) with its invalidation (step 2). The directory explicitly invalidates outstanding copies
when servicing cache misses. In contrast, DSI decouples these steps, speculatively identi-
fying which blocks to invalidate when they are brought into the cache, but deferring the
invalidation itself to a future time (see FigLa®@).

The remainder of this section discusses the dynamic self-invalidation design space.
Sectiond.3.1 discusses techniques for the directory contratbzhe controlleror soft-
ware to identify blocks for self-invalidation. Sectidr8.2 discusses performing self-
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invalidation with the cache controller or software, and SediBr8 discusses the
acknowledgment of invalidation messages.

4.3.1 ldentifying Blocks

Identifying blocks for self-invalidation requires speculating the likelihood that a block
will be invalidated in the near future. This identification can be implemented by the direc-
tory controller the cache controllesoftware, or any combination of the three.

Software approaches issue directives to the memory system to identify which blocks to
self-invalidate. Unfortunatelythese techniques require either programmer annotations, a
sophisticated compileor a profile-based tool. Furthermore, implementing these direc-
tives either requires special instructions not present in all instruction sets, or additional
memory mapped loads and stores. These additional instructions may increase program
execution time.

In this work, | focus on hardware techniques that automatically identify blocks for self-
invalidation. A directory controller can identify a block for self-invalidation by maintain-
ing a history of its sharing pattern. When servicing a request for a cache block, the direc-
tory uses this extra information to predict if the block is likely to be invalidated in the
future, and conveys this information to the caching node with the response.

Similarly, a cache controller can identify blocks for self-invalidation by maintaining
information for recently invalidated blocks [17] (e.g., the number of times a block is inval-
idated). When servicing a cache miss, this history information is used by the controller to
decide if it should self-invalidate the block at a later time.

4.3.2 Performing Self-Invalidation

Software, hardware, or a combination can be used to perform self-invalidation. The
caching node must record the identity of the blocks selected for self-invalidation and
invalidate them at a point in the future that maximizes performance.

Systems that maintain cache coherence in software [36,40,61,63] can use arbitrary data
structures to store block identities. The blocks are self-invalidated using the same primi-
tives required to process explicit invalidation messages. Alterngthaslgiware managed
caches can maintain a hardware data structure, such as an auxif@arpbah extra bit in
the cache tag. Software examines this hardware data structure, self-invalidating the blocks
by issuing directives to the memory system.

There are many alternatives for performing self-invalidation entirely in hardware, and
thus remove the burden from the programmer or compiebectiord.4, | present two
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hardware methods that can be implemented in the (second-level) cache cofitneller
first scheme uses a first-in-first-out (FIFO) feuf blocks are self-invalidated when they
fall out of the bufier. The second technique performs self-invalidation at synchronization
operations using custom hardware.

4.3.3 Acknowledging Invalidation Messages

In conventional directory-based, write-invalidate protocols, the directory records—or
tracks—the identity of nodes holding copies of a cache block. By tracking blocks, the
directory can always explicitly invalidate cached copies when nece$sary, self-inval-
idation is semantically equivalent to a cache replacement with notification, and places no
restrictions on the memory consistency model. Some systems do not notify the directory
when a block is replaced from the cache [9]. Instead, the directory always sends an invali-
dation to the node, and an acknowledgment is always required. Self-invalidation of
tracked blocks can reduce latency and eliminate invalidation messages. However
acknowledgment messages are still required to inform the directory that a node has invali-
dated its copy of the block.

I can eliminate both invalidation and acknowledgment messages by guaranteeing to
self-invalidate blocks at specific points according to the memory consistency model. For
these blocks—calletbar-off blocks—the directory does not track the outstanding.copy
Note that teaoff blocks are only useful for shared-readable blocks, since the acknowledg-
ment for exclusive blocks is generally coupled with the transfer of modified data.

Scheurich observed that the invalidation of a cache block could be delayed until the sub-
sequent cache miss and still maintain sequential consistency [62]. The intuition behind
this observation is that a processor can continue to access data until it “sees” new data
generated by another processtir maintain sequential consistentlye cache controller
must invalidate teaoff blocks at subsequent cache misses. Therefore, a cache may con-
tain at most one teanff block.

A further caveat is that using teaif blocks with sequential consistency does not guar-
antee forward progress. If a processor obtains atéhtock containing a spin lock [4], it
may never experience a subsequent cache miss. The spin lock will never be invalidated,
and the processor will not proceea dvercome this, the teaff block could be self-
invalidated periodicallye.g., at context switches.

Tearoff blocks are potentially much more significant under weaker consistency models.
A processor can cache multiple tedir blocks since the model does not guarantee that a
processor can “see” data generated by another processor until it performs a synchroniza-
tion operation. By self-invalidating its local teaff blocks at each synchronization point,
a processor ensures that it can see all other processors’ modifications to shared data (see
Figure31).
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Figure 31: DSI Using Bar-Off Blocks

4.4 Implementation

In this section, | present severalfdient implementations of DSI. | focus on techniques
where the directory identifies which blocks should be self-invalidated, and the cache con-
troller performs the self-invalidation. The directory conveys self-invalidation information
to the cache when responding to a miss. Blocks that are not self-invalidated are explicitly
invalidated in the conventional mannkedescribe two methods for the directory to iden-
tify blocks for self-invalidation, followed by two techniques for the cache to perform the
invalidations. | evaluate these implementations in Sedtidn

4.4.1 Identifying Blocks

The directory controller provides a single point for monitoring a cache blgblgring
patterns. This section presents two techniques for the directory controller to identify
which blocks should be self-invalidated: additional states and version numbers. Both
implementations are extensions to a standard three state, full-map, directory-based write-
invalidate protocol, such as QINB [3]. Appendix B provides more details on each of the
protocols.

Both implementations use the sharing history to speculate about the future: blocks that
have recently had conflicting accesses—and hence would have needed invalidations—are
candidates for self-invalidation. Thus, shared-readable blocks are marked for self-invali-
dation if they have been modified since the last reference by the prodakeuise,
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exclusive blocks are marked for self-invalidation if they have been read or modified by a
different processor since the writing processtast access.

Through experimentation | found two special cases where it is better to avoid self-inval-
idation. First, blocks are not self-invalidated from the home sod®the (although on
other systems this may not be the recommended approach, since local invalidation laten-
cies may be high.) Second, under sequential consistexdysive blocks are not marked
for self-invalidation if the writing processor had a shared-readable copy and there are no
other outstanding copies. This upgrade case can cause unnecessary self-invalidation of
exclusive blocks, which causes additional write misses, degrading performance for some
programs under sequential consisteri¢ys special case is not needed under weak consis-
tency since the write béér hides the latency of the additional write misses.

4.4.1.1 Additional States

The first implementation uses four additional states to identify which blocks should be
self-invalidated. When servicing a read request, the directory responds with a self-invali-
date block if the current state is exclusive. These blocks enter a new state (Shared_SI) that
causes all subsequent read requests to obtain a block marked for self-invalidation. | also
add two new states (Idle_X, Idle_S) to detect transitions into the idle state from the exclu-
sive or shared-readable state resulting from self-invalidation. Firaligd one state
(Idle_SI) to detect transitions into the idle state resulting from the cache replacement of a
self-invalidate block.

The directory responds to a write request with a self-invalidate block if the current state
is: Shared, Shared_SI, Exclusive, Idle_S, Idle_SI, or Idle_X wherdeaedif processor
had the block exclusive. Read requests obtain a self-invalidate block if the current state is:
Exclusive, Idle_X, Shared_SI or Idle_SI.

If tearoff blocks are supported, each directory entry requires one additional bit to indi-
cate that there is more than one outstandinga#drock. This bit allows correct identifi-
cation of exclusive blocks for self-invalidation when servicing a write request from a
processor that had a teaff block.

4.4.1.2 \érsion Numbers

Version numbers provide an alternative scheme that identifies when blocks are modified
by different processors. This additional information allows processors to decide indepen-
dently whether to obtain a self-invalidate block. By contrast, all processors make the same
decision using additional states to identify blocks.

The directory maintains a version number for each block and increments it each time
any processor requests an exclusive cdpys scheme requires the cache controller to
store the version number with the associated block. On a miss, if there is a tag match, and
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Figure 32: Identification of Blocks Using ¥#rsion Numbers

it the block Is invalid, the corresponding version number is sent with the request for the
block. The directory responds with a self-invalidate block if the current version number is
different from the version number of the request. If the cache controller does not provide a
version number (i.e., there is not a tag match), the directory responds with a normal block.

Consider the produceonsumer example shown in Figl2. Initially, processor Pread
has a shared-readable copy of a block (a). Processor Pwrite writes to the same block, caus-
ing the directory to increment the version number (from 2 to 3) and invalidate read’
copy When Pread next accesses the block, it incurs a cache miss and includes the cached
version number for the block (2). Upon receipt of the request message, the directory com-
pares the version number in the request (2) to the current version number (3) and marks
the block for self-invalidation since they are not equal. Pread records the identity of the
block for self-invalidation when it receives the response and self-invalidates the block at a
future time.

Although | assume the version numbers are cached by the cache cornitisl{@ssible
to cache the version numbers at the directahus avoiding modifications to the cache
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controller Since the version number is only a performance hint, | can use a small number
of bits and allow wrap-around without violating correctness.

Exclusive blocks are identified for self-invalidation when the version numbers do not
match, and when the version numbers do match but another processor has read the block.
To detect this situation, | add two bits to each directory entry that count the number of
shared-readable copies distributed for the current version of the block. Each time the
directory responds with a shared-readable block, a ‘one’ is shifted into the low-order bit.
Both bits are cleared when the version number is incremented. Therefore, write requests
obtain a self-invalidate exclusive block if either the version numbers do not match, or the
current version has been read by at least two processors (which may include a previous
read by the writing processor).

4.4.2 Performing Self-Invalidation

In this section, | present two techniques for the cache controller to self-invalidate blocks
using information readily available from many commodity processors.

The first implementation uses a first-in-first-out (FIFO) policy for self-invalidation
blocks. When the cache controller receives a self-invalidate block, it records the identity
of the block in the FIFO. Blocks are self-invalidated when an entry in the FIFO is
replaced. In addition, if | can identify synchronization operations, sutdstkset or
swap, then I can also flush the FIFO at those points.

Implementing the FIFO requires the addition of a small memory to store the identity of
the blocks to self-invalidate. This fef—similar to a victim cache [34] or the HRT200
assist cache [39]—is unlikely to exceed 64 entries. Nonetheless, this is an attractive
approach since it does not rely on any information from the processor

If the cache controller can identify synchronization operations, then there are other
schemes for performing self-invalidation. In particularan eliminate the FIFO and flush
all self-invalidate blocks from the cache after one or more synchronization operations
[12,22]. In this chaptet focus on invalidating blocks at each synchronization point.

The precise implementation depends on the specific DSI protocol. All the implementa-
tions require an additional b#, associated with each cache tag. $Hpdt indicates that
the block should be self-invalidated, which is accomplished by clearing the corresponding
valid bit. When a new block is brought into the cachesthi¢ is set if the block has been
selected for self-invalidation.

1. This strategy was suggested by Peter Hsu of Silicon Graphics Inc.
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Self-invalidation of tracked blocks requires the cache controller to send an acknowledg-
ment (or notification) message to the directditye control logic must find which blocks
to self-invalidate—marked by trebit—and recreate the full addresses by concatenating
the cache index with the cache tag.

The naive implementation sequentially examines each cache frame, self-invalidating the
block and sending a message if necesdaoyvever the overall latency will be propor-
tional to the number of cache frames, even though many blocks may not be self-invali-
dated.

| can reduce this latency using a circuit that sequences through only the blocks that must
be self-invalidated. One implementation uses a modified flash clear circuit to determine
the next cache set that contains a block to self-invalidate, and requires an encoder to recre-
ate the cache index (See Fig@8). This encoder is roughly the same size as the set index
decoderand, for set-associative caches, it can be shared by all cache frames in the same
cache set.

Alternatively | could use a hardware linked list (see Figddgwhich adds a pointer to
each cache set, and maintains a head and a tail pdiheepointers store the cache index
of the next block to self-invalidate. When a self-invalidate block is brought into the cache,
its corresponding pointer is assigned to the current value of the tail, and the tail is updated
to point to the new block. At synchronization operations, the list is traversed from tail to
head. Set-associative caches require only one pointer per cache set. A set is inserted in the
list when it receives its first self-invalidate block; during self-invalidation, the set must be
searched for all blocks with tlsehit equal to one.

These implementations achieve similar performance, processing only blocks that require
self-invalidation. Note that self-invalidation of tracked blocks can overlap with the execu-
tion of the processpstaging out the messages and possibly avoiding severe network con-
gestion or synchronization delays. Howetke quantitative results in this chapter assume
that the processor does not proceed past synchronization points until all blocks are self-
invalidated, and that messages are injected as rapidly as the network can accept them.

Self-invalidating tracked blocks always requires messages to the direataiythe
latency to perform self-invalidation is proportional to the number of blocks self-invali-
dated. Howevemwhen both teaoff blocks and exclusive blocks are self-invalidated, only
the exclusive blocks require a message to the direcibwy teaioff blocks can be self-
invalidated in a single cycle using a simple flash clear circuit; the exclusive blocks must be
sequentially self-invalidated using one of the techniques described above.

Although in this chapter | assume a modified cache contrbldan avoid these modifi-
cations by implementing the linked list as a separate hardware structure. This structure
must be able to invalidate blocks from the procésswache. Therefore, it can be placed
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The implementation of this circuit is similar to a Manchester carry chain [80]. A
block is selected for self-invalidation only if no preceding blocks require
invalidation. If a block should be self-invalidated, standv bits are set, and the fra
generatesa self-invalidate signal, otherwiseptopagatesthe signal from the previo
cache frame, o= (Sv;) + g.1. A cache frame is selected, i.e., the signdlit is active

only if it generates a self-invalidate and no previous cache frame generated
invalidate, si= §v;g;.;. This results in a singl& bit being set for all the cache frames,

Figure33c.

Thesi bit is used to clear the corresponding valid bit and enable the output of th
tag. To create the corresponding block address,sthats are used as the input to
encoder to create the cache index, see Fig8ae This encoder is roughly the same
as the decoder used to select a cache set. The control logic cycles until there are
to self-invalidate.

Although this implementation can be applied to any cache configuration, the siz
encoder can be reduced in caches with associativity greater than one, since tl
multiple cache frames with the same cache index. All cache frames generate

invalidate signalsi, in the same manner as a direct-mapped cache. Hqwatresr tha
using eaclsi bit directly as an encoder input, a single input is generated for each c:
by the OR of thesi bits for each frame in the set.

Figure 33: Self-Invalidation Circuit




75

Set Pitr

<
>
c
3

Tag

0

Tim /(' 2
_C

Head

AN

Figure 34: Hardware Linked List for Self-Invalidation

between the level two cache and the system bus, or it can be a bus smagsarto the
remote access cache on DASH [49]. This approach eliminatesbihérom each cache
frame, forcing each self-invalidate block to have an entry in the list, precluding the use of
the flash clear circuit. Furthermore, if the device is a bus mastditional overhead is
introduced since each block that is self-invalidated would require a bus transaction.

4.5 Performance Evaluation

Now | evaluate the &fctiveness of DSI by comparing it to a full-map protocol [3].
Sectiond4.5.2 evaluates the detection and self-invalidation mechanisms under sequential
consistencyln Sectiord.5.3, | evaluate the benefit of adding dynamic self-invalidation to
a weak consistency implementation that allows up to 16 outstanding requests for exclusive
blocks. Finally Sectior4.5.4 examines the impact of block size on DSI performance.

4.5.1 Methodology

| use a modified version of thei¥tgonsin Whd Tunnel [60] to simulate 32-processor
systems with 256K-byte and 2M-byte 4-way set-associative caches with 32-byte blocks.
Cache misses occupy the cache controller for 3 cycles and the directory controller for 10
cycles, plus message injection time. The message injection overhead is 3 cycles, with an
additional 8 cycles if a cache block must be sent. | assume a constant 100 cycle network
latency and do not model contention in the switches. Howewatention is accurately
modeled at the directarycache and network interface. Instruction execution time is
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Name Input Data Set

Barnes 8192 bodies, 5 iterations

EM3D 192,000 nodes, degree 5, 5% rempote
Ocean 98x98, 1 day

Sparse 512x512 dense, 5 iterations
Tomcatv 512x512 5 iterations

This table describes the benchmarks used in this ch&parse is locally-writte
[82], EM3D is from the Berkeley Split-C group [15], Barnes and Ocean are fro
Stanford SPLASH suite [65], anebficatv is a locally written, parallel version of 1
SPEC benchmark.

Table 8: Application Programs

obtained by modeling the SupefSEC processgmwhich can issue up to three instructions
per cycle. | assume that ARC swap instructions and a hardware barriefith a 100
cycle latency from the last arrival, are visible to the memory system.

The base cache coherence protocols are all full-map protocols. The sequentially consis-
tent implementation stalls the processor on all misses. The directory invalidates outstand-
ing copies and collects acknowledgments before forwarding the block to the requesting
processar

For weak consistency use a 16-entry coalescing write fauf Each entry in the write
buffer contains an entire cache block, and write misses that match an outstanding request
are meged into the existing entryrhe directory in my weak consistency protocol grants
exclusive access to a block in parallel with the invalidation of outstanding shared-readable
blocks. A single acknowledgment is sent to the owning processor after the directory col-
lects the invalidation acknowledgments. The processor stalsvad and barrier
operations until all previous writes are acknowledged. The processor also stalls on read
misses until the block is obtained.

| present results from five benchmarks in my evaluation of DSI (gbled.) | focus
specifically on the parallel portion of the programs, clearing all statistics after initializa-
tion.
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4.5.2 Sequential Consistency Results

| evaluate DSI in the context of sequential consistelpeginning with an evaluation of
the detection mechanisms, described in Seetidri. | assume that | have custom hard-
ware to perform the self-invalidation at synchronization operations. This is followed by a
discussion of performing self-invalidation with a FIFOfeuf

The main results from this study are that:
1. DSI can give sequential consistency performance comparable to an implementation of

weak consistency

2. Version numbers are mordegftive than additional states for detecting which blocks

to self-invalidate, and a single bit for the version number fecgarit.

3. Performing self-invalidation at synchronization operations is better than using a finite-
size FIFO.

4. DSl is most dkctive when coherence overhead dominates communication.

DSI improves execution time by up to 41%, depending on the cache size and network
latency For all but one of my benchmarks, these execution times are comparable to my
weakly consistent implementation. Furthermore, the benefit of DSI is muer lahen
coherence overhead is high. When coherence overhead, isditlier weak consistency
nor DSI have much &fct on execution time.

4.5.2.1 Detection Mechanisms

In this section, | examine the performance of detecting blocks using additional states and
version numbers. Figu@b shows execution time normalized to the base sequentially
consistent protocol. The left most bar is the base sequentially consistent protocol (SC),
followed by the weakly consistent (W) and DSI protocols with additional states (S) and 4-
bit version numbers (V), respectivelased just on total execution time, the results indi-
cate that sequentially consistent DSI achieves performance roughly comparable to the
base weakly consistent implementation for all programs exoegin .

To look furthey I refine execution time into computation, synchronization, read invalida-
tion, read othemvrite invalidation, write otheland other (e.g., TLB misses and 1/0). Read
(write) invalidation is the time spent waiting at the directory for outstanding copies to be
invalidated, and represents the maximum time DSI can eliminate. For weak congistency
also include the time spent waiting at synchronization points for the wriier bofdrain
(synch wb), waiting on read misses for which there is already an outstanding write miss
(read wb), and waiting when the write farfis full (wb full). For the DSI protocols, |
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Figure 35: Performance of DSI Under Sequential Consistency

include the time spent waiting for the self-invalidation to complete (DSI). Although, my
simulations show that this time is too small to perceive.

This breakdown shows thBarnes has very little invalidation delagnd neither weak
consistency nor DSI yield performance improvements.

EM3Dspends most of its time waiting for cache misses. DSI reduces the write invalida-
tion time, producing improvements within 5% of the weakly consistent protocol, which
eliminates all write latencies. For the 256K-byte cache, execution time improves by 25%



79

for weak consisten¢gyl5% for DSI using states, and 13% for the version number imple-
mentation. For the 2M-byte cache, improvements are 32%, 27%, and 27%, respectively
DSI does not reduce the read invalidation time becaM#Duses local allocation, and all
modifications to shared data occur on the home node. Recall that blocks are not self-inval-
idated from the home nodes cache.

DSI has little efect on the execution time otean for either cache size because of un-
synchronized accesses to shared data. In contrast, weak consistency reduces execution
time by 27% for the 256K-byte cache and 32% for the 2M-byte cache.

Forsparse , DSI reduces both read invalidation and write invalidation detayper-
forming weak consistency by as much as 10%aWconsistency improves performance
by 5% for the 256K-byte cache and 9% for the 2M-byte cache. DSI provides 13% and
10% improvements using additional states, and 15% for both cache sizes using version
numbers.

For the 256K-byte cachggmcatv shows no change in execution time for any of the
protocols since its data set is toogkrfor the cache. ¥ak consistency eliminates the
write stall time, but read stalls increase because there is a read miss for a block with an
outstanding write miss. For the dg@r cachetomcatv ’s execution time is dominated by
computation, and weak consistency and DSI with version numbers improve execution
time by only 4% and 3% respectively

4.5.2.2 \eérsion Number Size

The results presented thus far assume 4-bit version numbers. | now analyze the perfor-
mance of smaller version numbers, specifically 1, 2, and 4 bit version numbers.3gigure
shows the execution time for sequentially consistent and weakly consistent DSI normal-
ized to the base sequentially consistent protocol as a function of the version number size.
These results clearly show that DSI performance is independent of the number of bits used
for version numbers—a single bit is cient, significantly reducing the space required to
store the version numbershis is primarily due to the produeeonsumer nature of the
benchmarks that | studied.

4.5.2.3 Impact of Network Latency

As processor cycle times continue to decrease relative to network latencies, the impact
of coherence overhead increases eValuate the benefit of DSI under these conditions, |
increased the network latency to 1000 cyclesi$l® 100 MHz). This generally increases
the benefit of both DSI and weak consisteith a 256K-byte cache, weak consistency
reduces execution time by 2% foarnes , 33% forEM3D 32% forocean, 15% for
sparse , and 1% fotomcatv . DSI improve€EM3Ds performance by 32% using states
and 26% using version numbeBarnes andtomcatv show very little change from the
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100 cycle network. DSI provides less benefit §marse with the higher network
latency improving performance by only 2% using states and 9% using version numbers.

For a 2M-byte cache size (see Fig8rg, DSI using version numbers reduces execution
time by 41% forEM3D 5% forocean , 21% forsparse , and 12% fotomcatv , but
increasedarnes execution time by 5%. Using additional states to detect self-invalidate
blocks improve€EM3Ds execution time by 41% andmcatv ’'s by only 4%.Ocean’s
execution time is unédcted, while this method increases the execution tin@ofes
by 10% andsparse by 3%. Thus, version numbers generally perform better than addi-
tional states.

The results in this section show that DSI can improve the performance of a sequentially
consistent, full-map directory-based protocol by eliminating invalidation latencies. For all
but one of my benchmarks, DSI achieves performance comparable to an implementation
of weak consistencyThe benefit of DSI is most pronounced when coherence activity
dominates communication. When a progmuaata set does not fit in the cache, coherence
overhead is lopand the benefit of DSI decreases. These results suggest that systems using
main memory as a cache for remote data, e.g., COMA, [28,61] may benefit significantly
from self-invalidation.

4.5.2.4 Self-Invalidation Mechanisms

In this section | evaluate the FIFO and selective flush techniques for self-invalidating
blocks from the cache. The FIFO farfhas 64 entries and is flushed at each synchroniza-
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Figure 38: Self-Invalidation Mechanisms

tion operation. The selective flush hardware uses a linked list to invalidate marked blocks
at each synchronization point. The directory uses version numbers to determine which
blocks should be self-invalidated.

The results, shown in FiguB8, are for a 2M-byte cache; howeverere is no qualita-
tive difference for a 256K-byte cache. FEEM3D ocean , andtomcatv there is little dif-
ference between the self-invalidation schemes. Howewslif-invalidating at
synchronization operations outperforms the FIFO darnes and sparse, which
exhibits a dramatic dérence. The FIFO is unable to contain all of the self-invalidate
blocks in the prograre’ working set. Blocks are self-invalidated too eaclgusing an
additional subsequent miss which obtains a normal cache block. This is a fundamental
problem with a finite size bigr, and can significantly undermine the benefit of DSI.

4.5.3 DSI and Wak Consistency

This section evaluates the benefit of DSI in the context of weak consisiEcgnd
weak consistency both reduce the impact of coherence overhead, and the results in
Section4.5.2 show they often achieve comparable reductions in execution time. When
DSl is used in conjunction with weak consisteribg directory can utilize teaff blocks,
as described in Secti@h3.3, to eliminate acknowledgment messages. Furthermore, the
write buffer can mitigate the &fcts of self-invalidating exclusive blocks incorrectind |
can eliminate the special case for exclusive blocks, described in Sédtibn
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100 cycle 1000 cycle

Benchmark network network

256 KB | 2 MB | 256 KB | 2 MB
Barnes 1.00| 0.98 1.00f 1.03
EM3D 0.99| 0.99 1.00| 1.00
Ocean 1.00| 1.02 0.99| 1.04
Sparse 0.82| 0.84 0.90| 0.96
Tomcatv 1.00| 0.97 1.00| 0.86

Table 9: Weakly Consistent DSI Normalized Execution ime

For most of my programs, there is very littldeef on execution time, as shown in
Table9 and Figure89. Sparse is the exception, where DSI with weak consistency
improves performance by up to 18% over weak consistency alomecatv shows a
14% reduction in execution time for the 2M-byte cache with a 1000 cycle network. This is
a direct consequence of eliminating the special case for exclusive blocks; DSI eliminates
both write invalidation and read invalidation latencies.

DSI with tearoff blocks eliminates both invalidation and acknowledgment messages.
Tearoff blocks potentially reduce both the total messagédrand the directory control-
ler occupancyThe latter may have a significanfest on systems that cannot process
local memory accesses in parallel with protocol events (e.g., FLASH [40], Blizzard [63])
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Reduction of Reduction of

Total Invalidation Rérr]r?(;?:?\;laisiges

Benchmark Messages Messages

256 KB| 2MB | 256 KB | 2 MB | 256 KB | 2 MB
Barnes 0% 5% 37% | 41% 2% | -1%
EM3D 17% | 26% 85% | 100% 0% 0%
Ocean 4% | 12% 32% | 52% 1% 9%
Sparse 7% 1% 54% | 66% -1% 1%
Tomcatv 0% | 21% 45% | 100% 1% 4%

Table 10: DSI Message Reduction Under ¥k Consistency

or on systems that experience contention in the network (my simulations do not model
contention at the network switches). The resultsahld10 show that DSI reduces the
total number of messages by up to 17% for a 256K-byte cache and 26% for a 2M-byte
cache. © the first orderdirectory controller occupancy will be reduced by the same
amount. &blel0 also shows that DSI eliminates between 32% and 85% of invalidation
messages for the 256K-byte cache and between 41% and 100% for the 2M-byte cache.
DSI changes the replacement of blocks from the cache, potentially produdergrdif
executions of the program and reducing the number of remote misses, as shwavn for

nes andsparse . These results provide an estimate of the accuracy of my DSI imple-
mentation. DSI dramatically reduces the number of invalidation messages without
significantly increasing the number of remote misses.

4.5.4 Effect of Larger Cache Block Size

The previous performance studies all use 32-byte cache blocks. | now examimecthe ef
of larger block sizes on the performance of DSI. | performed simulations of a 2M-byte
cache with 64-byte and 128-byte blocks. Figt@eshows the execution time of the vari-
ous protocols, normalized to the base sequentially consistent protocol with 32-byte blocks.
These results reveal that increasing the block size reduces the benefit EM386Is the
only program that benefits significantly from DSI when using 128-byte blocks. For most
of my benchmarks, the base sequentially consistent protocol improves significantly with
larger cache blockdarnes is the exception, exhibiting a significant decrease in perfor-
mance for lager block sizes due to false sharing. For the other benchmarks, gbe lar
block size requires fewer invalidation messages to transfer the necessary data. Therefore,
there is less invalidation delagecreasing the potential advantage of DSI for the systems
that | studied.
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4.6 Conclusion

Coherence overhead in directory-based, write-invalidate protocols can significantly
degrade performance. In this chaptesvaluated dynamic self-invalidation (DSI), a new
technique for reducing coherence overhead. DSI eliminates invalidation messages by hav-
ing processors automatically invalidate local copies of cache blocks before another pro-
cessor accesses the block. Therefore, the directory can immediately respond with the data
when processing a request for the block.

| evaluated DSI in the context of a full-map, hardware cache coherence protocol. In my
implementations, the directory identifies cache blocks for self-invalidation, and the cache
controller performs the self-invalidation. Under sequential consistency—where the
latency of invalidating outstanding copies may lie on a prograitical path—DSI
reduces execution by up to 41%, depending on the cache size and network lanelecy
weak consisteng)DSI generally had little &fct on execution time, although one bench-
mark improved by 18%. Howevarombining DSI and weak consistency permits exploita-
tion of tear-off blocks where the directory does not track the outstanding copies. This
eliminates both invalidation and acknowledgment messages, reducing the total number of
messages by up to 26%.

| presented two techniques for the directory to identify which blocks should be self-
invalidated: additional states and version numbers. My simulations reveal that version
numbers generally outperform additional states. | also evaluated two approaches for the
cache controller to perform the self-invalidation: a FIFOfdoufand at synchronization
operations using custom hardware. Self-invalidation at synchronization operations utilizes
the full capacity of the cache, and significantly outperforms the finite-size FIFO for some
applications.

DSl is a general technique, applicable to hardware, software, and hybrid cache coherent
shared-memory multiprocessors. Current trends in parallel architectures, e.g., faster pro-
cessors and lger caches, can make coherence overhead a significant fraction of execution
time. If this trend continues, DSI should be of increasing benefit.
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Chapter 5

Conclusion

The memory system performance of modern microprocessors has a significant impact
on sustained execution rates. As processor cycle times decrease, memory system perfor-
mance becomes ever more critical to overall performance. Market forces prevent the use
of expensive supercomputstlyle memory systems in microprocesbased machines.
Instead, computer architects utilize cache memories to develop faadivef memory
systems.

Continually changing technology and workloads create a moviggttésr computer
architects in their &rt to design cost-&ctive memory systems. Meeting the demands of
ever changing workloads and technology requires the following:

» Efficient techniques for evaluating memory system performance,
* Tuning prograns to better use the memory system, and
* New memory system designs.

This thesis makes contributions in each of these areas.
5.1 Thesis Summary

Simulation is the most common technique for evaluating memory system performance.
As technology and workloads change, the ability to rapidly simulate memory systems will
become increasingly important to hardware and software designers. Hardware designers
rely on simulation to evaluate new memory systems. Software designers can use simula-
tion to obtain information about their progranmemory system behavior



88

To meet the demands of ever changing technology and workloads, simulation tech-
niques must change. The conventional method for memory system simulation relies on the
reference trace abstraction. Unfortungtétys simple abstraction limits simulator perfor-
mance because the simulator must examine each memory reference. In many simulations,
most memory references do not change the state of the memory system and require no
action by the simulator

This thesis evaluates a new approach for on-the-fly simulation of memory systems—the
active memonyabstraction. The primary contribution of active memory is the ability to
optimize memory system simulation for the common case—references that do not change
the state of the simulated memory system. Active memory associates a state with each
memory block, specifying a function to be invoked when the block is accessed. Simula-
tion is controlled by having the simulator manipulate the memory block states. A pre-
defined NULL function can be optimized by active memory implementations, allowing
efficient execution of the common no-action case.

My implementation of the active memory abstraction, Fast-Cache, inserts 9 instructions
before each memory reference, to quickly determine whether a simulator action is
required. Fast-Cache simulation times are only 2 to 6 times slower than the original, un-
instrumented program on aARCstation 10/51; a procedure call based trace-driven sim-
ulator is 7 to 16 times slower than the original program, and a trace-driven simulator that
buffers the address trace is 3 to 8 times slowerthermore, the system features required
for trap-driven simulation are not always available, and if they are available, they can be
used to implement the active memory abstraction.

As the impact of memory system performance increases, the ability to rapidly evaluate
memory system performance will become more important. Hardware and software
designers will increasingly rely on simulation to evaluate new ideas. In partiptdar
grammers must be aware of their prograntache behavipand restructure their code to
better utilize the memory hierarchyhe size and complexity of todayprograms pre-
cludes a simple mental simulation of cache behalngtead, the programmer requires a
cache profile that provides insight for selecting program transformations that will improve
performance.

In this thesis, | show how to use CProf, a cache profoeselect appropriate program
transformations from a set of well-known transformations. CProf provides cache perfor-
mance information at the source line and data structure level allowing a programmer to
identify hot spots. The insight CProf provides, by classifying cache misses as compulsory
capacity and conflict, helps programmers select appropriate program transformations that
improve a prograns’ spatial or temporal localityand thus overall performance. | used
CProf to profile and tune six of the SPEC92 benchmarks. Execution time speedups for
these programs range from 1.02 to 3.46, depending on the maahe@ory system.
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The third contribution of this thesis dynamic self-invalidatiofDSI), a new memory
system design. DSI is a technique for reducing coherence overhead in shared-memory
multiprocessors. The fundamental concept of DSI is for processors to automatically
replace a block from their cache before another processor wants to access the block. This
allows the directory to immediately respond with the data when processing a request for
the block, reducing invalidation latency and message overhead.

Invalidation latency is particularly important under sequential consistsimoe it may
lie on the prograns’ critical path. Using DSI produces execution times comparable to an
implementation of weak consistenegducing execution by up to 41%, depending on the
cache size and network laten®¥yhen used with weak consistengsyprovements in exe-
cution time were less dramatic, however one program did exhibit an 18% improvement.
Under weak consistencthe DSI protocol can expldi¢ar-off blocks, which allow a pro-
cessor to cache a copy of the block without recording this information at the directory
Tearoff blocks eliminate the need to acknowledge when a block is invalidated from a pro-
cessors cache, reducing the number of messages by up to 26%.

Although | focussed on all hardware implementations that avoid modifications to the
processor chip, DSI can be applied to a variety of cache coherent shared-memory multi-
processors (e.g., COMA, hardware, software, and hybrid). Furthermore, the benefit of DSI
should increase as processors get faatet caches get zer.

5.2 What Next?

The work presented in this thesis can be extended in many ways. First, as detailed in
Section2.7, the active memory abstraction can be extended to include accurate cycle
counts for timing dependent simulations (e.g., prefetching and lock-up free caches).
Another avenue for future investigation is a multi-program workload simulation environ-
ment, including the operating system. One interesting approach is to utilize a single 64-bit
address space to simulate an entire system. In this case, the active memory abstraction can
be used to provide bothfigient simulation and software fault isolation.

CProf currently profiles only uségvel uniprocessor applications. Extending it to profile
operating systems, multiprogramming, and multiprocessor systems would be useful for
most of the computing communitylany of these extensions would come for free, if the
active memory abstraction were extended to facilitate these paradigms.

There are many possible extensions to the DSI studies. First, is the use of DSI in the
context of cache only memory architectures (COMA). These systems utilize main mem-
ory as a cache for remote data, and coherende isafikely to dominate communication,
increasing the potential benefit of DSI. Coherencédidriaf also a potential problem when
placing multiple processors on a single chip. It would be interesting to evaluate DSI as a
means for alleviating this situation.
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Another interesting study would examine thieetiveness of teawff blocks at reducing
false-sharing. In particulaan investigation of a combination of loosely coherent memory
[44] and DSI in a distributed shared-memory system. The final possible study is a compar-

ison between DSI and program annotations (e.g., check_in), and the possible combination
of the two (e.g,. check_out_tedfof
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Appendix A: Simulator Implementation Details

This appendix describes the code sequencedied snippets-that are used by Fast-
Cache and the bigred trace-driven simulatoEach simulator has two &fent snippets,
depending on whether condition codes are live or not. The instructions on the critical path
are in bold face, and the number before the instruction indicates the cycle the instruction is
iIssued. The comments between instructions explain why two instructions are not co-issued
on the SuperSHRC procesarDifferent schedules are possible on other processors.

In each snippet, the registig0is a place holdeWhen Fast-Cache inserts the snippets,
this register specifier is set to the appropriate value according to the instrumented memory
reference. Immediate fields are also set when the snippet is inserted, | use 0x0 as a place
holder for immediates. Instructions for computing thiective address are shown using
immediates, they may change to register + register addressing when the snippet is inserted.

| have also included the code sequencealled handler stubs-used when invoking the
simulator (e.g., action cases in Fast-Cache debidill for buffered trace-driven simula-
tion). Again, diferent stubs are used when condition codes are live, since they must be
saved, versus when they are dead.
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Fast-Cache: Dead Condition Codes

The Fast-Cache lookup snippet requires 3 cycles when condition codes are not live,
assuming the first instruction can be issued with previous instruction of application. If the
first instruction can not be issued with the previous application instruction, then 4 cycles
are required.

0 add %90, %90, %5 I get the efiective address
I split cascade into shift
1 sra %95, 0x0, %6 I calculate block byte-index, 0xO0 is set to
block size
I split ALUOP into LD
2 I dub [%97 + %96], %6 I load block state byte
I split load data use
3 andcc %6, 0x0, %0 I check the right bit, Ox0 set to correct
mask
bne 1f
LD or ST I the memory ref goes here
sll %g6, 0x0, %g6 I shift by stub size
sethi 0x0, %g7 I set the stub base pointer
jmpl %g7 + %Qg6, %g6 I jump to handler stub
sethi %hi(TBL_BASE), %g7 I restore the state table pointer

1: I next application instruction
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Fast-Cache: Live Condition Codes

The Fast-Cache lookup snippet requires 7 cycles when condition codes are live, assum-
ing the first instruction can be issued with the previous instruction of application. The in-
line sequence (shown below) takes 5 cycles, and an additional 2 cycles are required for the
NULL handler ¢et & nop instructions).

0 add %0, %90, %5 I get the efiective address
I split cascade into shift
1 sra %95, 0x0, %6 I calculate block byte-index
I split ALUOP into LD
2 | dub [%g7 + %6], %6 I load block state byte
I split load data use
3 sl %6, 0x0, %g6 I shift by stub size
sethi 0x0, %7 I set the tbl ptr
I split before cascade into jmpl
4 jmpl %@7 + %96, %6 I jJump to handler jump table

I split after control transfer
5 sethi %i (TBL_BASE), %g7 !restore the bit thl ptr
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Fast-Cache-Indirect: In-line Snippet

Fast-Cache-Indirect inserts only two instructions before each memory reference. These
two instructions require 1 cycle to execute.

0 jnpl %7 + 0x0, %6 I jJump to handler jump table
I split after control transfer
1 add %0, %0, %5 I get the efiective address

Fast-Cache-Indirect: Dead Condition Codes

The out-of-line snippet for Fast-Cache-Indirect is nearly identical to the in-line snippet
used by Fast-Cache. Howeytre efective address is already computed by the time con-
trol reaches this snippet so the first instruction is the shift to calculate the byte index. If no
action is required, this snippet executes in 4 cycles, completing the no action case in a total
of 6 cycles. Note that | have started time at cycle 2 for this snippet because of the one cycle
required to transfer control.

2 sra %95, 0x0, % g5 I calculate block byte-index
I split ALUOP into LD
3 | dub [%g7 + %5], %7 I load block state byte
I split load data use
4 andcc %7, 0x0, %0 I check the right bit
bne 1f
I split after control transfer
sll %g5, 0x0, %g5 I shift the efective address back
save %sp, -96, %sp I get some registers
sll %g7, 0x0, %I0 I shift by stub size
sethi 0x0, %l1 I set the jmp tbl ptr
sethi %hi(TBL_BASE), %g7 I set bit tbl ptr
jmpl %I0 + %l1, %g0 I jump to handler jump table
restore I restore the regs

I these two instructions are never executed if action is
I required and the above jmpl is taken

5 1. jnpl %6 + 8, %0 I return to application
6 sethi %i (TBL_BASE), %g7 !restore the bit tbl ptr
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Fast-Cache-Indirect: Live Condition Codes

When condition codes are live, Fast-Cache-Indirect requires 9 cycles to complete the no
action case (two additional cycles are required forg¢h@n andnop). Again, | have
started time at 2 to account for the 1 cycle to transfer control to this snippet. This snippet is
slightly different than the in-line snippet, since | cannot destroy the valdg@since it
holds the return address.

2 save %p, -96, %p I get some registers
I split after serial instruction
3 sra %5, 0x0, %O I calculate block byte-index

I split ALUOP into LD

4 |ldub [%7 + % 0], % 1 !load block state byte
I split load data use

5 sl %1, 0x0, %1 I shift by stub size

sethi 0x0, %2 I set the tbl ptr

I split before cascade into jmpl

6 jml %2 + %1, %0 I jJump to handler jump table
I split after control transfer

7 restore

Buffer: Dead Condition Codes
The in-line bufer snippet writes the memory address to thdebouh 3 cycles if condi-

tion codes are not live. This is independent of whether the first instruction is issued with
the previous instruction from the application.

1 add %6, Ox4, %6 I'increment buf_ptr
add %90, %0, %5 I get the fective address
I split--out of register write ports
2 cnp %6, %g7 I check if bufer full
bl e 1f I branch if not full
I split after control transfer
3 st %5, [%6] I store it in the buér
I split after delay slot instruction
jmpl %g7+0x8, %g6 I jump to handler jump table
nop l'in case ref is in delay slot of call

1: I the memory ref goes here
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Buffer: Live Condition Codes
When condition codes are live, the feméd simulator requires 8 cycles to store an entry

in the bufer. This is independent of whether the first instruction can be issued with the
applications preceding instruction, since the first five instructions will always execute in 2

cycles.
0 add %6, Ox4, %6 I'increment buf_ptr
I split out of register write ports
1 add %0, %0, %5 I get the efiective address
st %5, [ %g6] I store the address
save %p, -96, %p I Hide modifications of %07
I split out of register write ports
I Check if bufer overflowed:
2 sub %7, %96, %G5 1 %g5 = buf_ptr - end_buf
I split cascade into shift
3 sra %5, 31, %5 1 %95 = -1 if overflow O otherwise
I split cascade into shift
4 sl %5, 2, %5 1 %95 = -4 if overflow 0 otherwise
add %5, 16, %95 1 %95 = 12 if overflow16 otherwise
I split out of register write ports
5 call L70 1 %07 = PC
I split after control transfer
6 j mpl Y%7+%5, %0
I split after control transfer
L70:
7 nop
I split after delay slot instruction
jmpl %g7+0x8, %g6 I Here if overflow empty the buér

I split after control transfer
8 restore I Here if no overflow
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Handler Stub: Dead Condition Codes

The handler stub that does not save or restore the condition codes.
save %sp, -96, %sp
mov %g1, %lI1 I save globals
mov %g2, %l2
mov %g3, %I3
mov %g4, %l4
mov %g5, %6
mov %g6, %ol I save ret_pc
mov %g5, %00
sethi 0x0, %g5
jmpl %g5 + 0x0, %07 I call a handler
rd %y, %I0 I save Y register (in delay slot)
mov %l1, %gl
mov %l2, %g2
mov %l3, %g3
mov %l4, %g4

mov %I6, %g5 I restore dfaddr for ifetch sim
wr %I0, %g0, %y I restore Y reg
jmpl %g6 + 0x8, %g0 I return to code

restore
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Handler Stub: Live Condition Codes

The handler stub that saves and restores the condition codes. setcc is the base of a jump
table for snippets that restore the condition codes.

save %sp, -96, %sp
mov %g1, %l1 I save globals
mov %g2, %l2
mov %g3, %I3
mov %g4, %l4
mov %g5, %l6
sethi 0x1, %I5 I set %I5 to %hi(setcc)
bneg,a 1f I these branches save the CCR
or %I5, 0x80, %5

1: be,a 2f
or %lI5, 0x40, %I5

2: bvs,a 3f
or %I5, 0x20, %I5

3: bcs,a 4f
or %l5, 0x10, %5

4: mov %g6, %01l I save ret_pc
mov %g5, %00
sethi 0x0, %g5
jmpl %g5 + 0x0, %07 I call a handler
rd %y, %I0 I save Y register (in delay slot)
mov %l1, %gl
mov %l2, %g?2
mov %l3, %g3
mov %l4, %g4

mov %l6, %g5 I restore dfaddr for ifetch sim
wr %I0, %g0, %y I restore Y reg
jmpl %I5 + 0x0, %g0 Iinvoke setcc restore

restore
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Appendix B: Dynamic Self-Invalidation Protocols

This appendix describes, in detail, the DSI protocols for detecting blocks for self-invali-
dation. There are numerous extensions one could make to the bgN8& pnhotocol.
Unfortunately the design space is toodarto fully investigate, and one can spend an end-
less amount of time tuning the performance of existing implementations. Nonetheless,
examining a specific protocol in more detail reveals the intricacies involved in detecting
blocks for self-invalidation. In this appendix | use RO to indicate the shared (S) state and
RW to indicate the exclusive (EX) state.

Additional States

For shared-readable blocks, two additional states are used to detect that a block has been
modified. One state, IDLE_SI, indicates the block has gone fidmdRIDLE, a block
enters this state whenever the exclusive block is replaced or self-invalidated. The second
additional state, RO_SI, indicates there are already outstanding blocks that will be self-
invalidated. When servicing a request for a shared-readable block, if the current state is
RW, IDLE_SI, or RO_SI, the directory responds with a block that should be self-invali-
dated.

We also use the IDLE_SI state to indicate that a shared-readable block identified for self-
invalidation was replaced from the cache. A subsequent miss by the processor is the result
of incorrect self-invalidation, hence we distinguish between replacements and self-invali-
dations. Self-invalidations place the block to in the RO or IDLE state, depending on the
number of outstanding copies, preventing subsequent requests for shared-readable blocks
from being self-invalidated. In contrast, cache replacements keep the block in the RO_SI
state if there are other outstanding copies, or cause a transition to the IDLE_SI state.

Exclusive blocks should be self-invalidated if it has been accessed lgrardiproces-
sor since the last access by the writing procedsus is easily identified when there are
outstanding shared-readable copies, since the state of the block is RO or RO_SI. However
a processor may obtain a shared-readable copy of the block which is self-invalidated or
replaced from the cache. This may cause the block to enter the IDLE statentify this
situation, we add another state, IDLE_R. A similar situation can arise when an exclusive
block is self-invalidated or replaced, placing the block in the IDLE state. Therefore,
another state, IDLE_Ws added to diérentiate between blocks that become idle because
they were shared-readable and those that w&/e Self-invalidations cause transitions
into IDLE_R or IDLE_W for shared-readable and exclusive blocks respecti@Gaghe
replacements still place the block in IDLE_SI.

The directory identifies exclusive blocks for self-invalidation if the current state is RO,
RO_SI, IDLE_R, or IDLE_SI, or IDLE_W and a tefent processor was the last writer
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Shared-readable blocks are identified for self-invalidation when the state is IDLE_W
IDLE_SI, RW, or IDLE_SI.

If tearoff blocks are used, the directory does not send invalidations if all the outstanding
shared-readable copies are tefirblocks. This allows us to eliminate the RO_SI state,
instead the block can be placed directly in the IDLE_SI or IDLE_R state, depending on
whether exclusive blocks are also self-invalidated. A0 add one bit to each directory
entry to indicate there are more than one outstandingptieaiocks. The first teaoff
block causes a transition into the state IDLE_R, subsequertftddocks set the bit. This
bit is used when processing requests for exclusive blocks that result from write misses to
tearoff blocks. In this scenario, the current state of the block is IDLE_R, but the request-
ing processor may be the only processor with a copy of the block. In this case, the bit is
zero and the block is not self-invalidated, if more than one processor haoH bback,
then the exclusive copy is identified for self-invalidation. Rather than add an extra bit, we
could have encoded this information in the state of the block by separating IDLE_R into
IDLE_R1, and IDLE_R2.

Table1l shows the detailed specification of the DSI protocol that uses states to identify
blocks for self-invalidation when tracked blocks are used. The columns are message type,
current state of the block, the output of a counter for determining when all acknowledg-
ments have been received (this is a check for zero), a test to see if the requesting processor
already had a copy of the block, a test to determine if the requesting processor is the home
node, a list of actions taken, and the new state of the block. In the table an * indicdtes don’
care, and - indicates no change in the state of the block, however some actions result in
state changes. Events not listed in the table are protocol violations, and they result in a sys-
tem panic. The end of this appendix includes source code for the various actions.

Message State Z | B |Self Actions New State
GET_RN * * * * | Nack -
GET_RN IDLE * * * | Send, Set_Ptr RW
GET _RW IDLE_R * | * | E |Send, Set Ptr RW
GET_RN IDLE_R * * | NE |SI_Send, Set_Ptr;, RW
GET_RW IDLEW | * | * | E |Send, Set Ptr RW
GET RN IDLE W * * | NE |Ck_Ptr Set_Ptr RW
GET_RN IDLE_SI * * E |Send, Set_Ptr RW
GET_RW IDLE_SI | * | * | NE |SI_Send, Set Ptr, RW
GET_RWV RO * | * | * llnval_RO, Set_ PtfRW_GET

Table 11: DSI Protocol Using States and facked Blocks
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Message State Z B | Self Actions New State
GET_RWV RO_SI * | * | * llnval_RO, Set_PtfRW_GET
GET_RWN RW « | * | * l|nval_RW, Set_Ptt RW_GET
GET_RO * * * * | Nack -
GET_RO IDLE * | *» | * ISend, Set_ Bit RO
GET_RO RO * * * | Send, Set_Bit -
GET_RO RW * | * | * llnval_RW, Set_Ptt RO_GET
GET RO DLEW | * | = | g |48 Send, RO_SI

Set_Bit
GET RO DLE W | * | * | NE|28'0.SLSend, | g4 g
Set_Bit
GET_RO IDLE R | * | * | * [Send, Set_Bit RO
GET_RO IDLE_SI * * E |Zero, Send,Set_Bit RO_SI
GET RO DLE Sl | * | * | NE 2870, SLSend, | of g
Set_Bit
GET_RO RO_SI * | * | E |Send,Set Bit -
GET_RO RO_SI * | * | NE |SI_Send,Set_Bit -
PUT_DATA RW * * * |IDLE_SI
PUT_DATA SWAP RW | * | * | * |Swap_ Ptr IDLE_W
PUT_DATA RO_GET * * E |Forward RO RO_SI
PUT_DATA RO GET | * | * | NE |SI _Forward RO | RO _SI
PUT_DATA RW GET | * | * | * [SI|_Forward RV RW
SI_PUT_DAA RW * * * |IDLE_W
SI_PUT_DAA SWAP RW | * | * | * |Swap_Ptr IDLE_W
SI_PUT_DAA RO GET | * | * | E |Forward RO RO_SI
SI_PUT_DAA RO_GET * * | NE |SI_Forward RO | RO_SI
SI_PUT_DAA RW GET | * | * | * |SI _Forward RV RW
PUT_NO_DAA RO * | * | * |CIr_Bit_to_IRO =
PUT_NO_DAA RO_SI * | * | * |CIr_Bit_to_SI -
PUT_NO_DAA RW_GET [Nz | * | * |Decr -
Table 11: DSI Protocol Using States and acked Blocks
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Message State B | Self Actions New Statg
PUT_NO_DAA RW_GET * * | SI_Forward RV RwW
PUT_NO_DAA SWAP_RO | Nz | * * | Decr -
PUT_NO_DAA SWAP RO | Z * * | Swap_Ptr IDLE_SI
SI_PUT_NO_DAA RO * * * | Clr_Bit_to _IRO -
SI_PUT_NO_DAA RO_SI * * * | Clr_Bit_to _IRO -
SI_PUT_NO_DAA RW_GET [Nz | * * | Decr -
SI_PUT_NO_DAA RW _GET | Z * * | SI_Forward RV RwW
S| PUT_NO _DAA | SWAP_RO | NZ | * * | Decr -

SI_ PUT_NO_DAA | SWAP RO | Z * * | Swap_Ptr IDLE_SI
SWAP * * * * | Swap_Nack -
SVWAP IDLE * * * | Swap -
SVWAP IDLE_SI * * * | Swap -
SWAP IDLE_R * * * | Swap -
SVWAP IDLE_ W * * * | Swap -

Inval_RO,
SWAP RO * S * | Save_Swap, SWAP_RC

Set_Ptr

Inval_RO,
SWAP RO * C * | Save_Swap, SWAP_RC

Set_Ptr

Inval_RO,
SVWAP RO_SI * C | * |Save_Swap, SVWAP_RC

Set_Ptr

Inval_RW,
SWAP RwW * * * | Save_Swap, SWAP_RW

Set_Ptr

Clr_Bit

* * * — ’ _

UPGRADE RO RW_Upgrade RO

Clr_Bit

* * * — ' .

UPGRADE RO_SI RW_Upgrade_RQ
UPGRADE RW_GET [Nz | * * | Nack, Decr -

Table 11:

DSI Protocol Using States and facked Blocks
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Message State Z B | Self Actions New State
Nack
* * 1
UPGRADE RW_GET | zZ Forward_RV RwW
UPGRADE SWAP_ RO | NZ | * * | Nack, Decr -
Swap_Ptr
* * —_
UPGRADE SWAP_RO | Z Send Set_Ptr RwW

Table 11: DSI Protocol Using States and acked Blocks

Table12 specifies the protocol for using states to detect blocks and ushuf telaicks
under weak consistency

Message State Z | Self Actions New State
GET_RW * * | Nack -
GET_RW IDLE x| sseifgﬁgr__/?ecgé g RW
GET RW IDLE_R . E Send_RV_Ack, Set_Ptr RW

CIr_Read
GET_RW IDLE_R * | NE Ssléts_epntgéﬁiﬁi(:(d RW
GET_RW IDLE_W = sseifgﬁgr__/?ecgé g RW
GET_RW IDLE_ W s | CkETrtjs:;aPU RW
GET_RW IDLE_SI * | E ssé?fgﬁfvc\{r__AFngé g RW
GET_RW IDLE_SI * | NE Ssléts_e;tféﬁiﬁéﬂ(é RW
GET RW RO « | E slg\tlflﬁt?c(:)l ;_SFfQ; " |GET_ACKS
GET_RW RO * | NE lnSVeatl__PRt?C’:lf_lﬁsezgd’ GET_ACKS
GET_RW RO_SI = S";‘t’f"P—tfg;_SFf:: | |GET_ACKS

Table 12: DSI Piotocol Using States and dar-Off Blocks
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Message State Z | Self Actions New State
Inval_RO, SI_Send
* S 1 — ] q
GET_RW RO_SI NE | Set Pych Read | |SET-ACKS
GET RV RW . . Inval_RW, Set_Ptr RW GET
- CIr_Read -
GET_RO * x| Nack -
Send, Zero, Set_Bit
* * 1 1 - 1
GET_RO IDLE Set Road RO
GET_RO IDLE_W « | g | 460 Send, SetBit | o g
Set_Read
GET RO IDLE_W * | NE Zero, Sl_send, | 5 £ g
Set_Read
GET RO IDLE R . . Send, Zero, Set_Bit, RO
- — Set_Read
GET RO IDLE_S| x | g | Send, Zero, Set Bit,| o g
Set_Read
GET_RO IDLE_SI * | NE S|_Send, Set_Read -
GET_RO IDLE_SI * | * | Send, zero, Set_Bit| RO
GET_RO RO * * Send, Set_Bit -
GET_RO RO_SI * E | Send, Set Bit, Set Read -
GET_RO RO_SI * |NE| SI_Send, Set_Read -
GET_RO RW | x| Vel RW SeLPY | oo et
- Set_Read -
PUT_DATA RW x| IDLE_W
PUT_DATA RO_GET * | E Forward_RO, RO
Set_Read
PUT_DATA RO_GET » | ng| SLFoward RO, 5 e g
Set_Read
PUT_DATA RW_GET * | * | SI_Forward R/ ACK | RW
IDLE_GET
* * — -
PUT_DATA GET_ACKS ACKS
PUT_DATA SWAP RW | * | * Swap_Ptr IDLE

Table 12: DSI Potocol Using States and &ar-Off Blocks
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Message State Z | Self Actions New State
SI_PUT DAA RW | IDLE_S|
SI_PUT_DAA RO_GET + | E Forward_RO, RO

- - - Set_Read
S|_PUT DAA RO_GET « | N | SlFoward RO, e g
Set_Read
SI_PUT_DAA RW_GET * | * | SI_Forward RV ACK | RW
S| PUT DAA | GET ACKS | * | * 'DLAEC—SSET—-
PUT_NO_DAA RO | CIr_Bit_to_IRO -
PUT_NO_DAA RO_SI N CIr_Bit_to_Sl| -
PUT_NO _DATA| GET_ACKS | z | * Ack_RW RW
PUT_NO DATA| GET ACKS |Nz | * Decr -
PUT_NO_DATA IDLE_GET ACKS Z | * Zero, Ack_RN IDLE_W
PUT_NO_DATA IDLE_GET ACKS NZ | * Decr -
PUT_NO DATA| RW_GET N Panic -
PUT_NO_DAA| SWAP RO | z | * Swap_Ptr IDLE_W
PUT_NO DAIA| SWAP RO | Nz | * Decr -
SVWAP * * * Swap_Nack -
SWAP IDLE N Swap -
SWAP IDLE_R N Swap -
SWAP IDLE_W N Swap -
SWAP IDLE_SI N Swap -
SWAP RO . . | Inval_RO, Save_Swap, SWAP RO
Set_Ptr -
SWAP RO_S| . . | Inval_RO, Save_Swap, SWAP_ RO
Set_Ptr
SWAP RW . . | Inval_RW, Save_Swap SWAP RW
Set_Ptr -
UPGRADE IDLE_W s | o Chk_Pty Set_Py RW
- CIr_Read

Table 12: DSI Potocol Using States and &ar-Off Blocks
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Message State Z | Self Actions New State
UPGRADE IDLE R x| g |Send_RV_Ack, Set Pl o\
CIr_Read
SlI_Send_RV_Ack
* —_ — — il
UPGRADE IDLE_R NE Set Pty Clr_Read RW
Send_RV_Ack
* S ! ’
UPGRADE IDLE_SI E Set Py CIr_Read RW
Sl _Send RV _Ack
* — — _ 1
UPGRADE IDLE_SI NE Set_PtrClr_Read RW
Inval_RW, Zero
* * — ) ’
UPGRADE RW Set PuClr Read RW_GET
UPGRADE RO . . | RC_RN_Upgrade_RO i
CIr_Read
UPGRADE RO_SI « | » | RC_RV_Upgrade RO -
- CIr_Read
UPGRADE GET_ACKS Nz | * Nack, Decr -
UPGRADE GET_ACKS Z * Nack, Ack_RV RW
UPGRADE IDLE_GET_ACKS Nz | * Nack, Decr -
UPGRADE IDLE_GET_ACKS Z * Nack, Zero, Ack_RV IDLE
UPGRADE RW_GET NZ | * Nack, Decr -
UPGRADE RW_GET Z * Nack, Forward_®/ RW
UPGRADE SWAP_RO Nz | * Nack, Decr -
UPGRADE SWAP RO | Z | * Swap_PtrSend, RW
Set_Ptr

Table 12: DSI Piotocol Using States and dar-Off Blocks

Version Numbers

Table13 specifies the protocol for detecting blocks using version numbers. The column

Message

State Z

B

\%

Actions

New State

GET_RW

* *

*

*

Nack

Table 13: DSI Piotocol Using \érsion Numbers and Tacked Blocks
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Message State Z | B \V#=5 Actions New Statg
Send, Set_PBtr
* * ; K
CETRW IPLE E Clr_Read, IncV RW
Sl_Send, Set_Btr
* * — 1 1
CETRY PLE NE Clr_Read, IncV RW
Inval_RO, Set_Pir
* * * _ ] -
CETRY RO Clr_Read, IncV RV_GET
Inval_RW, Set_Ptr
* * * _ ) .|
CETRY R Clr_Read, IncV RW_GET
GET_RO * P e Nack =
Send, Set_Bit
* * , - ,
CEIRO PLE E Set_Read RO
SI_Send, Set_Bit
* * _ , - ,
CET-RO PLE NE Set_Read RO
Send, Set_Bit
* * ] - ] _
CET-RO RO E Set_Read
S|_Send, Set_Bit
* * i 1 A ] _
CEIRO RO NE Set_Read
GET RO RW * * . | Inval_RW, Set_Ptr RO GET
_ Set_Read —
PUT_DATA RW * * * Zero IDLE
PUT_DATA RW_GET * * * Forward_RV RW
PUT_DATA SWAP RV | * * * Swap_Ptr IDLE
PUT_DATA RO _GET * * E Forward_RO, RO
Set_Read
PUT_DATA RO _GET | * « | NE SI_Forward_RO, RO
Set_Read
PUT_NO_DAA RO * * * Cir_Bit -
PUT_NO DAA RW GET |NZ| * * Decr _
PUT NO DAA| RW GET | z | * * SI_Forward_RY, oy
- - Clr_Read
PUT_NO DAA SWAP RO | NZ | * * Decr _
PUT_NO _DAA SWAP RO | Z * * Swap_Ptr IDLE

Table 13: DSI Piotocol Using \érsion Numbers and Tacked Blocks
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Message State V4 B |V# =S5 Actions New State
SWAP * * * * Swap_Nack -
SWAP IDLE N N . Swap, Set_Read, )

IncV
Inval_RO, Set_Read,
SWAP RO * * * IncV, Save_Swap,SWAP_R(
Set_Ptr
Inval_RW, Set_Read,
SWAP RwW * * * IncV, Save_Swap,SWAP_RM
Set_Ptr
UPGRADE RW_GET | NZ | * * Nack, Decr -
Nack
* * ’
UPGRADE RW_GET | Z Forward, RV RwW
UPGRADE SWAP_RO | Nz | * * Nack, Decr -
UPGRADE SWAP RO | z | * | » | Swap_PuSend, | o,
Set_Ptr
Clr_Bit,
UPGRADE RO * S E Upgrade_RO, -
CIr_Read, IncV
Clr_Bit,
UPGRADE RO * S | NE | RW_Upgrade_RO -
CIr_Read, IncV
UPGRADE RO * C * Panic -

Table 13: DSI Potocol Using \éersion Numbers and Tacked Blocks

labeld V# == indicates the output of the version number comparison, it also includes the
test of the home node equals the requesting node, and the test for the number of outstand-
ing readable copiesable14 specifies the protocol using version numbers to detect blocks
and the protocol utilizes teaff blocks under weak consistendyote the additional states
required to handle the case where there are outstandirgffteééocks.

Message State Z |V Actions New State

GET_RN * o Nack -

Table 14: DSI Potocol Using \éersion Numbers and EBar-Off Blocks
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Message State Z |V Actions New State
Send_RV_Ack,
GET_RWN IDLE * |E Set_PtrClr_Read, RW
IncV
SI_Send RV_Ack,
GET_RN IDLE * INE| Set PtrCIr_Read, RW
IncV
SI_Send RV_Ack,
GET_RN IDLE_ONE * | Set_PtrClr_Read, RW
IncV
SI_Send RV_Ack,
GET_RWN IDLE_TWO * | Set_PtrClr_Read, RW
IncV
Inval_RO, Send,
GET_RN RO i Set Ptr GET_ACKS
CIr_Read, IncV
Inval_RO, SI_Send,
GET_RWN RO_SI i Set_PtrClr_Read, GET_ACKS
IncV
Inval RW, Set_ Ptr
* * — 1 —
GET_RN RW CIr Read, IncV RW_GET
GET_RO * *oF Nack -
Send, Zero, Set_Bit
* ' 1 —
GET_RO IDLE E Set_Read RO
GET_RO IDLE * INE| SI_Send, Set_Read IDLE_ONE
GET RO IDLE ONE | * |g | S€nd, Zero, Set Bit, o4 g
Set_Read
GET_RO IDLE_ONE | * |NE| Sl _Send, Set Read IDLE_TWO
GET RO IDLE TWo | * |E | Send. Zero, Set Bt g4
Set_Read
GET_RO IDLE_TWO * INE| SlI_Send, Set_Read -
Send, Set_Bit
* ’ - ] _
GET_RO RO E Set_Read
GET_RO RO * INE| SlI_Send, Set_Read RO_SI
Table 14: DSI Potocol Using \érsion Numbers and Ear-Off Blocks
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Message State Z |V Actions New State
GET RO RO_SI * |E Sesngt’_SR‘ztgg't’ i
GET_RO RO_SI * INE| SlI_Send, Set_Read -
GET_RO RW s x| InvalRW, SeLPY | oo et

- Set_Read -
PUT_DATA RO GET | * |E Forward_RO, RO

Set_Read
PUT_DATA RO GET |+ |ng| S-Foward RO, |5 ¢ oNe

Set_Read
PUT_DATA RW_GET * |* IS|_Forward_RV_ACK RW
PUT_DATA GET_ACKS o - IDLE_GET_ACKS
PUT_DATA RW *oF Zero IDLE
PUT_DATA SWAP_RW *oF Swap_Ptr IDLE
PUT_NO_DAA RO S Clr_Bit -
PUT_NO_DAA RW_GET NZ|* Decr -
PUT_NO _DAA| RW_GET Z|* Forward_RV RW
PUT_NO DAA| SWAP_RO |NZ|* Decr -
PUT_NO DAA| SWAP RO | Z |* Swap_Ptr IDLE
PUT_NO_DAA RO_SI S RW_SI_CIr_Bit -
PUT_NO DAA| GET ACKS | Z |* Ack_RW RW
PUT_NO_DAA| GET_ACKS |[NZ|* Decr -
PUT_NO_DAA|IDLE _GET ACKS Z |* Zero, Ack_RN IDLE
PUT_NO_DAAIDLE_GET_ACKSNZ|* Decr -
SVWAP * *o|* Swap_Nack -
SWAP IDLE * |* |Swap, Set_Read, IngV -
SWAP IDLE_ONE * |* |Swap, Set_Read, IngV IDLE
SWAP IDLE_TWO * |* |Swap, Set_Read, IngV IDLE

Inval_RO, Set_Read,

SWAP RO *o* IncV, Save_Swap, SWAP_RO

Set_Ptr

Table 14: DSI Potocol Using \éersion Numbers and EBar-Off Blocks
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Message State Z |V Actions New State
Inval_RO, Set_Read,
SWAP RO_SI o IncV, Save_Swap, SWAP_RO
Set_Ptr
Inval_RW, Set_Read|
SWAP RW o IncV, Save_Swap, SWAP_RWV
Set_Ptr
Ck_Ptr Set_Ptr
* — —
UPGRADE IDLE E CIr_Read, IncV RwW
SI_Send_RV_Ack,
UPGRADE IDLE * INE| Set PtyClr_Read, RwW
IncVv
Ck_Ptr Set_Ptr
* — —
UPGRADE IDLE_W E CIr_Read. IncV RwW
Sl _Send_RV_Ack,
UPGRADE IDLE_W * INE| Set PtrClr_Read, RwW
IncV
Send_RV_Ack,
UPGRADE IDLE_ONE *o|* Set_PtrClr_Read, RwW
IncV
Sl _Send_RV_Ack,
UPGRADE IDLE_TWO *o|* Set_PtrClr_Read, RwW
IncV
RC_RWN_Upgrade_RO,
* | % — — — _
UPGRADE RO Clr_Read, IncV
RC_RWN_Upgrade_RO
UPGRADE RO_SI *o* _SlI, -
CIr_Read, IncV
Inval_RW, Set_Ptr
* * — 1 —
UPGRADE RW CIr_Read, IncV RW_GET
UPGRADE GET_ACKS |[NZ|* Nack, Decr -
UPGRADE GET_ACKS | Z |* Nack, Ack_RV RwW
UPGRADE IDLE_GET_ACKSNZ|* Nack, Decr -
UPGRADE IDLE_GET_ACKS Z |* | Nack, Zero, Ack_RV IDLE

Table 14: DSI Potocol Using \érsion Numbers and Ear-Off Blocks
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Message State Z Actions New State
UPGRADE RW_GET NZ Nack, Decr -
UPGRADE RW_GET Z Nack, Forward_R®/ RwW
UPGRADE SWAP_RO NZ Nack, Decr -
UPGRADE SWAP RO | Z Swap_PtrSend, RW

Set_Ptr
Table 14: DSI Piotocol Using \érsion Numbers and Bar-Off Blocks
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Actions

Following is a complete list of actions required to support the above protocols. For the
most part, these actions are very simple. Howeseme the actions perform complex
computations for events that do not fit well into the table drive model. This is the source
code from the directory module of my simulator

/* Bad message received */
DO_ACTION(DA_Panic,
fatal_error(“process_req: Protocol violation %x\n”,
aep->action);
)
DO_ACTION(DA Inval_RW,
dp->inval_start = dir_srv.vt;
send_put_req(dp->u.ptr_ctr.ptr, self_address, BLK_ALIGN(LVA));
);

DO_ACTION(DA_Set_Read,
dp->been_read +=1;

);

DO_ACTION(DA_CIr_Read,
dp->been_read = 0;

);

DO_ACTION(DA Inval_RO,

dp->inval_start = dir_srv.vt;

for (i=0; i < num_nodes; i++) {
if (BV_TST(dp->u.owners, i)) {

send_put_req(i, self_address, BLK_ALIGN(LVA));
}
}
);

DO_ACTION(DA_Forward_RW,
if ('prot_shared_args.release_consistency)
rw_inval_delay += (dir_srv.vt - dp->inval_start);
send_get_resp(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA),
dp->tid[dp->u.ptr_ctr.ptr], dp->version);
)i

DO_ACTION(DA_SI_Forward RW,
if (Iprot_shared_args.release_consistency)
rw_inval_delay += (dir_srv.vt - dp->inval_start);
if (dp->u.ptr_ctr.ptr I= self_address)
send_si_get_resp(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA),
dp->tid[dp->u.ptr_ctr.ptr], dp->version);



else
send_get_resp(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA),
dp->tid[dp->u.ptr_ctr.ptr], dp->version);
)i

DO_ACTION(DA_Forward_RW_ACK,
if ('prot_shared_args.release_consistency)
rw_inval_delay += (dir_srv.vt - dp->inval_start);
send_get_resp(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA),
ACK_MASK | dp->tid[dp->u.ptr_ctr.ptr],
dp->version);

);

DO_ACTION(DA_SI_Forward_RW_ACK,
if ('prot_shared_args.release_consistency)
rw_inval_delay += (dir_srv.vt - dp->inval_start);
if (dp->u.ptr_ctr.ptr != self_address)
send_si_get_resp(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA),
ACK_MASK | dp->tid[dp->u.ptr_ctr.ptr],
dp->version);
else
send_get_resp(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA),
ACK_MASK | dp->tid[dp->u.ptr_ctr.ptr],
dp->version);

DO_ACTION(DA_Ck_Ptr,
int ack = 0;

if (prot_shared_args.release_consistency)
ack = ACK_MASK;

if (dp->u.ptr_ctr.ptr == source || source == self_address)
send_get_resp(source, BLK_ALIGN(LVA),
ack|dp->tid[source], dp->version);
else
send_si_get_resp(source, BLK_ALIGN(LVA),
ack|dp->tid[source], dp->version);

);

DO_ACTION(DA_ Forward_RO,
int node;

ro_inval_delay += (dir_srv.vt - dp->inval_start);

node = dp->u.ptr_ctr.ptr;

send_get_resp(node, BLK_ALIGN(LVA),dp->tid[node],
dp->version);

bzero((char *) dp->u.owners, sizeof(dp->u.owners));

BV_SET(dp->u.owners, node);

);
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DO_ACTION(DA_SI_Forward_RO,
int node;

ro_inval_delay += (dir_srv.vt - dp->inval_start);
node = dp->u.ptr_ctr.ptr;

send_si_get_resp(node, BLK_ALIGN(LVA),dp->tid[node],

dp->version);
bzero((char *) dp->u.owners, sizeof(dp->u.owners));
if (prot_shared_args.tearoff)
BV_SET(dp->u.owners, node);

);

DO_ACTION(DA_Ack_RW,
send_inval_ack(dp->u.ptr_ctr.ptr, BLK_ALIGN(LVA));
)i

/* Actions requiring old values go above this point */
* Actions modifying values go below this point */

DO_ACTION(DA_ Zero, bzero((char *) dp->u.owners,
sizeof(dp->u.owners)););
DO_ACTION(DA_ Decr, dp->u.ptr_ctr.ctr--;);

DO_ACTION(DA_IncV,
dp->version =
(dp->version + 1) % ((1 << prot_shared_args.vbits));

);

DO_ACTION(DA_Set_Ptr,
intcnt=0;
for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->u.owners, i)

++cnt;
dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = (cnt==0? 0 : cnt-1);
)i

DO_ACTION(DA_Set_Bit,
assert(!BV_TST(dp->u.owners, source));
BV_SET(dp->u.owners, source);

);

DO_ACTION(DA_CIr_Bit,
assert(BV_TST(dp->u.owners, source));
BV_CLR(dp->u.owners, source);
if (dp->u.owners[0] == 0 && dp->u.owners[1] == 0)

dp->state = DIR_IDLE;
else
dp->state = DIR_RO;
)i
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DO_ACTION(DA RW_SI_ClIr_Bit,
assert(BV_TST(dp->u.owners, source));
BV_CLR(dp->u.owners, source);
if (dp->u.owners[0] == 0 && dp->u.owners[1] == 0)

dp->state = DIR_IDLE_TWO;
else
dp->state = DIR_RO_SI;
)i

DO_ACTION(DA_CIr_Bit _to_SlI,
assert(BV_TST(dp->u.owners, source));
BV_CLR(dp->u.owners, source);
if (dp->u.owners[0] == 0 && dp->u.owners[1] == 0)

dp->state = DIR_IDLE_SI;

)i

DO_ACTION(DA CIr_Bit_to_IRO,
assert(BV_TST(dp->u.owners, source));
BV_CLR(dp->u.owners, source);
if (dp->u.owners[0] == 0 && dp->u.owners[1] == 0)

dp->state = DIR_IDLE_R;

)i

DO_ACTION(DA_SI_Set Bit,
BV_SET(dp->si_bits, source);
)i

DO_ACTION(DA_SI_ClIr_Bit,
BV_CLR(dp->si_bits, source);
)i

DO_ACTION(DA_SI_Check_Bits,
* if any of the self invalidation bits are set */
/* then the new state is IDLE_SI */
/* else the state is IDLE */
intcnt=0;
for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->si_bits, i))
++cnt;
if (cnt ==0)
dp->state = DIR_IDLE;
else
dp->state = DIR_IDLE_SI;
);

DO_ACTION(DA Upgrade RO,
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[*f ind out how many copies are outstanding */
[* if there are not any, just send the response */
/* and set the state to RW */
intcnt=0;
for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->u.owners, i))
++cnt;
if (cnt ==0) {
send_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);
dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = 0;
dp->state = DIR_RW,
}

else {

dp->inval_start = dir_srv.vt;
for (i = 0; i < num_nodes; i++) {
if (BV_TST(dp->u.owners, i) {
send_put_req(i, self_address, BLK_ALIGN(LVA));
}
}
dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = cnt-1;
dp->state = DIR_RW_GET;
}
)i

DO_ACTION(DA_RW_Upgrade_RO,
[*f ind out how many copies are outstanding */
[* if there are not any, just send the response */
/* and set the state to RW */
intcnt=0;
for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->u.owners, i)
++cnt;
if (cnt ==0) {
send_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);

dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = 0;
dp->state = DIR_RW,

}

else {

dp->inval_start = dir_srv.vt;
for (i = 0; i < num_nodes; i++) {
if (BV_TST(dp->u.owners, i) {
send_put_req(i, self_address, BLK_ALIGN(LVA));
}
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}

dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = cnt-1;
dp->state = DIR_RW_GET;

}
)i
DO_ACTION(DA_RC_Upgrade RO,
[*f ind out how many copies are outstanding */

[* if there are not any, just send the response */
/* and set the state to RW */
intcnt=0;

for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->u.owners, i)
++cnt;
if (cnt ==0) {
/* respond with data and ack */
if (prot_shared_args.dsi_rw && source != self_address)
send_si_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);
else
send_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);

dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = 0;
dp->state = DIR_RW,
}
else {
* respond with data, cache must wait for ack’s */
if (prot_shared_args.dsi_rw && source != self_address)
send_si_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);
else
send_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);

dp->inval_start = dir_srv.vt;
for (i= 0; i < num_nodes; i++) {
if (BV_TST(dp->u.owners, i) {
send_put_req(i, self_address, BLK_ALIGN(LVA));
}
}
dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = cnt-1;
dp->state = DIR_GET_ACKS;
}
);

DO_ACTION(DA RC_RW_Upgrade RO,
[*f ind out how many copies are outstanding */



[* if there are not any, just send the response */
/* and set the state to RW */

intcnt=0;

assert(prot_shared_args.dsi_rw);

for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->u.owners, i))
++cnt;

[* if there is only one ro block and it is this upgrade */
[* then don’t give a self invalidate */
if (cnt == 1 && BV_TST(dp->u.owners, source))
{
send_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);

dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = 0;
dp->state = DIR_RW,

}

else {

if (source != self_address)
send_si_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);
else
send_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);
if (BV_TST(dp->u.owners, source))

BV_CLR(dp->u.owners, source);
--cnt; /* take off for the upgrade */
}
dp->inval_start = dir_srv.vt;
for (i = 0; i < num_nodes; i++) {
if (BV_TST(dp->u.owners, i)) {
send_put_req(i, self_address, BLK_ALIGN(LVA));
}
}
dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = cnt-1;
dp->state = DIR_GET_ACKS;
}
)i

DO_ACTION(DA RC_RW_Upgrade RO_SiI,
[* always give a self inval block */

intcnt=0;
assert(prot_shared_args.dsi_rw);
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for (i = 0; i < num_nodes; i++)
if (BV_TST(dp->u.owners, i))
++cnt;

[* if there is only one ro block and it is this upgrade */
[* then don’t give a self invalidate */
if (cnt == 1 && BV_TST(dp->u.owners, source))
{
if (source = self_address)
send_si_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);
else
send_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);

dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = 0;
dp->state = DIR_RW,;
}
else {
if (source != self_address)
send_si_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);
else
send_get_resp(source, BLK_ALIGN(LVA),
dp->tid[source], dp->version);

if (BV_TST(dp->u.owners, source))
{
BV_CLR(dp->u.owners, source);
--cnt; /* take off for the upgrade */
}
dp->inval_start = dir_srv.vt;
for (i= 0; i < num_nodes; i++) {
if (BV_TST(dp->u.owners, i)) {
send_put_req(i, self_address, BLK_ALIGN(LVA));
}
}
dp->u.ptr_ctr.ptr = source;
dp->u.ptr_ctr.ctr = cnt-1;
dp->state = DIR_GET_ACKS;
}
);

DO_ACTION(DA_Send,
send_get_resp(source, BLK_ALIGN(LVA),dp->tid[source],
dp->version);

);
DO_ACTION(DA_SI_Send,

send_si_get_resp(source, BLK_ALIGN(LVA),
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dp->tid[source], dp->version);

);

DO_ACTION(DA_Send_RW_Ack,
send_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);
)i

DO_ACTION(DA_SI_Send_RW_Ack,
send_get_resp(source, BLK_ALIGN(LVA),
ACK_MASK|dp->tid[source], dp->version);
)i

DO_ACTION(DA_Nack,
send_busy_nack(source, LVA, dp->tid[source]);

);

/*

** Perform swap for processor that has been waiting.

*

DO_ACTION(DA Swap_Ptr,
int old_data;
old_data = *dp->swap_lIva;
*dp->swap_Iva = dp->swap_data;
send_swap_resp(dp->u.ptr_ctr.ptr, dp->swap_lva, old_data);
bzero((char *) dp->u.owners, sizeof(dp->u.owners));

)i
/*
** Save the swap address and data
*

DO_ACTION(DA_Save_ Swap,
dp->swap_lva = LVA;
dp->swap_data = new_data;

)i

/*

** Perform swap

*

DO_ACTION(DA_ Swap,
int old_data;
int *ip;
ip = (int *) LVA,
old_data = *ip;
*ip = new_data;
send_swap_resp(source, LVA, old_data);
)i

/*

** Nack a swap when too much is going on.
*
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DO_ACTION(DA_Swap_Nack,
send_swap_nack(source, LVA);

);
/* Set the new stat for the block */

DO_ACTION(DA_Set_State,
dp->state = NEWSTATE(aep);

);



