
1

To appear in the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 28-July 2, 1998, Puerto Vallarta, Mexico

This work is supported in part by Wright Laboratory Avionics Directorate, Air Force
Material Command, USAF, under grant #F33615-94-1-1525 and ARPA order no.
B550, National Science Foundation with grants MIP-9225097, MIPS-9625558, CCR
9257241, and CDA-9623632, a Wisconsin Romnes Fellowship, and donations from
Sun Microsystems. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Wright Laboratory Avionics Directorate or the U.S. Gov-
ernment

Lamport Clocks: Verifying a Dir ectory Cache-Coherence Protocol

Manoj Plakal, Daniel J. Sorin, Anne E. Condon, Mark D. Hill
Computer Sciences Department,

University of Wisconsin - Madison,
1210 West Dayton Street, Madison, WI 53706, USA.

{plakal,sorin,condon,markhill}@cs.wisc.edu

Abstract

Modern shared-memory multiprocessors use complex memory sys-
tem implementations that include a variety of non-trivial and inter-
acting optimizations. More time is spent in verifying the
correctness of such implementations than in designing the system.
In particular, large-scale Distributed Shared Memory (DSM) sys-
tems usually rely on a directory cache-coherence protocol to pro-
vide the illusion of a sequentially consistent shared address space.
Verifying that such a distributed protocol satisfies sequential con-
sistency is a difficult task. Current formal protocol verification
techniques [18] complement simulation, but are somewhat non-
intuitive to system designers and verifiers, and they do not scale
well to practical systems.

In this paper, we examine a new reasoning technique that is pre-
cise and (we find) intuitive. Our technique is based on Lamport’s
logical clocks, which were originally used in distributed systems.
We make modest extensions to Lamport’s logical clocking scheme
to assign timestamps to relevant protocol events to construct a
total ordering of such events. Such total orderings can be used to
verify that the requirements of a particular memory consistency
model have been satisfied.

We apply Lamport clocks to prove that a non-trivial directory pro-
tocol implements sequential consistency. To do this, we describe
an SGI Origin 2000-like protocol [12] in detail, provide a times-
tamping scheme that totally orders all protocol events, and then
prove sequential consistency (i.e., a load always returns the value
of the “last” store to the same address in timestamp order).

1 Intr oduction
Modern high-performance multiprocessor systems are becoming
increasingly complicated. System designers have proposed the use
of a variety of complex and interacting optimizations to improve
performance. This trend ignores the difficulty of verifying that the

system still behaves correctly. Currently, industrial product groups
spend far more time in verifying their system than in actually
designing and optimizing the system.

A case in point is the design of large-scale cache-coherent shared-
memory systems that are built using distributed-memory nodes
with private caches that are connected by a general interconnection
network. Such hardware Distributed Shared Memory (DSM, [19])
systems operate by sharing memory through a scalabledirectory
coherence protocol.A directory protocol must present a consistent
view of memory [1, 4] to the processing nodes, with sequential
consistency (SC) [11] being a common requirement. The require-
ments of SC (quoting Lamport [11]) are:

‘the result of any execution is the same as
if the operations of all the processors were
executed in some sequential order, and the
operations of each individual processor
appear in this sequence in the order speci-
fied by its program.’

The directory itself is a data structure whose entries record, for
every block of memory, the state (i.e., cache access permission)
and the identities of the processors which have cached that block.
The directory is often distributed along with the memory, as is the
case in the protocol that we will verify. Nodes exchange messages
with each other and with the directory to coordinate accesses to
each block of memory.

Determining which messages are necessary requires delving into
the subtleties of directory protocols. In our protocol, for example,
a processor’s message writing a block back to memory must be
acknowledged so that we can distinguish the common case from
the race condition where the directory has already given permis-
sion for the block to another processor and there is a “forwarding”
message in flight.

Current protocol verification techniques based on model-checking
and state-space search [18] do not seem to be intuitive to system
designers, and they do not scale well to systems of a practical size.
Alternatively, protocol optimizations are sometimes justified with
imprecise informal arguments and the results of protocol simula-
tions. We propose a new verification technique that is both precise
(unlike informal arguments) and intuitive (unlike formal argu-
ments). We have applied the technique to a non-trivial directory
protocol that is similar, though not identical, to the protocol used
in the SGI Origin 2000 [12].

Most memory consistency models, including SC, are defined in
terms of a hypothetical ordering of all memory references. We pro-
pose to construct such an ordering by timestamping protocol
events that occur in the system. Our timestamping scheme makes
modest extensions to Lamport’s logical clock scheme [10]. This
scheme was used to maintain global time and implement mutual
exclusion in a distributed system. We attach logical clocks, which
are merely conceptual devices, to various parts of a multiprocessor
system. These logical clocks are used to assign logical timestamps

2

to theprotocol transactions (i.e., actions that cause processors to
change their access permissions to blocks of data), andmemory
operations (loads (LDs), and stores (STs)) that occur while a pro-
tocol operates.

The timestamps are split into three positive integral components:
global time, local time, and processor ID. Such 3-tuple timestamps
can be totally ordered using the usual lexicographic ordering. Glo-
bal timestamps order LD and ST operations relative to transactions
“as intended by the designer.” This is made precise in two times-
tamping claims later in our paper. One of these claims is that for
every LD and ST operation on a given block, proper access is
ensured by themost recent transaction on that block in Lamport
time. (in contrast, in real time, a processor may perform a LD oper-
ation on a block after it has answered a request to relinquish the
block [20]). Roughly, the other claim is that, in logical time, trans-
actions are handled by processors in the order in which they are
received by the block’s directory. (In contrast, in real time, a pro-
cessor may receive transaction-related messages “out of order”).

Local timestamps are assigned to LD and ST operations in order to
preserve program order in Lamport time among operations that
have the same global timestamp. Local timestamps are not needed
for transactions. They are used to enable an unbounded number of
LD/ST operations between transactions. Processor ID, the third
component of a Lamport timestamp, is used as an arbitrary tie-
breaker between two operations with the same global and local
timestamps, thus ensuring that all LD and ST operations are totally
ordered.

Sequential consistency is established in a sequence of lemmas,
using the concept ofcoherence epochs. An epoch is an interval of
logical time during which a node has read-only or read-write
access to a block of data. The life of a block in logical time con-
sists of a sequence of such epochs. One lemma shows that, in Lam-
port time, operations lie within appropriate epochs. That is, each
LD lies within either a read-only or a read-write epoch, and each
ST operation lies within a read-write epoch. Another lemma shows
that the “correct” value of a block is passed from one node to
another between epochs. The proofs of these lemmas build in a
modular fashion upon the timestamping claims, thereby localizing
arguments based on specification details. In other work [23], we
have proved the correctness of a bus protocol using the same proof
structure; the proofs of the lemmas for the bus protocol are exactly
as for the directory protocol of this paper, and only the proofs of
the timestamping claims differ.

The rest of this paper is organized as follows. Section2 is a specifi-
cation of the directory protocol. In Section3, we describe the
details of the timestamping scheme and prove that the protocol
obeys SC. Section4 discusses related work in protocol verifica-
tion. Section5 summarizes our contributions and outlines future
work that can be done with our verification technique.

2 Specification of a Directory-Based Coherence Protocol

2.1 Our Target Multipr ocessor System

Our target multiprocessor system (shown in Figure) consists of a
number of processing nodes and directory nodes connected by an
interconnection network. Each processing node consists of a single
processor, one or more levels of cache, and a network interface.
Each directory node consists of adirectory that is used to store
protocol state information about a range of blocks of memory.
These memory blocks are also allocated storage at the directory
nodes. Blocks may be present in a processor’s cache in one of three
states: invalid, read-only or read-write.

FIGURE 1. The Target Multipr ocessor System

Both the caches and the directory are operated by finite-state-
machine controllers which interact by exchanging messages in
order to implement a coherence protocol. Notice that this system
configuration subsumes the case where each directory node is co-
located with a processing node and the directory controls access to
the local memory owned by that node. We do not assume that the
interconnect guarantees any kind of ordering of messages sent or
received between nodes. We do assume that the network guaran-
tees eventual and reliable delivery of all messages.

2.2 Preliminaries

Our directory protocol is inspired by Culler et al.’s description [4]
of the SGI Origin 2000’s protocol [12]. We would like to empha-
size however, that our protocol differs in several respects from
those in the above descriptions. Directory schemes vary in the
manner in which they organize and allocate storage for the direc-
tory. We will assume that each memory block along with its direc-
tory entry is allocated storage in the local memory of some fixed
“home node” for that block. For our purposes, a directory entry
consists of ablock state and a set CACHED of node IDs. This
entry can encode one of the following 6 states:

• Idle: No node has a valid cached copy of this block. It is only
valid at the home’s memory.

• Shared: The block is currently cached at one or more nodes in
the read-only state. CACHED contains a node’s ID if and only
if that node had requested a read-only cached copy of this
block.

• Exclusive: The block is currently cached in the read-write state
at exactly one node. CACHED contains this node’s ID.

• Busy-Shared: The block had been in the Exclusive state and
another node has requested the block in the read-only state.
The directory is now in the process of transferring the block.
CACHED contains the ID of the node requesting the block in
the read-only state. Once inShared, CACHED will re-include
the ID of the original owner.

• Busy-Exclusive: This is similar to theBusy-Shared case above,
with the only differences being that the new requesting node
has requested a read-write copy of the block, and that once in
Exclusive, CACHED will contain only the ID of the new
requester.

CPU

 $

CPU

 $

CPU

 $

Interconnection Network

N/w interface N/w interface N/w interface

Memory

Directory

Memory

Directory

N/w interface N/w interface

3

• Busy-Idle: The block is in the process of going from theExclu-
sive state to theIdle state. More information about the need for
this state can be obtained from the description of the Writeback
request in Section2.3.

When busy states behave similarly, we will useBusy-Any to refer
to a block whose state isBusy-Shared, Busy-Exclusive, or Busy-
Idle.

Our protocol is invalidation-based and allows either a single writer
or one or more readers for each block of memory. We will use the
following terms in our protocol description:

• The requesting node of a block is the node which issues a
request (to the home node) for obtaining that block in the
shared or exclusive state.

• Theowner node of a block is either the home node (if no node
has cached the block with read-write access) or the node with
read-write access.

2.3 Protocol Specification

We will now informally describe how the protocol is used by a
directory controller to handle requests sent to it by requesting
nodes. Note that we have decoupled the generation of coherence
requests from processor events. For instance, aGet-Shared request
could be generated even before a processor suffers a read miss in
its cache for that block. This may happen, for example, if a pro-
cessing node is trying to tolerate memory latencies by prefetching
blocks into its cache before it references them. The protocol sup-
ports the requests in Table1.

For each request, there are several possibletransactions which
depend on the directory state. Including NACKed transactions (of
which there are three), there are 14 distinct transactions (which are
listed below) in total. Transactions 13 and 14 define transactions
that correspond to a pair of requests, where one request is a Write-
back and the other is aGet-Shared, Get-Exclusive, or Upgrade
request. All other transactions involve only one request.

Transactions:

Get-Shared: The requester sends aGet-Shared request to the home.
What happens next depends on the state of the block in the home
directory:

1. Idle: The home clears CACHED and adds the requesting
node’s ID to CACHED. It then sends the block to the requester
and sets the state toShared. The requester loads the block in
the read-only state into its cache1.

1. Here and later, our intended meaning is that the requester waits
until the block arrives, after which it loads the block into its cache
in the appropriate state.

2. Shared: The home adds the requesting node’s ID to CACHED
and sends the block to the requester. The requester loads the
block in the read-only state into its cache.

3. Exclusive: The home changes the state toBusy-Shared,
removes the current owner’s ID from CACHED and adds the
requesting node’s ID to CACHED. It then forwards the request
(along with the identity of the requester) to the current owner
of the block. The owner sends the block directly to the
requester, downgrades the status of the block in its cache to
read-only and sends an update message (with the block) to the
home. The home then stores the block to local memory, adds
the former owner’s ID to CACHED and changes the state to
Shared. The requester loads the block into its cache in the read-
only state.

4. Busy-Any: The home sends the requester a negative acknowl-
edgment (NACK), indicating that the requester should try
again later.

Get-Exclusive: Again, the cases depend on the directory state:

5. Idle: The directory changes the state toExclusive, clears
CACHED and adds the requesting node ID to CACHED. It
then sends the block to the requester, which loads the block in
the read-write state in its cache.

6. Shared: All cached copies must be invalidated. The home
makes a list of the nodes corresponding to the node IDs in
CACHED and then clears CACHED. It then changes the state
to Exclusive and adds the requesting node’s ID to CACHED.
The home sends invalidations (containing the identity of the
requester) to the nodes in the list it constructed. It then sends
the number of invalidations, along with the block, to the
requester. Each of the sharers invalidates its copy of the block
and sends an acknowledgment to the requester. The requester
waits until it receives all acknowledgments before loading the
block in the read-write state into its cache.

7. Exclusive: The home sets the directory state toBusy-Exclusive,
removes the current owner’s ID from CACHED and adds the
requesting node’s ID to CACHED. It then forwards the request
(along with the identity of the requester) to the owner. The
owner invalidates its copy of the block, sends an acknowledg-
ment with the block to the requester and sends an update mes-
sage to the home. The home then changes the state to
Exclusive. The requester loads the block in the read-write state
into its cache.

8. Busy-Any: The request is NACKed.

Upgrade: As before, the cases depend on the directory state, but we
now have to tackle a number of race conditions:

• Idle: This is impossible. This situation, and three other situa-
tions which will be encountered later, will be shown to be
impossible in Appendix B.

9. Shared: This is handled just like theShared case for theGet-
Exclusive request, the only difference being that the home does
not need to send the block in its reply to the requester. The
requester then changes the state of the block in its cache from
read-only to read-write.

10.Exclusive: This means that another node’sGet-Exclusive or
Upgrade request must have beaten thisUpgrade request to the
home and the home must have sent an invalidation to the cur-
rent requester. The home NACKs the request, forcing the
requester to re-try with aGet-Exclusive request.

TABLE 1. Protocol requests

Request
Curr ent Cache

Permission
Desired Cache

Permission

Get-Shared invalid read-only

Get-Exclusive invalid read-write

Upgrade read-only read-write

Writeback read-write invalid

4

11.Busy-Any: The request is NACKed.

Writeback: The owner sends aWriteback request to the home
along with the block. One expects that the directory will be in state
Exclusive with CACHED pointing to the requester. Some of the
subtleties of directory protocols, however, are revealed by the other
cases that race conditions make possible:

• Idle: Impossible. See Appendix B.

• Shared: Impossible. See Appendix B.

12.Exclusive: The home stores the block to memory, changes the
state toIdle and sends an acknowledgment to the (former)
owner. The owner then changes the state of the block in its
cache to invalid.

13.Busy-Shared: We have a race condition here. The requester’s
ID is not present in CACHED (proved in Appendix B).
Instead, another node’s ID is present. This means that this
other requester has made aGet-Shared request to the home and
the home has forwarded the request to the current owner
(present requester). The forwarded request and the write-back
have managed to pass each other in the network. Our protocol
resolves this race condition by combining the two requests.
When the home receives the write-back, it changes the state
from Busy-Shared toShared. It also sends the block returned in
the write-back request to the new requester, as well as a special
“busy” write-back acknowledgment to the former owner which
tells it to ignore the forwarded request. The owner waits for an
acknowledgment from home, buffering any forwarded requests
it receives. When it receives a “busy” acknowledgment, it sets
the state of the block in its cache to invalid and discards the
buffered forwarded request (if any) or remembers to ignore the
first forwarded request it receives (and only after it receives
such a request can it generate a request of its own).

14.Busy-Exclusive: Similar to theBusy-Shared case, but with two
race conditions distinguished by which node’s ID is present in
CACHED:

(a) The requester’s ID is not present. This case is similar to the
race condition in theBusy-Shared case above.

(b) The requester’s ID is present in CACHED. This means that
the requester had originally made aGet-Exclusive request to
the home which caused the former owner to send the block to
the requester and send an update message to the home. Subse-
quently, the requester’s writeback beat the update message to
the home. The home writes the block sent by the requester into
memory, clears CACHED, sends an acknowledgment to the
requester and changes its state toBusy-Idle. When the update
message finally arrives, the home goes to theIdle state. The
requester then sets the state of the block in its cache to invalid.

• Busy-Idle: Impossible. See Appendix B.

2.4 Processor Behavior Requirements

We also need to specify the behavior of a requester/owner with
regard to the requests they can generate and the responses they
need to provide to external requests :

• We assume that a node maintains at most one outstanding
request for each block. Multiple requests for different blocks
are allowed.

• NACKed requests need to be re-tried. The new request needs to
take into account thecurrent state of the block and the type of
access to be performed. A re-tried request is equivalent to a
new network transaction and does not continue to use the
resources of the original transaction (which are freed).

• Invalidations and forwarded requests for a block should be
buffered until the current outstandingGet-Shared, Get-Exclu-
sive, Upgrade, or Writeback transaction for that block, if any,
has been completed. For example, a node may have requested a
read-only copy of a block, and it may receive an invalidation
before it receives the reply to its request.

• Consider a LD/ST operation to block B, call it OP, of some
fixed processor pi. If permission to perform OP was obtained
via transaction T, we say that OP isbound to transaction T. To
ensure forward progress, we require that if transaction T is
issued in order to obtain permission to bind OP, then upon
completion of T (assuming it is not NACKed), OP is bound to
T, even if an invalidation arrived in the meantime.

• We assume that in the protocol, if OP1 appears before OP2 in
pi’s program order, then the real time at which OP1 is bound is
less than or equal to the real time at which OP2 is bound. There
is a discussion in Appendix A about when this real time
requirement can be relaxed.

• The following two facts give processor responsibilities. Fact 1
says that a processor must ensure that a load returns the value
of a store it just did (if any) or the value it obtained for the
block otherwise. Fact 2 says that, when a processor sends a
block away, it must send the values of recent processor stores
(if any) or the values it received.

Fact 1: Let LD-OP be a LD from word w of block B at pi that
is bound to transaction T. Let ST-OP be the last ST to word w
of block B by pi (if any) prior to LD-OP in pi’s program order.
(a) If ST-OP is also bound to transaction T, then the value
loaded by LD-OP equals the result of ST-OP.
(b) Otherwise, the value loaded by LD-OP equals the value of
word w of block B received by pi in response to transaction T.

Fact 2: Suppose that as a result of transaction T2, pi sends
away block B. Let T be the most recent transaction at pi prior
to T2 (in real time) that caused pi to receive block B. Then, the
value of word w of block B sent by pi in response to T2 is the
last ST to word w of block B in pi’s program order that is
bound to T, if any. If no ST to word w of block B is bound to T,
then the value of word w of block B sent by pi is the value
received by pi in response to transaction T.

Note: As long as pi sends the correct value for each word w of
block B, then it is not required to complete all bound LD opera-
tions on block B before invalidating that block. Also, in order that
Facts 1 and 2 apply to the case that T or T2, respectively, is a Get-
Shared at a processor other than pi, we say that in this case proces-
sor pi sends the value of block B to itself as well as to the other
processor who issued the Get-Shared request. Also, when a pro-
cessor does an Upgrade, we consider that it receives a value from
itself. Thus, corresponding to every transaction of pi to which an
operation is bound, a value is received by pi (possibly from itself).

2.5 Extending the Protocol to allow Silent Eviction

Most protocols allow a node to silently evict a read-only block
from its cache without notifying the Home. The protocol that we
have described in the previous subsections does not include such

5

silent evictions, which we shall refer to asPut-Shared. The use of
Put-Shared combined with buffering of invalidation messages
leads to a rather subtle race condition. Consider the scenario
depicted in Figure2. This involves a node N1 which initially had a
block in the read-only state in its cache, evicted it silently and then
proceeded to issue aGet-Shared request for the same block. Mean-
while, another node N2 has issued aGet-Exclusive request for the
same block and this has beaten theGet-Shared request to the
Home which proceeds to send an invalidation to N1.

FIGURE 2. Deadlock produced by allowing Put-Shared

The invalidation is buffered and not responded to before a response
to N1’s Get-Shared request is received. Meanwhile, the Home for-
wards theGet-Shared request to N2 which buffers the request and
does not respond to it until it receives an acknowledgment from
N1. So now, we have deadlock with N1 and N2 each waiting for a
message from the other before they can proceed.

The basic problem is that of a node which had a block in the read-
only state, silently evicted it and then re-requested it in the read-
only state. If an invalidation message now arrives at the node, does
the invalidation apply to the previous “incarnation” of the block
(i.e., before it was silently evicted) or does it apply to the block
that will be sent in response to the outstanding request?

There are two possible ways in which we can solve this problem.
These methods differ in the way they process invalidations
received for blocks for which a node has an outstanding request.
The node can either buffer the invalidation (as we do) or apply it
immediately (as in the SGI Origin 2000 and DASH). These alter-
natives are described in [4].

One solution is to still allow messages to be buffered until out-
standing requests are completed (or NACKed). The deadlock is
broken by N2 which can recognize this situation when it occurs
i.e., when it receives a forwarded request from the very node from
which it is to receive an acknowledgment. In this case, it can treat
the forwarded request as an implicit acknowledgment and proceed
to bind its stores. N2 can then send the data to N1 directly, telling it
to ignore any invalidation that has been buffered by N1. N2 also
sends an update message to the home, as in the normal operation of
the protocol. In case no invalidation has been received yet, N1 has
to remember to drop the first invalidation that it sees for that block,
and furthermore it cannot generate any new request for that block
until it receives this invalidation.

The other solution is not to buffer invalidation messages until any
outstanding requests complete, but to apply them immediately,
thus treating them as NACKs. The requesting node will also have
to remember to drop the reply to its original request, and then
make a new request. This is the solution adopted in the SGI Origin
2000 and the DASH (as confirmed in [13]). Forward progress con-
siderations are met by the use of higher-level mechanisms that
detect a possible lack of progress and take over with corrective
measures.

We have decided to adopt the first approach in our protocol. The
additions to the protocol are (1) aPut-Shared action, (2) the dead-
lock detection done by a node (as described above) that requests
Exclusive permission for a block from the Home and (3) acknowl-
edgment of all invalidations received for a block that is invalid in
the cache. ThePut-Shared action can be performed by any node
that has a read-only copy of a block. After performing this action,
the block’s state in the cache changes to invalid. Note that we call
this anaction rather than atransaction (such asGet-Shared, Get-
Exclusive). These terms will be explained further in the next sec-
tion where we provide a formal proof of correctness of the protocol
which includes these additions.

3 A Timestamping Scheme and a Proof of Correctness

3.1 Notation and Basic Properties of the Protocol

In this section, we define some notation used to reason about the
protocol. First, we classify all coherence activity that occurs in our
system as being related to eithertransactions or actions. Transac-
tions are “global” events initiated by aGet-Shared, Get-Exclusive,
Upgrade or Writeback request for a block sent by a node, and
involve the Home node of that block and perhaps one or more
other nodes.Actions are local events that are private to a node and
which other nodes do not need to know about. Currently, thePut-
Shared action is the only example of an action in our protocol.

Next, we define the notion of a per-block Address-state, or A-state,
of a node. The A-state of a block at a node is used to capture the
Home node’s view of the state of the block at that node after the
node has performed, or participated in, a sequence of (non-
NACKED) transactions. In particular, the A-state of a block at a
node will reflect the change in coherence status implied by a mes-
sage sent from the Home (and possibly other nodes). This change
could have been brought about in response to a request made by
that node, or through an invalidation or forwarded request sent by
the Home. A node’s A-state for a block B is defined to be one of
AI, AS, or AX (the intended meanings are “invalid”, “shared” and
“exclusive” respectively). The A-state is set to AI when the node
receives an invalidation or a forwarded Get-Exclusive, or an
acknowledgment for its own Writeback request. The A-state is set
to AS when the node receives a downgrade, or a response to its
own Get-Shared request. Finally, the A-state is set to AX when the
node receives a response to its own Upgrade or Get-Exclusive
request, along with all associated invalidation acknowledgments.
As a special case, when the protocol performs the deadlock detec-
tion described in Section2.5, we define the A-state of the node
receiving the invalidation to change from AS to AI and then to the
A-state appropriate to its original request, when it receives a block
from its former owner. The directory entry for a block also has an
A-state which is one of AI, AS or AX (when the busy bit is not set),
according as the directory entry state isExclusive, Shared or Idle
respectively. This allows us to refer uniformly to the A-state of a
node, where a node could refer to either a processor or a directory.

Note thatactions do not change the A-state. So if a processor’s A-
state for a block is AS, it remains AS even after the processor per-
forms aPut-Shared and the block is invalid in the cache. Hence,
the A-state is not just a synonym for the processor’s cache state. It
is important to realize that the A-state is a conceptual device that is
used to reason about the protocol. In a hardware implementation of
this protocol, the cache controller would use the actual cache state
to determine future actions, and not the A-state.

Transactions on a given block are serialized by the block’s direc-
tory. Hence, we can speak about a sequence of transactions on the
same block where the ordering is implied by their serialization at

N N

HOME

1 2

1.GETX

2.GETS

3.INV

4.GETS

5.deadlock

6

the directory. For each node N, a sequence of t transactions on
block B (where the order among transactions is seen at the Home)
defines a unique sequence A(1), A(2),..., A(t) of associated A-states
for N, given some initial A-state value at N. If A(i) is not equal to
A(i-1) for some i≥ 1, we say that the ith transaction in the sequence
“affects” N and that the transaction “implies that N’s A-state for
block B change from A(i-1) to A(i)”. For example, if nodes N1 and
N2 start with an initial state of AI, and the sequence of transactions
at the Home is N1’s Get-Shared, N2’s Get-Exclusive and N2’s
Writeback. Then the sequence of A-states for N1 and N2 is AI, AS,
AI, AI and AI, AI, AX, AI respectively. TheGet-Exclusive affects
both nodes as well as the directory node, while theWriteback
affects N2 and the directory. In the special case that a node is the
directory, we say that it is also affected by all transactions resulting
from Get-Shared requests, even though no change in the A-state at
the directory may be implied by such a transaction.

Each transaction implies an “upgrade” of A-state (i.e. change from
state AI to AS, from AI to AX, or from AS to AX) at exactly one
node. Also, each transaction implies a “downgrade” of A-state (i.e.
change from AX to AS, from AX to AI, or from AS to AI) at zero or
more nodes. In the special case that node N is the directory, we say
that N’s A-state “downgrades” as a result of every Get-Shared
transaction, even though its A-state may not be changed by the
transaction. On each transaction, exactly one node upgrades and
zero or more nodes downgrade.

The definitions of “affects” and “implies” in the previous two para-
graphs depend only on the sequence of transactions on block B at
B’s directory. In Claim 2 below, we show that the protocol specifi-
cation ensures that, at every node, the actual sequence of changes
to the A-state for block B occurs in the order implied by the serial-
ization of the transactions at B’s directory, even though messages
on successive transactions may be received out of order by a node.

Claim 1: For each transaction T, a message is sent to every proces-
sor affected by T. Also, if node N upgrades as a result of T, exactly
those nodes that are affected by transaction T (other than N) send a
message to N.

Proof: Claim 1 can be proved true for all transactions T by induc-
tion on serialization order of the transactions at the block’s direc-
tory.

Claim 2: The sequence of A-state changes on block B at a node
occurs in real time in the order implied by the serialization of
transactions on block B at its directory.

Proof: A case-by-case proof of Claim 2 can be found in Appendix
A.

3.2 Timestamping in a Directory Protocol

Imagine that each processor has a global clock that is updated in
real time. In addition, each directory entry has a global clock. The
clocks are used to associate global timestamps with LD and ST
operations and with transactions (thus definingcoherence epochs).
Distinct nodes may assign distinct timestamps to the same transac-
tion. We only use global clocks for transactions (i.e., to delineate
epochs); local time will be used to distinguish LD/ST operations
within the same epoch. Note that we do not timestamp thePut-
Shared action.

Let us first consider the timestamping of transactions. All of the
following applies to a fixed block B. Suppose that a transaction T
implies a downgrade at node N. At the moment that its A-state
changes, N increments its global clock by 1 and assigns the
updated time to that transaction. Suppose that a transaction T

implies an upgrade at node N. At the moment that N’s A-state
changes, N updates its clock to equal

 1 + max{N’s current clock time, timestamps assigned to T by all
nodes other than N that are affected by T},

and assigns the updated time to transaction T. By Claim 1, exactly
those nodes other than N that are affected by transaction T send a
message to N. The above definition of timestamp is well-defined
because N does not upgrade its A-state until it has received a mes-
sage from all other nodes that are affected by transaction T. We can
think of each affected node as sending its timestamp of T along
with its message to N. Thus at the moment that N upgrades its A-
state, it has all of the information needed to timestamp transaction
T.

Claim 3: For a transaction T on block B,

(a) The timestamps of the downgrades associated with T are less
than or equal to the timestamp of the upgrade associated with T.

(b) The timestamp of the upgrade associated with T is less than the
timestamp of the upgrade associated with any transaction T’ on
block B occurring after T in the serialization order at the directory,
so long as one of T or T’ is a Get-Exclusive or Writeback

Proof: Claim 3 can be proved true for all transactions T by induc-
tion on the serialization order of the transactions at the block’s
directory. The proof of Claim 3(b) relies on Claim 2 and the fact
that the Lamport order of transactions (as defined by their global
timestamps) is the same as their order in real time at the directory

Now, we need to assign timestamps to LD and ST operations. If
LDs and STs were always performed in program order immedi-
ately after binding, one could simply timestamp an operation by
the current time of the processor’s global clock at the moment the
operation is performed. Our definition is more general, and applies
also to cases where a processor may perform operations out of
order.

The global time stamp of an operation OP (a LD or ST) at pi is set
to be equal to

 max{pi’s timestamp of the transaction to which the LD/ST is
bound, global timestamp of last LD or ST at pi in program order}

The local timestamp of OP is defined to be 1 if OP is the first oper-
ation in program order with global timestamp t and is otherwise
equal to one plus the local timestamp of the most recent operation
in the program order.

We now consider an example which illustrate the timestamping
scheme. Consider first a scenario containing 2 nodes (N1 and N2)
and 2 blocks of memory (A and B). N1 has block A in the read-
only state, while N2 wants to obtain block A in the read-write state.
N1 also is performing stores to block B. Table2 shows the scenario
in physical time, while Table3 shows the scenario in Lamport time
where events have been ordered by their timestamps. We assume
that the global clocks of both processors are initially set to 1.

TABLE 2. 2 nodes, 2 blocks, physical time

Time N1 N2

1 sendGet-Exclusive
for A

store to B

2 bind load from A

3 receive invalidate for
A, send ack

7

Note that, in this example, the Lamport ordering places N2’s load
from A before N1’s store to A even though they may occur out-of-
order in an aggressive implementation of our protocol, which buff-
ers the invalidation to apply it much later while sending the
acknowledgment immediately [20].

Claim 4: Every LD/ST operation on block B at processor pi is
bound to the most recent (in Lamport time at pi) transaction on
block B that affects pi.

Proof: The proof of Claim 4 uses the fact that binding of opera-
tions is done in program order in real time (4th bullet of
Section2.4). These real-time properties of the protocol can be
relaxed somewhat while maintaining the correctness of this claim.
This issue is discussed and the claim is proved in Appendix A.

3.3 Proof of Sequential Consistency

By construction, the Lamport ordering of LDs and STs within any
processor is consistent with program order. Therefore, to prove
sequential consistency, it is sufficient to show that the value of
every load equals the value of the most recent store.

We frame the proof of sequential consistency in terms of coher-
ence epochs. Acoherence epoch is simply a Lamport time interval
[t1,t2) during which a node has access to a block. All LDs and STs
that have global timestamp t where t1 ≤ t < t2 are contained in
epoch [t1,t2). A shared or exclusive epoch for block B at node N
starts at time t1 if a transaction with timestamp t1 (at N) implies
that N’s A-state for block B changes to AS or AX respectively. The
epoch ends at time t2, where t2 is N’s timestamp of the next trans-
action on block B that implies a change in A-state at N. In the
example from the previous section, the shared epoch of A at N2
ended at global time 2 while A’s exclusive epoch at N1 started at
global time 3. We build up to the proof of sequential consistency
using the two timestamping claims of Section3.2.

Lemma 1 shows that two processors cannot have “conflicting” per-
mission to the same block at the same (Lamport) time. Lemma 2
states that processors do LDs and STs within appropriate epochs.
Finally, Lemma 3 shows that the “correct” block value is passed
among processors and the directory between epochs. Proofs of the
lemmas can be found in Appendix A.

Lemma 1: Exclusive epochs for block B do not overlap with either
exclusive or shared epochs for block B in Lamport time.

Lemma 2:

(a) Every LD/ST operation on block B at pi is contained in some
epoch for block B at pi and is bound to the transaction that caused
that epoch to start.

(b) Furthermore, every ST operation on block B at pi is contained
in some exclusive epoch for block B at pi and is bound to the trans-
action that caused that epoch to start.

Lemma 3: If block B is received by node N at the start of epoch
[t1,t2), then each word w of block B equals the most recent store to
word w prior to t1 or the initial value in the directory, if there is no
store to word w prior to global time t1.

The proof of the Main Theorem shows how sequential consistency
follows from the lemmas.

Main Theorem: The value of every load equals the value of the
most recent store or the initial value, if there has been no prior
store.

Proof: Consider a LD at processor pi. Let the LD be bound to
transaction T1 which has timestamp t1 at processor pi. There are
two cases.

The first case is that the most recent ST has global time stamp at
least t1. In this case, from Lemmas 1 and 2, this ST is also at pro-
cessor pi. and is bound to transaction T1. Therefore, by Fact 1 (a),
the value of the LD equals the value of the most recent ST.

The second case is that the most recent ST has global time stamp
less than t1. In this case, by Lemma 2, no ST prior to this LD is
bound to transaction T1. Therefore, by Fact 1 (b), the value of the
LD equals the value received by pi in response to transaction T1.
By Lemma 3, this value equals the value of the most recent ST or
the initial value if there has been no prior store. QED.

4 Related Work
Most of the related work in coherence protocol verification is
based on formal methods [18] that use state-space search of finite-
state machines, and theorem-proving techniques. These are rigor-
ous methods that can capture subtle errors but they are currently
limited to small systems because of the state space explosion for
large, complicated systems. For example, the SGI Origin 2000
coherence protocol is verified for a 4-cluster system with one
cache block in [6], the memory subsystem of the Sun S3.mp
cache-coherent multiprocessor system is verified for one cache
block in [17], the correctness of the Stanford FLASH coherence
protocol is verified for small test programs and small configura-
tions in [16], and the SPARC Relaxed Memory Order (RMO)
memory consistency model is verified for small test programs in
[15]. In contrast, our approach can precisely verify the operation of
a protocol in a system consisting of any number of nodes and
memory blocks.

A formal approach devised by Shen and Arvind uses term rewrit-
ing to specify and prove the correctness of coherence protocols
[22]. Their technique involves showing that a system with caches
and a system without caches can simulate each other. This
approach lends itself to highly succinct formal proofs. We find
Lamport clocks easier to grasp, while not lacking expressive
power. It is not clear whether or how the two techniques comple-
ment each other. Term rewriting relies on an ordering of rewrite
rules (each of which corresponds to an event) and, as such, may
benefit from the Lamport clock technique which can order events
in logical time.

There is another body of work that delves into memory consis-
tency models that are more aggressive than sequential consistency
[1, 2, 3, 5, 7, 8, 9, 21]. Handling more aggressive models leads to

4 receive ack for A perform bound load,
invalidate from cache

5 store to A

TABLE 3. 2 nodes, 2 blocks, Lamport time

Timestamp N1 N2

1.10.2 store to B

1.11.2 load from A

2 invalidate A,
send ack

3 receive ack for A

3.1.1 store to A

TABLE 2. 2 nodes, 2 blocks, physical time

Time N1 N2

8

formalisms that are more powerful but more complex than we
require (e.g., they must handle non-atomic stores). Furthermore,
much of this work seeks to characterize when programs will
appear sequentially consistent even when running on the more
aggressive hardware, an issue that is moot for us.

Informal intuitive reasoning is more tractable and easier to under-
stand than formal analysis, but it becomes less convincing as it
becomes more informal. Moreover, the flaws in memory system
designs are generally the subtle types of flaws that would be
missed by high-level intuitive reasoning. Informal reasoning is
often combined with extensive simulation in an effort to explore
the state space for bugs in the protocol, but simulation is expensive
and cannot be guaranteed to uncover every obscure bug in a proto-
col. In other work [23], we show that Lamport clocks also offer the
opportunity to analyze, formally or semi-formally, specific parts of
the protocol to prove the validity of an optimization, whereas other
verification techniques often require complete analysis of the sys-
tem before any optimization can be validated. Lamport clocks have
also been used in other research, including a paper by Neiger and
Toueg [14] that uses the clocks to determine what knowledge is
available to each processor in a distributed algorithm.

5 Conclusions and Future Work
Shared-memory systems are becoming increasingly complex and
the need of the hour is for better verification tools that are intuitive,
precise and scalable. We propose a verification framework based
on Lamport’s logical clock scheme that creates a total order of rel-
evant protocol events. This order is a constructive realization of the
ordering hypothesized in the definitions of various memory consis-
tency models. We can then construct proofs that show that the
requirements of a particular memory consistency model are met in
this total order. The notion of coherence epochs arises naturally
from such a logical ordering of events, and this notion clarifies the
operation of the protocol as well as its proof of correctness. We
have presented our technique and then successfully applied this
technique to the proof of a non-trivial directory cache-coherence
protocol. We expect the technique to apply equally well to any
other directory protocol, or a bus-based protocol (as shown in
[23]).

Future work with Lamport clocks will extend the range of systems
to which our analysis can be applied, and we plan on devising a
generic proof that can be easily tailored to new systems. The new
systems that will be analyzed may include: clusters of SMPs, sys-
tems with consistent I/O, and systems that obey consistency mod-
els other than sequential consistency. We also believe that Lamport
clocks are a useful tool for reasoning about the possibilities of
deadlock, livelock, and starvation in a directory protocol, and we
intend to explore this area of research.

6 References
[1] SaritaV. Adve and MarkD. Hill. Weak Ordering—A New

Definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 2–14, Seattle,
Washington, May 28–31, 1990.

[2] Hagit Attiya and Roy Friedman. A Correctness Condition for
High-performance Multiprocessors. InProceedings of the 24th
Annual ACM Symposium on the Theory of Computing, pages 679–
690, May 1992.

[3] William W. Collier. Reasoning About Parallel Architectures.
Prentice-Hall, Inc., 1992.

[4] David Culler, JaswinderPal Singh, and Anoop Gupta.Draft of
Parallel Computer Architecture: A Hardware/Software Approach,
chapter 8: Directory-based Cache Coherence. Morgan Kaufmann,
1997.

[5] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory
Access Buffering in Multiprocessors. InProceedings of the 13th
Annual International Symposium on Computer Atchitecture, pages
434–442, June 1986.

[6] AsgeirTh. Eiriksson and KenL. McMillan. Using Formal
Verification/Analysis Methods on the Critical Path in Systems
Design: A Case Study. InProceedings of the Computer Aided
Verification Conference, Liege, Belgium, 1995. appears as LNCS
939, Springer Verlag.

[7] Kourosh Gharachorloo, SaritaV. Adve, Anoop Gupta, JohnL.
Hennessy, and MarkD. Hill. Specifying System Requirements for
Memory Consistency Models. Technical Report CS-TR-1199,
University of Wisconsin – Madison, December 1993.

[8] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory Consistency
and Event Ordering in Scalable Shared-memory Multiprocessors.
In Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15–26, May 1990.

[9] Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo.
Proving Sequential Consistency of High-Performance Shared
Memories. In Symposium on Parallel Algorithms and
Architectures, pages 292–303, July 1991.

[10] Leslie Lamport. Time, Clocks and the Ordering of Events in a
Distributed System.Communications of the ACM, 21(7):558–565,
July 1978.

[11] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs.IEEE Transactions on
Computers, C-28(9):241–248, September 1979.

[12] JamesP. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. InProceedings of the 24th
International Symposium on Computer Architecture, Denver, CO,
June 1997.

[13] Daniel Lenoski. Personal communication, March 1998.

[14] Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and
Common Knowledge in Distributed Systems.Journal of the
Association for Computing Machinery, 40(2):334–367, April
1993.

[15] Seungjoon Park and DavidL. Dill. An Executable Specification,
Analyzer and Verifier for RMO (Relaxed Memory Order). In
Proceedings of the 7th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 34–41, Santa Barbara,
California, July 17–19, 1995.

[16] Seungjoon Park and DavidL. Dill. Verification of FLASH Cache
Coherence Protocol by Aggregation of Distributed Transactions.
In Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 288–296, Padua, Italy, June
24–26, 1996.

[17] Fong Pong, Michael Browne, Andreas Nowatzyk, and Michel
Dubois. Design Verification of the S3.mp Cache-Coherent Shared-
Memory System.IEEE Transactions on Computers, 47(1):135–
140, January 1998.

[18] Fong Pong and Michel Dubois. Verification Techniques for Cache
Coherence Protocols.ACM Computing Surveys, 29(1):82–126,
March 1997.

[19] J.Protic, M.Tomasevic, and V.Milutinovic. Distributed Shared
Memory: Concepts and Systems.IEEE Parallel and Distributed
Technology, pages 63–79, 1996.

[20] Christoph Scheurich. Access Ordering and Coherence in Shared
Memory Multiprocessors. Ph.D. Dissertation CENG 89-19,
University of Southern California, May 1989.

[21] Dennis Shasha and Marc Snir. Efficient and Correct Execution of
Parallel Programs that Share Memory.ACM Transactions on
Programming Languages and Systems, 10(2):282–312, April
1988.

9

[22] Xiaowei Shen and Arvind. Specification of Memory Models and
Design of Provably Correct Cache Coherence Protocols. Group
Memo 398, Massachusetts Institute of Technology, June 1997.

[23] DanielJ. Sorin, Manoj Plakal, MarkD. Hill, and AnneE. Condon.
Lamport Clocks: Reasoning About Shared-Memory Correctness.
Technical Report CS-TR-1367, University of Wisconsin-Madison,
March 1998.

Appendix A: Proofs of Claim 2, Claim 4, and the Lemmas

Claim 2: The sequence of A-state changes on block B at a node
occurs in real time in the order implied by the serialization of
transactions on block B at its directory.

Proof: Claim 2 is easily seen to be true for block B’s directory
entry since the directory processes transactions in order. Now, sup-
pose that T1 and T2 are two transactions affecting block B of pi,
where T1 occurs before T2 in the transaction serialization order at
the directory, and that T2 is the first transaction after T1 on block B
that affects pi. From Claim 1, a message is sent to pi both as a
result of T1 and T2 (although these may not arrive at pi in order).
We need to show that the change in A-state resulting from T1 at pi
occurs before the change in A-state resulting from T2. We consider
two cases.

• Case 1:pi requests transaction T1. If pi receives messages
relating to transaction T2 before pi has changed its A-state cor-
responding to T1 (transactions 3,6,7,9 from Section2.3), then
pi buffers such messages until all processing of transaction T1
has been completed (refer to the 3rd bullet in Section2.4). Oth-
erwise (transactions 1,2,5,9,12,13,14), there is no that way pi’s
A-state could change due to T2 before finishing T1.

• Case 2:pi does not request transaction T1. First, suppose that
T1 implies that pi’s A-state changes from AX to AS or AI.
Therefore, T1 must result from aGet-Shared or Get-Exclusive
request from a processor, pj, other than pi. In these cases (trans-
actions 3 and 7 from Section2.3), the directory enters the busy
state and remains in that state until it receives a response from
pj, at which point pi’s state has been changed to AS or AI as
appropriate. Therefore, the change in A-state at pi implied by
T1 occurs before the directory leaves the busy state. T2 is not
NACKed, and so the directory does not send a message to pi
regarding transaction T2 until after leaving the busy state for
T1. Furthermore, pi does not change its A-state as a result of T2
until it receives a message from the directory regarding T2.
Therefore, the change in A-state corresponding to T2 occurs
after the change in A-state corresponding to T1.
The only other possible case is that T1 implies that pi’s state
changes from AS to AI. Hence, T1 must result from aGet-
Exclusive or Upgrade request from a processor, pj, other than
pi. In this case, the only way that T2 can affect pi is if T2 is
requested by pi. T2 could be aGet-Shared, aGet-Exclusive or
anUpgrade, since the actual state of the block B in pi’s cache
could be either read-only, or invalid due to aPut-Shared action
which does not affect the A-state. If T2 is aGet-Shared or Get-
Exclusive then, by the definition of A-state in Section3.1, the
A-state at pi changes from AS to AI (due to T1) and then imme-
diately to AS or AX (due to T2), as appropriate. If T2 is an
Upgrade, it is NACKed by the directory (due to T1, transaction
10 from Section2.3). Since T2 affects pi, it cannot be a
NACKed request, and therefore it must be requested by pi after
pi has changed its state to AI. QED.

Claim 4: Every LD/ST operation on block B at processor pi is
bound to the most recent (in Lamport time at pi) transaction on
block B that affects pi.

Proof: Let OP2 be a LD or ST operation on block B with global
timestamp t2. Since OP2’s timestamp is t2, OP2 cannot be bound to
a transaction with timestamp greater than t2. Let T1 be the transac-
tion on block B with the largest timestamp, say t1, at pi such that t1
�≤ t2. We need to show that OP2 is not bound to a transaction occur-
ring earlier than T1; hence OP2 must be bound to T1.

Let OP1 be the earliest LD/ST operation (not necessarily to block
B) in pi’s program order with the global time stamp t2. Note that
OP1 may equal OP2. Also, since OP1 is the first OP with global
timestamp t2, OP1 must be bound to the transaction with times-
tamp t2 at pi. By the fact that the Lamport order at pi equals the
real-time order of changes of A-state at pi, the order in which
changes in A-state at a processor are written in real time is the
same as the Lamport ordering of the corresponding transactions at
that processor. Hence, the value of the A-state for block B at the
real time that OP1 is bound must be the value implied by a transac-
tion on block B occurring no earlier than T1. Since OP2 is bound in
real time no later than OP1 is bound, it cannot be bound to a trans-
action occurring earlier than T1, as required. QED.

Comment: the proof of Claim 4 uses two facts about the protocol
relating real time to Lamport time: (a) the order in which changes
in A-state at a processor are written in real time is the same as the
Lamport ordering of the corresponding transactions at that proces-
sor, and (b) binding occurs sequentially in real time. However, the
protocol can be relaxed while maintaining the correctness of Claim
4. For example, suppose that the A-states are updated periodically
(using queues to order pending updates) and that during an update
of transactions with timestamps in the range [t1,t2), the binding
process is suspended. The order in which the A-states are updated
need not agree with the order of the corresponding transactions, as
long as at the end of the update period, the A-state value of each
block equals that implied by the most recent transaction prior to
that with timestamp t2. Once the A-states are up to date, binding of
LD/STs can be resumed. Binds of the next contiguous block of
LD/ST operations on blocks for which the A-state is set appropri-
ately can be performed out of order, thus relaxing the real time
ordering assumption for binds, as long as potential changes in A-
state are being queued until the binding process is again sus-
pended.

Lemma 1: Exclusive epochs for block B do not overlap with either
exclusive or shared epochs for block in Lamport time.

Proof: Let [t1,t2) be an exclusive epoch for block B at node N. Let
transaction T1 cause the epoch to begin. We claim that no node has
an epoch for block B that overlaps with [t1,t2).

We first argue that no epoch for block B that starts prior to time t1
overlaps with [t1,t2). By Claim 3 (b), such an epoch E would have
to result from a transaction occurring before T1 in the serialization
order. Therefore, the end of epoch E would have to result from
some transaction T0 on block B occurring no later than T1 (possi-
bly T0 = T1). Claim 3 (a) ensures that the end of epoch E must be
less than or equal to the timestamp of T0 at a unique node, say N2,
that upgrades its A-state as a result of T0. Also, by Claim 3 (b)
again, the timestamp of T0 by N2 must be less than the timestamp
of T1 by N. Hence E ends in Lamport time before [t1,t2) starts.

Clearly, the only epoch starting at time t1 is at node N, since N is
the only processor whose A-state is not AI after transaction T1. To
complete the proof, we note that the next transaction, say T2, on
block B after T1 must be assigned timestamp t2 by N. If node N2
upgrades its A-state as a result of T2, Claim 3 (a) ensures that N2’s
timestamp of T2 must be greater than t2. Hence, by Claim 3 (b), if

10

an epoch E starts as a result of transaction T2 or a transaction later
than T2, E must start at a time greater than t2, as required. QED.

Lemma 2: (a) Every LD/ST operation on block B at pi is con-
tained in some epoch for block B at pi and is bound to the transac-
tion that caused that epoch to start. (b) Furthermore, every ST
operation on block B at pi is contained in some exclusive epoch for
block B at pi and is bound to the transaction that caused that epoch
to start.

Proof: Let OP be a LD/ST on block B with global timestamp t2. By
Claim 4, OP is bound to the most recent transaction at pi no later
than t2, say T1, that affects block B of pi. Let t1 be pi’s timestamp
of T1. Part (a) of Lemma 2 then follows for the following reasons:
Since OP is bound to T1, T1 must imply that pi’s A-state for block
B changes to AS or AX and so an epoch for block B at pi starts at
time t1. Moreover, since T1 is the most recent transaction no later
than t2 that affects block B of pi, the epoch starting at t1 must end
at some time later than t2. Therefore, OP is contained in some
epoch for block B at pi and is bound to the transaction that caused
that epoch to start. Part (b) follows from the further observation
that if OP is a ST then T1 must cause an exclusive epoch to start at
pi. QED.

Lemma 3: If block B is received by node N at the start of epoch
[t1,t2), then each word w of block B equals the most recent store to
word w prior to t1 or the initial value in the directory, if there is no
store to word w prior to global time t1.

Proof: We prove the claim for all nodes by induction on epoch
starting time t1. The basis case is the first action that causes block
B to be sent. In this case the block is sent from the directory and
equals the initial value of the block in the directory.

Suppose that the claim is true for all epochs with starting time less
than t1, and suppose that block B is sent from node N0 to node N1
in response to transaction T1, which has timestamp t1 at N1. First,
suppose that N0 is not equal to N1. Let transaction T0 be the most
recent action on block B prior to T1 in serialization order. Since N0
sends block B in response to T1, T0 must be cause an exclusive
epoch to start at N0 and therefore affects N0. Let T0 have times-
tamp t0 at N0. From Claim 3, N0’s exclusive epoch for block B
starting at time t0 must end prior to time t1. Moreover, since T0 and
T1 are consecutive transactions on block B in serialization order,
there is no epoch at any processor between the time that N0’s
epoch ends and N1’s epoch begins at time t1.

We consider two cases. The first case is that the last ST to word w
of block B prior to time t1 is actually prior to t0. Therefore, no STs
to word w of block B are bound to T1. By Fact 2, the value W0 of
word w of block B sent by N0 is the value received by N0 in
response to T0. By the induction hypothesis, W0 equals the value
of the most recent store to word w of block B prior to time t0 or the
initial value of word w in the directory, if no prior store. Therefore,
the value sent by N0 equals the value of the most recent store or the
initial value in the directory, if no prior store.

The second case is that the last ST to word w of block B prior to
time t1 occurs after time t0. By Claim 4 and Lemma 2 (b), such STs
must be done by node N0. By Fact 2, in this case the value of word
w of block B sent by N0 in response to T1 is the last ST to word w
of block B in pi’s program order that is bound to T0. Moreover, the
last ST bound to T0 has global time stamp less than t1. Therefore,
the value sent by N0 equals the value of the most recent store to
word w of block B. This completes the proof of Lemma 3 in the
case that, in response to T1, block B is sent by a node other than pi.

The situation in which N0=N1, (i.e., in response to T1, the value of
block B is sent from pi to itself) is similar, but only the first case
above can arise. QED.

Appendix B: Impossible Transactions

Upgrade with Directory being Idle: Assume that pi is the processor
performing theUpgrade on block B and that it obtained read-only
access with transaction T. Some other processor must have per-
formed aGet-Exclusive or Upgrade and then aWriteback before
pi’s Upgrade reached the directory. Let transaction T’ be the first
Get-Exclusive or Upgrade transaction on block B after T in the
serialization order, and assume that it occurs at processor pj. T’
(via transactions 6 or 9 forGet-Exclusive or Upgrade, respec-
tively) ensures that pj must wait for an acknowledgment from pi
before obtaining read-write access. In turn, pi cannot send an
acknowledgment until itsUpgrade is processed by the directory.
Until then, pj cannot do aWriteback, and thus the Directory cannot
beIdle.

Writeback: Assume that pi is the processor performing theWrite-
back on block B and that it obtained read-write access with trans-
action T.

• Directory is Idle: Some other processor must have performed a
Get-Exclusive and then aWriteback before pi’s Writeback
reached the directory. Let transaction T’ be the firstGet-Exclu-
sive transaction on block B after T in the serialization order
and assume that it occurs at processor pj. However, T’ (transac-
tion 7) ensures that the directory will go intoBusy-Exclusive
until it receives a message from pi. Hence, pj cannot obtain
read-write access before pi’s Writeback has been processed by
the directory, because pj cannot receive a reply from the Home
until pi’s Writeback request is received and processed by the
directory.

• Directory is Shared: For the directory to beShared, some other
processor must have performed aGet-Shared before pi’sWrite-
back reached the directory. Let transaction T’ be the firstGet-
Shared transaction on block B after T in the serialization order
and assume it occurs at processor pj. However, T’ (transaction
3) ensures that the directory will go intoBusy-Shared until it
receives a message from pi. Therefore, pi’s Writeback cannot
see aShared directory.

• Directory is Busy-Shared: Some other processor must have
performed aGet-Shared before pi’s Writeback reached the
directory. Let transaction T’ be the firstGet-Shared transaction
on block B after T in the serialization order and assume it
occurs at processor pj. T’ (transaction 3) ensures that the direc-
tory will go into Busy-Shared until it receives a message from
pi. Once the directory entersBusy-Shared, CACHED only con-
tains pj’s ID. Therefore, pi’s ID cannot be in CACHED.

• Directory is Busy-Idle: Some other processor, pj must have
performed aGet-Exclusive, received the block from pi, and
performed aWriteback that beat pi’s update message to the
directory. At this point, any processor that makes aGet-Shared,
Get-Exclusive, or Upgrade request for B will get NACKed
(transactions 4, 8, and 11). Only pi can change the state out of
Busy-Idle, and this will happen when its update message
arrives at the directory. No Writeback can occur while inBusy-
Idle because no processor has read-write access (pi is already
in the invalid state once it has sent the block to pj).

