
AMVA Techniques for High Service Time Variability ∗

Derek L. Eager Daniel J. Sorin Mary K. Vernon

Department of Computer Science Computer Sciences Department
University of Saskatchewan University of Wisconsin - Madison

eager@cs.usask.ca sorin,vernon@cs.wisc.edu

Abstract
Motivated by experience gained during the validation of a
recent Approximate Mean Value Analysis (AMVA) model of
modern shared memory architectures, this paper re-examines
the “standard” AMVA approximation for non-exponential
FCFS queues. We find that this approximation is often in-
accurate for FCFS queues with high service time variability.
For such queues, we propose and evaluate: (1) AMVA esti-
mates of the mean residual service time at an arrival instant
that are much more accurate than the standard AMVA es-
timate, (2) a new AMVA technique that provides a much
more accurate estimate of mean center residence time than
the standard AMVA estimate, and (3) a new AMVA tech-
nique for computing the mean residence time at a “down-
stream” queue which has a more bursty arrival process than
is assumed in the standard AMVA equations. Together,
these new techniques increase the range of applications to
which AMVA may be fruitfully applied, so that for example,
the memory system architecture of shared memory systems
with complex modern processors can be analyzed with these
computationally efficient methods.

1. Introduction
Approximate Mean Value Analysis (AMVA) is a widely used
approach to evaluating key computer system performance
questions [1, 2, 5, 8, 11, 12, 16, 17, 18, 19, 20, 25, 26, 27,
28, 29]. The wide applicability of the AMVA technique is
due to both its very low computational expense and its high
degree of accuracy in producing performance estimates that
agree with detailed system simulation or system measure-
ment. These capabilities are achieved through the use of
heuristic extensions to the Mean Value Analysis equations
for product form queueing networks. The low computational
expense is due to extensions, such as the Schweitzer approxi-
mation [22, 3, 4], that replace the exact equations which are
recursive in the customer class populations with approxi-

∗This research is supported in part by the Natural Sci-
ences and Engineering Research Council of Canada un-
der Grant OGP-0000264, DARPA/ITO under Contract
N66001-97-C-8533, and the National Science Foundation un-
der Grants CDA-9623632, MIP-9625558, and ACI 9619019.

mate equations that are solved iteratively, typically within
a very small number of iterations. The high degree of accu-
racy is largely due to heuristic extensions for representing a
number of important system features such as priority queue-
ing disciplines, simultaneous resource possession, and FCFS
queues with class-dependent mean service times [14].

The work in this paper is motivated by a recent highly effi-
cient heuristic AMVA model for evaluating shared memory
architectures that contain complex modern processors [24].
In that architecture model, each processor is modeled by a
FCFS queue. Service times at the processor represent the
time between memory requests that miss in the second level
cache when the processor is active. The measured coefficient
of variation (CV) of these times [24] was as high as 13 for
the benchmarks and architecture that were modeled. For
several of the benchmarks, Figure 1 shows the throughput
(in units of instructions per cycle, IPC) obtained in [24] by
(1) a detailed architecture simulator called RSIM, (2) the
AMVA model with the standard AMVA approximation for
FCFS centers with high service time CV [14], (3) the AMVA
model with a new simple heuristic interpolation (“simple in-
terp”) for estimating the mean residual service time of the
customer in service at an arrival instant at any of the proces-
sors. Note that the standard AMVA model provides system
throughput estimates that have large error compared to the
RSIM estimates.

Figure 1: Architecture Throughput Estimates

The simple interpolation was found to be sufficiently accu-
rate for evaluating the shared memory architecture perfor-
mance over a fairly broad region of the design space [24], but
the accuracy of the interpolation has not been investigated



Table 1: Notation

term definition introduced
N number of customers in the (closed) network
τ mean service time at a queueing center
CVτ coefficient of variation of service time
L mean residual service time at a random instant in time
r mean residual service time at an arrival instant
Q mean queue length at a queueing center
R mean residence time at a queueing center Section 2
Rother mean residence time in the rest of the queueing network
Rtotal mean total residence time in the queueing network
U server utilization at a queueing center
τa mean service time in path a of a hyperexponential distribution
τb mean service time in path b of a hyperexponential distribution
p probability of taking path a of a hyperexponential distribution
Sd mean service time at “other” delay center in the two-center network
Sq mean service time at “other” queueing center in the two-center network
Ra mean residence time at exponential queueing center with mean service time τa Section 3
Rb mean residence time at exponential queueing center with mean service time τb

k mean number of arrivals within a burst
I mean interarrival time within a burst
B mean time between bursts Section 4
Sdown mean service time at downstream queueing center
Qb mean queue length at downstream center during a burst
Qnb mean queue length at downstream center during time intervals between bursts

systematically. Furthermore, the architecture model used
standard AMVA equations for the “downstream” processor
bus queue, i.e., the center next visited by requests departing
from the processor queue. Mean waiting time for the bus
was significantly underestimated by the model because, due
to the high service time CV at the processor, the arrival pro-
cess to the bus is significantly more bursty than is assumed
in the standard AMVA equations. We are not aware of any
prior MVA approximations for estimating mean queueing
time at such servers.

A previous paper by Bondi and Whitt [6] provides insight
into the behavior of closed queueing networks that have
FCFS centers with service time CV greater than one. Their
paper evaluates the standard AMVA approximation for such
networks, as well as several convolution-based approximate
solution methods that have better accuracy. This paper con-
siders improved AMVA techniques, which can be employed
in the common case that there are other non-separable sys-
tem features that are not easily represented in the convolu-
tion framework. Specifically, this paper makes the following
contributions:

• The simple interpolation used in the architecture model
is provided.

• A new heuristic AMVA interpolation is developed for
estimating the mean residual service time at an arrival
instant for a FCFS queue.

• A new AMVA technique, “AMVA-Decomp”, is devel-
oped for estimating mean residence time at a FCFS
center with service time CV greater than one.

• A new AMVA technique is developed for modeling the

bursty arrivals and estimating the mean waiting time
at a resource that is “downstream” from a FCFS center
with high service time variability.

• The accuracy of each of the above techniques is system-
atically investigated by comparing the approximate es-
timates against the exact solution for queueing net-
works with two service centers, over a large parameter
space for such networks.

A key result of the evaluations in this paper is that using the
AMVA-Decomp technique, together with the technique for
modeling bursty arrivals at the downstream queue, provides
overall mean system residence time estimates that have error
typically less than 5-10% and always less than 15% over the
system parameter space examined.

The rest of this paper is organized as follows. Section 2 dis-
cusses previous AMVA and AMVA-compatible techniques
for estimating mean residence time at FCFS queues with
high service time variability. Section 3 proposes new AMVA
techniques for estimating mean residence time at these queues,
and evaluates their accuracy. Section 4 develops and evalu-
ates the new AMVA technique for modeling bursty arrivals
and estimating mean residence time at a downstream queue.
Finally, Section 5 contains the conclusions of this work.

2. Background: Previous Techniques
In this section, we review three previous techniques for es-
timating mean residence time at a FCFS center with high
service time variability. These techniques are the “standard
AMVA approximation” [14], a new simple interpolation used
in the previous architecture model [24], and a decomposition
technique proposed by Zahorjan et al. [31]. Other previous
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Figure 2: System Decomposition

approaches that are based on convolution or global balance
are reviewed in [31, 6].

Throughout this section and the remainder of this paper,
the AMVA techniques are defined and evaluated for single
class queueing network models. There are extensions for
some types of models with multiple customer classes, but
evaluation of the accuracy of the approximations for multi-
ple class models is beyond the scope of this paper. Without
loss of generality, the techniques are defined assuming that
the visit count for the given FCFS center with high service
time variability is equal to one. Table 1 provides the nota-
tion that will be used throughout the paper.

2.1 The Standard AMVA Approximation
The Schweitzer AMVA equation [22, 3, 4] for the mean resi-
dence time R at a FCFS queueing center that has exponen-
tially distributed service times with mean τ is:

R = τ (1 +
N − 1

N
Q) = τ [1 + (N − 1)

R

Rtotal

]. (1)

In the above equation, Q denotes the mean queue length at
the center, Rtotal denotes the mean total residence time in
the queueing network, and N denotes the number of cus-
tomers in the (closed) network.

When the service times at the FCFS center are not exponen-
tially distributed and CVτ represents the service time CV,
the “standard” AMVA approximation for estimating mean
residence time [14] is given by:

R = τ [1 +
N − 1

N
(Q− U)] +

N − 1

N
UL

= τ [1 + (N − 1)
R− τ

Rtotal

] + (N − 1)
τ

Rtotal

L, (2)

where U is the server utilization, and L is an estimate of
the mean residual service time of the customer in service
at an arrival instant assuming arrivals to the queue occur
at random points in time, i.e., L = τ

2
(1 + CV 2

τ ). To our
knowledge, this heuristic approximation was first proposed
by Reiser [21] in a paper that applied the approximation for

solving a queueing network model containing FCFS centers
with deterministic service times, in which case CV=0. The
approximation has also been used in a number of other ac-
curate models that contain FCFS centers with deterministic
service times, such as those in [2, 8, 11, 17].

A problem with the accuracy of the above approximation
arises for centers that have high service time CV. In this
case, the estimated mean residual service time of the cus-
tomer in service at a random point in time can be quite large
(e.g., significantly larger than the mean service time at the
queue). If the average residence time of a customer in the
rest of the queueing network is smaller than this estimated
mean residual service time, as was the case for memory re-
quests in the architecture model discussed in Section 1, the
customers do not arrive back at the high-CV center at a
random point in time relative to the service times at the
center. In this case, as will be shown in Section 3, the stan-
dard AMVA approximation (L) can greatly overestimate the
mean residual service time at an arrival instant. This over-
estimation of the mean residual service time leads to a cor-
responding overestimation of the mean residence time at the
center, which was the cause of the very pessimistic estimates
of system throughput shown in Figure 1 for the model that
used the standard AMVA approximation.

2.2 A Simple AMVA Interpolation
To develop a more accurate estimate of mean residual service
time at an arrival instant for a FCFS queue with high service
time CV, r, we define a simple interpolation between the two
extremes, τ and L, where τ is the mean residual service time
in the limiting case in which the time spent in the rest of
the queueing network approaches zero, and L is the mean
residual service time as would be seen by a random arrival.
Letting Rother denote the mean residence time in the rest
of the network, the simple interpolation is given by:

r ≈
L

L + Rother

τ +
Rother

L + Rother

L. (3)

This interpolation can be used in place of L in equation (2).
The more accurate throughput estimates in Figure 1, pro-
duced by the “simple interp” model, were obtained using
this simple interpolation at the processor queues.

2.3 The Decomposition Technique
The decomposition technique of Zahorjan et al. [31] esti-
mates the performance measures for queueing networks with
high-CV FCFS queues using weighted averages of those per-
formance measures for simpler models. This technique is
compatible with AMVA since each of these simpler models
can be analyzed using standard AMVA techniques. In ad-
dition to providing accurate mean residence time estimates
for high-CV FCFS queues, this approach also approximately

captures the impact of high service variability on other cen-

ters in the network.

Consider a closed queueing network model in which there is
one high-CV FCFS queue with a service time distribution
that can be modeled with a two-stage hyperexponential dis-
tribution, with parameters p, τa, and τb. With probability p
a given customer’s service time is exponentially distributed
with mean τa, and with probability 1− p it is exponentially



distributed with mean τb. We assume, without loss of gener-
ality, that τa < τb, and we denote the average mean service
time by τ = pτa + (1− p)τb.

The technique of Zahorjan et al. decomposes this model
into two simpler models, as shown in Figure 2. The simpler
models are identical to the original model except that, in one
of them, customers have mean service time τa at the FCFS
center, while in the other they have mean service time τb.
An estimate for the mean network residence time, or the
mean residence time at a particular center, in the original
model is given by the sum of p times the corresponding
mean residence time in the first model and 1 − p times the
corresponding mean residence time in the second model.

The definitions of the simpler models, and the manner in
which their performance measures are used to estimate those
for the original model, are based on consideration of the
transition rate matrices of such models and the use of the
theory of near-complete decomposability [9]. This theory
actually suggests a slightly different definition of the simpler
models, but in the case where the theory directly applies
(i.e., p >> 1 − p and τa << τb), the results are identical.
Furthermore, Zahorjan et al. show that, with the simpler
models defined as above, accurate results are obtained even
when the theory does not strictly apply [31].

The decomposition technique has two key advantages. First,
it has a firm theoretical foundation provided by the theory
of near-complete decomposability [9], as explored in detail
in [31]. Second, it was found to have high accuracy in [31].

The technique can be extended to networks with multiple
high-CV FCFS queues and to high-CV service time distri-
butions other than the two-stage hyperexponential distri-
bution [31]. For example, general Coxian distributions [10,
13], in which there are a number of exponential stages of
service connected by transition paths that have fixed proba-
bilities, may be modeled by decomposing the original model
into a number of simpler models equal to the number of
paths. In some modeling applications, these more general
distributions may be better able than the two-stage hyperex-
ponential to capture important distributional characteristics
of highly variable service times [15].

A principal disadvantage of the decomposition technique is
the complexity of solving the model. For a model that con-
tains H FCFS queues with service time distributions mod-
eled by two-stage hyperexponential distributions, 2H sim-
pler models need be analyzed, one for each possible combi-
nation of service stages for each of the H centers. The com-
plexity of the approach is increased when modeling more
complex service time distributions. For some applications,
particularly those that have many FCFS queues with high
service time variability and also use decomposition for an-
alyzing other non-product form system features (e.g., the
model in [24]), the exponential cost in the number of high-
CV FCFS queues may render the approach impractical.

3. FCFS Centers with High Service Time CV
In this section, we explore the accuracy of AMVA techniques
for estimating mean residence time at a FCFS queue with
high service time variability. The results in this section will

show that the simple AMVA interpolation defined in Sec-
tion 2.2 is considerably more accurate than the standard
AMVA approximation, but that the error for the simple in-
terpolation can be significant. Therefore, two new AMVA
techniques will also be developed and evaluated.

The first new technique, defined in Section 3.1, is an im-
proved interpolation for estimating the mean residual ser-
vice time of the customer in service at an arrival instant. We
evaluate the accuracy of the new interpolation, the previous
simple interpolation, and the standard AMVA estimate of
mean residual service time in Section 3.2.

The second proposed new technique, defined in Section 3.3,
is a new heuristic method for estimating the mean center res-
idence time. This technique, “AMVA-Decomp”, is inspired
by the decomposition method reviewed in Section 2.3. Sec-
tion 3.4 compares the accuracy of the mean center residence
time estimates obtained using this new “AMVA-Decomp”
technique, the new interpolation for mean residual service
time, and the previous techniques reviewed in Section 2.

The techniques will be systematically evaluated using sim-
ple networks with two service centers. One center is a FCFS
queue with service times modeled by a two-stage hyperexpo-
nential distribution that has mean τ and coefficient of vari-
ation CVτ . The “other” service center, which has exponen-
tially distributed service times, abstractly models customer
sojourn times in the rest of the system. We consider two
extreme cases of customer interference at this other service
center. In one case, the other service center is a pure delay
center where all customers receive service in parallel. In the
second case, the other service center is a single-server queue
with an arbitrary work-conserving scheduling discipline that
is oblivious to actual customer service requirements. The
mean service time at the other center is denoted by Sd or
Sq, respectively. For these two-queue networks, we can use
Markov chain techniques to compute the exact mean resid-
ual service time and mean queue residence time at the FCFS
center with the high service time CV. More importantly,
these networks are simple enough that we can explore the
system parameter space fairly completely. This allows us to
determine regions of the parameter space for which a given
technique is least accurate.1

3.1 The New AMVA Interpolation
In this section, we define a new interpolation for estimating
the mean residual service time at an arrival instant for a
FCFS center that has a service time distribution that is rea-
sonably well approximated by a two-stage hyperexponential
distribution. As before, the parameters of the hyperexpo-
nential distribution are denoted by τa, τb, and p, such that
τ = pτa + (1− p)τb. The improved interpolation is obtained
by replacing L in the weighting factors in equation (3) by
T = τaτb

τ
, as follows:

r ≈
T

T + Rother

τ +
Rother

T + Rother

τ

2
(1 + CV 2

τ ). (4)

1Evaluations for larger networks and for FCFS centers with
other high-CV service time distributions can be found in [7].
Those evaluations show relative accuracies of each technique
similar to the results in this paper.
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Figure 3: % Relative Error of the New Interpolation for Mean Residual Service Time
(two-center networks, “other” center is a queueing center, p=0.99)

This interpolation has the key property that it is exact when
the mean delay in the rest of the network is exponentially
distributed with mean Rother. To see this, consider a partic-
ular customer, named A, that is not at the high-CV FCFS
center when another customer, named B, enters service at
this center. If B has mean service time equal to τa, then with

probability
1

Rother
1

τa
+ 1

Rother

, A will arrive at the high CV center

before B completes service and, in this case, the mean resid-
ual life is τa. Similarly, if B has mean service time equal

to τb, then with probability
1

Rother
1

τb
+ 1

Rother

, A will arrive at the

high CV center before B completes service, and in this case
the mean residual service time is τb. Thus,

r = p

�
1

Rother

1
τa

+ 1
Rother

τa +

1
τa

1
τa

+ 1
Rother

r �
+ (1− p)

�
1

Rother

1
τb

+ 1
Rother

τb +

1
τb

1
τb

+ 1
Rother

r � , (5)

which reduces to the interpolation given in equation (4).

3.2 Mean Residual Service Time Accuracy
Table 2 provides results that illustrate the typical accuracy
of each of three AMVA techniques for estimating the mean
residual service time at a FCFS center with high service
time CV: (1) the standard AMVA approximation, (2) the
simple interpolation given in equation 3, and (3) the new
interpolation given in equation 4 (“New Interp.”).

The results in the table are for several parameter sets for the
simple two-center networks with network population equal
to 5 customers. Actual values of the mean residual service
time are derived from numerical solutions of the correspond-
ing Markov chains. For Table 2(a), in which the second
center is a delay center, the new interpolation is exact as es-
tablished in Section 3.1. In Table 2(b), the exact value of the
mean residence time at the other queueing center (Rother),
as obtained from the Markov chain analysis, is used in the
interpolation formulas. Section 4 develops an accurate new
AMVA technique for estimating this mean residence time.

In all cases shown in Table 2, the new interpolation is more
accurate than the simple interpolation defined in Section 2.2,
which is in turn more accurate than the “standard” AMVA

Table 2: Mean Residual Service Time Estimates
(two-center networks, N=5, p=0.99, τ=50)

(a) “Other” Center is a Delay Center

CV 2
τ Sd/τ Std. Simple New Interp./

AMVA Interp. and Actual
10 0.5 275 77.8 56.3
10 2 275 181.2 73.2
10 10 275 252.2 132.1

100 0.5 2525 87.0 108.1
100 2 2525 340.4 267.1
100 10 2525 1249.9 853.7

(b) “Other” Center is a Queueing Center

CV 2
τ Sq/τ Std. Simple New Actual

AMVA Interp. Interp.
10 0.5 275 86.6 63.0 62.0
10 2 275 187.4 124.6 117.8
10 10 275 252.2 215.9 231.0

100 0.5 2525 141.0 260.0 221.0
100 2 2525 440.6 824.0 727.4
100 10 2525 1269.0 1787.7 1777.3

estimate. Notably, the previous standard AMVA estimate
can be extremely inaccurate (e.g., more than 1000% error).
There are also cases where the simple interpolation overes-
timates the mean residual service time by more than 100%.

To further investigate the reliability of the new interpola-
tion, Figure 3 provides relative error contours over a large
region of the parameter space for the two-center networks in
which the second center is a queueing center. To obtain the
contours, the percent error values were computed at a regu-
lar spacing equal to 9 on the x-axis (starting at CV 2 = 1 and
ending at 190), and at a regular spacing of 1 on the y-axis
(starting at 0.5 and ending at 9.5). The contours were com-
puted using gnuplot [30]. Note that the range of CV 2 values
on the x-axis covers the range of processor service time CV
values observed in the architecture model benchmarks (see
Figure 1). Each contour line corresponds to a particular ab-
solute value of percent relative error for the mean residual
service time estimated using the new interpolation. As in
Table 2(b), the exact value of the mean residence time at the
other queueing center is used in the interpolation formula.



Note that the new interpolation yields results within 15%
of the exact values over large regions of the two-queue sys-
tem parameter space. The interpolation is inaccurate only
for quite small N and maximal interference in the rest of
the network (i.e., in unlikely contexts). Should this case be
of interest, however, the accuracy can be greatly improved
through a modification of equation (4) in which Rother is
computed for the network with one fewer customer, rather
than for the full population. (That is, since the mean resid-
ual service time is conditioned on at least one customer be-
ing at the high-CV center, at most N − 1 customers can be
in the remainder of the network.) With this modified ver-
sion of equation (4), accuracy is significantly improved for
small N . In particular, this method gives exact results for
the N = 2 case considered in Figure 3. Moreover, a simple
approximation for Rother with population N −1 is sufficient
to achieve these accuracy improvements. For example, it is
sufficient to compute an estimate of Rother(N − 1) by let-
ting the arrival instant mean queue length with population
N − 1 be approximated by N−2

N−1
N−1

N
Q(N) = N−2

N
Q(N) for

each queueing center in the rest of the network. (In the case
of the two-queue model, there is only one such center.)

Although the new interpolation estimate of mean residual
service time is quite accurate, using this value in equation (2)
can give inaccurate estimates of the mean center residence
time, because the standard AMVA estimates of the mean
queue length at an arrival instant (i.e., (N − 1) R−τ

Rtotal
) and

the probability that an arrival finds the server busy (i.e.,
(N−1) τ

Rtotal
) can be inaccurate for a FCFS center with high

service time CV. This motivates the new AMVA technique
for estimating mean queue residence time developed next.

3.3 The New AMVA-Decomp Technique
A key hypothesis leads us to adapt the decomposition tech-
nique reviewed in Section 2.3, to the AMVA context. That
is, it may be sufficiently accurate to apply the decomposi-
tion only at the level of the individual center at which there
is a high service time CV. Thus, for a FCFS center with a
service time distribution modeled by the two-stage hyper-
exponential distribution defined previously, we estimate the
mean residence time at that center, R, using:

R = pRa + (1− p)Rb, (6)

where

Ra = τa(1 +
N − 1

N
Qa), (7)

Rb = τb(1 +
N − 1

N
Qb), (8)

Qa = N
Ra

Ra + Rother

, (9)

Qb = N
Rb

Rb + Rother

. (10)

In the above equations, Rother is the mean total residence
time spent at the other centers in the network, which is com-
puted iteratively together with R within the usual AMVA
iterative solution framework.

Note that the above approach yields identical results to the
Zahorjan et al. decomposition technique, given that the
two simpler models of the latter technique are solved using
AMVA, if the mean total residence time at the other cen-
ters in the network is identical in each of the two simpler
models. In Section 3.4, we examine the accuracy of this ap-
proximation for two-center networks, including systems for
which this property does not hold.

A principal advantage of this new AMVA technique is that
there is no need to solve 2H separate models to obtain the
solution for a system that includes H FCFS centers with
high service time variability. Only one model is solved, with
the above modified mean residence time equations at each
of the H centers.

As with the decomposition technique, the above technique
is easily extended to FCFS servers with general Coxian ser-
vice time distributions [10, 13]. In this case, the mean res-
idence time at the high-CV FCFS center is expressed as a
weighted sum of conditional mean residence times, with one
term for each path through the stages of service defining the
Coxian distribution, and weight equal to the probability of
following the path. For a given path consisting of multi-
ple (exponential) stages of service, the mean residence time
can be estimated using the standard (and quite accurate)
AMVA approximation for service times with low variabil-
ity. As in the case of the two-stage hyperexponential service
time distribution, the average residence time in the rest of
the system is assumed to be the same regardless of which
path is active. Investigating the accuracy that is achieved
for such service time distributions is beyond the scope of this
paper, but results in [7] indicate that the accuracy is very
similar to the results reported in this paper for the two-stage
hyperexponential distribution.

3.4 Mean Queue Residence Time Accuracy
Table 3 provides typical results for the accuracy of five tech-
niques for estimating the mean residence time at a FCFS
center with high service time variability. Those techniques
are: (1) the standard AMVA technique, (2) use of the sim-
ple interpolation to estimate mean residual service time in
equation 2, (3) use of the new interpolation to estimate mean
residual service time in equation 2, (4) the new technique
proposed in Section 3.3 (“AMVA-decomp”), and (5) the de-
composition approach (“Decomp.”) [31].

The techniques are compared for the same two-queue net-
work parameter sets that were used in Table 2. The exact
values for the mean residence time at the FCFS center with
high CV service times are derived from numerical solutions
of the corresponding Markov chains. For Table 3(b), the
exact value of Rother is used in the calculations for all of the
techniques except for the decomposition approach, in which
this quantity is not used. Rother could instead be computed
using the accurate approximation developed in Section 4.

For the models in which the “other” center is a delay center,
the AMVA-Decomp approximation yields the same results
as the decomposition approach on which it is based, since
Rother is identical in the decomposed submodels. For the
networks in which the second center is a queueing center,



Table 3: Mean Residence Time Estimates for FCFS Queue with High Service Time CV
(two-center networks, N = 5, p=0.99, τ=50)

(a) “Other” Center is a Delay Center

CV 2
τ Sd/τ Std. Simple New AMVA-Decomp. Actual

AMVA Interp. Interp. and Decomp.
10 0.5 355.2 242.2 235.7 230.5 225.1
10 2 310.9 156.3 198.6 180.7 164.8
10 10 167.6 71.8 113.8 105.7 96.1

100 0.5 825.7 249.1 272.2 231.7 226.2
100 2 786.3 234.2 307.7 203.6 199.3
100 10 606.8 157.1 323.8 189.9 177.3

(b) “Other” Center is a Queueing Center

CV 2
τ Sq / τ Std. Simple New AMVA- Decomp. Actual

AMVA Interp. Interp. Decomp.
10 0.5 337.8 238.5 220.5 210.0 213.9 204.5
10 2 182.8 148.6 120.8 109.3 110.6 112.2
10 10 73.8 71.8 68.7 79.6 90.8 73.2

100 0.5 787.9 246.9 306.4 204.2 203.5 206.0
100 2 617.2 226.4 325.4 190.2 193.1 186.2
100 10 251.8 155.5 196.1 173.3 187.9 154.8
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(two-center networks, “other” center is a delay center, p=0.99)
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we might expect the AMVA-Decomp technique to be less
accurate, as we would not expect the average residence time
in the rest of the system (i.e., the mean residence time at the
second queueing center) to be the same in each of the de-
composed submodels. However, for the cases considered in
Table 3, the AMVA-Decomp technique appears to be quite
accurate in spite of this possibility for error.

The accuracy of the AMVA-Decomp approach is evaluated
over a wide range of the parameter space of the two-center
networks in the contour plots of Figures 4 and 5. In Figure 5,
as in Table 3(b), the exact value of the mean residence time
at the other queueing center is used where needed. The key
conclusions from Table 3 and Figures 4 and 5 are:

• The standard AMVA estimate of mean queue residence
time is not very robust.

• The interpolation techniques can also yield inaccurate
estimates of the mean queue residence time, since the
standard AMVA estimates of the mean arrival queue
length and the probability that the server is busy at
an arrival instant are inaccurate.

• For most regions of the system parameter space, the
new AMVA-Decomp technique yields estimates of mean
residence time that have under 10% error, which is
similar to the accuracy provided by the significantly
more costly decomposition approach. Note, however,
that we have not yet established that AMVA can esti-
mate the mean residence times at downstream centers
as accurately as can the decomposition approach; this
question is addressed in Section 4.

The one context in which the accuracy of AMVA-Decomp is
substantially poorer than the decomposition technique is the

case, illustrated in Figure 5, of large N and
Sq

τ
> 2. How-

ever, the accuracy of the estimated mean residence time at
the high-CV center may not be very important in this case,
as the average residence time in the system is dominated
by the queueing delay at the “other” center. Section 4 (in
particular, Figure 8) will show that the overall mean system
residence time is accurately predicted for these cases where
the AMVA-Decomp estimate of mean residence time at the
FCFS queue with high CV is inaccurate.

In some cases, the simple interpolation technique for esti-
mating mean residual service time yields a more accurate
estimate of mean residence time in the queue than the new
interpolation technique. This is consistent with the observa-
tions in [24] that the simple interpolation was useful for the
architecture model. However, since the simple interpolation
is less accurate than the new interpolation in estimating the
mean residual service time, the cases where it leads to higher
accuracy in predicting mean queue residence time are due
to fortuitously compensating errors in the standard approx-
imation of mean arrival queue length and/or the probability
that the server is busy at an arrival instant for the center.
Furthermore, the results for the simple interpolation in Fig-
ure 1 are perhaps more accurate than one would expect from
the results in Table 3(b). This is due to the fact that, in cases
where the simple interpolation overpredicts mean residence
time, the error is partially compensated in the throughput

k k

BI I I I

Figure 6: Model of a Bursty Arrival Process

estimate because, as noted in Section 1, the bursty arrivals
at the downstream queues were not modeled.

The next section considers how to estimate mean residence
time at a downstream queue that is visited by customers
departing from the FCFS center with high service time CV.

4. Downstream Center Residence Time
The AMVA approximations for modelling non-exponential
service times at FCFS queues consider only the impact of the
service time distribution on the local mean queue residence
time. When service times are highly variable, however, there
may be a substantial impact on the “downstream” centers.
In particular, as noted in [6], if the server utilization is at
least moderate, a FCFS center with high service time vari-
ability generates bursty departures, leading to bursty ar-
rivals and increased queueing at downstream centers.

In this section, we develop a new AMVA technique that cap-
tures the impact of bursty arrivals on the mean residence
time at a center downstream from a high-CV FCFS center.
Section 4.1 develops a model of the bursty arrivals, and Sec-
tion 4.2 develops the new AMVA estimate of mean residence
time assuming the proposed model of the bursty arrivals.

4.1 A Model of the Bursty Arrivals
The arrival process at a center downstream from a high-
CV FCFS service center is modeled as consisting of bursts
of customer arrivals, with relatively short interarrival times
during a burst and relatively long gaps between bursts. The
inter-burst gaps, and the interarrival times within a burst,
are modeled with exponential distributions (with different
means). The number of customer arrivals within a burst is
modeled with a geometric distribution.2

Figure 6 illustrates the following three parameters that are
used to characterize the arrival process in this model:
k: the average number of customer arrivals within a burst,
I: the mean interarrival time within a burst, and
B: the mean time between bursts.

The value of I is (heuristically) determined from the ser-
vice time distribution(s) at the center(s) that generates the
arrivals. For example, consider the simple case in which
arrivals are generated by departures from a single FCFS
queueing center with service times modeled by a two-stage

2Fairly straightforward generalizations of the analysis are
possible for other distributions of interarrival times within a
burst (such as deterministic) and other distributions of the
number of arrivals within a burst.



hyperexponential distribution. In this case, I is equal to the
smaller of the mean service times of the two stages.

Let X denote the overall arrival rate, equal to the center
throughput which is iteratively computed during the itera-
tive AMVA solution. If CV 2

a denotes the squared coefficient
of variation of interarrival times (to be derived below), k
and B can be computed from the following two equations:

k

(k − 1)I + B
= X, (11)

k−1
k

2I2 + 1
k
2B2

( (k−1)I+B

k
)2

− 1 = CV 2
a . (12)

To estimate CV 2
a , we employ the method proposed by Sev-

cik et al. [23] for approximating the arrival processes within
a general network of queues. In this method, CV 2

a is approx-
imated by a simple function of the routing probabilities, uti-
lizations, and the coefficients of variation of the interarrival
and service times at the “upstream” centers whose depart-
ing customers may next visit the center of interest. For ex-
ample, consider again the case that a single FCFS queueing
center with high-CV service times generates arrivals to a sin-
gle “downstream” center. Assuming that the arrivals to the
upstream center are not substantially more (or less) bursty
than Poisson, an approximation for CV 2

a at the downstream
center, expressed in terms of the squared coefficient of vari-
ation of service times, CV 2

τ , at the upstream center and the
utilization, U , of the upstream center, is as follows [23]:

CV 2
a = 1 + U2(CV 2

τ − 1). (13)

In a closed network, the length of the queue is bounded
by the size of the customer population. This is the well-
known “limited damage” argument (perhaps first articu-
lated by Buzen, as referenced in [15]) concerning the impact
of highly variable service times in closed networks. Applying
this limited damage argument to the bursty arrival model,
we constrain k so that, for an arrival that occurs during a
burst, the average number of customers that arrived pre-
viously in the burst plus the average number found at the
downstream center by the first arrival in the burst is at
most N − 1. Since the burst size in the arrival model is
geometrically distributed with mean k, on average there are
k − 1 prior customer arrivals within the burst. Letting Qnb

denote the mean queue length during the time intervals be-
tween bursts (to be derived in Section 4.2), and using the
standard AMVA approximation for the arrival instant mean
queue length seen by the first arrival in a burst, we obtain:

k ≤ N −
N − 1

N
Qnb. (14)

If the bound on the value of k is lower than the value of
k determined by equations 11 and 12, k is set equal to the
bound and the value of B is computed from equation (11),
so as to ensure that the basic “arrival rate = throughput”
constraint is satisfied.

4.2 New Mean Residence Time Estimate
The proposed new technique for estimating mean residence
time at a queueing center downstream from a high-CV FCFS
queue employs the model of bursty arrivals described in Sec-
tion 4.1. The analysis below uses the arrival model that has

exponential inter-burst gaps, exponential interarrival times
within a burst, and geometric number of customer arrivals
within a burst, which has parameters k, I, and B.

For simplicity, the mean residence time approximation is
developed for the case of exponentially distributed service
times at the downstream queue, although it can be modified
for other service time distributions. For clarity and without
loss of generality, we also assume that the visit count at the
center of interest (i.e., the downstream queueing center in
this case) is equal to one.

To develop the mean residence time approximation, we make
the assumption that the downstream center never idles dur-
ing a burst of arrivals. We expect that the assumption will
be fairly reasonable in many if not most cases where bursti-
ness in the arrival process has significant impact, due to two
key observations. First, in the cases where burstiness is most
pronounced, I << B. Second, if I << B and k is reason-
ably small (e.g., due to k being constrained by the size of
the network customer population) then if there is substan-
tial queueing at the downstream center, I can be expected
to be significantly smaller than the mean service time at the
downstream center, Sdown. Conversely, if I > Sdown, we can
expect that either there is not much queueing at the down-
stream center or the arrivals are not very bursty. In that
case, R can simply be estimated using equation (1).

Under the assumption that the downstream queueing center
never idles during a burst of arrivals, the residence time of
a customer is equal to the sum of (1) the customer’s own
service time, (2) the service times of those customers found
at the center by the first arrival in the burst (less any service
time already acquired by the customer in service at the lead
arrival instant), and (3) the service times of the prior cus-
tomers within the same burst, minus the time from the start
of the burst until the customer’s arrival.3 Since on average
there are k − 1 prior arrivals within the burst, the average
time from the start of the burst until the customer’s arrival
is (k − 1)I. Thus,

R = Sdown

�
1 +

N − 1

N
Qnb + (k − 1) � − (k − 1)I, (15)

where Qnb is the mean queue length during time intervals
between bursts. Note that this equation only makes sense
if I < Sdown. As noted above, if I > Sdown, R can be
estimated using equation (1).

To obtain an expression for Qnb, we first note that there is a
simple relationship between the overall mean queue length
(Q = RX, as computed during the iterative AMVA solu-
tion), Qnb, and the mean queue length during a burst, Qb.
Since the average duration of a burst is (k − 1)I, and the
average time between bursts is B, we have:

Q = Qnb

B

B + (k − 1)I
+ Qb

(k − 1)I

B + (k − 1)I
. (16)

Furthermore, the assumption that the center never idles in
the midst of a burst of arrivals allows Qb to be written in

3Our description assumes FCFS service, although if service
times are exponentially distributed, any work conserving
scheduling discipline that is oblivious to actual customer
service requirements will give the same mean residence time.



Table 4: Estimates of Mean Residence Time at Queueing Center with Bursty Arrivals
(two-center models with queueing center, N=5, p=0.99, τ=50)

CV 2
τ Sq/τ Std. AMVA- AMVA-Decomp.- Decomp. Actual

AMVA Decomp. Bursty
10 0.5 33.8 40.7 40.7 47.8 53.4
10 2 353.8 416.3 464.6 452.2 431.5
10 10 2441.4 2436.8 2495.0 2449.6 2439.4

100 0.5 28.3 40.4 78.6 104.1 96.4
100 2 176.4 361.3 482.1 483.0 473.2
100 10 2293.4 2362.8 2496.2 2468.8 2450.7

Table 5: Estimates of Mean System Residence Time
(two-center models with queueing center, N=5, p=0.99, τ=50)

CV 2
τ Sq/τ Std. AMVA- AMVA-Decomp.- Decomp. Actual

AMVA Decomp. Bursty
10 0.5 383.5 259.6 259.6 261.7 257.9
10 2 558.1 526.5 572.0 562.8 543.7
10 10 2515.9 2516.3 2574.1 2540.4 2512.7

100 0.5 852.6 262.9 286.5 307.6 302.4
100 2 923.7 553.1 672.3 676.1 659.4
100 10 2558.3 2536.8 2669.2 2656.7 2605.5

terms of Qnb and the parameters of the arrival model, as
follows. Consider a burst that consists of j customer arrivals
(and thus j−1 interarrival periods each of average length I).
The mean queue length during this burst, Qb|j , is given by
the mean number in the queue at the beginning of the burst
(Qnb), plus the time average of the number of customers
that arrive to the queue during the burst, minus the time
average of the number of customers that depart the queue
during the burst. Since the queue is draining at a rate of one
unit of work per unit of time during the entire burst period,
the time average of the number of customers that depart
during the burst is equal to 1

Sdown
times the expected age,

or residual life, of the burst at a random instant. Since the
duration of a burst has a j−1 stage Erlang distribution, the
second moment of the burst duration is (j − 1)jI2. Thus,

Qb|j = Qnb +

� j−1
i=1 iI

(j − 1)I
−

1

Sdown

(j − 1)jI2

2(j − 1)I

= Qnb +
j

2
−

jI

2Sdown

. (17)

The equation for Qb can be obtained by forming a weighted
average with the above expression, where the weight for the
jth term is the fraction of the time occupied by arrival bursts
that consists of bursts of size j, and is given by the proba-

bility of a burst of size j multiplied by (j−1)I
(k−1)I

. For geometri-

cally distributed burst sizes, this yields, after simplification:

Qb = Qnb + k −
kI

Sdown

. (18)

Equations (11), (16), and (18) yield:

Qnb = Q−X
I(k − 1)(Sdown − I)

Sdown

. (19)

4.3 Validation Results
Tables 4 and 5 provide results that illustrate the typical
accuracy of four approaches for capturing the performance
impact of highly variable service times at a FCFS center.

These approaches are: (1) the standard AMVA approxi-
mation at the high-CV FCFS center, with no attempt to
model the bursty arrivals generated downstream, (2) the
approach proposed in Section 3.3 for estimating mean res-
idence time at the high-CV FCFS center with no attempt
to model the bursty arrivals (“AMVA-Decomp”), (3) the
approach proposed in Section 3.3 for mean residence time
at the high-CV FCFS center together with the AMVA tech-
nique proposed in this section for estimating mean residence
time at the downstream queueing center (“AMVA-Decomp-
Bursty”), and (4) the decomposition approach of Zahorjan
et al. (“Decomp.”) [31].

Table 4 provides, for each technique, the estimates of the
mean residence time at the downstream queueing center
with bursty arrivals, while Table 5 provides the estimates
of the mean total system residence time. These tables are
for the same two-center model configurations that were used
in Tables 2(b) and 3(b). As before, exact values of the per-
formance metrics are derived from numerical solution of the
corresponding Markov chains.

The reliability of the AMVA-Decomp-Bursty approach, which
uses the decomposition-based AMVA approximation for es-
timating mean residence time at the high-CV center and the
proposed AMVA technique for modelling bursty arrivals at
the downstream queue, is explored more fully for the two-
center systems in Figures 7 and 8. These figures show con-
tours for the absolute value of the percent relative error in
the mean residence time at the center with bursty arrivals,
and the mean system residence time, respectively.

As shown in Table 4 and Figure 7, the combined use of
the new decomposition-based AMVA technique and the pro-
posed technique for modelling bursty arrivals at the down-
stream center generally yields an accurate estimate of mean
residence time at a queueing center downstream from a high-
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Figure 7: % Relative Error of AMVA-Decomp-Bursty: Bursty Arrival Center Mean Residence Time

(two-center models with queueing center, p=0.99)
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(two-center models with queueing center, p=0.99)

CV FCFS center. The only cases in which relative errors are
large are when Sq/τ is small (and thus I is close to or larger
than Sq). In such cases, the mean residence time at the
downstream center is only a small contributor to the overall
mean system residence time.

The results in Table 5 and Figure 8 show that, for the cases
considered, the combined use of the new AMVA-Decomp
technique and the new technique for modeling bursty ar-
rivals yields mean system residence time estimates that are
within 10% of the exact values over much of the two-queue
model parameter space. Thus, these methods together have
accuracy similar to the more costly decomposition approach.

5. Conclusions
This paper has examined AMVA approximations for FCFS
queues with non-exponential service times. Prior case stud-
ies that we are aware of in which the previous standard
AMVA technique has been applied successfully to such queues,
have been only for the case of low service time variability.
As also observed in [6], the results in this paper have shown
that the standard AMVA approximation cannot be recom-
mended for high service time CV.

To model FCFS centers with high service time variability,
this paper proposes new AMVA approximations that cap-

ture both the impact of high service time variability on
local queueing delays and the impact of such variability
on queueing delays at downstream queueing centers. The
new approximations are simpler to apply than the previ-
ously proposed AMVA-compatible decomposition technique
in [31], particularly if the model includes multiple FCFS
queues with high service time variability, or if decomposi-
tion is needed for other non-separable system features.

The new techniques have been evaluated using two-center
queueing networks that represent a wide range of contexts
in which the techniques might be applied. The results in this
paper as well as in [7] show that the new AMVA-Decomp
technique, together with the proposed model and analysis of
bursty arrivals at the downstream queueing centers, can be
expected to be quite accurate in practice for these contexts.
In particular, the estimates of mean system residence time
have less than 15% error over the entire parameter space
considered in this paper, and less than 10% error over most
of that parameter space. The results in this paper show that
the new techniques greatly increase the range of applicability
of AMVA as compared with the previous standard AMVA
approximation for FCFS centers with high service time CV.

Future research includes: (1) developing and evaluating the
accuracy of the new AMVA techniques for multi-class mod-
els, (2) further evaluating the AMVA-Decomp technique for



FCFS centers with other Coxian service time distributions
that have high coefficients of variation, (3) extending the
model of the bursty arrivals at the downstream center for
more complex distributions at the upstream high-CV FCFS
center and for the case that arrivals occur from multiple
upstream queues or to multiple downstream queues.
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