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Abstract fine-grain distrilbted shared memory system [25] running
on the Wsconsin Cluster Of \&fkstation (C(W).l The
This paper describes a new approach to finding performance other ley aspect of our technique is to use tlaeadyn Rr-
bottlenecks in shared-memory parallel programs and its allel Performancedols [22] to present shared-memory per-
embodiment in the Paradyn Parallel Performance Tools running formance data in a data-centric manmérich relates\ents
with the Blizzard fine-grain distributed shared memory system. gn cache blocks to program data structures.

This approach exploits the underlying system’s cache coherence Shared memory programs communicate through refer-

protocol to detect data sharing patterns that indicate potential .
performance bottlenecks and presents performance measurement8"c€S to shared data. The underlying system (feaedw

in a data-centric manner. As a demonstration, Paradyn helped usSOftware, or both) responds to a memory reference by com-
improve the performance of a new shared-memory application Municating, to obtain a cgpof data (which is typically

program by a factor of four. cached for subsequent references) and to maintain the glo-
bal state necessary to implement a coherent programming
1 Intr oduction model. At a load or store, the actual communication

depends on the memory systenprotocols and the pro-

Distributed Shared Memory (DSM) alliates some of the  grams dynamic state in ays that can be di€ult to under-
difficulty of programing a parallel computer by hiding the stand or predict [9].
details of communication. The abstraction of a shared Nevertheless, detecting this hidden communication is
address space, while a@mient, can also hide serious com- essential to isolate and eliminate mamared-memory per-
munication bottlenecks that cripple a prograngerfor- formance bottlenecks.oF example, a cache blog'migra-
mance. © efectively use shared memgrprogrammers  tory behaior may indicate dlse sharing, which a
need performance tools capable of piercing this abstractiomprogrammer can eliminate by aligning and padding data
and relating a program’behsior to the underlying hard-  structures. Moreger, recent research has focused ow ne
wares actions. tools, such as custom protocols arteasible memory sys-
This paper describes améechnique for collecting and ~ tems, that dér programmersafr greater controlver shared
displaying shared-memory performance information. The memory systems [3, 28].0F example, a programmer can
first key aspect of this approach is to detect cache blockgreatly reduce the cost of producensumer sharing by
sharing patterns that indicate potential performance bottle-increasing the cache block size or using @alidate, rather
necks. Our current system detects these patternwaplt ~ than update, protocol [7]. Agn, understanding a progresn’
using a modified cache coherence protocol for the Blizzardaccess pattern is the necessary first step to inmgrats
shared-memory performance.

The first step in memory profiling is to detect access
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structures and use ommtional profiling techniques to con- 2 Paradyn Basics

nect accesses with the statements tketge them. \& call

this processhaed-memory performancegdiling. Memory This section briefly describe the basic characteristics of the

profiling by itself cannot find all performance problems, so Paradyn performance tools. Readeamiliar with Raradyn

we kuilt memory profiling into the morexgensie facilities can skip this section.afadyn is a parallel performance

of the Riradyn performance tool. measurement tool that currently runs orABE, Alpha,
Although this vork exploits Blizzards custom proto- ~ Power2, A-RISC, and x86 platforms [22] dPadyn is based

cols, other systems can alsoyid® mechanisms to associ- ©On dynamic instrumentation, a technology that veslo

ate shared memory communication with data.yAn instrumentation code to be inserted, changed, andvesino

hardware shared-memory platform can support a ﬁne_grainfrom a running application. Beside standard performance

DSM system, lik Blizzard [25] or Shasta [24], thatgoses ~ Metrics such as CPU usage and blocking tiraeadyn can

a coherence protocol for performance wiging. Since the instrument other system, hardwe, or netwrk actvity visi-

underlying shared-memory harelre praides st commu-  Ple from an application prograsaddress space.

nication, a DSM system of this sorbuld incur only mod- Paradyn preides two basic abstractionsnetric and

erate ®erheads. Alternately, a platform may pndde focus A metric is a time-arying function that measures

hardware features, such as informing memory operationssome aspect of an applicatisrperformance, forxample,

that trap on cache misses [12], which can be used to assoclePU utilization or number of procedure calls. A focus is a

ate a prograns’memory references with a coherence proto- component of a running applicatiorarBdyn vievs a pro-

col's actions. gram as a collection of resource hierarchies that represent
This paper illustrates the use of memory profiling Various element_s of a program, such as cpde_ (modules, pro-
through an etended case study of tuning awnshared- cedures), machines (hosts), or synchronization (messages,

memory protein folding code [13] from researchers in the semaphores, locks). A collection of nodes in the resource
University of Wsconsin Chemical Engineering Depart- hierarcly forms a focus. dol users requestaPadyn to col-
ment. Wth the help of memory profiling andafadyn, we lect metrics for the foci in which tlgeare interested, and
improved this applicatiors performance by more thanac§ Pe}rad)_/n (_jynamically instruments the program according to
tor of 4 to an diciency of 80% on 16 nodes. this criteria.

The paper is @anized as follas. Sectior? briefly Figurel shavs Raradyns display of tw resource hier-
reviews the features of dPadyn. Sectio describes our ~ archies. The “Code” hierargtappears on the left and con-
approach to shared-memory profiling and our implementa-tains modules in the program. Under each module is the
tion techniques. Sectioh contains a case study that illus- Procedures in the moduleoFmemory profiling, we defined
trates hev Paradyn and shared memory profiling help & N@v resource hierargh(*Memory”) that lists a progrars’
identify and eliminate performance problems. Secfiatis- major data structures. Under each data structure is a list of
cusses automating the search for performance bottleneckghe cache blocks (identified by their memory addresses).
Section6 describes relatedosk.

whereAxis
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Figure 1: Resource Hierarchies in Raradyn.
“Code” and “Memory” hierarchies visible



3 Shared-Memory Performance Profiling

The first step to alléate a performance bottleneck is to
detect it. In shared memory systems, ynaerformance
problems arise fromxeessie communication due to the
interaction of a program’data accesses and the system’
fixed cache coherence pglidor example, when a cache
block contains &lues used separately byavprocessors,
false sharing can cause a memory access to produce four
more messages.alse sharing, li& maly shared-memory
bottlenecks, is often di€ult to detect staticallybut is
readily apparent at run time.

This section describes our technique for shared-mem-

ory performance profiling.

3.1 Rattern Detection

t Onner is the same as the requestor or the number of shar-
ers is not one.

A producefrconsumer access occurs when a block is
written by one processor and subsequently read by one or
more other processors, and this process repeats. The home
node sees thevents: W'(R|W)"(R)")" where i# j. As
with migratory blocks, at a write miss to a block in the read-
grhared state, the augmented protocol compares the requestor
against the blocls | ast Oaner . If identical, the block is
likely used in a produceonsumer relationship. More accu-
rate information can be obtained by checking the bsock’
sharer list aginst the requestor

A group access occurs when a reference to a cache
block is alays folloved by references to a collection of
other blocks. LeAA be an abbrgation for [W|R]. With this
pattern, a home node repeatedly seemts of the form:

An olvious place to detect patterns in shared-memoryAiXAjX.... To detect this pattern, the augmented protocol

communication is from within the coherence protocol that

tracks, in a ariablel ast Accessed, the block that a pro-

satisfies memory references. Most coherence protocols ar@egsor |ast accessed. Each block records thtes fields:
expressed as a state machinevelni by operations on a groupl d, guess, and access! nG oup, which the

cache block. Some recent systems, including our Blizzard

platform and commercial systems such as Seamient

algorithm in Figure? uses to detect group accesses.

NUMA-Q system [20], implement these state machines in
software, which opens the possibility of introducingwye
states and actions to recognize access patterns indicéti
performance problems. These states and actions should n
change the bek@r of the coherence protocol. Instead ythe
provide an eficient mechanism for recognizing patterns in
transitions of a state machine.

Our pattern detection mechanism currently detects pro
ducer consumemigratory grouped, and read-only access

ot

K

If (currentBl ock. guess | ast Accessed)

current Bl ock.
current Bl ock.
| ast Accessed.
} else {

current Bl ock. guess | ast Accessed;

current Bl ock. groupl d = address(currentBl ock);

curent Bl ock. accessl nGroup = fal se;

groupld = | ast Accessed. groupl d;
accessl nGoup = true;
accesslnGoup = true;

| ast Accessed = current Bl ock;

patterns. LetR represent a memory read/ represent a

Figure 2: Algorithm to Detect Group Sharing

write, subscripts distinguish cache blocks, and superscripts

distinguish processors. A bloskhiomenode is the proces-
sor on which the block is originally allocated. This machine
performs protocol actions for the block in rgagtirectory-
based coherence protocols. The bleckineris the proces-
sor that currently has write access.

A migratory access pattern occurs when a block is

accessed by dérent processors, in turnofFa gven inter-
val, only one processor accesses the block, so sharing

sequential, not concurrent. A coherence protocol seesMent

migratory accesses as a sequencevehts of the form:
(WH(R'W)" (R)(W/)(RI|W)" where i# j. To detect migra-
tory sharing, our augmented protocol records a bdolest

owner at its home node. When a read or write request from

another processor ares, the augmented protocol updates
the Dblocks | ast Omer field. When the home node

3.1.1 Implementation Altematives

Augmenting a coherence protocol to collect additional
information incurs a cost in both space and time (see
Section3.2.2). It is unrealistic toxpect a parallel computer
to use an augmented protocol as itsadifor for architects
to huild such a protocol in hardwe. fortunately mary
itecent distribted shared memory (DSM) systems imple-
cache coherence protocols in  safesv
[1,7,16,17,18,20,23,24], whichfefs adantages eer hard-
ware, not the least of which is the ability to support more
than one coherence protocol. Saite protocols also enable
tools, such asdadyn, to instrument and measure a proto-
col.

A less radical alternaté is informing memory opera-

receies a upgrade request (a write to a read-only block) andtions, which either set a condition code or trap on a cache
the number of sharers is one, the protocol compares théniss [12]. These, or similaoperations can be used to detect

requestor aginst thel ast Oaner . If they differ, then the
block appears to be migrating frohast Oanner to the

protocol transitions in hardave-based shared memory sys-
tems. The performance instrumentation could maintain a

requestarand the augmented protocol records that the blockshadov directory that tracks which processorsé@opies

is migratory The protocol clears this property lifas-

of each cache block. At a cache miss in the shared address
space, the information in this directoryfieds to determine



which actions a coherence protocawd perform.
Another alternatie, for systems with no harawe sup-

port, is to performance tune programs using a fine-grain dis-

data-centric vies for both gisting and ne performance

metrics.

The nev performance metrics include frequgnand

tributed system, similar to Blizzard [23] or Shasta [24]. time for mary coherenceents, messages, and synchroni-

Although this softare layer is redundant for hardwe

shared-memory systems, ikp®ses the coherence protocol
to a performance tool. Moreer, hardware shared mem-

ory’s low lateny ensures that the softme werheads of the
DSM system will be moderate.

Performance counters ixisting systems, forxample
Suns UltraSRRC [27], record hey mary cache misses

occur in an interal. Howvever, these counters cannot fully

support memory performance profiling, asytipeovide no
information about which cache blocks incurred misses.

3.2 Memory Profiling

Memory profiling associates coherenceastiwith a pro-

grams data structures and code. It forms the necessar

bridge between lg-level coherence adfities, which oper-
ate on cache blocks, and a programmero thinks at a
higher level of abstraction. Memory profilingxtended
Paradyn in tvo ways. First, we added mamevy memory-

and cache-specific performance metrics. Second, we add

zation @ents. Figure lists the n& memory performance

metrics. Since Blizzard’ cache coherence protocols run in

an applicatiors address spaceafdyn collects these met-
rics with its usual instrumentation techniques.
Performance profiling typically associates a metric with
a control structure in a progranoiexample, a tool reports
CPU time or messages for a module, procedure, loop, or

statement. The complementatgta-centric vier associates

metrics with data structures and oftenyides nev insights

into a prograns interaction with the memory system. Data-
centric presentations Y& been used for distribed arrays

in data-parallel languages [14,15] and in cache tools for
sequential programs [8,19]. The datansehat we added to

Paradyn combine fine-grained profiling (do to individual
Ycache blocks), scalability (lge data structures and dar

programs), and l@ overhead. ® present this data, we
added a ng Paradyn resource hierargfior shared memory
(see Figurdl). Shared-memory resources currently fit in a

eg/\/o—level hierarcly consisting of data structures and cache

Metric Name Description Metric Name Description
targetBarrier Count of application-kel barrier ops targetBarrier\Véll Time at application-barriers
actveMessages Count of actre messages actveMessage\ll | Time for actve messages

bulkDataTransfers

Count of hulk data transfers

bulkDataTransfer-
Wall

Time for hulk data transfers

pagefults

Count of pagedults

pagefRultWall

Time for pagedult handling

memoryBlockTme

Wall time spent on all coherence misses

stacheReadMisses|

Count of read misses on non-home nodes

stacheReadMissal

Time for non-home read miss handling

homeReadMisses | Count of read misses on home node homeReadMiss\ll | Time for home read miss handling

stacheWrite® Count of write misses on read-only blocks, non-hgretacheWrite®RWall | Time for write misses on read-only blocks, non-ho
nodes nodes

homeWrite RO Count of write misses on read-only block, home nptdemeWriteROWall | Time for write misses on read-only blocks, home

node

stacheWriteln

Count of write misses onvalid blocks, non-home
nodes

stacheWritelawWall

Time for write misses onwalid blocks, non-home
nodes

homeWriteliv Count of write misses onvalid blocks, home node | homeWritelwWall | Time for write misses onwalid blocks, home node
invRO Count of irvalidations on read-only blocks invROWall Time for invalidations on read-only blocks

invRW Count of irvalidations on writable blocks invRWWall Time for invalidations on writable blocks

Polls Count of poll operations SentMsgs Count of messages sent

SelfMsgs Count of messages sent to self Acks Count of acknwledges

MsgBytes Count of message bytes RecvMsgs Count of messages reced

BufMsgs Count of messagesifiered PollMsgs Count of poll messages

Figure 3: Blizzard/Paradyn Memory Performance Metrics.
New performance metrics for Blizzhrade coheence potocols.



blocks. 3.2.2 Memory Piofiling Overhead

A second challenge is to control the instrumentation
overhead. Instrumentation in a protocol handler must dis-

Paradyn creates counters or timers to collect perfor- criminate between a monitored and unmonitored block,
mance metrics for a cache block or data structure and usewhich becomes xpensve as the number of monitored
dynamic instrumentation to insert code to update a countemlocks increases. &/optimized the instrumentation code,
or timer Paradyn$ data collectiondcility periodically reads  with a technique called &ctorization”, in which Bradyn
values from these counters or timers and ships them to theallocates a &ctor of counter/timers for all monitored cache
Paradyn front end. &t example, to measure the time to han- blocks and indees into the gctor (instead of allocating sin-
dle coherence missesamdyn inserts code that starts a gle counters or timers and testing for indual cache
timer when a dult occurs and stops the timer when the blocks). \éctorization reduced the instrumentatimerhead
application resumes.oTrecord performance statistics for a from a cost linearly proportional to the number of moni-
cache block, &adyn allocates a counter or timer for the tored cache blocks to a constant cost. Téxetorization test
block, and inserts code into the coherence protocol tohas approximately the same cost as instrumenting three

3.2.1 Implementation

update the counter or timer aufts on the block. @ moni- cache blocks with the simpler approach. Further details are
tor a contiguous data structurer®dyn updates the struc- reported elsghere [11].

ture’s counter when aatilt falls inside the structure’ Figures4 and 5 report theverhead of prof|||ng cache
boundary blocks and data structures. The measurements are &em v

A major challenge in memory profiling is handling the sion 3a of the protein folding application (see Sedfipn
large number of cache blocks in shared-memory applica-Figures4 and 5 she that, with \ectorization, the instru-
tions. These blocks form a muchdar focus than the other mentation werhead of 2% is independent of the number of
ones that Bradyn typically handles. 8\reduced thever- profiled cache blocks. Data collectiomeohead is linearly
head of shipping shared memory information to theaéyn proportional to the number of counters and timers. The data

front end by compressing shared-memory information andcollection awerhead is about 9% for 240 counters/timers
batching seeral messages together

Counter-based Metrics Timer-based Metrics
Number of No
cache blocks | instrumentation Instrumentation With data Instrumentation With data
only collection only collection
10 129.3 131.5 (2%) 134.3 (4%, 2%) 132.4 (2%) 134.6 (4%, 2%)
20 129.3 132.1 (2%) 137.4 (6%, 4%) 132.2 (2%) 137.6 (6%, 4%)
40 129.3 132.2 (2%) 142.5 (10%, 8%) 132.1 (2%) 144.0 (11%, 9%)

Figure 4: Overhead of Piofiling Cache Blocks with \éctorization.
6 countes or times (i.e, 6 performance metrics) per daxblo&. The stalce blok size is 128 and the applicatioarron 8
processos. Times ae in seconds. Numtgem paentheses & pecent incease ger “No Instrumentation” case

Counter-based Metrics Timer-based Metrics
Number of No
cache blocks | Instrumentation | Instrumentation With data Instrumentation With data
only collection only collection
100 blocks 129.3 131.6 (2%) 132.6 (3%) 131.7 (2%) 132.6 (3%)
200 blocks 129.3 131.4 (2%) 132.6 (3%) 131.6 (2%) 133.0 (3%)
400 blocks 129.3 131.5 (2%) 132.8 (3%) 132.3 (2%) 133.0 (3%)

Figure 5: Overhead of Pofiling cache blocks with Aggegation.
6 countes or times (i.e, 6 performance metrics) per data struetufhe stabe blod size is 128 and the applicatiorogram
ran on 8 pocessos. imes ae in seconds. Numi®mn paentheses & pecent incease oer “No Instrumentatioii.
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Figure 6: A Sequential Rerformance Bottleneck (ersion 1).
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Figure 7: Blocking Time due to Coheence Misses (grsion 1).

(40><6).2 Profiling an entire data structure & fess gpen-
sive than profiling its blocks separatels instrumentation
overhead is independent of the size of a data structure anéh Fortran 77 and ran on a SGlwar Challenge. &fsion O
data collection cost is proportional to number of counters oralternated sequential code with parallel loogsacr oss
timers. Profiling a data structure with 6 metrics incurs an with directives). W cowerted frtran to C withf 2c, mod-
ified it for the shared-memory programming model on the

overhead of approximately 3%.

4 A Case Study

To illustrate hav memory profiling can help identify and 4.1 A Sequential Rrformance Bottleneck
eliminate performance bottlenecks in a shared-memory
application, we tuned a weparallel application with the aid
of Paradyn. The application ag written in the Chemical
Engineering Department at the Meisity of Wsconsin. It

uses a weighted-ensemble ®roan (WEB) dynamics algo-

2. More recent grsions of Bradyn use a medata collection tech-

rithm [13] to simulate protein association reaction (folding).
The first \ersion (ersion 0) of the applicationasg written

Wisconsin CQV (Cluster Of Wrkstation), and started our
performance tuning érsion 1).

The first performance problem that we encounterasl w
that the serial portions of the application consumed a signif-
icant fraction of its total»ecution time. Much of this time
was spent handling coherence misses. Fi§gleavs Fara-

dyn’s display of thexecution times of a fe important rou-

tines and the time spent handling coherence misses in each
function. The left bar chart in Figueshavs node 0,which

nique based on shared memory that further reduces data col- executes the sequential code. The right bar chawslece-
lection costs.
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cution and coherence miss times on another node. Thecache blocks of xncor hase a migratory access pattern
behaior of nodes other than node 0 are similar to the right and cache blocks gfart have both migratory and pro-

bar chart.

From Figureg, it is clear that when the serial part runs
on node 0 (bottom bars labeladn_), the other nodes sit
idle. This serial code consumes about 40% of the tatal e

cution time on 8 nodes, af4 of this time is due to coher-
ence misses (the lighter bar slsocoherence miss time).
Another obseration from this figure is that coherence
misses in the parallel phase (functions other tram ) are
not as costly

ducerconsumer patterns.

4.2 Restructure the Folding Application

Examining the code shad that in the parallel phase of
the application, each processorved a portion of the parti-
cles. Then, the serial code sorted particles by their reaction
coordinates and split or combine them to simulate a reac-
tion. Although a custom protocol could transfer data more
efficiently, we chose to restructure the application to elimi-

To find which data structures incurred these coherencenate this serial bottleneck. The performance data guided this
misses, we associated coherence miss times with the majolesign decision. After eliminating the coherence misses, the
shared data structures in the application.The program usesorting, splitting and combining phasewld still consume

three major shared data structuresncor tracks the reac-
tion coordinates of all particlepart stores the orientation
and position of the particles, amgéi ght stores the parti-
cles’ weights. The bar charts in Figuteshav coherence

15% of the total xecution time (8 nodes), whichowld
severely limit the prograns speedup.

The modified code partitions particles according to
their reaction coordinate and parallelize the serial phase, so

miss times for the major data structures on node 0 andeach processor sorts, splits, and combines its particles. This

another node. The data structure labebd >r xncor is

change introduced an auxiliary data structurgpl that

the data structure that stores the reaction coordinates. Theacks which processomms a particle. The program after

data structure labelg@t >wei ght stores the weight of all
particles, and the bars labeled w@kt >part _0_ to Gwv
>part _7_ are fragments of the particle data structure.

Figure7 shavs that references to the particle data struc-

restructuring is calledersion 2.

Parallelizing the serial phase eliminated the sequential
bottleneck and made computation and communication on
different nodes symmetric. Although the change imgado

ture causes the most coherence misses. In addition, node Performance by aattor of 2, the program’'speedup as

misses on most partxaept for the fragment labele@vt
>part_0_, and nodé (1<i<7) misses on the fragment
labeledGW >part i . Together these dcts suggest that
the fragmentGw >part i _ bounces back and forth
between node 0 and nodeProfiling cache blocks belong-
ing tor xncor revealed the same phenomena. Furtivér e
dence came from the pattern detection, whictwslothat

still unsatiséctory (5.9 on 16 nodes). Memory profiling
shaved that considerable timeaw still spent handling
coherence misses anaiting at the barriers introduced for
the nev synchronization. Figur® shavs that for 8 nodes,
40% of the total time as spent handling coherence misses
(memoryBlockingTme) and about 20% of the time at bar-
riers (tagetBarrierVill). To find the cause of the high mem-
ory blocking time, we >amined the program’ access
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Figure 9: False Sharing in The Rrticle Data Structure (version 2).
In pattern visualization, the blue (dagt boxes in bld&white) shows the migtory access pattern, gen (medium @y in
b&w) shows poducer/consumer access, and yellow (ligleydn b&w) shows an unknown pattern. The kbmarled with
an “X” ar e a blo& selected by a user and the s@ccessed in the samegp as the selected blkacThe ta&t in the right
corner shows information about the selected kloc

patterns to see hothe data structures were referenced. version scales moderately up to 4\@®odes, bt its efi-
Figure9 contains a visualization of the prograndccess cieng/ dropped drastically after that. The restructured pro-
pattern, which shes that the cache blocks part _0_ gram initially performed wrse on a small number of @D
have a mostly migratory access pattern. nodes, because of thete work to track which particle

As mentioned earliera migratory access pattern can belong to which node. The program scaled better without
indicate fise sharing. Examination of the code confirmed the sequential bottleneckutothe filse sharing still limited
that this data structureas not cache-block alignedoT the overall speedup. Aligning and padding the shared data
eliminate flse sharing, we aligned and padded particles tostructure impreed performance consideraplyt made the
ensure that each particle fell inside a single cache bloek. W load imbalance into the limiting bottleneck. A simple static
call this \ersion 3a. This alignment and padding drastically load balancing scheme immexl performance slightly
reduced memory blocking time and imped performance  Although coherence as no longer a serious performance
by a factor of 2. Figurd0 shavs the time spent at barriers  bottleneck, we tried adding prefetching(sion 3c), which

and coherence misses after alignment and padding. did not significantly improe performance.
To see whether performance optimizations can carry
4.3 Load Imbalance over to diferent platforms, we also portedrgion 3a of the

application back to SGI Rer Challenge using the shared-
memory programming model. Theweersion outperforms
the old Frtran \ersion by 43% (see Figul®). More
detailed &periments shwed that the performanceig is
mainly attritutable to eliminating the serial bottleneckdP
ding and aligning only contrilie up to 3% performance
improvement. Since the SGI ®Rer Challenge is an SMP
with a much éster netwrk, it is less sensité to flse shar-
ﬁ1g. The speedup curs in Figurel2 shev that the best
speedup on C® is slightly better than the speedup on the
SGI Paver Challenge. This result is encouraging. It indi-
cates that with the help of proper performance measurement
tools and performance tuning, a distiteed shared-memory
Figurel2 summarizes our performance tuning. It machine can perform as well as a haatevshared-memory
shavs speedups of the tBfent \ersions, including the orig-  machine.
inal Fortran \ersion on SGI Reer Challenge. The initial

Figure10 shaevs that coherence misses are no longer a per-
formance bottleneck. Keever, 20% of the prograre’time

is still spent at barriers. The figure alsowhkdhat barrier
time is not genly dvided among nodes, which suggests a
load imbalance. As arxperiment, we statically partitioned
the particles, according to their processdrarrier vaiting
times (wersion 3b). Figurdl shoevs that static load balanc-
ing reduced barrier and coherence miss time. Since particle
move randomlya dynamical load balancing scheme is nec-
essary in general.

4.4 Summary
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Figure 10: Barrier Time Shavs Load Imbalance (ersion 3a)
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Figure 11: Barrier and Memory Blocking Time after Static Load Balance (ersion 3b)

Other people ha also used the Blizzardersion of when custom protocols are not necessary to iagperfor-
Paradyn to find shared-memory performance bottlenecks.mance.
Brian Toonen used the tool to search for aatidate perfor-
mance bottlenecks in the DSM system itself [28]. Satish5 Automated Seach for Bottlenecks
Chandra used the tool to monitor the performance of the
custom protocols he wrote for his HPF compiler for Bliz- Automating the search for bottlenecks can enpérfor-
zard [3]. Trishul Chilimbi used the tool to tune the perfor- mance tuning less di€ult. Paradyns Performance Consult-
mance of a database storage management system. ant searches for performance bottlenecks femint foci by
testing prevritten hypotheses. A ypothesis specifies a
potential performance bottleneck in terms of performance

4.5 Discussion
The memorv performance tool successful found the metrics. It is usually a simple function of performance met-
yp rics and thresholds. of example, the ¥pothesis

performance bottlenecks in this application. Memory profil- . .
ing helped isolate the shared data structure that incurred thé:P UBound says there is a performance bottleneck if the

) : . ratio of the tvo performance metricepu_time and
most coherence missesattern detection helped@icate . )
. : i ! wal | _time exceeds an adjustable threshold. Hypotheses
the algorithms$ sharing pattern and isolate tlaésé sharing. . ; .
o . are oganized into a tree-structured hierarciihe Perfor-
However, memory profiling by itself wuld not hae found ; . -
mance Consultant guides the search with heuristics that
all problems. Bradyns other performance measurement !
. . ; attempt to reduce searctveshead and find bottlenecks
facilities helped find the sequential bottlenecks, load imbal-

. o quickly
ance, and»xessve barrier time. T ¢ te th h f hared f
Custom protocols ¢ér a paverful, but time-consuming o aufoma’e e searcn or snaret-memary perior

. . . ° . mance bottlenecks, we addedwndiypotheses for the
option for impraing program performance. One unantici- : ! ; .
. AV . o shared-memory metrics and igtated them into thexest-
pated benefit of memory profiling is that it can indicate
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Figure 12: Performance Tuning Result
ing hierarcly. Figurel3 shavs the ne hypothesis hierar-  BlockingTime” bottleneck, which the Performance

chy, rooted at “Memory”. Memory bottlenecks areided
into read miss and write miss. Write is further suloldid

Consultant further refined to indiilual data structuresaits
of four particle data structure&GNt >part_0_ to GVt

into misses due to writes to read-only blocks and misses duerpart 4 ) caused enough memory blocking time to be

to writes to iwvalid blocks. All typotheses then sulvitle
into misses at home and non-home nodes.

(cpubound) ( ™emory ) (10 (Synchronization)

Stache ) (CwriteRO ) ((Writelnv_)

( Home ) ( Stac\”ne ) ((Home ) (" Stache )

Figure 13: Performance Bottleneck Hypothesis Hierachy,
with Memory Hiear chy Expanded

As a demonstration, we applied the Performance Con-

identified as causes. Note also thad twodules {enunt
ber.c and fol d4. c) were identified as bottlenecks,
which prosided both data and code-centricwgeof the per-
formance problem.

To male automated search morefeetive, we are
extending the Performance Consultant to enaknore con-
figurable, so that we can specify search grdad search
heuristics according to the programming model used.

6 Related Work

In addition to the systems cited pi@usly, several profiling
tools address shared memory programs.

StormWatch [4] is tool that visualizes coherence proto-
col actions and links it to a prograyehaior. Storm\Watch
provides three linkd, graphic vigis: trace, communication,
and source, which reflect the multiplevdés of abstraction
in an applicatiors behaior. There are tew major difer-
ences between ouromk and Storm\&tch. First, Storm

sultant to ersion 2 of the program. The search results are Watch is a postmortem tool that analyzes traces. Our mech-

shavn in Figurel4. The blue (dark grayn black&white)

anisms use dynamic instrumentation, which is less costly

nodes are problems that the Performance Consultant sucd"d more scalable. Second, Storatth praides a more

cessfully identified. The first is an “Excessilemory-

detailed, protocol-specific wie of a prograns eecution,
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Figure 14: Results of Running the Brformance Consultant (\ersion 2)

The blue (dar&r boxes in bladc&white) shows the bottlenkex that wee identified by thed?formance Consultant.
“ExcessiveMemoryBldangTime” is an overall bottlene&, and was furtherefined to individual data structes
(G >part_0_,GwW>part_1 ,GMk>part_2 ,Gw >part_3_andGvt >part _4 ) and modulesr(enunber. c
andf ol d4. c). The yellow (light gy in b&w) nodes show false seamodes

while Paradyn is a general purpose performance tool. formance profiling. This approach consists of detecting
Martonosi et al obseed that monitoring memory per- ~ sharing patterns and data-centric presentation of the mem-
formance in a multiprocessor is similar to enforcing cache ory performance data.aRern detection reports memory
coherence [21]. Thehave also noticed the importance of access patterns that indicate the possibility xdfessve
catagyorizing miss counts according to the code and datacommunication. Our pattern detection is implemented as an
structures that incurred the misses. Thairkvfocused on  augmented coherence protocol, so it incurs little additional
exploiting unused issue slots in protocol processors to mon-overhead. Although our current implementation is Blizzard-
itor performance. \& dynamically instrument the protocol —specific, the approach of detecting sharing pattern by
code. In addition, their monitoring mechanisms only col- observing coherenceents is applicable to marsystems.
lected memory statistics, such as cache misses and laten- Memory profiling uses a data-centric wief perfor-
cies, and did not detect patterns. mance to help a programmer find and understand the perfor-
Others hee etended cache-coherence protocols to mance problems with shared-memory accessesiganize
detect and optimize migratory Sharing baba Cox et al a Ialge wlume of information, we present the shared-mem-
evaluated adapte protocols for bs-based and directory- Ory resources in a twvlevel hierarcly: data structure and
based systems [5] Stenstrom et al presented an \mjapu cache blocks belong to a data structure. The data structure
protocol to tak adwantage of migratory behmr of a  View helps relate performance problems to higrelepro-
shared-memory application [26]. Our pattern detection gramming language constructs. The cache bloak tielps
senes a diferent role—to detect particular access patterns, isolate specific problems, such adsé sharing. Moreer,
but not optimize their communication—which neskour  integration of memory profiling with &adyn$ eisting
imp|ementation Simp|er and Chea_rMoreo/er, our mecha- control-oriented vier prwides a Complete we of a shared-

nisms detect patterns other than migratory tiema memory prograns performance. This approach is feasible
because &adyns dynamic instrumentation reduces the
7 Conclusion overhead of monitoring by installing instrumentation only

when and where it is necessary
This paper describes amapproach to shared-memory per- As a test case, we applied these mechanisms to identify



and eliminate performance problems in a shared-memory{11]
application. Vith Paradyn, we impreed the applicatios’
performance by more than actor of four The case study
demonstrates o these mechanisms can help identify [12]
shared-memory performance problems. In addition, the
example also shes that, with the help of proper perfor-
mance measurement tool to optimize communication, a dis-
tributed shared-memory machine can be as scalable as g3l
hardware shared-memory system.
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