Relaxed Consistency and Coherence Granularity in DSM Systems: A

Performance Evaluation

Yuanyuan Zhou, Liviu Iftode,
Jaswinder Pal Singh and Kai Li

Computer Science Department
Princeton University

Princeton, NJ 08544
{yzhou,liv,jps,li}@cs.princeton.edu

Abstract

During the past few years, two main approaches have
been taken to improve the performance of software shared
memory implementations: relaxing consistency models and
providing fine-grained access control. Their performance
tradeoffs, however, are not well understood. This paper
studies these tradeoffs on a platform that provides access
control in hardware but runs coherence protocols in soft-
ware. We compare the performance of three protocols across
four coherence granularities, using 12 applications on a 16-
node cluster of workstations. Our results show that no single
combination of protocol and granularity performs best for all
the applications. The combination of a sequentially consis-
tent (SC) protocol and fine granularity works well with 7 of
the 12 applications. The combination of a multiple-writer,
home-based lazy release consistency (HLRC) protocol and
page granularity works well with 8 out of the 12 applications.
For applications that suffer performance losses in moving
to coarser granularity under sequential comnsistency, the
performance can usually be regained quite effectively using
relaxed protocols, particularly HLRC. We also find that
the HLRC protocol performs substantially better than a
single-writer lazy release consistent (SW-LRC) protocol at
coarse granularity for many irregular applications. For our
applications and platform, when we use the original versions
of the applications ported directly from hardware-coherent
shared memory, we find that the SC protocol with 256-byte
granularity performs best on average. However, when the
best versions of the applications are compared, the balance
shifts in favor of HLRC at page granularity.

1 Introduction

There are two important issues in providing a coherent
shared address space abstraction on a network of computers,
consistency models and coherence granularity. Consistency
models define how applications use the shared address space,
whereas the degree of the relaxation of a consistency proto-
col and the granularity of coherence determine the efficiency
of an implementation. This paper evaluates the performance
tradeoffs of the combinations of three consistency models
with four sizes of coherence granularity for software shared
memory implementations on a real hardware platform.
The original shared virtual memory (SVM) proposal

Brian R. Toonen, Ioannis Schoinas,
Mark D. Hill, and David A. Wood

Computer Sciences Department
University of Wisconsin, Madison

Madison, WI 53705

{toonen,schoinas,markhill,david } @cs.wisc.edu

and prototype [20] uses the traditional virtual memory
access protection mechanisms to detect access misses and
implements a sequential consistency model [17]. The main
advantage of the approach is that it implements shared
memory entirely in software on a network of commodity
workstations [19] to run applications developed for hardware
shared-memory multiprocessors. A disadvantage is that it
restricts the coherence granularity to be a virtual memory
page size. For systems with large page sizes, false sharing
and fragmentation will occur in applications with multiple
writer, fine-grained access patterns.

During the past few years, two main approaches have
been taken to address this problem: relaxing consistency
models and providing access control at a fine granularity.
Relaxed consistency models introduce additional program-
mer restrictions in exchange for (hopefully) better perfor-
mance. Examples of relaxed consistency models include
release consistency [10], entry consistency [2], scope consis-
tency [13]. Lazy release consistency(LRC) [15] is a software
implementation of release consistency which delays the co-
herence action until the acquire time. Most software shared
systems today use LRC-based protocols [14] [11] [30] [16].
These consistency models employ sophisticated protocols to
reduce false sharing and fragmentation.

An alternative approach is to preserve the simplicity of
sequential consistency, but find some approach to reduce the
coherence granularity. Examples of providing fine-grained
access control include taking advantage architectural fea-
tures such as the ECC bits to trap access faults [27], using
software instrumentation for shared reads and writes [27,
26], and building special access control hardware for com-
modity workstations [23]. The finer the granularity, the
less false sharing and fragmentation occur, and hence the
less need to use relaxed models. A disadvantage of fine-
grain coherence is that the smaller granularity may result in
excessive misses and poor remote bandwidth.

To date, the performance tradeoffs between relaxed
consistency models and coherence granularities have not
been well studied. This paper attempts to understand these
tradeoffs by conducting experiments on a real system. Our
study focuses on coherent shared memory systems with a
fixed coherence granularity ; i.e. we do not permit changing
the granularity within an execution. The system uses
specialized hardware support for access control, and is in
this sense not quite a commodity-based software-coherent
system; for example, no software instrumentation is needed

for fine-grain access control. However, it allows us to
use a uniform mechanism for access control, and runs the
coherence protocols in software. We focus on the following
two questions:

e What is the best combination of granularity and con-
sistency protocol for different classes of applications,
and how much difference does it make?

e For applications that suffer performance losses in
moving to coarser granularities under sequential con-
sistency, can the performance be regained using so-
phisticated consistency protocols?

We conducted our experiments on a 16 dual-processor
Sun SPARCstation 20s interconnected by Myrinet and
augmented with fine-grained access control hardware that
supports multiple sizes of coherence granularity. We studied
the combinations of three consistency protocols (sequential
consistency (SC) [17], single-writer lazy release consistency
(SW-LRC) [16] and home-based lazy release consistency
(HLRC) [30]) with four sizes of coherence granularity. We
also studied two mechanisms (polling and interrupt) to
handle message arrivals for each case. Our experiments used
eight real benchmarks developed for hardware shared mem-
ory systems and their variations(so total 12 applications).
Our applications cover most of the interesting combinations
of shared data access patterns and different synchronization
methods.

Our results show that no single combination of protocol
and granularity performs best for all the applications. The
combination of a sequentially consistent (SC) protocol and
fine granularity works well with 7 of the 12 applications. The
combination of a multiple-writer, home-based lazy release
consistency (HLRC) protocol and page granularity works
well with 8 out of the 12 applications. For applications that
suffer performance losses in moving to coarser granularity
under sequential consistency, the performance can usually
be regained quite effectively using relaxed protocols, partic-
ularly HLRC, except when the frequency of synchronization
is high. We also find that the HLRC protocol performs
substantially better than a single-writer lazy release con-
sistent (SW-LRC) protocol at coarse granularity for many
irregular applications. For our applications and platform,
when we use the original versions of the applications ported
directly from hardware-coherent shared memory, we find
that the SC protocol with 256-byte granularity performs
best on average. However, when the best versions of the
applications are compared, the balance shifts in favor of
HLRC at page granularity.

2 Consistency Protocols

We studied three consistency protocols including sequen-
tial consistency (SC), single-writer lazy release consistency
(SW-LRC), and multiple-writer, home-based lazy release
consistency (HRLC). The main rationale of using these
three models is twofold. First, the sequential consistency
model is supported in many hardware shared memory
multiprocessors. Second, the two relaxed consistency models
are the latest proposed models that perform well for page-
size coherence granularity.

All protocols examined in the paper support coherence
granularity at block level (64, 256, 1,024, 4,096 bytes) and
they all use virtual memory mapping mechanisms to allow

data from a shared virtual address space to be transparently
cached at a local physical address. Specifically, when a node
touches a page for the first time a page fault is generated,
which causes the page to be mmap-ed to local memory.
Depending on how coherence in managed, additional actions
may be necessary to initialize the page.

Each block has a home. Initially, blocks are assigned
home nodes statically. After the beginning of an appli-
cation’s parallel phase, page homes migrate to the first
node that “touches” them (sometimes called first touch).
A “touch” is a load or a store for SC and store for HLRC.
Regular application LU has “touch arrays” that explicitly
touch data structures to manage data layout. When
subsequent nodes touch an already-touched page, they go
to the original home, find out about the new home, and
thereafter remember the new home. Specifically, a page’s
home node ID is found in the distributed table and cached
in a local table.

2.1 SC Protocol

The sequential consistency model allows each coherence unit
to have either a single writer or one or more readers; readers
and writers never co-exist at the same time. This model is
generally considered the simplest for programmers, because,
informally, a read always returns the result of the most
recent write.

Our sequential consistency implementation is based on
the Stache protocol [24] and is similar to many directory-
based hardware implementations [18]. On a miss, a request
message is sent to the designated home node. If invalidations
are required, the home node collects the acknowledgments
before forwarding the data to the requesting node. When
an invalidation arrives at a node, the message is processed
immediately (modulo the polling/interrupt issue); read-only
copies are invalidated and read-write copies are written-back
to the home node and invalidated.

2.2 SW-LRC Protocol

The single-writer lazy release consistency (SW-LRC) model
allows a single-writer to co-exist with multiple readers and
delays the propagations of updates to shared memory to the
executions of acquire operations [16]. This model is more
relaxed than the sequential comnsistency, but less relaxed
than the multiple-writer lazy release consistency protocols.
Our SW-LRC protocol uses the same timestamp-based
coherence control as proposed for Lazy Release Consis-
tency [15] but it allows only a single writable copy to
co-exist with multiple read-only copies. In this protocol,
a write fault causes ownership to migrate but, unlike a
sequential consistency protocol, read-only copies are not
invalidated. Instead, SW-LRC blocks are invalidated at
the acquire execution following the coherence information
(write notices) sent with the lock. Shared blocks are
version-ed each time the ownership changes. By including
the versions in the write-notices and storing them away, the
SW-LRC protocol can service a read fault in an one-hop
roundtrip and can also avoid unnecessary invalidations.

2.3 HLRC Protocol

The Home-based Lazy Release Consistency (HLRC) pro-
tocol implements the well-known lazy release consistency

model but has several performance and implementation
advantages [30]. Both HLRC and traditional LRC protocols
use the same multiple-writer solution based on using “twin”
and “diff” but with different update schemes. Each writer
is allowed to write into its copy once a clean version of
the block (twin) has been created. Changes are detected
by comparing the current (dirty) copy with the clean copy
(twin) and recorded in a structure called a diff. Updates
from one copy are transferred into another copy by diff-ing
the first copy, sending the diff and applying it on the second
copy.

The traditional LRC implementation uses a distributed
diff scheme where diffs are merged on demand in a dis-
tributed fashion [14]. To bring a copy up-to-date, diffs
must be applied in the proper causal order determined using
vector timestamps [15].

The HLRC multiple-writer scheme differs from LRC by
having the diffs sent and applied eagerly a designated home
of the block. With such a scheme the home’s copy of the
block is kept up-to-date and its whole content will be fetched
on demand to update the other copies. Our implementation
extends earlier work [30] by supporting various coherence
granularities.

3 Testbed

This section describes the platform used for these exper-
iments. The testbed consists of 16 dual-processor Sun
SPARCStation 20s'. Each contains two 66 MHz Ross
HyperSPARC processors [25]; however, our study only uses
one processor on each node. Each processor has a 256 KB
L2 cache and each node contains 64 MB of main memory.
The cache-coherent 50 MHz MBus connects the processors
and memory. I/O devices reside on the 25 MHz SBus, which
connects to the MBus via a bridge. All nodes run Solaris
2.4.

Each node contains a Mpyrinet network interface [3],
which consists of a 7-MIPS custom processor (LANai) and
128KB of memory. The LANai performs limited protocol
processing and schedules DMA transfers between the net-
work and LANai memory or LANai memory and SPARC
memory. The 16 nodes used in this paper are connected
with three Myrinet 8-port crossbar switches. Two ports of
each switch are used to connect to other switches.

Each node also contains a Typhoon-0 card that logically
performs fine-grain access control checks on all loads and
stores by physically snooping memory bus transactions and
exploiting inclusion [22]. When the Typhoon-0 hardware
detects an access control violation, it generates an exception
to the shared-memory run-time system via a special fast-
exception method supported by the device driver (approxi-
mately 5 us). All protocol processing occurs on the faulting
processor. The Typhoon-0 card does not directly support
messaging, but does accelerate polling for messages on the
Myrinet by providing a cachable location that indicates
whether a message has arrived.

With Myrinet hardware, the host (SPARC) processor
and Myrinet LANai processor cooperate to send and receive
data. Our communication library is based on the LANai
Control Program (LCP) used in Berkeley’s LAM library [6].
The host processor uses loads and stores to move small
messages and headers for large messages to and from LANai

L Note to reviewers: We actually have 40 machines and hope to
have 32-node runs for the final version.

memory. The LANai processor uses DMA to directly move
larger messages through intermediate kernel/user buffers.
This organization lowers the latency of small messages and
increases the throughput and the latency for large messages.

Message latency depends upon whether polling or inter-
rupts are used to detect message reception. With polling,
the LANai communicates with the Typhoon-0 board via
a dedicated signal, which sets a cacheable memory loca-
tion. Applications are instrumented via executable editing
to check this message reception flag on all control flow
backedges. With interrupts, the LANai’s hardware interrupt
is translated by Solaris into a UNIX signal, which takes
about 70 ps. Interrupts are disabled when the application
goes into the Blizzard system, meaning that only messages
that arrive asynchronously while user code is executing will
pay the interrupt penalty. In general, polling results in lower
latency because signals are so expensive. However, polling
introduces needlessly overhead when no message is present.

A microbenchmark shows 4-, 64-, 256-, 1K- and 4K-
byte messages see round-trip times of 40, 61, 100, 256 and
876 usecs. Large messages achieve bandwidths of about 17
MB/sec, with is close to the values obtained by others [7, 21].

4 Applications

To evaluate the performance of the three protocols with
different sizes of coherence units, we used 8 benchmarks
from SPLASH-2, including LU decomposition, Ocean, FFT,
Water-Nsquared, Volrend, Water-Spatial, Raytrace, and
Barnes. We have two versions for Ocean, two versions for
Volrend and three versions for Barnes. Because different
versions have different characterstic and thus perform dif-
ferently, we consider them as different applications. So, we
have total number of 12 applications.

Table 1 shows the problem sizes for 8 benchmarks and
their sequential execution times.

Sequential
Benchmarks Problem Size Execution

Time (secs)
LU 1024 x 1024 73.41
FFT 1MB 27.257
Ocean 514 x 514 37.43
Water-Nsquared | 4096 molecules, 3 steps 575.283

Volrend 1282 head-scaleddown? 4.493

Water-Spatial 4096 molecules, 5 steps 898.454
Raytrace balls4 343.76
Barnes 16384 particles 33.787

Table 1: Benchmarks, problem sizes, and sequential execu-
tion times.

LU performs the blocked LU factorization of a dense
matrix. In this paper, we used a version which allocates each
block contiguously in virtual memory and assigns contiguous
blocks to each processor.

Ocean-Original and Ocean-Rowwise simulates eddy
currents in an ocean basin. The former is the “contiguous”
version in SPLASH-2 in which the data in each subgrid are
allocated contiguously in virtual memory using a 4-d array.
The latter is the modified version of the noncontiguous

implementation from SPLASH-2 to partition the grid row-
wise.

FFT is a high-performance FFT kernel. Matrices are
distributed so that every processor is assigned a contiguous
set of n/p rows, and the source and destination matrices are

reversed for every transpose. In this version of FFT, each

processor in a transpose reads an % by % submatrix from

every other processor and writes it to its local partition of
set of rows.

Water-Nsquared simulates a system of water
molecules in liquid state, using an O(n?) brute force method
with a cutoff radius. The water molecules are allocated
contiguously in an array of m molecules, and partitioned
among processors into contiguous pieces of n/p molecules
each. The challenging phase for SVM happens when each
processor updates its own n/p molecules and the following
(n/2 —n/p) molecules of other processors in the array, using
per-partition locks for mutual exclusion.

Volrend-Original and Volrend-Rowwise render
three-dimensional volume data into an image using a ray
casting method. The two differ only in partition of tasks. In
Volrend-Original, each task is a 4 by 4 block, while Volrend-
Rowwise partitions task by rows.

Water-Spatial solves the same problem as Water-
Nsquared, but with different data structures and different
algorithms. The 3-d physical space is broken up into
cells, and every processor is assigned a contiguous cubical
partition of cells together with the linked lists of molecules
in them.

Raytrace renders complex scenes in computer graphics
using an optimized ray tracing method. The accesses to the
scene data, into which rays are shot in this program, are
read only. The interesting communication occurs in task
stealing using distributed task queues.

Barnes-Original, Barnes-Partree and Barnes-
Spatial are irregular applications which simulate the inter-
actions among a system of particles over a number of time
steps, using the Barnes-Hut hierarchical N-body method.
Barnes-Original is the “rebuild” version in SPLASH-2 which
builds the tree from scratch after each computation phase.
Barnes-Partree uses a new tree-building algorithm that each
processor first constructs a partial tree and then everything
is merged into a single global tree. Barnes-Spatial partitions
the global tree spatially and assigns the spaces, instead of
particles, to each processor.

5 Performance

We ran the twelve applications with the combinations of
three protocols (SC, SW-LRC, HLRC), four block sizes (64,
128, 1,024 and 4,096 bytes) and two mechanisms to handle
message arrivals (polling and interrupt). We first present the
overall application performance results and then analyze the
performance difference in detail.

5.1 Overall Performance

Figure 1 shows the speedup of each application for all combi-
nations of the three protocols and four block sizes. Since the
relative performance across protocols and granularities using
an interrupt mechanism is similar to that using a polling
mechanism, we only present the speedups with polling,
which generally performs better. We will discuss the impact
of using interrupts in Section 5.4.

In our experiments, 7 applications(LU, Ocean-Rowwise,
Water-Nsquared, Volrend-Rowwise, Volrend-Original,
Water-Spatial and Raytrace) achieve good performance with
at least some protocol and granularity. Ocean-Original,
FFT and Barnes-Partree perform poorly for all protocols
and granularities, Barnes-Spatial has at best reasonable per-
formance, and for Barnes-Original the SC protocol performs
reasonably at fine grain but the LRC protocols perform
poorly.

At 64-byte granularity SC generally performs better than
the LRC protocols except for Volrend-Rowwise and Volrend-
Original. SC outperforms the LRC protocols by 5% to a
factor of two for 10 applications. This indicates that the
extra overhead of the relaxed protocols is not justified by the
lower levels of false sharing at fine granularities. SW-LRC
performs 50% to 2 times better than the HLRC protocol
at 64-byte granularity for 3 applications(Ocean-Original,
Barnes-Partree and Barnes-Original) because SW-LRC has
less protocol overhead.

For applications that suffer performance losses in moving
to coarser granularity under sequential consistency, the
results in Figure 1 show that performance can usually
be regained quite effectively using relaxed protocols, par-
ticularly HLRC. The original Barnes application is the
only major counter-example, due to its high frequency of
synchronization and hence expensive protocol activity.

Finally, let us compare the protocols at the page (4096-
byte) granularity, since that is the granularity of shared vir-
tual memory systems. For 7 applications (Ocean-Original,
Volrend-Rowwise, Volrend-Original, Water-Spatial, Ray-
trace, Barnes-Spatial and Barnes-Partree), both SW-LRC
and HLRC protocols outperform the SC protocol dramati-
cally with 4,096-byte block size, as we might expect. The
HLRC protocol improves the SC protocol performance by
more than a factor of two to four, whereas the SW-LRC
protocol improves by about 40-150%. For the same 7
applications with 4,096-byte block size, the multiple-writer
HLRC protocol performs 30% to 4 times better than the
SW-LRC protocol, showing that multiple writer protocols
are indeed very valuable for irregular applications under
SVM. (All these performance differences would be larger on
real SVM systems, where the overheads of access violations,
i.e. page faults, are higher.)

5.2 Detailed Analysis

To understand the reasons for the performance differences,
it is useful to classify the applications according to their data
access patterns and synchronization behavior [29, 1, 12]. In
this section, we will first describe application classifications
according to the number of writers per coherence unit, spa-
tial data access granularity and temporal synchronization
granularity. We will then provide a detailed analysis for
each category of applications.

5.2.1

We classify the applications according to several criteria:

Classification

e Single writer vs. Multiple writer Based on the
number of concurrent writers on the same coherence
unit we can divide the applications into single writer
and multiple writer applications. Write-write false
sharing occurs only for multiple writer applications.

15 15 15+
10 10
J] —x>— SC
1 1 --9-- SW-LRC
1 1 - +—-HLRC
5 5
)]
1 1 - E
-
0 | T T 1 0 T T 1 0 T T 1 0 T T 1
64 256 1024 4096 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096
Coherence granularity Coherence granularity = Coherence granularity ~ Coherence granularity
(a) LU (b) Ocean-Rowwise (c) Ocean-Original (d) FFT
15 15 15 15
: - ——% :]
S 108~ 10 10 10
S | ,.__——¢-—_, —— SC
2] T --#-- SW-LRC
joR 1 3 - —-
0] +—-HLRC
5 5 5 5
0 T T 1 07 T T 1 07 T T 7 07 T T]
64 256 1024 4096 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096
Coherence granularity Coherence granularity = Coherence granularity ~ Coherence granularity
(e) Water-Nsquared (f) Volrend-Rowwise (g9) Volrend-Original (h) Water-Spatial
15 15+ 15 15
5 10 10 10 10
S] —%— SC
3 . --@-- SW-LRC
Q. 1 - —-
&] - HLRC
5 5 5 5
0 I T T 1 0 T T 1 0 I T T 1 0 I T T 1
64 256 1024 4096 64 256 1024 4096 64 256 1024 4096 64 256 1024 4096

Coherence granularity
(j) Barnes-Spatial

Coherence granularity
(i) Raytrace

Coherence granularity
(I) Barnes-Original

Coherence granularity
(k) Barnes-Partree

Figure 1: Speedups on T0 with 16 nodes. [Some numbers are missing because in those cases performance is dramatically
affected by the disk swapping and becomes irrelevant for this study.]

e Coarse-grain vs. Fine-grain data access Data
access granularity affects how the communication to
computation ratio changes with the coherence gran-
ularity [12]. Applications with coarse-grain access
tend to access a whole contiguous page at a time.
Fine-grain applications are likely to scatter reads
and writes across multiple pages. Fine-grain reads
can introduce fragmentation with coarse coherence
granularity and/or false sharing.

e Coarse-grain vs. Fine-grain synchronization

The frequency of synchronization events is an im-
portant performance factor for release consistency
protocols because all coherence events happen at syn-
chronization. The frequency of synchronization can be
reflected by the average computation time between two
consecutive synchronization events. An application
has fine-grain synchronization in a platform if the
average computation time between two consecutive

synchronization events is comparable to the cost for
each synchronization event in that platform. For
example, in our experiments, the minimum time in
handling a synchronization event is around 150 mi-
croseconds, so if an application’s average computation
time between two consecutive synchronization events
is less than several milliseconds, the application is
classified as having fine-grain synchronization.

Table 2 summarizes the classification of sharing patterns

and synchronization granularity in the applications.

5.2.2 Analysis in Categories

Now we analyze the application performance for each com-
bination of false sharing pattern, access granularity, and
synchronization style.

Single-writer with coarse-grain access

Fault | Protocol Coherence Granularity
64 256 | 1024 | 4096

Read SC 24654 | 6297 | 1574 393

Fault | SW-LRC | 24655 | 6297 | 1574 393

HLRC 24655 | 6297 | 1574 | 393

Write SC 0 0 0 0
Fault | SW-LRC 0 0 0 0
HLRC 0 0 0 0

Table 3: LU

Fault | Protocol Coherence Granularity

64 | 256 | 1024 | 4096

Read SC 21803 | 6060 | 2593 | 3901
Fault | SW-LRC 5128 | 1668 | 781
HLRC 5176 | 1653 | 759

Write SC 4237 | 1232 | 392 | 187
Fault | SW-LRC 1342 | 388 | 194
HLRC 1269 | 368 | 176

Table 4: Ocean-Rowwise

LU is a typical application in this category, with good
spatial locality and only one writer for each shared page. It
is expected that all the protocols performs better at coarse
granularity because of the effect of prefetching. The speedup
curves and the frequency numbers validate the expectation.

Table 3 shows that the number of read misses decreases
by about 4 times when the access granularity increases by a
factor of 4 for all three protocols. No write fault occurs in all
protocols because there is only one writer for each page. For
the same reason, the HLRC protocol does not perform any
diff operation. Furthermore, in LU, a page is never read
by any nodes before it is written, so no invalidations are
performed by the SC or LRC protocols.

Ocean-Rowwise also falls in this category. Although it
is a single writer application with coarse grain access, but
the problem size of 514 x 514 does not allow rows to be
well aligned to pages, so fragmentation and false sharing
exist at the boundary between two neighboring processors at

page granularity. As shown in Table 4, write faults do occur
and the number if write faults decreases as the granularity
increases. Due to the fragmentation, the speedup drops at
4,096-byte granularity for all protocols. The HLRC protocol
performs 50% better than the SW-LRC protocol, and 3
times better than the SC protocol because it greatly reduces
the effects of the false sharing at the boundary.

Single-writer with fine-grain access

Fault | Protocol Coherence Granularity

64 256 | 1024 | 4096

Read SC 31714 | 28254 | 26707 | 11173
Fault | SW-LRC 27310 | 25557 | 8886
HLRC 27309 | 25608 | 8780

Write SC 1074 360 181 94
Fault | SW-LRC 354 194 98
HLRC 87 43 23

Table 5: Ocean-Original

Fault | Protocol Coherence Granularity
64 256 | 1024 | 4096
Read SC 92160 | 27360 | 11160 | 7110
Fault | SW-LRC 27360 | 11160 | 7110
HLRC 27360 | 11160 | 7110
Write SC 0 0 0 0
Fault | SW-LRC 0 0 0
HLRC 0 0 0

Table 6: FFT

Ocean-Original and FFT are example applications in
this class. In Ocean-Original, writes are local but reads
of border elements are remote. Reading elements at the
column borders are fine grained. A contiguous allocation
of partitions using four-dimensional arrays eliminates false-
sharing ensuring a single writer for all pages which belong
to the same block. Thus, there is little false sharing
but significant fragmentation in the induced patterns. In
FFT, the write access granularity is coarse while the read
access granularity is fine-grained for this problem size [12]
(a processor reads subrows of size 192 bytes from other
processors).

All the protocols performs poorly. The best speedup
is 2.7 for Ocean-Original and 1.9 for FFT. The main
reason for this poor performance is the fragmentation
due to the mismatch between the access granularity and
communication granularity, which is more pronounced at a
coarse granularity. For example, for Ocean-Original, with
4,096-byte block size, to read an 8-byte element in a column-
oriented border, we need to fetch the full page containing
that element. Therefore, with 4,096-byte block size, the
unnecessary data traffic introduced by fragmentation is
more than 99% of the total data traffic. With 64-byte block
size, the fragmentation is still more than 88%.

For the SC protocol, fine granularity can improve the
performance of the protocols by reducing the extra data
traffic caused by fragmentation. So, for Ocean-Original,
SC at 64-byte performs better than at coarse granularities.

Concurrent Spatial | Computation| Number| Temporal .
o . ; Performance Effect of Increasing
Applications | Writer per| Access | Time / Synch of Synch. .
. - . . Level Coherence Granularit)
Block | Grnularity| (millisecs) | Barriers| Granularity
LU single coarse 71.69 64| coarse |all good all improve
Ocean-Rowwise | single coarse 9.88] 323| coarse |all good declines at 4K
- .) SC declines;
Ocean-Original single fine 5.85 328| coarse |all poor LRCs improve
FFT single fine 170.36 10| coarse |all poor inproves slightly
WaterNsquared | multiple coarse 59.93 12 fine all good all improve slightly
LRCs qood SC declines at 1K
Volrend-Rowwise multiple fine 17.55 16| coarse go SWLLRC declines at 1H
SC medium . ;
HLRC improves;
HLRC good SC declines at 1K
Volrend-Original | multiple fine 17.55 16| coarse |SWLRC medium| SW-LRC declines at 1H
SC poor HLRC improves;
SC declines;
WaterSpatial multiple fine 1439.83 18| coarse |all good SWALRC declines at 4K
HLRC stays constant
SC declines;
Raytrace multiple fine 100.87 1| coarse |all good SWLRC declines;
HLRC improves
SC poor SC declines at 1K
Barnes-Spatial multiple fine 157.83 12| coarse |SWALRC poor SWLRC declines at 4H
HLRC medium |HLRC improves
SC: 73.91 SC declines;
Barnes-Partree multiple fine DS 13| coarse |all poor SWALRC declines;
LRCs: 1.52
HLRC stays constant
Barnes-Original multiple fine SC: 1.0€ 8 fine SC medium; SC declines;
9 P LRCs: 0.12 LRCs poor LRCs constant

Table 2: Classification and performance of sharing patterns and synchronization granularity in the applications.(Performance
Level: good means speedups > 8, medium means speedups > 5, and poor means speedups < 5).

However, for FFT, fine granularity multiples the number of
read misses due to lack of prefetching (see Table 6). Conse-
quently, the overall performance for FFT decreases. For the
SW-LRC and HLRC protocols, fine granularities increase
the protocol overhead, so overall performance decreases for
both Ocean-Original and FFT.

Multiple-writer with coarse-grain access

Fault | Protocol Coherence Granularity
64 256 | 1024 | 4096
Read SC 20487 | 14164 | 7821 | 1976
Fault | SW-LRC | 22059 | 13631 | 7074 | 1782
HLRC | 20489 | 12605 | 6553 | 1676
Write SC 8200 5130 | 2701 687
Fault | SW-LRC | 8791 | 5583 | 2670 | 852
HLRC 8840 5521 | 2699 779

Table 7: Water-Nsquared

‘Water-Nsquared is an application with multiple writers
per molecule. Its access pattern is migratory in the
main phase of communication—updating the forces on the
molecules. Since each process updates successively a large
number of contiguous molecules, the migratory pattern at

molecule level is preserved at page level which leads to a
coarse-grain access pattern and large prefetching effects.

Table 7 shows that with 4,096-byte block size, the LRC
protocols has fewer read misses than the SC protocol. This
is due to the relaxed consistency. But the overhead of
expensive protocol operations offsets that gain.

Multiple-writer with fine-grain access and
coarse-grain synchronization

Fault | Protocol | Coherence Granularity
64 | 256 | 1024 | 4096

Read SC 786 | 310 | 391 | 502
Fault | SW-LRC | 805 | 311 91 24
HLRC | 800 | 309 89 24

Write SC 45 | 18 16 6
Fault | SW-LRC | 50 | 34 31 21
HLRC 33| 24 26 16

Table 8: Volrend-Rowwise

Many irregular applications fall into this category. Of
12 applications, 5 are in this category: Volrend-Rowwise,
Volrend-Original, Water-Spatial, Raytrace and Barnes-
Spatial.

Fault | Protocol Coherence Granularity
64 | 256 | 1024 | 4096
Read SC 1430 | 812 895 | 2425
Fault | SW-LRC | 1294 | 529 143 43
HLRC 1286 | 530 142 43
Write SC 345 | 388 505 496
Fault | SW-LRC | 385 | 467 | 635 | 575
HLRC 134 | 105 40 23

Table 9: Volrend-Original

Fault | Protocol Coherence Granularity

64 256 | 1024 | 4096
Read SC 34340 | 51871 | 42086 | 39307
Fault | SW-LRC | 34243 | 20277 | 11485 4447

HLRC | 34238 | 20157 | 11350 | 4321

Write SC 1221 | 7041 | 4652 | 14288
Fault | SW-LRC | 1189 | 2349 | 1686 | 35832
HLRC 19 332 325 436

Table 10: Water-Spatial

All these applications exhibit both write-write and read-
write false sharing at a coarse granularity of coherence.
Their synchronization is coarse-grained because their aver-
age computation time between consecutive synchronization
events is more than 17 milliseconds, 2 orders of magnitude
more than the minimum time required to handle a syn-
chronization event in our testbed. In Water-Spatial, the
space cells containing the molecules are partitioned among
processors, and a processor reads molecule data from its
neighboring partitions. As the computation evolves, the
molecules move from one cell to another, so the molecules in
a processor’s partition may fall on different pages, leading to
a fine-grain access pattern. To a greater extent, in Barnes-
Spatial, each processor accesses tree cells and particles that
fall on different pages. Raytrace uses distributed task
queues, and it updates pixels in the image plane as part
of each task; both these access patterns are fine-grained
and cause a lot of false sharing. Volrend-Rowwise and
Volrend-Original are very similar to Raytrace in how they
access task queues and the image plane. Volrend-Original
has more false sharing than Volrend-Rowwise owing to the
mismatch between the row-major memory allocation and
the decomposition into small square tiles in the former.

These 5 applications illustrate the situations in which
relaxed consistency protocols are needed to overcome the
false sharing problem of large coherence granularities, since
they perform much better than sequential consistency at
coarse granularities. The HLRC protocol with 4,096-
byte block size performs the best among all protocols and
granularities, because the relaxed consistency model and the
multiple-writer support reduce false sharing and the large
communication granularity achieves some useful prefetch-
ing. Other than in Volrend-Original, Volrend-Rowwise and
Barnes-Spatial, the SC protocol with 64-byte block size
performs close to the best because the fine granularity
nearly eliminates false sharing. Let us see why it doesn’t
perform comparably with HLRC at 4,096-byte granularity
in these three cases. In Volrend-Original, the problem for

Fault | Protocol Coherence Granularity

64 256 | 1024 | 4096
Read SC 26027 | 12960 | 6700 | 6531
Fault | SW-LRC | 25456 | 11409 | 3566 | 1182

HLRC | 25400 | 11384 | 3603 | 1206

Write SC 1802 | 2607 | 4171 | 6490
Fault | SW-LRC | 1701 | 2558 | 4246 | 7313
HLRC 146 240 | 414 | 403

Table 11: Raytrace

Fault | Protocol Coherence Granularity

64 256 | 1024 | 4096
Read SC 20098 | 14706 | 14160 | 17399
Fault | SW-LRC | 14346 | 7200 | 2567 751
HLRC | 14377 | 7259 | 2579 760
Write SC 5705 | 5329 | 5248 | 5449
Fault | SW-LRC | 6536 | 6557 | 6673 | 6445

HLRC 4959 | 4162 | 1729 507

Table 12: Barnes-Spatial

SC is that write-write false sharing on the image is not
eliminated even at 64-byte granularity, since the task size is
made quite small (4 x 4 pixels) to achieve load balance (See
Table 9). In Volrend-Rowwise and Barnes-Spatial, false
sharing is not very significant at 64-byte granularity, but
the loss of prefetching benefits makes the small granularity
disadvantageous. Compared to the HLRC protocol with
4,096-byte granularity, the number of read misses for SC
at 64-byte granularity is 24 times greater for Barnes-Spatial
(Table 12), and 30 times greater for Volrend-Rowwise(Table
8).

Consider the different protocols at large granularities.
SW-LRC performs better than SC because it alleviates
read-write false sharing by delaying the invalidations. For
example, the number of read misses in Water-Spatial under
SW-LRC is only about 1/10 of that under SC (Table 10).
Since HLRC is a multiple-writer protocol, it alleviates write-
write false sharing as well. For example, it reduces the
number of write misses from the SW-LRC and SC protocols
by factors of 10 to 30 at coarse granularities (see Tables 8, 9,
10, 11, 12). As a result, it performs from 30% to 4 times
better than the SW-LRC protocol with a 4,096-byte block
size. As the block size decreases, the difference in number of
write misses between both LRC protocols becomes smaller,
so SW-LRC performance gets closer to HLRC performance.

Finally, at fine granularities such as 64 bytes, the high
protocol overhead offsets any advantages of the relaxed
software protocols. Since the relaxed protocols have more
overhead, their performance is worse than the SC’s performs
by about 7 to 10%.

Multiple-writer with fine-grain access and
fine-grain synchronization
Barnes-Original is an irregular application whose read-

write accesses cause false sharing and fragmentation for
almost all block sizes, especially in the tree-building phase

Fault | Protocol Coherence Granularity

64 256 1024 4096
Read SC 6932 | 9856 | 11642 | 14629
Fault | SW-LRC | 5280 | 5586 4451 3377
HLRC 5184 | 5767 4388 3396
Write SC 1652 | 5223 5595 5645
Fault | SW-LRC | 2685 | 5484 | 5715 | 5853
HLRC 2880 | 5277 4707 3853

Table 13: Barnes-Original

Fault | Protocol Coherence Granularity

64 256 | 1024 | 4096
Read SC 14152 | 13391 | 13036 | 16206
Fault | SW-LRC | 9498 | 7088 | 4566 | 1908
HLRC 9773 | 8239 | 4690 | 1890
Write SC 4487 | 6267 | 5780 | 5757
Fault | SW-LRC | 5087 | 6947 | 6241 | 6189

HLRC 5048 | 4472 | 3237 | 1701

Table 14: Barnes-Partree

that distinguishes it from Barnes-Spatial. In addition to the
frequent locking of tree nodes in building the shared tree, the
SW-LRC and HLRC protocols require adding synchroniza-
tion to the application to make it comply with the release
consistency model. Thus, Barnes-Original has substantially
more synchronization events in the LRC versions than in the
SC protocol. The application for the SC protocol issues a
total of 2,086 lock calls at runtime, while the application for
the LRC protocols issues 17,167 lock calls.

The average computation time between two consecutive
synchronization events is 120 microseconds, even smaller
than the minimum synchronization handling time. Barnes-
Partree also requires adding synchronization to make it re-
lease consistent, but the number of locks in building the tree
is much smaller since processors first build their local trees
independently and then merge them. Although Barnes-
Partree has many fewer locks than in Barnes-Original, the
average computation time between consecutive synchroniza-
tion events is still very small, only 1.5 milliseconds.

For Barnes-Original, using the relaxed protocols turns
out to never be worthwhile even at 4096-byte granularity;
they do not succeed in helping large granularities deliver
the same performance as fine-grained SC. The reason,
interestingly, is the high frequency of synchronization events.
Although the effect of the relaxation is significant—4 times
fewer read misses and 30% fewer write misses than with
SC at the same granularity (see Table 13)—the resulting
overhead reduction is negligible compared to the cost of the
synchronization events in the relaxed protocols (note that
synchronization events are much cheaper in SC since they
do not involve protocol activity). The 15,179 additional lock
operations account for more than 50% of the total execution
time.

The other significant problem that remains at large
granularities despite relaxed protocols is fragmentation.
Table 15 shows that the data traffic under HLRC with a
4,096 block size is 25 times more than that under SC with a
64-byte block size. SW-LRC performs worse than HLRC
at 4096 bytes because SW-LRC’s data traffic is almost

Fault Protocol Coherence Granularity

64 256 1024 4096
Data SC 8603 | 15154 | 17362 | 21091

Message | SW-LRC 7965 | 11071 | 10167 9231

HLRC 10996 | 10920 9003 7252
Data SC 0.53 3.70 | 16.96 | 82.39

Message | SW-LRC 0.49 2.70 9.93 | 36.04
Traffic HLRC 0.46 1.63 4.52 | 13.76

Table 15: Barnes-Original data communication

twice that of HLRC. As the block size decreases, these
differences are reduced and SW-LRC becomes better than
HLRC because of its lower protocol overhead.

By reducing synchronization, Barnes-Partree improves
the situation for relaxed protocols significantly. With a
4,096-byte block size, HLRC is twice as good as SC, and 50%
better than SW-LRC. But the alleviation of false sharing
is still not enough to compensate for the high costs at the
synchronization events: The HLRC protocol with 4,096-byte
block size is 30% worse than the SC protocol with 64-byte
block size.

5.3 Effect of Restructuring Applications

In our benchmark suite, there are several versions of Ocean,
Volrend and Barnes. Their differences are in data struc-
tures, task partitioning, and algorithms for certain phases.
Understanding the impact of these differences can give us
some insights into the critical performance factors in making
applications perform better on such systems.

As mentioned above, all protocols perform poorly for
Ocean-Original because its fine grain access pattern causes
large (88-99%) fragmentation. Ocean-Rowwise employs a
rowwise partitioning strategy instead of the strategy of
partitioning into square subblocks used in Ocean-Original.
This change increases the inherent communication to com-
putation ratio (which is a perimeter to area ratio), but
it has the beneficial effect of moving the application from
the class of single-writer applications with fine-grain access
to that of single-writer applications with coarse-grain ac-
cess. It therefore greatly reduces the total communication
to computation ratio induced by large granularity, which
dominates the inherent ratio. This change also simplifies
the data structure. It no longer requires the use of complex,
four-dimensional array data structures to keep partitions
contiguous in the address space. It is therefore both easier to
program than Ocean-Original and also significantly reduces
the frequency of all overhead operations including faults,
data traffic and control traffic. The best speedup over all
protocols and granularities after the change increases from
2.7 to 10.0, achieved at 1024-byte granularity with HLRC.

Volrend-Original uses small square tiles of pixels as tasks,
and is thus more load balanced in its initial partitioning than
Volrend-Rowwise. However, the latter interacts much better
with row-major memory layout, and has significantly less
write-write false sharing at task borders. The HLRC proto-
col is less sensitive to false-sharing and more sensitive to the
high overhead of synchronization needed for task stealing, so
it performs slightly better with the better initial partitioning
of Volrend-Original. However, the other two protocols
are very sensitive to write-write false sharing and perform

better with Volrend-Rowwise. In this case too, inherent
algorithmic properties for which the original programs were
generally optimized (like load balance and communication-
to-computation ratio) are being traded off against system
interactions (such as granularities and synchronization cost)
to achieve better performance.

From the viewpoint of this study, the three different
tree building algorithms in the three versions of Barnes
differ mainly in the frequency of synchronizations and in
their load balance characteristics. In the LRC protocols,
the average computation time between consecutive syn-
chronization events is 150 microseconds in Barnes-Original,
1.5 milliseconds in Barnes-Partree, and 157 milliseconds
in Barnes-Spatial. These are averages over the entire
application. The difference in frequency is in fact much
worse since it is all concentrated in the tree-building phase.
Barnes-Partree and Barnes-Spatial move us increasingly
toward coarse-grained synchronization, though at the cost of
increasing load imbalance in the tree building phase. With
these protocols, the latter is a negligible problem compared
to the benefits of the former. As a result, with 4,096-byte
block size and the HLRC protocol, Barnes-Spatial performs
5 times better than Barnes-Original, and the gap with the
other two protocols at 4,096-byte increases from 0 to a factor
of 5. The tree building phase in Barnes-Spatial does not use
locks, and processors are synchronized mainly by barriers.
It reduces locking at the cost of some load imbalance, and
therefore helps greatly when synchronization operations are
expensive (as in HLRC) but can hurt when synchronization
is less expensive and load imbalance takes on a greater
role. For example, in SC at 64-byte granularity, more
than 35% of the time in Barnes-Spatial is spent on barrier
synchronization, and the performance is 40% worse than the
same combination of protocol and granularity for Barnes-
Original.

5.4 Interrupt vs. Polling

In the results we have presented so far, the polling method
was used to service incoming messages. However, we
have also evaluated the performance using interrupts. Our
experimental results show that the polling method works
better in most cases. However, none of our protocols

perform consistently better with a single method for all
granularities and all applications. Our results also show that

I T T 1 0I T T 1
64 256 1024 4096 64 256 1024 4096
Coherence granularity ~ Coherence granularity
(a) LU (b) Water-Spatial

Figure 2: Speedups of LU and Water-Nsquared with inter-
rupt mechanism on T0.

the SC protocol is more sensitive to which method is used
than the SW-LRC and HLRC protocols. Due to lack of
space, we only present speedup curves for two applications,
LU and Water-Spatial(see Figure 2).

The interrupt method is straight forward. Message
arrivals cause hardware interrupts, which are caught by
the Solaris kernel and forwarded to the user process using
Unix signals. Interrupts are disabled whenever we block for
message arrival and while messages are being processed. Be-
cause Unix signals must cross between protection domains,
the roundtrip time per notification is ~ 70 microseconds.
The polling method moves the overhead of crossing pro-
tection domains off of the critical path and runs entirely
at user-level. It requires adding 7 instructions at each
back edge in an application’s control flow graph to check a
control register for message arrival. Because the T0 device
supports cachable control registers, the common case (that
no message has arrived) incurs an overhead of only 6 or 7
cycles [28]. When a message does arrive, the round trip time
for the mechanism is 1.5 microseconds, which includes the
cost of clearing the TO register with an uncached store.

The trade-off between the two mechanisms clearly de-
pends upon the frequency of message arrivals: for frequent
messages, polling works better, and vice versa. For coarse-
grain applications like LU and Water-Nsquared, which send
a small number of messages, interrupts perform significantly
better across all protocols. For example, the LU application
at the 4096-byte granularity performs 44-66% better with
interrupts than polling, depending on the protocol. In
fact, this application on one processor with the polling code
inserted runs 55% slower than without the polling code.

A more interesting interaction between the message no-
tification mechanism and protocols occurs with applications
like Ocean-Rowwise, Raytrace, Volrend-Rowwise, Volrend-
Original and Water-Spatial. In these applications, the
SC protocol suffers from false sharing at large coherence
granularities, resulting in the classic ”ping-pong” effect as
data moves between processors. In this case, the polling
method performs poorly because blocks can be quickly
stolen away; an invalidation request may be processed
potentially as soon as the next backedge. Conversely, each
time a block is obtained, the interrupt method temporarily
disables interrupts to ensure forward progress. Because the
timer resolution is 100 milliseconds, much greater than a
typical basic-block size, the interrupt method delays the
invalidations, allowing the processor to make multiple local
accesses and reducing the rate of ping-ponging. The total
number of misses under SC decreases significantly, down
to 4%-70% of the polling case. In essence, the interrupt
method approximates Dubois, et al.’s delayed consistency
implementations, which are specifically targeted at reducing
the impact of false sharing [8]. This problem is most marked
with SC; however, SW-LRC also exhibits a milder form of
the ping-pong effect, thus interrupts help reduce total traffic
for it as well.

5.5 Discussions

Although the best way to understand performance is to look
at applications individually, as we have done, and averages
over parallel applications are not statistically significant,
it may be useful after a detailed analysis to summarize
with a broad brush (with all caveats about applications and
platform noted). We play this game in this section. In

particular, assuming that these are the only applications we
care about, we ask questions about choices one might make
among protocols and granularities and answer them using
the data presented above.

For the first part of this discussion, for an application
a, we only consider the original implementation used in
the hardware cache coherence machine, ignoring the re-
structured implementations. That is, we only consider LU,
Ocean-Original, FFT, Water-Nsquared, Volrend-Original,
Water-Spatial, Raytrace and Barnes-Original.

For a given application a, for each combination of gran-
ularity g and protocol p, we define the quantity RE to be
the relative efficiency of a protocol-granularity combination
for a particular application. That is,

speedup(a, p,
RE(a,p,9) = W

where MAX(a) is the maximal speedup over all combina-
tions of protocols and granularities for the given application
a, and speedup(a,p, g) is the speedup under the combination
of protocol p and granularity g for that application.

We then define HM to be the harmonic mean of the
relative efficiency (RE’s) over 8 applications. For an
application and a protocol, gpest is the granularity for which
that protocol achieves the best speedup for that application.
Similarly for an application and a granularity, ppes: is the
protocol which has the best speedup with that granularity
for that benchmark. Table 16 presents all the HM values
for all kinds of combinations including the ones with gpes:
and Dbest-

Protocol 64 256 | 1024 | 4096 | gbest
SC 0.746 | 0.791 | 0.522 | 0.134 | 0.872
SW-LRC | 0.582 | 0.573 | 0.495 | 0.294 | 0.722
HLRC 0.446 | 0.426 | 0.546 | 0.517 | 0.571
Pboest 0.803 | 0.878 | 0.798 | 0.540 | 1.000

Table 16: The HM values for all combinations across 8
applications only using the original implementation from
SPLASH-2.

Now we can answer some questions we might want to ask
in choosing among granularities and protocols. We see that
given this testbed and the original implementations for this
particular set of applications,

e If we have to choose a fixed protocol but are allowed
to choose granularities on a per-application basis, SC
is the best among the three protocols. The HM value
under the combination of the best granularity and the
SC protocol is 0.872, higher than the combinations of
the best granularity with the other two protocols.

e If we have to fix the granularity but are allowed to
choose protocols on a per-application basis, 256-byte
is better than the other three granularities. The HM
value under the combination of 256-byte granularity
and the best protocol is 0.878.

o If we have to fix both the granularity and the protocol,
the combinations of the SC protocol and 256-byte
granularity are better than the other combinations.
The HM values under this combination is 0.791.

The results for the combinations with coarse granular-
ities are hurt significantly because of the original Barnes
application.

Protocol 64 256 | 1024 | 4096 | gpest
SC 0.753 | 0.867 | 0.717 | 0.274 | 0.955
SW-LRC | 0.400 | 0.749 | 0.823 | 0.558 | 0.861
HLRC 0.388 | 0.758 | 0.903 | 0.927 | 0.956
Pbest 0.773 | 0.895 | 0.935 | 0.930 | 1.000

Table 17: The HM values for all combinations across 8
applications using all impelementations for each application.

In the statistics presented so far we considered the
original implementation for each application. However, we
have seen that the performance of some applications for all
protocols can benefit greatly from restructuring. In what
follows we compute the same statistics and answer the same
questions by choosing, for each combination of protocol and
granularity, the implementation or version of the application
which delivers the best performance under this combination
%, So we change the definition of the relative efficiency(RE)
to
Maz(a, p, g)

MAX(a)

where MAX(a) is the maximal speedup over all versions
for a given application a, and M AX(a,p,g) is the best
speedup for protocol p and granularity g among all versions
of that application. Table 17 presents all the HM values
using this method for all kinds of combinations choosing the
best implementation for each combination of protocol and
granularity. The answers to the questions now are:

RE(a,p,g) =

e If we have to choose a fixed protocol but are allowed to
choose granularities on a per-application basis, either
the SC or the HLRC protocol is the best choice on
average. The HM value for the best granularity and
the SC protocol is 0.955, while it is 0.956 for the HLRC
protocol.

o If we have to fix the granularity but are allowed
to choose protocols on a per-application basis, any
relative large granularities(256-byte, 1,024-byte and
4,096-byte) are good. The HM values for the combi-
nations of best protocol and these three granularities
are respectively 0.895, 0.935 and 0.930, compared to
0.773 of the best protocol at 64-byte.

o If we have to fix both the granularity and the protocol,
the combination of the HLRC protocol and 4,096-byte
granularity seems to be the best choice. The HM value
under this combination is 0.927.

Both larger granularities and more relaxed protocols
seem to become more attractive when the improved versions
of the applications are included in the mix, which is not
very surprising since the improvements, while general, were
largely designed to interact better with these situations.
It will be interesting to see if the performance of SC at
larger granularity can be further improved by alternate
restructurings.

2Water-spatial and Water-Nsquared are always treated as different
applications, since they use completely different algorithms and
may produce different results, so we are always averaging over 8
applications in computing these statistics.

6 Related Work

There is a large body of literature in the area of distributed
shared memory. The most related work to this paper
includes research on relaxing consistency models and provid-
ing fine-grained coherence granularity for software coherent
shared memory.

The original shared virtual memory (SVM) proposal and
prototype [20] uses the traditional virtual memory access
protection mechanism to detect access misses and imple-
ments the sequential consistency model [17] on a network
of workstations. The coherence unit of the prototype is a
1,024-byte virtual memory page.

Since then, two main approaches have been taken to
deal with the false-sharing and fragmentation problem in
SVM systems: relaxing consistency models and providing
fine-grained access control. Examples of relaxed con-
sistency models and systems include release consistency
(RC) [10] and its SVM implementation [5], delayed consis-
tency model [8] and its SVM protocols [4, 9], multiple-writer
lazy release consistency (LRC) model [15] and implementa-
tion [14], entry consistency model and prototype [2], auto-
matic update release consistency [11], scope consistency [13],
home-based lazy release consistency and its implementa-
tions [30], and single-writer lazy release consistency [16]. All
prototypes based on relaxed consistency models use virtual
memory page sizes as their coherence units.

Another approach is to preserve the sequential consis-
tency model and to find ways to reduce the coherence
granularity. Examples of providing fine-grained access
control include taking advantage architectural features such
as the ECC bits to trap access faults [27], using software
instrumentation for shared reads and writes [27, 26], and
building special access control hardware for commodity
workstations [23].

Keleher [16] compares sequential consistency with single
writer and multiple-writer LRC protocols and concludes
that overall, the multiple-writer version is only 9% better
than the single-writer one and 34% better than the se-
quential consistency one. Our study compares the three
protocols for different granularities and for a larger class of
applications including 7 irregular applications out of 12.

Although previous implementation or simulation studies
have compared various protocols with various kinds of
applications, none has studied the performance tradeoffs
between relaxing consistency models and providing fine
coherence granularity.

7 Conclusions

We have investigated the performance tradeoffs of relaxed
consistency models, coherence granularity, and mechanisms
for handling message arrivals on a cluster of workstations
with hardware access control but software coherence proto-
cols. Our results can be summarized as follows.

No single combination performs of protocol and granu-
larity performs best for all applications. Two combinations
generally perform well. The SC protocol with fine gran-
ularity works well with 7 applications. The combination
of a home-based lazy release consistency (HLRC) protocol
and 4,096-byte granularity works well with 8 applications.
Barnes-Original performs substantially better with the com-
bination SC-64 than with HLRC-4096, whereas Volrend-
Rowwise and Volrend-Original perform substantially better

with the combination HLRC-4096 than with SC-64.

The best granularity for the HLRC protocol is 4,096
bytes for almost all applications, whereas for the SC protocol
the best granularity is usually between 64 and 256 bytes.
The best granularity for the SW-LRC protocol varies among
applications. Similarly, at 64 byte granularity SC is almost
always the best protocol, while at 4,096 byte granularity
HLRC is always best.

In most cases in which SC experiences performance
losses when granularity is increased, the performance is
regained (and sometimes improved significantly) by using
relaxed protocols, particularly HLRC. Barnes-Original is
the notable exception. The major circumstance in which
HLRC does not work well is when synchronization frequency
is high, either inherently in the algorithm or to make the
program release consistent.

For most of our irregular applications, the multiple-
writer HLRC protocol performs substantially better than
single-writer SW-LRC protocol with coarse granularities.
With 4,096-byte granularity, HLRC performs better than
SW-LRC in all applications. The performance difference
is large in some cases: factors of 3 and 10 respectively for
Volrend-Rowwise and Volrend-Original.

Finally, we find the polling method for service incoming
messages works better in most cases. However, none of our
protocols perform consistently better with a single method
for all granularities and all applications. Our results also
show that the SC protocol is more sensitive to which method
is used than the SW-LRC and HLRC protocols.

Overall, for our applications and platform, when we
use the original versions of the applications ported directly
from hardware-coherent shared memory, we find that the
SC protocol with 256-byte granularity performs best on
average. However, when the best versions of the applications
are compared, the balance shifts in favor of HLRC at page
granularity.

Our study has several limitations. We have not studied
block sizes greater than 4,096 bytes, and have not been
able to run large problem sizes due to memory limitations.
We have also not examined delayed consistency protocols
that can delay invalidation messages to some extent without
using high-overhead protocol operations at synchronization
points. We have not examined the memory utilization of
different protocol and granularity combinations. Finally,
this study has not examined all-software systems, since
access-control was performed in hardware on the platform
we used. It would be interesting to also investigate all-
software systems that provide fine-grained access control
through software instrumentation of loads and stores [27, 26]
or page-grained access control entirely through the virtual
memory mechanism.

References

[1] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Adaptive
Software Cache Management for Distributed Shared Memory
Architectures. In Proceedings of the 17th Annual Symposium
on Computer Architecture, pages 125-134, May 1990.

[2] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The
Midway Distributed Shared Memory System. In Proceedings
of the IEEE COMPCON 93 Conference, February 1993.

[3] Nanette J. Boden, Danny Cohen, Robert E. Felderman,
Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and
Wen-King Su. Myrinet: A Gigabit-per-Second Local Area
Network. IEEE Micro, 15(1):29-36, February 1995.

(4]

(5]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

L. Borrmann and M. Herdieckerhoff. A Coherency Model
for Virtual Shared Memory. In Proceedings of the 10th
International Parallel Processing Symposium, June 1990.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Imple-
mentation and Performance of Munin. In Proceedings of
the Thirteenth Symposium on Operating Systems Principles,
pages 152-164, October 1991.

David Culler, Lok Tin Liu, Richard Martin, and Chad
Yoshikawa. LogP Performance Assessment of Fast Network
Interfaces. IEEE Micro, pages 35-43, February 1996.

David Culler, Lok Tin Liu, Richard Martin, and Chad
Yoshikawa. LogP Performance Assessment of Fast Network
Interfaces. IEEE Micro, pages 35-43, February 1996.

M. Dubois, J.C. Wang, L.A. Barroso, K. Lee, and Y-S Chen.
Delayed Consistency and Its Effects on the Miss Rate of
Parallel Programs. In Supercomputing ’91, pages 197-206,
1991.

A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. Soft-
FLASH: Analyzing the Performance of Clustered Distributed
Virtual Shared Memory. In The 6th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, October 1996.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In
Proceedings of the 17th Annual Symposium on Computer
Architecture, pages 15-26, May 1990.

L. Iftode, C. Dubnicki, E. W. Felten, and Kai Li. Improving
Release-Consistent Shared Virtual Memory using Automatic
Update. In The 2nd IEEE Symposium on High-Performance
Computer Architecture, February 1996.

L. Iftode, J. P. Singh, and Kai Li. Understanding Application
Performance on Shared Virtual Memory. In Proceedings of
the 23rd Annual Symposium on Computer Architecture, May
1996.

L. Iftode, J.P. Singh, and K. Li. Scope Consistency: a Bridge
Between Release Consistency and Entry Consistency. In
Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, June 1996.

P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proceedings of the
Winter USENIX Conference, pages 115-132, January 1994.

P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Consistency
for Software Distributed Shared Memory. In Proceedings
of the 19th Annual Symposium on Computer Architecture,
pages 13-21, May 1992.

P.J. Keleher. The Relative Importance of Concurrent Writers
and Weak Consistency Models. In Proceedings of the IEEE
COMPCON ’96 Conference, February 1996.

L. Lamport. How to Make a Multiprocessor Computer
That Correctly Executes Multiprocessor Programs. IEFEE
Transactions on Computers, C-28(9):690-691, 1979.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. The Stanford DASH Multipro-
cessor. IEEE Computer, 25(3):63-79, March 1992.

K. Li. IVY: A Shared Virtual Memory System for Parallel
Computing. In Proceedings of the 1988 International Con-
ference on Parallel Processing, volume II Software, pages
94-101, August 1988.

K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems. In Proceedings of the 5th Annual ACM
Symposium on Principles of Distributed Computing, pages
229-239, August 1986.

(21]

(24]

(25]

(26]

(27]

[28

(29]

Scott Pakin, Mario Laura, and Andrew Chien. High Per-
formance Messaging on Workstations: Illinois Fast Messages
(FM) for Myrinet. In Proceedings of Supercomputing ’95,
1995.

Robert W. Pfile. Typhoon-Zero Implementation: The
Vortex Module. Technical report, Wisconsin University, CS
department, 1995.

S. K. Reinhard, R. W. Pfile, and D. A. Wood. Decoupled
Hardware Support for Distributed Shared Memory. In
Proceedings of the 23rd Annual Symposium on Computer
Architecture, May 1996.

S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and
Typhoon: User-Level Shared Memory. In Proceedings of the
21st Annual Symposium on Computer Architecture, pages
325-336, April 1994.

ROSS Technology, Inc. SPARC RISC User’s Guide: hyper-
SPARC Edition, September 1993.

D.J. Scales, K. Gharachorloo, and C.A. Thekkath. Shasta:
A Low Overhead, SOftware-Only Approach for Supporting
Fine-Grain Shared Memory. In The 6th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 1996.

I. Schoinas, B. Falsafi, A.R. Lebeck, S.K. Reinhardt, J.R.
Larus, and D.A. Wood. Fine-grain Access for Distributed
Shared Memory. In The 6th International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 297-306, October 1994.

Toannis Schoinas, Babak Falsafi, Mark D. Hill, James R.
Larus, Christopher E. Lucas, Shubhendu S. Mukherjee,
Steven K. Reinhardt, Eric Schnarr, and David A. Wood.
Implementing Fine-Grain Distributed Shared Memory On
Commodity SMP Workstations. Technical Report 1307,
March 1996.

W. Weber and A. Gupta. Analysis of Cache Invalidation
Patterns in Multiprocessors. In The Third International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 243-256, April 1989.

Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of
Two Home-Based Lazy Release Consistency Protocols for
Shared Virtual Memory Systems. In Proceedings of the
Operating Systems Design and Implementation Symposium,
October 1996.

