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ache memories help bridge the cycle-time gap between fast microproces- 
sors and relatively slow main memories. By holding recently referenced re- 
gions of memory, caches can reduce the number of cycles the processor must 

stall while waiting for data. As the disparity between processor and main memory cy- 
cle times increases - by 40 percent or more per year- cache performance becomes 
ever more critical. 

Caches only work well, however, for programs that exhibit sufficient locality. Other 
programs have reference patterns that caches cannot exploit; they spend excessive ex- 
ecution time transferring data between main memory and cache. For example, the 
SPEC92I benchmark tomcatv spends as much as 53 percent of its time waiting for 
memory on a DECstation 5000/125. 

Fortunately, for many programs, small source-code changes -- called program 
transformations - can radically alter memory reference patterns, greatly improv- 
ing cache performance. Consider the well-known example in Figure 1 of traversing 
a two-dimensional Fortran array. Since Fortran lays out two-dimensional arrays in 
column-major order, consecutive elements of a column are stored in consecutive 
memory locations. Traversing columns in the inner loop (by incrementing the row 
index) produces a sequential reference pattern and, hence, spatial locality that most 
caches can exploit. If, instead, the inner loop traverses rows, each inner-loop itera- 
tion references a different memory region. 

For arrays that are much larger than the cache, the column-traversing version will 
have much better cache behavior than the row-traversing version. On a DECstation 
5000/125, the column-traversing version runs 1.69 times faster than the row-travers- 
ing version on an array of single-precision floating-point numbers. 

We call this type of analysis a mental simulation of the cache behavior. By mentally 
applying the program reference pattern to the underlying cache organization, we can 
predict the program’s cache performance. This simulation is similar to asymptotic 
analysis of algorithms (for example, worst-case behavior), which programmers com- 
monly use to study the number of operations executed as a function of input size. 
When analyzing cache behavior. programmers perform a similar analysis, but they 



DO 20K = 1,100 DO 20K = 1,100 
DO 20 I = 1,5000 D02OJ  = I ,  100 

DO 20 J = 1,100 DO 20 I = 1,5000 
20 XA(1. J) = 2 * XA(1, J) 20 XA(1, J) = 2 * XA(1, J)  

(a) (b) 

Figure 1. Row-major traversal of Fortran array (a), and column traversal (b). 

must also have a basic understanding of 
cache operation (see the next section). 

Although asymptotic analysis is effec- 
tive for eert;iin algorithms, analysis is dif- 
ficult when applied to large complex pro- 
gramb. Instead. programmers often rely 
on  an execution-timr profile to isolate 
problematic code sections. to which they 
later apply asymptotic analysis. Unfortu- 
nately, traditional execution-time profil- 
ing took (for example. gprof'). are gen- 
erally insufficient to identify cache 
perfommance problems. For the Fortran 
array example (Figurl: 1 ). an execution- 
time profile wouldidentify the procedure 
or source lines as a bottleneck. but the 
programmer could easil! conclude that 
the floating-point operations were re- 
sponsible. We can see. therefore. that 
prograniniers would benefit from ;I pro- 
file that focuses specifically on  a pro- 
gram's cache behavior. 

Our purpose in this article is to intro- 
duce ii broad audience t o  cache perfor- 
mance profiling and tuning techniques. 
Although used sporadically in the super- 
computer and multiprocessor communi- 
ties. these techniques also have broad ap- 
plicability l o  programs running on fast 
uniprocessor workstations. We show that 
cache profiling, using our CProf cache 
profiling sqclem. improves program per- 
formance by focusing a programmer's at- 
tention on pr~iblctnatic code sections and 
providing insight into appropriate pro- 
gram transl'ornmations. 

Understanding 
cache behavior 

Caches sit between the ( L i s t )  proces- 
\or and (\IOU ) main meinor>, holding re- 

Cache memory terminology 

Associativity -The number of unique places in the cache where a particular 

Block size - The number of contiguous bytes fetched on each cache miss. 
Cache hit - A memory reference satisfied by the cache. 
Cache miss - A memory reference not satisfied by the cache. 
Capacity - The total number of bytes a cache may contain. 
Capacity miss - A  reference that misses in a fully associative cache with LRU 
replacement. 
Compulsory miss - A reference that misses because it is the first reference 

Conflict miss - A reterence that hits in a fully associative cache but misses in 

Direct mapped - A  cache in which a block can reside in exactly one place in 

Fully associative - A cache in which a block can reside in any place in the 

Miss penalty -The time required to fetch data from main memory into the 

Set-associative - A cache in which a block can reside in exactly A places in 

block may reside. 

to a cache block. 

an A-way set-associative cache. 

the cache. 

cache ( A  = C/B). 

cache on a cache miss. 

the cache. 

gions of recently referenced main mem- 
ory. Refet ences satisfied by the cache - 
called hit.) ~- proceeld at processor speed: 
those unsatisfied --called n~i.ss~,s - incur 
a cache miss penalty to fetch thc corre- 
sponding data from main memory. Most 
current processors must wait, or .stdI. un- 
til the data arrive. 

Caches work h'ecause most programs 
exhibit significant locality. Temporal lo- 
cczlify exists when a program references 
the same memory location multiple times 
in  a short period. Caches exploit tempo- 
ral locality by retaining recently refer- 
enced data. Spcrtial loctrliry occurs when 
the program accesses memory locations 
close to those i t  ha:i recently accessed. 
Caches exploit spatial locality by fetch- 
ing multiple contiguous words - a cache 
block - tvhenevcr a miss occurs. 

Caches are characterized by three ma- 
jor parameters: cqwrcify ( C ) ,  block .xix 
(€3). and r r v . w c i c r f / \ i @  (A).  A cache's ca- 
pacity simply defines the total number of 
bytes it m<iy contain. The block size de- 
termines how many contiguous bytes are 
fetched o n  each cache miss. A cache may 
contain 211 most dYU blocks at any one 
time. Associativity refers t o  the number 
of unique c x h e  locations where a partic- 
ular block may residle. I f  a block can re- 
side in an! cache location ( A  = C'IH). we 
call i t  a,fid/j. trssoc'irrt i ix,  c~rc/w: i f  i t  can re- 
side in cxxtly one localion ( A  = /). we 
call i t  ~ i r ~ , c i - / } ? ( r ~ ~ ~ ~ ( , ~ l :  i f  i t  can reside in ex- 
actly A locations. we call i t  /t-tiyy s e / -  
rr.\.socirrtii~v. (Smith's survey' describes 
cache desisn in mort: detail.) 

With these three parameters. a pro- 

cache behavior to r  simple algorithms. 
Consider I he simple example o f  nested 
loops whet-e the outel. loop iterates L 
times and the inner loop sequentially 
acesses an array o f  A/ 4-byte integers: 

for ( i  = 0; i < L: + t i )  

a[j] + = 2: 
for (j .= 0; j < N I  + - + I )  

I f  the arrav size ( 4 N )  is smaller than the 
cache capacity (see Figure 2a-b). we ex- 
pect the number (4'ciichc misses t o  equal 
the array s i x  divi'ded by the cache block 
size. 4NiB (that is. the number of cache 
blocks reqiiired t c  hold the entire array). 
If' the iirrav size is largei- than the cache 
capacity (we  Figurc: 2c). the expected 

equal to the numlw of cache blocks re- 
quired t o  contain the array times the 
number o f  outer-loop iterations (4YLIR) .  
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Compilers may someday automate this 
analysis and transform the code to reduce 
the miss frequency; recent research has 
produced promising results for restricted 
problem  domain^.^,^ However, for gen- 
eral codes using current commercial com- 
pilers, the programmer must manually 
analyze the programs and manually per- 
form transformations. 

To select appropriate program trans- 
formations, a programmer must first 
know what causes poor cache behavior. 
One approach to understanding why 
cache misses occur is to classify each miss 
as one of three disjoint types6: compul- 
sory, capacity, and conflict. (Hill and 
Smith6 define compulsory, capacity, and 
conflict misses in terms of miss ratios. 
When generalizing this concept to indi- 
vidual cache misses, we must introduce 
anticonflict misses, which miss in a fully 
associative cache with LRU replacement 
but hit in an A-way set-associative cache. 
Anticonflict misses are generally only 
useful for understanding the rare cases 
when a set-associative cache performs 
better than a fully associative cache of 
the same capacity.) 

A compulsory miss is caused by refer- 
encing a previously unreferenced cache 
block. In the small array example (Fig- 
ure 2b), all misses are compulsory. Elim- 
inating a compulsory miss requires 
prefetching the data, either by an explicit 
prefetch operation5 or by placing more 
data items in a single cache block. For ex- 
ample, if the integers in our example re- 
quire only 2 bytes rather than 4, we can 
cut the misses in half by changing the dec- 
laration. However, since compulsory 
misses usually constitute only a fraction 
of all cache misses, we do not discuss 
them further. 

A reference that misses in a fully asso- 
ciative cache with LRU replacement is 
classified as a capacity miss. Capacity 
misses are caused by referencing more 
cache blocks than can fit in the cache. In 
the large array example (Figure 2c), we 
expect to see many capacity misses. Pro- 
grammers can reduce capacity misses by 
restructuring the program to re-reference 
blocks while they are in cache. For ex- 
ample, it may be possible to modify the 
loop structure to perform the L outer- 
loop iterations on a portion of the array 
that fits in the cache and then move to 
the next portion of the array. This tech- 
nique, called blocking, is similar to the 
techniques used to exploit the vector reg- 
isters in some supercomputers. 

A reference that hits in a fully associa- 

I Cache Small array Large array 

Figure 2. Determining expected cache behavior. Sequentially accessing a small 
array (b) that fits in the cache (a) should produce M cache misses, where M is the 
number of cache blocks required to hold the array. Accessing an array that is much 
larger than the cache (c) should result in M L  cache misses, where L is the number 
of passes over the array. 

Cache MO conflict Confliiing mappings 

El 
n 

Figure 3. Conficting cache mappings. The presence of conflict misses indicates a 
mapping problem: (b) shows how two arrays that fit in the cache (a) with a map- 
ping that will not produce any conflict misses, and (c) shows two mappings that will 
result in contlict misses. 

tive cache but misses in an A-way set- 
associative cache is classified as a conflict 
miss. A conflict miss to block Xindicates 
that block X has been referenced in the 
recent past, since it is contained in the 
fully associative cache, but at least A 
other cache blocks that map to the same 
cache set have been accessed since the 
last reference to block X .  

Consider the execution of a doubly 
nested loop on a machine with a direct- 
mapped cache, where the inner loop se- 
quentially accesses two arrays (for ex- 
ample, dot-product). If the combined 
array size is smaller than the cache, we 
might expect only compulsory misses. 
However, this ideal case occurs only if 

the two arrays map to different cache 
sets (Figure 3b). If they overlap, either 
partially or entirely (Figure 3c), then we 
will get conflict misses as array elements 
compete for space in the set. Eliminat- 
ing conflict misses requires a program 
transformation that changes either the 
memory allocation of the two arrays, so 
that contemporaneous accesses do not 
compete for the same sets, or that 
changes the manner in which the arrays 
are accessed. 

Our discussion assumes a cache in- 
dexed with virtual addresses. Many sys- 
tems index their caches with real or phys- 
ical addresses, making cache behavior 
strongly dependent on page placement. 
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I 
/* old declaration of two arrays *I 
int val [SIZE]; 
int key [SIZE]; 

C old declaration 
integer X(N, N) 
integer Y(N, N) 

I* new declaration of *I 
I* array of structures *I 
struct merge { 

C new declaration 
integer XY(2*N, N) 

int Val; C preprocessor macro 
int key; C definitions to perform addressing 

#define X(i, j )  XY((2*i) - 1, N) 
#define Y(i, j )  XY((2*i), N) 

1; 
struct merge merged-array[SIZE]; 

Figure 4. Examples of merging arrays in C (a) and Fortran77 (b). 

I* old declaration of a twelve *I 
I* byte structure *I 
struct ex-struct [ 

int vall, va12, va13; 
t ;  
I* new declaration of structure * I  
I* padded to 16-byte block size *I 
struct ex-struct [ 

int vall, va12, va13; 
char pad[4]; 

1; 

(a) 

I* original allocation does not */ 
I* guarantee alignment *I 
ar = (struct ex-struct *) 

malloc(sizeof(struct ex-struct)*SIZE); 

I* new code to guarantee alignment *I 
I* of structure. *I 
ar = (struct ex-struct *) 

malloc(sizeof(struct ex-struct)*(SIZE + I)); 

ar = ((int) ar + B - l)/B)*B 

Figure 5. Padding (a) and aligning structures (b) in C. 

However, many operating systems use tures are relerenced. Capacity misses can 
page coloring to minimize this effect, thus be eliminated by program transforma- 
reducing the performance difference be- tions that reuse data before it is displaced 
tween virtual-indexed and real-indexed from the cache, such as loop fusion. 
caches.’ structure and array packing, 

and loop interchange. 

Merging arrays. Some programs con- 
temporaneou4y reference two (or more) 
arrays of the same dimension using the 
same indices By merging multiple arrays 
into a single compound array, the pro- 

Techniques for 
im roving cache 
be R avior 

Program transformations can be clas- 
sified by the type of cache misses they 
eliminate. Conflict misses can be reduced 
by merging arrays, padding and aligning 
structures. packing structures and arrays, 
and interchanging loops. The first three 
techniques change the allocation of data 
structures, whereas loop interchange 
modifies the order in which data struc- 

grammer increases spatial locality and 
potentially reduces conflict misses. In the 
C programming language, this is accom- 
plished by declaring an array of structures 
rather than two arrays (Figure 4a). This 
simple transformation can also be per- 
formed in Fortrango, which provides 
structures. Since Fortran77 does not have 
structures, the programmer can obtain 

the same effect using complex indexing 
(Figure 4b). 

Padding and aligning structures. Ref- 
erencing a data slructure that spans two 
cache blocks may incur two misses, even 
if the structure is smlaller than the block 
size. Padding structures to a multiple of 
the block size arid aligning them on a 
block boundary can (diminate “niisalign- 
ment” misses, which generally show up 
as conflict misse:. F’adding is easily ac- 
complished in C (Fip,ure Sa) by declaring 
extra pad fields. Alignment is a little 
more difficult, since the address of the 
structure must be a multiple of the cache 
block size. Staticady declared structures 
generally require compiler support. Dy- 
namically allocai.ed structures can be 
aligned by the programmer using simple 
pointer arithmetic: (Figure Sb). Some dy- 
namic memory allocators (for example, 
some versions of tnalloc()) return cache 
block-aligned me:nory. 

Packing. Packing is the opposite of 
padding. I3y packing an array into the 
smallest space possible. the programmer 
increases spatial locality. which can re- 
duce conflict and (capacity misses. In Fig- 
ure 6a, the prograinmer observes that the 
elements of array  due are never greater 
than 255 and. hence, could f i t  in type un- 
signedchar. which requires 8 bits, instead 
of unsigned int, which typically requires 
32 bits. For ii mactiint with 16-byte cache 
blocks, the code i n  Figure 6b permits I6 
elements per block. rather than 4. reduc- 
ing the maximum iiumber of cache misses 
by a factor o f  4. 

Loop fusion. Niimeric programs often 
consist of scveral operations on the same 
data, coded as multiple loops over the 
same ar rqs .  By combining these loops, a 
programmer increases the program’s 
temporal locality .ml  frequently reduces 
the number of capacity misses. The ex- 
amples in Figure 7 combine two doubly 
nested loops so that all operations are 
performed o n  an entire row before mov- 
ing on to tho next Lm~i,fir.siotz is the ex- 
act opposite of loop Ji’.s.sion. a program 
transformation that splits independent 
portions o f  a 1oc.y body into separate 
loops. Loop fission helps an optimizing 
compiler detect loops that exploit vector 
hardware o n  som2 supercomputers. Be- 
cause most vector supercomputers do not 
employ caches. rclying instead on high- 
bandwidth interlcaved main memories. 
some of the transfrmnations described in  
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this article may be counterproductive for 
these machines. 

Blocking. Blocking is a general tech- 
nique for restructuring a program to 
reuse chunks of data that fit in the cache 
and reduce capacity misses. The SPEC 
matrix multiply (part of dnasa7, a For- 
tran77 program) implements a column- 
blocked algorithm (Figure 8b) that 
achieves a 2.04 speedup versus a naive 
implementation (Figure 8a) on a DEC- 
station 50001125. The algorithm tries to 
keep four columns of the A matrix in 
cache for the duration of the outermost 
loop, ideally getting N - 1 hits for each 
miss. If the matrix is so large that four 
columns do not fit in the cache, we can 
use a two-dimensional (row and column) 
blocked algorithm instead. 

CProf cache 
profiling system 

Cache misses do result from the com- 
plex interaction among algorithm, mem- 
ory allocation, and cache configuration; 
when the program is executed, the reality 
may not match the programmer's expec- 
tations. CProf, our cache profiling sys- 
tem, addresses this problem by identify- 
ing where cache misses occur and by 
classifying them as compulsory, capacity, 
or conflict misses. 

Cache- and memory-system profilers 
differ from the better-known execution- 
time profilers by focusing on memory- 
system performance. Memory-system 
profilers do not obviate execution-time 
profilers; instead, they provide vital sup- 
plementary information to quickly iden- 
tify memory-system bottlenecks and tune 
memory-system performance. 

Cache- and memory-system profilers 
differ in the level of detail they present. 

I* old declaration of an array *I 
I* of unsigned integers. *I 
unsigned int values[10000]; 

I* new declaration of an array *I 
I* of unsigned characters. *I 
/* Valid iff 0 c = value < = 255 *! 
unsigned char values[10000]; 

I* loop sequencing through values *I 
for (i = 0; I < 1oooO; i++) 

values [i] = i % 256; 
/* loop sequencing through values */ 
for (i = 0; i < 1oooO; i++) 

values [i] = i % 256; 

(a) (b) 

Figure 6. Unpacked (a) and packed (b) array structures in C. 

Figure 7. Sepa- 
rate (a) and 

fused (b) loops. 

for (i = 0; i < N; i++) for (i = 0; i N; i++) 
for (j = 0; j <N; j++); far (j =0; j <N; j++) 

a[i][j] = I/b[i]b]*c[i][j]; { 

E 

a[i]b] = I/b[i]~]*c[i]6]; 
dIi][j] = a[i]Q]+c[i]b]; 

for (i = 0; i < N; i++) 
for6 =O;j < N, j++) 

d[i][j] = a[i]u]+c[i][j]; 

(a) (b) 

High-level tools, such as MTool,* iden- 
tify procedures or basic blocks that incur 
large memory overheads. CProf and 
PFC-Sim,9 on the other hand, allow 
more detailed analysis by identifying 
cache misses at the source-line level. 
This extra detail is not free; MTool runs 
much faster than profilers requiring ad- 
dress tracing and full cache simulation. 
However, full simulation also permits a 
profiler to identify which data structures 
are responsible for cache misses and to 
determine the type of miss - features 
provided by CProf and MemSpy.l0 

CProf is similar to MemSpy, the differ- 

ence being the granularity at which source 
code is annotated and the miss type clas- 
sification. MemSpy annotates source code 
at the procedure level and provides two 
miss types for uniprocessors - compul- 
sory and replacement. CProf provides 
fine-grain source identification and data 
structure support, and classifies misses as 
compulsory, capacity, or conflict. 

CProf uses a flexible X Windows in- 
terface (see Figure A on p. 20) to present 
the cache profile in a way that helps the 
programmer determine the cache per- 
formance bottlenecks. The data window 
lists either source lines or data structures 

Figure 8. 
Naive (a) and 

SPEC column- 
blocked matrix 

multiply (b). 

DO 110 J = 1, M, 4 
DO 110 K = 1, N 

D O  110 J = 1, M D O l l O I = l , L  
DO 110 K = 1, N C(1, K) = C(1, K) + A(1, J) * B(J, K) 

+ A(1, J + 1) * B(J + 1, K) 
+ A(1, J+2)  * B(J +2, K) 
+ A(1, J + 3) * B(J + 3, K) 

DO 110 I = 1, L 
C(1, K) = C(1, K) + A(1, J) * B(J, K) 

110 CONTINUE 
110 CONTINUE 
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Brof  user interface 

w 

CProf's user interface (Figure A l )  is divided into three sec- 
tions for data presentation and one section for command 
buttons. The top section is the text window, the middle section 
is the data window, and the bottom section is the detail win- 
dow. A particular window's use depends on the selected 
command button. 

for each source file and an additional entry that allows dis- 
play of a list of source files sorted by the number of cache 
misses. Selecting one of the files displays the source code in 
the text window. Each source line is labeled with the number 
of cache misses generated by that line. We highlight the line 
with the most cache misses. The up- and down-arrow but- 

The source button opens a pull-down menu with an entry 

lomcatv f 107 1632150 1258% 
tomcaw f 92 983550 758% 
lomcaw f 157 974700 751% 
IonlCSty f 106 662050 510% 

tons allow movement within the source file to the line with the 
next higher or next lower number of misses, respectively. 
The detail window refines the cache misses for the high- 
lighted line into the miss type. Selecting a miss type causes a 
window to open that displays the data structures referenced 
by this source and the corresponding number of cache 
misses for the miss type selected (Figure A2). 

The sort lines button displays a list of source lines in the 
data window, sorted according to the number of cache 
misses. Each entry contains the file name, the line number, 
the number of cache misses, and the percent of the total 
misses. A sorted list of data structures is displayed by the 
sort vars button. Each entry in this list contains the variable 

I Line Read +Write File: tomc8tv.f 
10450 QXX = Y (IP, J)-2. * Y  (I, J ) + Y  (IM. J )  
660670 PYY = X ( I. JP)-2. t X (I, J ) + X ( I. JM ) 
662050 M Y  = Y (I, JP)-2. * Y (I. J 1 + Y  (I, J M )  

1632150 PXY = X ( IP, JP 1 -X (E JM) -X ( IM, JP) + X ( IM, JM ) 107 

I: 
I: CALCULATE RESIDUALS ( EQUIVALENT TO RIGHT HAND SIDES OF EQUS 
1: 

-1 Count for Line #IO0 of tomcatvf 
Conflict 1309600 

3264 1 9 

Data Structures referenced by Line #lo@ of i0mcatv.f 

DATA STRUCTURE 

Read Conflict Misses 
i0mcaw.f : MAIN- ( ) : y 
t0mcatv.f : MAIN- ( ) : ]in 
t0mcatv.f : MAIN- ( ) . iin 
iomcatv.f : MAIN- ( ) . xx 

COUNT 

1304320 
800 
640 
240 

Write Conflict Misses 
t0mcatv.f : MAIN- ( ) ' rx 
tomcatv.f : MAIN- ( ) : cpxy 

2800 
800 

(2) 

name, the count of the 
number of misses, 
and the percentage of 
total misses. Selecting 
a miss type causes a 
window to open that 
displays the source 
lines that reference 
this data structure and 
the corresponding 
number of cache 
misses for the miss 
type selected. The 
user selects which 
reference types 
(Read, Wrife, Ifetch) to 
display with the set 
metrics button. Finally, 
the counts displayed 
in the data window 
can be written to a file 
with the dump counts 
button. 

Figure A. CProf user 
interface: (1) the pri- 
mary window and (2) 
the cross-reference 
window. 

sorted in descending order of impor- 
tance, allowing quick identification of 
poor cache behavior. hdisses are cross ref- 
erenced so that a programmer can 
quickly determine which of several data 
structures on a source line is responsible 
for most cache misses. 

CProf annotates static and dynamic 

data structures. Dynamically allocated 
structures are labeled by concatenating 
the procedure names on the call stack at 
the point of allocation." An appended 
counter value allows unique identification 
of all dynamically allocated structures. 

The text window is used to view indi- 
vidual source files, where each line is an- 

notated with the corresponding number 
of cache misses. The X Windows user in- 
terface allows the user to browse within 
the source file, moving to the line with the 
next higher or lower number of cache 
misses. The detail window displays the 
number of each m i s s  type for the currently 
selected source line or data structure. 
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Case study: The 
SPEC benchmarks 

Here, we describe a study in which we 
used CProf and our transformations to  
tune the cache performance of six pro- 
grams from the SPEC92 benchmark suite: 
compress, eqntott, xlisp, tomcatv, spice, 
and dnasa7. First, we show that we can 
obtain significant speedups using cache 
profiling, even for codes that have been 
extensively tuned using execution-time 
profilers. Second, we show how we used 
CProf to gain insight into the cache be- 
havior and determine which transforma- 
tions were likely to improve performance. 

We present performance results in 
terms of speedup in user execution time 
on three models of the DECstation 5000 
the 5000/240, 5000/125. and 50001200. 
(System time accounts for little of the to- 
tal execution time for most of the pro- 
grams. Compress is the exception, where 
system time is relatively high because of 
the large amount of I/O. In this case, ex- 
cluding the system time eliminates the 
bias introduced by the different I/O sys- 
tems.) Each of these machines has sepa- 
rate 64-Kbyte direct-mapped instruction 
and data caches, 16-byte blocks, and a 
write buffer. The 50001125 and 5000/200 
use a 25 MHz MIPS R3000 processor 
chip. The major difference between the 
memory systems of the two machines is 
the cache-miss penalty - 16 processor 
cycles on the 5000/200 and 34 cycles on 

2'53 

1.55 
1.50 
1.45 
1.40 
1.35 1 ;:: 
1 .a0 
1.15 
1.10 
1.05 
1 .oo 

Figure 9. Speedups on a DECstation 5000/125, obtained via cache profiling. 

the 5000025, which helps illustrate the 
importance of cache profiling as cache- 
miss penalty increases. The 50001240 uses 
a 40 MHz MIPS R3000 processor chip 
and has a 28-cycle miss penalty. 

The machines also have secondary dif- 
ferences with significant performance im- 
pact. For example, the 50001240 and 
5000/200 have 4-deep write buffers, while 
the 50001125 has only a 2-deep write 
buffer. In addition, the 5000/240 performs 

Table 1. Program restructuring techniques that improve the cache behavior of each 
program studied. 

Restructuring Technique 

Merging Loop Loop Padding and 
Program Arrays Fusion Interchange Aligning Packing Blocking 

btrix* 0 0 0 

0 commess I 

0 0 vDenta* I 
disp 0 

* dnasa7 I 

sequential prefetch on cache misses, re- 
ducing the effective miss penalty for long 
sequential accesses. While these sec- 
ondary factors significantly affect execu- 
tion time, we have not found it necessary 
to model these factors in CProf s cache 
simulation. 

To reduce experimental error, we aver- 
aged the execution time over five runs. 
The programs were compiled at opti- 
mization level -03 using the MIPS Ver- 
sion 2.1 C and F77 compilers. Spice was 
the one exception, compiled at optimiza- 
tion level -02 per the SPEC make file. 
While run times are all reported with full 
optimization, we profiled most of the pro- 
grams at optimization level -01, with full 
symbolic debugging (-g). Cache profiling 
at high optimization levels suffers from 
the same difficulties as debugging (that is, 
incorrect line numbers), since CProf uses 
the same symbol tahle information. 

Table 1 shows the applications that ben- 
efited from the various restructuring tech- 
niques. The benchmark program dnasa7 
consists of seven numerical kernels; we 
broke out five kernels with poor cache per- 
formance and analyzed them separately. 

Table 2 on the next page and Figure 9 
above present execution time results for 
the six benchmarks. The full programs 
execute as much as 90 percent faster 
when modified to improve cache behav- 
ior. Breaking out the kernels in dnasa7 
shows even more striking results, with 
speedups as much as 3.46 for vpenta on 
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the 5000/240, 2.53 or1 the 50001125, and 
2.14 on the 5000/200. 

Below we discuss our experience cache 
profiling and modifying each program. 

Compress. The compress Unix utility 
implements the well-known Lempel-Ziv 
data compression algorithm. For each in- 
put character, compress searches a hash 
table for a prefix key. When the key 
matches, another array is accessed to ob- 
tain the appropriate value. The hash 
table is large (69,001 entries) to reduce 
the probability of collisions. When a col- 
lision does occur, a secondary probe is 
initiated. 

CProf indicates that two source lines 
are responsible for 71 percent of the 
cache misses. One source line, the initial 
probe into the hash table. accounts for 2 I 
percent of the cache misses. The other 
source line performs tlhe secondary probe 
operation when there is a collision; it ac- 
counts for 50 percent of the misses. CProf 
also shows that most of the misses are ca- 

pacity misses. We can eliminate capacity 
misses by processing data in portions that 
fit in the cache. 

Applying this insight to compress, we 
reduced the hash table size from 69,001 to 
5,003, small enough to fit in the data 
cache. This change results in speedups of 
1.92 on a 50001240. 1.56 on a 50001125, 
and 1.30 on a 5000/200. However, this 
modification actually changes the pro- 
gram output, since the compression ratio 
(original file size/compressed file size) is 
related to the size of the hash table. The 
output is still a compatible compressed 
file, but it does not match the standard 
SPEC output. Nonetheless, there is a 
clear trade-off between speed and com- 
pression ratio. The unoptimized version 
has a compression ratio of 2.13. whereas 
the optimized version's is 1.77. 

We also tried to improve the cache per- 
formance of compress without changing 
the compression ratio. Although com- 
press has a large number of capacity 
misses, conflict misses account for 13 per- 

cent of thc misses to the key array and 19 
percent of the misses to the value array. 
CProf's X Windows interface allowed us 
to quickly determine that the array index 
is the same for both arrays. Although sep- 
arate arrays reduce the total space re- 
quirements (the key is a C integer and 
the value is a short; alignment restrictions 
in C require padding i f  these are com- 
bined into an array of structures), the 
price is poor spatial locality. After refer- 
encing a key, compress is likely to refer- 
ence the corresponding value. which re- 
sides in the other array and in a different 
cache block (see Figure 10a). 

Merging the two arrays into a single ar- 
ray of structures places the key and value 
in the same cache block (see Figure lob), 
improving spatial locality. With this mod- 
ification, accesses to the value always hit 
in the cache (assuming proper align- 
ment), reducing the number of conflict 
misses and providing speedups of 1.07 on 
the 5000/240, 1.05 on the 50001125, and 
1.02 on the 50001200. 

Table 2. Execution time speedup resulting from cache profiling. (The original and tuned times for dnasa7 include the SPEC 
version of matrix multiply or mxm.) 

Machine 

5OOO/125 50001200 5000/240 
Program Seconds Speedup Seconds Speedup Seconds Speedup Modification 

compress 

dnasa7 

btrix 

cholesky 

gmtry 

mxm 

vpenta 

eqntott 

spice 

tomcatv 

xlisp 

7.70 
7.34 
4.94 

1228.22 
945.18 
144.06 
109.50 
188.90 
162.16 
177.06 
119.78 
248.44 
122.06 
264.78 
126.38 
104.54 
67.56 
60.98 

2242. IO 
1781.72 
221.20 
167.24 
150.88 
385.24 
361.96 

5.98 
1 .05 5.84 
156 4.60 

1.30 

1.32 

1.16 
141.98 

1.48 95.82 
184.56 

2.04 106.02 
169.86 

2.10 91.80 
2.53 79.42 

58. 
1.11 55. 

1762.34 
1.26 1406.04 

161.20 
1.32 134.38 
1.47 126.36 

286.56, 
1.06 277.18 

5.56 Original 
I .02 5.22 1.07 Merged key and value arrays 
1.30 2.90 1.92 Reduced hash table size 

1.24 

I .27 

1.13 

I .48 

1.74 

1 .85 69.60 2.93 Merged arrays and loop interchange 
2.14 58.88 3.46 + loop fusion 

39.96 Original 
1.06 38.92 1.03 Changed short to ch 

1557.90 Original 
1.25 1163.42 1.34 Merged pointer and number 

137.30 Original 
1.20 91.40 1.50 Merged arrays X and Y 
1.28 86.08 1.60 + loop fusion 

I .03 190.30 1 .OX Padded n d e  to 16 bytes 

rchange and loop fusion 

128.42 Original 

203.80 Original 

205.72 Original 
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Eqntott. The SPEC benchmark eqn- 
tott is a CAD tool that converts Boolean 
equations into their equivalent truth ta- 
bles. Execution-time profiling shows that 
eqntott spends 95 percent of its time in 
the quick-sort routine.I2 CProf further re- 
veals that most of this time is spent mov- 
ing the sort keys from memory into the 
cache; more than 90 percent of the misses 
are generated in one comparison routine. 
The offending routine examines two ar- 
rays and generates mostly capacity 
misses, indicating that we either need to 
re-reference blocks while they are in the 
cache or bring in fewer blocks. CProf in- 
dicates that most of these capacity misses 
are due to fetching BIT structures dy- 
namically allocated at line No. 44 in 
pterm.c. The BIT data type is a 16-bit in- 
teger (type short in C), and inspection of 
the source code shows that BIT data 
types only take on values in the set [O, 1, 
21. Changing the type definition from 16- 
bit integer to 8-bit integer (short to char) 
reduces the number of misses in this rou- 
tine by half. The speedup in execution 
time is 1.03 on a 5000/240, 1.11 on a 
50001125, and 1.06 on a 5000l200. The 
prefetch capabilities of the 5000/240 ex- 
ploit the sequential accesses of the com- 
pare routine, reducing the benefit of our 
modification. 

In eqntott, the integer values actually 
represent the symbolic values zero, one, 
and dash. With the use of enumerated 
types, a compiler could potentially allocate 
as few as two bits per array element. re- 
sulting in one-eighth the number of cache 
misses. The trade-off, however, between 
fewer cache misses and the time to unpack 
the data is implementation dependent. 

Xlisp. The SPEC benchmark xlisp is a 
small lisp interpreter solving the nine 
queens problem. To reduce computation 
requirements during profiling, we pro- 
filed xlisp solving the six queens problem; 
however, the speedup results in Table 2 
are for the standard nine queens input. 
Programmers should be aware that cache 
behavior is sensitive to the input data. 
Programs may exhibit good cache be- 
havior with smaller input sizes and poor 
behavior for larger inputs. In this case, 
the results obtained from the smaller in- 
put data were sufficient to achieve rea- 
sonable speedups with the larger input. 

CProf shows that approximately 40 
percent of the cache misses (mostly the 
conflict type) occur during mark-and- 
sweep garbage collection. During this 
phase, the program first traverses the 

Cache set 

(as (b) 

Figure 10. Cache mappings for compress. The initial allocation strategy for the key 
and value arrays (a) resulted in as many as two cache misses for each successful 
hash table probe. Merging the two arrays into an array of structures (b) effectively 
interleaves the elements of the two arrays and results in only one cache miss per 
successful probe. 

1 Cache set 

Figure 11. Cache mappings for xlisp node structures. Each pattern corresponds to a 
different node structure, while pad indicates wasted storage. The initial allocation 
strategy (a) resulted in two cache misses for half of the nodes not in the cache. Pad- 
ding the structures to equal a cache block size and alignment on cache block bound- 
aries (b) reduces this to only one cache m i s s  per node not resident in the cache. 

reachable nodes and marks them acces- 
sible, and then sweeps sequentially 
through the memory segment placing un- 
marked nodes on the free list. Mark-and- 
sweep garbage collection has inherently 
poor locality, and an alternate algorithm 
would provide better cache behavior. 

CProf also shows that 19 percent of the 
cache misses are generated by the single 
source line that checks the flag (used to 
mark accessibility) during the sweep. 
Since conflict misses dominate, we first 
improved the spatial locality of the sweep 
routine by separating the flags from the 
rest of the node structure. With the flags 
in a single array, the sequential sweep ex- 
hibited excellent spatial locality. For ev- 
ery miss, the next 15 references hit, elim- 
inating most of the cache misses in the 
sweep routine. Unfortunately, the change 

also increased the number of misses in 
the mark routine, which must first fetch a 
node, then the corresponding flag. This 
modification increased spatial locality in 
the sweep at the expense of spatial local- 
ity during the mark, resulting in a negli- 
gible change in performance. 

Returning to CProf, the node struc- 
tures allocated on line No. 540 of xld- 
mem.c incur a large number of conflict 
misses. Inspection of the source reveals 
that each node slructure occupies 12 
bytes, or three-fourths of a 16-byte cache 
block. Consequently, only half the nodes 
reside entirely within a single cache block 
(see Figure 11). The remaining nodes re- 
side in two contiguous cache blocks, po- 
tentially causing two cache misses rather 
than one. By explicitly padding the orig- 
inal node structure to 16 bytes (the cache 
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block size) and ensuring alignment on 
cache-block boundaries. we obtained a 
1.08 speedup on the 5~000/240,1.06 on the 
50001125, and 1.03 on the 5000/200. 

Padding data structures without guar- 
anteeing alignment can be worse than not 
padding them at all. I:n this example, we 
might end up with all nodes generating 
two misses. Similarly, while many mem- 
ory allocators (for e.aample, the Ultrix 
malloci) routine) re:turn cache-block- 
aligned memory, xlisp preallocates large 
chunks and manages them itself, bypass- 
ing the alignment performed within the 
allocator. Application-specific memory 
managers certainly have a role, but pro- 
grammers should remember the impact 
of padding and alignment on cache per- 
formance. 

Padding data structures also wastes 
memory space; the xlisp node structures 
use only 10 bytes of information, Explicit 
padding increases the allocated size from 
the 12 bytes required by C language se- 
mantics to 16 bytes -- a 33 percent in- 
crease in storage. Increasing byte alloca- 
tion could adversely affect virtual 
memory performance for larger pro- 
grams, although that was not a problem 
in this case.” 

Tomcatv. Tomcatv lis a Fortran77 mesh 
generation program that uses seven two- 
dimensional data arrays, each of which 
requires approximately 0.5 Mbyte. The 
algorithm (see Figure 12a) consists of a 
forward pass in which two arrays are read 
and the other five written (loops 1.2,3), 
a backward pass (loop 4) over two arrays 
to calculate errors. and finally another 
forward pass (loop 5) ‘to add these errors. 

Since the arrays are much larger than 
the cache and are sequentially accessed, 
we expect to see a large number of ca- 
pacity misses. However, CProf shows that 
read accesses to arrays X and Y during 
the first loop of the initial forward pass 
are generating a large number of conflict 
misses. The two arrays are always refer- 
enced with the same indices. Hence, to 
improve spatial locality, we merged them, 
placing elements X(f,.\) and Y(Z,J) in the 
same cache block. This modification re- 
sults in speedups of 1.50 on the 50001240, 
1.32 on the 5000/125. and 1.20 on the 
50001200. 

Running CProf on the modified tom- 
catv, we find that capacity misses to the 
RX and RY arrays now dominate. As Fig- 
ure 12a shows, the forward pass is actually 
composed of several loops. Loop 1 initially 
references six arrays, including writing RX 

for LL 

/ 
loop 1. 

loop 2. 

loop 3. 

’* FORWARD WAVE */ 
for j 

fori  
X, Y RX, RY, AA, DD 

for j 
fori  

RX, RY 
for j 

fori  
AA, DD RX, RY, D 

€or LL 

/* FORWARD WAVE */ 
loop 1. forj  

fori  

fori  

fori  

fori  

X, Y RX, RY 

X, Y RX, RY, AA, DE 

RX, RY 

AA, DD RX, RY, D 

/* BACKWARD WAVE *I  I* BACKWARD WAVE */ 
loop4. for j  loop2. forj  

fori  fori  
RX, RY, AA, D 

/* FORWARD WAVE */ 

RX, RY, AA, D 
end for 

l oop5  forj  
fori  

X, Y RX, RY 

endfor 

Figure 12. Original tomcatv pseudocode (a), and loop-fused tomcatv (b). The 
original tomcatv algorithm contains several loops within a forward wave. Although 
the same arrays are referenced in consecutive loops, the data accessed in the begin- 
ning of the loop is displaced by data referenced at the end of the previous loop. 
The loop-fused version of tomcatv performs all forward-wave operations on one 
row of the arrays. This results in speedups of 1.60,1.47, and 1.28 on the DECstation 
5000/240,5000/125, and 5000/200, respectively. 

and RY, followed by loop 2 that computes 
the maximum values of the RX and RY 
arrays, and a final pass (loop 3) over the 
RX and RYarrays to adjust the values. In 
addition to these disjoint forward pass 
loops, there is the forward pass (loop 5) 
to add the errors to the Xand Y arrays af- 
ter the backward pass (loop 4) over the 
RX and RY arrays. The RX and RY ar- 
rays are referenced in the same order in 
each loop of the forward pass (loops 1,2, 
3). However, each array is 0.5 Mbyte in 
size, much larger than the 64-Kbyte data 
cache. Therefore, the elements referenced 
at the start of one loop are not in the cache 
when the next loop starts. 

The solution is to improve temporal lo- 
cality by restructuring the program so that 
all allowable operations are performed 
on an element when it is cache resident. 
Transforming the program via loop fu- 
sion (Figure 12b) merges these loops so 
that the program contains only one for- 

ward and one backward loop. We cannot 
perform the operations of both the for- 
ward pass and backward pass in the same 
loop because of data dependencies. We 
folded the addition of error corrections 
into the forward pass. Loop fusion, in ad- 
dition to array merging, produced a 
speedup of 1.60 on the 5000/240,1.47 on 
the 500011 25, and 1.28 on the 50001200. 
These speedups are not as high as we ex- 
pected because of an increase in the num- 
ber of conflict misses and a slight increase 
in the number of instructions executed. 

Spice. Spice (spice2g6) is an analog cir- 
cuit simulator written In Fortran. The pri- 
mary data structure is a sparse matrix, 
which is implemented by several arrays. 
In particular, there are separate arrays 
for row pointers, row numbers, column 
pointers, column numbers, and values. 
CProf shows that two source lines ac- 
cessing the row pointer and number ar- 
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DO 8 I = 1, MATDIM 
DO 8 I = 1, MATDIM RMATRX(1, I) = 1.DO I RMATRX(1, I) 

DO 81 J = I + 1, MATDIM RMATRX(I,I)= l.DOIRMATRX(I,I) 
DO 8 J = I + 1, MATDIM RMATRX(J, I) = RMATRX(J, I) * RMATRX(1, I) 

RMATRX(J, I) = RMATRX(J, I) *RMATRX(I, I) 81 CONTINUE 
DO 8 K  = I + 1, MATDIM DO 8 K  = I + 1, MATDIM 

RMATRX(J, K) = RMATRX(J, K) DO 8 K = I + 1,MATDIM 
- RMATRX(J, I) * RMATRX(1, K) RMATRX(J, K) = RMATRX(J, K) 

8 CONTINUE - RMATRX( J, I) * RMATRX(1, K) 
8 CONTINUE 

Figure 13. Gaussian elimination loops: (a) original; (b) interchanged. 

rays cause 34 percent of the cache misses, 
with an additional 12 percent from an- 
other two source lines accessing the col- 
umn pointer and number arrays. Each 
source line pair is contained in a small 
loop that locates an element ( I ,  J) in the 
sparse matrix. CProf shows that most 
misses caused by these source lines are 
conflict misses, indicating a mapping 
problem. Again, the X Windows inter- 
face of CProf allows us to quickly deter- 
mine that the row (column) pointer and 
row (column) number arrays are nearly 
always accessed with the same index. 
Merging the pointer and number arrays 
to improve spatial locality results in a 
speedup of 1.34 on the 50001240,1.26 on 
the 50001125, and 1.25 on the 50001200. 

Dnasa7: The NASA 
kernels 

Dnasa7 is a collection of seven float- 
ing-point intensive kemels also known as 
the NAS kemels: vpenta, cholesky, btrix, 
fft, gmtry, mxm and emit. Each kemel ini- 
tializes its arrays, copies them to working 
arrays, and then calls the application rou- 
tine. We discuss the kernels separately, to 
better describe the cache optimizations. 
We did not study emit, a vortex genera- 
tion code, or fft, a fast Fourier transform 
code. Emit has a low miss ratio on a 64- 
Kbyte data cache (0.8 percent), and shuf- 
fling ffts have inherently poor cache per- 
formance. The speedup we obtained for 
the entire collection of kernels is 1.51 on 
the 50001240, 1.30 on the 50001125, and 
1.24 on the 50001200. 

Vpenta. The vpenta kernel simulta- 
neously inverts three pentadiagonals, a 

routine commonly used to solve systems 
of partial differential equations. CProf 
first finds that the miss ratio is a startling 
36 percent, mostly due to conflict misses. 
Using CProf to identify the mapping 
problems, we discovered two nested 
loops responsible for more than 90 per- 
cent of the cache misses. One loop ac- 
cesses three arrays, while the other ac- 
cesses eight arrays. We can eliminate 
conflict misses by changing the data 
structure allocation or the order in 
which structures are accessed. Source 
code inspection reveals that both tech- 
niques can be applied. We discovered 
the loops could be interchanged to tra- 
verse the arrays in column order and 
identified three opportunities for array 
merging. These modifications result in 
speedups of 2.93 on a 50001240,2.10 on 
a 50001125, and 1.85 on the 50001200. 
The original code runs slower on the 
50001240 than on the 50001200, despite 
the 60-percent faster processor cycle 
time. This is apparently due to the 
higher miss penalty - the two machines 
use the same DRAMS, but the 240 in- 
curs approximately 100 nanoseconds ad- 
ditional delay, due to an asynchronous 
interface. Loop interchange not only in- 
creases spatial locality, but results in a 
sequential access pattern that the 240’s 
prefetch logic can exploit. The 5000/240 
has a speedup of 1.3 versus the 50001200 
on the modified code. 

As with tomcatv, running CProf on the 
modified version of vpenta shows that ca- 
pacity misses now dominate. Fusing 
loops, which eliminates multiple passes 
over the same arrays to improve tempo- 
ral locality, results in speedups over the 
original version of 3.46, 2.53, 2.14 on 
the 50001240, 50001125, and 5000/200, 
respectively. 

Cholesky. Cholesky performs cholesky 
decomposition and substitution. CProf 
reveals numerous capacity misses in two 
nested loops. Source code inspection 
identifies an array traversed in row- 
major, rather than column-major, order. 
Statically transposing the array (effec- 
tively performing loop interchange but 
with much simpler code modification) re- 
sults in speedups of 1.32 on the 50001240, 
1.16 on the 50001125, and 1.13 on the 
50001200. Blocking can also be applied to 
cholesky: but we chose to apply a much 
simpler transformation. 

Btrix. Btrix is a tridiagonal solver. 
CProf shows that niost misses are again 
capacity misses that occur in two nested 
loops. As always, we first checked the ar- 
ray reference order and immediately no- 
ticed that one array is traversed in row 
order. We also observed that statically 
transposing this array would allow fusion 
of six different loops. We were able to 
apply several transformations after a sin- 
gle run of CProf. We obtain a speedup of 
1.48 on the 50001240, 1.32 on the 
50001125, and 1.27 on the 50001200. 

Gmtry. Gmtry is a kernel dominated 
by a Gaussian elimination routine (see 
Figure 13). CProf finds that 99 percent of 
the misses, mostly capacity, occur in the 
Gaussian elimination loop; inspection 
shows that the rmatrx is traversed in row 
order. Interchanging the loops, which is 
trivial in this case, results in a speedup of 
2.52 on the 50001240 and 1.48 on the 
50001200 and 5000/125. 

Mxm. Mxm is a matrix-matrix multi- 
ply routine. The naive matrix multiply al- 
gorithm is a well-k.nown “cache buster” 
because there is little data reuse between 

October 1994 25 



loop iterations. Instead of this algorithm, 
the SPEC mxm implementation uses a 
column-blocked implementation (de- 
scribed above) that reuses the same four 
columns throughout the two innermost 
loops. Cache performance improvement 
was not the original rationale for blocking 
mxm; instead, the intent was to let vec- 
torizing compilers more effectively reuse 
the contents of vector registers in Cray 
supercomputers. In this case, the same 
transformation improves performance 
for both vector registers and caches. 

The standard SPEC column-blocked 
algorithm achieves a speedup of 1.38 ver- 
sus the naive algorithm on a 5000/240. 
2.04 on the 5000/125, and 1.74 on a 
5000/200. For larger matrices, a 2D row- 
and column-blocked algorithm would 
perform better, but for the standard 
SPEC input size, the extra overhead de- 
creases performance. 

A s processor c:ycle times continue 
to increase faster than main 
memory cycle times, memory 

hierarchy performance becomes in- 
creasingly important. Programmzrs can 
mentally simulate cache behavior to help 
select algorithms with good cache per- 
formance. 

Actual cache performance. unfortu- 
nately, does not always match the pro- 
grammer’s expectations. and many pro- 
grams are too complex for the interactions 
among memory reference patterns, data 
allocation, and cache ‘rirganization to be 
fully analyzed. In these cases, a tool like 
CProf becomes an important element in a 
programmer’s tool box. 

CProf offers cache performance infor- 
mation at the source line and data struc- 
ture level, which allows a programmer to 
identify hot spots. By classifying cache 
misses as compulsory., capacity, or con- 
flict. CProf lets programmers select ap- 
propriate program transformatioms that 
improve a program’s spatial or temporal 
locality, leading to better overall perfor- 
mance. m 
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