
A vital tool-box
component, the CProf
cache profiling system

lets programmers
identify hot spots by

providing cache
performance

information at the
source-line and data-

structure level.
October 1994

Cache Profiling
and the SPEC
Benchmarks:
A Case Study
Alvin R. Lebeck and David A. Wood
University of Wisconsin - Madison

ache memories help bridge the cycle-time gap between fast microproces-
sors and relatively slow main memories. By holding recently referenced re-
gions of memory, caches can reduce the number of cycles the processor must

stall while waiting for data. As the disparity between processor and main memory cy-
cle times increases - by 40 percent or more per year- cache performance becomes
ever more critical.

Caches only work well, however, for programs that exhibit sufficient locality. Other
programs have reference patterns that caches cannot exploit; they spend excessive ex-
ecution time transferring data between main memory and cache. For example, the
SPEC92I benchmark tomcatv spends as much as 53 percent of its time waiting for
memory on a DECstation 5000/125.

Fortunately, for many programs, small source-code changes -- called program
transformations - can radically alter memory reference patterns, greatly improv-
ing cache performance. Consider the well-known example in Figure 1 of traversing
a two-dimensional Fortran array. Since Fortran lays out two-dimensional arrays in
column-major order, consecutive elements of a column are stored in consecutive
memory locations. Traversing columns in the inner loop (by incrementing the row
index) produces a sequential reference pattern and, hence, spatial locality that most
caches can exploit. If, instead, the inner loop traverses rows, each inner-loop itera-
tion references a different memory region.

For arrays that are much larger than the cache, the column-traversing version will
have much better cache behavior than the row-traversing version. On a DECstation
5000/125, the column-traversing version runs 1.69 times faster than the row-travers-
ing version on an array of single-precision floating-point numbers.

We call this type of analysis a mental simulation of the cache behavior. By mentally
applying the program reference pattern to the underlying cache organization, we can
predict the program’s cache performance. This simulation is similar to asymptotic
analysis of algorithms (for example, worst-case behavior), which programmers com-
monly use to study the number of operations executed as a function of input size.
When analyzing cache behavior. programmers perform a similar analysis, but they

DO 20K = 1,100 DO 20K = 1,100
DO 20 I = 1,5000 D02OJ = I , 100

DO 20 J = 1,100 DO 20 I = 1,5000
20 XA(1. J) = 2 * XA(1, J) 20 XA(1, J) = 2 * XA(1, J)

(a) (b)

Figure 1. Row-major traversal of Fortran array (a), and column traversal (b).

must also have a basic understanding of
cache operation (see the next section).

Although asymptotic analysis is effec-
tive for eert;iin algorithms, analysis is dif-
ficult when applied to large complex pro-
gramb. Instead. programmers often rely
on an execution-timr profile to isolate
problematic code sections. to which they
later apply asymptotic analysis. Unfortu-
nately, traditional execution-time profil-
ing took (for example. gprof'). are gen-
erally insufficient to identify cache
perfommance problems. For the Fortran
array example (Figurl: 1). an execution-
time profile wouldidentify the procedure
or source lines as a bottleneck. but the
programmer could easil! conclude that
the floating-point operations were re-
sponsible. We can see. therefore. that
prograniniers would benefit from ;I pro-
file that focuses specifically on a pro-
gram's cache behavior.

Our purpose in this article is to intro-
duce ii broad audience t o cache perfor-
mance profiling and tuning techniques.
Although used sporadically in the super-
computer and multiprocessor communi-
ties. these techniques also have broad ap-
plicability l o programs running on fast
uniprocessor workstations. We show that
cache profiling, using our CProf cache
profiling sqclem. improves program per-
formance by focusing a programmer's at-
tention on pr~iblctnatic code sections and
providing insight into appropriate pro-
gram transl'ornmations.

Understanding
cache behavior

Caches sit between the (L i s t) proces-
\or and (\IOU) main meinor>, holding re-

Cache memory terminology

Associativity -The number of unique places in the cache where a particular

Block size - The number of contiguous bytes fetched on each cache miss.
Cache hit - A memory reference satisfied by the cache.
Cache miss - A memory reference not satisfied by the cache.
Capacity - The total number of bytes a cache may contain.
Capacity miss - A reference that misses in a fully associative cache with LRU
replacement.
Compulsory miss - A reference that misses because it is the first reference

Conflict miss - A reterence that hits in a fully associative cache but misses in

Direct mapped - A cache in which a block can reside in exactly one place in

Fully associative - A cache in which a block can reside in any place in the

Miss penalty -The time required to fetch data from main memory into the

Set-associative - A cache in which a block can reside in exactly A places in

block may reside.

to a cache block.

an A-way set-associative cache.

the cache.

cache (A = C/B).

cache on a cache miss.

the cache.

gions of recently referenced main mem-
ory. Refet ences satisfied by the cache -
called hit.) ~- proceeld at processor speed:
those unsatisfied --called n~i.ss~,s - incur
a cache miss penalty to fetch thc corre-
sponding data from main memory. Most
current processors must wait, or .stdI. un-
til the data arrive.

Caches work h'ecause most programs
exhibit significant locality. Temporal lo-
cczlify exists when a program references
the same memory location multiple times
in a short period. Caches exploit tempo-
ral locality by retaining recently refer-
enced data. Spcrtial loctrliry occurs when
the program accesses memory locations
close to those i t ha:i recently accessed.
Caches exploit spatial locality by fetch-
ing multiple contiguous words - a cache
block - tvhenevcr a miss occurs.

Caches are characterized by three ma-
jor parameters: cqwrcify (C) , block .xix
(€3). and r r v . w c i c r f / \ i @ (A). A cache's ca-
pacity simply defines the total number of
bytes it m<iy contain. The block size de-
termines how many contiguous bytes are
fetched o n each cache miss. A cache may
contain 211 most dYU blocks at any one
time. Associativity refers t o the number
of unique c x h e locations where a partic-
ular block may residle. I f a block can re-
side in an! cache location (A = C'IH). we
call i t a,fid/j. trssoc'irrt i ix, c~rc/w: i f i t can re-
side in cxxtly one localion (A = /). we
call i t ~ i r ~ , c i - / } ? (r ~ ~ ~ ~ (, ~ l : i f i t can reside in ex-
actly A locations. we call i t /t-tiyy s e / -
rr.\.socirrtii~v. (Smith's survey' describes
cache desisn in mort: detail.)

With these three parameters. a pro-

cache behavior to r simple algorithms.
Consider I he simple example o f nested
loops whet-e the outel. loop iterates L
times and the inner loop sequentially
acesses an array o f A/ 4-byte integers:

for (i = 0; i < L: + t i)

a[j] + = 2:
for (j .= 0; j < N I + - + I)

I f the arrav size (4 N) is smaller than the
cache capacity (see Figure 2a-b). we ex-
pect the number (4'ciichc misses t o equal
the array s i x divi'ded by the cache block
size. 4NiB (that is. the number of cache
blocks reqiiired t c hold the entire array).
If' the iirrav size is largei- than the cache
capacity (we Figurc: 2c). the expected

equal to the numlw of cache blocks re-
quired t o contain the array times the
number o f outer-loop iterations (4YLIR) .

16

Compilers may someday automate this
analysis and transform the code to reduce
the miss frequency; recent research has
produced promising results for restricted
problem domain^.^,^ However, for gen-
eral codes using current commercial com-
pilers, the programmer must manually
analyze the programs and manually per-
form transformations.

To select appropriate program trans-
formations, a programmer must first
know what causes poor cache behavior.
One approach to understanding why
cache misses occur is to classify each miss
as one of three disjoint types6: compul-
sory, capacity, and conflict. (Hill and
Smith6 define compulsory, capacity, and
conflict misses in terms of miss ratios.
When generalizing this concept to indi-
vidual cache misses, we must introduce
anticonflict misses, which miss in a fully
associative cache with LRU replacement
but hit in an A-way set-associative cache.
Anticonflict misses are generally only
useful for understanding the rare cases
when a set-associative cache performs
better than a fully associative cache of
the same capacity.)

A compulsory miss is caused by refer-
encing a previously unreferenced cache
block. In the small array example (Fig-
ure 2b), all misses are compulsory. Elim-
inating a compulsory miss requires
prefetching the data, either by an explicit
prefetch operation5 or by placing more
data items in a single cache block. For ex-
ample, if the integers in our example re-
quire only 2 bytes rather than 4, we can
cut the misses in half by changing the dec-
laration. However, since compulsory
misses usually constitute only a fraction
of all cache misses, we do not discuss
them further.

A reference that misses in a fully asso-
ciative cache with LRU replacement is
classified as a capacity miss. Capacity
misses are caused by referencing more
cache blocks than can fit in the cache. In
the large array example (Figure 2c), we
expect to see many capacity misses. Pro-
grammers can reduce capacity misses by
restructuring the program to re-reference
blocks while they are in cache. For ex-
ample, it may be possible to modify the
loop structure to perform the L outer-
loop iterations on a portion of the array
that fits in the cache and then move to
the next portion of the array. This tech-
nique, called blocking, is similar to the
techniques used to exploit the vector reg-
isters in some supercomputers.

A reference that hits in a fully associa-

I Cache Small array Large array

Figure 2. Determining expected cache behavior. Sequentially accessing a small
array (b) that fits in the cache (a) should produce M cache misses, where M is the
number of cache blocks required to hold the array. Accessing an array that is much
larger than the cache (c) should result in M L cache misses, where L is the number
of passes over the array.

Cache MO conflict Confliiing mappings

El
n

Figure 3. Conficting cache mappings. The presence of conflict misses indicates a
mapping problem: (b) shows how two arrays that fit in the cache (a) with a map-
ping that will not produce any conflict misses, and (c) shows two mappings that will
result in contlict misses.

tive cache but misses in an A-way set-
associative cache is classified as a conflict
miss. A conflict miss to block Xindicates
that block X has been referenced in the
recent past, since it is contained in the
fully associative cache, but at least A
other cache blocks that map to the same
cache set have been accessed since the
last reference to block X .

Consider the execution of a doubly
nested loop on a machine with a direct-
mapped cache, where the inner loop se-
quentially accesses two arrays (for ex-
ample, dot-product). If the combined
array size is smaller than the cache, we
might expect only compulsory misses.
However, this ideal case occurs only if

the two arrays map to different cache
sets (Figure 3b). If they overlap, either
partially or entirely (Figure 3c), then we
will get conflict misses as array elements
compete for space in the set. Eliminat-
ing conflict misses requires a program
transformation that changes either the
memory allocation of the two arrays, so
that contemporaneous accesses do not
compete for the same sets, or that
changes the manner in which the arrays
are accessed.

Our discussion assumes a cache in-
dexed with virtual addresses. Many sys-
tems index their caches with real or phys-
ical addresses, making cache behavior
strongly dependent on page placement.

October 1994 17

I
/* old declaration of two arrays *I
int val [SIZE];
int key [SIZE];

C old declaration
integer X(N, N)
integer Y(N, N)

I* new declaration of *I
I* array of structures *I
struct merge {

C new declaration
integer XY(2*N, N)

int Val; C preprocessor macro
int key; C definitions to perform addressing

#define X(i, j) XY((2*i) - 1, N)
#define Y(i, j) XY((2*i), N)

1;
struct merge merged-array[SIZE];

Figure 4. Examples of merging arrays in C (a) and Fortran77 (b).

I* old declaration of a twelve *I
I* byte structure *I
struct ex-struct [

int vall, va12, va13;
t ;
I* new declaration of structure * I
I* padded to 16-byte block size *I
struct ex-struct [

int vall, va12, va13;
char pad[4];

1;

(a)

I* original allocation does not */
I* guarantee alignment *I
ar = (struct ex-struct *)

malloc(sizeof(struct ex-struct)*SIZE);

I* new code to guarantee alignment *I
I* of structure. *I
ar = (struct ex-struct *)

malloc(sizeof(struct ex-struct)*(SIZE + I));

ar = ((int) ar + B - l)/B)*B

Figure 5. Padding (a) and aligning structures (b) in C.

However, many operating systems use tures are relerenced. Capacity misses can
page coloring to minimize this effect, thus be eliminated by program transforma-
reducing the performance difference be- tions that reuse data before it is displaced
tween virtual-indexed and real-indexed from the cache, such as loop fusion.
caches.’ structure and array packing,

and loop interchange.

Merging arrays. Some programs con-
temporaneou4y reference two (or more)
arrays of the same dimension using the
same indices By merging multiple arrays
into a single compound array, the pro-

Techniques for
im roving cache
be R avior

Program transformations can be clas-
sified by the type of cache misses they
eliminate. Conflict misses can be reduced
by merging arrays, padding and aligning
structures. packing structures and arrays,
and interchanging loops. The first three
techniques change the allocation of data
structures, whereas loop interchange
modifies the order in which data struc-

grammer increases spatial locality and
potentially reduces conflict misses. In the
C programming language, this is accom-
plished by declaring an array of structures
rather than two arrays (Figure 4a). This
simple transformation can also be per-
formed in Fortrango, which provides
structures. Since Fortran77 does not have
structures, the programmer can obtain

the same effect using complex indexing
(Figure 4b).

Padding and aligning structures. Ref-
erencing a data slructure that spans two
cache blocks may incur two misses, even
if the structure is smlaller than the block
size. Padding structures to a multiple of
the block size arid aligning them on a
block boundary can (diminate “niisalign-
ment” misses, which generally show up
as conflict misse:. F’adding is easily ac-
complished in C (Fip,ure Sa) by declaring
extra pad fields. Alignment is a little
more difficult, since the address of the
structure must be a multiple of the cache
block size. Staticady declared structures
generally require compiler support. Dy-
namically allocai.ed structures can be
aligned by the programmer using simple
pointer arithmetic: (Figure Sb). Some dy-
namic memory allocators (for example,
some versions of tnalloc()) return cache
block-aligned me:nory.

Packing. Packing is the opposite of
padding. I3y packing an array into the
smallest space possible. the programmer
increases spatial locality. which can re-
duce conflict and (capacity misses. In Fig-
ure 6a, the prograinmer observes that the
elements of array due are never greater
than 255 and. hence, could f i t in type un-
signedchar. which requires 8 bits, instead
of unsigned int, which typically requires
32 bits. For ii mactiint with 16-byte cache
blocks, the code i n Figure 6b permits I6
elements per block. rather than 4. reduc-
ing the maximum iiumber of cache misses
by a factor o f 4.

Loop fusion. Niimeric programs often
consist of scveral operations on the same
data, coded as multiple loops over the
same ar rqs . By combining these loops, a
programmer increases the program’s
temporal locality .ml frequently reduces
the number of capacity misses. The ex-
amples in Figure 7 combine two doubly
nested loops so that all operations are
performed o n an entire row before mov-
ing on to tho next Lm~i,fir.siotz is the ex-
act opposite of loop Ji’.s.sion. a program
transformation that splits independent
portions o f a 1oc.y body into separate
loops. Loop fission helps an optimizing
compiler detect loops that exploit vector
hardware o n som2 supercomputers. Be-
cause most vector supercomputers do not
employ caches. rclying instead on high-
bandwidth interlcaved main memories.
some of the transfrmnations described in

18 COMPUTER

this article may be counterproductive for
these machines.

Blocking. Blocking is a general tech-
nique for restructuring a program to
reuse chunks of data that fit in the cache
and reduce capacity misses. The SPEC
matrix multiply (part of dnasa7, a For-
tran77 program) implements a column-
blocked algorithm (Figure 8b) that
achieves a 2.04 speedup versus a naive
implementation (Figure 8a) on a DEC-
station 50001125. The algorithm tries to
keep four columns of the A matrix in
cache for the duration of the outermost
loop, ideally getting N - 1 hits for each
miss. If the matrix is so large that four
columns do not fit in the cache, we can
use a two-dimensional (row and column)
blocked algorithm instead.

CProf cache
profiling system

Cache misses do result from the com-
plex interaction among algorithm, mem-
ory allocation, and cache configuration;
when the program is executed, the reality
may not match the programmer's expec-
tations. CProf, our cache profiling sys-
tem, addresses this problem by identify-
ing where cache misses occur and by
classifying them as compulsory, capacity,
or conflict misses.

Cache- and memory-system profilers
differ from the better-known execution-
time profilers by focusing on memory-
system performance. Memory-system
profilers do not obviate execution-time
profilers; instead, they provide vital sup-
plementary information to quickly iden-
tify memory-system bottlenecks and tune
memory-system performance.

Cache- and memory-system profilers
differ in the level of detail they present.

I* old declaration of an array *I
I* of unsigned integers. *I
unsigned int values[10000];

I* new declaration of an array *I
I* of unsigned characters. *I
/* Valid iff 0 c = value < = 255 *!
unsigned char values[10000];

I* loop sequencing through values *I
for (i = 0; I < 1oooO; i++)

values [i] = i % 256;
/* loop sequencing through values */
for (i = 0; i < 1oooO; i++)

values [i] = i % 256;

(a) (b)

Figure 6. Unpacked (a) and packed (b) array structures in C.

Figure 7. Sepa-
rate (a) and

fused (b) loops.

for (i = 0; i < N; i++) for (i = 0; i N; i++)
for (j = 0; j <N; j++); far (j =0; j <N; j++)

a[i][j] = I/b[i]b]*c[i][j]; {

E

a[i]b] = I/b[i]~]*c[i]6];
dIi][j] = a[i]Q]+c[i]b];

for (i = 0; i < N; i++)
for6 =O;j < N, j++)

d[i][j] = a[i]u]+c[i][j];

(a) (b)

High-level tools, such as MTool,* iden-
tify procedures or basic blocks that incur
large memory overheads. CProf and
PFC-Sim,9 on the other hand, allow
more detailed analysis by identifying
cache misses at the source-line level.
This extra detail is not free; MTool runs
much faster than profilers requiring ad-
dress tracing and full cache simulation.
However, full simulation also permits a
profiler to identify which data structures
are responsible for cache misses and to
determine the type of miss - features
provided by CProf and MemSpy.l0

CProf is similar to MemSpy, the differ-

ence being the granularity at which source
code is annotated and the miss type clas-
sification. MemSpy annotates source code
at the procedure level and provides two
miss types for uniprocessors - compul-
sory and replacement. CProf provides
fine-grain source identification and data
structure support, and classifies misses as
compulsory, capacity, or conflict.

CProf uses a flexible X Windows in-
terface (see Figure A on p. 20) to present
the cache profile in a way that helps the
programmer determine the cache per-
formance bottlenecks. The data window
lists either source lines or data structures

Figure 8.
Naive (a) and

SPEC column-
blocked matrix

multiply (b).

DO 110 J = 1, M, 4
DO 110 K = 1, N

D O 110 J = 1, M D O l l O I = l , L
DO 110 K = 1, N C(1, K) = C(1, K) + A(1, J) * B(J, K)

+ A(1, J + 1) * B(J + 1, K)
+ A(1, J+2) * B(J +2, K)
+ A(1, J + 3) * B(J + 3, K)

DO 110 I = 1, L
C(1, K) = C(1, K) + A(1, J) * B(J, K)

110 CONTINUE
110 CONTINUE

October 1994 19

Brof user interface

w

CProf's user interface (Figure A l) is divided into three sec-
tions for data presentation and one section for command
buttons. The top section is the text window, the middle section
is the data window, and the bottom section is the detail win-
dow. A particular window's use depends on the selected
command button.

for each source file and an additional entry that allows dis-
play of a list of source files sorted by the number of cache
misses. Selecting one of the files displays the source code in
the text window. Each source line is labeled with the number
of cache misses generated by that line. We highlight the line
with the most cache misses. The up- and down-arrow but-

The source button opens a pull-down menu with an entry

lomcatv f 107 1632150 1258%
tomcaw f 92 983550 758%
lomcaw f 157 974700 751%
IonlCSty f 106 662050 510%

tons allow movement within the source file to the line with the
next higher or next lower number of misses, respectively.
The detail window refines the cache misses for the high-
lighted line into the miss type. Selecting a miss type causes a
window to open that displays the data structures referenced
by this source and the corresponding number of cache
misses for the miss type selected (Figure A2).

The sort lines button displays a list of source lines in the
data window, sorted according to the number of cache
misses. Each entry contains the file name, the line number,
the number of cache misses, and the percent of the total
misses. A sorted list of data structures is displayed by the
sort vars button. Each entry in this list contains the variable

I Line Read +Write File: tomc8tv.f
10450 QXX = Y (IP, J)-2. * Y (I, J) + Y (IM. J)
660670 PYY = X (I. JP)-2. t X (I, J) + X (I. JM)
662050 M Y = Y (I, JP)-2. * Y (I. J 1 + Y (I, J M)

1632150 PXY = X (IP, JP 1 -X (E JM) -X (IM, JP) + X (IM, JM) 107

I:
I: CALCULATE RESIDUALS (EQUIVALENT TO RIGHT HAND SIDES OF EQUS
1:

-1 Count for Line #IO0 of tomcatvf
Conflict 1309600

3264 1 9

Data Structures referenced by Line #lo@ of i0mcatv.f

DATA STRUCTURE

Read Conflict Misses
i0mcaw.f : MAIN- () : y
t0mcatv.f : MAIN- () :]in
t0mcatv.f : MAIN- () . iin
iomcatv.f : MAIN- () . xx

COUNT

1304320
800
640
240

Write Conflict Misses
t0mcatv.f : MAIN- () ' rx
tomcatv.f : MAIN- () : cpxy

2800
800

(2)

name, the count of the
number of misses,
and the percentage of
total misses. Selecting
a miss type causes a
window to open that
displays the source
lines that reference
this data structure and
the corresponding
number of cache
misses for the miss
type selected. The
user selects which
reference types
(Read, Wrife, Ifetch) to
display with the set
metrics button. Finally,
the counts displayed
in the data window
can be written to a file
with the dump counts
button.

Figure A. CProf user
interface: (1) the pri-
mary window and (2)
the cross-reference
window.

sorted in descending order of impor-
tance, allowing quick identification of
poor cache behavior. hdisses are cross ref-
erenced so that a programmer can
quickly determine which of several data
structures on a source line is responsible
for most cache misses.

CProf annotates static and dynamic

data structures. Dynamically allocated
structures are labeled by concatenating
the procedure names on the call stack at
the point of allocation." An appended
counter value allows unique identification
of all dynamically allocated structures.

The text window is used to view indi-
vidual source files, where each line is an-

notated with the corresponding number
of cache misses. The X Windows user in-
terface allows the user to browse within
the source file, moving to the line with the
next higher or lower number of cache
misses. The detail window displays the
number of each m i s s type for the currently
selected source line or data structure.

20 COMPUTER

Case study: The
SPEC benchmarks

Here, we describe a study in which we
used CProf and our transformations to
tune the cache performance of six pro-
grams from the SPEC92 benchmark suite:
compress, eqntott, xlisp, tomcatv, spice,
and dnasa7. First, we show that we can
obtain significant speedups using cache
profiling, even for codes that have been
extensively tuned using execution-time
profilers. Second, we show how we used
CProf to gain insight into the cache be-
havior and determine which transforma-
tions were likely to improve performance.

We present performance results in
terms of speedup in user execution time
on three models of the DECstation 5000
the 5000/240, 5000/125. and 50001200.
(System time accounts for little of the to-
tal execution time for most of the pro-
grams. Compress is the exception, where
system time is relatively high because of
the large amount of I/O. In this case, ex-
cluding the system time eliminates the
bias introduced by the different I/O sys-
tems.) Each of these machines has sepa-
rate 64-Kbyte direct-mapped instruction
and data caches, 16-byte blocks, and a
write buffer. The 50001125 and 5000/200
use a 25 MHz MIPS R3000 processor
chip. The major difference between the
memory systems of the two machines is
the cache-miss penalty - 16 processor
cycles on the 5000/200 and 34 cycles on

2'53

1.55
1.50
1.45
1.40
1.35 1 ;::
1 .a0
1.15
1.10
1.05
1 .oo

Figure 9. Speedups on a DECstation 5000/125, obtained via cache profiling.

the 5000025, which helps illustrate the
importance of cache profiling as cache-
miss penalty increases. The 50001240 uses
a 40 MHz MIPS R3000 processor chip
and has a 28-cycle miss penalty.

The machines also have secondary dif-
ferences with significant performance im-
pact. For example, the 50001240 and
5000/200 have 4-deep write buffers, while
the 50001125 has only a 2-deep write
buffer. In addition, the 5000/240 performs

Table 1. Program restructuring techniques that improve the cache behavior of each
program studied.

Restructuring Technique

Merging Loop Loop Padding and
Program Arrays Fusion Interchange Aligning Packing Blocking

btrix* 0 0 0

0 commess I

0 0 vDenta* I
disp 0

* dnasa7 I

sequential prefetch on cache misses, re-
ducing the effective miss penalty for long
sequential accesses. While these sec-
ondary factors significantly affect execu-
tion time, we have not found it necessary
to model these factors in CProf s cache
simulation.

To reduce experimental error, we aver-
aged the execution time over five runs.
The programs were compiled at opti-
mization level -03 using the MIPS Ver-
sion 2.1 C and F77 compilers. Spice was
the one exception, compiled at optimiza-
tion level -02 per the SPEC make file.
While run times are all reported with full
optimization, we profiled most of the pro-
grams at optimization level -01, with full
symbolic debugging (-g). Cache profiling
at high optimization levels suffers from
the same difficulties as debugging (that is,
incorrect line numbers), since CProf uses
the same symbol tahle information.

Table 1 shows the applications that ben-
efited from the various restructuring tech-
niques. The benchmark program dnasa7
consists of seven numerical kernels; we
broke out five kernels with poor cache per-
formance and analyzed them separately.

Table 2 on the next page and Figure 9
above present execution time results for
the six benchmarks. The full programs
execute as much as 90 percent faster
when modified to improve cache behav-
ior. Breaking out the kernels in dnasa7
shows even more striking results, with
speedups as much as 3.46 for vpenta on

October 1994 21

the 5000/240, 2.53 or1 the 50001125, and
2.14 on the 5000/200.

Below we discuss our experience cache
profiling and modifying each program.

Compress. The compress Unix utility
implements the well-known Lempel-Ziv
data compression algorithm. For each in-
put character, compress searches a hash
table for a prefix key. When the key
matches, another array is accessed to ob-
tain the appropriate value. The hash
table is large (69,001 entries) to reduce
the probability of collisions. When a col-
lision does occur, a secondary probe is
initiated.

CProf indicates that two source lines
are responsible for 71 percent of the
cache misses. One source line, the initial
probe into the hash table. accounts for 2 I
percent of the cache misses. The other
source line performs tlhe secondary probe
operation when there is a collision; it ac-
counts for 50 percent of the misses. CProf
also shows that most of the misses are ca-

pacity misses. We can eliminate capacity
misses by processing data in portions that
fit in the cache.

Applying this insight to compress, we
reduced the hash table size from 69,001 to
5,003, small enough to fit in the data
cache. This change results in speedups of
1.92 on a 50001240. 1.56 on a 50001125,
and 1.30 on a 5000/200. However, this
modification actually changes the pro-
gram output, since the compression ratio
(original file size/compressed file size) is
related to the size of the hash table. The
output is still a compatible compressed
file, but it does not match the standard
SPEC output. Nonetheless, there is a
clear trade-off between speed and com-
pression ratio. The unoptimized version
has a compression ratio of 2.13. whereas
the optimized version's is 1.77.

We also tried to improve the cache per-
formance of compress without changing
the compression ratio. Although com-
press has a large number of capacity
misses, conflict misses account for 13 per-

cent of thc misses to the key array and 19
percent of the misses to the value array.
CProf's X Windows interface allowed us
to quickly determine that the array index
is the same for both arrays. Although sep-
arate arrays reduce the total space re-
quirements (the key is a C integer and
the value is a short; alignment restrictions
in C require padding i f these are com-
bined into an array of structures), the
price is poor spatial locality. After refer-
encing a key, compress is likely to refer-
ence the corresponding value. which re-
sides in the other array and in a different
cache block (see Figure 10a).

Merging the two arrays into a single ar-
ray of structures places the key and value
in the same cache block (see Figure lob),
improving spatial locality. With this mod-
ification, accesses to the value always hit
in the cache (assuming proper align-
ment), reducing the number of conflict
misses and providing speedups of 1.07 on
the 5000/240, 1.05 on the 50001125, and
1.02 on the 50001200.

Table 2. Execution time speedup resulting from cache profiling. (The original and tuned times for dnasa7 include the SPEC
version of matrix multiply or mxm.)

Machine

5OOO/125 50001200 5000/240
Program Seconds Speedup Seconds Speedup Seconds Speedup Modification

compress

dnasa7

btrix

cholesky

gmtry

mxm

vpenta

eqntott

spice

tomcatv

xlisp

7.70
7.34
4.94

1228.22
945.18
144.06
109.50
188.90
162.16
177.06
119.78
248.44
122.06
264.78
126.38
104.54
67.56
60.98

2242. IO
1781.72
221.20
167.24
150.88
385.24
361.96

5.98
1 .05 5.84
156 4.60

1.30

1.32

1.16
141.98

1.48 95.82
184.56

2.04 106.02
169.86

2.10 91.80
2.53 79.42

58.
1.11 55.

1762.34
1.26 1406.04

161.20
1.32 134.38
1.47 126.36

286.56,
1.06 277.18

5.56 Original
I .02 5.22 1.07 Merged key and value arrays
1.30 2.90 1.92 Reduced hash table size

1.24

I .27

1.13

I .48

1.74

1 .85 69.60 2.93 Merged arrays and loop interchange
2.14 58.88 3.46 + loop fusion

39.96 Original
1.06 38.92 1.03 Changed short to ch

1557.90 Original
1.25 1163.42 1.34 Merged pointer and number

137.30 Original
1.20 91.40 1.50 Merged arrays X and Y
1.28 86.08 1.60 + loop fusion

I .03 190.30 1 .OX Padded n d e to 16 bytes

rchange and loop fusion

128.42 Original

203.80 Original

205.72 Original

COMPUTER 22

Eqntott. The SPEC benchmark eqn-
tott is a CAD tool that converts Boolean
equations into their equivalent truth ta-
bles. Execution-time profiling shows that
eqntott spends 95 percent of its time in
the quick-sort routine.I2 CProf further re-
veals that most of this time is spent mov-
ing the sort keys from memory into the
cache; more than 90 percent of the misses
are generated in one comparison routine.
The offending routine examines two ar-
rays and generates mostly capacity
misses, indicating that we either need to
re-reference blocks while they are in the
cache or bring in fewer blocks. CProf in-
dicates that most of these capacity misses
are due to fetching BIT structures dy-
namically allocated at line No. 44 in
pterm.c. The BIT data type is a 16-bit in-
teger (type short in C), and inspection of
the source code shows that BIT data
types only take on values in the set [O, 1,
21. Changing the type definition from 16-
bit integer to 8-bit integer (short to char)
reduces the number of misses in this rou-
tine by half. The speedup in execution
time is 1.03 on a 5000/240, 1.11 on a
50001125, and 1.06 on a 5000l200. The
prefetch capabilities of the 5000/240 ex-
ploit the sequential accesses of the com-
pare routine, reducing the benefit of our
modification.

In eqntott, the integer values actually
represent the symbolic values zero, one,
and dash. With the use of enumerated
types, a compiler could potentially allocate
as few as two bits per array element. re-
sulting in one-eighth the number of cache
misses. The trade-off, however, between
fewer cache misses and the time to unpack
the data is implementation dependent.

Xlisp. The SPEC benchmark xlisp is a
small lisp interpreter solving the nine
queens problem. To reduce computation
requirements during profiling, we pro-
filed xlisp solving the six queens problem;
however, the speedup results in Table 2
are for the standard nine queens input.
Programmers should be aware that cache
behavior is sensitive to the input data.
Programs may exhibit good cache be-
havior with smaller input sizes and poor
behavior for larger inputs. In this case,
the results obtained from the smaller in-
put data were sufficient to achieve rea-
sonable speedups with the larger input.

CProf shows that approximately 40
percent of the cache misses (mostly the
conflict type) occur during mark-and-
sweep garbage collection. During this
phase, the program first traverses the

Cache set

(as (b)

Figure 10. Cache mappings for compress. The initial allocation strategy for the key
and value arrays (a) resulted in as many as two cache misses for each successful
hash table probe. Merging the two arrays into an array of structures (b) effectively
interleaves the elements of the two arrays and results in only one cache miss per
successful probe.

1 Cache set

Figure 11. Cache mappings for xlisp node structures. Each pattern corresponds to a
different node structure, while pad indicates wasted storage. The initial allocation
strategy (a) resulted in two cache misses for half of the nodes not in the cache. Pad-
ding the structures to equal a cache block size and alignment on cache block bound-
aries (b) reduces this to only one cache m i s s per node not resident in the cache.

reachable nodes and marks them acces-
sible, and then sweeps sequentially
through the memory segment placing un-
marked nodes on the free list. Mark-and-
sweep garbage collection has inherently
poor locality, and an alternate algorithm
would provide better cache behavior.

CProf also shows that 19 percent of the
cache misses are generated by the single
source line that checks the flag (used to
mark accessibility) during the sweep.
Since conflict misses dominate, we first
improved the spatial locality of the sweep
routine by separating the flags from the
rest of the node structure. With the flags
in a single array, the sequential sweep ex-
hibited excellent spatial locality. For ev-
ery miss, the next 15 references hit, elim-
inating most of the cache misses in the
sweep routine. Unfortunately, the change

also increased the number of misses in
the mark routine, which must first fetch a
node, then the corresponding flag. This
modification increased spatial locality in
the sweep at the expense of spatial local-
ity during the mark, resulting in a negli-
gible change in performance.

Returning to CProf, the node struc-
tures allocated on line No. 540 of xld-
mem.c incur a large number of conflict
misses. Inspection of the source reveals
that each node slructure occupies 12
bytes, or three-fourths of a 16-byte cache
block. Consequently, only half the nodes
reside entirely within a single cache block
(see Figure 11). The remaining nodes re-
side in two contiguous cache blocks, po-
tentially causing two cache misses rather
than one. By explicitly padding the orig-
inal node structure to 16 bytes (the cache

October 1994 23

block size) and ensuring alignment on
cache-block boundaries. we obtained a
1.08 speedup on the 5~000/240,1.06 on the
50001125, and 1.03 on the 5000/200.

Padding data structures without guar-
anteeing alignment can be worse than not
padding them at all. I:n this example, we
might end up with all nodes generating
two misses. Similarly, while many mem-
ory allocators (for e.aample, the Ultrix
malloci) routine) re:turn cache-block-
aligned memory, xlisp preallocates large
chunks and manages them itself, bypass-
ing the alignment performed within the
allocator. Application-specific memory
managers certainly have a role, but pro-
grammers should remember the impact
of padding and alignment on cache per-
formance.

Padding data structures also wastes
memory space; the xlisp node structures
use only 10 bytes of information, Explicit
padding increases the allocated size from
the 12 bytes required by C language se-
mantics to 16 bytes -- a 33 percent in-
crease in storage. Increasing byte alloca-
tion could adversely affect virtual
memory performance for larger pro-
grams, although that was not a problem
in this case.”

Tomcatv. Tomcatv lis a Fortran77 mesh
generation program that uses seven two-
dimensional data arrays, each of which
requires approximately 0.5 Mbyte. The
algorithm (see Figure 12a) consists of a
forward pass in which two arrays are read
and the other five written (loops 1.2,3),
a backward pass (loop 4) over two arrays
to calculate errors. and finally another
forward pass (loop 5) ‘to add these errors.

Since the arrays are much larger than
the cache and are sequentially accessed,
we expect to see a large number of ca-
pacity misses. However, CProf shows that
read accesses to arrays X and Y during
the first loop of the initial forward pass
are generating a large number of conflict
misses. The two arrays are always refer-
enced with the same indices. Hence, to
improve spatial locality, we merged them,
placing elements X(f,.\) and Y(Z,J) in the
same cache block. This modification re-
sults in speedups of 1.50 on the 50001240,
1.32 on the 5000/125. and 1.20 on the
50001200.

Running CProf on the modified tom-
catv, we find that capacity misses to the
RX and RY arrays now dominate. As Fig-
ure 12a shows, the forward pass is actually
composed of several loops. Loop 1 initially
references six arrays, including writing RX

for LL

/
loop 1.

loop 2.

loop 3.

’* FORWARD WAVE */
for j

fori
X, Y RX, RY, AA, DD

for j
fori

RX, RY
for j

fori
AA, DD RX, RY, D

€or LL

/* FORWARD WAVE */
loop 1. forj

fori

fori

fori

fori

X, Y RX, RY

X, Y RX, RY, AA, DE

RX, RY

AA, DD RX, RY, D

/* BACKWARD WAVE *I I* BACKWARD WAVE */
loop4. for j loop2. forj

fori fori
RX, RY, AA, D

/* FORWARD WAVE */

RX, RY, AA, D
end for

l oop5 forj
fori

X, Y RX, RY

endfor

Figure 12. Original tomcatv pseudocode (a), and loop-fused tomcatv (b). The
original tomcatv algorithm contains several loops within a forward wave. Although
the same arrays are referenced in consecutive loops, the data accessed in the begin-
ning of the loop is displaced by data referenced at the end of the previous loop.
The loop-fused version of tomcatv performs all forward-wave operations on one
row of the arrays. This results in speedups of 1.60,1.47, and 1.28 on the DECstation
5000/240,5000/125, and 5000/200, respectively.

and RY, followed by loop 2 that computes
the maximum values of the RX and RY
arrays, and a final pass (loop 3) over the
RX and RYarrays to adjust the values. In
addition to these disjoint forward pass
loops, there is the forward pass (loop 5)
to add the errors to the Xand Y arrays af-
ter the backward pass (loop 4) over the
RX and RY arrays. The RX and RY ar-
rays are referenced in the same order in
each loop of the forward pass (loops 1,2,
3). However, each array is 0.5 Mbyte in
size, much larger than the 64-Kbyte data
cache. Therefore, the elements referenced
at the start of one loop are not in the cache
when the next loop starts.

The solution is to improve temporal lo-
cality by restructuring the program so that
all allowable operations are performed
on an element when it is cache resident.
Transforming the program via loop fu-
sion (Figure 12b) merges these loops so
that the program contains only one for-

ward and one backward loop. We cannot
perform the operations of both the for-
ward pass and backward pass in the same
loop because of data dependencies. We
folded the addition of error corrections
into the forward pass. Loop fusion, in ad-
dition to array merging, produced a
speedup of 1.60 on the 5000/240,1.47 on
the 500011 25, and 1.28 on the 50001200.
These speedups are not as high as we ex-
pected because of an increase in the num-
ber of conflict misses and a slight increase
in the number of instructions executed.

Spice. Spice (spice2g6) is an analog cir-
cuit simulator written In Fortran. The pri-
mary data structure is a sparse matrix,
which is implemented by several arrays.
In particular, there are separate arrays
for row pointers, row numbers, column
pointers, column numbers, and values.
CProf shows that two source lines ac-
cessing the row pointer and number ar-

24 COMPUTER

DO 8 I = 1, MATDIM
DO 8 I = 1, MATDIM RMATRX(1, I) = 1.DO I RMATRX(1, I)

DO 81 J = I + 1, MATDIM RMATRX(I,I)= l.DOIRMATRX(I,I)
DO 8 J = I + 1, MATDIM RMATRX(J, I) = RMATRX(J, I) * RMATRX(1, I)

RMATRX(J, I) = RMATRX(J, I) *RMATRX(I, I) 81 CONTINUE
DO 8 K = I + 1, MATDIM DO 8 K = I + 1, MATDIM

RMATRX(J, K) = RMATRX(J, K) DO 8 K = I + 1,MATDIM
- RMATRX(J, I) * RMATRX(1, K) RMATRX(J, K) = RMATRX(J, K)

8 CONTINUE - RMATRX(J, I) * RMATRX(1, K)
8 CONTINUE

Figure 13. Gaussian elimination loops: (a) original; (b) interchanged.

rays cause 34 percent of the cache misses,
with an additional 12 percent from an-
other two source lines accessing the col-
umn pointer and number arrays. Each
source line pair is contained in a small
loop that locates an element (I , J) in the
sparse matrix. CProf shows that most
misses caused by these source lines are
conflict misses, indicating a mapping
problem. Again, the X Windows inter-
face of CProf allows us to quickly deter-
mine that the row (column) pointer and
row (column) number arrays are nearly
always accessed with the same index.
Merging the pointer and number arrays
to improve spatial locality results in a
speedup of 1.34 on the 50001240,1.26 on
the 50001125, and 1.25 on the 50001200.

Dnasa7: The NASA
kernels

Dnasa7 is a collection of seven float-
ing-point intensive kemels also known as
the NAS kemels: vpenta, cholesky, btrix,
fft, gmtry, mxm and emit. Each kemel ini-
tializes its arrays, copies them to working
arrays, and then calls the application rou-
tine. We discuss the kernels separately, to
better describe the cache optimizations.
We did not study emit, a vortex genera-
tion code, or fft, a fast Fourier transform
code. Emit has a low miss ratio on a 64-
Kbyte data cache (0.8 percent), and shuf-
fling ffts have inherently poor cache per-
formance. The speedup we obtained for
the entire collection of kernels is 1.51 on
the 50001240, 1.30 on the 50001125, and
1.24 on the 50001200.

Vpenta. The vpenta kernel simulta-
neously inverts three pentadiagonals, a

routine commonly used to solve systems
of partial differential equations. CProf
first finds that the miss ratio is a startling
36 percent, mostly due to conflict misses.
Using CProf to identify the mapping
problems, we discovered two nested
loops responsible for more than 90 per-
cent of the cache misses. One loop ac-
cesses three arrays, while the other ac-
cesses eight arrays. We can eliminate
conflict misses by changing the data
structure allocation or the order in
which structures are accessed. Source
code inspection reveals that both tech-
niques can be applied. We discovered
the loops could be interchanged to tra-
verse the arrays in column order and
identified three opportunities for array
merging. These modifications result in
speedups of 2.93 on a 50001240,2.10 on
a 50001125, and 1.85 on the 50001200.
The original code runs slower on the
50001240 than on the 50001200, despite
the 60-percent faster processor cycle
time. This is apparently due to the
higher miss penalty - the two machines
use the same DRAMS, but the 240 in-
curs approximately 100 nanoseconds ad-
ditional delay, due to an asynchronous
interface. Loop interchange not only in-
creases spatial locality, but results in a
sequential access pattern that the 240’s
prefetch logic can exploit. The 5000/240
has a speedup of 1.3 versus the 50001200
on the modified code.

As with tomcatv, running CProf on the
modified version of vpenta shows that ca-
pacity misses now dominate. Fusing
loops, which eliminates multiple passes
over the same arrays to improve tempo-
ral locality, results in speedups over the
original version of 3.46, 2.53, 2.14 on
the 50001240, 50001125, and 5000/200,
respectively.

Cholesky. Cholesky performs cholesky
decomposition and substitution. CProf
reveals numerous capacity misses in two
nested loops. Source code inspection
identifies an array traversed in row-
major, rather than column-major, order.
Statically transposing the array (effec-
tively performing loop interchange but
with much simpler code modification) re-
sults in speedups of 1.32 on the 50001240,
1.16 on the 50001125, and 1.13 on the
50001200. Blocking can also be applied to
cholesky: but we chose to apply a much
simpler transformation.

Btrix. Btrix is a tridiagonal solver.
CProf shows that niost misses are again
capacity misses that occur in two nested
loops. As always, we first checked the ar-
ray reference order and immediately no-
ticed that one array is traversed in row
order. We also observed that statically
transposing this array would allow fusion
of six different loops. We were able to
apply several transformations after a sin-
gle run of CProf. We obtain a speedup of
1.48 on the 50001240, 1.32 on the
50001125, and 1.27 on the 50001200.

Gmtry. Gmtry is a kernel dominated
by a Gaussian elimination routine (see
Figure 13). CProf finds that 99 percent of
the misses, mostly capacity, occur in the
Gaussian elimination loop; inspection
shows that the rmatrx is traversed in row
order. Interchanging the loops, which is
trivial in this case, results in a speedup of
2.52 on the 50001240 and 1.48 on the
50001200 and 5000/125.

Mxm. Mxm is a matrix-matrix multi-
ply routine. The naive matrix multiply al-
gorithm is a well-k.nown “cache buster”
because there is little data reuse between

October 1994 25

loop iterations. Instead of this algorithm,
the SPEC mxm implementation uses a
column-blocked implementation (de-
scribed above) that reuses the same four
columns throughout the two innermost
loops. Cache performance improvement
was not the original rationale for blocking
mxm; instead, the intent was to let vec-
torizing compilers more effectively reuse
the contents of vector registers in Cray
supercomputers. In this case, the same
transformation improves performance
for both vector registers and caches.

The standard SPEC column-blocked
algorithm achieves a speedup of 1.38 ver-
sus the naive algorithm on a 5000/240.
2.04 on the 5000/125, and 1.74 on a
5000/200. For larger matrices, a 2D row-
and column-blocked algorithm would
perform better, but for the standard
SPEC input size, the extra overhead de-
creases performance.

A s processor c:ycle times continue
to increase faster than main
memory cycle times, memory

hierarchy performance becomes in-
creasingly important. Programmzrs can
mentally simulate cache behavior to help
select algorithms with good cache per-
formance.

Actual cache performance. unfortu-
nately, does not always match the pro-
grammer’s expectations. and many pro-
grams are too complex for the interactions
among memory reference patterns, data
allocation, and cache ‘rirganization to be
fully analyzed. In these cases, a tool like
CProf becomes an important element in a
programmer’s tool box.

CProf offers cache performance infor-
mation at the source line and data struc-
ture level, which allows a programmer to
identify hot spots. By classifying cache
misses as compulsory., capacity, or con-
flict. CProf lets programmers select ap-
propriate program transformatioms that
improve a program’s spatial or temporal
locality, leading to better overall perfor-
mance. m

Acknowledgments
We thank Karen M i l k , Alain Kagi, and

Chris Maguire for work on an earlier version
of CProf. Kagi and Scott Kcmpf found sev-
eral bugs in the latest version. James Larus
provided a great deal 01 support for QPT,
used to generate input l’or CProf, and sug-
gested reducing the hash table size in com-
press. Mitali Lebeck, Larus. and Mark Hill

provided helpful comments and suggestions 12. D.N. Pnevmatikatos and M.D. Hill.
on early drafts. “Cache Performance of the Integer SPEC

This work is supported in part by National Benchmarks on a RISC. “ A C M SIGArch
Science Foundation Presidential Young In- Computer Architecture News, Vol. 18. No.
vestigator Awards CCR-9157366 and MIPS- 2, June 1990, pp. 53-68.
8957278, National Science Foundation Grants
CDA-8920777. CCR-9101035, and MIP-922-
5097. and donations from AT&T. Bell Labo-
ratories, Digital Equipment Corporation, Xe-
rox Corporation. and the Graduate School of
the University of Wisconsin.

1.

2.

3.

4.

5 .

6 .

7.

8.

9.

10

11

S.L. Graham. P.B. Kcssler and M.K.
McKusick, “An Execution Profiler for
Modular Programs,” Sofhvare Prtictiw and
E.rpekrc.e. Vol. 13, 1983, pp. 671-685.

A.J. Smith, “Cache Memories,” ACM
Compirtin,y Suri,eys. Vol. 14. No. 3, Sept.
19x2, pp 173-530.

M.S. Lam. E.E. Kothberg.and M.E. Wolf,
“The Cachc Performance and Optimiza-
tions o1 Blocked Algorithms.” Proc..
ASPLOS 4, 1091. ACM. New York.
pp. 67-74.

A. Porterfield, “Software Methods for Im-
provement of Cache Performance on Su-
percomputer Applications,’’ PhD thesis,
Dept. of Computer Sci.. Rice Univ.. 1989.

M.D. Hill and A.J. Smith. “Evaluating As-
sociativity in CPLJ Caches.” I E E E Trans.
Compirfr.r.v. Vol. 38, No. 12, Dec. 1‘189, pp.
1.612-1.630.

R E . Kesalcr and M.D. Hill, “Page Place-
ment Alporithms for Large Real-Index
Caches, ” A CM Trtms. Computer .Sysrems.
Vol. 10, No. 3. Nov. 1992, pp. 338.359.

A.J. Goldherg and J. Hennessy. “Perfor-
mance Debugging Shared-Memory Mul-
tiprocessor Programs with MTool,” Proc.
Supertor,ipirling 91, IEEE CS Prcss. Los
Alamitos. Calif., Order No. 2158, 1991, pp.
4x 1 -491 I .

D. Callahan. K. Kennedy and A. Porter-
field. “Analyzing and Visualizing Perfor-
mance of Memory Hierarchies,’‘ Instru-
menlaiiori for Visimlization. ACM Press.
New York. 1990.

A. Gupta. M. Martonosi. and T. Ander-
son, “MemSpy: Analyzing Memory-Sys-
tem Bottlenecks in Programs.” Perfor-
m m c c ELwlrrcrfion Rev.. Vol. 20. No. 1.
June 1992. pp. I-?.

B. Zorn and P.N. Hilfingcr. “A Memory
Allocation Profiler for C and Lisp,” Proc.
SirmmcJr 1988 Usenix Conf . Usenix
Asaoc.. Berkeley. Calif., IOXX.

Alvin R. Lebeck is a PhD candidatc in the
Computer Sciences Department at the Uni-
versity of Wisconsin - Madison. where he re-
ceived his HS in electrical engineering in 1989
and his MS in computer sciencc in 1991. His re-
search interests include memory-system de-
sign for uniprocessors and multiprocessors, ef-
ficient simulation of memory systems, and
synchronization techniques for niultiproces-
sors. He is a member of the IEEE:, the IEEE
Computer Society, and ACM.

David A. Wood is an assistant professor in the
Computer Sciences and Electrical and Com-
puter Engineering departments at the Uni-
versity of W’isconsin - Madison. His research
interests range from VLSI design to opcrat-
ing systems. and focus on design and evalution
of computer architectures with an emphasis
on memory systems for shared-memory multi-
processors.

Wood received his BS in electrical engi-
neering and computer science a t the Univer-
sity of Calilornia. Berkclcy, in 1981 and his
PhD in computer sciencc there in 1990. He is
a coleader o f the National Scicncc Founda-
tion-sponsored Wisconsin Wind Tunnel
Project. He won a 1991 NSF’s Presidential
Young Inve\tigator award. and is a member of
ACM. the IkEE. and the IEEE Computer So-
ciety.

Readers cnn contact the authors at the Com-
puter Sciences Dept.. University of Wiscon-
sin, 1210 W. Dayton St.. Madison. WI 53706.
Lebeck‘s e-mail address is alvy@cs.wisc.edu,
and Wood’s is david@cs.wisc.edu.

26 COMPUTER

mailto:alvy@cs.wisc.edu
mailto:david@cs.wisc.edu

