
Abstract

Our new out-of-order processor simulator,
FastSim, uses two innovations to speed up simula-
tion 8–15 times (vs. Wisconsin SimpleScalar) with
no loss in simulation accuracy. First, FastSim uses
speculative direct-execution to accelerate the
functional emulation of speculatively executed
program code. Second, it uses a variation on
memoization—a well-known technique in pro-
gramming language implementation—to cache
microarchitecture states and the resulting simula-
tor actions, and then “fast forwards” the simula-
tion the next time a cached state is reached. Fast-
forwarding accelerates simulation by an order of
magnitude, while producing exactly the same,
cycle-accurate result as conventional simulation.
Keywords: Out-of-order processor simulation, direct-
execution, memoization.

1. Introduction
Microarchitectural simulation is an essential tool in the
research and design of processors, compilers, and other
system software. Unfortunately, existing simulators of out-
of-order processors run programs thousands of times slower
than actual hardware. By applying techniques used to
implement functional programming languages, we reduced
the cost of simulation by up to an order of magnitude, with
no effect on its accuracy.

FastSim is a new direct-execution simulator of a speculative,
out-of-order uniprocessor with non-blocking caches. Its two
primary contributions are speculative direct-execution,
which efficiently performs the functional simulation of a
program, and fast-forwarding, which dramatically
accelerates the time-consuming simulation of an out-of-
order microarchitecture.

Direct-execution simulators run machine code from a target
program directly on a host processor, and use a variety of
methods to interleave simulation code. This widely used
technique allows functional simulation to run at near-

hardware speed. Direct-execution, however, has not been
previously used to simulate out-of-order processors, because
of the difficulty of reconciling the fixed behavior of an
executing program with the fluid behavior of a speculative
out-of-order microarchitecture. FastSim solves this problem
by decoupling the simulation of out-of-order execution from
the functional execution of instructions. With a new
technique called speculative direct-execution, FastSim
allows mispredicted branch paths to be executed directly,
then rolled back. Without further optimization (e.g., fast-
forwarding), FastSim runs 1.1–2.1 times faster then the well-
known SimpleScalar out-of-order simulator, which does not
use direct-execution.2

FastSim’s primary contribution is the application of
memoization—result caching—to the expensive process of
simulating an out-of-order microarchitecture. Traditionally,
memoization was used to implement functional
programming languages by caching function return values.
Expensive computation can be avoided by returning a
previously cached value, when available.

FastSim’s fast-forwarding technique is similar. Fast-
forwarding records microarchitecture configurations and the
simulator actions that result from them. When a previously
recorded configuration is encountered, the associated actions
can be replayed at high speed until a previously unseen
configuration is encountered. Fast-forwarding makes the
simulator run 5–12 times faster, with no change in
simulation results (e.g., cycle count.) Combining direct-
execution and memoization, FastSim simulates a MIPS
R10000-like architecture with a 190–360 times slowdown
(i.e., simulation time over native benchmark execution time
on the host), which is an order of magnitude faster than
SimpleScalar.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 describes the
implementation of direct-execution in conjunction with an
out-of-order microarchitecture simulator, including our new
technique for simulating speculative execution. Section 4
describes memoization of FastSim’s out-of-order pipeline
and discusses strategies for limiting the size of the
memoization cache. Section 5 presents performance results
for these optimizations including a comparison of FastSim

Fast Out-Of-Order Processor Simulation Using Memoization
Eric Schnarr and James R. Larus1

University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706 USA

[schnarr,larus]@cs.wisc.edu

1 Current address: James Larus, Microsoft Research, One Microsoft
Way, Redmond, WA 98052. Email: larus@microsoft.com.

2 We do not have a version of FastSim without direct-execution. In-
stead, we use SimpleScalar as a surrogate, as it simulates compa-
rable processors at an equivalent level of detail.

Copyright © 1998 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

Appears in the Eighth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VIII), October, 1998.

and the SimpleScalar out-of-order simulator. Section 6
concludes.

2. Related Work
SimpleScalar [1], RSIM [8], and MXS [4] are contemporary
simulators for out-of-order processors. None use direct-
execution or memoization. They all execute thousands of
host cycles per simulated cycle. SimpleScalar, one of the
fastest out-or-order simulators using traditional technology,
simulates a MIPS-like architecture and runs target programs
with a 4,000 times slowdown [1]. RSIM emulates a multi-
processor with a SPARC-like architecture and typically
simulates 10,000–15,000 instructions per second on a SUN
Ultra 1/140 workstation [8]. MXS is the detailed, dynamic
execution processor simulator from SimOS. It executes
approximately 20,000 instructions per second, with a
“several thousand times slowdown” [4].

Other simulators use direct-execution. Shade performs
functional simulation and instrumentation by dynamically
translating target instructions into host instructions.
Collecting traces and similar kinds of information incurs a
2.8–6.1 slowdown [2]. Mipsy and Embra are functional
CPU models in SimOS. Mipsy does not use direct-execution
and runs 100–200 times slower than native hardware, while
Embra runs only 10–30 times slower by translating target
instructions into native instructions that execute directly on
the host [4]. None of these direct-execution simulators
perform detailed out-of-order microarchitectural simulation,
as does FastSim.

Some simulation strategies trade-off accuracy for speed.
Trace sampling has been used successfully in cache and
processor simulation. Tom Conte et al. applied trace
sampling to the simulation of an out-of-order processor and
describe techniques for reducing state loss between sample
clusters [3]. Another strategy is to approximate complex
hardware using a simplified processor model. For example,
WWT2 statically determines pipeline performance within

basic blocks and updates the simulated cycle count each
time a basic block is executed [6]. Pai et al. have shown that
out-of-order processors cannot be approximately accurately
by in-order pipeline models due to the unpredictable effects
of memory instruction reordering [7]. In comparison,
FastSim has no loss of accuracy, preferring to trade space
for speed.

3. The Structure of FastSim
FastSim is a cycle-accurate, direct-execution simulator of an
out-of-order uniprocessor. Like RSIM, it models a
SPARC v.8 [9] instruction set running on a MIPS R10000-
like [10] microarchitecture—Figure 1—although, unlike
RSIM, FastSim only simulates a single processor. FastSim’s
processor model supports out-of-order instruction
execution, speculative execution, and an aggressive non-
blocking cache. Table 1 lists the processor parameters used
in this paper.

Direct-execution is not easily applicable to speculative, out-
of-order processor simulation. The first problem is
simulating out-of-order execution using direct-execution,
which is inherently in-order. As discussed in section
Section 3.1, FastSim directly executes groups of
instructions in program order, then subsequently simulates
their behavior with respect to the out-of-order pipeline
model. This is possible in FastSim, because loads, stores
and other instructions do not require precise timing
information to execute correctly on a uniprocessor machine.

Section 3.2 discusses FastSim’s speculative direct-
execution. Briefly, FastSim saves register and memory state
at branches, then allows mispredicted branches and
consequent execution paths to directly execute. Feedback
from the µ-architecture simulator tells direct-execution
when to restore register and memory state and restart
execution at the corrected branch target. Hence
mispredicted execution paths are directly executed, and data
is collected for use in FastSim’s processor simulator.

Instr.
decode

Branch

Integer
queue

(16 entries)

Address
queue

(16 entries)

FP
queue

(16 entries)

FP
register

file

(32×64)

Load
Store

Load
Store

(64x32) or

Integer
register

file
(64×32)

FP adder
Align Add/N Pack

FP multiplier
Mult Sum/N Pack

Div

Sqrt

Address
calc.

Integer
ALU 1

Integer
ALU 2

Data
cache

16 Kbytes

Instr.
Fetch

Figure 1. Block diagram of the dynamic execution microarchitecture modeled by FastSim.

3.1 Direct-execution & OOO Simulation
Figure 2 shows the major components of the FastSim
simulator. FastSim uses a binary rewriting tool (fs) based on
the Executable Editing Library (EEL) [5] to instrument a
statically linked SPARC program executable and link it with
FastSim’s µ-architecture and cache simulators.

The key to using direct-execution in out-or-order processor
simulation is to separate functional—in order—execution of
target instructions from simulation of the out-of-order
pipeline. This is possible for two reasons. First, FastSim
simulates a uniprocessor, hence loads and stores can be
executed before their precise timing is known without
affecting their result. Second, out-of-order pipelines
preserve the appearance of executing instructions in
program order. FastSim exploits these properties by directly
executing groups of instructions in program order, then
simulating their behavior with respect to FastSim’s out-of-
order pipeline model.

A target executable is instrumented to record the addresses
accessed by every load and store, and the target of every
conditional branch and indirect jump. Load and store
addresses are put in queues, called lQ and sQ respectively,
for FastSim’s cache simulator. Instrumentation also calls
FastSim’s µ-architecture simulator at every conditional
branch and indirect jump (including return instructions).
Since FastSim’s µ-architecture simulator is invoked at every
control transfer instruction with more than one possible
target, a single variable records whether a branch is taken or
not-taken or the target of an indirect jump.

FastSim’s µ-architecture simulator decides when the
processor being modeled would have fetched, decoded,
executed, and retired instructions previously executed via
direct-execution. This simulator does not manipulate
program data values or compute any functional results of
the target program. These tasks are handled by direct-
execution. When invoked, the µ-architecture simulator
advances the out-of-order pipeline simulation up to the fetch

Decode 4 instructions per cycle.

2 integer ALUs, 2 FPUs, and 1 load/store address adder.

64 physical 32-bit integer registers, and
64 32-bit (or 32 64-bit) floating point registers.

2-bit/512-entry branch history table for branch prediction.

Speculatively execute instructions through up to 4 conditional branches.

Non-blocking L1 and L2 data caches, 8 MSHRs each.

16 KByte 2-way set associative write through L1 data cache.

1 MByte 2-way set associative write back L2 data cache.

8 byte wide, split transaction bus

Table 1: FastSim’s processor model parameters.

Figure 2. Overview of the FastSim simulator: 1) The tool fs rewrites a target executable. 2) The edited execut-
able directly executes target instructions. 3) Instrumentation records information about loads,
stores, and branches that is later used for µ-architecture and cache simulation. 4) The µ-architecture
and cache simulators are called periodically to simulate FastSim’s processor model.

fs
E

xe
cu

ta
bl

e

E
xe

cu
ta

bl
e*

lQ
sQ

bQ

taken?
mispredicted?

Branch
Predictor

w/ memoization

µ−architecture
Simulator

Cache & Memory
Simulator

1

2 3

4

of the current branch or indirect jump. Control flow
information previously recorded for the last conditional
branch or indirect jump is used to fetch instructions along
the same execution path as direct-execution. When µ-
architecture simulation catches up with direct-execution, the
simulation is suspended and direct-execution continues to
the next branch or indirect jump.

The µ-architecture simulator in turn calls FastSim’s cache
simulator. The queued load and store addresses along with
timing information provided by the µ-architecture simulator
permit accurate simulation of an aggressive non-blocking
cache. The µ-architecture simulator computes the cycle at
which load and store instructions are issued to the cache
simulator. The simulator then models the cache’s behavior
for loads and stores, and informs the µ-architecture
simulator how long each load will take to produce the
requested data. Note that no program data is returned by the
simulator, only the time taken to obtain the data.

3.2 Simulating Speculative Execution
In the behavior described so far, direct-execution drives
FastSim’s µ-architecture and cache simulators and no
information flows in the other direction. Speculative
execution, however, requires feedback from the µ-
architecture simulator. The decision when to roll-back,
following a mispredicted branch, is made by the µ-
architecture simulator and must control direct-execution. On
the other hand, the µ-architecture and cache simulators
require data collected by direct-execution before they can
run. Speculative direct-execution is our new technique that
solves this problem. The idea is to directly execute
mispredicted execution paths, while recording enough
information to restore processor and memory state after a

misprediction is detected by the µ-architecture. Figure 3
shows where instrumentation is inserted into a target
executable to perform speculative direct-execution.

All conditional branches in a target executable are replaced
with instrumentation that first calls the µ-architecture
simulator then consults FastSim’s branch predictor and
branches in the predicted direction. Mispredictions are
detected immediately by comparing the original branch
condition to the predicted branch direction. Instrumentation
along the two arcs out of each branch detect
mispredictions—the original branch instruction is used as
part of this instrumentation. If mispredicted, all register
values—integer, floating point and control registers—are
saved in FastSim’s bQ data structure. The bQ can hold
register data for up to four mispredicted branches, which is
all that is required by FastSim’s current processor model. In
the common case, in which a branch is predicted correctly,
no state is saved, as the simulation never rolls-back a
correctly predicted branch.

The bQ allows FastSim to restore register values when the
µ-architecture simulator detects a misprediction. Other
techniques are used to restore memory. Instrumentation
before every store instruction records the value in memory
before the store is executed (its pre-store value) and puts
this data in the same sQ entry that records the store’s
effective address. When a misprediction is detected, all pre-
store memory values following the mispredicted branch are
restored, in reverse order

Using these techniques, mispredicted execution paths
directly execute on a host processor, thereby collecting
information needed by FastSim’s µ-architecture and cache
simulators. Conditional branches are executed based on the

computation

load or store

branch or jump

Instruction Types

save address
of load

advance simulation &
call branch predictor

save free regs.
if mispredicted

save free regs.
if mispredicted

advance simulation
& store jump target

save address of store
& save old data

load

store

conditional
branch

Original

Instrumented

indirect jump

Figure 3. Instrumentation inserted among original program instruction by fs, to maintain FastSim’s data struc-
tures and call the µ-architecture simulator. Instrumentation to implement speculative execution is
shown in bold.

results of prediction rather than using target program values,
and only state changes subsequent to mispredictions are
recorded for roll-back. When the µ-architecture simulator
discovers a misprediction, FastSim rolls-back execution of
the target program by restoring host memory and registers,
then continues direct-execution of the target program from
the corrected target of the mispredicted branch.

4. Fast-Forwarding
FastSim’s primary contribution is the application of
memoization to microarchitecture simulation. FastSim uses
a technique called fast-forwarding that caches µ-
architecture configurations and the resulting simulator
actions for use in subsequent simulation. Figure 4 shows the
structure of FastSim’s fast-forwarding µ-architecture
simulator.

The next section (Section 4.1) describes the construction of
FastSim’s µ-architecture simulator, focusing on the
techniques used to centralize simulator state and reduce the
space requirements for encoding this state—a necessary
first step for implementing fast-forwarding. Section 4.2
describes how simulator configurations (i.e., µ-architecture
state) and the resulting simulator actions are further
compressed and cached into FastSim’s p-action cache. This
p-action cache is subsequently used to fast-forward
simulation. Fast-forwarding produces the same result as
detailed simulation, since µ-architecture simulator state
stored in the p-action cache completely determines
consequent actions of the detailed simulator. Finally,
Section 4.3 discusses strategies for further reducing the size
of the p-action cache.

4.1 µ-architecture Simulator
FastSim’s µ-architecture simulator has been carefully
designed to minimize the space needed to represent the state
of its out-of-order pipeline—approximately 16 bytes plus 2
bytes per instruction in the pipeline—without reducing the
complexity of its processor model. At the same time, we
have minimized the amount of interaction between the µ-
architecture simulator and other FastSim components.
These are necessary first steps to perform fast-forwarding
simulation. Larger state encodings consume more space in
the cache. Interactions between the µ-architecture simulator
and other components result in explicit states, which must
be stored in the cache.

FastSim’s µ-architecture simulator is simplified by only
simulating the timing of instructions, not their functional
behavior. For example, values in registers and memory are
not considered by the µ-architecture simulator, although the
cache simulator does use addresses recorded in the lQ and
sQ.

Another simplification is that FastSim’s cache simulator is
not memoized. The cache simulator is called by the µ-
architecture simulator as infrequently as possible through a
simple interface. The cache simulator is invoked each time a
load or store is chosen from FastSim’s R10000-like address
queue and begins its simulated execution. For loads, the
cache simulator immediately returns the shortest interval (in
cycles) before the requested data could become available,
considering all other loads and stores already executing. The
µ-architecture waits for this interval before again invoking
the cache simulator for this load, although the simulator

Detailed
µ−architecture Sim.

Fast-
Forwarding

P-Action
Cache

Encode Decode
E

xe
cu

ta
bl

e*

Branch
Predictor

Cache &

Memory

Simulator

1

2 3
Figure 4. Memoization of FastSim’s µ-architecture simulator. 1) A detailed simulator models the out-of-order

microarchitecture. 2) Actions of the detailed simulator are recorded in the p-action cache, indexed
by µ-architectural configurations. 3) Cached simulator actions are replayed for previously simulated
configurations, thereby avoiding expensive detailed simulation.

may be called in the meanwhile to handle other loads and
stores. This call to the cache simulator either returns that
data is now available or returns a new interval for the µ-
architecture to wait. A common example is a load that first
misses in the L1 cache (usually a 6 cycle delay), then misses
in the L2 cache resulting in an additional delay depending
on the current state of the cache. With this interface, the µ-
architecture simulator is oblivious to the internal workings
of its associated non-blocking cache simulator.

FastSim’s µ-architecture simulator is built around one
central data structure, the iQ, which contains one entry for
every instruction currently in the out-of-order pipeline.
Between simulated cycles, the iQ contains the entire
configuration of the µ-architecture simulator, which can be
used to index into FastSim’s cache of memoized actions.
The iQ is only an abstraction in FastSim’s µ-architecture
simulator that centralizes simulator state. It can be easily
adapted to model a variety of pipeline designs.

Entries remains in the iQ from the time an instruction is
fetched until it is retired. The iQ records an instruction’s
address (from which the instruction itself can be looked up)
and a small amount of state information. This per-
instruction state information identifies in which pipeline
stage an instruction resides and the minimum number of
cycles before this stage might change. For example, an
integer divide instruction may be executing—in the execute
stage—with up to 34 cycles before it finishes executing and
can be retired.

At every simulated cycle, FastSim’s µ-architecture
simulator makes a complete pass over instructions in the iQ,
in program order, from oldest to newest. Retired instructions
are removed, state information for each instruction is
updated for one cycle of execution, and new instructions are
fetched into the queue. Most implementation constraints in
FastSim’s µ-architecture model can be implemented with
simple counters. One constraint is that R10000’s integer
instruction queue (see Figure 1) holds at most 16
instructions. FastSim counts the number of integer
instructions already in the queue stage before allowing later
integer instructions to move into this stage. Since this type
of constraint is recomputed every cycle, it is not part of the
µ-architecture state carried between cycles.

Other constraints are more complex, but can still be
implemented without explicit state information. Consider
the R10000 register renaming scheme. FastSim recomputes
register renaming information every cycle. This is possible,
since the actual map of logical to physical registers does not
affect the simulated time. The only consideration is the
number of physical registers required to hold all output
values of enqueued and executing instructions. FastSim
builds up a new logical to physical register map every cycle,
which models the physical register limitation of an R10000
and finds all true data dependencies between instructions.
Similarly, a simple counter limits the pipeline to execute at
most four speculative branches.

4.2 P-Action Cache and Fast-Forwarding
FastSim’s processor-action cache (the p-action cache) stores
a map from µ-architecture configurations to simulator
actions that result from those configurations. A µ-
architecture configuration is simply a snapshot of the iQ
taken between cycles. Simulator actions are events, such as
calling the cache simulator for a load or store, returning to
the direct-execution, or updating the simulation cycle
counter. In general, actions stored in the p-action cache
represent the ways in which FastSim’s µ-architecture
simulator interacts with direct-execution or cache
simulation, or update counters, such as the simulation cycle
counter. Figure 5 shows one possible µ-architecture
configuration and some of the actions resulting from this
configuration.

At the start of simulation, FastSim’s p-action cache is
empty. µ-architecture simulation starts by running
FastSim’s detailed µ-architecture simulator. Whenever the
detailed simulator interacts with either direct-execution or
FastSim’s cache simulator, it allocates a new action,
describing the interaction, in the p-action cache. These
actions are linked to the most recent µ-architecture
configuration, which captures the simulator state before
these actions executed.

When FastSim encounters a configuration already in the p-
action cache, it looks up and replays the associated actions
rather than using the detailed (slow) µ-architecture
simulator to recompute them. We call this process fast-
forwarding, and it produces exactly the same results as the
detailed µ-architecture simulation. Actions are replayed in
the same order—calling the cache simulator, returning to
direct-execution, and updating simulation statistics—as
when they were first generated.

The only variation in µ-architecture behavior arises from
different cache behavior (caused by the unpredictable
internal state of the cache simulator or different values in
the lQ or sQ) or from different control flow in the direct-
execution. These variations are checked when the actions
are replayed, and previously unseen behaviors terminate
fast-forwarding, so that the detailed simulator can simulate
the new scenario.

Configurations stored in the p-action cache are a
compressed representation of data in the iQ. This
compression takes advantage of having instructions listed in
program order. To encode the sequence of instruction in the
iQ, we only save the starting addresses (PC and nPC) of the
oldest instructions in the iQ, plus one bit per conditional
branch (taken/not-taken), plus the target address of any
indirect jumps. The iQ’s per instruction state information
can be compressed into 1.5 bytes per instruction, which
subsumes the 1 bit of taken/not-taken information needed
for conditional branches. Including some additional header
information, this compresses a configuration to 16 bytes
plus 4 bytes per indirect jump plus 1.5 bytes per instruction.
New configurations are allocated at the end of a cycle in
which an action was allocated. Hence at most one

configuration is stored per simulated cycle, but several
simulated cycles are often associated with a single
configuration. Note that all interactions between the µ-
architecture and other FastSim components take place in the
last cycle associated with a configuration because of the
way configurations are allocated.

Multiple actions can be associated with a single
configuration. FastSim allocated 2.9–5.7 actions per
configuration while simulating the SPEC95 benchmarks.
The first action following a configuration identifies the
number of simulated cycles associated with the
configuration. Other actions, such as calling the cache
simulator or returning to direct-execution, are linked in the
order in which they were produced by the detailed
simulator. The last action in a chain of actions associated
with a configuration is linked to the first action of the
following configuration, forming an unbroken chain of
actions.

Variations in behavior, caused by different values from the
cache simulator or changes in control flow following a
branch or indirect jump, cause the fast-forwarding simulator
to choose one of several possible successor actions in the

action chain. For example, there are four possible outcomes
following a conditional branch in the direct-execution (i.e.,
taken/predicted, taken/mispredicted, not-taken/predicted,
and not-taken/mispredicted) and arbitrarily many return
values for a load event sent to the cache simulator (i.e.,
possible intervals before data becomes available). If the
action for a particular outcome is not in the p-action cache
(e.g., the outcome has not yet occurred for the current
configuration), fast-forwarding stops and detailed
simulation resumes. Subsequent detailed simulation
computes the µ-architecture behavior for this new outcome,
and generates actions along a new branch of the action chain
to handle this outcome in the future. Figure 6 illustrates the
graph structure of the p-action cache in terms of
configurations and action chains, and shows how new
configurations and actions are linked into the existing graph
structure to handle new outcomes.

4.3 Limiting P-Action Cache Size
Fast-forwarding accelerates µ-architecture simulation at the
cost of increased memory consumption. Without limitation,
the p-action cache can grow to hundreds of megabytes for
the more complex SPEC95 benchmarks (e.g., 889MB for

Figure 5. A µ-architectural configuration in the detailed simulator and associated entries recorded in the p-
action cache. The instructions on the left are taken from the dynamic instruction stream. The top 11
instructions are currently in the pipeline and considered part of the configuration. As a result of this
configuration, the µ-architecture will execute for 6 cycles, then call the cache simulator for the load
at 0x10078. These actions are encoded in the p-action cache, indexed by a compressed representation
of the µ-architecture configuration.

Addr. Instruction Tag1 Tag2

0x10074 clr %fp done
0x10078 ld [%sp + 0x40], %l0 cache 6
0x1007c add %sp, 0x44, %l1 exec 1
0x10080 sub %sp, 0x20, %sp queue
0x10084 tst %g1 queue
0x10088 be 0x10098 queue
0x1008c mov %g1, %o0 queue
0x10098 sethi %hi(0x5b000), %o0 fetch
0x1009c or %o0, 0x148, %o0 fetch
0x100a0 call 0x3f378 fetch
0x100a4 nop fetch
0x3f378 save %sp, -96, %sp
0x3f380 sethi %hi(0x75c00), %o0
0x3f384 call 0x56ce8
0x3f388 or %o0, 0x2e0, %o0
0x56ce8 save %sp, -96, %sp
0x56cec sethi %hi(0x77000), %g1
0x56cf0 ld [%g1 + 0x17c], %g1
0x56cf4 call %g1
0x56cf8 restore

Encoded

Configuration

16+11*2 = 38 bytes

Previous Action

µ-architectural

Retire Queues
cycle_counter += 6

Issue Load
addr = lQ[0]
width = 4

Miss
Hit

Unknown
Next Action

P-Action Cache Entries

delay=18

go, 296MB for gcc). Test results presented in the next
section were collected on a host machine with 2GB of
physical memory, but few people will have machines this
large in the next few years. Consequently we investigated
several techniques for handling FastSim’s memory
consumption.

Our first trivial p-action cache replacement policy allows
unbounded growth of the p-action cache. This policy
produces fast simulation times, providing the p-action cache
fits in physical memory. If it does not fit in physical
memory, then the OS will page (and likely thrash). A better
replacement policy is to flush the p-action cache when full.
This cache flush policy is easy to implement and can limit
the p-action cache to any size, but there is a performance
trade-off. Whenever the cache is flushed, FastSim must use
detailed (slow) µ-architecture simulation to recompute
actions and configurations.

A drawback of the cache flush policy is that useful actions
are flushed along with never to be uses ones. An alternative
policy, which also maintains pointers and avoids
fragmentation, is to use a copying garbage collector. Only
actions that were accessed since the last garbage collection
are copied. This policy incurs extra overhead—the cost of
copying—which would be offset by increased reuse of
cached actions. A further refinement is to use a generational
garbage collector, so frequently replayed actions will not be
copied by the garbage collector as often—hopefully
reducing garbage collection overhead.

5. FastSim Performance
This section describes some performance measurements of
FastSim running the SPEC95 benchmarks. Experiments
were run on a Sun Microsystems Ultra Enterprise E5000
with 167MHz UltraSPARC processors and 2 GBytes of
physical memory. All programs, except compress, were run
using their “test” input sets to reduce simulation time.
Compress, which requires less time, used its “train” data set.

Table 2 shows the performance of FastSim, as compared
against the original benchmarks (before they were
instrumented) and against a direct-execution simulator
without memoization. SlowSim is FastSim with
memoization disabled—the fast-forwarding simulator was
turned off and no configurations were encoded or put in the
p-action cache. The table shows that memoization improves
overall simulation performance by a factor of 4.9–11.9
times. Despite this dramatic speedup, the cycle counts—and
all other processor statistics—generated by FastSim are
identical.

Table 3 compares FastSim against the SimpleScalar out-of-
order simulator [1] using similar processor and cache
parameters. Despite their differences—e.g., SimpleScalar
models a different instruction set—SimpleScalar provides a
good baseline for measuring FastSim’s performance and
demonstrating the benefit of its techniques. With only
direct-execution, FastSim runs 1.1–2.1 (mgrid–gcc) times
faster than SimpleScalar. With fast-forwarding, FastSim
runs 8.5–14.7 (fpppp–ijpeg) times faster than SimpleScalar.

One reason for memoization’s large benefit is that FastSim

Encoded µ-architecture
Configurations

Encoded
Actions

Not yet computed

?

?

?

...

...

...

A branch action

?

?

...

...

...

New actions for a
new branch outcome

Figure 6. The upper diagram is a sample graph of configurations and actions in the p-action cache. The lower
diagram shows how new configurations and actions might get linked into the existing graph when the
detailed simulator is invoked to handle an alternate branch outcome.

...

was able to replay simulator actions for almost all
instructions. Table 4 shows the fraction of instructions
simulated in detail compared against the much larger
proportion of instructions for which actions were replayed.
For all benchmarks except gcc and ijpeg, FastSim used its
detailed µ-architecture simulator for fewer than 0.1% of

target instructions. However, the performance improvement
does not appear to be directly attributed to this fraction
(compare ijpeg).

Table 5 reports measurements of the memoization process.
The first column reports size of the p-action cache. In many

Table 2: Performance of the FastSim simulator running SPEC95 benchmarks. “Program” is time (in
seconds) to execute the original, uninstrumented executables. The two simulator slowdowns show
how many times slower the benchmarks ran in FastSim without memoization (SlowSim) and with
memoization (FastSim). The final column is the factor by which memoization improved the
simulation.

Benchmark Program SlowSim / FastSim / Slow / Fast

099.go 138.2 1,554.2 248.4 6.3
124.m88ksim 2.9 1,363.3 249.5 5.5
126.gcc 12.3 1,122.7 215.1 5.2
129.compress 0.3 1,304.4 218.2 6.0
130.li 8.6 1,435.6 293.5 4.9
132.ijpeg 3.3 1,837.5 199.4 9.2
134.perl 18.0 1,115.9 177.8 6.3
147.vortex 82.2 1,310.7 221.8 5.9
101.tomcatv 12.6 1,322.3 199.8 6.6
102.swim 4.5 1,460.4 191.3 7.6
103.su2cor 6.9 1,934.6 251.4 7.7
104.hydro2d 9.1 2,174.1 232.8 9.3
107.mgrid 33.3 2,569.6 215.9 11.9
110.applu 122.7 1,982.8 292.5 6.8
125.turb3d 114.1 1,992.9 254.5 7.8
141.apsi 66.8 2,758.1 357.7 7.7
145.fpppp 14.9 2,423.7 322.9 7.5
146.wave5 36.6 2,169.4 303.8 7.1

Table 3: Program cycles and instructions are the total number of cycles and retired instructions resulting
from out-of-order simulation in FastSim. Next are the average instructions retired per second by the
SimpleScalar simulator, FastSim without memoization (SlowSim), and FastSim with memoization
(FastSim). The last column shows FastSim’s performance improvement relative to SimpleScalar.

Benchmark cycles insts.
099.go 1.14E+10 1.64E+10 76.2 477.0
124.m88ksim 2.78E+08 4.81E+08 58.4 121.8 665.5 11.4
126.gcc 9.27E+08 1.41E+09 47.2 102.8 536.6 11.4
129.compress 2.74E+07 4.43E+07 51.9 104.5 624.6 12.0
130.li 8.87E+08 1.24E+09 100.4 491.0
132.ijpeg 2.61E+08 4.81E+08 50.2 80.4 740.6 14.7
134.perl 1.34E+09 1.93E+09 48.1 96.5 605.6 12.6
147.vortex 5.76E+09 1.09E+10 101.1 597.3
101.tomcatv 9.83E+08 1.55E+09 57.9 93.0 615.7 10.6
102.swim 2.35E+08 4.23E+08 55.3 64.5 492.3 8.9
103.su2cor 5.48E+08 9.14E+08 56.1 68.7 528.8 9.4
104.hydro2d 6.28E+08 8.46E+08 42.7 399.0
107.mgrid 2.96E+09 5.26E+09 56.5 61.4 731.1 12.9
110.applu 8.53E+09 1.51E+10 61.9 419.8
125.turb3d 8.87E+09 1.59E+10 70.0 547.8
141.apsi 6.28E+09 8.57E+09 46.5 358.7
145.fpppp 1.20E+09 1.99E+09 48.9 55.1 413.6 8.5
146.wave5 2.59E+09 4.64E+09 58.4 417.3

FastSim /
SimpleScalar

Program
SimpleScalar SlowSim

FastSim
Kinsts/sec.

programs, it was manageably small. However, in five
applications it grew to over one hundred megabytes. The go
benchmark generated nearly 900MB of p-action data, by far
the most. Fortunately, a simple cache replacement policy,
discussed later, can greatly reduce the memory requirements
for simulating most benchmarks.

Table 5 also reports the number of actions and
configurations statically generated for each program.
Although the number of actions and configurations varied
greatly between programs, the dynamic number of actions
per configuration remains relatively consistent—between
3.4 and 4.9—for all benchmarks. This number is a measure

Table 4: Instructions that FastSim simulated by fast-forwarding (Replay) and by detailed simulation
(Detailed). The last column is the fraction of instructions that FastSim simulated in detail.

Benchmark
099.go 1.61E+07 1.64E+10 0.099%
124.m88ksim 6.49E+04 4.81E+08 0.013%
126.gcc 4.40E+06 1.41E+09 0.311%
129.compress 3.41E+04 4.42E+07 0.077%
130.li 4.17E+04 1.24E+09 0.003%
132.ijpeg 9.78E+05 4.80E+08 0.203%
134.perl 4.34E+05 1.93E+09 0.022%
147.vortex 8.37E+05 1.09E+10 0.008%
101.tomcatv 4.02E+04 1.55E+09 0.003%
102.swim 9.93E+04 4.23E+08 0.023%
103.su2cor 2.35E+05 9.14E+08 0.026%
104.hydro2d 2.41E+05 8.46E+08 0.028%
107.mgrid 6.72E+04 5.26E+09 0.001%
110.applu 1.40E+05 1.51E+10 0.001%
125.turb3d 8.75E+04 1.59E+10 0.001%
141.apsi 1.52E+05 8.57E+09 0.002%
145.fpppp 2.53E+05 1.99E+09 0.013%
146.wave5 2.39E+05 4.64E+09 0.005%

Detailed
(insts.)

Replay
(insts.)

Detailed /
Total

Table 5: Measurements of memoization. “P-Action Cache” is the total memory used to record configurations
and actions. The next two columns report the static number of configurations and actions allocated.
“Actions/Config.” is the average dynamic number of actions associated with each configuration,
and “Cycles/Config.” is the dynamic number of simulation cycles per configuration. The final two
columns report average and maximum lengths of action chains played back without stopping to
perform detailed simulation.

Benchmark Avg. Max.
099.go 889.4 5,096,560 14,764,742 3.5 1.5 17,300 1,882,101
124.m88ksim 4.6 26,660 89,180 3.6 1.5 190,974 592,750,035
126.gcc 296.0 1,774,016 5,353,318 3.5 1.5 5,354 1,618,693
129.compress 2.8 13,475 57,429 3.5 1.4 35,711 5,231,549
130.li 3.2 18,944 60,581 3.4 1.4 645,873 49,204,501
132.ijpeg 199.5 816,075 3,343,805 3.7 1.5 19,142 2,679,671
134.perl 142.9 559,449 3,205,519 3.6 1.6 51,189 13,495,080
147.vortex 108.6 557,362 2,037,172 3.7 1.3 259,160 32,527,035
101.tomcatv 5.6 27,191 114,445 3.9 1.4 1,934,565 619,213,774
102.swim 16.8 79,002 262,422 4.5 1.2 426,471 491,018,150
103.su2cor 32.8 156,603 642,213 4.1 1.1 178,467 182,556,421
104.hydro2d 35.5 174,422 679,767 4.5 1.2 244,809 194,389,159
107.mgrid 9.5 47,035 192,098 3.4 1.0 3,788,172 322,900,913
110.applu 19.5 94,893 375,606 4.7 1.0 7,414,106 38,010,020,845
125.turb3d 10.4 50,275 205,181 4.1 1.2 10,490,459 2,555,810,836
141.apsi 20.3 98,550 409,502 4.7 1.0 5,122,367 784,023,417
145.fpppp 25.4 127,051 460,440 3.8 1.0 272,104 27,784,740
146.wave5 38.3 180,398 752,237 4.9 1.0 1,049,836 458,444,554

Cycles /
Config.

Dyn. Chain LengthP-Action
Cache (MB)

Static
Configs.

Static
Actions

Actions /
Config.

of how much work can be directly replayed at a memoized
configuration. By dividing the actions per configuration by
the dynamic cycles per configuration, we get an indication
of how much simulated work is performed by the µ-
architecture each cycle. The average actions per cycle over
all the integer benchmarks is 2.4, compared to 3.9 for
floating-point benchmarks, which corresponds to our
pipeline’s ability to execute more instructions in parallel if
there is a mix of integer and floating point operations. The
final two columns report the average and maximum number
of chained actions that fast-forwarding was able to replay
without calling the detailed simulator. The large values in
both columns reflect the extremely long intervals during
which only previously cached configurations were
encountered.

Figure 7 shows the result of limiting p-action cache size
using the cache flush on full policy. The graph shows
simulator speed-up (non-memoized/memoized time) for p-
action cache sizes ranging from 512Kb to 256MB. Most
benchmarks could tolerate an order-of-magnitude reduction
in p-action cache size with little or no impact on simulator
performance. This includes the go benchmark, which
naturally uses 889MB but shows no slowdown when limited
to 256MB and only moderate slowdown at 64MB. A few
benchmarks did not perform well with reduced cache
sizes—notably ijpeg, which slowed dramatically with only
moderate cache reductions—although even these

benchmarks ran several times faster than simulation without
memoization for all but the most restrictive cache sizes.

We also tried garbage collecting the p-action cache, keeping
only those configurations and actions that had been used
since the last garbage collection. Despite the potential
savings from keeping useful actions in the cache, FastSim’s
performance with garbage collection was nearly identical to
its performance using the simple flush on full policy.
Furthermore, since we used a copying garbage collector, the
total memory in use during a collection could be up to twice
the maximum allowed p-action cache size. Taking this into
account, garbage collecting the p-action cache is almost
always worse than simply flushing it. Experiments with a
generational garbage collector were no better. The
additional complexity—e.g., handling pointers from older
generations back to younger generations—offset any
savings from copying smaller portions of the cache.

The garbage collector’s poor performance can be attributed
to two factors: Garbage collections (or cache flushes) are
infrequent and few actions survive each collection. 1-4
garbage collections or cache flushes occur when the p-
action cache is sized just smaller than the maximum space
used by a benchmark. For each factor of two decrease in
cache size there is only a 3.8 times increase in the number of
collections on average. Infrequent collections means that
few configurations are discarded over a program’s

0.0

2.0

4.0

6.0

8.0

10.0

12.0

51
2K

b
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B

25
6M

B

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

Figure 7. Graph of FastSim’s speedup due to memoization with limited p-action cache space using the cache
flush replacement policy.

execution and that the amortized cost of regenerating them
is small. Another factor is that only 18% of the p-action
cache survives each garbage collection on average. Little is
gained by finding and copying these actions over flushing
the cache and regenerating them, when compared to the
total simulation time.

6. Conclusion
FastSim uses two, well-known, but previously unapplied
techniques to greatly speed the detailed, accurate
microarchitectural simulation of an out-of-order
uniprocessor. FastSim demonstrates that direct-execution is
compatible with out-of-order simulation, although the
benefits are small because of the cost of simulating a
complex microarchitectural model.

FastSim also directly attacks this cost, by using
memoization to dramatically reduce the cost of detailed
simulation. A key observation is that out-of-order
microarchitecture configurations are often repeated and
result in identical simulator behavior. By caching these
configurations and their corresponding simulator actions,
subsequent visits to a configuration can be replayed many
times faster. This fast-forwarding speeds processor
simulation by a factor of 5–12 times, at the cost of increased
memory consumption.

Experiments with cache replacement policies show that
most benchmarks only need a fraction of the p-action data
they generate over the course of simulation. A simple flush
on full policy is sufficient to limit the p-action cache size
without a large impact on performance. More complex
cache replacement policies, such as copying garbage
collection, are not worth the effort, since they are difficult to
implement and perform no better than the simple flush on
full policy.

7. Acknowledgments
We would like to thank Mark Hill and David Wood for their
suggestions and guidance. Our thanks also goes to Sarita
Adve for discussions on incorporating direct-execution into
out-of-order processor simulation.

8. References
[1] Doug Burger, and Todd M. Austin, “The SimpleScalar

Tool Set, Version 2.0,” University of Wisconsin-Madi-
son Computer Sciences Tech Report #1342, June, 1997.

[2] Robert F. Cmelik, and David Keppel, “Shade: A Fast
Instruction-Set Simulator for Execution Profiling,” in
the Proceedings of the 1994 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer
Systems, May 1994.

[3] T. M. Conte, M. A. Hirsch, and K. N. Menezes,
“Reducing state loss for effective trace sampling of
superscalar processors,” in the Proceedings of the 1996
International Conference on Computer Design (ICCD),
Austin, TX, October 1996.

[4] Steve Herrod, Mendel Rosenblum, Edouard Bugnion,
Scott Devine, Robert Bosch, John Chapin, Kinshuk
Govil, Dan Teodosiu, Emmett Witchel, and Ben Vergh-
ese, “The SimOS Simulation Environment,” Computer
Systems Laboratory, Stanford University, 1996.

[5] James R. Larus and Eric Schnarr, “EEL: Machine-Inde-
pendent Executable Editing,” in the Proceedings of the
ACM SIGPLAN ‘95 Conference on Programming Lan-
guage Design and Implementation (PLDI), June 1995.

[6] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak
Falsafi, Mike Litzkow, Steve Huss-Lederman, Mark D.
Hill, James R. Larus, and David A. Wood, “Wisconsin
Wind Tunnel II: A Fast and Portable Parallel Architec-
ture Simulator,” in the Workshop on Performance Anal-
ysis and Its Impact on Design (PAID), June 1997.

[7] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V.
Adve, “The Impact of Instruction-Level Parallelism on
Multiprocessor Performance and Simulation Method-
olgy,” in the Proceedings of the 3rd International Sym-
posium on High Performance Computer Architecture
(HPCA), February 1997.

[8] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V.
Adve, “RSIM: An Execution-Driven Simulator for ILP-
Based Shared-Memory Multiprocessors and Uniproces-
sors,” in the Proceedings of the 3rd Workshop on com-
puter Architecture Education (held in conjunction with
the 3rd International Symposium on High Performance
Computer Architecture), February 1997.

[9] Sun Microsystems, The SPARC Architecture Manual
(Version 8), December 1990.

[10]Yeager, “The Mips R10000 Superscalar Microproces-
sor,” in IEEE Micro, April 1996.

