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Data-parallel programming languages provide a portable, high level abstraction to
support rapid parallel program development. Data-parallel languages are widely
applicable, and considerable research has been devoted to compiling them for effi-
cient execution. Much of this work has focused on implementing a shared address
space on a distributed-memory machine, particularly for programs with regular
communication patterns. Compiler support for non-regular applications has been
limited to iterative irregular applications, with dynamic repetitive communication
patterns.

This thesis describes three new compiler, language and run-time system tech-
niques targeting data-parallel programs with adaptive and dynamic communica-
tion patterns. These techniques have been implemented in a compiler for the

language C**, and include:

Implementing conflict-free data access C**’s semantics avoid data access con-
flicts between parallel functions. We explore and compare two complemen-

tary implementations of conflict-free access. For parallel functions with reg-



ular data access patterns, the compiler inserts code in the program to main-
tain copies. When compiler data access analysis is imprecise, the compiler
relies on a Loosely-Coherent Memory system to create transparent fine-grain

copies.

User-defined reductions Most data-parallel languages restrict reductions, which
combine values from parallel operations, to a predefined set of reduction op-
erators. User-defined reductions extend reductions in two ways, by allowing
new combining operations, and by applying reductions to user-defined data
types. This thesis motivates the need for user-defined reductions, and de-
scribes the design and efficient implementation of reductions in C** with

only message-passing support.

Compiler-directed shared-memory communication This thesis describes how
a compiler and a predictive cache-coherence protocol can implement shared-
memory communication efficiently for iterative adaptive applications. The
compiler uses data-flow analysis to identify points in a program where po-
tential repetitive communication patterns exist. An incremental predictive
protocol builds a communication schedule for one iteration and utilizes a
schedule to pre-send data in subsequent iterations. The protocol reduces

the number of remote data requests, and the total remote access latency.
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Abstract

Data-parallel programming languages provide a portable, high level abstrac-
tion to support rapid parallel program development. Data-parallel languages are
widely applicable, and considerable research has been devoted to compiling them
for efficient execution. Much of this work has focused on implementing a shared
address space on a distributed-memory machine, particularly for programs with
regular communication patterns. Compiler support for non-regular applications
has been limited to iterative irregular applications, with dynamic repetitive com-
munication patterns.

This thesis describes three new compiler, language and run-time system tech-
niques targeting data-parallel programs with adaptive and dynamic communica-
tion patterns. These techniques have been implemented in a compiler for the

language C**, and include:

Implementing conflict-free data access C**’s semantics avoid data access con-
flicts between parallel functions. We explore and compare two complemen-
tary implementations of conflict-free access. For parallel functions with reg-
ular data access patterns, the compiler inserts code in the program to main-
tain copies. When compiler data access analysis is imprecise, the compiler
relies on a Loosely-Coherent Memory system to create transparent fine-grain

copies.

User-defined reductions Most data-parallel languages restrict reductions, which
combine values from parallel operations, to a predefined set of reduction op-

erators. User-defined reductions extend reductions in two ways, by allowing
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new combining operations, and by applying reductions to user-defined data
types. This thesis motivates the need for user-defined reductions, and de-
scribes the design and efficient implementation of reductions in C** with

only message-passing support.

Compiler-directed shared-memory communication This thesis describes how
a compiler and a predictive cache-coherence protocol can implement shared-
memory communication efficiently for iterative adaptive applications. The
compiler uses data-flow analysis to identify points in a program where po-
tential repetitive communication patterns exist. An incremental predictive
protocol builds a communication schedule for one iteration and utilizes a
schedule to pre-send data in subsequent iterations. The protocol reduces

the number of remote data requests, and the total remote access latency.



iii

Acknowledgments

My many years at Madison have been enriched by interactions with a bunch of
wonderful people.

I have learnt a tremendous amount from my advisor, Jim Larus. Jim sets a
wonderful example of how to do successful research, and I hope I have picked up
some of it. I am also very grateful for his advice, and his constant support and
encouragement.

I would also like to thank the other members of my committee, Mark Hill,
Charles Fischer, Susan Horwitz, and Sang-tae Kim for taking the time to read the
thesis and for their comments.

Much of this work would not have been possible without software developed
as part the Wisconsin Wind Tunnel project. I've enjoyed interacting with many
people in the group, particularly the numerous discussions with Brad, my office
(and project) partner of many years, and the talks in the hall with Satish and
Zhichen.

On a more personal note, I’'m much indebted to my wife Vidya, both for
her support, and for all the fun times together. I'd also like to thank some of

my friends for enlivening those few non-working hours: Bajji, Viji and Swami,



v

Praveen and Ranju, Madhus and Sridevi, Ranga, Guru, Bharat and Madhav.
Thanks all.

GUHAN VISWANATHAN

University of Wisconsin — Madison

September 1996



Contents

Abstract i
Acknowledgments iii
List of Figures ix
List of Tables xii
1 Introduction 1
1.1 Implementing Conflict-free Data Access . . . . . . ... ... ... )

1.2 User-defined Reductions . . . . .. ... ... ... ........ 7
1.3 Compiler-Directed Shared-Memory Communication . . . . .. .. 8
1.4 Contributions . . . . . . . ... L 10
1.4.1  Generality of our Techniques . . . . . . . .. .. ... ... 11

1.5 Thesis Structure . . . . . . . . . .. 12

2 Background - Data Parallelism, C**, and Tempest 13
2.1 Data Parallelism, Data-Parallel Languages . . . . . .. ... ... 14

2.1.1 Parallelism - Data-Parallel Operations . . . .. ... ... 15



vi

2.1.2 The Shared Address Space . . . . . .. ... .. ...... 17
2.2 COFF e 19
2.2.1 Data Collections - Aggregates . . . . . . . ... ... ... 19
2.2.2 Data-Parallel Operations - Parallel Functions . . . . . .. 20
2.2.3 Reductionsin C** . . . .. ... L 22
2.3 Tempest . . . . . oL 22
2.3.1 Tempest Implementations . . . ... ... ... ...... 23

Implementing Conflict-free Data Access for Parallel Functions 25

3.1 Related Work . . . . . . .. ..o 27
3.2 Compiler Copying . . . . . . . . .. .o 28
321 NoConflicts . . . .. .. .. ... . 28
3.2.2  Single Writer, Multiple Readers . . . . . . ... ... ... 29
3.2.3 Zeroor One Writer . . . . . . .. ... ... .. ... ... 30
3.2.4 Multiple Unknown Writers . . . . .. ... ... ...... 31
33 LCM . . .. e 32
3.4 Performance Comparison . . . . . . . .. .. .. ... 37
3.5 Summary ... .. e e 39
User-defined Reductions for Efficient Communication 40
4.1 Related work . . . .. ... oo 43
4.2 Reductions in Data-Parallel Languages . . . . . . ... ... ... 44
4.2.1 User-defined Reductions . . . .. ... ... ... ..... 46

4.3 A Motivating Example . . . . . .. ... oo 48



vil

4.3.1 DSMC . . . . . 49
4.3.2 Particle Movement using Parallel Prefix . . . . . . ... .. 20
4.3.3 Particle Movement using a Predefined Reduction . . . .. 52
4.3.4 Particle Movement with User-Defined Reductions . . . . . 52
4.4 Semantics of User-Defined Reductions . . . . . . .. .. ... ... 53
441 Dataraces . . . . . . ... e 54
4.4.2 Reordering Combining Operations . . . . . . .. ... ... 54
4.5 Implementing Reductions . . . . . ... ... ... ... .. ... 95
4.5.1 Basic Reductions . . . . . .. ... 55
4.5.2 Bulkreductions . . . ... ... o000 56
4.5.3 Local Combining . . . . .. ... ... ... ... ... 57
4.6 Application Comparisons . . . . . . . . . . . ... ... .. ... 57
4.6.1 DSMC . . . . . e 59
4.6.2 Barnes . . . . . .. Lo 60
4.6.3 EM3D . . . . ... 61
4.6.4 Moldyn . .. .. .. 63
4.6.5 Discussion . . . . . ... s 65
4.7 Summary .. ... L 66

Compiler-Directed Shared-Memory Communication for Iterative

Applications 68
5.1 Related Work . . . . . . . . .. .. ... ... 71
5.2 A Predictive Protocol for Repetitive Communication Schedules . . 73

5.2.1 The Stache Shared-Memory Protocol . . . . ... ... .. 74



viil

5.2.2 Inefficiencies in a Write-invalidate Protocol . . . . . . . . . 75

5.2.3 Building Communication Schedules in the Predictive Protocol 76

5.2.4 Using Communication Schedules to Presend Data . . . . . T

5.3 Identifying Potentially Repetitive Patterns . . . . . . . . .. . .. 78
5.3.1 Parallel Function Analysis - Identifying Access Patterns . . 79
5.3.2 Compiler Analysis to Place Directives . . . . . . . ... .. 81

5.4 Measuring the Optimizations . . . . .. ... ... ... ..... 84
54.1 Adaptive . . . . ... 85
542 Barnes . . . . ... Lo 87
543 Water . . . .. .. 89
5.4.4 Discussion . . . . . ... 90

5.0 Summary ... ..o e 91
6 Conclusion 93

A C** Benchmarks 98



List of Figures

21

2.2
2.3

24
2.5
2.6

2.7

3.1
3.2
3.3
3.4
3.5
3.6

Interleaved sequential and parallel phases in a data-parallel pro-
gram’s execution . . . . . ...
Whole-array stencil operation in HPF . . . . . .. ... ... ..
Example showing data distribution and communication (shaded el-
ements) in a 4-point stencil implementation . . .. ... ... ..
MAX reduction operation in HPF . . . . . .. .. ... ... ..
Aggregate definition syntax in C** . . . . . .. ...
Example showing conflict-free data access semantics guaranteed by

C* e

Aggregate definition syntax in C** . . . .. ..o

4-point stencil . . . . . ... Lo
4-point stencil with compiler-generated copying . . . . ... ...
Schematic representation of compiler-copying for Stencil . . . . .
4-point threshold stencil . . . . . . ... ... ... ... ... ..
Threshold stencil . . . . . . .. .. ... o oL

unstructured - Parallel function with unstructured accesses . . .

X

15
15

18
19
20

21
22

29
30
31
32
33
34



3.7 Compiler-generated pseudo-code for unstructured ... ... .. 35
3.8 Compiler-generated pseudo-code for unstructured using LCM . . 36

3.9 Relative execution speed for compiler-copying and LCM versions

of 3 benchmarks — Stencil, Threshold and Adaptive . . .. . .. 38
4.1 Sum reduction assignment . . . . . ... ..o 45
4.2  Minimum location user-defined reduction . . . . . . .. ... ... 47

4.3 Two ways of visualizing a reduction of two values to a target: Com-
bining and Update, or Synchronized Accumulation . .. ... .. 48
4.4 Schematic of the DSMC application . . . . . .. ... ... .... 49

4.5 Schematic of DSMC data structures and the problem of synchro-

nized addition . . . . . . ..o oL 50
4.6 Schematic of DSMC synchronization with parallel prefix . . . . . 51
4.7  Schematic of DSMC synchronization with APPEND . . . . . . . .. 52

4.8 Schematic of particle movement with user-defined reduction add_particle 53
4.9 Schematic representation of basic reductions (left) and bulk com-

munication (right) for DSMC . . . ... ... ... ... ..... 56
4.10 Log-log scale graphs showing execution speeds of 2 or more versions

of DSMC on the CM-5 and COW. Numbers adjoining the curves

are speedups relative to a sequential version. . . . . .. ... ... 59
4.11 Log-log scale graphs showing execution speeds of 2 or more versions

of EM3D on the CM-5 and COW. Numbers adjoining the curves

are speedups relative to a sequential version. . . . . . .. ... .. 62



4.12 Log-log scale graphs showing execution speeds of 2 or more ver-

5.1
5.2

9.3

5.4

9.5

sions of Moldyn’s force computation phase on the CM-5 and COW.
Numbers adjoining the curves are speedups relative to a sequential

VEISION.  © v o v v e e e

Unstructured mesh update in C** . . . . . . .. ... ... ....
Control flow graph for the main sequential loop in Barnes-Hut.
CFG (a) is annotated with parallel function access patterns. CFG
(b) is annotated with runtime phase directives for the predictive
protocol. . . . . ..
Execution time for 4 C** versions of Adaptive — C** versions
with and without optimized communication at 2 different cache
block sizes. Numbers in parentheses indicate cache block sizes. . .
Execution time for 5 versions of Barnes — C** versions with and
without optimized communication at 2 different cache block sizes,
and hand-optimized SPMD. Numbers in parentheses indicate cache
block sizes. . . . . . . . ... e
Execution time for 3 versions of Water — C** with and without
optimized communication, and shared-memory Splash. Numbers

in parentheses indicate cache block sizes. . . . . .. . . ... ...

xi

64

80

82

86

88

89



xii

List of Tables

4.1
4.2

5.1

Al

Comparing three approaches to particle movement . . . . . . . . . 53
High-level application description and data sets. The larger data

sets are for COWruns. . . . . . . . ... ... ... ... 58
Benchmark applications . . . . . .. ... ... 85
A list of benchmarks in C** . . . . . .. ... ... .. ... ... 99



Chapter 1

Introduction

Parallel computers exploit the processing power of multiple CPUs connected by
a network to reduce the time it takes to execute a program. As CPU processing
speeds reach their limit, parallel processing will provide an increasingly impor-
tant and scalable way to utilize available processing power. Additionally, parallel
computers can run applications with larger data sets than are possible on unipro-
cessors. Parallel processing now encompasses a wide range of platforms varying in
cost and performance from multiprocessors to networks of workstations. Unfortu-
nately, rapid advances in hardware technology have left parallel software behind.
Writing programs for parallel computers is widely acknowledged to be a much
more difficult task than writing sequential programs. For example, the program-
mer must keep track of multiple asynchronous threads of control that interact in
a non-deterministic fashion.

Improved parallel programming languages reduce the difficulty of program-

ming parallel computers by making parallel programs easy to specify, less error



prone, and less machine specific. One promising approach is data-parallel lan-
guages, such as HPF [19], C* [41], or NESL [7], which provide a portable, high
level abstraction to support rapid parallel program development. These languages
implement the data-parallel programming paradigm, which expresses parallelism
through simultaneous operations on large sets of data [21]. Synchronization is
implicit in the division of a program into sequential and data-parallel phases. In
addition, a global name space of variables relieves a programmer of the burden
of distributing data and managing communication. The data-parallel program-
ming model is widely applicable — in a survey of 84 scientific applications, Fox
[16] found that 85% of those programs could be expressed easily using this model
— “the source of parallelism is essentially always domain decomposition or data
parallelism”.

The popularity of the data-parallel programming model has led to the de-
velopment of a large number of data-parallel programming languages, including
High Performance Fortran (HPF) [25], Fortran 90 [1], NESL [7] and pC++ [32]. In
addition to language development, considerable research has been devoted to com-
piling high-level data-parallel programs for efficient execution, and in particular
the problem of transforming shared address space operations into communication
primitives of a distributed-memory machine. Much of this work has focused on
reqular programs, which exhibit regular patterns of communication, i.e., static
communication patterns that can be identified at compile time using static com-
piler analysis techniques [3, 22, 40].

Compiler support for non-regular data-parallel applications on distributed-



memory machines has been limited to iterative irregular applications that fit the
Inspector-Executor model. These applications specify unpredictable communica-
tion patterns that cannot be analyzed at compile time, but the patterns, once
built, remain unchanged over a number of iterations. For each loop, the compiler
generates an inspector phase in the loop header, which builds a communication
schedule. The loop contains the executor phase, which uses the schedule to trans-
fer data required in the iteration efficiently with messages, followed by the loop’s
original computation [12, 24, 46]. Since the pattern varies infrequently, the over-
head of the inspector is amortized over multiple executor phases. The Inspector-
Executor paradigm works well for mostly-static communication patterns, but does
not extend to dynamic communication patterns.

This thesis presents three new compiler, language and run-time system tech-
niques that enable efficient execution of a larger class of data-parallel programs,
specifically, programs with dynamic adaptive communication patterns. These

techniques are:
1. Compiler and memory-system support to enforce conflict-free data access
2. User-defined reductions for efficient communication, and
3. Compiler-directed shared-memory communication for iterative applications

A novel feature of techniques 1 and 3 is that they rely on and exploit the flexibility
of user-level control over shared-memory coherence policies in a cache-coherent dis-
tributed shared-memory (DSM) system, which implements a shared-address space

on distributed-memory hardware using a combination of hardware and software



techniques [29, 38].User-defined reductions (technique 2) and compiler-directed
shared-memory communication (technique 3) both optimize communication in
dynamic data-parallel applications, but target distinct communication patterns,
and their effect is cumulative. User-defined reductions optimize many-to-one com-
munication with combining, whereas compiler-directed shared-memory communi-
cation optimizes one-to-many producer-consumer or migratory sharing patterns.

User-customizable DSMs enable a compiler and run-time system to tailor co-
herence policies to applications, both to implement higher-level functionality and
to improve performance [39]. A number of such systems exist (e.g., Tempest [38],
FLASH [29], TreadMarks [4], and Sequent’s STiNG [34]), and they are becoming
more popular. Some other compiling approaches also target flexible DSMs |8, 22],
but focus on efficient DSM support for regular applications.

This thesis demonstrates that our techniques are effective. Using a suite of
popular benchmark applications consisting of irregular and adaptive applications,
we show that programs written in a high-level data-parallel language can be
compiled to execute as fast as equivalent hand-optimized code on the CM-5, a
distributed-memory multiprocessor. Our benchmark suite does not include regu-
lar applications, although the communication optimization techniques also apply
to those applications. Furthermore, these three techniques focus on only two
facets of data-parallel program compilation for irregular and dynamic programs,
i.e., conflict-free data access and efficient communication. This thesis does not
tackle other important problems, such as automatic load balancing or efficient

data distributions.



We implemented these techniques in a compiler for the language C** [31]
that targets the Tempest interface. C** is a data-parallel language that provides
high-level language features like a global name space and parallelism through
simultaneous operations on data. C** provides coarse-grain parallelism in the
form of user-defined parallel operations. Tempest [38] is a programming interface
for a distributed-memory multiprocessor that provides the mechanisms to im-
plement fine-grain cache-coherent shared memory in addition to message-passing
primitives. Tempest combines good features of both message passing and shared
memory; a compiler can use the fine-grain shared memory mechanisms to im-
plement a global name space, and use custom coherence protocols or low-level

communication facilities to optimize known communication patterns [28].

1.1 Implementing Conflict-free Data Access

The first technique targets the implementation of conflict-free data access in C**’s
parallel operations [30]. C** supports coarse-grain user-defined parallel functions
(Section 2.2) and a global name space of variables, which together give rise to the
possibility of data access conflicts or data races. A data race occurs when two
distinct parallel tasks access a single global data item, and one of the accesses
is a write (Section 2.2.2). Data races are problematic because different temporal
access orderings could generate different results, causing errors that are extremely
difficult to reproduce and to correct.

C** clearly defines the semantics of conflicting memory accesses to avoid data-

access conflicts. When a data-parallel operation modifies a global data item, it



receives a private copy of that data item, which is not visible to other data-parallel
operations. When all operations complete, the private copies are merged into
the global state. Lack of conflicts translates into nearly-deterministic execution,
which is a desirable feature of some data-parallel programming languages. We
explore two ways in which a compiler and run-time system can use copy-on-write
to implement the high-level semantics of C**. For parallel functions with regular
data-access patterns that a compiler can analyze, the compiler inserts code in the
program to maintain copies. For functions with accesses that a compiler cannot
identify precisely (e.g., accesses through pointers), compiler-copying results in
excessive and potentially expensive run-time checks. Instead, the compiler relies
on a Loosely-Coherent Memory (LCM) system to create transparent fine-grain
copies. LCM is driven by runtime compiler directives (e.g., to identify modified
global data items) and uses a custom cache coherence protocol to create copies of
cache blocks at the same global address. The LCM protocol provides controlled
inconsistency of global data items during parallel execution, which matches the
semantic requirements of C**.

Using performance data from three variants of mesh relaxation codes, we show
that these two techniques complement one another. Compiler-copying is efficient
when compiler data access analysis is precise, and LCM works well when the anal-
ysis is imprecise. The benefit of providing two alternatives is that a compiler can
choose the efficient alternative based on the precision of its data access analysis,

and even use both in a program.



1.2 User-defined Reductions

The second part of the thesis describes the design and implementation of user-
defined reductions. Data-parallel languages typically allow reductions to combine
values from independent parallel operations (Section 2.1.2). Reductions are ex-
tremely common in parallel applications, and can be implemented efficiently in
parallel. However, most data-parallel languages restrict reductions to a prede-
fined set of reduction operators, typically arithmetic operations on basic types.
We demonstrate that parallel languages need not and should not arbitrarily limit
reductions in this way. User-defined reductions extend reductions in two dimen-
sions. First, they allow new operations to combine values, such as building a list
from colliding values. Second, they allow reductions to apply to user-defined data
types.

This thesis demonstrates the advantages of user-defined reductions, focusing
on the benefits of extending reductions to user-defined data types. To motivate
user-defined reductions, we describe and compare three real-life data-parallel im-
plementations of inter-cell particle movement in a particle-in-cell code. The first
method, which uses a parallel prefix operation, is both cumbersome to specify
and inefficient in practice. The second method, which uses a predefined APPEND
reduction, works well, but is not flexible, and does not directly specify a producer-
consumer pattern. The third method, user-defined reductions, allows the program-
mer to intuitively specify particle movement, and leads to an efficient implemen-
tation.

We also present a simple implementation of user-defined reductions in C**



to show that they can be implemented efficiently with message-passing support.
The basic implementation uses messages to transfer reduction data, and two well-
known optimizations, message vectorization and local combining, can be applied
to improve reduction performance. We compared the execution time of four C**
applications (with reductions) against equivalent hand-optimized versions. On a
32-node CM-5 and a 16-node Cluster of Workstations (COW), both versions were
comparable on 3 out of 4 benchmarks, all of which had dynamic communication
patterns. On the fourth benchmark, which exhibited a repetitive static communi-
cation, the message-passing hand-optimized version was considerably faster. C**’s
reduction implementation does not optimize static reduction patterns, using, for

example the Inspector-Executor compiling approach.

1.3 Compiler-Directed Shared-Memory Commu-
nication

The third technique describes how a data-parallel language compiler and a cus-
tom cache-coherence protocol can implement shared-memory communication effi-
ciently for applications with unpredictable but repetitive communication patterns.
This technique applies to a large class of scientific applications that are iterative
— each iteration simulates the evolution of a physical system over time. For ex-
ample, in static mesh calculations, nearest-neighbor communication is repeated
in each iteration. In some irregular problems, such as molecular dynamics codes

[46], communication changes infrequently, perhaps once every 20-30 iterations. In



adaptive problems, communication changes frequently, but incremental changes
between iterations are small. For example, structured adaptive meshes gradually
add mesh nodes for greater accuracy in each iteration [27], and gravitational N-
body problems represent bodies in a quad-tree, which undergoes small structural
changes between iterations.

This section shows that a compiler for a data-parallel language can cooperate
with a predictive cache-coherence protocol in a distributed shared-memory (DSM)
system to optimize shared-memory communication for applications with dynamic,
but repetitive communication patterns. The compiler uses data-flow analysis to
identify points in the program where potential repetitive communication patterns
exist. A predictive protocol in the runtime system augments the default shared-
memory protocol to build a communication schedule for one iteration and utilize
a schedule to pre-send data to satisfy data requests in following iterations. As a
result, the predictive protocol reduces the number of shared-memory data requests
that cannot be satisfied locally, and the total remote memory access latency.

Compiler-directed shared-memory communication uses a combination of two
techniques — a predictive cache coherence protocol, and simple compiler analysis
— for optimizing shared-memory communication. The predictive protocol builds
dynamic incremental communication schedules — new requests not satisfied by the
pre-send phase are added to the schedule for subsequent iterations. This approach
has the advantage that it can be applied to adaptive applications with repetitive
dynamic communication patterns that a compiler cannot analyze. Simple com-

piler analysis automatically applies the predictive protocol for applications with
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repetitive producer-consumer sharing patterns for which a sequentially-consistent,
memory coherence protocol would incur large overheads [9]. By contrast, compil-
ers targeting message-passing machines must identify and fully analyze run-time
communication patterns in applications. Our simple analysis only identifies pro-
gram points at which potentially repetitive communication takes place, but need
not identify the patterns themselves.

We measured the benefits of compiler-directed shared-memory communication
by comparing the execution time of optimized and non-optimized versions of three
applications (Adaptive, Water, and Barnes) on a 32-processor CM-5. In all cases,
the optimized version had significantly less remote latency. For Adaptive and
Water, the optimized version was faster than the best non-optimized version. For
Barnes, which shows excellent spatial locality, the optimized and non-optimized

versions are comparable.

1.4 Contributions

The important contribution of this thesis is to show that, for a larger class of
scientific applications that includes irregular and dynamic applications, programs
written in a high-level data-parallel language can be compiled to run as efficiently
as hand-optimized code on distributed-memory multiprocessors. Ideally, we would
have liked to compare the performance of data-parallel programs against equiva-
lent message-passing versions, which typically demonstrate the best performance.
However, message-passing versions are extremely difficult to develop, and we set-

tled for the best parallel version of each application that was available to us.
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Towards this goal, we present three new techniques for compiling data-parallel
programs, including compiler-copying and LCM to prevent data-access conflicts,
user-defined reductions for efficient communication and compiler-directed shared-
memory communication for iterative applications. We describe each technique
in detail, and demonstrate that they produce executable programs that run as
efficiently as equivalent hand-tuned codes.

We also show that these techniques apply to a wider class of applications,
i.e., those with irregular and dynamic communication patterns, than have been
previously considered. For example, our suite of benchmarks includes adaptive
structured mesh codes and a data-parallel implementation of the Barnes-Hut al-

gorithm, a dynamic hierarchical gravitational N-body code (Table A.1).

1.4.1 Generality of our Techniques

Although we have developed these techniques in the context of C** and Tempest,
they should readily extend to other data-parallel languages and DSM platforms.

All the compiler techniques developed in this thesis are also applicable to
other data-parallel languages with coarse-grain data parallelism, including pop-
ular languages such as HPF [25]. Compiler copying for conflict-free data access
(Chapter 3) is already required in a limited form for array assignment statements
by the HPF standard. The upcoming HPF-2 standard is considering allowing
user-defined reductions in HPF’s coarse-grain DO INDEPENDENT loops [14]. Since
C**s parallel functions and HPF’s coarse-grain DO INDEPENDENT loops provide

very similar functionality, our reduction implementation (Chapter 4) should di-
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rectly extend to supporting HPF programs. Finally, compiler analysis for opti-
mized shared-memory communication (Chapter 5) is designed for languages with
coarse-grain data parallelism.

Two of the techniques presented in this thesis (LCM and the predictive proto-
col), rely on the ability to customize cache-coherence protocols in a DSM s