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Abstract

Distributed shared memory (DSM) systems simplify the task of writing disérb
memory parallel programs by automating data distioim and communication. Unfortu-
nately DSM systems control memory and communication usireglfpolicies, een when

programmers or compilers could manage these resources rincenty.

This thesis proposes aweapproach that lets userdieently manage communication
and memory on DSM systems. Systemsvig® primitve DSM mechanisms without
binding them to fird protocols (policies). Standard shared-memory programs wsdtdef
protocols similar to those found in current DSM machines. @rdikrent systems, these
protocols are implemented in unpleged softvare. Programmers and compilers are free
to modify or replace them with optimized custom protocols that manage memory and

communication directly and fefiently.

To explore this nes approach, this thesis:

identifies a set of mechanisms for digitéd shared memary

» developsTempesta portable programming intade for mechanism-based DSM sys-

tems,

» describesStade a protocol that usesmpest to implement a standard shared-mem-

ory model,
e summarizes custom protocolsvaéped for six shared-memory applications,

« designs and simulates three systerigphoon, yphooni, andTyphoon6—that sup-

port Tempest, and

» describes a wrking hardvare prototype of iphoon®, the simplest of those designs.



Tempest combines fine-grain coherence support, areaoessage model, and virtual-

memory—based page allocation to\pde portability across a range of platforms.

Typhoon, Tphoond, and {phoond support €mpest using dérent levels of custom
hardware intgration. lyphoon achiees high performance by imgeating ley components
on one deice. Typhoon4 and fphoond use ofthe-shelf parts for some of these compo-

nents, trading some performance for simpler designs.

Typhoon demonstrates that mechanism-based DSM systems can compete with hard-
wired-protocol systems on unmodified shared-memory applications (within 25% across
six benchmarks). Despiteyghoons low overheads, custom protocols impeoperfor-
mance significantly for some applications—by 384% for one benchmark. Results for
Typhoon4d and Yyphoon® on unmodified applications araned, lut custom protocols
bring them within 13% and 47% of/phoon, respeately.

A working Typhoon-0 prototype demonstrates the feasibility of these designs. Measure-

ments of the prototypg’performance substantiate simulator projections.
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Chapter 1

A New Approach to Distributed Shared Memory

Modern microprocessors pride a tremendous amount of computingvpo for a rela-
tively small price. Currentlythe fastest microprocessorgegute up to four instructions
every two nanoseconds—a peak rate obthillion instructions per second—yet sell for
$3,000 or less [Mic96] and can be had in complete systems for under $10,000 [Eno96]. It
is difficult and costly to reach higher performanceele by lilding faster processors: the
cheapest non-microprocessor—based system thaster foy ap measure is the half-mil-
lion—dollar CrayJ90 [McC96, Cra96]. \th few exceptions, the most costtettive

approach to higher performance is tmg multiple microprocessors together

Nearly all current multi-microprocessor systemganize their processors and memory
using one of tw methods. The simplest approach usessata common set of wires—to
join the processors and memory [Bel85].vwdger, competition for use of the sharedsb
limits thesebus-basedsystems to at most aweens of processors. lger systemswaid
the us bottleneck by grouping processors and memory into nodes—each one essentially a
bus-based uni- or multiprocessor system itsel—which communicate via a point-to-point

messaging netark (see Figurd-1). The size of thesdistributed-memorgystems is lim-
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Figure 141. Distributed-memory system ganization.

ited primarily by cost: Intel is scheduled to @eh a machine with 9,000 processors and
262 giabytes of memory by the end of this year (1996)—at a cost to the Wedngeent
of $46 million [Int95].

Although distriuted memory alls the construction of Ilger machines, it introduces
two nev tasks: distribting data among the nodes and communicating across therketw
when processors need data from other nodeschiee high performance—the primary
motivation for luilding a lage machine—these tasks must be performed wdltiétit
data distrilntion and communication—storing data on the node or nodes where it is used
and werlapping netwrk delays with useful ark—improves performance by reducing or
eliminating the time processorsaiwfor data to cross the netvk. Two prevalent types of
distributed-memory machinesmessge passinganddistributed shaed memory-handle

these tasks in maeklly different ways.

Message-passing systemsviealata distribtion and communication entirely to soft-
ware. Programs specifygicitly on which node each datum is located and when each
message is sent. If programmers and compilers can predict precisely where and when each
datum is used, tlyecan eploit this control to use memory and netw resources &f

ciently. However, less predictable programs require potentially costly run-time audtto
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locate data and process messages dynamitaladdition, a message-passing progeam’

data distrilntion and communication patterndeat its structure and correctness substan-
tially. Programmers who use message passing directly must deal with these issues up

front, and decisions made early invd®pment often are not easilywessible.

In contrast, distribted shared memory (DSM) systems distigband communicate data
automatically These systems priole the abstraction of one global, uniformésf mem-
ory. Programs access data by referencing locations in this global memory space. Systems
transparently fetch data,gardless of its pysical location, to satisfy these references. At
the same time, these systems replicate and migrate data dynamically across the nodes to
keep \alues near the processors that reference them. Because the shared-memory abstrac-
tion matches the model that arises naturally ws+ll|ased multiprocessors, DSM systems
take adwantage of programs written for—and programmers trained on—the much more
common lis-based machines. Programmers caeldp correct, wrking programs with-

out considering data distiiion or communication.

Unfortunately DSM machines hide the underlying distiiéd-memory aganization too
well at times. Although programs that areveaabout data distrition and communica-
tion will function correctly on a DSM system, thenay not perform well. Programmers
must reason about (or compilers must deduce) a progragrmory and communication
behaior to improve its performance. Hever, once a prograre’behaior is understood,
DSM systems prnade no standard, direct techniques for implementifigieft data dis-
tributions or communication protocols. Instead, programmers and compilers must attempt

to effect these optimizations indirectly by modifying the progsmference pattern.

This thesis proposes amapproach that lets userdigiently manage communication
and memory on DSM systems. This approach is based on separatingi®B8ahisms—
the lav-level operations that makDSM feasible—from thpoliciesthat gwern their use
[Bri70, LCC'75, WuI81]. Systems implement primi# memory and communication

mechanisms sfi€ient to support distrited shared memory—mechanisms present in
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some form in most DSM machines. Udilxisting systems, whichusy these mecha-

nisms underneath & policies, these memechanism-based systems let ordinary soft-
ware access these mechanisms direEtly standard shared-memory programs, sarféw
libraries preide unversal policies, similar to those implemented in current DSM systems.
However, because these policies are ordinary safiew—just lile ary other program com-
ponent—programmers and compilers may modify or replace theuigittng program-
specific knaledge to optimize data distibon and communication. This mechanism-
based approach maintains DSMoivenient model and dynamic data management while

enabling the potential #&fiencies of message pass#egkplicit resource control.

To male this proposal concrete, | describe a programming aaerfor mechanism-
based DSM systems calldémpest Tempest strigs a balance between portability and
performance by combining virtual-memory page mapping—as used by page-based soft-
ware DSM systems [LH89]—with the fine-grain coherence found in ree\DSM
machines. This balance neskempest a suitable intexfe for all-softvare implementa-
tions on generic message-passing machines fBELSFH96] as well as highegperfor-
mance hardare-accelerated systems RR4, RPW96]. Applications and programming
tools written to the @mpest intedice run unmodified across this wide range of systems. |
describeState a softvare library that implements application-transparent shared mem-
ory—similar to that preided by a typical DSM system—usingmpest. | also summarize
six shared-memory applications which programmexe laptimized by accessingei-
pests mechanisms directly [FL'R4, MSH"95].

An interface is a contract between the users and the implementors of a system, so it must
carefully consider both perspaas. On the implementation side, this thesiangines
Tempest systems that can be constructed by adding customahardwetwrks of of-
the-shelf vorkstations. | describe three designs thaqii@e the relationship between the
level of custom hardere intgration and system performance. The systems proposed here
demonstrate thatempest is amenable to a range of custom ham@hacceleration tech-

niques. Simulations shothat the design with the most highly igtated Empest sup-
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port—called Typhoor—performs at a lel comparable to a har@ne-controlled DSM

system. | also describe a prototype implementation of the simplest custonmateardw
design—knavn asTyphoon-6—that demonstrates the feasibility of this approach and pro-

vides a real-wrld system for benchmarking.

The folloving section discusses the mechanism-based approach toutkstrghared
memory further The remaining sections describe the twain contrilntions of this the-
sis—the Bmpest intedice and the design and analysis of hardvsupport for @dmpest—

in more detail.

1.1 Mechanismsdr distrib uted shared memory

To understand the role of mechanisms in digtald shared memargonsider the opera-
tion of typical DSM systems. These systems approximate theibeb&a uniform shared
memory by caching data stored on other nodamdtedata). When a processor in such a
system accesses remote memdng system copies the requested data, plus some neigh-
boring \alues—a datdlock—to a portion of local memory calledcade The system
then satisfies future accesses to that remote data block using the local cgchsmbpg
further netverk traversals. Because most programaibit locality—that is, once a pro-
cessor accesses a memory location, it islyiko access that location or others near it
shortly—the local cache handles most memory accesgpsdiess of the dat'original
location. As memory alues change;oheence potocolsensure that processors do not
access out-of-date cache copies. These protocols track the nodesytestatodata block

and send messages teahdate or update those copies when a block is modified.

Because programmers communicate with the system only through memory accesses
(loads and stores), thenust relinquish message passsngjrect control eer memory and
communication to @n shared memory’ease of use. This lack of control forces them to
forgo potential optimizations [KJ"93, Lar94]. Br example, a programmer may kmdgor
a compiler may deduce) that alwe written on nod@& will be read ngt on nodeB. In this

case, sending theale directly fromA to B is almost certainly more fefient than relying
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on a DSM systers’coherence protocol. En without &act information, a programmer or

compiler may be able to supply useful hinter Example, if a processor is not dily to
access a memorygm®n ag@in, the system carvaid coherencewerhead by not caching
the data—while still beleng correctly if the hint is wrong. Finallgome operations, such

as synchronization, aregressed more naturally andieiently in terms of messages.

This thesis proposes that systemsagisers direct controver memory and communi-
cation by preiding access to the same primgimechanisms empled by the coherence
protocol. Systems that priale primitve mechanisms cawvad the needless run-time gen-
erality of a one-size-fits-all solution [W81]. For DSM systems, this one-size-fits-all solu-
tion is the coherence protocol. By piting access to a complete set of mechanisms,
programmers and compilers are free to modify or replace protocols arhitc#ilgries

provide standard, umersal protocols, such as those found in current DSM systems.

Mechanisms>dst at numerous leels; for xkample, fetching remote data is a mechanism

that relies on lwverlevel mechanisms, including sending a request message andngcei

a reply message.oTmaximize generality and Ribility, this thesis seeks to identify the
lowest-level mechanisms that maleficient distributed shared memory feasible. | identify
three mechanisms that underlie nearly all DSM systemessging, local stolage man-
agement andmemory access cootr Explicit messaging pxades direct controlwer net-

work communication. Local storage management lets users control each metedry
contents by associating global addresses with local memory locations. Memory access
control detects accesses that require coherence action by marking locaadids riead-

only, or writable.

Although these mechanisms amrygeneral, this thesis focuses on their use in optimiz-
ing shared-memory application performance. Specificadlpgrammers tune perfor-
mance-critical data structures by replacing the standard coherence protocol with
application-specificcustom potocols These programmateveloped protocols rely on

knowledge of the applicatioa’communication patterns to impeperformance, typically
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by sending data directly to its consunfeerformance imprkements of an order of magni-

tude hae been obseed from custom protocols [FL'R4]. Although this thesis reports on
manual optimizations onlyautomatic optimizations based on static program analysis
[Lar94] or programmer annotations [RAK89, CBZ91, HAB3] are a promising
approach to achwing similar eficiengy with reduced programmerfeft. Other research-
ers are imestigating tools to aid custom protocolvedopment [CRL96] as well as other
applications of these mechanisms—feample, language-specific shared-memory sup-
port [LRV94].

In contrast with the mechanism-based approach proposed here, other DSM system
designers hae dealt with this issue through a combination o techniques:>¢ending
the shared-memory intade and implementing Weoverhead, la-latenoy DSM hard-
ware. Mechanism-based DSM is less restrctthan specific inteate &tensions—
enabling a lage \ariety of highetlevel programming intedces—and prades an alterna-

tive to iilding aggressie DSM hardware.

Many systems xtend the shared-memory intack—adding operations ymnd simple
loads and stores—to pride a channel for softare to communicate additional informa-
tion. These operations include uncached accesses, prefetch instructions [CKP91, MG91],
writes that update outstanding data copies [RS3VLLG92], atomic read-modify-write
operations [GGK83], and &plicit synchronization operations [GVW89].8ak consis-
teng/ models [AH90, GLL'90] modify the semantics of ordinary loads and stores twallo
more reordering—and hence moreedap—among memory accesses. These models
require additional operations that force a partial order between accessesve awae-
ingful memory semantics. At a highewvé, the Munin softare DSM system [CBZ91]
lets programmers annotate data structures wiieaed reference patterns. The system

uses these annotations to select from a set of coherence protocols.

In theory a DSM system that pvaes a complete set of wersal mechanisms can sup-

port ary or all of these xensions. Ordinary softave composes theailable mechanisms
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to support the desired operation(s). Simpteeesions such as prefetch may be imple-
mented as a library or inline function; more compteerfaces may wolve compiler sup-
port as well. In practice, the specific mechanismygigenl by a DSM system, and their
run-time cost, determine the feasibility andicééngy of a particular operation on that

machine.

A second approach to dealing with shared-memoryfiamerficies—complementary to
extending the intedce—is to minimize the impact of these freééncies by hilding
aggressie hardvare. If communication\erhead is o, mary applications can achie
good performance within a standard shared-memory model. Simplexcgtextensions
such as prefetching enable good performance for more communicationvetensi
grams. Systems such as M§TAlewife [ABC*95] and Stanfor@’ DASH [LLG"92] and
FLASH [KOH"94] emply significant amounts of custom harahe to reduce coherence
protocol awerheads. Although this hardwe may increase the number askbased multi-
processor applications that perform well without modification, #pemrse of designing

and manudcturing these systems may limit theiioadability.

Due to the wverhead of sequencing mechanisms in saféyymechanism-based systems
have a performance disaaintage relatie to these hardave-protocol DSM systems on
demanding, unmodified shared-memory applicationsweder, simulations of the
Typhoon design (see Secti@rB) indicate that high-end mechanism-based systems can
compete with hardare DSM systems on moderately demanding standard shared-memory
applications—and ha the potential to outperform them significantly when custom proto-
cols are used to optimize communication-inteasapplications. The mechanism-based
approach also enabledeagftive shared-memory performance on legseasve hardvare
platforms, as demonstrated by sdte-only implementations described elkere
[SFL*94, SFH96] and the less ingeated hardare designs described in SectibB.



1.2 The Tempest interface

Tempest praides a concrete, portable intecé to the three DSM mechanisms identified
in the pr@ious section: messaging, local storage management, and memory access con-
trol. Tempest messaging bowes from \on Eicken’s Active Messages [VECGS92]. Stan-
dard virtual address translation mechanisms are used for local storage management, as in
software DSM systems [LH89]. The most invadive aspect of @mpest is its specification
of fine-grain access control, a feature that enables fine-grain coherence aitgpral-

ability to high-performance systems.

Tempest allos a range of implementations so that optimized applications and optimiz-
ing compilers need not be re-implemented fegrg platform. Platform-specific mecha-
nisms are less Iy to inspire deelopers to imest the dbrt to exploit them, since their
effort will be wasted if thg move to a diferent platform. €mpest implementations also
span a wide cost/performance rangewiamst implementations areak to making an
interface widely mailable, which in turn generates a supply of trained programmers, a
body of applications, and a matkfor deselopment tools such as compilers. At the same
time, highercost, higheiperformance implementations must algseboth to support the
most demanding applications and to reassweeliod users that their sofane irvestment

is not wasted if their computational needs increase.

1.3 Hardware support for Tempest

The second focus of this thesis is the design aathation of hardware support for
Tempest. Existing softare-only Bmpest implementations [SF24, SFH96]—not co-
ered in this thesis—demonstrate the potentialevhest for lav-end systems. The goals

of studying hardware support are:

» to demonstrate thatempest scales up incrementallyrough a range of highebst,
higherperformance solutions, to the point where it is competitiith high-end, dedi-

cated distribted shared memory systems;
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* to identify techniques that can be used to accelertep@&st at arious cost/perfor-

mance points; and

* to quantify the performance of these altewetifor shared-memory applications, with

and without Empest optimizations.

| describe three distrited-memory &mpest designsFyphoon Typhoon-1 and
Typhoon-8—and compare their performance using simulation. | also describe a prototype
hardware implementation of theyphoon-0 system that demonstrates the feasibility of the

hardware fine-grain access control approach used in all three systems.

All three designs use costfeftive of-the-shelf vorkstations for the processor-memory
nodes. Each design adds three logical componentgety rode: a snooping access con-
trol device, a netwrk interface, and a protocol processbine systems dér in the leel of
custom hardware intgration used to implement these components.

* Typhoon intgrates all three components on a singhdade This intgration lets pro-
tocol software eficiently interact with the access control and messaging mechanisms,
resulting in high performance—within 25% of a comparable hardwired-protocol sys-
tem on a set of six unmodified shared-memory benchmarks.

» Typhoon-1 intgrates the netark interface with access controlubleaves protocol
processing to an bthe-shelf processoRelatve to Typhoon, this laver level of inte-
gration reduces design comyly, and (potentially) manatturing cost, at the

expense of some performance—11% to 222% on the unmodified benchmarks.

* Typhoon-0 uses a custom access contreicéewith an of-the-shelf protocol proces-
sor and an dfthe-shelf netwrk interface. phoon-0 has the least comyty and
lowest performance of the three systems. On the unmodified benchmaokspii-0
ranges from 28% to 427% sler than {phoon.

The simulation results also shdhe efectiveness of @mpest-based custom protocols.
Even on Yphoon, with its lav-overhead support for standard shared mepaustom pro-

tocols sped up one of the benchmarks by 384% and another by 8Bth&\tustom pro-
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tocols, yphoons performance ranges from 2%omse to four times better than the

hardwired-protocol system.

Custom protocols prade even greater benefits on systems with highegrioeads.
Although Typhoon-1 and yiphoon-0 can be significantly sker than ¥phoon for stan-
dard shared memory—adtor of two and fouy respectiely, on the most demanding
benchmark—custom protocols reduce thédénces to 13% and 47%. Custom protocols
also pra@ide more robst application performance in theck of other increasederheads,

such as lager netvork latencies and, foryphoon, slaver embedded processors.

A prototype hardare implementation of yphoon-0 demonstrates the feasibility of
these designs and mides a real-wrld system for benchmarking. Despite a higlere
head commercial messaging netly five of the six benchmarks achéebetter than 58%
efficiengy on sixteen nodes of the prototype. Application-specific protocols are critical to
achieving this eficiengy in three of the fig cases. The prototygeneasured performance

agrees substantially with simulator projections.

1.4 Thesis oganization

Chapter2 motvates the fundamental shared-memory mechanisms, then describes the
Tempest intedice and its use for both application-transparent and custom shared-memory
protocols. Chapte3 discusses hardwe support for @mpest, with a detailed descriptions
and a simulation-based performance comparisolypfidon, yphoon-1, and yiphoon-0.
Chapter4 focuses on theyphoon-0 hardare prototype, including measured performance

results. Chaptes concludes with a summary and future directions for tloikw
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Chapter 2

Mechanisms obr Distrib uted Shared Memory

This thesis proposes aweflexible approach to distriied shared memangystems
provide primitive shared-memory mechanisms without prescribing specific policies (e.qg.,
cache coherence protocols). Programmers and compilers can combine these mechanisms

arbitrarily to optimize ®isting protocols and to implementmenes.

This chapter bgins by &amining the abstract mechanisms required for digtib
shared memory (DSM). Three mechanisms—messaging, local storage management, and
access control—underlie nearly all DSM systems. Seéti@mescribes @mpest, a con-
crete, portable inteae to these mechanism&nipest uses aaxiant of Actve Messages
[VECGS92] for messaging.iNual address translation pides local storage management.
Tempest most inngative feature igine-grin access control. The xigtwo sections she
how Tempest can be used, first to yde application-transparent shared memory
(Section2.3), then to optimize the performance of shared-memory applications using cus-
tom protocols (SectioB.4). The chapter closes with a discussion of relatedk w

(Section2.5) and a summary (Secti@rb).
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2.1 Fundamental mechanisms

This section identifies three abstract mechanisms—messaging, local storage manage-
ment, and access control—required to support shared-memory programming models on
distributed-memory machines. Mechanisms are the separable components of a process or
system. Policies are the rules thavgm hav mechanisms are used to askie desired
result. The diision of a process into mechanisms can be donevatadderels; a mecha-
nism at one kel may be hilt from a lover-level set of mechanisms and policies.max-
imize generality and fiebility, this work seeks to identify the \west-level mechanisms

that male eficient distrituted shared memory feasible.

These mechanisms assume a typical distedhmemory parallel machine, comprising a
set of nodes connected by a messaging aré&t\(see Figurd-1 on page?). Each node
contains one or more processors that share a memory module and anerttethe net-
work. Hardware maintains coherence among processor caches within a node. Memory
accesses are performed only on the node wheyatbdssued—that is, remote data refer-

ences are performed on a gayf the data in local main memory or a haatevcaché.

Every distributed-memory machine incorporatesmessagingmechanism—that is, a
way for nodes can communicate through the odtw-even if messaging is not directly
available to users.dunderstand the remaining DSM mechanisms, consider the process of
performing a shared-memory access. Thedlaart in Figure2-1 summarizes this pro-
cess. In the figure, unshaded objects represent mechanisms and shaded objects represent

policies.

As the first step in performing an accescal storage managemenmechanism finds

the local memoryif any, allocated to the shared-memory address. If there is no local

1. This model gcludes systems which may perform widual loads and stores on a node other
than the one on which theare issued. Examples include systems that use write-through or
write-update caching of remote memory [BR90, WHL92, 94| IDFL96] and those that
migrate threads to data on misses [CR95]. Support for these models can conflict with some com-
mon implementation features—faxample, writeback processor caches.
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Figure 241. DSM memory access fichart.If either the allocation check or the access ct
fails, the system must talaction before the reference can be performed. The solidsarrdicate
that the reference is suspended and later resumed without repeating the allocation and a
checks. An alternate approach is to abort and retry the reference, as indicated by the do#

memory for the referenced address, the mechanoikas an allocation polc This pol-
icy selects the local memory to allocate, possillgteng previously cached data to mak
room. The polig interacts with local storage management to set up and tear rdap-
pings from addresses to local memdtylso uses messaging to seutted data to other

nodes when necessary

Once local memory is allocated, access contl mechanism determines whether that
memory contains aalid copy of the data. If not, the mechanisnvokes an access pojic
to acquire up-to-date data or additional access permissions. YA eafdity may depend

on the type of the access; in most protocols, replicated copiealiaréov reading bt not
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for writing.) The access poldncludes both the global allocation pglievhich selects the

node to which a particular request is sent, and the coherence protocol, which determines
how requests are handled. This pglicses both messaging and access contooled&@am-
ple, the polig may send messages telling other nodes to mark their cogadid inefore it

lets the local node write its cpp

In contrast to earlier ork [Cha94, WCF93], | do not consider operations internal to the
coherence protocol (e.g., recording pointers to the nodes sharing a block) as mechanisms.
This thesis seeks to identifyndamentaimechanisms—mechanisms that cannot be syn-
thesized diciently. Stanfords FLASH system [IOH"94, HKO™94] and the ¥phoon
design described in Chaptgrdemonstrate that sofare protocols are not inconsistent

with high-performance systems.

After the allocation and access control checks succeed, the system performs the access

on the local cop

Messaging, local storage management, and access control are three mechanisms that are
fundamental to the operation of practicallyyddSM system. @ allow flexible, eficient
policies, systems must present these mechanisms to users in a prashicel. fThe nd

section describes an intacke designed to meet that need.

2.2 The empest interface

Tempest is a concrete intacke to the three abstract mechanisms identified in thée pre
ous section. One ofempest primary goals is portability across a wide cost/performance
range. At the lav-cost end, @mpest allars all-software implementations on generic mes-
sage-passing haréne [SFL'94]. At the same time, the intade is amenable to hareve
support. Chapte3 describes a range of designs thatvigl® hardvare acceleration for
Tempest; the most aggressiTyphoon) is competie in performance with dedicated dis-

tributed shared memory systems.
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The following sections describe the significant featureseshfest. (See Appendix A

for a more complete intexte specification.) Each of the abstract mechanismaisieed

in turn. For messaging, dmpest bornes from the Actre Messages model [VECGS92].
Standard virtual memory har@we supports local storage management. The mostanno
tive aspect of @mpest idine-grain access control, which is prided using a tagged mem-

ory model. The final section discusses mechanism interactions.

2.2.1 Messaging

Most systems designed foxg@icit user message passing perform best oyelastati-
cally scheduled transfers. The implicit messaging Wehaf DSM systems diérs in the
following ways:
* Messages are short: some contain only control information (e.g., a request for data),
while others consist of control information plus a small amount of data (e.g., the
response to a request). Assuming 64-bit addresses and 128-byte data transfers, we can

estimate the former at 16-24 bytes, whereas the latter may be around 150 bytes.

* Most messages are handled asynchronously at theeedehat is, requests for data
and coherence operations areseln by the dynamicxecution of other nodes, and are

unrelated to thexecution on the recéing node.

e The control information in messages originates in procesgmtees on the sender

and is consumed ingesters on the reoer.

* Low lateny is important for high performance. \&eal techniquesxist to tolerate
memory lateng—such as multithreading, prefetching, and non-blocking loadé—Db

none of these is capable of hiding the latencies of most moderarketw

Tempest bases its messaging model onvAdilessages [VECGS92], aXiele, low-
overhead messaging model designed for fine-grain message-based systems. The header of
each message contains a pointer to a function thatdked at the receing node to han-
dle the message aral. These message handlers awhed asynchronously with respect

to the main thread of computation at the reeeiEach handler is responsible for dispos-
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ing of the remainder of the message r&duce scheduling and synchronizatiserbeads,

each handler is run to completion before another message handler is started.

Deadlock is an issue inyamessaging system. The netk buffers message data as it is
routed to its destination. A node cannot send a message if theraufarspace \ailable
in the netvark. A node may not simply avt for space to becomeailable without reme-
ing ary of the messages destined for it, becausgke ©f nodes witing for each other to
remove their messages will deadlock. Because eathpést (or Actie Messages) mes-
sage handler must complete before another handlerveedllto run, there is the potential
for deadlock whener a message is sent from within a message haAdiire Messages
avoids deadlock by restricting handlers to sending at most one seplyguaranteeing
buffer space for that one messageweeer, this solution is wkward for DSM cache
coherence protocols, in which a handler may send out multiple messages to update or
invalidate all the sharers of a particular memory blocka/bid placing unnecessaryib
den on the useifempest places no restrictions on sending messages from within message
handlers. In cases where these sendsflow the network, the runtime systemulfers
message data in the usevirtual memoryA truly errant process will be terminated when
it exhausts the memoryvailable to it. A similar approach is tak in the Fugu system
[MKAK94].

In addition to the modified Aate Messages modelgmpest includes a separate mes-
saging interdce for llk data transferThis alternate inteaice complementsempest
Active Messages by praling asynchronous, high-bandwidth memory-to-memory com-
munication for lage amounts of data. Users setwipual channelsthat bind a sending
node with a bffer on the receer! The sender can transmit directly to the reees
buffer without eplicitly invoking a handler on the reger. The sender can use the chan-

nel repeatedly without reestablishing it. Although thitkbnterface can be implemented

1. This interfaice is modeled after the virtual channalsility in the CMMD library on the Think-
ing Machines CM-5, which similarly complements CMMECM Active Messages.
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on top of Actve Messages, it is included in the specification ¥e giystem deslopers the

freedom to optimize the implementation—foaenple, by emplging DMA hardware.

2.2.2 Local storage management

The second mechanism, local storage management, maps shared-memory accesses to
local storage locations andviokes a softwre handler to allocate and map local storage if
an unmapped address is referenced. The virtual address translatiomrlafoiwnd in
most processors is suitable for this taskaa that has beerxgloited in numerous DSM
systems [LH89, CBZ91, BZS93, KDCZ94, HSL94]. Shared virtual addresses are mapped

to local plysical memory; a reference to an unallocated location results in agudge f

Using virtual address translation for the local storage management mechanism has se
eral adantages. Support is ubiquitous in modern processors, so portability is guaranteed.
Capacity is bounded only by theradlable local memoryAssociatvity is practically
unlimited. As long as the applicatieniorking set fits in the processsiTLB, the peref-
erence verhead is &ry lov. There are tw potential drevbacks. First, the cost of taking a
page &ult is typically lage [ALBL91]. Howvever, most of this werhead is due to operating
system structure, so it can be greatly reduced at the cost of modifying the OS [RFW93,
TL94]. Second, the virtual memory page size igda@nough (typically four to eight kilo-
bytes) to mak fragmentation a concern. In cases where this occurs, the only real solution
is to modify the application to impve its data layout or its reference pattern. Applications
that sufer from fragmentation are also dily to sufer from poor TLB locality so this type
of optimization will pay df in both of these areas. gble3.2 on pag&3 reports the
obsered fragmentation wverhead for six applications.) The dfzacks are usually out-
weighed by the adntages: because allocation should be necessary for only a small frac-
tion of references, the pesference werhead typically has the greatest impact on

performance.

The Tempest intedce specifies functions to allocate and map, unmap, and remap pages,

and to install a user function as the pamdtfhandler
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2.2.3 Access contl

Access control is the mechanism that filters loads and stores, determining for each one
whether action is required to obtain access rights to the referenced data. This mechanism
can be vieed as a function that returns a single bit (action vs. no action) base@ on tw
inputs: (1) an access tag associated with the referenced address and (2) whether the access
is a load or a store.empest praides three access tagsvalid (action on both loads and
stores)ReadOnly (action on storesub not loads), an@ritable (no action on either loads
or stores): All three tags are necessary to support common multiple-residgle-writer
protocols. ® reduce tag spaceerhead, a single access tag is associated with a memory
blodk (an aligned, contiguous group of bytes). A reference thiak&s an action is said to
cause alodk access faultThe thread that issued the reference is suspended, and a user
function—theblod access fault handleris invoked. The block accesadult handler ini-
tiates a protocol sequence that should culminate in acquiring access rights for the block,

updating the access tag to allthe reference, and resuming the suspended thread.

Although only three access tags are required, implementations arelyndikallocate
fewer than tvo bits per block to encode these statesedploit this etra capacity Tem-
pest specifies a fourth taBusy, which has the same access semanticevatid. For
example, software can use thBusy tag to identify blocks which are inaccessiblg for

which there are outstanding requests.

Access control granularity canveaa significant ééct on performance due false
sharing when diferent processors write tBfent locations in the same block, a standard
single-writer protocol will unnecessarily serialize the writes, causing potentially tremen-
dous performance deadation as the block “ping-pongs” among the writing nodes
[EK89]. A larger granularity mags false sharing both more &k and more dffcult to

remedy by rearranging or padding data.

1. There is a fourth possible tag with distinct semantics—one thakdn an action on loadsib
not stores—ut such a “write only” tag is of no practicalue.
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Page-based DSM systems use virtual address translationdrarflw access control as

well as local storage management. As a result, the access control granularity is the virtual
memory page size—four to eight kilobytes, typically—which easily leadsde Eharing.

To avoid ping-ponging these Ige pages, the mostfiefent page-based protocols allo
multiple simultaneous writers for each page [CBZ91, KCZ92]. Unfortundtedge proto-

cols trade significant computation and memorgrbeads for this reduction in communi-
cation. D mege updates from multiple nodes, each node isolates its adignbby
comparing its modified cgpwith a second, unmodified local gofCreating the unmodi-

fied copy and performing the comparison mayedtundreds of microsecondsg®*96].1

As a result, these protocols aréeefive only when communicatiorverheads are compa-

rably lage. In addition, these protocols support only weak consistaodels.

Higherperformance hardare-based systems redued¢sé sharing by puiding access
control at cache-block granularittypically 16 to 128 bytes. At these granularitiedsé
sharing occurs less frequently and can usuallywbelad by rearranging or padding appli-
cation data structures. The protocol is free to focus ovigpng eficient coherence for

true sharing patterns.

To provide portability to high-performance systemespmipest specifiefine-grain access
control. The number of bytes per block is implementation-speaifienbst be a poer of
two no greater than 128. lempest allered a coarser granularjtysers wuld be forced
to implement a multiple-writer protocol that is unsuitable for a high-performance system.
Flexibility would also be impaired, because coherence policiegdaare to be tuned to
dealing with &lse sharing rather than supporting actual application sharing patterns. The
only potential drevback to specifying fine granularity is that it yeats the use of standard
virtual memory; hwever, we hae demonstrated anfieient, portable, softare-only fine-

grain access control technique [SPH].

1. These operations are memory inteasiso their performance is limited by memory bandwidths
rather than computation rates.
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While Tempest allars for lav-cost, softvare implementations of fine-grain access con-

trol, it is specifically designed to support higiperformance hardare-assisted tech-
niques as well. In [SFI94], my colleagues and | enumerateefimethods: in softare, in
the TLB, in the cache, in the memory contrglkmd in a bs snooping dece. ChapteB
describes three system designs that perform fine-grain access control iarkariwois

snooping. A detailed discussion of this technique appears in Appendix B.

The Tempest intedice preides functions to read and change access tags angistere
user functions as block accessilit handlers. @ allov implementations to optimize han-
dler dispatch, users gister separate handlers for each of the frossible dult types
(read+nvalid, write-nvalid, read-Busy, write-Busy, and writeReadOnly). Each handler
invocation is passed the virtual address of thétihg access and bvadditional alues
associated with the referenced virtual memory page. Thagesy preided by the user
when the page is allocated, are uninterpreteddmgpEst bt are intended to be used as a

pointer to a pepage protocol data structure and to identify the [sageme node.

For additional fleibility, users can gaster multiple sets of handlers. All block access
faults on a particular page use the same set of handlers; the particular set is specified when
the page is allocated. As described in Se@i@n a typical protocol uses tvsets of han-
dlers, one for the page that contains the primary dataamg another for the cached cop-
ies on other nodes. The inteck supports a lger number of handler sets to allo

multiple protocols in the same application.

2.2.4 Mechanism interactions

To support distribted shared memoryfettively, the mechanisms described abonust
be designed to ark together in an appropriate manngmis section describes tvaspects
of Tempest that cross mechanism boundaries: hankibeugon and atomic access con-

trol/messaging functions.
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Tempest systems run each message, allocation, and block aadessmdler to com-

pletion before another handler ofyatype is ivoked. In efect, Tempest gtends the
Active Messages handlekexution model to include allocation (pageylt and block
access dult handlers. Handlers egjonutually eclusive access to coherence protocol
state without theerhead of locking. Unfortunatelthis model precludes concurrent han-
dler execution on multiprocessor nodes, which can increase throughput on communica-

tion-intensve benchmarks [FW96a].

Tempest also specifies functions that atomically change a blackéss tag and send or
receve the contents of the blocko Tinderstand whthese calls are necessacgnsider
the common situation where a node must relinquish write access to a block and transmit
the blocks data to another node. Sodine must perform tw actions: (1) change the
block’s access tag frowritable to Invalid and (2) send the block’contents. The tag
change cannot be done first, because a block tadggad cannot be accessed diregtly
even from inside a handlefBecause some implementations cannot easily disable access
control for handlers, @mpest forbids handlers from performing accesses that could result
in block accessallts.) Havever, sending the block’ contents first leads to a race: han-
dlers are (possibly) concurrent with respect to computation threads (e.g., on multiproces-
sor nodes), so the block could be modified by another thread after the contents are sent b
before the tag change occurs. Because the permangnotttpe block is the one in the
message, this modification will be lost. A similar situation arises when a message arri
containing data for a pr@usly Invalid block: the message handler is unable to write the
data directly without first changing the tagit lthanging the tag first creates a wwwdo
where another thread could access incorrect data before the message data is written to

memory

2.3 Transparent shared memory using Empest

This section illustrates Mo Tempest can prade a standard shared-memory model in a

manner transparent to the application—that is, the application uses only shared-memory
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loads and stores; it does not obsgetive operation of the distuted shared memory layer

or the underlying distrilted-memory system. In contrast, thetnsection (SectioR.4)
illustrates application-specific shared memory usiegngest, where applications custom-

ize the programming model and coherence protocol to megserformance.

The standard implementation of transparent shared memory (TSMngpest is called
Stahe! Stache is a uséevel library that &ploits the Bmpest mechanisms. This library
contains an allocation (pagguit handlermessage handlers, block acceadtfhandlers,
and shared-memory allocation functions. Stache maps virtual addresses of shared data to
local ptysical memory at page granularitgs do page-based sofite DSM systems
[LH89]. However, Stache tads adantage of €mpest fine-grain access control to main-
tain coherence at the block/&. Becausedise sharing is not a major concern, Stache pro-
vides a strong consistgncmodel using a standard single-wrjtamultiple-reader
invalidation-based coherence protocol. The proposed Simple COMA design [HSL94] also
combines page-granularity allocation with fine-grainedalidation-based coherence.
However, Simple COMA uses a fed hardvare-implemented coherence protocol. In con-

trast, Stache is just one possible safvprotocol for &mpest systems.

In Stache, each shared page has a unique home node. CuB&the prades two
home-node placement algorithms. The first assigns pages to nodes round-robjiraees the
allocated. The second algorithm—a simple first-touch migrate-once scheme [MKBS95]—
attempts to reduce communication by placing each page on a node that references it. In
this algorithm, the first node to access a page is the initial home. Unfortuadtshared
data written during the sequential initialization phase ends up on one wagelisirilute
this data, the protocol also traps the first access to each page in the parallel portion of the
code. If this access occurs on a node other than the initial home, that node will become the

pages nav, permanent home.

1. The name “Stache” is due to James Larus.
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Figure 22. Stache gample, step INode 1 is the home node for the page at virtual addr
1000. Node & processors ka read-write access to all the blocks on the page (indicated by
RWilabel on each block). Node 2 has no mapping for virtual address 1000.

In either case, the home node usesmgest function to allocate aysical memory
page and map it at the desired virtual address. It also allocatetoa of petblock direc-
tory structures (described later) on the progsan®ap and associates the home rsoliz’
with the virtual page in a distuibed mapping table. The pagdilock access tags are ini-
tialized toReadWrite; as long as data on this page is not cached by another node, the home
node can access it without softse interention. Figure2-2 illustrates this situation, with

node 1 serving as the home node for a shared data page.

When another node first accesses a shared page, the reference causes an allocation
(page) ault. The uselevel allocation &ult handler (part of the Stache library) allocates a
physical memory page and maps it at the shared virtual addiegse/Ent concurrent
computation threads from accessing th& page, the allocation function atomically sets
the pages block access tags havalid. The handler also looks up the home nedE in
the distriluted mapping table and stores it in a-page data structure allocated on the
heap. Finallythe handler restarts the thread at thating access. Figu@3 continues
the ekample of Figure&-2 to this point, with node 2 preparing to satisfy a reference to the

shared data on node 1.
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Figure 23. Stache gample, step 2Node 2 has mapped a memory page at address 100
response to an access from one of its processors. Because node Zdfidsiatevfor the page, tl
blocks on the page are matkirvalid using the fine-grain access control mechanism (indicat
thel nv label on each block).

The restarted instruction wocauses a block accesault because of the referenced
block’s Invalid tag. The block accesadlt handler retriees the home node1D from the
pages local data structure, sends a request for the block, and ternfinfstéise home
node, the request messageokes a handler that performs the appropriate coherence
actions and replies with the data. (Itafidations are required, the handler for the final
invalidation ackne/ledgment message sends the data.) When the reply message arri
from the home node, the message handler writes the data into the allocated page, changes
the blocks access tag tReadOnly or ReadWrite, and restarts the access. This time, the
access completes and the program continues. F2gdinlustrates the final stage of the

example, where node 2 has obtained a shared data block from node 1.

Once a block is loaded into local memagpyocessors may access it repeatedly without
protocol action. If the initial accessaw a read, the protocol tags the bl&dadOnly;

additional reads will complete localliput the first write will ivoke a block accessdilt

1. This initial request could be sent from the pamdtfhandlerbut the protocol softare oganiza-
tion males it simpler to &ep a single cgpof the request code in a block accessdtfhandler
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Figure 24. Stache gample, step ANode 2 has fetched a block of data from node 1 to si
the store access. In thisaanple, node 2 obtaing@usive access to that block and node doyy is
marked invalid. To satisfy a read access, nodedid obtain a read-only cgplearing node 1 als
with a read-only cop

handler to obtain arxelusive copy. Accesses to other blocks on the page, which are still

taggednvalid, avoid the pagedult and directly imoke a block accessdlt handler

When a node runs out of unused/gibal memory pages, accesses to additional shared
data pages must reuse pages containing other cached data. In this case, thét pege f
dler selects a page to reuse, sengsmaodified data on the page back to its home, marks

the pages blocksinvalid, and remaps the page at avnertual address.

Blocks on the home page are initialRgadWrite, but are devngraded tdReadOnly or
Invalid as remote nodes request read-only arlusive copies. Thus references on the
home node may require protocol action to reacquiraid or exclusve copy. Stache rg-
isters a distinct set of block acceaslf handlers for home pages. These handlers directly
access protocol data structures and perform needed coherence actionsawipleg

sending inalidation requests to caching nodes.

The Stache coherence protocol is similar to LImitLESS [CKA9%gept that it is

implemented entirely in sofve. The protocol allocates eight bytes of directory state per
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cache block. Wo bytes store the protocol state. The other six are typically used as six one-
byte node pointers. (Full bytes are used, rather than a denser packingidtbitield
operations.) If more than six pointers are required, four of the six bytes are used as a bit

vector

The protocol source code is independent of the coherence block size. The protocol can
be compiled for anpower-of-two block size—from the @mpest access-control granular-
ity to the page size, inclu@—Dby defining a C preprocessor constaeinpest aids this
flexibility by including a block size parameter for access-control functioempést
implementations transparently support operations gnpawer-of-two multiple of the
systems fine-grain access control granularitdon—paver-of-two multiples are not sup-

ported directly because their use is rare ang toenplicate pointer alignment checks.)

Tempest alls the Stache implementation to emphasize speed and simplicity rather
than generalityAlthough only one implementation is currentiyadable, the library can
provide s&eral \ariations. Initialization code can install argion optimized for the num-
ber of nodes and block size—and perhaps other parameters—specific txethaioa.

For example, block sizes smaller than 128 bytes may use a protocol that allocates less than
eight bytes per block. Systemsdar than 32 nodes may use dynamic pointer allocation
[SH91] to avoid multi-word bit vectors. Systems Iger than 256 nodes will require multi-

byte node pointers. kiwever, small systems need not pay at runtime to support these alter-

natives.

2.4 Optimizing applications using Empest

The Stache protocolfetctively supports applications written to a standard shared-mem-
ory programming model. Heever, the real pwer of Tempest lies in the opportunity it
presents to optimize performance by tailoring the coherence protocol to the specific appli-
cation. Because the protocol is simply dgeel softnare—a set of functions lirekl in
with the application—a programmer or compiler can customize protocols for specific data

structures and specific phases of the applicatiempEst allas users to bind a digrent
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set of block accesadlt handlers to each memory page, so multiple protocols—including

Stache—can coust peacefullyeach managing a distinct portion of the shared data- T

pest gves programmers geral paths to impne the performance of applications. Yhe

can:

Select fom available tanspaent—shaed-memory mtocols.Protocols can implement
transparent shared memory (TSM) withaxigty of policies (e.g., update vsvai-

date) and parameters (e.g., block size). Changing the coherence protocol for the entire
application is as simple as linking with afdrent protocol library; using ddrent pro-

tocols for diferent data strctures requires only mode&irefAlthough some knal-

edge of the application is useful for selecting appropriate protocols, these changes
cannot break a correct program. The rangevailable protocols should beganded

by the aailability of high-level languages and compilersgatted for this domain
[CRL96].

Develop a potocol that &ploits application-specific knowledd®rogrammers or com-
pilers can use precise kmledge of an applicatios’synchronization and sharing pat-
terns to optimize the coherence protocol aggvebsiThe program still xecutes in a
shared address spaceit lan algorithmic change may require modifications to the
coherence protocol as well. Most of the optimizations described ixaingpées belw

are of this type. In this ork, these changes are performed manuhllythe process
can be automated usingigting compiler techniques tocteact access patterns from
source code [VL96, DCZ96].

Use mesgge passingSome operations, such as synchronization, fit the message-pass-
ing model naturally; in these cases, programmers can dispense with shared memory
entirely For example, the defult lock and barrier implementations iarfipess utility

library use Empest Active Messages directlActive Messages are also useful for

building higherlevel operations such as fetch-and-op and remote write.

This section illustrates some of these optimizations using six scientific applications. In

each case, the programmer started with an optimized transparent—shared-memory parallel
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Figure 25. Example EM3D bipartite grapithe \ertical line represents aviion of the
graph across twnodes of a distriited-memory system.

program and further impved its communication bewar by developing custom proto-

cols for critical data structures. | describe one of the applications—EM3D—in detail. Fi
other applications—Appbt, Barnes, DSMC, moldyn, and unstructured—were optimized
by other members of the i¥¢onsin WWhd Tunnel research group. | describe them here
briefly to suggest theaviety of optimizations that can be performed, and teigeoback-
ground for the folling chapters where all six of these applications are used as bench-
marks. The original papers reporting on these optimizaticaisdff et al. [FLR94] for
Appbt, Barnes, and EM3band Mukherjee et al. [MSH¥5] for DSMC, moldyn, and

unstructured) detail the applications and th&@ionary optimization process.

2.4.1 EM3D

EM3D models electromagneticawe propagtion through three-dimensional objects
[CDG"93]. The principle data structure is a bipartite graph, in whictodesrepresent
electric field alues andH nodesrepresent magnetic fieldales (see Figura5). The
main computation iterately updates the fieldalues to model the passage of time. Each
iteration has tw phases. The first computeswealues for the E nodes using a weighted
sum of their neighboring H nodealues. The second updates the H naalaes similarly

based on the mevalues of their neighboring E nodes.

1. I wrote the original @mpest application-specific protocol for EM3D as part of the original paper
on Tempest andyphoon [RIW94]. This protocol was further analyzed and imped by Rlsafi
and Rogers [FLIRO4].
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typedef struct e_node {
doubl e val ue; /* field value at this node */
i nt edge_count; /* nunber of edges/nei ghbors */
doubl e *wei ght s; /* vector of edge weights */
struct h_node *(*h_nodes); /* vector of adjacent H nodes */
struct e_node *next; * next |ocal E node */

1
voi d conpute E()
{
struct e_node *n;
int i;
for (n = e_nodes; n != NULL; n = n->next)
for (i = 0; i < n->edge_count; i++)
n->val ue -= n->h_nodes[i]->value * n->weights[i];
}
mai n()
int iter;
for (iter = 0; iter < numiters; iter++)
{
compute E();
barrier();
compute H();
barrier();
}
}

Figure 26. EM3D program fragmenfthest ruct h_node type ancconmput e_H()
function are symmetric witht r uct e_node andconput e_E() , respectiely.

Figure2-6 lists part of the shared-memory EM3D code. The paratiedion assigns a
set of E nodes and a set of H nodes to each proc&asorg each iterationyvery proces-
sor updates itsven nodes. Because only one processor updates each node, no locking is
required. A barrier after each phase guarantees that alliheahees for one type of node

have been written before wiprocessor starts reading theues to update the other nodes.

On a distrilited-memory system, the program reducedidrafy allocating the graph
nodes—that is, by placing their Stache home pages—in memory local to the processor

that avns them. Communication occurs only when one processor reaalseathiat is
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written by anotherwhich happens when a graph edge connects nedesidy diferent

processors. Unfortunatelyransparent shared memory does not support this producer—
consumer communication patterfi@éntly. When a processor reads a remote graph node
value, the coherence protocol fetches #lee and caches it. In thext@hase, thewning
processor updates the nodgue, causing the protocol tovalidate the cached cgplhus

in each iteration, each communicateslue is fetched, cached, and/ahdated, which
requires at least four messages (request, respomatdation, and acknaledgment). |
optimized the transparent shared memagyson to amortize thisverhead by placing
multiple values in a cache block. This optimization modifies the graph node data structure,

replacing the embeddedlue with a pointer into a pae#t \alue array

Tempest lets us optimize communication much more directly by using a custom protocol
for the graph nodes. In the first iteration, this protocol behgery much lile the Stache
protocol: references to remotealues ivoke block accessatilt handlers, which fetch and
cache the data. UnkkStache, the protocol records informatiogarding the addresses
and nodes that areviolved in each request. Because the graph does not change during
execution, each requester needs the same set of addressexy iitegation. This set can-

not be determined statically because the graph structure is input dependent.

After the first iteration, the protocol switches to update mode. After each phase, each
processor uses the sharing information obtained in the first iteration to send updlated v
ues to the processors that need them. Because the updates are simiglglusessages,
the protocol sends only the modifiealwes, not full cache blockso Turther reduceer-
heads, the protocol packs all tredues destined for a particular processor in a single mes-
sage, and transmits that message usempess virtual channels (see pat@). Each
node also determines, from the information collected in the first iteration,nfexy
update messages it should rgeethe full barrier is replaced by a loop thatits until all

of the xpected messages agi
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Using this custom d@mpest protocol, iterations after the first reduce communication to

one message between each producer—consumerthmisame kel of communication
efficienogy—and the same Vel of performance [FLRO4]—as a message-passing imple-
mentation. Havever, the program retains its original shared-memory structure. The only
changes to the code in Figu#é are a function call to initialize the custom protocol, a call
to notify it of the end of the first iteration, and calls to the fenction that combines the
updates and synchronization (replacing the barriers). The graph data structure is still
pointer based; neither thér uct e_node type nor theonput e_E() function changes.
The initialization code (not skm in Figure2-6) uses a e memory allocation function
that places the graph nodes on pages serviced by the custom pratocelptherwise
unchanged. In contrast to thevfeimple changes in the original source, the custom proto-
col comprises wer one thousand lines of C. Thislwe werstates the protocelcomple-

ity someavhat; this code represents one of the earliest custom protocols,aandriiten

without the aid of eperience or protocol gelopment tools.

Although other programming models may agkisimilar levels of eficiengy, they gen-
erally require more drastic modifications to the progsac@de and data structuresrF
example, the optimized Split-Cevsion modifies the graph itselkmicitly inserting local
“ghost nodes” to cache remotalves [CDG93]. The optimized TSMersion described
earlier adds a el of indirection from the graph nodes to thatues to increase locality
Even with this non-intuitie change, the TSMevsion &lls well short of the @mpest er-
sion’s eficiengy. In contrast, the optimizecempest program still enys the adantages of

a shared-memory model: poirtesised data structures in a uniform, global address space.

2.4.2 Mopbt

Appbt is a three-dimensional computation fluid dynamics code from A& Pdrallel
Benchmarks collection [BBLS91], parallelized for transparent shared memory ggrBur
and Mehta [BM95]. The primary data structure is a three-dimensional dense matrix. The

parallel \ersion assigns a subcube of the matrix to each proceds@ommunication
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occurs along theates of these subcubes. The TS&sion synchronizes by viag pro-

cessors spin on shared counters. After a processor updates a column on a aabgitbe f
advances the corresponding counter; the neighlativg for this column then performs
its computation which depends on thevnalues. The alues are transferred on demand
as the processor references them. Assigning counters to columns, rathaceésaalfas

processors to pipeline their dependent computations.

As in EM3D, the &mpest-optimizedersion of Appbt replaces all of the communica-
tion and synchronization in the main iteration with a single message between each pro-
ducer—consumer paifhis message notifies the ra@zithat the updatedde is mailable
and carries the mevalues for thatdce. Unlie EM3D, the sharing pattern is not input
dependent, so no special first iteration is needed to determineaih, Agen though the
custom protocol achies a message-passingdeof eficiengy, the lulk of the program
does not change from the original shared-memergion. Approximately one hundred
lines were added or modified, a small fraction of the roughlgrséhousand lines in the
original program. Most of these changes were repetigplacements of synchronization

statements. The custom protocol itself required about 750 lines of C.

2.4.3 Banes

Barnes is an N-body grdiational force computation application from the SPLASH

benchmark suite [SWG92]. Barnegoals calculating all Rlinteractions by approximat-

ing the force from a distant cluster of bodies as that from a single body at thehkester’

ter of mass. The primary data structure is an oct-tree. The interior nodes of the tree
represent igions of three-dimensional space; the nodes atendesel of the tree bisect

their parens reggion in all three dimensions. The \es of the tree are the bodies located

in the r@ion represented by their parent node. The application iterates to simulate-the e
lution of the system through discrete time steps. Each iteration bgsh&ses. The first

builds the tree from scratch based on the current position of the bodies. The second calcu-

lates the n@ accelerations,elocities, and positions of the bodies.



35
The SPLASH transparent shared memagysion parallelizes both phases of the itera-

tion. Each processor is responsible for a group of bodies. In theuiidgbase, the pro-
cessors add their bodies to the tree in parallel. Locks protect the internal tree nodes as ne
levels are added to the tree. In the calculation phase, each processor updates its bodies, ref-
erencing other parts of the tree to calculate the applicable forces. Because a processor

writes only the bodies itvans, this phase needs no mutuadlasion.

We applied three@mpest optimizations to Barnes. The first and most significant optimi-
zation uses a custom update protocol to prafathe bodies’ me positions to potential
consumers. This protocol is more complean those used by EM3D and Appbt because
there is no static sharing pattern. Instead, the processor sends position updates to the mem-
ory locations home node, which foavds the data to the nodes that are caching the loca-
tion at the time. The second optimization replaces the shared-memory MCS locks
[MCS91] used for the internal tree nodes in théddophase with message-passing locks.
Both types of locks dild a queue of aiting processors which spin locally until yhare
granted the lock; by using Acg Messages instead of shared-memory reads and writes,
the message-passingrgion generates half as muchficahs the MCS locks under con-
tention. All the locks are defined using t/&RMACS macros [BBD87], so this optimi-
zation can be applied simply by recompilingr Ehe third optimization, each processor
invalidates its cached tree nodegleitly at the end of each iteration, eliminating the
implicit invalidation and ackneledgment messages thabwd otherwise occur as the
node structures are reused during thd tree liild phase. Because the first optimization
modified the body data structure to isolate the position fields, source changes for the opti-
mized \ersion of Barnes were more widespread than for the other applications, making it

difficult to quantify the scope of the changes.

2.4.4 DSMC

DSMC simulates @s particles mang and colliding in a three-dimensional space. The

space is diided into fixed cells. The first phase of each iteration randomly selects pairs of
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particles in the same cell and simulates their collision. The second phase updates the parti-

cles’ positions, and the third and final phase reassigns patrticles to cells based owtheir ne

positions.

The transparent—shared-memory implementation assigns a contiguous group of cells to
each processomterprocessor communication occurs only during the final phase of each
iteration, where a particle may be reassigned to a cell belonging terwlifprocessor
Rather than allwing one processor to manipulate anotheell data structures directly
each processor has after that collects the particles that weointo its cells. @ avoid
locking, barriers diide the reassignment step into phases, and in each phase a processor
has eclusive access to theulfer of its neighbor in a particular direction. Most vae
occur between adjacent cells, so these phases capture most of the communication. A sepa-
rate uffer, protected by a lock, rea@is the fev particles that mee between non-adjacent

cells.

Because the TSMersion of the program performs well, only one sim@enjppest opti-
mization was applied. Instead of writing to the particleffers using shared-memory
writes, processors sen@mpest Acite Messages to write theufiers on the destination
node. In addition to eliminating coherenceshead for the dffers, the atomic message
handlers serialize the writes, so all the nodes can issue their writes concurrently without
barriers or locking. This optimization modified onlyatfines in the original program. The

Tempest-optimized write protocoMolves approximately 150 lines of code.

2.4.5 Moldyn

Moldyn is a molecular dynamics application that models force interactions between
molecules. © speed the calculation, moldyn computes interactions only between mole-
cules within a cut-dfradius. The interaction list tracks pairs of molecules that are near
enough to interact. There areavmnain steps in the computation: one thaneines eery

pair of molecules touild the interaction list, and another that iteratesr dhe interaction
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list to compute the forces between interacting molecules. Moldyrildelihe interaction

list after eery 20 iterations of the force computation.

The TSM \ersion parallelizes both steps. In the first step, each processumes a
fixed subset of the molecule pairs to generate a portion of the interaction list. In the second
step, each processor computes the forces due to the interactions on its portion of the list.
Because a molecule typically participates in ynareractions handled on tBfent pro-
cessors, the updates to the molecutgate must be synchronized. Instead of locking the
molecule gery time it participates in an interaction, each processor accumulates the
updates it generates for each molecule in a local.akfgr all the interactions va been
processed, the processors geetheir updates using a synchronized reduction: in each of
N phases, separated by barriers, each dfifhecessors adds its updates to Ntteof the
shared molecule arrayhe communication in this phase resembles a pipeline, where each

Nth of the array migrates from node to node.

As with DSMC, the TSM ersion is healy optimized to reduce communicationerh-
pest allevs programmers to takthese optimizations to their logical conclusion. In the
custom-protocol ersion of moldyn, &mpest virtual channels used to rearray sec-
tions from node to node in the molecule update reduction phase. This optimization is
straightforvard to apply—changing only one line of the original code—because the mes-
sages simply implement the communication pattern the programaserying to achiee
with the original synchronous reduction algorithm. The virtual-channel protocol itself

involves less than twhundred lines of C.

2.4.6 Unstructured

Unstructured is a computational fluid dynamics application that uses a mesh to model
forces on a three-dimensional solid structure. The mesh is st&figpit dependent. The
computation consists of iterationgen the nodes, edges, araés of the mesh that update

values associated with the nodes. The paratliedion partitions the mesh nodes across the
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processors, then the edges aackE. An edge oate that connects nodes not all on the

same processor is assigned to one of t@vad processors.

Loops that iteratever the mesh nodes require no synchronization, because a node is
only updated by the processor thatng it. Edge andaice loops are more @dult: the
computation centered around an edgeacefupdates all theviolved mesh nodes, which
may be wned by diferent processors. The maisolution—locking the nodes—Ieads to
poor performance due to theeshead of locking and the frequent migration of the mesh
node data structure. Instead, as in moldyn, each processor accumulates its updates locally

then meges its updates into the global mesh data during a synchronous reduction phase.

This synchronous reduction is lesgeefive in unstructured than it is in moldyn foraw
reasons. First, thBH-phase reduction (described on p&3e circulates the entire shared
node arraypiece by piece, tovery processorso that each processor has the opportunity
to update each node. If each processor updates only a fraction of the nodes, as is typically
the case for unstructured, then most of this communication is unnecé&seopd, each
update inolves only a small amount of computation, dacefnt communication is partic-
ularly critical for good performance.oF these reasons, thempest-optimized ersion
replaces thé\-phase reduction with af more dicient custom protocol. This protocol
examines the mesh before the iterationgithé¢o set up virtual channels connecting the
processors that share edges. Updates are sent across these channels directly ts the node’
owner, which then performs the reduction locallyis optimization added #vlines in the

body of the program. The reduction protoceives just @er six hundred lines of C.

Although the reduction stepfefiently updates thealues for each node at the nade’
owner, these n& values must be propated to the other processors that reference them in
the edge andate loops. The TSMersion fetches the nevalues on demand as the pro-
cessors reference them. Themipest ersion optimizes this communication using a sec-

ond custom protocol, an update protocely similar to the one used in EM3D (see
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Section2.4.1). This optimization modified twedines in the body of the program. The

protocol itself is less than six hundred lines of C.

2.5 Related vork

This thesis proposes fible distributed-memory systems that prde only fundamental
mechanisms, allwing users to constructfedient, customized shared-memory policies.
The separation of mechanisms from policies as a techniqueifdinig flexible systems
first arose in the operating systems domain [Bri70, WR&CLCC'75]. Wulf rephrases
the concept as “primites, not solutions” and gwes for its application to processor
instruction sets, emphasizing the use of compiler technology to generate situation-specific

policies automatically [\WI81].

Dally and Wlls [DW89] identify three uniersal primitve mechanisms for distuibed-
memory systems: communication, naming, and synchronizatieraghée on communi-
cation (messaging) as a fundamental mechanism. Their naming mechanism binds logical
to physical names—a generalization of local storage management, which performs the
same task on the restricted domain of memory addresses.inidhede synchronization
because of their focus on fine-grain concurrent programming models (e.g. voattadio
complement their fine-grain research platform, tidaghine [DCF89]. In contrast, |
focus on the medium- to coarse-grained shared-memory and message-passing models
prevalent on commercial hargwe, where synchronization performance is less critical.
Although Dally and Wis describe a shared-memory modelytide not consider caching.

As a result, thg omit access control. In particuléineir mechanisms lack support for read-

only data replication.

This thesis diers from prgious work on mechanisms for disttited shared memory in
its goal and scope. Johnson et al. [JKW95] decompose DSM systems into threedligh-le
mechanisms for the purpose of classifying implementations. &h§kha94] and \ébd
et al. [WCF93] focus solely on the coherence directdrycontrast, | propose mecha-

nisms as a tool to pvade flexibility in both the caching and directory aspects of DSM.



40
Tempest is the first intexte to proide flexible shared memory by alleng users to go

underneath the shared-memory abstraction, using fundamental mechanisms to construct
arbitrary protocols. Others Y@ added features to the shared-memory model towacthe

same goal of higher performance. Prefetching [MG91] and the checkinecihéCkCO)
annotations [HLRV93] direct the local cache to fetch and replace blocks to anticipate
usage patterns. Poststore orwlioperations [LLG92, RSW93, KCPT95] let the user
select an update pojicfor individual writes. Munin [CBZ91] alles programmers to
annotate ariable declarations to indicate theected sharing pattern, so that the run-time
system can choose an appropriate protocol from the set that it implements. Clouds
[RAKB89] provides operations that modify the synchronization and coherence semantics of
shared-memory operations. Labeling synchronization operations to implement weak con-
sisteny models [AH90, BZS93, GL190] also &lls into this catgory. Any of these

higherlevel features could be implemented usimgripess mechanisms.

The intgration of shared memory and message passing has been the subject of recent
work [KJAT93, HGDG94]. Empest cleanly achies this by posing message passing as
one of the mechanisms used to implement shared me®ibrgr systems such as Wiée
[ABC*95], FLASH [KOH*94], and Start-NG [CAAQ5] support both modelspbdo not
allow the user to combine their features arbitraflgr example, none of these systems
allows data to be sent in a message without being renamed at tiveréaank and r-
non [FV93] proposeeensions for a shared-memory machine that send data without
renaming. Hwever, their message-passing and shared-memory présitinteract in a

fixed way and do not alle arbitrary coherence policies.

The Tempest mechanisms may be implemented in henelvWut Tempest protocols are
by definition softvare-based. Hybrid hardse—softvare support for shared memorasv
first emplged in VMP [CSB86, CGBG88], aus-based shared memory system that uses
software at the processor caches to handle misses and suppsrtdoping. A follav-on
system, Bradigm [CGB91] (originally called VMP-MC [CGB89]) adds a simple hard-

ware directory at main memory tdiefently support a hierarchicaldb oganization.
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Hybrid protocols for distribted shared memory were first proposed forwiie

[ABC*95], whose LimitLESS protocol [CKA91] implements avfpointers in hardare

and traps to softare to handle blocks with marsharers. DySW [HLRW93] and
Dir;SW+ [WCF"93] implement a single pointer in hardie, shifting een more comple

ity into software. Alavife and DiFSW use softwre only at the directory; caches are hard-
ware-controlled. FLASH [IOH"94] and Start-NG [CAA95] implement shared memory
entirely in softvare. FLASH &ecutes this softare on a processor igi@ated in the mem-

ory controller and specially designed for this purpose. Start-NG uses a commodity proces-
sor with specialxdernal hardware for capturing and generatingsiiransactions. The one
perspectie that all of these systems share, and th&rdiitiates them fromeémpest, is

that the softare part of the protocol is protected system sarféywbgond the reach of
user processes. Thisveeely restricts the figbility of these approaches, since it implies a
protected intedce and thus limited coupling between the application and the protocol. In
fact, the original motation for the lgbrid protocols in LimitLESS and DiEW was to
reduce hardare complgity, not to add fleibility. (Chailen later g&plored modifying the
software part of LimitLESS to do profiling and adaptioptimization [Cha94].) Though
flexibility is an eplicit goal of both FLASH and Start-NG, these systems lack a general,

portable interice for &porting that fleibility to user programs.

Tempess use of virtual address translation for local storage management ig/dxbrro
from page-based sofawe DSM systems, of which Ivy [Li86, LH89]as the first. Unlik
Tempest, these systems also use virtual address translation for access control, which
forces them to maintain coherence at the granularity of virtual memory pages. More recent
page-based DSM systems combat the resultilsg fsharing using weak memory models
and multiple-writer protocols [CBZ91, BZS93, KDCZ94]. Recentlyedeped memory-
mapped netark interfaces can mge updates from multiple writers at the home node
[IDFL96, kontothanassis:mmni-dsm], eliminating theedhead of coging and comparing
pages at each writePage-based allocation implies the use of local DRAM to cache

remote data, which ges all of these systems (includingripest) some of the characteris-



42
tics of “cache-only” (COMA) machines kkthe KSR-1 [kkn92] and the Data Difsion
Machine (DDM) [HLH92].

A number of systems combine page-based storage management witlareafithe-
grain coherence. PLUS [BR90], Sesame [WHL92], and Galactica Net@§4]Ihaintain
coherence at @rd granularity using a write-through hamae update protocol. Simple
COMA [HSL94] combines page-based allocation with aralidation-based hardave

protocol to implement a COMA architecture.

Several softvare systems implement object-based shared memory on message-passing
machines. All of these systems amortize safenverheads by performing access control
once for a group of accesses to an object. Emerald, Amber B9\Land Orca [BKT92]
and maintain coherence on language objects and perform access control once per method
invocation. Midway [BZS93], CRL [JKW95], and SAM [SL94] rely on programmer
annotations both to identify objects and to group object accesses. Amber arayMgbv
virtual address translation to map objects into local men@RL and SAM use a hash
table to map objects,ubcombine the translation with the coherence annotations so that

the lookup only occurs once per group of accesses.

2.6 Summary

Tempest is a flable, portable intedce for shared-memory programming on disitielol-
memory machines.empest preides three fundamental mechanisms—messaging, local
storage management, and access control—thata@ftean compose to construct cache-
coherent distribted shared memarirect, unpwileged access to these primés gves
programs unprecedented contreep their memory and communication. Programmers
and compilers can optimize performance by customizing coherence protocols for specific

data structures in specific phases of an application.

The Tempest intedce is carefully designed to balance the portapiliility, and perfor-

mance of each mechanism it pictes. Two complementary inteates support messaging:
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a variant of Actve Messages [VECGS92] and asynchronous, bandwidth-oriented virtual

channels. The local storage management axterfagets standard virtual address transla-
tion hardware. Empest most inngative aspect is its specification fafie-gain access
control, which @oids se&ere flse sharing and ails protocols to scale to high-perfor-

mance systems.

Stache is a usdevel library that implements application-transparent cache-coherent
distributed shared memory using thenipest intedce. Stache pvades a lage, fully
associatie remote data cache on each node by mapping remote virtual pages into local
memory Tempess fine-grain access control aille coherence on a much smaller granu-
larity. Stache implements a single-writerafidation-based coherence protocol in soft-

ware.

Any DSM system with a single coherence protocol—including Stache—incurs unneces-
sary communication due to its éd poligp. Tempest gies programmers a practically
unlimited set of options for customizing communications policies to ineptioe perfor-
mance of shared-memory applications. Sec@dndescribed the optimizations applied to

six shared-memory programs.

Of course, €mpest is not useful unless it can be implemented portably facidrefy.
We hare demonstrated all-sofaxme Tempest implementations on generic message-passing
platforms elsehere [SF['94, SFH96]. The na&t chapter describes and analyzes three
system designs that piide hardvare support to acceleratempest. This range of imple-
mentation alternates demonstratesempess portability | establish 8mpests eficiency
by shaving (via simulation) that theastest of these systemsyphoon—rvals all-hard-

ware distriluted shared memory systems in performance.
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Chapter 3

Hardware Support for Tempest

The Tempest intedce is a contract between a systemsers and its delopers. The
previous chapter focused primarily on the former group, discussingTempest can be
used to implement and optimize distribd shared memaryhis chapter addresses the
concerns of the latter group: the practicality and performance potential of systems that

implement Empest.

This chapter describes and analyzes designs for three systems—Tgdleabn,
Typhooni, and Typhoon6—that use custom hardwe to support theempest intedce.

These designs kia the follaving goals:

* to demonstrate thateimpest is portable across a range of implementations, including

high-performance systems;
» toillustrate techniques that can be used to supgonp€st in hardare; and

» to provide the basis for obtaining quantitegiperformance results via simulation.

To further demonstrate the feasibility of these designs, | led tredogenent of a proto-
type implementation ofyphoon®. This prototype is described in Chapter
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Rather than attempt to wer the full design space oefpest systems, | focus on a sin-

gle access-control techniquethbased snooping hardve. Bus-based hardne access
control pravides higher performance than saodine techniques, and complements our other
work in the latter area [SFR4, SFH96]. On the other hand, more aggresdiardvare
implementations require modified processors or caches, making them economically infea-
sible in the near term. See Sectkhb for further discussion of access control implementa-

tion alternatves.

Within this restricted domain, | delop three diierent systems byarying the lgel of
integration, or the coupling, of the logical components useddarpest support. Greater
integration reduces communicatiomevhead between components, leading to higher per-
formance. Hwever, using a general-purposef-tiie-shelf part reduces design time and
compleity compared to implementing that logic as part of a custorgrated deice. For
rapidly adwancing mass-maet technologies such as processors, th¢hetshelf part is
likely to have better rev performance as well. Decoupling (separating) the functional com-

ponents lets designers plug in thedetloé-shelf parts whenvailable.

The overall cost diference between injeated and decoupled systems depends on
design compbety and manudcturing wlumes. The intgrated solution increases design
cost by an amount proportional to the customaies compleity. Even if the component
circuits are aailable, as is the case with embedded processor cores, it is costlgtatate
the circuits and erify the complete design. Mever, integration typically lavers manu-
facturing costs by reducing board space angsiphl component count. The igrated
solution is morexgensve if the additional design cost, per unit, is greater than the reduc-
tion in manuécturing cost. 6r a complg component such as a processor in the (cur-
rently) lov-volume marlet for distriluted-memory machines, it is &k that design costs
dominate—and thus decoupled systems are che@peourse, intgration still is justified

when the need for additional performance outweighs the additional cost.
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Figure 3. Common system ganization.

All three systems combinefethe-shelf workstations with a generic point-to-point data
network, leading to the common ganization shan in Figure3-1. This “netvork of
workstations” approach [BP95] leverages the rapid technological adees and the econ-
omies of scale of the avkstation and personal computer negk Havever, builders of
these systems are unable to modify or replacstieg workstation components. Instead,
they add separateempest support harére to each warkstation node, inteating with

both the node processor-memoryb and the netork.

In each system, theeimpest support harére comprises three logical components, plus
glue that connects them, as &man Figure3-2. The first component, a processsrdedi-
cated to recuting protocol softare (message and block acceadtfhandlers). The other
two components directly supportdvef the three @mpest mechanisms. A netik inter-
face, which connects the node to the dataortvsenes as the foundation for messaging.
Custom lis-snooping logic enforcesmpess fine-grain access control. Thenksta-
tion’s &isting virtual address translatioadilities are sufcient for Tempess third mech-

anism, local storage management.

As discussed alve, the three systems #@if primarily in the gtent to which the inte-
grate these components. Fig@8 depicts each systesilevel of integration graphically
Of the three systemsyphoon preides the highest performance—at the highest cost—by

integrating all three components on a single custowcde Typhoon4 decouples the pro-
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Figure 32. Logical components ofémpest support.
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Figure 33. Component intgration diagramEor each system, a shaded rectangle indicat
the components ingeated into custom harde.

tocol processorreplacing yphoons intggrated processor with anfdhe-shelf CPU.
TyphoonO achiees the lavest cost by splitting all three components across separate
devices, two of which—the protocol processor and the rewinterlace—can be pur-
chased dfthe shelf. A relatiely simple access controldee is Typhoon©’s only custom

component.

The first section of this chapter describes the common features of the three systems. The

following section (SectioB.2) discusses the imfeated Yphoon system. Sectidh3 cor-
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ers the tw decoupled systemsyghoond and phoono. SectiorB8.4 analyzes the per-

formance of all three systems using simulation. Se&ibrdescribes relatedork and

Section3.6 summarizes the chapter

3.1 Common featues

To focus on the intggation—decoupling tradefpfall three systems use the same basic
techniques to supportempest. This section describes these common features for each
Tempest mechanism—messaging, local storage management, and fine-grain access con-

trol.

3.1.1 Messaging

Each node inteaices to a reliable point-to-point nek through a pair of hardave
queues, one in each direction. Sending a message requires writing a haadedigat-
ing the destination node and message lengthwelioby the message data, into the send
queue. A message is regsil by reading wrds out of the receg queue. A separate signal
indicates when a message igitmg at the head of the regeiqueue. The message queues
are memory mapped and directly accessible frontleger software via loads and stores,
as in the Thinking Machines CM-5. Although future netivinteriaces are ligly to differ
in some details, | bekNe the/ will provide a similar queue abstraction [BG5,
MFHWO6].

Network buffer management uses a simple aekedgment-based scheme. Each net-
work interface resems space in its rea@ queue for a small number of messages from
each sendeiWhen a message is consumed by safiwthe NI generates an acwhedg-
ment to notify the sender that thefter space is free. The sending nethk interface
counts the number of unackmiedged messages outstanding to each destination, and
rejects messages thabwd cause this count txeeed the number of reserd spaces at

the destination NI.
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The run-time library woids deadlocking forudfer space by queueing bladk messages

in the sending node’memory and injecting them as acktedgments arvie! Library

send functions may either query the Nbutstanding message counter before attempting
to send and, if the counter indicates that no destinatifierb are gailable, liild the mes-

sage directly in the sof@ave queue; or tlyemay attempt to send the message, check a sta-
tus bit aftervard, and, if the messageasvrejected, copthe message out of the haahe

send queue. When the library puts a message in theaseftyueue, it sets a harake

mode bit that causes ackmedgments to woke a softvare handler in the same manner as
protocol messages. This ackiiedgment handler sends queued messages and clears the

mode bit when the softave queue is empty

Software implements d@mpests Actve Messages directly on top of the haadev
queues: the first @rd of each message is used for the veckandles program counter
Tempess lulk data transfer functions are implemented in a straighéfah@&shion on top

of the Actve Message layer

3.1.2 Local storage management

The main processa virtual address translation hamhe supportsdmpess local stor-
age management. A speciavibe driver manages a gment of the virtual address space
resered for shared data, separate from the typicd) stack, and (pvate) data sgnents.
Page fults within this sgment ivoke a petprocess usdevel handler The deice driver
provides operations that bind and unbind addresses in gmese to plgsical memory
Optimized operating systemaeption paths prade higher performance than the standard
Unix signal interhce [RFW93, TL94].

1. Because &mpest does not prent users from consuming unbounded amountsifiéibspace, a
system cannot guarantee that deadlock wileneccur (see Sectidh2.1). An ill-behaed pro-
gram may terminate if the sofre queueerflows the sending process’ virtual memory
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3.1.3 Fine-grain access conf

A snooping deice on the memoryus enforces fine-grain access control using the sig-
nals intended for localus-based coherence. Oregy kus transaction caused by a proces-
sor cache miss, thedee checks its on-board tag store in parallel with the main memory
access. If the access conflicts with the tag, thecdanhibits the memory controller’
response (as if to perform a cache-to-cache transfer) and suspends the access. If the access
does not conflict with the tag, thevitee allovs the memory controller to respond. In the
case of a read access t®eadOnly block, the deice asserts the “sharedu$ signal to
force the processor cache to load the block in a rolugve state. A subsequent write to
the block will cause the processor to initiate aralidation operation on theub, which
the deice can then detect and suspend. Appendix Biges additional details on the

interactions with thedss-based coherence protocol.

Once a block is loaded into the processadche, accesses that hit cannot be snooped;
these hits must be guaranteed not to conflict with the accessatathi$-reason, tag
changes that decrease the accessibility of a block (e.g.,Vihdtable or ReadOnly to
Invalid) require a bs transaction to yalidate ag copies that may be in the harahe
caches. When a block is initialyritable, the lus transaction also retves an up-to-date

copy, because the data could be modified in a haredwache.

For eficiengy, the snooping dece allovs direct manipulation of access control tags
from Tempest useilevel protocol softvare. This softwre manipulates tags based on vir-
tual addresses,ub—because the hardne sees only pisical addresses on theid—
access control is performed onypltal memory locations. If sofwe were to send virtual
addresses directly to the haal®, the dece would be required to perform a translation
and a protection check. ghadow spacfBLA *94, HGDG94, Thi91] wids both of these,
as illustrated in Figur8-4. The access control\dee supports a pisical address range—
the shadw space—as lge as, and at a &xl ofset from, the maching’ptysical memory

address range. Accesses to a location in the shgpace are interpreted as operations on
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Figure 34. Shadav tag spacexample.The hardvare deice interprets accesses toypltal
tag space pag2000x as tag operations onysical memory page. The user program reques
operations on its virtual pageby accessing its virtual pad®0y. The shade mappings (dashe
arrons) dual the memory mappings (solid ars), implicitly translating the address componer
the usess requests.

the corresponding real memory location. When a user process allocatescalphem-
ory page, the dece driver described in Sectidhl.2 proides a mapping to the corre-

sponding shade space page as well.

3.2 Typhoon: integrated hardware support for Tempest

Typhoon [RIW94] combines the netwk interface, access control logic, and a user
level protocol processor on a singlevibe (see Figur8-5). To enable potential reuse of
existing VLSI design componentsyghoons protocol deice is structured as a standard
processor with closely coupled on-chip peripherals. In contrast, the FLASH system’
MAGIC chip [KOH"94] implements a specialized data path and control architecture tuned

for software-drven coherence protocol processing.

3.2.1 Potocol processor

The protocol processor is a standard pipelinedyert@nit, using the same instruction

set as the main CPUoTun useilevel code diciently, the protocol processor includes a
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Typhoon node, including a block diagram of the rgkninterface/access contr

protocol processor @ee. RTLB is the reerse TLB; BB is the blockuifer; the BAF buffer holds
information on block accesadlts. The second netrk send queue is for use by the compute
processor(s).

standard TLB and instruction and data caches. The procddd8r and cache designs

may be takn from a preious-generation CPU or an embedded ASIC core design.

The other components of thgphoon degice connect to the protocol processarache
bus. Softvare running on the protocol processor accesses these components via memory-

mapped rgisters with singleycle lateng.

3.2.2 Access contl (RTLB)

Typhoon implements access control using a component calle@viige tanslation

lookaside hiffer, or RTLB (see Figure3-6). The RLB is a cache with pgpage entries
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Physical address:
| page number | block number | block offs |

2 x blocks/page

PPN (other) |access tag vector| VPN
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Figure 36. Typhoon R'LB diagram.Arrows indicate hw a ptysical hus address is process
by the R'LB to generate the block'access tag and virtual address. The handler table poisee
data pointerand home node IDTR.B fields are not shen. The PPN field holds the ysical page
number; VPN is the virtual page number

indexed by plysical page nhumbeEach entry contains the pageiccess tags, the corre-
sponding virtual page numbex pointer to the pageblock accessatilt handler address
table, a pepage protocol data pointeand the home node identifi&ach los transaction

is checled aginst the tags stored in th&@BB. On a block accessdlt, the HLB latches

the access type (load or store), the blpa@ccess tag, the bloskvirtual address (formed
from the stored virtual page number and thgsptal page déet), and the remaining fields
from the R'LB entry in a liffer. (The RILB’s name comes from this ability to generate
the blocks virtual address from its phkical address.) Dispatch code on the protocol pro-
cessor uses the access type, access tag, and handler address table pointer to identify and
invoke the appropriate block accessiit handler function gestered by the userhe vir-

tual address, protocol data pointand home node identifier are passed garaents to

the handler

A bus transaction may reference a page whose entry is not resident iFLBelRthis

case, the RLB defers the transaction and reies the entry from a memory-resident page
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table. D increase the R.B’s coverage, an entry may indicate gian lager than a page

that does not require block access checks, suchtasr tieernel areas.

Protocol softvare manipulates the access tafues by reading and writing aimEB-
supported shadospace. &gs are modified in theTRB entry and written back to mem-
ory on replacement. An update to a non-resident entry first loads the entry from memory
Values written to the shadospace may specify that, in addition to the tag change, the
memory block data should be transferred atomically to or from theorletyueues, as
described in Sectiol.2.4. By specifying a null tag change, safte/ can use these com-
mands to perform simple block-sized netiv DMA transfers. These operations, as well
as other tag changes requiring s ltiransaction (see Secti8ri.3), are handled in con-

junction with the block transfer unit.

3.2.3 Block transfer unit and block luffer

The block transfer unit and blocktfer help mee data blocks &tiently into and out of
the Typhoon deice. Their services play a role in supportirgmpest access control and
messaging functions. The block transfer unit copies data blocks directly between main
memory the block bffer, and the netark send and rece2 queues. Copiesvialving
main memory taf adantage of brst transfers on the memory< In coordination with
the RTLB, the unit uses coherent memory operations to implement accessvagyades

and the atomic block transfer and access tag change operations.

The block liffer functions as a figble write luffer for data being copied to main mem-
ory. It is a 256-byte direct-mapped coherent data cachyaniaed as four cache blocks
with two 32-byte subblocks each, matching the compute processawhe block struc-
ture. The block transfer unit writes data destined for main memory into the hifiek b
where it is tagged with the destination address andedaak modified. Theufffer may
perform a lis irvalidation to guarantee that it has alasive cofy with respect to the
local coherence protocol. If the bloskaccess tag isvalid at the time of the write, as is

typical when data is reagid from the netark, the access control logic guarantees that no
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copies are cached, so thashinvalidation can be skipped. Because only entire blocks are

written, the liffer never fetches the pweous \ersion as a standard cacheuld. To keep
replacement-induced writebacksf dlie critical path, the udfer autonomously flushes

modified blocks to memory in the background.

Efficient data transfer on the completion of remote misses is an important benefit of the
block tuffer. Data from the response message is copied into the hidiek vithout gen-
erating ag bus trafic. When the main CPU retries traufting access, the block is fetched
directly from the bffer (as a cache-to-cache transfer) withoaitiwg for the data to be

written to memory

3.2.4 Handler dispatch

Dispatch hardware accelerates thevoration of user handlers in response to message
arrivals and block accesadlts. Four memory-mapped gesters preide a program
counter and three handlegaments. The scheduling loop simply loads these falureg
into the processa’rgister file, placing the guments in the caentional agument-pass-
ing registers, and jumps to the PC. Haate populates the dispatchyigers from the
BAF buffer, if a block accessatilt has occurred, or from the nerk interiace receie
queue, if a message iiting there. If noeents are pending, the dispatch haadsvstalls

the raister loads until anvent occurs.

3.2.5 Primary CPU access

Most Tempest functions can bevioked both inside and outside of protocol handlers.
Computation threadsxecuting on the primary CPU may send messages and manipulate
access tags.yphoon preides a second send queue in the petvinteriace to allav the
primary CPU to construct messages concurrently with the protocol prac&ksotvwo
send queues arbitrate for a single retnport. T support tag manipulations from the pri-

mary CPU, the RLB’s shadw space is accessible via theshnterfice as well.
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3.3 Decoupled hargevare support for Tempest

Typhoon preides competitie high-end performance foempest, as will be skam by
the simulation results in Secti@¥, lut it requires a compkepiece of custom hardawe
that is &pensve to design and maradgture. Designers can reduce the cost and caihple
of Tempest support—at thexgense of some performance—by decoupliyphbons
integrated components and replacing them witktloé-shelf parts, whenvailable. This
section describes mwdecoupled designsyphoon4 and phoon®. Both designs replace
Typhoons integgrated protocol processor with a general-purpodethefshelf CPU.
Typhoon4 uses a custom dee which intgrates access control logic and a re@tinter-
face. phoon9 also replaces the netvk interface with an dfthe-shelf deice, leaing

the access control logic as its only custom component.

A significant portion of yphoons compleity is due to the intgrated protocol proces-
sor. Even if the basic design for the processor and its cachesyslegédrom another
source, the cachaib and memoryus interbice must bextended or redesigned to accom-
modate the additional components, and these components must deal with concurrent
accesses from the internal andeznal lusses. Also, the die space consumed by the pro-
cessor and caches contribs significantly to the maradturing cost. In contrast, anf-of
the-shelf CPU is a mass-produced part that simply plugs into the meosridécause
Typhoons protocol processor is constrained by die size andsfthe additional design
delay of component inggation, the dfthe-shelf processor is ity to hae higher rav

performance as well.

Decoupling the protocol processor from the othempest-specific hardwe creates an
opportunity as well. Instead of dedicating a procegsmtocol processing tasks can be
shared among all of the processors. factf a virtual protocol processor is bound dynam-
ically, as needed, to a y$ical CPU. When there are no protocatrts to handle, all of a
nodes processors canork on the applicatios’ primary computation.dfsafi and Wod

[FW96b] shav that this dynamic model is often mordi@ént than dedicating a protocol
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processaqrparticularly when there are only awrocessors per node. Both thghoon4

and yphoon® hardvare designs are capable of supporting either modelevts, to pro-
vide a direct performance comparison witfplioons dedicated, intgated protocol pro-
cessorthis dissertation assumes that the decoupled systems dedicate a protocol processor

on each node.

This section bgins with three topics that apply to both decoupled designs. S&c8dn
describecadeable conwl registers, a nwvel technique that reduces theechead of com-
municating between anfeathe-shelf CPU and aus-based hardave deice. SectiorB8.3.2
describes ho the systems use hardve-generated program counters to accelerate handler
dispatch. SectioB.3.3 discusses the access control implementation sharggpbyoni
and Typhoon9, including the specifics of dispatching block accesst thandlers. Lik
Typhoon, these systems use the snooping approach described in $S4c8phovever,
the decoupling of the protocol processor indicates an implementation other than
Typhoons RTLB. Finally, Sections3.3.4 and 3.3.5 discuss the specificsyghibon4 and
Typhoon®, respectiely.

3.3.1 Cacheable contl registers

The dravback to decoupling the protocol processor is fisogfon performance: the pro-
cessor must communicate with the other components across the mampwhich is
both slaver than an on-chip interconnect and subject to contention. Both decoupled sys-
tems use a n@l techniquecactheable conwl registers, to eficiently transfer information
across the us. A cacheable controlgister is a déce ragister accessed using the local
bus cache coherence protocol. When tlygster is read, the gliee responds with a cache
block of data. Whener the contents of thegister change, the diee issues aus trans-

action to ivalidate the cached cgpA cacheable control géster has tw features:

* As long as the gsters value does not change (and the block is not replaced),
repeated accesses are satisfied in the processmhe, reducing access lateaad

bus trafic. This allavs a processor to poll thegister eficiently.
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Dispatch Table Base (24) 0 (6)

Message Received (1)
Block Access Fault (1)

Figure 3. Dispatch program counter forma®arenthesized numbers are field widths in

* An entire cache block of data is transferred in a singtstblf multiple words of data
must be fetched from the \dee, a lurst is much more &ient than a series of

uncached loads, each requiring a sepanagefansaction.

Both Typhoond and phoon® use a cacheable controfjigter thedispatd register, to
accelerate the wocation of protocol handlers. The dispatchister leverages both cache-
able control rgister features, al@ing the protocol processor to polfiefently for events

and transferring seral words of @ent information in one cache block (see SecB@?3).

The Typhoon® design includes a second cachealiester—its block bffer, described
in Section3.3.5. This cacheablegister lets the protocol processor fetch th#dy’s con-

tents—a full block of data—in a singlest transfer

3.3.2 Handler dispatch

Unlike Typhoon, the decoupled systems do not magnes directly to user handlers in
hardware. As described in the follang section, their simplified access control haaosv
does not store enough information to generate eitheathiehfandlers address or its qu-
ments. Also, §phoonO'’s independent netwk interface pregents that systers’custom
hardware from dispatching message handlers direEtigh gent requires a small amount
of dispatch softare to determine the appropriate user handler address and set up the han-

dler's aguments.

In both decoupled systems, custom hakvhelps the protocol processoficgéntly
check for gents and imoke the appropriate dispatch sodive. The user arrangegeat

dispatch code in a table, muchdila processor trapeutor table Hardware forms a pro-
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gram counter within this table by concatenating &setto the usespecified base address

[HJ92] (see Figur8-7). The ofset is a bit ector indicating the set of pendingeats.
Four of'sets encode the twpossible eents (message arals and block accesauflts).1
The ofset is shifted up six bits, allong up to sixty-four bytes (sixteen SRC instruc-

tions) for each table entry

Instead of testing dice status bits »licitly, the protocol processor polls by simply
loading and jumping to the program counter address. The initial code table entry contains
the polling loop; when novents are pending, thefsét is zero and the indirect jump

returns to the top of the loop.

This dispatch hardare also supports systems without dedicated protocol processors, as
discussed earliem these systems, the initial code table entry contains a return instruction
rather than the polling loop. A thread polls feests in the midst of other computation by
performing an indirect call on the dispatch PC. Control returns to the computation imme-
diately if no @ents are pending. Each pokpands code size by asmMes two instruc-
tions—a load and an indirect call—assuming that a CRJiste contains the die
register’s address and that the callelay slot can be filled with usefubvk. (On SRRC
version 8 systems, this sequence has the additionahtdye that it does not modify the
processos condition codes, which are costly teesand restore.) The run-timgeshead
of the poll includes the cost of the control transfer andtkewtion of the return instruc-

tion in the dispatch table.

3.3.3 Access contl

Typhoons RTLB is not necessarily the best access control structure for a decoupled sys-
tem. The RLB both enforces fine-grain access control and caches thpagerdata
needed by a block accessilt handlerThe latter feature is useful primarily because the

RTLB is tightly coupled with the protocol processbBecoupling also reduces the benefit

1. The Typhoon® prototype adds tavsoftware-controlled went types, for a total of 16fekts.
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of integrating these ta functions—i.e., combining the access tag aneppge data look-

ups, and using the stored virtual page number to perform the Weliseetranslation in
hardware—because theverhead of sending theent notification across the memonysb
dominates the handlerviocation lateng. Instead, the decoupled systems separate these
functions, enforcing access control in custom haréwut caching handler data in the
protocol processa’data cache. The gar size of the dfthe-shelf process@’data cache,
relatve to the one &rded by Yphoons integrated deice, mitigates the performance

impact of storing this additional data.

In both decoupled systems, the access contratelenaintains only the twvbit access
tags for each memory block. Thevam stores the tags for all of ygical memory in an
on-board SRAM array inded directly by pisical address. (¥ a 32-byte block size, one
Mbyte of SRAM holds the tags for 128 Mbytes ofypical memory As in Typhoon, a

shadaev space praides protected usdevel tag access.

An inverted page table in cacheable main memory stores the sap&geenformation
cached by eachyphoon R'LB entry—the virtual page numbea pointer to the page’
block accessault handler address table, a protocol data poiatet the home node identi-
fier. Although this table occupies virtual memory proportional to the amount of installed

physical memoryonly the portions containingalid entries are allocated and mapped.

On a block accessfilt, software obtains the pisical page number from the access con-
trol hardware and uses it to indéhe appropriate wrerted page table entrifrom there, it
combines the virtual page number with the hamsasupplied page fskt to form the vir-
tual address, then selects angbkes the appropriate handl@wo features accelerate this
process. First, the cacheable dispatgister transfers all the needed information from the
hardware deice in a single brst: the plsical address of the block on which tlailt
occurred, the access type (read or write), and the kléag alue. Second, the hardve
formats this data to acceleratult handling, as skn in Figure3-8. For example, the

physical page number is in a separatgdvand is pre-shifted to form an indmto the
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inverted page table. From the detection of a block aceesstd the inocation of the

appropriate @mpest user handler requires only eighfAR€ instructions (detailed in
Figure3-9).

To avoid expensve switches between processowrpege levels, the dispatch softwe is
unprivileged, usetevel code, just lik the Empest handlers itwokes. Exposing pysical
addresses to the user does not compromise sedgdguse the addresses are only mean-
ingful as indices for the uwerted page table. If a virtual page is remapped tofarelft
physical page, the operating system transparently relocates the corresponding table entry
However, after the user obtains aysical address from the hardve, the operating sys-
tem should not remap theyshical page until the dispatch soétve has retrieed the infor-
mation from the imerted page table. By restricting thadid operations on and the lifetime
of addresses retried from the hardere, the operating system can detect that tleiqgdl
address is in use and eithgoa@ remapping the page in that intelrer restart the transla-

tion sequence after completing the remap [BRE92].

3.3.4 Typhoon-1

The Typhoon4 design diides its Empest support into twparts: a general-purposé-of
the-shelf CPU and a separateride that combines the netvk interface and access con-
trol logic, as shan in Figure3-10. The netwrk interface queues, block transfer unit, and
block kuffer are identical to the correspondingpfioon componentsxeept that the con-
nect only to the memoryus interfice. Unlile Typhoon, the déce provides only one net-
work send queue; sofawe must guarantee mutuatkision between conflicting accesses

from the protocol and computation threads.

The access control logic operates as described in S&8dh It implements a shado
space functionally identical to that supported lyphioons RTLB. As in Typhoon, the
integrated block transfer unit and netsk interface cooperate to support atomic block
transfer and access tag change operations. The bidfgk holds data to be written to

memory and accelerates the completion of remote misses.
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offset: 0 Dispatch PC (32)
410 (4) Physical Page Number (24) 0 (4)
8 0 (20) Page Offset (12)
12 0 (27) \[0 (2)
Tag (2) \

Access Type (1)

Figure 338. Dispatch rgister layout for block accesaults. Parenthesized numbers are fie
widths in bits. The access controvim aligns &ult information to accelerate the handler disp
code (see Figurg-9). Because this gister is cacheable, these fourrds are transferred in a
single lus transaction.

Local registers are initialized as folies:
% 5 — inverted page table base
% 6 — inverted page table base + 8
% 7 — device dispatch rgister base

Event polling code:

ldd [%7+0], % 0....load from dispatch ggster:

dispatch PC- % 0

fault ptysical page number (shifted) % 1
jmp %WOo.............. jump to eent-specific dispatch code

Block access fault dispatch code:

ldd [% 7+8], % 2....load from dispatch gister:

fault page dbet -~ % 2

fault tag/access type (shifted) % 3
ldd [%5+% 1], %00. . load from irverted page table:

virtual page number. %00

user protocol data pointer %©1
ldd [%6+% 1], %2..load from irverted page table:

home node ID- %2

handler table pte> %03
I d [%03+% 3], %©3..load from handler table:

user handler function pts %©3
or %0, % 2, %00...faultvirtual address (virtual page numbeoffset) » %0
call %3.............. call user handler; guments are:

%00 — fault virtual address

%01 — user protocol data pointer

%02 — home node ID

Figure 39. Dispatch code for block accesaifts. The SRRCI dd instruction loads a 64-k
doublevord into two adjacent 32-bit masters. In practice, the instructions are reordered to fil
delay slots and minimize load-use stalls. Assuming cache hits, these eight instrucéidan ta
cycles on the Ross HyperSRC, a dual-issue processor with a ogele load-use delay
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Figure 3110. Typhooni nodejncluding a block diagram of the nedvk interface/access
control deice. Control logic, other than the block transfer unit, is notvsho

The Typhooni device’s cacheable dispatchgister intgrates dispatch of accesauft
and message handler®rkeither gent type, the dece supplies enough information in the
dispatch rgister block to imoke the appropriate user handler witlyiaments. When a
block access ault occurs, the dece provides fault information as described in
Section3.3.3. If a recaled message is indicated, the otherds in the block contain the
message source, its length, the sendgecified handler PC, and the firsbra of the
body (used for the cache block virtual address in a typical coherence protocol). Because
the rayister block can supplyatilt or message informationutonot both, the hardave
must select onevent when both types are outstanding. &oid starving local misses

under heay load, block accessfilts tale precedencever recered messages.
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The dispatch mechanism must guarantee tkattly one handler is woked for each

event. The cacheable dispatclyister cannot use clean-read semantics—the standard
solution for this situation—because the processor must read multplis fvom the dis-
patch block; these reads may result in multiple fetches from tieed# the block is
replaced from the cache, which could occur at tsame due to conflicts or interrupts.
Instead, ¥phoon4 uses a circular queue of four dispatdisters. The protocol processor
polls a rgister starting with the first, until arvent occurs. After thevent is handled, it
continues polling using the xteregister in the queue. The access to the dispatch rg-
ister informs the dece that the prgous eent has been handled. Thevide invalidates
the old rgister so it is ready for use thexhéime around the queue. In the uelk case
that the deice is unable to walidate old rgister copies as quickly as the protocol proces-

sor consumes meones, the dece may stall dispatch gester requests until it catches up.

3.3.5 Typhoon0

The protocol processor is not the onlgnipest component that can potentially be pur-
chased df the shelf. Lov-lateny commercial netarks such as Myricora’ Myrinet
[BCF"95] and DECS Memory Channel [Gil96] are engémg on the mart. These propri-
etary interconnects intexfe to standard I/Oulses such as PClo Tale adwantage of
these dfthe-shelf netwrks, Typhoon separatesémpest support functions across three
devices: a protocol process@ netvork interface, and a fine-grain access controlick
The first two components are fathe-shelf parts, while only the third is custom haadsv
Figure3-11 shaevs a block diagram of ayphoon® node. Chaptet describes a prototype
implementation of yphoond, including a custom FPGA-based access contracege

which demonstrates the feasibility and refatsimplicity of this design.

Typhoon©’s access control diee implements the twtbit directory described in
Section3.3.3. It also prades a shade space for usdevel tag manipulation. A read from
the shadw space returns the corresponding tatue; a write modifies the tag. When

access to a block is dmgraded (e.g., frorvritable to Invalid), the deice issues a read-
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Figure 311. Typhoon® nodejncluding a block diagram of the access contreiae The
device’s control logic is not stven. The netwrk interface is shan on the memoryus, ut may
be attached to an I/Qub instead.

Invalidate lus operation to validate ag cached copies and retreethe current ersion,

which may reside only in a processotache.

The block liffer (shavn in Figure3-11) holds the data returned by the latest readHn
idate. The block Wifer is a cacheable gester so a processor can read its contents in a sin-
gle kurst. Becauseyphoon®’s block luffer is not ivolved in transfers from the netwk
to main memoryit is much simpler than that of/fphoon or ¥phoon4.: it holds only one

block, resides at a &l address and does novéan address tag.

Atomic block transfer and access tag change operations—implemented irateandw
Typhoon and ¥phooni—require softwre-controlled sequences of suboperations in
Typhoon©. These sequences must be designed carefullydio #he race conditions
described in SectioR.2.4. For example, to combine a block send with a tag change from
Writable to Invalid, the processor first changes the tag, initiating a readidiate from the

access control dé&ce. The processor then synchronizes with thicde using an uncached
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load, to guarantee that the readailidate has completed. Finally copies the contents of

the block loiffer to the netwrk interface. Similarlywhen combining a block reeei with
a tag change frormvalid to Writable or ReadOnly, the processor writes the data via an

uncached alias that bypasses the access tag check, then upgrades the tag.

The Typhoond access control dize pravides a dispatch gister similar to that of
Typhoon4. Of course, unli& Typhoon4, this single-purpose diee cannot fully intgrate
the dispatch of message and block accasis fiandlers. Hwever, to avoid having the pro-
tocol processor poll the access contralide and the netark interface separatelyhe dis-
patch rgister can indicate message s as well as accesaults. If the netwrk
interface preoides an accessible messagevatrinterrupt signal, it can dmé an input on
the access control dee, as shan in Figure3-11. This input signal controls a status bit in
the dispatch m@ister To remain independent of the semantics of the Mkerrupt line, the
dispatch rgister sets the message status bit gnteamsition of the input signal; sofare
clears the bit after it has drained the NI queuerBwith this optimization, the dispatch
register indicates only thexisstence of a message; the NI must be accesgdtidy to

determine the message handler tmke.

Unlike Typhoon4, Typhoon-05 hardvare does not prioritizevents. When both block
accessdult and messagevents are pending, the dispatclgister sets both status bits.
Event prioritization is left to softare, which handles block accessilfs first. After an
event is handled, a write to an uncachedister clears the corresponding status bit.
Because the access controVide supports only a single dispatclyister the processor
must perform an uncached load to guarantee that the stalehegpbeen walidated

before it resumes polling.

3.4 Rerformance

This section compares the performance of these three designs via simulation. | first
describe the simulation parameters and methodplibgy present results for a simple

microbenchmark and a set of application macrobenchmarks. Sacti@neamines the
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impact of netwrk lateng on application performance, and Sectoh.4 eamines the

impact of intgrating a lever-performance protocol processor iyphoon.

The nodes of the simulated systems are based on the technology usedyphtdon®
prototype. Each node has a 2061z dual-issue SARC processor with a Mbyte direct-
mapped data cache with 64-byte address blocks and 32-byte subdbldwksnstruction
cache is not modeled; all instruction references are treated as hits. The instruction laten-
cies, issue rules, and memory hiergrahe modeled after the Ross Hypek8E [R0s93,
Sho94].

A 50 MHz MBus, as used in the Sun/ARCStation20, connects the processor(s), mem-
ory, access control and nedvk interface deices within each node. The MBus is a 64-bit,
multiplexed address/dataub that maintains coherence on 32-byte blocks using a MOESI
protocol [Sun91]. On a cache miss, main memory returns the critical dautll@40ns
(seven tus g/cles or 28 processoydes) after the MBus request is issued, fottd by the
remaining doubMords in consecute kus gcles. Miss detection, processargbclock
synchronization, andus arbitration add 11-14 processgcles to the total miss lateyc
The hus simulation accounts fully for occupgncontention, and arbitration delays; the
model is suiciently detailed and accurate that the same simulass wged for initial

functional design of theyphoon© prototypes access control diee.

On a block accesalilt, the access control logic inhibits the memory controller ames$ gi
the requesting processor an MBe$inquish and etry response, forcing the processor to
rearbitrate for theus. The access controlvdee masks the arbiter taekp the processor
off the tus until the access can be completed [[28. Although this technique cannot
be implemented on an unmodifiedAR station20, its performance is representatof
more recent systems which support deferred responses, atiieitlg (lik e the Intel P6

[Gwe95]) or using a split-transactiong

1. These processor parameters reflect announced technology that could be installed in the proto-
type system; because the prototymswvassembled at an earlier date, and under cost constraints,
it uses 668VIHz processors with 256 Kbyte caches.
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Timing parameters for theyphoon® and Yphoond access control giees are taén

from the FPGA-basedyphoon© implementation. The d&es are clookd at lis speed
(50Mhz). Tag and control gaster accesses takhree and fourus g/cles, respectely.
For reads to cacheable controyjisters, the first dataod is returned in threeub g/cles

and additional wrds are returned owery secondycle.

To equalize the comparison witlyghoon and &phoon4, which store all the access
tags on the access controlvite, the Yphoon RLB is assumed to be g enough to
map all the actie shared pages on each node. Because simulation limits the size of the
data sets, it is unlddy that replacementverheads due to a finitéeTRB would afect the

results significantly

The netvork interface queues transfer up to 64 bits parle; at the bs clock rate in
Typhoon4 and fphoond and at the protocol processor clock rateyipibon. Each node
may hae at most four messages outstanding to each other node. The simulated
Typhoon®’s netvork interface queues are located in an independent MBuse]jesimilar
to the CM-5 NI, with a message aal signal that feeds the access controliaes dis-
patch rgister Register access delays are set to match measured results from the CM-5:

seven lus gscles for reads and three for writes.

Network contention is modeled at the intés, bt not internally As a result, the net-
work wire lateng, measured from the injection of the tail at the sendingor&timterface
to the arwal of the head at the rewggig interface, is constant.oTemphasize the perfor-
mance impact of DSM support, the delt lateny is a firly aggressie 0.5us
(100processor ycles). Although dedicated MPP interconnects may surpass this speed,
current of-the-shelf netwrks are typically ser by an order of magnitude or more.

Section3.4.3 eamines the werall performance impact of higher latgnmetworks.

The systems & identical hardare support for barrier synchronization. As each node

arrives at a barriert sets a bit in aus deice register and spins on a second bit, which the
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hardware sets after all nodesveaarrved. The latencfrom the last arvial to notification

matches the oneay network lateng. The notification bit resides in a cacheable control
register so that processors can spiitwithout consuminguds bandwidth. Although this
barrier hardwre is inspired by MPPs such as the CM-5 [lYAR] and Cray T3D [KS93],
PAPERS [DCMM94] demonstrates Wwat can be added impensvely to a cluster of PCs
or workstations. None of the benchmarks in SecB@h2 performs a significant amount
of barrier synchronization, so the absence of this featorddanot noticeably #&ct the

results.

To isolate the éécts of decoupling,yiphoon®, Typhoon4, and the intgrated ¥phoon
all use a dedicated protocol CPU identical to the compute CPU. Although this assumption
results in a more controlleckgeriment, it drerges from &pected practice in twways.
First, the symmetric dual-processor nodes of the decoupled designs may be used more
efficiently by dynamically scheduling protocol handlers and computation across both pro-
cessors (see pa§€). Second, the desigrfat required for an actualyphoon implemen-
tation would likely result in an intgrated protocol processor that is a generation or more
behind the compute process8ection3.4.4 amines the ééct of using a sleer proces-

sor in the intgrated Yphoon deice.

To quantify the performance impact of sadine® protocols, a fourth system—an ideal-
ized implementation of Simple COMA [HSL94]—is included as a baseline. This system
is similar to yphoon, lot replaces the protocol processor with a hardwired engine imple-
menting a full-map ivalidation-based coherence protocol. The idealized protocol engine
processes each acceaslt or messagevent with zero werhead, including manipulation
of protocol state and the injection of an arbitrary number of messagastsEare pro-
cessed at a maximum rate of 208lz. Messages observateng due to netwrk trans-
port, potential queueing at the contrglland fetching dataver the MBus. Due to the
structure of the simulatomessages observan additional ycle of pipelined latenc

between arvial and processing.
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To obtain results, application codes are compiled anddinkith portable softare pro-

tocols (written in C using theempest intedce) and platform-specificempest runtime
software, &actly as thg would be for an actual implementation. Avréing tool (based

on EEL [LS95]) processes the resultingARE binaries, replacing memory accesses with
calls to the simulator and adding instrumentation to count instructecugon gcles.

Direct execution of the modified binaries des the detailed discreteent simulatar To

enable lager systems and data sets, the system nodes are simulated in parallel on a Think-
ing Machines CM-5 using a consatwve, synchronous parallel simulation algorithm
based on the Wconsin Whd Tunnel [RHL™93].

3.4.1 Microbenchmark

To qain insight into the werheads of these systems, this section breaks tiee lateng
of a simple remote read miss. When the miss occurs, a cache page is already allocated on
the caching node and the block is idle (unshared) at the home node. On the caching node,
the miss accessvakes a block accesaldlt handler—part of the hardwne state machine
on Simple COMA, or softare on the Jphoon systems—which sends a request to the
home node. At the home, the message handengi@ades the block frorwritable to
ReadOnly and sends a cggo the requesteBack at the caching node, the response mes-
sage handler writes the data to memaohanges the block'tag toReadOnly, and signals

the compute processor to retry the access.

The results are presented iable3.1. The common system assumptions lead to a mini-
mum lateng of 299 processorycles. The home node latgnmcludes tw hus gcles
(eight processorycles) to request and acquire theskand ten s g/cles (40 processor
cycles) to fetch the block. (Block data is not pipelined into the ortyvOn the caching
node, the final step (“fetch data, resume”) includesrséus g/cles (28 processorcles)
to fetch the critical wrd and three processoyates to forvard the data to the CPU and
complete the load. The idealized Simple COMA system requires one addigoleaper

message, for a total of 301 processaies, or about 1.fs. For comparison, the Stanford
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FLASH designers report remote read miss latencies of 1.11 angisl.d®&pending on

whether the data is dirty in the remote processmathe [HK*94]

Table 3.1:Remote miss lategdoreakdevn for simulated systems.

Lateny (200MHz cycles)
S-COMA Typhoon Typhooni Typhoon9

Location Step

Caching detect HW cache miss,

node issue los transaction 10 10 10 10
detect accesslt,
dispatch handler 0 6 101 101
get fault state 0 16 18 18
send msg 0 13 45 45
Network request msg lategic 100 100 100 100
Home dispatch msg handler 1 6 78 159
node  read msg 0 3 7 40
directory lookup, branch 0 20 20 20
send msg header 0 17 38 52
fetch data from memoyy
change tag, send 48 48 122 293
Network response msg lateyc 100 100 100 100
Caching dispatch msg handler 1 6 78 159
node  read msg header 0 3 7 40
read msg data, changetag O 12 20 261
unmask CPU,
reissue bs transaction 10 10 32 32
fetch data, resume 31 31 31 31
Totals 200 MHz CPU gcles 301 401 807 1461
50 MHz lus g/cles 76 101 202 366
microseconds 15 2.0 4.0 7.3
bus transactions 3 3 16 36

1. Because the systems described hemays fetch dataver the coherent memorys, latencies
are independent of dasahardvare cache status.



73
Because these fundamental latencies domingf#)obn taks only 33% longer to sat-

isfy the miss despite the cost of running saftevhandlers. The decoupled designs do not
fare as well in this comparison. Going fromphoon to ¥phoon4, the miss laterc
roughly doubles; going toyphoon®, it nearly doubles agn. As &pected, this correlates

with a lage increase in the number afdbtransactions needed to satisfy the miss.

3.4.2 Macmobenchmarks

To determine hw these werheads translate into application performance, | simulated
the six shared-memory applications described in Se2tanAll benchmarks are written
in C and were compiled with gcession 2.6.3 at optimizationvel -O2. Table3.2 sum-

marizes the applications and indicates the data sets used.

Table 3.2:Benchmark applications and data sets.

Benchmark Appllcatllon Primary data Data set Frag.
domain structure(s) overhead

appbt CFD 3D array 32x32x32 arraysiterations 58%

Barnes hierarchical  oct-tree 16,384 bodies, dtime=0.025, 373%
N-body tstop=0.075 (4 iterations)

DSMC Monte Carlo cell array 48,000 particles in 9720 cells, 68%
particle-in-cell particle list  increasing to 72,000 patrticles,

400 iterations

EM3D electro- static bipartite 192,000 nodes, deee 5, 175%
magnetics graph 5% remote edges, Z@rations

moldyn molecular molecule list, 8788 particles, 3@erations, 16%
dynamics interaction list interaction list rebilt once

unstructured CFD static mesh 9428 nodes, 5986&dges, 129%

5864faces, Sterations

Table3.2 also reports each applicatisritagmentation \@rhead—the amount of addi-
tional ptysical memory consumed because efipess page-granularity allocation. Spe-
cifically, the table reports the number of allocated inused pysical memory blocks,

expressed as a percentage of the number of allocated and used blocks. A block is consid-
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ered used if it containedird data at anpoint in the program. Thesalues were obtained
from simulations using 64-byte blocks, 4096-byte pages, and unlimiyesicphmemory

at each node. Restricting theadable plysical memory could force page repplacements,

reducing the actual gkical memory verhead.

Although | simulated the full applications, | report results for only the second and fol-
lowing computation iterations to focus on the portionxaceition where a productiores
sion will spend most of its time.oF most of the applications, iteration times aesyv
regular, so meaningful results require only avfégerations. There are twexceptions. In
moldyn, the molecule interaction list is occasionallyuritbresulting in an iteration that is
an order of magnitude longer than the others; | simugaterfough to include the first of
these rebilds. DSMC simulatesas particles in a ggon with an incoming fle, so at first
the number of particles increases with each iteration. It is impractical to simattate f
enough to reach steady state, so | arbitrarily chose to run for 400 iterations. As the number
of particles increases, the speedup also increasesgety slavly; | do not epect results

for a longer run to be qualitagly different.

Although parallel simulation on the CM-5 alle lager benchmark runs than sequential
simulation, vorking set sizes are still too small to cause replacements in each nmade:
memory—based remote data cache. Because no page replacemeetyalittievinitial
page allocation occurs during the measured iatethre Simple COMA results prme an
approximate upper bound for the performance of hardwired CC-NUMA systems similar
to DASH [LLG*92].

All of the benchmarksxeept EM3D use the first-touch migrate-once scheme described

on page24. EM3D eplicitly allocates the graph so that writes amgaals to local pages.

Figure3-12 shavs speedups for the transparent—shared-memory (TSM) applications on
32-node systems.df the Empest systems, this requires simply linking with the standard

protocol library which implements the same sequentially consistent full-megidiation
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Speedup

appbt barnes dsmc em3d moldyn  unstructured
Benchmark/System

Figure 3112. Application speedups for transparent shared memory on 32-node systems
SC=Simple COMA, T=yphoon, T1=yphoon4, TO=Typhoond.

protocol used In the Simple COMA system. These speedups areerétathe best\all-
able sequentialersion on a wrkstation identical to one node of the parallel system.
Although these applications do not ¢éadantage of the @mpest intedce, thg have
been tuned for performance within the TSM model; selsafi etal. [FLR™94] and
Mukherjee etl. [MSH"95] for details. These benchmarks auvhispeedups of 19 or bet-
ter on the Simple COMA system, with theception of unstructured at underdiThe

large speedup for appbt is due to cactfect$; one third of the sequentiadegution is

spent vaiting for cache misses.)

| ran all of the benchmark/system combinations for block sizes of 32, 64, 128, and 256
bytes. fer the lager block sizes,wery internode coherence actionvisives multiple
32-byte MBus blocks. Due to space restrictions, | only present results for 64-byte coher-
ence blocks. The 64-byte block size is within 10% of the best performance for most cases.
The only &ceptions are EM3D, which is 10-40%ster with 512 byte blocks, and
unstructured, for whichyphoon and y¥phoon-1 are 12-14%éter at 256 bytes.
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Figure 3-13. Execution time breakden for transparent shared memd®C=SimpleCOMA,
T=Typhoon, T1=Yphoondi, TO=Typhoono.

To facilitate system comparisons, Fig@&3 presents>@cution times for the TSM
benchmarks normalized to the Simple COMA system, breaking out the time spent by the
main processor on computation and on read, write, TLB, and synchronization stalls. T
of the benchmarks—EM3D and unstructured-ehaoor processor fefiengy, spending
less than a third of the time computingee on the Simple COMA system. Unstructured
fails to produce much speedup foygrlatform. EM3D achiees speedup on the inte-
grated systems because itg&@(20MB) data set thrashes the uniprocessceche and
TLB, but fits in the caches and TLBs of the parallel system. The uniprocessmtion
spends wer 87% of its time aiting for the memory system—45% on cache misses and

42% on TLB misses.

Even on these unmodified applicationgpfoons performance is at most 25% less than
the idealized Simple COM#, and is under 10% for the four benchmarks with highier ef
ciencies. yphoon demonstrates that thexitelity of Tempest usetlevel software proto-

col processing is compatible with high performance.
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Figure 314. Application speedups on 32-node systems, including application-specific
protocols.SC=Simple COMA, T=Yphoon, T1=Yphoon4, TO=Typhoono.

Moving from the intgrated to the decoupled designs increases the total stall time signif-
icantly—by 41-213% for yiphoond and by 92-522% foryphoon® relatve to Simple
COMA. However, the efect of this increase on bottom-line performanagas according
to the contrilntion of the stall times to theverall execution. fer the benchmarks with rel-
atively high eficienogy—appbt, Barnes, DSMC, and moldyn—théeef of increasedwer-
heads is mitigted by their smallenverall contrilution. On these applicationsyphoond1
is 11-30% slaver than Yphoon, and ¥phoond is 28-84% shver than ¥phoon (13—
38% and 30-94% sheer than Simple COMA, respeetly). On the lav-efficiency bench-
marks—EMS3D and unstructured—the decoupled designs gier weakness, turning in

performance aaictor of tw or more slwer than the intgrated systems.

Figure3-14 repeats Figurg-12, adding the speedups for thenmipest-optimized es-
sions of the benchmarks described in Se@idn Because the Simple COMA system uses
a hardwired protocol engine, it is incapable of supporting émepEst-specific optimiza-
tions. These application-specific protocols were written and optimized &y aliferent

system—Blizzard= [SFL"94] on the CM5—with much slwer processors andven
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higher relatvte overheads. Although their impact is reduced by thveelooverheads of

these hardare-assisted systems, all of the custom protocols stiliggsome impree-

ment wer transparent shared memoriwo shav dramatic imprgement gen on
Typhoon—86% for EM3D and 384% for unstructured—causing them to outperform the
Simple COMA system by nearly the same gmas as well. (The |lge absolute speedup

for EM3D is due to the memory systenfieets mentioned alve.)

Moving to Typhooni and ¥phoond, the higher werheads lea greater room for
improvement, so the morefafient protocols hae a greater impact. Only for moldyn and
Barnes do the custom protocols on each of #rapest platformsail to outperform trans-
parent shared memory onyasystem, including Simple COMA. Of course, there are other
methods to impnee the performance of the TSM programs without resorting to custom
protocols—for &ample, adding prefetch instructions or using a weatonsistenc
model. Neertheless, these results indicate significant potential for custom protocols in

some situations.

Figure3-15 breaks den the eecution times for the @mpest-optimized applications,
normalized to the TSMersion on Simple COMA as in Figugel3. Because time that the
main processor spends doingkcit message passing is counted as computation, most of
the application-specific protocols actually increase the amount of computaé&oihe
original version; computation timeavies on the diérent platforms due toavying mes-
sage-passingverheads. Reductions in the stall times compensate for these increases.
Unstructured is anxeeption to this pattern: both the computation and stall times decrease
significantly This efect is due to the optimizedexksions more dicient reduction phase.
Where the original application performs a global reduction on an arrafussy the opti-
mized code sums only the non-zero coniitns for each alue (see Sectic24.6).
Although the primary intent of this optimization is to eliminate the communication of the

zero \alues, it also eliminates the computatiovoimed in summing them into the result.
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Figure 315. Execution time breakden for the application-specific protocols, normalized
transparent shared memory on Simple COBE=SimpleCOMA, T=Typhoon, T1=Y¥phoon4,
TO=Typhoono.

TLB misses, which are not adtor for ag of the transparent—shared-memory bench-
marks, are a noticeable component xd¢ation time for tw of the Bmpest-optimized
codes (roughly 6% for Barnes and 10% for EM3D). These costs merely reflectrdies
in reference locality between the TSM and custom-protoediens; it is not inherent to
Tempest or the hardwe platforms. The custom-protoca@rsion of Barnes splits the body
structure so that dérent protocols can be applied toféelient fields. As a result, the data
for one bodywhich is contiguous in the original code, is spread across three structures on
three diferent pages. The d#rence in TLB behaor for EM3D is due to a locality opti-
mization in the TSM &rsion that \as not applied to the application-specific proto@st v
sion. This optimization, which pulls the writable datdues out of the otherwise read-
only graph structure and allocates them in a separate amasoves cache locality for
remote references in the TSMrgion. The custom-protocokssion leaes the writable
values embedded in the graph nodes becausgac¢k)ng \alues from multiple graph
nodes in a single cache block complicates dynamic sharing pattern detectionthed (2)

values are updated using a custom protocol, so spatial locality for remote misses is not a
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performance issue. K some dbrt, this data restructuring could be applied to the cus-

tom-protocol EM3D, bringing its TLB performance in line with the TSafsion.

Figure3-15 also shass that the diciency of each application on Simple COMA corre-
lates iversely with the déctiveness of the application-specific protocols. Intalyj, the
applications with highernerheads ha more to gin by eliminating thoseverheads. The
two benchmarks with ery lov efficiency, EM3D and unstructured, shoimpressie
gains, while the impneements for DSMC, moldyn, and Barnes are smaflppbt strad-
dles the fence: the custom protocalrgs a &ctor of two on Typhoono but only 18% on
Typhoon.

The application-specific protocols also seto diminish the performance fdifence
between the arious Empest implementations.yfhoono is 28-327% slwer than
Typhoon for transparent shared memduyt only 5-47% slawer for the custom protocols.
Similarly, Typhoon4’s worst-case performance disaivage is reduced from 122% to
13%. There are twvreasons for this trend. First, the custom protocols eliminate most of
the demand fetches from the computation iterations. The access control mechanism is only
lightly used, if at all, so itsxerheads are insignificant. Second, the optimized communica-
tion in the custom protocols usually éskthe form of message sends from the compute
processarThese sends must cross thus lon all three systems; the tight coupling of the
network interface and protocol processor oypiioon imprees performance only on the

receving node.

3.4.3 Impact of netvork latency

To emphasize the impact okefpest support, the pieus section assumed airfy
aggressie netvork lateng of 0.5us. Although dedicated MPP neivks may match or
surpass this speed, current high-performantéhefshelf netwrks are more typically in
the 10-3Qus range. This sectiorxamines the ééct of these layer netvork latencies on

system performance.
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Figures3-16 and 317 shav speedups for bothevsions of each application for oneyw
network latencies of 0.5, 2.5, 5, 25, and &(100, 500, 1,000, 5,000, and 10,000 proces-
sor g/cles, respectely). The first group of columns in each graph (at&)pcorresponds
to Figure3-14.

Because the application-specific protocols reduce or eliminate stalling for demand
misses, thg generally tolerate lge netvork latencies better than transparent shared mem-
ory. As the lateng increases from 0.5 to %%, the TSM benchmarks on the idealized
Simple COMA system sle down by at least aaictor of five and as much as actor of 33.

In contrast, the custom-protocargions slav down by as little as 1% (for EM3D) and at
worst a &ctor of 3.6 (for Barnes). As a result, the reaimprorzement preided by the
application-specific protocols gms with increasing lategc For example, the Barnes
application-specific protocol pvales a speedup of only 6%ver the TSM ersion on

Typhoon at a 0.pis lateng, but at a 5Qus lateng this improvement gravs to 80%.

Higher netvork latencies also reduce the performanckedihce between the systems,
especially for transparent shared memargreasing the fraction okecution time due to

the netvork itself diminishes the relat impact of otherwerheads.

3.4.4 Impact of potocol-processing perdrmance

As discussed on pag®, the results presented thas dssume thatyphoons integrated
protocol processor is as werful as the dfthe-shelf general-purpose CPU used by
Typhoon4 and fphoond. This assumption alles us to attribte all of the performance
differences between these designs to tfexesf of decoupling. Heever, it is unrealistic;
due to the additional design time required, it is probable g@tdons integrated proces-

sor will be slaver than a contemporaryfahe-shelf CPU.

To examine the déct of this assumption, | simulated dwadditional ersions of
Typhoon, changing the protocol processor to be dawd four times siwer than the com-

pute CPU. Figur8-18 shavs the &ecution times for each of the TSM benchmarks on
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Figure 3-18. Execution time for transparent shared memory yphoon, \arying the protocol
processor speed-nX=Typhoon with protocol CPUW times slaver than compute CPU,
T1=Typhoon4. Network lateny is 0.5us.

these systems, normalized to the benchrma®ecution time assuming a protocol proces-
sor identical to the compute processor (as reported in F3giBeon pag€6). While
slowing the protocol processor by acfor of two reduces application performance by at
most 28%, adctor of four processor simlown reduces werall performance by up to
90%. Among the more ffient benchmarks—eluding EM3D and unstructured—appli-
cation performance is reduced by at most 8% and 24%, regdecEor comparison,
Figure3-18 also includes theyphoond results from Figur8-13. For most of the appli-
cations, Yphoond is nearly asdst as the yphoon \ersion with the fourfold-slwer pro-
tocol processorand is &ster for Barnes. These results suggest tijphdons protocol
processor need not be @&stf as the compute CPWjtkat some point protocol processor
speed does become a bottleneak. the parameters used here, this point occurs when the
protocol CPU is between twand four times siwer than the compute CPU; in general, the
required protocol CPU speed is probably dependent ororigtmemory and lus band-

widths as well as the speed of the compute CPU.
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Figure 3-19. Execution time for the application-specific protocols gpHoon, \arying the
protocol processor speeEnX=Typhoon with protocol CPW times slever than compute CPU
T1=Typhoon4. Network lateny is 0.5us.

Figure3-19 repeats Figurg-18 using the application-specific protoc@rsions of the
benchmarks. As we sawith the decoupled systems, the application-specific protocols
mitigate the impact of increasedavheads; the tefold and fourfold decreases in protocol
processing pwoer reduce werall performance by at most 7% and 21%, respsgti
excluding the outlying Barnes, the reductions are at most 1% and 7%, resigedtjain,
however, the protocol processor can become the bottleneck: tivestildyphoon system
is slowver than ¥phoon4 for two of the applications (Barnes and DSMC) and nearly as

slow for the others.

3.5 Related vork

The designs in this chapter are related both to systems that impleemepést using
different techniques and to noeffipest systems that use similar techniques. This section
restricts its focus to implementation issues; Se@idndiscusses relatedvk in the con-

text of the Tempest intedce itself.
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These systems do not represent the entire design spacaripedt support. In another

publication [SFL*94], we list seeral alternate approaches to fine-grain access control, and
describe tw software implementations that run on an unmodified Thinking Machines
CM-5 (and were later ported to a cluster afristations [SFFH96]). The BlizzardE sys-

tem manipulates the memory controlerror correction codes (ECC) to forcasb
errors—inducing processor traps—on accessesvadidnblocks! Read-only blocks are
synthesized using pagevsd protection. Custom operating systexteasions manipulate
ECC via a memory controller diagnostic mode [RFW93, SFa}i | was irvolved in the
design of an enhanced memory controller tké¢reded ECC semantics to include a read-

only state and praded limited usetfevel access [Nim93].

Another implementation we report, Blizza8dfSFL™94], uses anx@cutable editor to
insert softvare access checks before each load and store. This approach penable,
requiring no special hardwe or operating system support. &iety of optimizations can
lower the @erhead of xecuting the access checks [SPH, SGT96]. Horwitz et al.
[HMMS96] propose a processor feature that can be use@toite the access check code

only on hardware cache misses.

A modified TLB on the compute processor can also support fine-grain access control.
The IBM 8015 lock bits [CM88] implement a form of TLB-based fine-grain access con-
trol, but with only two access states. MEM-Machine [FKOD'95] provides all three of
Tempess states specifically to support DSM. Although this approachdas lav over-
head for both access checks and handi@cetions, it introduces a coherence problem in

multiprocessor nodes [ENCH96].

Tempess protocol processing does not require a dedicated CPU. In both Blizzard sys-
tems on the CM-5, the single processor on each naxtrites both application and proto-

col code. ©® handle asynchronous messagevalsi the systems either use haadsv

1. This technique, and the code that implements d@s talen from the Wsconsin Whd Tunnel
[RHL*93], where it vas used for directxecution cache simulation.
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interrupts or poll from the application code. In the latter case, the polling code is added
automatically via binary editing. Bm when multiple processors anreaidable on each
node, Rlsafi and Wod [FW96b] sha that dynamically scheduling application and proto-

col tasks is typically more fgient than dedicating a protocol processor (see paye

The designs in this chapter shareesal features with nonéfmpest systems. ASH
[LLG *92] also implements fine-grain access control for disteith shared memory using
custom snooping logic that participates in afitloé-shelf multiprocess@’ hus-based
coherence protocol. Unkkthe BEmpest systems, which pide direct access to fine-grain
access control from uséavel software, DASH’s snooping logic inteaices directly to the
hardware state machines that implement the global coherence proté&i Biso modi-
fied the multiprocessor node taig control @er kus arbitration. The simulations of
Section3.4 use this feature as welljtbmore recentus designs—with split or deferred
transactions—enable similar performance with no hardwchanges to a commodity

workstation node.

Typhoons integrated deice is similar to FLASHS MAGIC chip [KOH™94]. Both inte-
grate a processoa netvork interiace, and access control. I&#C integrates the memory
controller as well, which prades greater controlver kus transaction handling and the
opportunity for higher bandwidthub precludes dfthe-shelf workstation nodes. Instead
of using hardwre access control to filter memory references QWA runs a softare
handler which incorporates the access control check, vamryemain memory request.
MAGIC incorporates a number of hamahke optimizations, including a message handling
macropipeline and a separate datapath for memory and message data. These features
reduce the laterycand occuparncof software handlers [HH®5], enabling high perfor-

mance on transparent shared memory(Fig4].

Although both FLASH and @mpest espouse sofive protocols, theembody diferent
approaches to tkbility and performance. FLASH minimizes the performance impact on

transparent shared memory by using aggresdsardvare and restricting access to the sys-
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tem’s fleibility. In contrast, @mpest seeks primarily to maximize ukael flexibility.

Although this fleibility may impact performance on demanding shared-memory applica-
tions (such as EM3D and unstructured), it enables custom protocols which eale pro

good performance on a wider range of implementations.

Like Typhoon® and Jphoond, Start-NG [CAA95] uses an dfthe-shelf protocol pro-
cessorThis processor has oatightly coupled peripherals on thevé¢-2 cache bs: a net-
work interface and an address captureicke (ACD). The ACD latches bs transactions in
software-accessible gesters, alloving software-based access control similar to FLASH.
As discussed in Sectidh5, all protocol softare is pwileged in both FLASH and
StartNG, making them unable to directly suppognipest.

SHRIMP [BDFL96] and FLASH [HGDG94] use shadspace mappings to specify
source and destination addresses for akwdata transfers, as doyphooni and
Typhoon.1 In SHRIMP' usetlevel DMA, the transfer forms a complete message and the
sender specifies both the source and destination addresses. yphibenT systems, the
transfer is one part of a g@r message and the destination address is specified by the
recever’s message handler (as in Wlte [KA93]). Because FLASH shadw space is
simply a technique for communicating addresses between the compute CPU and the
embedded protocol process&LASH can implement aaviety of DMA protocols. All
these systems must guarantee that stale translationsvareused for DMA operations.
Because only local addresses ak®ived and the transfer size is limited to a single cache
block, Typhoon and ¥phoond can use simple techniques such as FLASHKEId-of
approach or SHRIMB’address mgster check.

3.6 Summary

This chapter describes three system designgshdon, Yphoon4, and Yphoono—

that pravide hardvare support for theempest intedce. All three use tthe-shelf vork-

1. The shade space was not part of the originalyphoon design [RW94], but was retrofitted
after the design ofyphoon4 to support operations from the compute processor
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station nodes and enforcempess fine-grain access control with customs{snooping

logic. They differ in the &tent to which the integrate this logic with tw other Empest
support components, a netk interface and a protocol processbhese dierent levels

of integration place the systems atfeient points on the cost—performance spectrum.

Typhoon achiees high performance by imeting all three components on a single
device. Simulation results stothat Typhoons performance for unmodified shared-mem-
ory applications is competie with an idealized hardwired protocol engine—within 25%
across six benchmarks on 32-node systems. The results alstepstyong eidence for
Tempess flexibility: in spite of Typhoons efectiveness for transparent shared memory
application-specific protocols sped up one benchmark by 86% and another by 384%—

almost a &ctor of fiwe.

Typhoon4i simplifies phoons intggrated deice by decoupling its most complsub-
component, the protocol processbrstead, an &ithe-shelf general-purpose CPWee
cutes protocol softare and controls a custom netk interface/access control dee. A
novel invention, acacheable conwl register, lets the deice and the processor communi-
cate across the memorydmore dfciently than traditional uncacheduee registers.
Typhoon4 is no more than 30% siler than Yphoon for the four benchmarks with good
processor diciengy (65% or better on the idealized hardwired system),i9roughly a
factor of two slower for the tvo benchmarks with i@ efficiengy. Using the custom-proto-
col versions of the benchmarks, whickoal demand misses and communicate mdie ef

ciently, reduces Y¥phoon4's worst-case performance penalty to 13%.

Typhoon© decouples theempest support components furtigke Typhoon4, it uses
an of-the-shelf CPU for protocol processingwever, it also uses a genericfdhe-shelf
network interface. A standalone access controlice is the only custom component.
While this separation of components simplifies the design and reduces costs, some com-
mon operations require a ¢g number of s transactions to coordinate thevides. for

transparent shared memprfyphoon® is 28-84% sher than Vphoon for the four
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benchmarks with higher processofi@éncy, and three to four times sler for the lav-

efficiengy benchmarks. Becausgphoon’s overheads are highethe custom protocols
produce a lgger performance impwement; using these benchmarkgphioon® is at

most 47% slaver than Yphoon.

The simulation results mentioned thas &ssume aairly low network lateng (0.5us).
If the netvork lateny is increased, it dominates othetedheads, deemphasizing the per-
formance diference between the system designs. Becaugaydrerally replace demand
fetches with direct updates, the custom-protocol benchmarks tolerate higitknketien-

cies much better than the transparent—shared-merasious.

In addition to serving as a contrast tgpfoon and ¥phoond, Typhoon® is simple
enough to implement in an academigissnment. In the nd chapter| describe a ark-
ing hardvare prototype of theyphoon© system that demonstrates the feasibility of the

designs discussed here.
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Chapter 4

The Typhoon-0 Prototype

This chapter describes a prototype implementation ofythbobn-0 system. This proto-
type demonstrates the feasibility of combining custom fine-grain access control logic with
userlevel protocol softare—the common theme of the three designs presented in the
previous chapterin addition, the prototypg’performance correlates with results from the

simulator strengthening the credibility of the results reported in theique chapter

Typhoon-05 decoupled design is ideal for prototyping: other than the fine-grain access
control logic—implemented on a FPGA-based board caltetex—the system is ualt
entirely from of-the-shelf components. The relagly small efort required to construct
the prototype—approximately twstudent-years—clearly demonstrates theaathge of

this approach.

The first two sections of the chapter describe the hardvand softare components of
the Typhoon-0 prototype, respeatily. Sectiond.3 reports performance measurements
from the prototype, and Sectidm compares some of these measurements with results

obtained from the simulatoBectiord.5 summarizes the chapter



92

Dual-CPU Module Vortex Card (to Myrinet switch)

(compute) (protocol) Tag A

Hyper .

sp),la?Rc SHP%/A[\)RerC SRAM | Myrinet Interface

* *

256 KB 256 KB FPGAL FPGA2 LANai

Cache Cache DT SRAM
MBus slot 0 MBus slot 1 SBus slot 0

Memory SBus | r 11
DRAM Controller Bridge Built-in 1/0: SBus 1/0
SCSI-2, Ethernet, (4 slots)

video, EPROM, etc.
Sun SPARCstation 20 Motherboard

Figure 441. Block diagram of a yiphoon-0/CQV node.The Myrinet LANai chip intgrates ¢
simple processpa DMA engine, netark transcaiers, and most of theub interace logic.

4.1 Hardware

The Typhoon-0 prototypeudilds on Wsconsins Cluster Of Wirkstations (C@/), infra-
structure shared by weral UWMadison ivestigators researching clustbased systems.
The CON comprises forty Sun SIRCStation20s (SS20s) connected with a Myricom
Myrinet [BCF"95] network (in addition to standard 10- and 100-Mbps Ethernet). Myrinet
is a commercial local-area neivik derved from the high-speed Melateng interconnect

developed for the Caltech Mosaic machine, a research MPP

Figure4-1 shavs a block diagram of ayphoon-0/CQV node. The SR uses proces-
sor daughtercards that plug into either ob tslots, to allev adding or upgrading proces-
sors in the field. Because these slots are intended for cache-coherent procegsors, the
provide full access to the coherent processor—-memasythe MBus [Sun91]). The proto-
type uses one of these slots for tloet® fine-grain access control board. The other MBus
slot holds a module with wvCPUs, one for computation and one for protocol sofw
The CQONV'’s processor moduleseatwo 66-MHz Ross Hyper@¥RC processors, each
with a 256-KB unified cache.
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Our original design for the prototype interconnected the nodes with a Thinking

Machines CM5E netvork. (The CM-5E vas an enhancecassion of the CM-5; from our
perspectie, the only significant dérence vas a greater maximum message length.) The
CM-5E design included a single-chip MBus netW interiace connecting each nosge’
SFARC processor to the custom interconnect. The oribytefequired for the prototype
was to obtain a netwk in a stand-alone package and/gbally intggrate the netark
interface chip and connectors onto tharték card. Unfortunatelyat the time we lgan

the prototype dbrt, Thinking Machines encountered financial problems that led to their
exit from the hardware lusiness. After this\eenue closed, we selected the Myricom Myri-

net as thedstest commerciallyvailable interconnect at the time.

Each node connects to the Myrinet netikvusing a standard Myrinet host intasé card.
This card plugs into the SBus, Ssistandard I/O Bus [Mas94]. Most of the indeds
functionality—including a simple processor and a DMA engine—is contained on a single
chip, the LANai. The card also has 128 KB of SRAM to store the LANai processmiée
and data. The host processors can access the ISANRAM directly using uncached
memory operations. Keever, the LANai can access host memory only via the DMA

engine.

The \ortex card implements theyphoon-0 access control \dee as described in
Section3.3.5, with oneeception. Because the $8's kus arbiter does not allomasking
of all processor s request$ Vortex cannot simply suspend asoperation that conflicts
with the access tags assvassumed in the preus chapterinstead, it aborts these opera-
tions by returning an error acknt®dgment, causing the memory reference instruction to
fault. After the block accesadlt is handled, softare reissues the instruction to resume

computation.

1. The arbiter has a controlgister that masks requests frooshieices, lut—presumably to pre-
vent inadertent deadlocks—processos @equests cannot be madk
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To keep design time short and costw,ld/ortex uses FPGA technology rather than a
custom ASIC or gte arrayNo contemporary FPGAas both dense enough to implement
all the logic and capable of running at theNddz MBus clock rate, so we partitioned the
logic across tw devices. o standard 4Mx1 SRAMs store 4M dvbit tags; gren
MBus’s 32-byte block size, this configuration supports up to 128 MByigdd memory
Rob Pfiles mastes report [Pfi95] details the implementation @iriéx.

The Myrinet interhce does not pvide an accessible message interrupt line teedhe
message status bit iy@hoon-05 dispatch rgister (see pag&7). We imprwised this fea-
ture by co-opting a softave-programmable status LED. As we installed each Myrinet
interface, we remeed the LED and replaced it with a connectoishort wire routes the

signal to the input on theovtex board.

4.2 Softwae

Typhoon-0/CQV’s software starts with Solar®.4 and adds drers and other system
code to support theovtex and Myrinet deices. A usefevel run-time library hilds on
these system components angats the €Empest intedce. Job control softawe denved
from DJM [Min95] lets users initiate and control parallel jobs across multipleV CO

nodes.

As with the hardwre, lyphoon-0/CQV leverages xsting or shared components for
much of its softwre support. The bthe-shelf Solari2.4 system is of course the most
significant piece. The Myrinet intexde softvare is based on Begley’'s LANai Active
Messages [CLMY96]; modifications to n&k more suitable fordmpest are shared with
other softvare-only CQV Tempest implementations [SE®B]. The parallel job manage-

ment softvare is part of the lger COV infrastructure.

This section focuses on sofive specific to theyphoon-0 prototype. The first four sub-
sections ceer software issues related taNex: the first describes the steps required to

configure a Yphoon-0/CQV node each time it boots, the second relates daiser pro-
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cess wrks with the deice driver to accessdftex, the third reports other needed Solaris

modifications, and the fourth discusses system issues that @ yet been fully
addressed in the prototype. The final subsection briefly describes the Myrinetcmterf

software.

4.2.1 \brtex configuration

To enforce access control, “coherentalidate” (Cl) transactions oReadOnly blocks
must #il, invoking a block accesadlt handler(Cls result from writes to blocks that are
in a shared state in a processdrardvare cache.) The MBus specifies that a singlécde
(typically the memory controller) ackmbedges all Cls; in iphoon-0/CQV, Vortex takes
over this task so that it can mide the proper response based on the tag state. Switching
responsibility from the memory controller toNex in a running system is nearly impossi-
ble: an unackneledged Cl—or one with tav ackneviedgments—uwill crash the system.
Instead, we disable the memory controdieél acking, and enableokex’s, when the sys-
tem is pavered up or reset—before the processors enable their caches. Using2bie SS-
OpenBoot features [Sun94], we store a command sequencevivlatde memory and set

it to execute on each hard reset.

The \brtex device driver performs the remaining configuration tasks when it is loaded.
First, the dwer checks whether the installed memory configuration is compatible with
Vortex and, if so, sets upovtex's address mapping appropriately then maps the super-
visor (prvileged) deice ragisters into the é&rnel address space, initializes the SRAM tags

to ReadWrite, and enablesadrtex’s tag checking.

4.2.2 Pocess setup

To use Vrtex for fine-grain access control, a process first opensdateddevice driver.

The process then maps the usesickeragisters into its address space vianaap() call.

1. In the SS20, the set of populated ydical addresses is not necessarily contiguous and depends
on the size of the installed SIMMso Bimplify the logic that maps phical addresses to tag
array indices, ¥rtex supports only systems where all SIMMs are the same size.
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In addition to installing the mapping, then informs \rtex of the virtual page number

where the cacheable controlgigters (the dispatch gister and the block uffer) are
mapped. Because the HypeAHRTs use virtually indeed caches lger than the page
size, \brtex's cacheable control gister irvalidations must pndde the lav-order bits of
this virtual page numbefThe MBus preides eight bits in the transaction specifier for this

purpose.)

To limit the impact of fine-grain access control on tamkl, the dxier allovs modifica-
tion of access control tags only on a special memaggnsat which it manages directly
[RFW93]. Although the standardxte static data, and stackgseents cannot be tagged,
this model supports theARMACS macros [BBD87] used by our benchmark applica-
tions, which assume that shared memory must be dynamically allocated via a special v

sion ofmal | oc() .

The process initializes the taage memory ggment via a Wrtex driveri oct | (). The
driver creates three same-sizedraents in the processvirtual address space: one that
contains the primary (cached) memory mapping, one that maps the correspartig V
shadev space pages for tag access and manipulation (se&pagnd a third—an alias
of the first—that preides uncached memory access for bypassing tag checks (see
page67). These ggments are initially empty; the process allocategsiglal pages as
needed via anotheroct | (). The process specifies the initi@lwe for the ne& pages
access tags and the primary virtual address. Therdicquires a pfsical page frame, ini-
tializes its tags, maps it at the specified address in the primgnyesg and creates

shadev space and uncached mappings at the saiset @fithin the other virtual genents.

As described in Sectioh3.3, dispatch softare—part of the usdevel runtime
library—uses an werted page table to translate thggbal addresses prioled by \brtex
on a block accesadlt to virtual addresses for the u$arel protocol handlers. The cur-
rent implementation pins taggle pages in pisical memoryso we &oid the complgi-

ties of page remapping discussed in Seci@13; for simplicity the usetevel runtime
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library maintains the werted page table. The table is a sparse demand-allocatedsatray
up using ammap() on/ dev/ zer o. When allocating a tagdple page, the library uses the
physical page number—returned by therside driver—to populate the appropriate entry
To provide access to the same qpaige information gen only a virtual address—as when
a remote protocol request is ram@a—a similar sparse array maps virtual page numbers to

their inverted page table entries.

4.2.3 Other Solaris modifications

Ideally, all OS support for dtex should be encapsulated cleanly in gicke driver writ-
ten to published d&rnel interbces. UnfortunatelySolaris—like ary other commercial
Unix variant—emphasizes monolithic featuriswep flexibility and eficiengy, so three
modifications outside the purwieof a standard dece driver were required. Despite the
unusual nature of these changes, we were able to implement them in a dynamically load-
able module; hwever, this module is not portable to other Solaessions and cannot be

unloadedt

First, a n&g memory sgment dver supports the threeguents preided by the drtex
driver. In Solaris, a memory gment diver is a piece of code that managesgaore of a
virtual address space in a particulastion. Ier example, one dvier manages mapped
files while another manages mappedickes. Although Solaris pwides a ariety of mem-
ory sgment divers, none ha the flaibility needed to manage three relategraents in

a coherentdshion.

Second, modified trapeetor code accelerates th@anation of usetevel synchronous
trap handlers. As described earli®brtex responds with an error ackmie@dgment on
block accessaults, causing a synchronouseption on the issuing (compute) processor
The compute processomits for the protocol processor to indicate that the miss handling

is complete, then restarts the aborted memory access instruction. The standard Unix signal

1. These changes—and the module that implements them—are shared with BH2@v- a
Tempest implementation that uses ECC for fine-grain access control as described8t page
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interface supports this scenario, albeitwdio in Solaris2.4, the trip from thexeeption

through the signal handler and back to thelting instruction tag&s roughly 10Qus—
longer than servicing a simple remote migsrathe Myrinet. In contrast, using simple,
known techniques [RFW93, TL94], our modifiedrkel delers a synchronouxeeption

to a user handler in underpS. The suspended thread can be resumed without going
through the krnel. (In the ersion 8 SRRC architecture, user code cannot resume a
faulted instruction in a control transfer delay slot. The prototyp&ls this scenario by
using an EEL-based tool [LS95] to meloads and stores out of delay slots. Téxsion 9

SFARC architecture corrects thisersight.)

Finally, an unseory workaround gies the deice driver control e@er the cacheability of
mappings. The Solariseknel controls page cacheability internalssuming that all
device ragyisters are uncacheable and that all main memory is cacheable. @tekisv
cacheable gisters and the uncached tag-bypass memory alias violate this assumption. By
manipulating internal érnel function pointers, the #ar intercepts calls to the function
that writes entries into the hardve page tables. At each call, theveriexamines the
mapping represented by the page table entry; if it corresponds to either of our special

cases, it adjusts the cacheability atitébbefore performing the write.

4.2.4 System issues

This section discusses four system issues thet hat yet been fully addressed in the
prototype: paging tagged mempkgrnel and DMA accesses to tagged memang mul-
tiprogramming the bdftex device. Although the solutions hereveanot been implemented

fully, this discussion should priode a framevork for future vork in this area.

Conceptuallytagged memory can be paged simply byimg each page’tag walues to
and from disk along with the memory data. Better fit in the &rnels page-oriented vir-
tual memory framwork, the dver can allocate additional memoryaeking tag mem-
ory—to sere as backing store for taglues. This memory can be ched to the process

allocating tagged memaryut it need not be mapped into the procesaidress space.
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When a tagged page is written to disk, its tags are copied to a backing tag page; after all

the pages supported by a backing tag page haen written to disk, the backing tag page
can be written out as well. Similaylwhen a tagged page is read back in, the tags are
restored from the backing tag page (after reading it from disk also, if necessary). F
Typhoon-0/CQV, one backing tag page could support 128 tagged memory pages. Unfor-
tunately Solaris does not pvale hooks to notify a ggnent or deice driver when a page

is written out, so our current implementation pins tagged pageysicpghmemory

The handling of &rnel accesses to tagged memory is a mofieutfissue. Br the ler-
nel to hae the same vie of shared memory as the uskernel references that conflict
with access tags should cause block ac@gdtsthandled by the uskvel protocol. Hav-
ever, this solution wuld leave a suspendeceknel thread waiting on an unreliable user
level protocol. Instead, we can prde a library of wrapper functions for system calls that
pass pointers into thesknel. If the pointer guments reference shared memdang wrap-
pers cop the data into local-memoryuffers; aly needed block accesaults will occur
during this usetevel copy operation. ® protect aginst inadertent or malicious use of
tagged-memory pointer guments, the internaleknel routines used to access user mem-
ory can detect access tag conflicts and return an error codey agotlid for ary other

invalid pointer

DMA accesses to tagged memory raise a similar issue, although wittigmificant dif-
ferences. First, the desired semantics are uncleadange, it is inappropriate tovake
the coherence protocol when paging tagged memory to disk. Second, the DMAreardw
restricts the \ailable options: a DMA access that rees a bis error ackneledgment
typically crashes the machine. Because paging is unimplemented, the first issue is unre-
solved. \ortex addresses the second problem by suppressing the access tag chesk on b

transactions initiated by the MBus DMA controller

Although \ortex was designed to evk with one user process at a time, safsvcould

virtualize the deice to enable multiprogramming. Therkel can read and write albl
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tex’s state via the supervisogister space, so the usegisters can be timeshared among

multiple processes (as done with the GMetwork interface). A more serious obstacle is
that the useaccessible dispatchgister signals\eery block accessatilt, regardless of the
processor (or thread) that caused . &oid having one process erroneously handle
anothers block accessatilts, either a processthreads must be stricthagg scheduled
(within each node) or direct access twteé’s user rgisters must be disalled. In the lat-
ter case, thedenel could notify a process of block acceadtf via the bs error gception
handler Because the blockufer—a shared resource—is modified on tagviigrades,
the lkernel must denusers direct write access to the tag space as well. érhelkwould

mediate use of the bloclutfer, most likely requiring a krnel call for gery tag change.

4.2.5 Messaging

This section briefly describes the Myrinet saftey used in yiphoon-0/CQV. This soft-
ware is dened from Berkeley’s LANai Active Messages [CLMY96]. Modifications and
enhancements forefmpest are described by Schoinaal iSFH96].

As with most high-speed nebrks, the Myrines primary bottleneck is the transfer from
the application through the intade and onto the switchingldric. From the hardave
perspectie, the SBus-based Myrinet ackes the lavest lateng when the main processor
accesses the shared SRAM on the Myrinet iaterfcard; the highest bandwidth comes
when the LANai (the embedded processor on the adertard) accesses main memory
using its DMA engine. As in the Bezley implementation, our softare allocates send
and receie queues in the shared SRAM. Eacledbsize queue entry holds header infor-
mation, a small amount of message data, and an optional pointer te@nessage in
main memoryShort messages achgelow lateny because thepass entirely through the

shared SRAM,; lager messages enjohe higher bandwidth of a DMA transfer

To eliminate lernel interention, the Myrinet déce driver maps the shared SRAM
directly into the process’address space. Due to the structure of the /O MMU on the

MBus/SBus bridge, the DMA engine can access oalydl virtual addresses. Thewdni
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allocates a dedicatecttnel tuffer for the Myrinet and maps it into the processddress

space as well. As withortex, this Myrinet configuration supports only one process at a

time, although it could be timeshared inaamg-scheduled &mronment.

4.3 Rerformance

This section discusses the performance of fiphdon-0 prototype. As in Secti@¥, |
use simple microbenchmarks to illustrate systeerleeads, therxamine a set of applica-
tion macrobenchmarks. Finally compare the prototype’measured performance with

simulation results.

4.3.1 Microbenchmarks

This section shes where the prototype spends its time when servicing a remote miss.
To measure the inddual operations, | collected traces of MBus \attiusing a logic
analyzer attached to one node of the prototype system. The prototype ran a simple test
program that generated three types of misses on 32-byte blocks: read misses, write misses,
and write upgrades (writes to shared blocksy. éach type of miss, | ignored the initial
miss that imolved allocation of the cache page, then useddbie$t of at least a dozen

samples to eliminate thefefts of unnecessary cache and TLB misses.

The MBus traces alle a fairly accurate accounting of the ady on one node. (The
HyperSRARC’s write luffers introduce some approximation when atitifig time to a
specific task.) Hoever, because only a single logic analyzeaswaailable, | could not
obsere both the caching and home nodes for ame transaction. Instead, | ran the test
program twice, reersing the role of the node attached to the analffeerl gven type of
transaction, subtracting the time spent on the home node from they labssred on the
caching node ges a walue for the total netark lateng. For the write upgrade transaction,
which irvolves two short messages, | estimated the oag-lateng by taking half of the

total netvork lateng. Read and write missesvolve a short request and alkb (DMA)
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response. &t these, | assumed the request message had the samg dastémche write

upgrade case, and atuitied the remaining netwk lateny to the response.

Table4.1 presents timing breakaas for a read miss and a write upgrade. Write miss
timing differs from read miss timing in only one respect: because the home node does not
keep a read-only cgpon a write miss, the “write data to memory” and “change tag to
ReadOnly” steps are eliminated, making write misses almost one microseasted than
read misses. The write upgrade is significargtdy primarily because the response mes-
sage does not transfer data. The write upgrade alsgsemglight (8(hs) adantage on the
initial bus transaction; &tex can abort an MBus walidate &ster than a read because it

need not suppress the memory contralegsponse.

Table4.1 shaevs that, for either transaction, nearly 70% of the latenattrituted to the
network. This lateng—spanning from the ackmdedgment of the sending protocol pro-
cessors last write to the LANai memory until the redeg node$ \ortex card starts to
invalidate the status cacheable contrgister (CCR)—is wer 12us for a short message
and over 23us for a messagevalving a 32-byte DMA. The nodes communicate through
a single Myrinet switch with a evst-case laterycof 550ns [BCF95], so virtually all of
this time is consumed by the SBus bridge and the LANd&ceeThe primary culprit is
control softvare running on the LANai processor—a 16-bit non-pipelined CISC processor
clocked at 25MHz. Newer \ersions of the Myrinet SBus intafe card use a 32-bit pro-
cessor with a ver CPI clocled at 50MHz; these deices would significantly impree the

prototypes performance.

The high cost ofxecuting instructions on the Myrinet intece processor also contrib-
utes to the laye additional latencfor messages wolving DMA. Software must parse the
message header to detect the DMA request, then write the appropriate parameters to the
DMA engines control rgisters. The MBus tracesveal that 3.Qus elapse on the sending
node from the final write of the outgoing message header to the initiation of the DMA. On

the recerer, 2.2us pass by from the completion of the incoming DMA untie sig-
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Table 4.1:Remote miss lateydoreakdavn for the yphoon-0 prototype.

Lateng (microseconds)

Location Step Read miss Write upgrade
Inc. Cum. Inc. Cum.
Caching detect HW cache miss, issue

node (aborted) bis transaction 0.24 0.24 0.16 0.16
invalidate, refetch status CCR 0.52 0.76 0.52 0.68

dispatch & &ecute handler 0.70 1.46 0.70 1.38

send msg 1.14 2.60 1.16 2.54

Network request msg lategic 12.58 15.18 12.58 15.12
Home invalidate, refetch status CCR 0.52 15.70 0.52 15.64
node  yead msg, dispatch handler 2.12 17.82 2.12 17.76
directory lookup, branch 0.72 18.54 0.72 18.48

send msg header 1.84 20.38 1.14 19.62

change tag ttnvalid 0.94 21.32 0.94 19.62

fetch block loffer 0.52 21.84 n.a. 19.62

write data to DMA rgion 0.64 22.48 na. 19.62

write data to memory 0.56 23.04 n.a. 19.62

change tag t&eadOnly 0.14 23.18 n.a. 19.62

finish msg send 0.62 23.80 n.a. 19.62

Network response msg lateyc 23.22 47.02 12.58 32.20

Caching invalidate, refetch status CCR 0.52 47.54 0.52 32.72
node  yead msg headedispatch handler 2.20 49.74 2.84 35.56

copy msg data to memory 1.78 51.52 n.a. 35.56
change tag 0.12 51.64 0.12 35.68
resume flag handshak 1.30 52.94 1.30 36.98
reexecute lis transaction 0.42 53.36 0.18 37.16
Total 53.36 37.16

a. This operation is not on the critical path.

b. This time includes a TLB miss on the protocol processor (z€e te

nals the message aal by invalidating the status CCR. The DMA itself consumes about
0.5us on the MBus, roughly half of which is due to a TLB miss in the I/O MMU on the
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Figure 42. Application speedups on 16 nodes of the prototype system.

Shus bridge. (The LANai intesice treats the DMA ggon as a circular queue of pages,
reserving a full page for each message, so accesses to the QMA-—+ré&om both the
protocol processor and the SBus bridge—practicalliags irvolve a TLB miss.)

4.3.2 Macobenchmarks

To measure the prototygeapplication-leel performance, | ran the six applications
from Sectior2.4 using the same data sets as in theique chapter(Table3.2 on pag&3
summarizes the applications and data sets.) As in S&ctldh the reported speedups are
relative to the bestwailable sequentialersion andxclude initialization and the first par-
allel iteration. D reduce ariation from &ternal fctors, | ran eachxperiment three times

and selected thas$test run.

Figure4-2 displays speedups obtained on 16 nodes of the prototype. The shortest bars
indicate the speedup using transparent shared memory with 64-byte blocks. ®re dark
bars shw additional speedupained by selecting the best block size for the specific appli-

cation (up to 2048 bytes)—ubstill using transparent shared memdfyr these results,
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appbt and Barnes use a block size of 128 bytes, DSMC uses 256 bytes, unstructured uses

1024 bytes, and EM3D and Moldyn use 2048 bytes. The hatched barsgeedups
from the custom @mpest protocols described in Secttoh—except for Barnes, for

which the custom protocol is slightly gler than the transparent shared-memeangion.

In general, Figurd-2 confirms the results of SectiBm.2: appbt, EM3D, and unstruc-
tured see a significantagn from custom protocols, while the other benchmarks do not.
Unfortunately it is difficult to compare Figuré-2 with the results for |lger netvork
latencies in SectioB.4.3 due to a number of fiifences, including system size (16 vs.
32nodes) and processor speed (66 vs.NMB2). The ne&t section correlates measured
prototype performance with results from the simulator by eliminating these discrepancies

in the simulated system.

4.4 Comparison of measurd and simulated esults

The Typhoon-0 prototype prades the opportunity to substantiate the acoudcthe
simulation system used in the pieus chapterlf the simulators results for a configura-
tion similar to the prototype correlate with measurements, it increases our confidence in its

predictions for other configurations.

To simulate the prototype, | madeveel modifications to the simulategiphoon-0 sys-
tem from the pr@ous chapterMost were simple:
e processor speed (200Hz vs. 66MHz),
e cache size (MB vs. 256KB),
* block accessdult suspend/resume (arbiter control vs. error abort/aodtvestart), and

* barrier synchronization (hardwe vs. softare).

Simulating the Myrines performance as more iwolved. The simulations in the pie
ous chapter assume a minimal, GMlike netvork interface; the host processor copies
data in and out of hardwe queues directly attached to the mekwin contrast, the Myri-

net interfice is the dominant conttitor to lateng (as seen in the Sectidri3.1) and the
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bottleneck for message throughput [CLMY96]. Rather than introduce detailed models of

the SBus bridge and LANai dee—with its processor and DMA engine—I approximated
the efect by adding an occupancomponent to thexesting network interface model.
Every message passing through the iateef in either direction, occupies a single serv
for a specified inteal. Messages queue at the semn FIFO orderTo simulate the \er-

head of DMA, messages longer than eiglordg incur a lager base occupap@lus a
small additional peword occupang at both the sending and redag interfaces. ©
mimic Myrinet’s higher host CPUverhead—including copng data into and out of the
DMA region, which is not plicitly simulated—I also increased the cost of reads and
writes to the simulated N’ registers. | ran a message-passing microbenchmark on the
prototype to select netwk parameter alues—occupancies, gister access costs, and

mean node-to-node latgnc

The simulated Yphoon-0 and the prototype alsofdifin their stratgy for message
buffering. Tempest implementations must be preparedutbeb message data in main
memory to ®oid deadlock (see Secti@i2.1). for historical reasons, the simulated sys-
tem luffers at the sendeubthe prototype liffers messages at the ra@zi Although this
difference may seem subtle—and is moot iffizafs lov enough that no uifering
occurs—it results in a 20% discrepgrior the custom-protocolersion of appbt. In this
program, as each node produceswa c@lumn of \alues, it sends them to its neighbor in a
series of short messages—enough to trigger the credit-baseddifdrol mechanism—
before going on to compute thexheolumn. The simulated systesnsender wffering
allows the producer node'compute processor taiffer its outgoing messages and con-
tinue computing, with the protocol processor injecting thitebed messages aswvilaon-
trol credits becomevailable. In contrast, the prototygetecever huffering forces the
producer to block while the consumer processes its messages. Rather than modifying
either system—a significant feft—I modified the application to send data inwés

longer messages to@d triggering flav-control stalls.
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Figure 43. Simulated and measured speedups for Appbt.
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Figure 44. Simulated and measured speedups for Barnes.

The results are quite posii. Figures 4 and 44 plot the simulated and actual speedups
for appbt and Barnes for both the transparent shared memory (64-byte blocks) and the cus-
tom protocol ersions. The mean error is 3.8% and tlestvcase is 7.4% (for the Barnes

custom protocol on four nodes). The accyrachigher for transparent shared memory
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than for the custom protocols (2.6% vs. 5.0% mean error). This trend is reasonable,

because the custom protocols, with theirsy communication patterns, place more stress

on the netwrk—probably the least accurately modeled component.

4.5 Summary

A working prototype of theyiphoon-0 system segg seeral purposes. First, it demon-
strates the feasibility of theub-based fine-grain access control that underlies all of the

proposed implementations in Chapser

Second, the relately small amount of &rt required to construct the prototype—
approximately tw student-years from concept to the first running applicaticalidates
the contention that architects cawdeage dfthe-shelf components foms$ter cheaper

designs.

Third, the correlation of simulator results with the prototgpeeasured performance—
with a worst-case error of under 8% —strengthens the credibility of the simulation results

in the pre@ious chapter

Finally, the prototype prades a production-scale platform for others to continpee
imentation with applications, languages, and operating systems for fine-grairutistrib

shared memory
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Chapter 5

Conclusion

Distributed shared memory (DSM) systemsvle a programmeiriendly shared-
memory abstraction on top of a scalable distad-memory pysical oganization. By
partitioning processors and memory into natewconnected nodes, the distribd-mem-
ory omganization eliminates central bottlenecks and enables hundred- and thousand-pro-
cessor systems. Distrted shared memory automates irede data distriltion and
communication, ging programmers the simplearhiliar abstraction of a single, global
shared memoryUnfortunately DSM systems control memory and communication by
rote, &en when programmers or compilers@édhe potential to manage these resources

more eficiently.

This thesis proposes amapproach to distrited shared memargystems implement
primitive DSM mechanisms without restricting the protocols (policiesgmung their
use. Standard sofewe libraries praide unwersal protocols—similar to those found in
current DSM machines. kaver, programmers and compilers can also manage memory

and communication directly using the same primitmechanisms. When appropriate,
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they can optimize performance using custom protocols that rely on application- or

domain-specific knoledge.

This chapter summarizes the detailed contidms of this thesis, then suggests direc-

tions for future work in this area.

5.1 Summary

This thesis:
* identifies a set of mechanisms that support digkith shared memory;
« describedempestan interce to these mechanisms;
» describes three system designBsphoon, Yphoon-1,and Typhoon-6—that support
Tempest, andwaluates their performance through simulation; and

e reports on a hardave prototype of yiphoon-0.

Three mechanisms, in combination, ardisignt for distriuted shared memory: mes-
saging, local storage management, and memory access conpkests a concrete, por-
table interbce to these mechanismsenipest messaging bows from on Eicken’s
Active Messages [VECGS92]. Standard virtual address translation mechanisms are used
for local storage management, as in safevDSM systems [LH89]. The most irvadive
aspect of €mpest is its specification @fie-grain access control, a feature that enables

fine-grain coherence and pides scalability to high-performance systems.

The State protocol uses @mpest to pnade standard, application-transparent distrib-
uted shared memarnyrhis thesis also describes custom, application-specific protocols
hand-written for six shared-memory benchmarks [FRR| MSH95]. These usdevel
custom protocols can ackiemessage-passinyés of eficiency while supporting a uni-

form global address space.

Three system designsx@ore the implementation side of theeriipest intedce.

Although Tempest requires no special haette; these designs usefelient levels of cus-
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tom hardvare support to addressfeéifent cost/performance poin®/phoonachieves high

performance by closely injeating three components—an access contreicdea net-
work interface, and a protocol processor—on a singlecdeTyphoon-land Typhoon-0
emplogy the same logical componentsitirade some performance for simplastentially
less costly designs. Specificalboth Typhoon-1 and yiphoon-0 use &ithe-shelf proces-
sors for protocol softare execution; yphoon-0 uses anfethe-shelf netwrk interace as
well. Both systems useacheable contl registeisto communicatevents eficiently from

a lus-based hardave deice to the protocol processor

Simulation preides performance results for the three designs using both transparent
(standard) and custom shared memory protocols. As a baseline for comparison, | also sim-
ulated a comparable, idealized hardwired-protocol system similar to Simple COMA

[HSL94]. These results indicateveeal conclusions:

* Systems based on primitive thacisms can mvide high performanceOn six
unmodified shared-memory benchmarkgfioons performance is within 25% of the
hardwired-protocol system—uwithin 7% for the four with higher computatiorial ef
ciencies. Although supporting udevel software protocols wolves some opportunity

cost, these systems are not inherently confinedaterlechelons of performance.

* Even high-performan¢dow-overhead DSM systems can benebtrfrcustom mto-
cols. For two of the benchmarks, custom-protocetsions on ¥phoon &ecute 50%
and four timesdster than optimized standard shared-memergions on the hard-

wired-protocol system.

» Custom potocols can be thesi to good performance on systems with higérbeads.
Custom protocols are generally more capable of coping with Mgtheads and Ilge
network latencies than standard shared-memory models. On the most demanding
transparent shared memory benchmayiphbon4 and phoon-0 are aakctor of two
and four slaver than Yphoon, respeately; custom protocols reduce thefeiences to

13% and 47%. Custom protocols alsoyide more rohst application performance in
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the face of other increasedverheads, such as dmr netvork latencies and, for

Typhoon, slaver embedded protocol processors.

A prototype hardware implementation of yphoon-O demonstrates the feasibility of
these designs and mides a real-wrld system for benchmarking. Despite a higlere
head commercial messaging netly five of the six benchmarks acheebetter than 58%
efficiengy on sixteen nodes of the prototype. Application-specific protocols are critical to
achieving this eficiengy in three of the fig cases. The prototyganeasured performance

agrees substantially with simulator projections.

5.2 Future directions

Future work stemming from this thesialfs into three areas: modifications and enhance-

ments to €mpest, applications, and implementation techniques.

Experience with @mpest hasxposed a f@ compromises in the current incarnation.
First, users cannot implement sodine write liffers or forvard writes to other nodesoT
support these operations, systems must be capable of completing writevéyndethe
write data to a softare handler(Currently writes complete only by modifying aahd,
local copy of the referenced block.) Although this feature is feasible in a a@taystem
such as Blizzard-S, it is practically impossibleeyi hus-based hardave access control

and writeback caches.

Tempess single-threaded handletexzution model (see Secti@®.4) is another poten-
tial limitation. Although this modelwids locking protocol data structures, it yBts
concurrent gecution of protocol handlers on multiprocessor nodes, which can increase

throughput on communication-intemsibenchmarks [FW964a].

An important field uneplored in this thesis is the @opment of softwre tools that
manage andxploit Tempess flexibility. There are already &eral xamples of wrk in

this area. @apot [CRL96] is a language/compiler system farettgping empest proto-
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cols. A compiler for the data-parallel language C** [VL96] automaticatiylats Tem-

pest-based custom protocols N®4] to improve performance. FlashPoint [MOH96] uses

a custom protocol for performance monitoring on Stan$oftl/ASH system.

On the implementation front, researchers should continugtore the design space for
fine-grain access control. Although the snooping hardwilescribed in this thesis pro-
vides zero-verhead access checks, it requires either restartablertor g&ceptions or a
dedicated protocol processor toal deadlock. SectioB.5 describes other implementa-
tion possibilities, including softare-only techniques, injeation of access control tags
with memory error correcting codes, and grated processor support. The trafeafe
only partially understood [SF194], and will change as technology adees. Br exam-
ple, hardvare techniques for recent processors must cope with non-blocking and specula-
tive memory accesses. The interaction between access control techniques and operating
system features such as multiprogramming and I/O also @ésdenther imestication (see
Sectior4.2.4).

Handling simple critical-path operations in haedes could increase the performance of
decoupled designs similar tyghoond. In current €mpest implementations, the system
invokes a softwre handler to send a request message when it detects a miss; similarly
software handles the response message and signals that the miss has been satisfied.
Although softvare control of these paths pides important fheibility, invocation and

execution of this code is on the critical path for remote data requests.

A hypothetical enhancedevsion of ¥phoon-15 access control/netwk interface
device could automatically generate requests in response to block adésamd handle
the data transfer portion of simple requests and responsesafoftandlers run in the
background to update protocol data structures. In conmleinusual cases, the system
falls back on softare control and bekias like the current yiphoon-1. By remaing soft-
ware from the critical path, this desigrmgerformance may approach vee exceed that of

Typhoon, while still oiding an embedded protocol processea/eral issues must be
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addressed before we can realize tlyisdthetical system. Hoflexible is the deice’s state

machine, and v do we control it? He do we synchronize between thevide’s state
machine and softare handlers? o do we compile @mpest handlers (or modifyein-

pest) to tak adwantage of hardare acceleration?

In the longer term, trends point to the gr&tion of processors and main memory on a
single chip [BGK96, SPN96]. 8eral likely characteristics of this future veronment
malke it a ripe taget for mechanism-based distribd shared memory:

* Any system containing more than one processor—memory chip has aitisknbem-
ory organization.

* On-chip processing is muchdter than dfchip communication, making it@vthwhile
to optimize communication using sofive protocols.

* Integration allavs tight coupling of access control and protocol processing resources
(as in yphoon).

* An alundance of processing resources, perhaps coupled wigh eéxecution models
[KD92, TEL95], may allav low-overhead imocation and xecution of protocol soft-

ware without dedicating a processor to the task.

Even if distributed-memory systems do not become commoditieg,wilebe common
wherever users need more performance than justvapf®cessors can prige. In either
case, the concepts proposed in this thesis point algeavmore flgible and eficient sys-

tems in the future.
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Appendix A

Tempest Interface Specification

This appendix is a formal specification of themipest intedce takn from [Rei95]. The
specification is dided into tw parts: SectioA.1 describes the generalezution model
of a Tempest application and Sectidr?2 documents the specific intace functions for
the C programming language. In addition to the iat®fspecification, comments labeled
“Rationale” and “Implementation note’ are prwided to gve insight into the motation

for certain features and to suggest implementation approaches, redpecti

A.1 Execution model

The Tempest architecture assumes a host that consists gfpr@ressing nodes, where
each node contains one or more processors connected to a single memory module (that is,
sharing a single pisical address space). Communication between nodes occurs only
through message-passing and the (as yet undefined) global operations (e.g., barriers). A
Tempest application has a distinct virtual address space on each processing node. The
SPMD (“single program, multiple data”) model is used, i.e., the same progxarns te
loaded at the same location imeey address space, though each processmutes that

text independentlyEach address space may also contain othemnquir prvate sgments
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for data and stacks. In addition, a contiguoggrent at the same location in each address

space is designated theermanajed virtual sgment Within this sgment, the user maps
virtual pages to pysical memoryhandles accesses to unmapped pages, and controls the
accessibility of mapped memory at a fine granulafitgviding useflevel control wer the

same virtual addressgi®n on @ery node is the basis of constructing a transparent single-

address-spaceecution emironment with usedefined semantics.

Tempest preides fine-grain memory access control by associatibpé access tg
with every aligned E—byte rgion of memory (anemory blok). The \alue ofk is imple-
mentation-dependentubis typically five, six, or seen; that is, memory blocks are typi-
cally 32, 64, or 128 bytes. Theeffipest intedce is designed so that code written
assuming some block sibewill be portable across all implementations whose block size
is smaller than or equal to The actual block size supported by an implementation is
referred to as the implementatieminimum blok size and blocks of the minimum block

size are calledhinimal bloks

Table A.1: Access tag semantics.

Tag
Access . _
Invalid Busy ReadOnly  Writable
load fault fault return data return data
store fault fault fault write data

Each block access tag has one of falu@s:l nval i d, Busy, ReadOnl y, andWi t -
abl e. A block whose tag isnval i d or Busy is referred to asvalid, while blocks
taggedReadOnly or Wit abl e are calledvalid. (I nval i d andBusy have the same
access semanticsutocan be used by sofare to encode protocol information; e.g.,
whether or not a request is pending.) Loads and stores areedreaghst the alue of the
referenced block’ access tag; conflicting accesses cauddoek access fault(see

TableA.1). The fwlt suspends the accessing thread amokes a uselevel handler to
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process thedult. The handler typically performs some protocol actions tcerttakaccess
permissible. Once access is aléa, the blocls tag is changed and theufting thread is

resumed.

Each address space (and thus each node) can support multiple threselsubbre
These threads mayxecute concurrently on multiprocessor nodes. One of the threads is
distinguished as thprotocol thead All other threads are referred to esmputation
threads The management of computation threads (creation, scheduling, etc.) is outside the
domain of Empest. The protocol thread is scheduled éipdest andxasts solely to xe-
cute usedefinedhandler functiongo procesprotocol ezents network message axals,
timer epirations, and the pagaults and block accessuits of computation threads. Han-
dler functions arexecuted sequentially.e., if a protocol eent occurs while the protocol
thread is gecuting a handler function, theent will be queued until the current handler
function completes. If multiplevents are queued, block acceasltfs and pageatilts are

given first priority followed by timer gpirations, and then message \ails.

Rationale: By dedicating a single thread for protocol processing and running handler func-
tions to completion, the need for locking on protocol data structures is reduced or eliminated.
If concurreny is desired in processing protocekats, the protocol threadhandler function

can hand dftasks to computation threads.

Rationale: Event prioritization is based on the folltng obserations:

« Message avals are bgond the control of the local node, sy awment with lover priority
may be subject to station. This is woided by giing message axals lovest priority

e Servicing of &ulting accesses should bevagi high priority to maximize application
throughput. The number of concurrent page and block acdss i limited by the num-
ber of concurrentlysecuting computation threads, so stdion of other eent types is
not a problem.

Only the loads and stores of computation threads are guaranteed to ke chmpoist
the access tags. Normallye protocol thread only references tagged memory indirectly
via Tempest functions; the behar of a direct protocol thread access that conflicts with

the blocks tag is undefined.

The type of protocohent determines the uskewel handler function that iscecuted by

the protocol thread. The handler for a messageahisichosen by the sender and encoded
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in the message header (as in »etMessages [VECGS92]). The handler for a tinxgr-e

ration is specified when the timer is initialized. Handlers for pagksfand block access
faults are rgistered locally by the application. All pagrufts are serviced by a single han-
dler. The handler woked for a block accesauilt is determined by the combination of the
access type (load vs. store), the tatug, and the memory page on which the referenced
block is located. Specificallfthe user associates a small gete (thepage modg with
every page, and gesters a set of fev handlers (one for each of theadft” cases in
TableA.1) for each page mode.

Rationale: The ability to associate d#rent sets of handlers with féifent memory blocks

facilitates the use of multiple protocols within a single application. Associating handlers with

pages rather than inddual blocks trades a small loss offllity for a large decrease in stor-

age @erhead. (Actions can still be specialized at block granularity in acétjvUse of the

page mode alue rather than allcing a separate set of handlers for each page further reduces
storage wverheads.

A.2 The Tempest interface or C

This section defines a standard C user iaterffor Bmpest to pnade source-leel
application compatibility across alempest implementations. Implementations will typi-
cally provide a user library that bridges thepgbetween @mpest and the naé operating
system. A €mpest implementation maywiwive more than a library with which the appli-
cation is linlked. For example, the application source may be preprocessed vertdam-
pest function calls to some intermediate form, or the compiled application may be
postprocessed to insert code thatvjites fine-grain access control [SE4]. The lkey
characteristic is that an automated process igiged that coverts interhce-compliant

source into a functioning program.

The following subsections specify the operationsvited by the intedce, grouped by
function: virtual memory management, fine-grain memory access control, fine-grain mes-

saging, bilk data transfettimers, and thread management.
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A.2.1 Mrtual memory management

As described in Sectioh.1, Tempest gies usetevel control awer a rgion of the virtual
address space on each node. Thysore knavn as theusermanaed virtual sgment is
located at the same addressvarg address space and is at least 1 Gbyte in sigsidah
memory allocation and address translation are performed on the basis of pagss. P
mapped in the useananaged virtual ggnent are referred to asermanaed pages. Only
usermanaged pages support block access tags. Eacimasaged page must be assigned
a page mode numbemhich determines the set of block accemstfhandlers that are

invoked for block accessiilts on that page.

A.2.1.1 Rage size
#define TPPI_PAGE_SHIFT implementation-specific
#define TPPI_PAGE_SIZE (1 << TPPI_PAGE_SHIFT)

The page size in bytes is xmorted in the constantTPPI _PAGE SI ZE.
TPPI _PAGE_SHI FT is the width in bits of a pagefeét (i.e. log(TPPI _PACGE_SI ZE)).

Implementation note: The Tempest page size should be as small as possibleitbraemory
fragmentation. ¥pically it is the same as the platfossMMU page size; e.g., the SRC
MMU page size is 4K so alkesting implementations (which are all SRC-based) hee a 4K
page size.

A.2.1.2 Rage modes

typedef implementation-specific TPP1_PageMode;

#define TPPI_NUM_PAGE_MODES implementation-specific

#define TPPI_MAX_PAGE_MODE (TPPI_NUM_PAGE_MODES - 1)

Page mode numbers are small conseeuintegers starting at OTPPI _PageMde is an
unsigned intger type of implementation-defined size used to hold page mode numbers. The
constantTPPI _NUM PAGE_MODES indicates the number of page modes supported by the
implementation, an@PPI _MAX_PAGE_MODE indicates the lgest page mode number

A.2.1.3Page allocation and deallocation

int TPPI_alloc_and_map(void *pg, TPPI_PageMode mode, TPPI_BlkAccTag acc, TPPI_Nodeld
home, void *user_ptr);

Allocates a page of pisical memory and maps it in the useanaged virtual sgnent at the
page-aligned addregg). By definition, the allocated page is a usemaged page. The page
mode (for block accessailt handler selection) is set accordingrmde. The block access
tags for all blocks on the page are initializedattc (see Sectio®.2.2.1). Thehone and
user _ptr fields are not interpreted by the systent, &re intended to hold the node identi-
fier (see SectioA.2.3.1) of the page’directory node and a pointer to a-page protocol data
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structure, respectely. Thehone anduser _ptr values can be retied via function calls
(using the virtual address as eykand are automatically priled to block accesadlt han-
dlers for the page.

The return alue is 1 if successful, 0 if unsuccessful. The call waill if there is insufcient
physical memorypg is not aligned to the page size, a mapping alreaysefor the virtual
addres$g, orpg is not within the usemanaged virtual ggnent.

Implementation note: Page-lerel protection may be used in the place of a true fine-grain
access control mechanism if, wheeethe user wokes a tag-modifying block operation, the
specified block length is &hys equal to or greater than the page size. Because pages are
always initialized with the same tag owmeey block, this optimization can be performed opti-
mistically; that is, the fine-grain access control mechanism need not be usedviam pagie

until the first time the useninkes a tag-modifying block operation with a block length smaller
than the page size.

int TPPI_unmap_and_free(void *pg);

Remawes the mapping for usemanaged page pointed to by the aligned adgrgss

int TPPI_remap(void *old_pg, void *new_pg);

Remawes the mapping for usemanaged pagel d_pg and remaps the ghical page to the
addressiew_pg, which must also be in the usmanaged virtual ggnent. The block access
tags, page mode, home node ID, and user pointer are unchanged! Bofiyg andnew_pg
must be page-aligned.

Rationale: While TPPI _unmap_and_f r ee followed by TPPI _al | oc_and_nap

has a similar ééct, TPPI _r emap differs in two significant vays. First, the same ys$ical

page is kpt, so the data is not lost. Second®Pl _r emap keeps the page continuously
under the wnership of the application; the TPPI _unmap_and_free/

TPPI _al | oc_and_nmap sequence is non-atomic so it is possible that another application
could perform an allocation in the middle causing®®®l _al | oc_and_rmap to fail due

to insuficient memory

A.2.1.4Page fault handlers
typedef void (*TPPI_PageFaultHandlerPtr)(void *va, int pc, int is_write);
void TPPI_register_page_fault_handler(TPPI_PageFaultHandlerPtr fn);

Registersf n as the uses’ page dult handler When a computation thread accesses an
unmapped virtual address in the usg@naged virtual ggnent, the @mpest implementation
will notify the user by causing the protocol thread ke this function. The handler will be
invoked as

void (*fn)(void *va, int pc, int is_wite)

whereva is the unmapped address thatswaccessed amt is the program counter of the
load or store that caused ttailt. Thei s_wri t e parameter is non-zero if the accessva
store, or zero if it @s a load. Thealilting thread is suspended urtPPl _r esune_va is
called (see Sectioh.2.6), either by the pagalilt handlera future message handler a dif-
ferent thread.

Before resuming theafilting access, the pagauft handler may directly request needed data
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from a remote node or it may simply initialize all blocks on the page to
TPPI _Bl k_Invalid. In the latter case, when the access is retried after the thread is
resumed it will generate a block acceasltf This approach may bavbred because itdeps
protocol-specific code out of the pagailt handler

Rationale: The page dult handler will typically uséPPI _al | oc_and_nap to add a

page at the desired address. It may need to send a request to a remote node to determine the
appropriate page mode; in this case, iRl _al | oc_and_map and the resumption of

the faulting thread will be performed by the response message handler

A.2.1.5 Retrieving per-page inormation

typedef struct {
implementation-specific
} TPPI_Pagelnfo;

int TPPI_get page_info(void *va, TPPI_Pagelnfo *info_ptr);

Provides information about the virtual page containing the arbitrarily-aligned addaess
the useimanaged virtual ggnent. The returnalue is 0 if the page is not mapped, 1 if it is
mapped, and -1 if there is an error (becausés not in the usemanaged virtual ggnent or

i nfo_ptr is not suitably aligned). lif nf o_pt r is non-null and the returralue is 1, the
node, user _pt r, andhone values preided when the pageas mapped are written to the
fields of the same name in the structure pointed torifyo_pt r. The eact definition of
TPPI _Pagel nf o is implementation-dependentutbit must contain at least these three
fields: TPPI _PageMbde node,void *user ptr,andTPPI _Nodel d hone.

void *TPPI_get_page_user_ptr(void *va);

Returns theuser _ptr pointer supplied tadPPlI _al | oc_and_map when the page con-
taining the arbitrarily-aligned addresa was mapped. The returralue is undefined if the
page is not in the usenanaged virtual ggnent or is not mapped.

TPPI_PageMode TPPI_get page mode(void *va);

Returns therode value supplied tdPPI _al | oc_and_map when the page containing the
arbitrarily-aligned addressa was mapped. The retur@alue is undefined if the page is not in
the usetmanaged virtual ggnent or is not mapped.

TPPI_Nodeld TPPI_get_page _home(void *va);

Returns thénone value supplied tdPPI _al | oc_and_nap when the page containing the
arbitrarily-aligned addressa was mapped. The retur@alue is undefined if the page is not in
the usemmanaged virtual ggnent or is not mapped.

A.2.2 Block access conti

The semantics of block access tags are discussed in S&ctiofag \alues are initial-
ized during page allocation (see Sec#o8.1.3). Note that tags can also be modified as a

side-efect of sending or recang blocks using th&a item type (see Sectioh.2.3).
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A.2.2.1 Access tagalues

t ypedef enum {

TPPI _Bl k_Busy, TPPI _Blk Invalid, TPPlI Bl k _ReadOnly,
TPPI _Blk_Witable
} TPPI _Bl kAccTag;

#define TPPI_NUM_BLK_ACC_TAGS 4

#define TPPI _MAX BLK_ACC TAG(TPPI _NUM BLK_ACC TAGS - 1)

The TPPI Bl kAccTag type enumerates the possible access #hges for a block. The
enumeration constants will be named as specified alogd/ from O to 3 incluse, kut their
ordering is implementation-dependent. The constdiBl _NUM BLK_ ACC TAGS and
TPPI _MAX _BLK_ACC TAG indicate the number of supported access tags and thestar
access tagalue, respeotely.

A.2.2.2 Tag block size

#define TPPI_TAG_BLK_SHIFT implementation-specific

#define TPPI_TAG_BLK_SIZE (1 << TPPI_TAG_BLK_SHIFT)

The implementatios’ minimum tag block size in bytes (see Secfal) is exported in the
constanfTPPI _TAG BLK SI ZE. TPPI _TAG BLK_SHI FT is the width in bits of an &f
set within a block (i.e., loTPPI _TAG _BLK_SI ZE)).

A.2.2.3 Specifying memory blocks

A memory block is specified with twparameters: an address and a length in bytes.
These appear as a pair ogamentsvoi d *bl k_va, int blk_Ien. Wheneer an
address/length pair is used to specify a block as tgettaf a Empest operation, the
length must be a meer of two and must be greater than or equal to the implementtion’
minimum block size. The address does noatehm be aligned; it may point yanhere
within the block.

Rationale: For systems with hardave support, it is tvial to ignore unused address bits, so
forcing the user to align addresses introduces unnecessahead. Br software-based sys-
tems, the potentialxests for address alignment to be inlined at the call site, with common sub-
expression elimination alleing a single alignment operation to serfor multiple Bmpest

function calls. Assuming these optimizations, there is little performan@ntd)e in forcing
the user to perform alignment.
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If the specified length is greater than the minimum block size, the block is called a

superblo&. Operations on superblocks are subject to thevintip constraints:

« The operation should be wed as a non-atomic series of operations on the constituent
minimal blocks. The atomicity guarantees of SecAah2.6 only apply to the mini-
mal-block operations.

» If atag change operation (of typEPI _BI kTagChange) is applied to a superblock, it
must be a alid tag change for each of the constituent minimal blocks. Note that this
does not mean that all of the minimal blocks musthte same original tag (though
this is likely to be the case)oF example, TPPI _BI k_I nval i dat e could be applied
to a superblock in which some minimal blocks are tagg@d Bl k_ReadOnl y and
othersTPPI _Bl k_Wi t abl e.

Otherwise, it should be transparent to the user whether an operation is applied to a single

minimal block or a superblock.

A.2.2.4 Reading access tags
TPPI_BIkAccTag TPPI_get_blk_acc(void *va);

Returns the block access tag associated with the block contaiinithe result is undefined
if the address is not in the useanaged virtual ggnent or is not mapped.

A.2.2.5 Changing access tags

typedef enum {
TPPI_BIk_Validate_ RW, TPPI_BIk_Upgrade_RW, TPPI_BIk Validate RO,
TPPI_BIk_Downgrade_RO, TPPI_BIk_Invalidate, TPPI_BIk_Mark_Busy,
TPPI_BIk_No_Tag_Change, TPPI_BIk_Invalid_To_Busy, TPPI_BIk_Busy_ To_Invalid
} TPPI_BlkTagChange;

Block access tag modifications are made using Bl Bl kTagChange constants. These

not only specify the desired taglue lut also imply the currentaue of the tag, as specified in
TableA.2. If the user applies a tag change operation to a block whose tag is not one of those
implied by the operation (i.e., the operation does not appear inwheorcesponding to that

tag in TableA.2), the resulting state of the block is indeterminate. Note that
TPPI _Bl k_Invalidate, TPPI Bl k_Mark_Busy, and TPPI Bl k_Val i date_ RW

(and of coursdPPI _Bl k_No_Tag_Change) can be applied to srblock, reyardless of its

initial state, though in some cases the same tag change may be performedfionendyef

using a diferent operation.

Rationale: Reducing access to a block typically requires that the block be flushed fyom an
hardware caches, while increasing or not changing block access does not. These cache flushes
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Table A.2:Block tag change enumeratioalves (typePPI _Bl kTagChange).

Current New Tagf
Tag Invalid Busy ReadOnly Writable
Invalid No_Tag_Change, Invalid To Busy, Validate RO Validate RW
I nval i dat e Mar k_Busy
Busy Busy_To_Invalid, No_Tag_Change, Val i date RO Validate RW
I nval i dat e Mar k_Busy
ReadOnly | nvalidate Mar k_Busy No_Tag Change Upgrade RW
Val i dat e_ RW
Writable I nvalidate Mar k_Busy Downgr ade_ RO No_Tag_Change,

Val i dat e_ RW

a. All values are prefed byTPPI _Bl k_, e.g.,TPPI _Bl k_No_Tag_Change. Where tvo values
are listed in a single enirthe first is preferred.

can be ery expensve and need to ber@ided when possible. A simple “set tag” function is not
sufficient to identify when flushes are necessand requiring the implementation to look up

the current tag before it is changed (to determine is a flush is required) may atpersve

The current tag state is usually implied by the user protocol state, so the user code typically has
enough information to supply the tag change operation wittxtna ezerhead.

void TPPI_change_blk_acc(void *blk_va, int blk_len, TPPI_BlkTagChange chg);
Changes the access tag of the block specifieblbly (va, bl k_I en).

void TPPI_change_blk_acc_and_copy(void *blk_va, int blk_len, TPPI_BIkTagChange chg, void
*from);

Copies data from memory startingfatomto the block specified byo( k_va, bl k_I en)
and changes the tag of the block accordinghg.

A.2.2.6 Atomicity of data access and tag changes

Threads may bexecuted concurrently on implementations with multiprocessor nodes,
so while one thread is in the middle of a tag change, other threads may issue loads and
stores. €mpest operations that combine data transfer and access tag changes (including
TPPI_change_blk_acc_and_copy , send_*Ba*, andr ecv_Ba) provide the follaving useful

semantics:

« If datais read from a block and the blacktcess is dangraded fronw i t abl e, the
block data that is read is guaranteed to reflect all writes that complete before the tag

change.
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If data is written to a block and the bloslkdccess is upgraded,ydonad or store that
does notdult but would hare faulted gven the preious access tag is guaranteed to be

performed after the block’contents are updated with thevrdata.

A.2.2.7 Block access fault handlers

typedef void (*TPPI_BIkAccFaultHandlerPtr)(void *va, void *user_ptr, TPP1_Nodeld home);

void TPPI_register_blk_acc_fault_handler(TPPI_PageMode mode, TPPI_BIkAccTag tag, int acc,

TPPI_BIkAccFaultHandlerPtr fn);

Ragisters functiorf n as the block accesault handler for accesses of tygpec (which should
be one of the defined constaiiBPl _ReadAccess or TPPI _W it eAccess) to blocks
tagged witht ag on pages of modeode. The handler will be woked as

void (*fn)(void *va, void *user_ptr, TPPI _Nodeld hone)

whereva is an address within the block on which tlaelfing access as performed and
user _ptr andhone are the alues supplied tdPPI _al | oc_and_nmap when the page
containingva was mapped. The actual address thas accessed by thaulting thread and
va will be in the same minimal blockubare not necessarily related otherwise.

Rationale: Implementations using haréwe eternal to a commodity processor will only
obsere the cache miss that results fronaaltfing access, not thaulting access itself. In this
case, the relationship between the obsgraddress and the accessed address will be deter-
mined by the processor implementation.

Only five of the eight ag/acc combinations are meaningful (seableA.1); specifying han-
dlers for the other three TPPI _Bl k_ReadOnl y/TPPI _ReadAccess,

TPPI _Bl k_Witabl e/TPPI _ReadAccess, and TPPI _Bl k_Witabl e/

TPPI _W it eAccess) may hae undesirable implementation-dependefaa$ and should

be avoided. (Ideallythe implementation will detect attempts to specify handlers for the other
cases and arn the usey

A.2.3 Fine-grain messaging

Fine-grain messaging praes lav-overhead message sending and reception, optimized

for short message lengths.

Rationale: Both cache coherence protocols and fine-grain parallel applicationsyesmald
asynchronous messages whose contents are immediately consumed on receipt (e.g., cache miss
or remote read requests and responses). Much of the message data originates in the sender’
registers and is consumed in the ree€s raisters. The memory-to-memory transfers pro-

vided by most message-passing models (andemyp€st kulk data transfer operations) are
inappropriate for these applications since both the management of meuffeng land the

need to cop data into and out of theseafters add significantverhead.
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Tempess fine-grain messagingdility is based on Acte Messages [VECGS92]. In the
Active Message model, the firsbwd of every message is the starting program counter of
the handler to bexecuted at the recesr. Messages are queued and the handlerscare e

cuted serially by the protocol thread.

A.2.3.1 Node identifiers

t ypedef implementation-specific TPPI _Nodel d;
unsi gned TPPI _num nodes;

TPPI _Nodeld TPPI sel f _address;

TPPI _Nodel d is an unsigned inger type of implementation-defined size used to hold node
identifiers. Node identifiers are in the range 8-tbfor n-node systems.Mio integer \ariables,
TPPI _num nodes and TPPI _sel f _addr ess, provide the number ofvailable nodes
and the local nods’identifier respectiely.

A.2.3.2 Sending
typedef void (*TPPI1_MessageHandlerPtr)(TPPI_Nodeld src, int size);
void TPPI_send_typelist(TPPI_Nodeld dest, TPPI_MessageHandlerPtr pc, arglist);

This set of functions sends a message to the specified node, where the message will be handled
by executing code starting at the specified program coufter body of the message is con-
structed using the specified (possibly empty) item list. In the current C binding, the item list
specification is split: the types of the items in are encoded in a string that is part of the function
name, while the parameters describing the items are part ofginement list. A gien item

may require more than one parameter

Rationale: Abstractly TPPI _send is a polymorphic function that tek an arbitrary number
of aguments selected from a set of typeer@y memory block, and memorygien). Unfortu-
nately C does not support this polymorphism. The C++ binding (when complete) walleha
singleTPPI _send function that is verloaded to support all possible message formats.

The followving item types arevailable (with the type string @en in parentheses):

*  Word (W).A single machine wrd is sent. The corresponding parameter is e w
value, of typd nt .

» Blod with accesshlange (Ba).The contents of a memory block are sent, and the mem-
ory block’s access tag is modified. The corresponding parameters are the block specifier
(void *bl k_va, int blk_Ien)(see Sectiok.2.2.3) and the tag change (type
TPPI _Bl kTagChange) (see SectioA.2.2.5).

* Raion (R).The contents of a gion of memory are sent. Thegien must start on a
word boundary and contain an igtal number of wrds. The corresponding parameters
are the rgion start address (typi d *) and the rgion length in bytes (typent ).

The ra@yion length must be a multiple of thexd size.

* Forward (F). Data from the current reseid message is sent. This option is oraids



139

when the send is called in the coditef a message handl@he corresponding parame-
ter is the number of bytes to faavd (typei nt ), which must be a multiple of theond
size.

For example, the follaving call sends a ord of data\ior d) along with a memory block of
sizebl k_I| en at addres®l k_va, atomically changing the blocktag from ReadOnly to
Invalid:

TPPI _send_WBa(dest, handl er_pc, word, blk_va, blk_Ien,
TPPI _Bl k_I nval i date);

As a syntactically special case, the *_’ in the function name is elided when a message with no
body is sent, e.gT,PPI _send(dest, pc).

The message body is constructed by concatenating data items, in the specifigdtorder
untyped stream of erds.

A.2.3.3Receving

On the recefer, the system logically queues the message until the protocol thread is idle.
The sendespecified function is woked with two parameters: the source node (type
TPPI _Nodel d) and the size of the message body in bytes (typg. The message body
is provided as a logical queue ofbwds. Data is read from this queue and consumed using

the following calls, which correspond to the typesaitable for sending:

int TPPI_recv_W();
The net word is returned.
void TPPI_recv_Ba(void *blk_va, int blk_len, TPPI_BlkTagChange chg);

The net bl k_| en bytes are read from the queue and written to the memory block specified
by (bl k_va, blk_|len) (see Sectioh.2.2.3), whose access tag is changed (see
SectionA.2.2.5).

void TPPI_recv_R(void *va, int len);
The nat | en bytes of data are read from the queue and written to the specgied of
memory The rgjion must start on aavd boundary and contain an igtal number of wrds.

In addition, message data can be consumed using adffded block” item in a send
operation. Note thatven though the send and re@ebperations use the same types, the
message body is transferred as a typelessl \8tream, so the types used to send and
receve a particular message do not need to matchetr, the recaie handler must con-

sume the entire message bolya receve handler leaes data in the message queue when
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it terminates, some implementations may interpret this data as part of a separate message.

The resulting behaor is undefined.

A.2.3.4 Message size limit
#define TPPI_MAX_AM_BYTES implementation-specific

A Tempest implementation will typically i@ an upper bound on the size of message that can
be supported in terms of the number of bytes in the message Tudyupper bound is
exported in the constanTPPI_MAX_AM_BYTES and is guaranteed to be at least
(TPPI _TAG BLK SI ZE + 16).

Rationale: This minimum size allws for a block and 16 bytes of control information (e.g.,
four 32-bit words, or tve 32-bit words and a 64-bit address).

Implementation note: Tempest preides an Actre Message integite without enforcing an
Active Message implementation. In an actual vetilessage implementation, the entire mes-
sage is put into a single patk On a system that cannot support a
(TPPI _TAG BLK _SI ZE + 16) -byte payload in a single paefs pacletization and
reassembly must be supportedt messages that are “small enough” may still be handled in a
true Active Messagesshion.

A.2.4 Bulk data transfer

Bulk data transfer prades high-bandwidth, connection-oriented, memory-to-memory

data me@ement between nodes.

Rationale: A memory-to-memory transfer model is desirable because it simplifies system flo
control and bffering issues by inherently priding buffer space on both the sender and
recever, and it can be &tiently supported with typical DMA hardawe. A connection-ori-
ented model allws connection set-upverhead to be amortizeder multiple transfers when a
repetitve communica

tion pattern eists.

Implementation note: All memory-to-memory transfers could be implemented on top of a
suitable Actve Messages layer

A.2.4.1Channel allocation
typedef void (*TPPI_ChannelHandlerPtr)(Nodeld, int channel);
int TPPI_set_channel_src(TPPI_Nodeld dest, TPPI_ChannelHandlerPtr fn);

int TPPI_set_channel_dst(TPPI_Nodeld src, int channel, void *buffer, int bytes,
TPPI_ChannelHandlerPtr fn);

Channel allocation requires allocation of an endpoint on both the source (sending) and desti-
nation (receiing) nodes. The source node must first TBIPI_set_channel_src() to obtain a
channel ID number The aguments are the destination node and a pointer to a function which

1. The channel ID may be reledi to a source/destination paie., distinct channel IDs are only
required when there a multiple agtichannels between asgh source and destination.
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will be invoked at the completion of each send. The sender must communicate the returned
channel ID to the destination node (typically via arvaathessage). The destination node then
calls TPPI_set_channel_dst() to initialize the rece&ing end, passing in the source node ID,

the channel ID from the source, the address and length of aerduéfer, and a pointer to a
function that will be imoked at the completion of each racei

Both the send and reweicallbacks are uoked with the ID of the corresponding node and the
channel ID. In either case, a null function pointer may beiged in which case no callback
will be performed. On the source nodejacation of the callback means only that the send
buffer can be reused; it does not imply that the data has beevedeaethe destination.

int TPPI _set channel _dst_notify(TPPlI _Nodeld src, int channel,
void *buffer, int bytes,
TPPI _Channel Handl erPtr fn);

int TPPI _is_channel _estd(TPPI _Nodeld dst, int channel);

TPPI _set _channel _dst_notify() performs  the same  function as
TPPI_set_channel_dst() and sends an aeti message back to the source to notify it that the
endpoint has been established. The source node mapPRsei s _channel estd() to

poll for the establishment of the destination endpoint. It will return non-zero only after the
arrival of the notification message.

A.2.4.2Sending data
void TPPI_channel_send(TPPI_Nodeld dest, int channel, void *buffer, int bytes);

The source node calllPPl _channel _send() to initiate a data transfer bfyt es bytes
starting at the pointdsuf f er. The transfer may be asynchronous; the send callbacky, if an
will be invoked when the liffer memory may be reused. The number of bytes specified in the
send must »xactly match the number specified by the destination node in its call to
TPPI _set _channel _dst ().

int TPPI_is_channel_ready(TPPI_Nodeld src, int channel);

The destination node may ca@lPPI_is_channel_ready() to poll for the arnal of data (in lieu

of specifying a recee callback function). This function will return non-zero when the destina-
tion has receied the number of bytes specified in its callRPI _set _channel _dst ().

It will continue to return non-zero until the endpoint is resefBl _r eset _channel ().

void TPPI_reset_channel(TPPI_Nodeld src, int channel);

The destination node must calPPl _r eset _channel () to reset the reced endpoint of

the channel after each data transmission before the source can perform another send. The des-
tination and source nodes must synchronize to guarantee that the destination has called
TPPI _reset _channel () before the source call$’Pl _channel _send() .

void TPPI _reset_channel _notify(TPPI _Nodeld src, int channel _id);
int TPPlI is channel reset(TPPlI Nodeld dst, int channel);
TPPI _reset _channel notify() performs the same function as

TPPI_reset_channel() and sends an ae#i message back to the source to notify it that the
endpoint has been reset. The source node mayRRBe i s_channel _reset () to poll
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for this event. It will return non-zero only after the ami of the notification message.

A.2.4.3Channel deallocation
void TPPI_destroy_channel_src(TPPI_Nodeld dest, int channel);
void TPPI_destroy_channel_dst(TPPI_Nodeld dest, int channel);

As with allocation, both the source and destination nodes mpistity deallocate their end-
points. Results are unpredictable if either endpoint is deallocated before all of the data that
sent on the channel has been nezgtiat the destination.

A.2.4.4 User pointers

void TPPI _set _src_channel _user _ptr(TPPlI _Nodeld dst, int channel,
void *ptr);

void *TPPlI _get _src_channel user ptr(TPPlI _Nodeld dst, int chan-
nel ) ;

void TPPI _set _dst_channel _user_ptr(TPPI _Nodeld src, int channel,
void *ptr);

void *TPPlI _get dst _channel _user ptr(TPPlI _Nodeld src, int chan-
nel);

Each endpoint (source and destination) contains storage for an arbitrary pointer so that the
user may associate application-specific structures with the channel. These functi@e pro
access to that storage.

A.2.4.5Transfer size limit
#define TPPI_MAX_CHANNEL_BYTES implementation-specific

The constanTPPI_MAX_CHANNEL_BYTES indicates the maximum number of bytes that
can be transferred through a channel between callBRb_r eset _channel () .

A.2.5 Timers

Efficient timers are useful for implementing protocol time-outs andigirag flexible
forward-progress guarantees.
typedef void (*TPPI_TimerHandlerPtr)(void *user_ptr);
void TPPI_schedule_timer(int ticks, TPPI_TimerHandlerPtr fn, void *user_ptr);

Schedules a timewent fort i cks units of time in the future. The units for cks are imple-
mentation-dependent. After the timeeat occurs, the handler functibn will be invoked by
the protocol thread with the singlegamentuser _ptr.

A.2.6 Thread management

void TPPI_resume_va(void *blk_va, int blk_len);

Resumes the set of threads suspended due block amgks®h a particular block. The thread
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must be blockd due to a pageudlt or block accesslilt. For page dults, the &ulting instruc-
tion is reissued. &t block accessalllts, the &ulting instruction may be reissued or the access
may be completed without reissuing (e.g., if thalting access as a biffered store). The
block access tag may or may not be cledcagin; that is, if thedulting access still conflicts
with the tag alue, whether the access completes or another block aaaéisscturs is imple-
mentation-dependent. Thus a user protocol meesitaally change the access tag to entile
access lgal in order to achies forward progress.

void TPPI_sleep(volatile int *sem_ptr);

Increments the semaphore pointed tebyn pt r. If the resulting semaphorealue is greater
than zero, the calling thread is suspended until the semapdlareis less than or equal to
zero.

void TPPI_wakeup(volatile int *sem_ptr);

Decrements the semaphore pointed t@ by pt r. If the resulting semaphoralue is equal
to zero, ag threads witing on the semaphore (Vi&Pl _sl eep() ) will be resumed.

void TPPI_atomic_incr(volatile int *sem_ptr);

Increments the semaphore pointed tosleyn pt r. Because d@mpest implementations may
schedule threads concurrently or preexsgly it is unsafe for users to perform read-modify-
write operations directly on semaphores.
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Appendix B

Access Contpol Via Bus Snooping

The three yphoon designs described in Cha@eand the ¥phoon© prototype
described in Chapter implement fine-grain access control usings-based snooping

hardware. This appendix discusses the general requirements of this approach.

This access-control hardwe leverages the support fous-based cache coherence found
in nearly all modern microprocessors. | will assume aaligation-based protocol that
emplogys cogyback, allocate-on-write caches, where a write miss results in a redid-in
date (read-feownership) s transaction. Update-based protocols and write-through
caches do not necessarily preclude implementing access contralsvisnboping, Ut

these features are uncommon in current systems povtlh@ot be addressed here.

The three sections of this appendixeoenforcing tag semantics, handling transactions
that cause block accesaifts, and maintaining har@ne cache consistenmodifying tag

values.



146
B.1 Enforcement of tag semantics

Access control is enforced by ashmonitoy a hardvare module with associated tag
storage that sits on thei®and obsess the requests made by the processor@s)e&ch
processor request, the monitor looks up the tag for the corresponding memory block.
According to the block tag and the type of transaction, tisenonitor may also fct the

transaction in one of twways:

» If the hus transaction indicates a reference that conficts with the tag, the monitor must
prevent the transaction from completing successfully amdkim a block accesadlt
handler The follawing section (SectioB.2) discusses techniques for suspending the

transaction.

* On aread miss toReadOnly block, the monitor forces the processor to load the block
in a read-only state, so that subsequent readuhia Bubsequent write requires an
invalidate request. The monitor relies on detecting thialitlate request to prent
writes to the block. These features are typically supported using dedicated open-col-
lector us signals that prade a wired-OR of the corresponding outputs of all snoop-

ing agents.

TableB.1 summarizes the actions that tlws Inonitor taks in response to obsed/pro-
cessor transactions. In the cases labeladItf the monitor suspends the transaction and
invoke a block accessdilt handlerAn invalidate request implies that a cache has a read-
only copy of a block, so an ialidate should not occur when the blaclkiccess tag is

Invalid.

Table B.1:Bus monitor snooping bewar.

Access tag
Bus request
Writable ReadOnly Invalid
read no action force read-only fault
read-irvalidate  no action fault fault

invalidate no action fault (not allowved)
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B.2 Block access faults

The particular method used to handlialfing transactions depends on the features of the
native kus protocol. There are three major altenesi defer the transaction directtause
the processor to retry the transaction, or abort the transaction and reissue the access via

software.

If the processor supports cache-to-cache transfers ars avith split transactions or
deferred responses, the monitor may haraliétihg transactions directlyhe lus monitor
simply tales responsibility for responding, as if performing a cache-to-cache traarsier
delays the response until the remote data hasedrriBecause there is no scie
involved in resuming the computation, the latefrom the arnwal of the miss response to
the successful completion of thaufting access can be greatly reduced. This approach
assumes that another processowalable to &ecute the accesadlt handlet Also, the
processor that incurs the acceaslf may continue to compute if it has a non-blocking
cache, possibly generating more accessts whose lateryccan be werlapped with the
first. The lus monitor must heae a set of bffers to track the pending transactions for
which it is responsible. Ideallyhe number of liffers matches the number of processors
times the number of outstanding requests each processor suppongritiiéfers are

available, the monitor can abort transactions thattfwhen all bffers are occupied.

A second alternate—applicable to protocols such as SulBus that do not support
deferred transactions—is to retry the transaction rather than abort it. In this case, the pro-
cessors kus interbice will rearbitrate for theus and reeecute the transaction. As with the
direct approach, the latgnof resuming the access isMdecause no sofawve is ivolved,
but another processor musteeute the accesault handler To avoid consuming bs
bandwidth with pointless retries—interfering with theeeution of thedult handlermes-

sage handlers, and other computation threads—the system should be able to mask the

1. This requirement can bev@ded if the processor can be interrupted while a memory access is
outstanding, as in the Alégfe system [AKK"93]. Unfortunatelycurrent commercial micropro-
cessors do not pvale this feature.
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faulting processor from arbitration, pesting it from reacquiring theuls until the access

can be satisfied. In some machines, this can be done by modifying an agister fehe
Stanford BASH system [LLG92] uses this technique, although it requires hardwnod-
ification to the commercial system on which the nodes are based. The simyfated

systems in Chapté& also use this approach.

Finally, the transaction can be aborted, typically by responding with an error status. The
faulting processor will Woke an &ception handlerwhich must recognize that the cause
of the hus error is an accesauit and vait for notification to restart thadlting instruction.
(If the accessdult handler will be xeecuted on the same processbe &ception handler
must s&e the current state anddie execution of the accesadlt handle) Aborting
transactions is a heg-handed approach to acceaslts. The performance cost of taking
exceptions on deeply pipelined superscalar processors is high. They latergstoring
processor state and restarting the access lies on the critical path for misses. The processor
must praide a restartable (ib not necessarily preciseyaeption on an abortedib trans-

action. The yphoon-0 prototype described in Chaptarses this approach.

B.3 Tag value modification

In addition to enforcing access control based xistiag tag alues, the bis monitor
must allev modification of tag alues. Because thei® monitor cannot obsex\or afect
accesses which hit in the processor caches, it must maintain thesents:

» If a block’s tag isnvalid, it is not present in gnprocessor caches.

* If a block’s tag isReadOnly, it may be present in one or more processor caches in a
read-only state.

» If a block’s tag iswritable, it may be present in one or more processor cacheyin an
state. The nate kus protocol will guarantee that at most one cacheg owritable

at ary given time.

Upgrading access—that is, changing framaalid to ReadOnly or Writable, or from

ReadOnly to Writable—relaxes the restrictions on caching blocks, so no action is required
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other than modifying thealue in tag storage. Mever, when access is dmgraded—

from Writable to ReadOnly, or from ReadOnly or Writable to Invalid—copies that may
reside in processor caches must halidated® If the original access tag Writable, the
only up-to-date copmay be in a cache; this modified gapust be written back to mem-
ory. These operations must occur atomically with the update oftbe in tag storage. In
general, to dengrade fromAritable, the lus monitor must acquire thedand atomically
perform a read-walidate, write the block data to memoand modify the &lue in tag
storage. (The ReerPC 60X s [AAWC94] supports a block flush transaction that forces
arny cache with a modified cgpo do a writeback, which could be used in place of the
read-irvalidate/write sequence.pTavngrade fromReadOnly, a simple imalidate is suf-

ficient, with no memory write.

1. On a transition fronwritable to ReadOnly, it is theoretically siifcient to remee write access
from ary cached copies. In practicayioership must also be &k avay from the cache, which
in most protocols requires arvalidation.



