
Mechanisms for Distributed Shared Memory

by

Steven K. Reinhardt

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN—MADISON

1996

i

Abstract

Distributed shared memory (DSM) systems simplify the task of writing distributed-

memory parallel programs by automating data distribution and communication. Unfortu-

nately, DSM systems control memory and communication using fixed policies, even when

programmers or compilers could manage these resources more efficiently.

This thesis proposes a new approach that lets users efficiently manage communication

and memory on DSM systems. Systems provide primitive DSM mechanisms without

binding them to fixed protocols (policies). Standard shared-memory programs use default

protocols similar to those found in current DSM machines. Unlike current systems, these

protocols are implemented in unprivileged software. Programmers and compilers are free

to modify or replace them with optimized custom protocols that manage memory and

communication directly and efficiently.

To explore this new approach, this thesis:

• identifies a set of mechanisms for distributed shared memory,

• developsTempest, a portable programming interface for mechanism-based DSM sys-

tems,

• describesStache, a protocol that uses Tempest to implement a standard shared-mem-

ory model,

• summarizes custom protocols developed for six shared-memory applications,

• designs and simulates three systems—Typhoon, Typhoon-1, andTyphoon-0—that sup-

port Tempest, and

• describes a working hardware prototype of Typhoon-0, the simplest of those designs.

ii

Tempest combines fine-grain coherence support, an active message model, and virtual-

memory–based page allocation to provide portability across a range of platforms.

Typhoon, Typhoon-1, and Typhoon-0 support Tempest using different levels of custom

hardware integration. Typhoon achieves high performance by integrating key components

on one device. Typhoon-1 and Typhoon-0 use off-the-shelf parts for some of these compo-

nents, trading some performance for simpler designs.

Typhoon demonstrates that mechanism-based DSM systems can compete with hard-

wired-protocol systems on unmodified shared-memory applications (within 25% across

six benchmarks). Despite Typhoon’s low overheads, custom protocols improve perfor-

mance significantly for some applications—by 384% for one benchmark. Results for

Typhoon-1 and Typhoon-0 on unmodified applications are varied, but custom protocols

bring them within 13% and 47% of Typhoon, respectively.

A working Typhoon-0 prototype demonstrates the feasibility of these designs. Measure-

ments of the prototype’s performance substantiate simulator projections.

iii

Acknowledgments

I cannot possibly thank all who have contributed to making my time in Madison so

enjoyable and successful. Nonetheless, I will try.

David Wood, my advisor, provided guidance, encouragement, and raw material in just

the right amounts. Mark Hill and Jim Larus, the other members of the Wisconsin Wind

Tunnel triumvirate, provided ideas, opinions, support, and invaluable advice on both the

technical and non-technical aspects of research. It has been a privilege to start on the

ground floor and watch the WWT group grow in size and stature under their leadership.

Guri Sohi did his best to keep me honest in his role as the loyal opposition. Thanks to

David, Mark, Jim, Guri, and Jim Smith for serving on my thesis committee. Jim Smith and

Guri provided comments from an external perspective that greatly improved the presenta-

tion of this thesis. Thanks also to Jim Goodman for his interest in my work.

Thanks to all the other students in the Wisconsin Wind Tunnel group and in the larger

UW computer architecture community for their support and camaraderie. In particular,

Alvy Lebeck provided friendship, counsel and occasional commiseration over countless

lunches and coffee breaks. Babak Falsafi had the dubious pleasure of hacking on a lot of

my code; I thank him for not complaining any more than he did. Rob Pfile designed Vor-

tex, the key component of the Typhoon-0 prototype. That system is a reality due to his

dedication. Alvy, Babak, Shubu Mukherjee, and Yannis Schoinas helped to develop and

maintain a lot of critical software including simulators, Tempest support components, and

the custom protocols for the benchmarks used in this thesis.

iv

I also thank AT&T Bell Labs and the Wisconsin Alumni Research Foundation for their

generous fellowship awards.

Diana, my wife, set aside her personal goals to follow me to Wisconsin, and ended up

raising three children while I completed my degree. I cannot thank her enough for her

love, support, patience, and friendship. Thanks also to our children—Ziggy, Anastasia,

and Sophia—for giving me extra motivation to come home and (almost) always being glad

to see me when I arrived. I also thank our parents for their generosity and support.

Neither Diana nor I could have survived without lots of help and prayers from our

church family, especially Danean & Dan Kirchner and Kelly & Ken Jensen.

Most of all, I must give thanks and praise to Jesus Christ. Through faith in him, I am rec-

onciled with the one true God of the universe—a fact that makes earthly trials and achieve-

ments pale in comparison.

Oh, the depth of the riches of the wisdom and knowledge of God!

How unsearchable his judgments, and his paths beyond tracing out!

“Who has known the mind of the Lord? Or who has been his counselor?”

“Who has ever given to God, that God should repay him?”

For from him and through him and to him are all things.

To him be the glory forever! Amen.

Romans 11:33–36 (NIV)

v

Contents

Abstract. .i

Acknowledgments .iii

List of Figures. .ix

List of Tables .xi

Chapter 1. A New Approach to Distributed Shared Memory1

1.1 Mechanisms for distributed shared memory. .5

1.2 The Tempest interface. .9

1.3 Hardware support for Tempest. .9

1.4 Thesis organization. .11

Chapter 2. Mechanisms for Distributed Shared Memory .13

2.1 Fundamental mechanisms. .14

2.2 The Tempest interface. .16

2.2.1 Messaging. .17

2.2.2 Local storage management. .19

2.2.3 Access control. .20

2.2.4 Mechanism interactions .22

2.3 Transparent shared memory using Tempest. .23

2.4 Optimizing applications using Tempest .28

2.4.1 EM3D .30

2.4.2 Appbt .33

2.4.3 Barnes. .34

vi

2.4.4 DSMC .35

2.4.5 Moldyn .36

2.4.6 Unstructured .37

2.5 Related work. .39

2.6 Summary. .42

Chapter 3. Hardware Support for Tempest. .45

3.1 Common features .49

3.1.1 Messaging. .49

3.1.2 Local storage management. .50

3.1.3 Fine-grain access control .51

3.2 Typhoon: integrated hardware support for Tempest. .52

3.2.1 Protocol processor. .52

3.2.2 Access control (RTLB). .53

3.2.3 Block transfer unit and block buffer. .55

3.2.4 Handler dispatch. .56

3.2.5 Primary CPU access .56

3.3 Decoupled hardware support for Tempest .57

3.3.1 Cacheable control registers. .58

3.3.2 Handler dispatch. .59

3.3.3 Access control. .60

3.3.4 Typhoon-1 .62

3.3.5 Typhoon-0 .65

3.4 Performance .67

3.4.1 Microbenchmark. .71

3.4.2 Macrobenchmarks. .73

3.4.3 Impact of network latency .80

3.4.4 Impact of protocol-processing performance. .81

3.5 Related work. .85

vii

3.6 Summary. .88

Chapter 4. The Typhoon-0 Prototype. .91

4.1 Hardware. .92

4.2 Software .94

4.2.1 Vortex configuration. .95

4.2.2 Process setup. .95

4.2.3 Other Solaris modifications .97

4.2.4 System issues .98

4.2.5 Messaging. .100

4.3 Performance .101

4.3.1 Microbenchmarks. .101

4.3.2 Macrobenchmarks. .104

4.4 Comparison of measured and simulated results .105

4.5 Summary. .108

Chapter 5. Conclusion .109

5.1 Summary. .110

5.2 Future directions. .112

References. .115

Appendix A. Tempest Interface Specification .127

Appendix B. Access Control Via Bus Snooping. .145

viii

ix

List of Figur es

Figure 1-1. Distributed-memory system organization.. .2

Figure 2-1. DSM memory access flowchart. .15

Figure 2-2. Stache example, step 1. .25

Figure 2-3. Stache example, step 2. .26

Figure 2-4. Stache example, step 3. .27

Figure 2-5. Example EM3D bipartite graph. .30

Figure 2-6. EM3D program fragment. .31

Figure 3-1. Common system organization.. .47

Figure 3-2. Logical components of Tempest support. .48

Figure 3-3. Component integration diagram. .48

Figure 3-4. Shadow tag space example. .52

Figure 3-5. Typhoon node, including a block diagram of the network interface/

access control/protocol processor device. .53

Figure 3-6. Typhoon RTLB diagram.. .54

Figure 3-7. Dispatch program counter format.. .59

Figure 3-8. Dispatch register layout for block access faults. .63

Figure 3-9. Dispatch code for block access faults.. .63

Figure 3-10. Typhoon-1 node, .64

Figure 3-11. Typhoon-0 node, .66

Figure 3-12. Application speedups for transparent shared memory on 32-node

systems. .75

Figure 3-13. Execution time breakdown for transparent shared memory.76

Figure 3-14. Application speedups on 32-node systems, including application-specific

protocols. .77

x

Figure 3-15. Execution time breakdown for the application-specific protocols, normalized

to transparent shared memory on Simple COMA..79

Figure 3-16. Speedups for appbt, Barnes, and DSMC on 32-node systems at various

network latencies.. .82

Figure 3-17. Speedups for EM3D, moldyn, and unstructured on 32-node systems at

various network latencies. .83

Figure 3-18. Execution time for transparent shared memory on Typhoon, varying the

 protocol processor speed. .84

Figure 3-19. Execution time for the application-specific protocols on Typhoon, varying

the protocol processor speed.. .85

Figure 4-1. Block diagram of a Typhoon-0/COW node. .92

Figure 4-2. Application speedups on 16 nodes of the prototype system..104

Figure 4-3. Simulated and measured speedups for Appbt .107

Figure 4-4. Simulated and measured speedups for Barnes. .107

xi

List of Tables

Table 3.1: Remote miss latency breakdown for simulated systems.72

Table 3.2: Benchmark applications and data sets. .73

Table 4.1: Remote miss latency breakdown for the Typhoon-0 prototype..103

Table A.1: Access tag semantics. .128

Table A.2: Block tag change enumeration values (type TPPI_BlkTagChange). . . .136

Table B.1: Bus monitor snooping behavior.. .146

xii

1

Chapter 1

A New Approach to Distributed Shared Memory

Modern microprocessors provide a tremendous amount of computing power for a rela-

tively small price. Currently, the fastest microprocessors execute up to four instructions

every two nanoseconds—a peak rate of two billion instructions per second—yet sell for

$3,000 or less [Mic96] and can be had in complete systems for under $10,000 [Eno96]. It

is difficult and costly to reach higher performance levels by building faster processors: the

cheapest non-microprocessor–based system that is faster by any measure is the half-mil-

lion–dollar CrayJ90 [McC96, Cra96]. With few exceptions, the most cost-effective

approach to higher performance is to gang multiple microprocessors together.

Nearly all current multi-microprocessor systems organize their processors and memory

using one of two methods. The simplest approach uses a bus—a common set of wires—to

join the processors and memory [Bel85]. However, competition for use of the shared bus

limits thesebus-based systems to at most a few tens of processors. Larger systems avoid

the bus bottleneck by grouping processors and memory into nodes—each one essentially a

bus-based uni- or multiprocessor system itself—which communicate via a point-to-point

messaging network (see Figure1-1). The size of thesedistributed-memory systems is lim-

2

ited primarily by cost: Intel is scheduled to deliver a machine with 9,000 processors and

262 gigabytes of memory by the end of this year (1996)—at a cost to the U.S. government

of $46 million [Int95].

Although distributed memory allows the construction of larger machines, it introduces

two new tasks: distributing data among the nodes and communicating across the network

when processors need data from other nodes. To achieve high performance—the primary

motivation for building a large machine—these tasks must be performed well. Efficient

data distribution and communication—storing data on the node or nodes where it is used

and overlapping network delays with useful work—improves performance by reducing or

eliminating the time processors wait for data to cross the network. Two prevalent types of

distributed-memory machines—message passing anddistributed shared memory—handle

these tasks in markedly different ways.

Message-passing systems leave data distribution and communication entirely to soft-

ware. Programs specify explicitly on which node each datum is located and when each

message is sent. If programmers and compilers can predict precisely where and when each

datum is used, they can exploit this control to use memory and network resources effi-

ciently. However, less predictable programs require potentially costly run-time software to

Network

Figure 1-1. Distributed-memory system organization.

Memory

Proc.Proc.

Memory

Proc.Proc.

Memory

Proc.Proc.

3

locate data and process messages dynamically. In addition, a message-passing program’s

data distribution and communication patterns affect its structure and correctness substan-

tially. Programmers who use message passing directly must deal with these issues up

front, and decisions made early in development often are not easily reversible.

In contrast, distributed shared memory (DSM) systems distribute and communicate data

automatically. These systems provide the abstraction of one global, uniformly fast mem-

ory. Programs access data by referencing locations in this global memory space. Systems

transparently fetch data, regardless of its physical location, to satisfy these references. At

the same time, these systems replicate and migrate data dynamically across the nodes to

keep values near the processors that reference them. Because the shared-memory abstrac-

tion matches the model that arises naturally on bus-based multiprocessors, DSM systems

take advantage of programs written for—and programmers trained on—the much more

common bus-based machines. Programmers can develop correct, working programs with-

out considering data distribution or communication.

Unfortunately, DSM machines hide the underlying distributed-memory organization too

well at times. Although programs that are naive about data distribution and communica-

tion will function correctly on a DSM system, they may not perform well. Programmers

must reason about (or compilers must deduce) a program’s memory and communication

behavior to improve its performance. However, once a program’s behavior is understood,

DSM systems provide no standard, direct techniques for implementing efficient data dis-

tributions or communication protocols. Instead, programmers and compilers must attempt

to effect these optimizations indirectly by modifying the program’s reference pattern.

This thesis proposes a new approach that lets users efficiently manage communication

and memory on DSM systems. This approach is based on separating DSMmechanisms—

the low-level operations that make DSM feasible—from thepolicies that govern their use

[Bri70, LCC+75, Wul81]. Systems implement primitive memory and communication

mechanisms sufficient to support distributed shared memory—mechanisms present in

4

some form in most DSM machines. Unlike existing systems, which bury these mecha-

nisms underneath fixed policies, these new mechanism-based systems let ordinary soft-

ware access these mechanisms directly. For standard shared-memory programs, software

libraries provide universal policies, similar to those implemented in current DSM systems.

However, because these policies are ordinary software—just like any other program com-

ponent—programmers and compilers may modify or replace them, exploiting program-

specific knowledge to optimize data distribution and communication. This mechanism-

based approach maintains DSM’s convenient model and dynamic data management while

enabling the potential efficiencies of message passing’s explicit resource control.

To make this proposal concrete, I describe a programming interface for mechanism-

based DSM systems calledTempest. Tempest strikes a balance between portability and

performance by combining virtual-memory page mapping—as used by page-based soft-

ware DSM systems [LH89]—with the fine-grain coherence found in hardware DSM

machines. This balance makes Tempest a suitable interface for all-software implementa-

tions on generic message-passing machines [SFL+94, SFH+96] as well as higher-perfor-

mance hardware-accelerated systems [RLW94, RPW96]. Applications and programming

tools written to the Tempest interface run unmodified across this wide range of systems. I

describeStache, a software library that implements application-transparent shared mem-

ory—similar to that provided by a typical DSM system—using Tempest. I also summarize

six shared-memory applications which programmers have optimized by accessing Tem-

pest’s mechanisms directly [FLR+94, MSH+95].

An interface is a contract between the users and the implementors of a system, so it must

carefully consider both perspectives. On the implementation side, this thesis examines

Tempest systems that can be constructed by adding custom hardware to networks of off-

the-shelf workstations. I describe three designs that explore the relationship between the

level of custom hardware integration and system performance. The systems proposed here

demonstrate that Tempest is amenable to a range of custom hardware acceleration tech-

niques. Simulations show that the design with the most highly integrated Tempest sup-

5

port—calledTyphoon—performs at a level comparable to a hardware-controlled DSM

system. I also describe a prototype implementation of the simplest custom-hardware

design—known asTyphoon-0—that demonstrates the feasibility of this approach and pro-

vides a real-world system for benchmarking.

The following section discusses the mechanism-based approach to distributed shared

memory further. The remaining sections describe the two main contributions of this the-

sis—the Tempest interface and the design and analysis of hardware support for Tempest—

in more detail.

1.1 Mechanisms for distrib uted shared memory

To understand the role of mechanisms in distributed shared memory, consider the opera-

tion of typical DSM systems. These systems approximate the behavior of a uniform shared

memory by caching data stored on other nodes (remote data). When a processor in such a

system accesses remote memory, the system copies the requested data, plus some neigh-

boring values—a datablock—to a portion of local memory called acache. The system

then satisfies future accesses to that remote data block using the local cache copy, avoiding

further network traversals. Because most programs exhibit locality—that is, once a pro-

cessor accesses a memory location, it is likely to access that location or others near it

shortly—the local cache handles most memory accesses, regardless of the data’s original

location. As memory values change,coherence protocols ensure that processors do not

access out-of-date cache copies. These protocols track the nodes that copy each data block

and send messages to invalidate or update those copies when a block is modified.

Because programmers communicate with the system only through memory accesses

(loads and stores), they must relinquish message passing’s direct control over memory and

communication to gain shared memory’s ease of use. This lack of control forces them to

forgo potential optimizations [KJA+93, Lar94]. For example, a programmer may know (or

a compiler may deduce) that a value written on nodeA will be read next on nodeB. In this

case, sending the value directly fromA to B is almost certainly more efficient than relying

6

on a DSM system’s coherence protocol. Even without exact information, a programmer or

compiler may be able to supply useful hints. For example, if a processor is not likely to

access a memory region again, the system can avoid coherence overhead by not caching

the data—while still behaving correctly if the hint is wrong. Finally, some operations, such

as synchronization, are expressed more naturally and efficiently in terms of messages.

This thesis proposes that systems give users direct control over memory and communi-

cation by providing access to the same primitive mechanisms employed by the coherence

protocol. Systems that provide primitive mechanisms can avoid the needless run-time gen-

erality of a one-size-fits-all solution [Wul81]. For DSM systems, this one-size-fits-all solu-

tion is the coherence protocol. By providing access to a complete set of mechanisms,

programmers and compilers are free to modify or replace protocols arbitrarily. Libraries

provide standard, universal protocols, such as those found in current DSM systems.

Mechanisms exist at numerous levels; for example, fetching remote data is a mechanism

that relies on lower-level mechanisms, including sending a request message and receiving

a reply message. To maximize generality and flexibility , this thesis seeks to identify the

lowest-level mechanisms that make efficient distributed shared memory feasible. I identify

three mechanisms that underlie nearly all DSM systems:messaging, local storage man-

agement, andmemory access control. Explicit messaging provides direct control over net-

work communication. Local storage management lets users control each node’s memory

contents by associating global addresses with local memory locations. Memory access

control detects accesses that require coherence action by marking locations invalid, read-

only, or writable.

Although these mechanisms are very general, this thesis focuses on their use in optimiz-

ing shared-memory application performance. Specifically, programmers tune perfor-

mance-critical data structures by replacing the standard coherence protocol with

application-specificcustom protocols. These programmer-developed protocols rely on

knowledge of the application’s communication patterns to improve performance, typically

7

by sending data directly to its consumer. Performance improvements of an order of magni-

tude have been observed from custom protocols [FLR+94]. Although this thesis reports on

manual optimizations only, automatic optimizations based on static program analysis

[Lar94] or programmer annotations [RAK89, CBZ91, HLRW93] are a promising

approach to achieving similar efficiency with reduced programmer effort. Other research-

ers are investigating tools to aid custom protocol development [CRL96] as well as other

applications of these mechanisms—for example, language-specific shared-memory sup-

port [LRV94].

In contrast with the mechanism-based approach proposed here, other DSM system

designers have dealt with this issue through a combination of two techniques: extending

the shared-memory interface and implementing low-overhead, low-latency DSM hard-

ware. Mechanism-based DSM is less restrictive than specific interface extensions—

enabling a large variety of higher-level programming interfaces—and provides an alterna-

tive to building aggressive DSM hardware.

Many systems extend the shared-memory interface—adding operations beyond simple

loads and stores—to provide a channel for software to communicate additional informa-

tion. These operations include uncached accesses, prefetch instructions [CKP91, MG91],

writes that update outstanding data copies [RSW+93, LLG+92], atomic read-modify-write

operations [GGK+83], and explicit synchronization operations [GVW89]. Weak consis-

tency models [AH90, GLL+90] modify the semantics of ordinary loads and stores to allow

more reordering—and hence more overlap—among memory accesses. These models

require additional operations that force a partial order between accesses to achieve mean-

ingful memory semantics. At a higher level, the Munin software DSM system [CBZ91]

lets programmers annotate data structures with expected reference patterns. The system

uses these annotations to select from a set of coherence protocols.

In theory, a DSM system that provides a complete set of universal mechanisms can sup-

port any or all of these extensions. Ordinary software composes the available mechanisms

8

to support the desired operation(s). Simple extensions such as prefetch may be imple-

mented as a library or inline function; more complex interfaces may involve compiler sup-

port as well. In practice, the specific mechanisms provided by a DSM system, and their

run-time cost, determine the feasibility and efficiency of a particular operation on that

machine.

A second approach to dealing with shared-memory inefficiencies—complementary to

extending the interface—is to minimize the impact of these inefficiencies by building

aggressive hardware. If communication overhead is low, many applications can achieve

good performance within a standard shared-memory model. Simple interface extensions

such as prefetching enable good performance for more communication-intensive pro-

grams. Systems such as MIT’s Alewife [ABC+95] and Stanford’s DASH [LLG+92] and

FLASH [KOH+94] employ significant amounts of custom hardware to reduce coherence

protocol overheads. Although this hardware may increase the number of bus-based multi-

processor applications that perform well without modification, the expense of designing

and manufacturing these systems may limit their affordability.

Due to the overhead of sequencing mechanisms in software, mechanism-based systems

have a performance disadvantage relative to these hardware-protocol DSM systems on

demanding, unmodified shared-memory applications. However, simulations of the

Typhoon design (see Section1.3) indicate that high-end mechanism-based systems can

compete with hardware DSM systems on moderately demanding standard shared-memory

applications—and have the potential to outperform them significantly when custom proto-

cols are used to optimize communication-intensive applications. The mechanism-based

approach also enables effective shared-memory performance on less expensive hardware

platforms, as demonstrated by software-only implementations described elsewhere

[SFL+94, SFH+96] and the less integrated hardware designs described in Section1.3.

9

1.2 The Tempest interface

Tempest provides a concrete, portable interface to the three DSM mechanisms identified

in the previous section: messaging, local storage management, and memory access con-

trol. Tempest’s messaging borrows from vonEicken’s Active Messages [vECGS92]. Stan-

dard virtual address translation mechanisms are used for local storage management, as in

software DSM systems [LH89]. The most innovative aspect of Tempest is its specification

of fine-grain access control, a feature that enables fine-grain coherence and provides scal-

ability to high-performance systems.

Tempest allows a range of implementations so that optimized applications and optimiz-

ing compilers need not be re-implemented for every platform. Platform-specific mecha-

nisms are less likely to inspire developers to invest the effort to exploit them, since their

effort will be wasted if they move to a different platform. Tempest implementations also

span a wide cost/performance range. Low-cost implementations are key to making an

interface widely available, which in turn generates a supply of trained programmers, a

body of applications, and a market for development tools such as compilers. At the same

time, higher-cost, higher-performance implementations must also exist both to support the

most demanding applications and to reassure low-end users that their software investment

is not wasted if their computational needs increase.

1.3 Hardware support for Tempest

The second focus of this thesis is the design and evaluation of hardware support for

Tempest. Existing software-only Tempest implementations [SFL+94, SFH+96]—not cov-

ered in this thesis—demonstrate the potential of Tempest for low-end systems. The goals

of studying hardware support are:

• to demonstrate that Tempest scales up incrementally, through a range of higher-cost,

higher-performance solutions, to the point where it is competitive with high-end, dedi-

cated distributed shared memory systems;

10

• to identify techniques that can be used to accelerate Tempest at various cost/perfor-

mance points; and

• to quantify the performance of these alternatives for shared-memory applications, with

and without Tempest optimizations.

I describe three distributed-memory Tempest designs—Typhoon, Typhoon-1, and

Typhoon-0—and compare their performance using simulation. I also describe a prototype

hardware implementation of the Typhoon-0 system that demonstrates the feasibility of the

hardware fine-grain access control approach used in all three systems.

All three designs use cost-effective off-the-shelf workstations for the processor–memory

nodes. Each design adds three logical components to every node: a snooping access con-

trol device, a network interface, and a protocol processor. The systems differ in the level of

custom hardware integration used to implement these components.

• Typhoon integrates all three components on a single device. This integration lets pro-

tocol software efficiently interact with the access control and messaging mechanisms,

resulting in high performance—within 25% of a comparable hardwired-protocol sys-

tem on a set of six unmodified shared-memory benchmarks.

• Typhoon-1 integrates the network interface with access control, but leaves protocol

processing to an off-the-shelf processor. Relative to Typhoon, this lower level of inte-

gration reduces design complexity, and (potentially) manufacturing cost, at the

expense of some performance—11% to 222% on the unmodified benchmarks.

• Typhoon-0 uses a custom access control device with an off-the-shelf protocol proces-

sor and an off-the-shelf network interface. Typhoon-0 has the least complexity and

lowest performance of the three systems. On the unmodified benchmarks, Typhoon-0

ranges from 28% to 427% slower than Typhoon.

The simulation results also show the effectiveness of Tempest-based custom protocols.

Even on Typhoon, with its low-overhead support for standard shared memory, custom pro-

tocols sped up one of the benchmarks by 384% and another by 86%. With the custom pro-

11

tocols, Typhoon’s performance ranges from 2% worse to four times better than the

hardwired-protocol system.

Custom protocols provide even greater benefits on systems with higher overheads.

Although Typhoon-1 and Typhoon-0 can be significantly slower than Typhoon for stan-

dard shared memory—a factor of two and four, respectively, on the most demanding

benchmark—custom protocols reduce the differences to 13% and 47%. Custom protocols

also provide more robust application performance in the face of other increased overheads,

such as larger network latencies and, for Typhoon, slower embedded processors.

A prototype hardware implementation of Typhoon-0 demonstrates the feasibility of

these designs and provides a real-world system for benchmarking. Despite a high-over-

head commercial messaging network, five of the six benchmarks achieve better than 58%

efficiency on sixteen nodes of the prototype. Application-specific protocols are critical to

achieving this efficiency in three of the five cases. The prototype’s measured performance

agrees substantially with simulator projections.

1.4 Thesis organization

Chapter2 motivates the fundamental shared-memory mechanisms, then describes the

Tempest interface and its use for both application-transparent and custom shared-memory

protocols. Chapter3 discusses hardware support for Tempest, with a detailed descriptions

and a simulation-based performance comparison of Typhoon, Typhoon-1, and Typhoon-0.

Chapter4 focuses on the Typhoon-0 hardware prototype, including measured performance

results. Chapter5 concludes with a summary and future directions for this work.

12

13

Chapter 2

Mechanisms for Distrib uted Shared Memory

This thesis proposes a new, flexible approach to distributed shared memory. Systems

provide primitive shared-memory mechanisms without prescribing specific policies (e.g.,

cache coherence protocols). Programmers and compilers can combine these mechanisms

arbitrarily to optimize existing protocols and to implement new ones.

This chapter begins by examining the abstract mechanisms required for distributed

shared memory (DSM). Three mechanisms—messaging, local storage management, and

access control—underlie nearly all DSM systems. Section2.2 describes Tempest, a con-

crete, portable interface to these mechanisms. Tempest uses a variant of Active Messages

[vECGS92] for messaging. Virtual address translation provides local storage management.

Tempest’s most innovative feature isfine-grain access control. The next two sections show

how Tempest can be used, first to provide application-transparent shared memory

(Section2.3), then to optimize the performance of shared-memory applications using cus-

tom protocols (Section2.4). The chapter closes with a discussion of related work

(Section2.5) and a summary (Section2.6).

14

2.1 Fundamental mechanisms

This section identifies three abstract mechanisms—messaging, local storage manage-

ment, and access control—required to support shared-memory programming models on

distributed-memory machines. Mechanisms are the separable components of a process or

system. Policies are the rules that govern how mechanisms are used to achieve a desired

result. The division of a process into mechanisms can be done at several levels; a mecha-

nism at one level may be built from a lower-level set of mechanisms and policies. To max-

imize generality and flexibility , this work seeks to identify the lowest-level mechanisms

that make efficient distributed shared memory feasible.

These mechanisms assume a typical distributed-memory parallel machine, comprising a

set of nodes connected by a messaging network (see Figure1-1 on page2). Each node

contains one or more processors that share a memory module and an interface to the net-

work. Hardware maintains coherence among processor caches within a node. Memory

accesses are performed only on the node where they are issued—that is, remote data refer-

ences are performed on a copy of the data in local main memory or a hardware cache.1

Every distributed-memory machine incorporates amessaging mechanism—that is, a

way for nodes can communicate through the network—even if messaging is not directly

available to users. To understand the remaining DSM mechanisms, consider the process of

performing a shared-memory access. The flowchart in Figure2-1 summarizes this pro-

cess. In the figure, unshaded objects represent mechanisms and shaded objects represent

policies.

As the first step in performing an access, alocal storage management mechanism finds

the local memory, if any, allocated to the shared-memory address. If there is no local

1. This model excludes systems which may perform individual loads and stores on a node other
than the one on which they are issued. Examples include systems that use write-through or
write-update caching of remote memory [BR90, WHL92, WJI+94, IDFL96] and those that
migrate threads to data on misses [CR95]. Support for these models can conflict with some com-
mon implementation features—for example, writeback processor caches.

15

memory for the referenced address, the mechanism invokes an allocation policy. This pol-

icy selects the local memory to allocate, possibly evicting previously cached data to make

room. The policy interacts with local storage management to set up and tear down map-

pings from addresses to local memory. It also uses messaging to send evicted data to other

nodes when necessary.

Once local memory is allocated, anaccess control mechanism determines whether that

memory contains a valid copy of the data. If not, the mechanism invokes an access policy

to acquire up-to-date data or additional access permissions. (A copy’s validity may depend

on the type of the access; in most protocols, replicated copies are valid for reading but not

Access

Yes

No

No

Yes

START

Perform

END

Figure 2-1. DSM memory access flowchart.If either the allocation check or the access check
fails, the system must take action before the reference can be performed. The solid arrows indicate
that the reference is suspended and later resumed without repeating the allocation and access
checks. An alternate approach is to abort and retry the reference, as indicated by the dotted arrows.

access
locally

OK?

Allocated
locally?

Acquire
data/

permission

Allocate
local

storage

16

for writing.) The access policy includes both the global allocation policy, which selects the

node to which a particular request is sent, and the coherence protocol, which determines

how requests are handled. This policy uses both messaging and access control. For exam-

ple, the policy may send messages telling other nodes to mark their copies invalid before it

lets the local node write its copy.

In contrast to earlier work [Cha94, WCF+93], I do not consider operations internal to the

coherence protocol (e.g., recording pointers to the nodes sharing a block) as mechanisms.

This thesis seeks to identifyfundamental mechanisms—mechanisms that cannot be syn-

thesized efficiently. Stanford’s FLASH system [KOH+94, HKO+94] and the Typhoon

design described in Chapter3 demonstrate that software protocols are not inconsistent

with high-performance systems.

After the allocation and access control checks succeed, the system performs the access

on the local copy.

Messaging, local storage management, and access control are three mechanisms that are

fundamental to the operation of practically any DSM system. To allow flexible, efficient

policies, systems must present these mechanisms to users in a practical fashion. The next

section describes an interface designed to meet that need.

2.2 The Tempest interface

Tempest is a concrete interface to the three abstract mechanisms identified in the previ-

ous section. One of Tempest’s primary goals is portability across a wide cost/performance

range. At the low-cost end, Tempest allows all-software implementations on generic mes-

sage-passing hardware [SFL+94]. At the same time, the interface is amenable to hardware

support. Chapter3 describes a range of designs that provide hardware acceleration for

Tempest; the most aggressive (Typhoon) is competitive in performance with dedicated dis-

tributed shared memory systems.

17

The following sections describe the significant features of Tempest. (See Appendix A

for a more complete interface specification.) Each of the abstract mechanisms is examined

in turn. For messaging, Tempest borrows from the Active Messages model [vECGS92].

Standard virtual memory hardware supports local storage management. The most innova-

tive aspect of Tempest isfine-grain access control, which is provided using a tagged mem-

ory model. The final section discusses mechanism interactions.

2.2.1 Messaging

Most systems designed for explicit user message passing perform best on large, stati-

cally scheduled transfers. The implicit messaging behavior of DSM systems differs in the

following ways:

• Messages are short: some contain only control information (e.g., a request for data),

while others consist of control information plus a small amount of data (e.g., the

response to a request). Assuming 64-bit addresses and 128-byte data transfers, we can

estimate the former at 16-24 bytes, whereas the latter may be around 150 bytes.

• Most messages are handled asynchronously at the receiver. That is, requests for data

and coherence operations are driven by the dynamic execution of other nodes, and are

unrelated to the execution on the receiving node.

• The control information in messages originates in processor registers on the sender

and is consumed in registers on the receiver.

• Low latency is important for high performance. Several techniques exist to tolerate

memory latency—such as multithreading, prefetching, and non-blocking loads—but

none of these is capable of hiding the latencies of most modern networks.

Tempest bases its messaging model on Active Messages [vECGS92], a flexible, low-

overhead messaging model designed for fine-grain message-based systems. The header of

each message contains a pointer to a function that is invoked at the receiving node to han-

dle the message arrival. These message handlers are invoked asynchronously with respect

to the main thread of computation at the receiver. Each handler is responsible for dispos-

18

ing of the remainder of the message. To reduce scheduling and synchronization overheads,

each handler is run to completion before another message handler is started.

Deadlock is an issue in any messaging system. The network buffers message data as it is

routed to its destination. A node cannot send a message if there is no buffer space available

in the network. A node may not simply wait for space to become available without remov-

ing any of the messages destined for it, because a cycle of nodes waiting for each other to

remove their messages will deadlock. Because each Tempest (or Active Messages) mes-

sage handler must complete before another handler is allowed to run, there is the potential

for deadlock whenever a message is sent from within a message handler. Active Messages

avoids deadlock by restricting handlers to sending at most one reply, and guaranteeing

buffer space for that one message. However, this solution is awkward for DSM cache

coherence protocols, in which a handler may send out multiple messages to update or

invalidate all the sharers of a particular memory block. To avoid placing unnecessary bur-

den on the user, Tempest places no restrictions on sending messages from within message

handlers. In cases where these sends overflow the network, the runtime system buffers

message data in the user’s virtual memory. A truly errant process will be terminated when

it exhausts the memory available to it. A similar approach is taken in the Fugu system

[MKAK94].

In addition to the modified Active Messages model, Tempest includes a separate mes-

saging interface for bulk data transfer. This alternate interface complements Tempest’s

Active Messages by providing asynchronous, high-bandwidth memory-to-memory com-

munication for large amounts of data. Users set upvirtual channels that bind a sending

node with a buffer on the receiver.1 The sender can transmit directly to the receiver’s

buffer without explicitly invoking a handler on the receiver. The sender can use the chan-

nel repeatedly without reestablishing it. Although this bulk interface can be implemented

1. This interface is modeled after the virtual channels facility in the CMMD library on the Think-
ing Machines CM-5, which similarly complements CMMD’s CM Active Messages.

19

on top of Active Messages, it is included in the specification to give system developers the

freedom to optimize the implementation—for example, by employing DMA hardware.

2.2.2 Local storage management

The second mechanism, local storage management, maps shared-memory accesses to

local storage locations and invokes a software handler to allocate and map local storage if

an unmapped address is referenced. The virtual address translation hardware found in

most processors is suitable for this task, a fact that has been exploited in numerous DSM

systems [LH89, CBZ91, BZS93, KDCZ94, HSL94]. Shared virtual addresses are mapped

to local physical memory; a reference to an unallocated location results in a page fault.

Using virtual address translation for the local storage management mechanism has sev-

eral advantages. Support is ubiquitous in modern processors, so portability is guaranteed.

Capacity is bounded only by the available local memory. Associativity is practically

unlimited. As long as the application’s working set fits in the processor’s TLB, the per-ref-

erence overhead is very low. There are two potential drawbacks. First, the cost of taking a

page fault is typically large [ALBL91]. However, most of this overhead is due to operating

system structure, so it can be greatly reduced at the cost of modifying the OS [RFW93,

TL94]. Second, the virtual memory page size is large enough (typically four to eight kilo-

bytes) to make fragmentation a concern. In cases where this occurs, the only real solution

is to modify the application to improve its data layout or its reference pattern. Applications

that suffer from fragmentation are also likely to suffer from poor TLB locality, so this type

of optimization will pay off in both of these areas. (Table3.2 on page73 reports the

observed fragmentation overhead for six applications.) The drawbacks are usually out-

weighed by the advantages: because allocation should be necessary for only a small frac-

tion of references, the per-reference overhead typically has the greatest impact on

performance.

The Tempest interface specifies functions to allocate and map, unmap, and remap pages,

and to install a user function as the page fault handler.

20

2.2.3 Access control

Access control is the mechanism that filters loads and stores, determining for each one

whether action is required to obtain access rights to the referenced data. This mechanism

can be viewed as a function that returns a single bit (action vs. no action) based on two

inputs: (1) an access tag associated with the referenced address and (2) whether the access

is a load or a store. Tempest provides three access tags:Invalid (action on both loads and

stores),ReadOnly (action on stores but not loads), andWritable (no action on either loads

or stores).1 All three tags are necessary to support common multiple-reader, single-writer

protocols. To reduce tag space overhead, a single access tag is associated with a memory

block (an aligned, contiguous group of bytes). A reference that invokes an action is said to

cause ablock access fault. The thread that issued the reference is suspended, and a user

function—the block access fault handler—is invoked. The block access fault handler ini-

tiates a protocol sequence that should culminate in acquiring access rights for the block,

updating the access tag to allow the reference, and resuming the suspended thread.

Although only three access tags are required, implementations are unlikely to allocate

fewer than two bits per block to encode these states. To exploit this extra capacity, Tem-

pest specifies a fourth tag,Busy, which has the same access semantics asInvalid. For

example, software can use theBusy tag to identify blocks which are inaccessible but for

which there are outstanding requests.

Access control granularity can have a significant effect on performance due tofalse

sharing: when different processors write different locations in the same block, a standard

single-writer protocol will unnecessarily serialize the writes, causing potentially tremen-

dous performance degradation as the block “ping-pongs” among the writing nodes

[EK89]. A larger granularity makes false sharing both more likely and more difficult to

remedy by rearranging or padding data.

1. There is a fourth possible tag with distinct semantics—one that invokes an action on loads but
not stores—but such a “write only” tag is of no practical value.

21

Page-based DSM systems use virtual address translation hardware for access control as

well as local storage management. As a result, the access control granularity is the virtual

memory page size—four to eight kilobytes, typically—which easily leads to false sharing.

To avoid ping-ponging these large pages, the most efficient page-based protocols allow

multiple simultaneous writers for each page [CBZ91, KCZ92]. Unfortunately, these proto-

cols trade significant computation and memory overheads for this reduction in communi-

cation. To merge updates from multiple nodes, each node isolates its contribution by

comparing its modified copy with a second, unmodified local copy. Creating the unmodi-

fied copy and performing the comparison may take hundreds of microseconds [ACD+96].1

As a result, these protocols are effective only when communication overheads are compa-

rably large. In addition, these protocols support only weak consistency models.

Higher-performance hardware-based systems reduce false sharing by providing access

control at cache-block granularity, typically 16 to 128 bytes. At these granularities, false

sharing occurs less frequently and can usually be avoided by rearranging or padding appli-

cation data structures. The protocol is free to focus on providing efficient coherence for

true sharing patterns.

To provide portability to high-performance systems, Tempest specifiesfine-grain access

control. The number of bytes per block is implementation-specific, but must be a power of

two no greater than 128. If Tempest allowed a coarser granularity, users would be forced

to implement a multiple-writer protocol that is unsuitable for a high-performance system.

Flexibility would also be impaired, because coherence policies would have to be tuned to

dealing with false sharing rather than supporting actual application sharing patterns. The

only potential drawback to specifying fine granularity is that it prevents the use of standard

virtual memory; however, we have demonstrated an efficient, portable, software-only fine-

grain access control technique [SFL+94].

1. These operations are memory intensive, so their performance is limited by memory bandwidths
rather than computation rates.

22

While Tempest allows for low-cost, software implementations of fine-grain access con-

trol, it is specifically designed to support higher-performance hardware-assisted tech-

niques as well. In [SFL+94], my colleagues and I enumerate five methods: in software, in

the TLB, in the cache, in the memory controller, and in a bus snooping device. Chapter3

describes three system designs that perform fine-grain access control in hardware via bus

snooping. A detailed discussion of this technique appears in Appendix B.

The Tempest interface provides functions to read and change access tags and to register

user functions as block access fault handlers. To allow implementations to optimize han-

dler dispatch, users register separate handlers for each of the five possible fault types

(read–Invalid, write–Invalid, read–Busy, write–Busy, and write–ReadOnly). Each handler

invocation is passed the virtual address of the faulting access and two additional values

associated with the referenced virtual memory page. These values, provided by the user

when the page is allocated, are uninterpreted by Tempest but are intended to be used as a

pointer to a per-page protocol data structure and to identify the page’s home node.

For additional flexibility , users can register multiple sets of handlers. All block access

faults on a particular page use the same set of handlers; the particular set is specified when

the page is allocated. As described in Section2.3, a typical protocol uses two sets of han-

dlers, one for the page that contains the primary data copy and another for the cached cop-

ies on other nodes. The interface supports a larger number of handler sets to allow

multiple protocols in the same application.

2.2.4 Mechanism interactions

To support distributed shared memory effectively, the mechanisms described above must

be designed to work together in an appropriate manner. This section describes two aspects

of Tempest that cross mechanism boundaries: handler execution and atomic access con-

trol/messaging functions.

23

Tempest systems run each message, allocation, and block access fault handler to com-

pletion before another handler of any type is invoked. In effect, Tempest extends the

Active Messages handler execution model to include allocation (page) fault and block

access fault handlers. Handlers enjoy mutually exclusive access to coherence protocol

state without the overhead of locking. Unfortunately, this model precludes concurrent han-

dler execution on multiprocessor nodes, which can increase throughput on communica-

tion-intensive benchmarks [FW96a].

Tempest also specifies functions that atomically change a block’s access tag and send or

receive the contents of the block. To understand why these calls are necessary, consider

the common situation where a node must relinquish write access to a block and transmit

the block’s data to another node. Software must perform two actions: (1) change the

block’s access tag fromWritable to Invalid and (2) send the block’s contents. The tag

change cannot be done first, because a block taggedInvalid cannot be accessed directly,

even from inside a handler. (Because some implementations cannot easily disable access

control for handlers, Tempest forbids handlers from performing accesses that could result

in block access faults.) However, sending the block’s contents first leads to a race: han-

dlers are (possibly) concurrent with respect to computation threads (e.g., on multiproces-

sor nodes), so the block could be modified by another thread after the contents are sent but

before the tag change occurs. Because the permanent copy of the block is the one in the

message, this modification will be lost. A similar situation arises when a message arrives

containing data for a previously Invalid block: the message handler is unable to write the

data directly without first changing the tag, but changing the tag first creates a window

where another thread could access incorrect data before the message data is written to

memory.

2.3 Transparent shared memory using Tempest

This section illustrates how Tempest can provide a standard shared-memory model in a

manner transparent to the application—that is, the application uses only shared-memory

24

loads and stores; it does not observe the operation of the distributed shared memory layer

or the underlying distributed-memory system. In contrast, the next section (Section2.4)

illustrates application-specific shared memory using Tempest, where applications custom-

ize the programming model and coherence protocol to improve performance.

The standard implementation of transparent shared memory (TSM) on Tempest is called

Stache.1 Stache is a user-level library that exploits the Tempest mechanisms. This library

contains an allocation (page) fault handler, message handlers, block access fault handlers,

and shared-memory allocation functions. Stache maps virtual addresses of shared data to

local physical memory at page granularity, as do page-based software DSM systems

[LH89]. However, Stache takes advantage of Tempest’s fine-grain access control to main-

tain coherence at the block level. Because false sharing is not a major concern, Stache pro-

vides a strong consistency model using a standard single-writer, multiple-reader

invalidation-based coherence protocol. The proposed Simple COMA design [HSL94] also

combines page-granularity allocation with fine-grained invalidation-based coherence.

However, Simple COMA uses a fixed hardware-implemented coherence protocol. In con-

trast, Stache is just one possible software protocol for Tempest systems.

In Stache, each shared page has a unique home node. Currently, Stache provides two

home-node placement algorithms. The first assigns pages to nodes round-robin as they are

allocated. The second algorithm—a simple first-touch migrate-once scheme [MKBS95]—

attempts to reduce communication by placing each page on a node that references it. In

this algorithm, the first node to access a page is the initial home. Unfortunately, all shared

data written during the sequential initialization phase ends up on one node. To redistribute

this data, the protocol also traps the first access to each page in the parallel portion of the

code. If this access occurs on a node other than the initial home, that node will become the

page’s new, permanent home.

1. The name “Stache” is due to James Larus.

25

In either case, the home node uses a Tempest function to allocate a physical memory

page and map it at the desired virtual address. It also allocates a vector of per-block direc-

tory structures (described later) on the program’s heap and associates the home node’s ID

with the virtual page in a distributed mapping table. The page’s block access tags are ini-

tialized toReadWrite; as long as data on this page is not cached by another node, the home

node can access it without software intervention. Figure2-2 illustrates this situation, with

node 1 serving as the home node for a shared data page.

When another node first accesses a shared page, the reference causes an allocation

(page) fault. The user-level allocation fault handler (part of the Stache library) allocates a

physical memory page and maps it at the shared virtual address. To prevent concurrent

computation threads from accessing the new page, the allocation function atomically sets

the page’s block access tags toInvalid. The handler also looks up the home node’s ID in

the distributed mapping table and stores it in a per-page data structure allocated on the

heap. Finally, the handler restarts the thread at the faulting access. Figure2-3 continues

the example of Figure2-2 to this point, with node 2 preparing to satisfy a reference to the

shared data on node 1.

Network

Memory

Proc.Proc.

RW
RW
RW
RW1000:

Figure 2-2. Stache example, step 1.Node 1 is the home node for the page at virtual address
1000. Node 1’s processors have read-write access to all the blocks on the page (indicated by the
RW label on each block). Node 2 has no mapping for virtual address 1000.

Node 1

Memory

Proc.Proc.

Node 2

26

The restarted instruction now causes a block access fault because of the referenced

block’s Invalid tag. The block access fault handler retrieves the home node’s ID from the

page’s local data structure, sends a request for the block, and terminates.1 At the home

node, the request message invokes a handler that performs the appropriate coherence

actions and replies with the data. (If invalidations are required, the handler for the final

invalidation acknowledgment message sends the data.) When the reply message arrives

from the home node, the message handler writes the data into the allocated page, changes

the block’s access tag toReadOnly or ReadWrite, and restarts the access. This time, the

access completes and the program continues. Figure2-4 illustrates the final stage of the

example, where node 2 has obtained a shared data block from node 1.

Once a block is loaded into local memory, processors may access it repeatedly without

protocol action. If the initial access was a read, the protocol tags the blockReadOnly;

additional reads will complete locally, but the first write will invoke a block access fault

1. This initial request could be sent from the page fault handler, but the protocol software organiza-
tion makes it simpler to keep a single copy of the request code in a block access fault handler.

Network

Memory

Proc.Proc.

RW
RW
RW
RW1000:

Figure 2-3. Stache example, step 2.Node 2 has mapped a memory page at address 1000 in
response to an access from one of its processors. Because node 2 has no valid data for the page, the
blocks on the page are marked invalid using the fine-grain access control mechanism (indicated by
theInv label on each block).

Node 1

Memory

Proc.Proc.

Node 2

Inv
Inv
Inv
Inv1000:

27

handler to obtain an exclusive copy. Accesses to other blocks on the page, which are still

taggedInvalid, avoid the page fault and directly invoke a block access fault handler.

When a node runs out of unused physical memory pages, accesses to additional shared

data pages must reuse pages containing other cached data. In this case, the page fault han-

dler selects a page to reuse, sends any modified data on the page back to its home, marks

the page’s blocksInvalid, and remaps the page at a new virtual address.

Blocks on the home page are initiallyReadWrite, but are downgraded toReadOnly or

Invalid as remote nodes request read-only or exclusive copies. Thus references on the

home node may require protocol action to reacquire a valid or exclusive copy. Stache reg-

isters a distinct set of block access fault handlers for home pages. These handlers directly

access protocol data structures and perform needed coherence actions—for example,

sending invalidation requests to caching nodes.

The Stache coherence protocol is similar to LimitLESS [CKA91], except that it is

implemented entirely in software. The protocol allocates eight bytes of directory state per

Network

Memory

Proc.Proc.

RW
RW
Inv
RW1000:

Figure 2-4. Stache example, step 3.Node 2 has fetched a block of data from node 1 to satisfy
the store access. In this example, node 2 obtains exclusive access to that block and node 1’s copy is
marked invalid. To satisfy a read access, node 2 would obtain a read-only copy, leaving node 1 also
with a read-only copy.

Node 1

Memory

Proc.Proc.

Node 2

Inv
Inv
RW
Inv1000:

28

cache block. Two bytes store the protocol state. The other six are typically used as six one-

byte node pointers. (Full bytes are used, rather than a denser packing, to avoid bitfield

operations.) If more than six pointers are required, four of the six bytes are used as a bit

vector.

The protocol source code is independent of the coherence block size. The protocol can

be compiled for any power-of-two block size—from the Tempest access-control granular-

ity to the page size, inclusive—by defining a C preprocessor constant. Tempest aids this

flexibility by including a block size parameter for access-control functions. Tempest

implementations transparently support operations on any power-of-two multiple of the

system’s fine-grain access control granularity. (Non–power-of-two multiples are not sup-

ported directly because their use is rare and they complicate pointer alignment checks.)

Tempest allows the Stache implementation to emphasize speed and simplicity rather

than generality. Although only one implementation is currently available, the library can

provide several variations. Initialization code can install a version optimized for the num-

ber of nodes and block size—and perhaps other parameters—specific to that execution.

For example, block sizes smaller than 128 bytes may use a protocol that allocates less than

eight bytes per block. Systems larger than 32 nodes may use dynamic pointer allocation

[SH91] to avoid multi-word bit vectors. Systems larger than 256 nodes will require multi-

byte node pointers. However, small systems need not pay at runtime to support these alter-

natives.

2.4 Optimizing applications using Tempest

The Stache protocol effectively supports applications written to a standard shared-mem-

ory programming model. However, the real power of Tempest lies in the opportunity it

presents to optimize performance by tailoring the coherence protocol to the specific appli-

cation. Because the protocol is simply user-level software—a set of functions linked in

with the application—a programmer or compiler can customize protocols for specific data

structures and specific phases of the application. Tempest allows users to bind a different

29

set of block access fault handlers to each memory page, so multiple protocols—including

Stache—can coexist peacefully, each managing a distinct portion of the shared data. Tem-

pest gives programmers several paths to improve the performance of applications. They

can:

• Select from available transparent–shared-memory protocols. Protocols can implement

transparent shared memory (TSM) with a variety of policies (e.g., update vs. invali-

date) and parameters (e.g., block size). Changing the coherence protocol for the entire

application is as simple as linking with a different protocol library; using different pro-

tocols for different data strctures requires only modest effort. Although some knowl-

edge of the application is useful for selecting appropriate protocols, these changes

cannot break a correct program. The range of available protocols should be expanded

by the availability of high-level languages and compilers targetted for this domain

[CRL96].

• Develop a protocol that exploits application-specific knowledge. Programmers or com-

pilers can use precise knowledge of an application’s synchronization and sharing pat-

terns to optimize the coherence protocol aggressively. The program still executes in a

shared address space, but an algorithmic change may require modifications to the

coherence protocol as well. Most of the optimizations described in the examples below

are of this type. In this work, these changes are performed manually, but the process

can be automated using existing compiler techniques to extract access patterns from

source code [VL96, DCZ96].

• Use message passing. Some operations, such as synchronization, fit the message-pass-

ing model naturally; in these cases, programmers can dispense with shared memory

entirely. For example, the default lock and barrier implementations in Tempest’s utility

library use Tempest’s Active Messages directly. Active Messages are also useful for

building higher-level operations such as fetch-and-op and remote write.

This section illustrates some of these optimizations using six scientific applications. In

each case, the programmer started with an optimized transparent–shared-memory parallel

30

program and further improved its communication behavior by developing custom proto-

cols for critical data structures. I describe one of the applications—EM3D—in detail. Five

other applications—Appbt, Barnes, DSMC, moldyn, and unstructured—were optimized

by other members of the Wisconsin Wind Tunnel research group. I describe them here

briefly to suggest the variety of optimizations that can be performed, and to provide back-

ground for the following chapters where all six of these applications are used as bench-

marks. The original papers reporting on these optimizations (Falsafi et al. [FLR+94] for

Appbt, Barnes, and EM3D,1 and Mukherjee et al. [MSH+95] for DSMC, moldyn, and

unstructured) detail the applications and the evolutionary optimization process.

2.4.1 EM3D

EM3D models electromagnetic wave propagation through three-dimensional objects

[CDG+93]. The principle data structure is a bipartite graph, in whichE nodes represent

electric field values andH nodes represent magnetic field values (see Figure2-5). The

main computation iteratively updates the field values to model the passage of time. Each

iteration has two phases. The first computes new values for the E nodes using a weighted

sum of their neighboring H node values. The second updates the H node values similarly

based on the new values of their neighboring E nodes.

1. I wrote the original Tempest application-specific protocol for EM3D as part of the original paper
on Tempest and Typhoon [RLW94]. This protocol was further analyzed and improved by Falsafi
and Rogers [FLR+94].

Figure 2-5. Example EM3D bipartite graph.The vertical line represents a division of the
graph across two nodes of a distributed-memory system.

E H

H
E

H

E
H

E

31

Figure2-6 lists part of the shared-memory EM3D code. The parallel version assigns a

set of E nodes and a set of H nodes to each processor. During each iteration, every proces-

sor updates its own nodes. Because only one processor updates each node, no locking is

required. A barrier after each phase guarantees that all the new values for one type of node

have been written before any processor starts reading the values to update the other nodes.

On a distributed-memory system, the program reduces traffic by allocating the graph

nodes—that is, by placing their Stache home pages—in memory local to the processor

that owns them. Communication occurs only when one processor reads a value that is

typedef struct e_node {
double value; /* field value at this node */
int edge_count; /* number of edges/neighbors */
double *weights; /* vector of edge weights */
struct h_node *(*h_nodes); /* vector of adjacent H nodes */
struct e_node *next; /* next local E node */

};

void compute_E()
{

struct e_node *n;
int i;

for (n = e_nodes; n != NULL; n = n->next)
for (i = 0; i < n->edge_count; i++)

n->value -= n->h_nodes[i]->value * n->weights[i];
}

main()
{

int iter;

for (iter = 0; iter < num_iters; iter++)
{

compute_E();
barrier();
compute_H();
barrier();

}
}

Figure 2-6. EM3D program fragment.Thestruct h_node type andcompute_H()
function are symmetric withstruct e_node andcompute_E(), respectively.

32

written by another, which happens when a graph edge connects nodes owned by different

processors. Unfortunately, transparent shared memory does not support this producer–

consumer communication pattern efficiently. When a processor reads a remote graph node

value, the coherence protocol fetches the value and caches it. In the next phase, the owning

processor updates the node value, causing the protocol to invalidate the cached copy. Thus

in each iteration, each communicated value is fetched, cached, and invalidated, which

requires at least four messages (request, response, invalidation, and acknowledgment). I

optimized the transparent shared memory version to amortize this overhead by placing

multiple values in a cache block. This optimization modifies the graph node data structure,

replacing the embedded value with a pointer into a packed value array.

Tempest lets us optimize communication much more directly by using a custom protocol

for the graph nodes. In the first iteration, this protocol behaves very much like the Stache

protocol: references to remote values invoke block access fault handlers, which fetch and

cache the data. Unlike Stache, the protocol records information regarding the addresses

and nodes that are involved in each request. Because the graph does not change during

execution, each requester needs the same set of addresses in every iteration. This set can-

not be determined statically because the graph structure is input dependent.

After the first iteration, the protocol switches to update mode. After each phase, each

processor uses the sharing information obtained in the first iteration to send updated val-

ues to the processors that need them. Because the updates are simply user-level messages,

the protocol sends only the modified values, not full cache blocks. To further reduce over-

heads, the protocol packs all the values destined for a particular processor in a single mes-

sage, and transmits that message using Tempest’s virtual channels (see page18). Each

node also determines, from the information collected in the first iteration, how many

update messages it should receive; the full barrier is replaced by a loop that waits until all

of the expected messages arrive.

33

Using this custom Tempest protocol, iterations after the first reduce communication to

one message between each producer–consumer pair, the same level of communication

efficiency—and the same level of performance [FLR+94]—as a message-passing imple-

mentation. However, the program retains its original shared-memory structure. The only

changes to the code in Figure2-6 are a function call to initialize the custom protocol, a call

to notify it of the end of the first iteration, and calls to the new function that combines the

updates and synchronization (replacing the barriers). The graph data structure is still

pointer based; neither thestruct e_node type nor thecompute_E() function changes.

The initialization code (not shown in Figure2-6) uses a new memory allocation function

that places the graph nodes on pages serviced by the custom protocol, but is otherwise

unchanged. In contrast to the few simple changes in the original source, the custom proto-

col comprises over one thousand lines of C. This value overstates the protocol’s complex-

ity somewhat; this code represents one of the earliest custom protocols, and was written

without the aid of experience or protocol development tools.

Although other programming models may achieve similar levels of efficiency, they gen-

erally require more drastic modifications to the program’s code and data structures. For

example, the optimized Split-C version modifies the graph itself, explicitly inserting local

“ghost nodes” to cache remote values [CDG+93]. The optimized TSM version described

earlier adds a level of indirection from the graph nodes to their values to increase locality.

Even with this non-intuitive change, the TSM version falls well short of the Tempest ver-

sion’s efficiency. In contrast, the optimized Tempest program still enjoys the advantages of

a shared-memory model: pointer-based data structures in a uniform, global address space.

2.4.2 Appbt

Appbt is a three-dimensional computation fluid dynamics code from the NAS Parallel

Benchmarks collection [BBLS91], parallelized for transparent shared memory by Burger

and Mehta [BM95]. The primary data structure is a three-dimensional dense matrix. The

parallel version assigns a subcube of the matrix to each processor. All communication

34

occurs along the faces of these subcubes. The TSM version synchronizes by having pro-

cessors spin on shared counters. After a processor updates a column on a subcube face, it

advances the corresponding counter; the neighbor waiting for this column then performs

its computation which depends on the new values. The values are transferred on demand

as the processor references them. Assigning counters to columns, rather than faces, allows

processors to pipeline their dependent computations.

As in EM3D, the Tempest-optimized version of Appbt replaces all of the communica-

tion and synchronization in the main iteration with a single message between each pro-

ducer–consumer pair. This message notifies the receiver that the updated face is available

and carries the new values for that face. Unlike EM3D, the sharing pattern is not input

dependent, so no special first iteration is needed to determine it. Again, even though the

custom protocol achieves a message-passing level of efficiency, the bulk of the program

does not change from the original shared-memory version. Approximately one hundred

lines were added or modified, a small fraction of the roughly seven thousand lines in the

original program. Most of these changes were repetitive replacements of synchronization

statements. The custom protocol itself required about 750 lines of C.

2.4.3 Barnes

Barnes is an N-body gravitational force computation application from the SPLASH

benchmark suite [SWG92]. Barnes avoids calculating all N2 interactions by approximat-

ing the force from a distant cluster of bodies as that from a single body at the cluster’s cen-

ter of mass. The primary data structure is an oct-tree. The interior nodes of the tree

represent regions of three-dimensional space; the nodes at a given level of the tree bisect

their parent’s region in all three dimensions. The leaves of the tree are the bodies located

in the region represented by their parent node. The application iterates to simulate the evo-

lution of the system through discrete time steps. Each iteration has two phases. The first

builds the tree from scratch based on the current position of the bodies. The second calcu-

lates the new accelerations, velocities, and positions of the bodies.

35

The SPLASH transparent shared memory version parallelizes both phases of the itera-

tion. Each processor is responsible for a group of bodies. In the tree-build phase, the pro-

cessors add their bodies to the tree in parallel. Locks protect the internal tree nodes as new

levels are added to the tree. In the calculation phase, each processor updates its bodies, ref-

erencing other parts of the tree to calculate the applicable forces. Because a processor

writes only the bodies it owns, this phase needs no mutual exclusion.

We applied three Tempest optimizations to Barnes. The first and most significant optimi-

zation uses a custom update protocol to propagate the bodies’ new positions to potential

consumers. This protocol is more complex than those used by EM3D and Appbt because

there is no static sharing pattern. Instead, the processor sends position updates to the mem-

ory location’s home node, which forwards the data to the nodes that are caching the loca-

tion at the time. The second optimization replaces the shared-memory MCS locks

[MCS91] used for the internal tree nodes in the build phase with message-passing locks.

Both types of locks build a queue of waiting processors which spin locally until they are

granted the lock; by using Active Messages instead of shared-memory reads and writes,

the message-passing version generates half as much traffic as the MCS locks under con-

tention. All the locks are defined using the PARMACS macros [BBD+87], so this optimi-

zation can be applied simply by recompiling. For the third optimization, each processor

invalidates its cached tree nodes explicitly at the end of each iteration, eliminating the

implicit invalidation and acknowledgment messages that would otherwise occur as the

node structures are reused during the next tree build phase. Because the first optimization

modified the body data structure to isolate the position fields, source changes for the opti-

mized version of Barnes were more widespread than for the other applications, making it

difficult to quantify the scope of the changes.

2.4.4 DSMC

DSMC simulates gas particles moving and colliding in a three-dimensional space. The

space is divided into fixed cells. The first phase of each iteration randomly selects pairs of

36

particles in the same cell and simulates their collision. The second phase updates the parti-

cles’ positions, and the third and final phase reassigns particles to cells based on their new

positions.

The transparent–shared-memory implementation assigns a contiguous group of cells to

each processor. Interprocessor communication occurs only during the final phase of each

iteration, where a particle may be reassigned to a cell belonging to a different processor.

Rather than allowing one processor to manipulate another’s cell data structures directly,

each processor has a buffer that collects the particles that move into its cells. To avoid

locking, barriers divide the reassignment step into phases, and in each phase a processor

has exclusive access to the buffer of its neighbor in a particular direction. Most moves

occur between adjacent cells, so these phases capture most of the communication. A sepa-

rate buffer, protected by a lock, receives the few particles that move between non-adjacent

cells.

Because the TSM version of the program performs well, only one simple Tempest opti-

mization was applied. Instead of writing to the particle buffers using shared-memory

writes, processors send Tempest Active Messages to write the buffers on the destination

node. In addition to eliminating coherence overhead for the buffers, the atomic message

handlers serialize the writes, so all the nodes can issue their writes concurrently without

barriers or locking. This optimization modified only two lines in the original program. The

Tempest-optimized write protocol involves approximately 150 lines of code.

2.4.5 Moldyn

Moldyn is a molecular dynamics application that models force interactions between

molecules. To speed the calculation, moldyn computes interactions only between mole-

cules within a cut-off radius. The interaction list tracks pairs of molecules that are near

enough to interact. There are two main steps in the computation: one that examines every

pair of molecules to build the interaction list, and another that iterates over the interaction

37

list to compute the forces between interacting molecules. Moldyn rebuilds the interaction

list after every 20 iterations of the force computation.

The TSM version parallelizes both steps. In the first step, each processor examines a

fixed subset of the molecule pairs to generate a portion of the interaction list. In the second

step, each processor computes the forces due to the interactions on its portion of the list.

Because a molecule typically participates in many interactions handled on different pro-

cessors, the updates to the molecule’s state must be synchronized. Instead of locking the

molecule every time it participates in an interaction, each processor accumulates the

updates it generates for each molecule in a local array. After all the interactions have been

processed, the processors merge their updates using a synchronized reduction: in each of

N phases, separated by barriers, each of theN processors adds its updates to oneNth of the

shared molecule array. The communication in this phase resembles a pipeline, where each

Nth of the array migrates from node to node.

As with DSMC, the TSM version is heavily optimized to reduce communication. Tem-

pest allows programmers to take these optimizations to their logical conclusion. In the

custom-protocol version of moldyn, Tempest’s virtual channels used to move array sec-

tions from node to node in the molecule update reduction phase. This optimization is

straightforward to apply—changing only one line of the original code—because the mes-

sages simply implement the communication pattern the programmer was trying to achieve

with the original synchronous reduction algorithm. The virtual-channel protocol itself

involves less than two hundred lines of C.

2.4.6 Unstructured

Unstructured is a computational fluid dynamics application that uses a mesh to model

forces on a three-dimensional solid structure. The mesh is static but input dependent. The

computation consists of iterations over the nodes, edges, and faces of the mesh that update

values associated with the nodes. The parallel version partitions the mesh nodes across the

38

processors, then the edges and faces. An edge or face that connects nodes not all on the

same processor is assigned to one of the involved processors.

Loops that iterate over the mesh nodes require no synchronization, because a node is

only updated by the processor that owns it. Edge and face loops are more difficult: the

computation centered around an edge or face updates all the involved mesh nodes, which

may be owned by different processors. The naive solution—locking the nodes—leads to

poor performance due to the overhead of locking and the frequent migration of the mesh

node data structure. Instead, as in moldyn, each processor accumulates its updates locally,

then merges its updates into the global mesh data during a synchronous reduction phase.

This synchronous reduction is less effective in unstructured than it is in moldyn for two

reasons. First, theN-phase reduction (described on page37) circulates the entire shared

node array, piece by piece, to every processor, so that each processor has the opportunity

to update each node. If each processor updates only a fraction of the nodes, as is typically

the case for unstructured, then most of this communication is unnecessary. Second, each

update involves only a small amount of computation, so efficient communication is partic-

ularly critical for good performance. For these reasons, the Tempest-optimized version

replaces theN-phase reduction with a far more efficient custom protocol. This protocol

examines the mesh before the iterations begin to set up virtual channels connecting the

processors that share edges. Updates are sent across these channels directly to the node’s

owner, which then performs the reduction locally. This optimization added five lines in the

body of the program. The reduction protocol involves just over six hundred lines of C.

Although the reduction step efficiently updates the values for each node at the node’s

owner, these new values must be propagated to the other processors that reference them in

the edge and face loops. The TSM version fetches the new values on demand as the pro-

cessors reference them. The Tempest version optimizes this communication using a sec-

ond custom protocol, an update protocol very similar to the one used in EM3D (see

39

Section2.4.1). This optimization modified twelve lines in the body of the program. The

protocol itself is less than six hundred lines of C.

2.5 Related work

This thesis proposes flexible distributed-memory systems that provide only fundamental

mechanisms, allowing users to construct efficient, customized shared-memory policies.

The separation of mechanisms from policies as a technique for building flexible systems

first arose in the operating systems domain [Bri70, WCC+74, LCC+75]. Wulf rephrases

the concept as “primitives, not solutions” and argues for its application to processor

instruction sets, emphasizing the use of compiler technology to generate situation-specific

policies automatically [Wul81].

Dally and Wills [DW89] identify three universal primitive mechanisms for distributed-

memory systems: communication, naming, and synchronization. We agree on communi-

cation (messaging) as a fundamental mechanism. Their naming mechanism binds logical

to physical names—a generalization of local storage management, which performs the

same task on the restricted domain of memory addresses. They include synchronization

because of their focus on fine-grain concurrent programming models (e.g., dataflow) that

complement their fine-grain research platform, the J-Machine [DCF+89]. In contrast, I

focus on the medium- to coarse-grained shared-memory and message-passing models

prevalent on commercial hardware, where synchronization performance is less critical.

Although Dally and Wills describe a shared-memory model, they do not consider caching.

As a result, they omit access control. In particular, their mechanisms lack support for read-

only data replication.

This thesis differs from previous work on mechanisms for distributed shared memory in

its goal and scope. Johnson et al. [JKW95] decompose DSM systems into three high-level

mechanisms for the purpose of classifying implementations. Chaiken [Cha94] and Wood

et al. [WCF+93] focus solely on the coherence directory. In contrast, I propose mecha-

nisms as a tool to provide flexibility in both the caching and directory aspects of DSM.

40

Tempest is the first interface to provide flexible shared memory by allowing users to go

underneath the shared-memory abstraction, using fundamental mechanisms to construct

arbitrary protocols. Others have added features to the shared-memory model to achieve the

same goal of higher performance. Prefetching [MG91] and the checkin–checkout (CICO)

annotations [HLRW93] direct the local cache to fetch and replace blocks to anticipate

usage patterns. Poststore or deliver operations [LLG+92, RSW+93, KCPT95] let the user

select an update policy for individual writes. Munin [CBZ91] allows programmers to

annotate variable declarations to indicate the expected sharing pattern, so that the run-time

system can choose an appropriate protocol from the set that it implements. Clouds

[RAK89] provides operations that modify the synchronization and coherence semantics of

shared-memory operations. Labeling synchronization operations to implement weak con-

sistency models [AH90, BZS93, GLL+90] also falls into this category. Any of these

higher-level features could be implemented using Tempest’s mechanisms.

The integration of shared memory and message passing has been the subject of recent

work [KJA+93, HGDG94]. Tempest cleanly achieves this by exposing message passing as

one of the mechanisms used to implement shared memory. Other systems such as Alewife

[ABC+95], FLASH [KOH+94], and Start-NG [CAA+95] support both models, but do not

allow the user to combine their features arbitrarily. For example, none of these systems

allows data to be sent in a message without being renamed at the receiver. Frank and Ver-

non [FV93] propose extensions for a shared-memory machine that send data without

renaming. However, their message-passing and shared-memory primitives interact in a

fixed way and do not allow arbitrary coherence policies.

The Tempest mechanisms may be implemented in hardware, but Tempest protocols are

by definition software-based. Hybrid hardware–software support for shared memory was

first employed in VMP [CSB86, CGBG88], a bus-based shared memory system that uses

software at the processor caches to handle misses and support bus snooping. A follow-on

system, Paradigm [CGB91] (originally called VMP-MC [CGB89]) adds a simple hard-

ware directory at main memory to efficiently support a hierarchical-bus organization.

41

Hybrid protocols for distributed shared memory were first proposed for Alewife

[ABC+95], whose LimitLESS protocol [CKA91] implements a few pointers in hardware

and traps to software to handle blocks with many sharers. Dir1SW [HLRW93] and

Dir1SW+ [WCF+93] implement a single pointer in hardware, shifting even more complex-

ity into software. Alewife and Dir1SW use software only at the directory; caches are hard-

ware-controlled. FLASH [KOH+94] and Start-NG [CAA+95] implement shared memory

entirely in software. FLASH executes this software on a processor integrated in the mem-

ory controller and specially designed for this purpose. Start-NG uses a commodity proces-

sor with special external hardware for capturing and generating bus transactions. The one

perspective that all of these systems share, and that differentiates them from Tempest, is

that the software part of the protocol is protected system software, beyond the reach of

user processes. This severely restricts the flexibility of these approaches, since it implies a

protected interface and thus limited coupling between the application and the protocol. In

fact, the original motivation for the hybrid protocols in LimitLESS and Dir1SW was to

reduce hardware complexity, not to add flexibility . (Chaiken later explored modifying the

software part of LimitLESS to do profiling and adaptive optimization [Cha94].) Though

flexibility is an explicit goal of both FLASH and Start-NG, these systems lack a general,

portable interface for exporting that flexibility to user programs.

Tempest’s use of virtual address translation for local storage management is borrowed

from page-based software DSM systems, of which Ivy [Li86, LH89] was the first. Unlike

Tempest, these systems also use virtual address translation for access control, which

forces them to maintain coherence at the granularity of virtual memory pages. More recent

page-based DSM systems combat the resulting false sharing using weak memory models

and multiple-writer protocols [CBZ91, BZS93, KDCZ94]. Recently developed memory-

mapped network interfaces can merge updates from multiple writers at the home node

[IDFL96, kontothanassis:mmni-dsm], eliminating the overhead of copying and comparing

pages at each writer. Page-based allocation implies the use of local DRAM to cache

remote data, which gives all of these systems (including Tempest) some of the characteris-

42

tics of “cache-only” (COMA) machines like the KSR-1 [Ken92] and the Data Diffusion

Machine (DDM) [HLH92].

A number of systems combine page-based storage management with hardware fine-

grain coherence. PLUS [BR90], Sesame [WHL92], and Galactica Net [WJI+94] maintain

coherence at word granularity using a write-through hardware update protocol. Simple

COMA [HSL94] combines page-based allocation with an invalidation-based hardware

protocol to implement a COMA architecture.

Several software systems implement object-based shared memory on message-passing

machines. All of these systems amortize software overheads by performing access control

once for a group of accesses to an object. Emerald, Amber [CAL+89], and Orca [BKT92]

and maintain coherence on language objects and perform access control once per method

invocation. Midway [BZS93], CRL [JKW95], and SAM [SL94] rely on programmer

annotations both to identify objects and to group object accesses. Amber and Midway use

virtual address translation to map objects into local memory. CRL and SAM use a hash

table to map objects, but combine the translation with the coherence annotations so that

the lookup only occurs once per group of accesses.

2.6 Summary

Tempest is a flexible, portable interface for shared-memory programming on distributed-

memory machines. Tempest provides three fundamental mechanisms—messaging, local

storage management, and access control—that software can compose to construct cache-

coherent distributed shared memory. Direct, unprivileged access to these primitives gives

programs unprecedented control over their memory and communication. Programmers

and compilers can optimize performance by customizing coherence protocols for specific

data structures in specific phases of an application.

The Tempest interface is carefully designed to balance the portability, utility, and perfor-

mance of each mechanism it provides. Two complementary interfaces support messaging:

43

a variant of Active Messages [vECGS92] and asynchronous, bandwidth-oriented virtual

channels. The local storage management interface targets standard virtual address transla-

tion hardware. Tempest’s most innovative aspect is its specification offine-grain access

control, which avoids severe false sharing and allows protocols to scale to high-perfor-

mance systems.

Stache is a user-level library that implements application-transparent cache-coherent

distributed shared memory using the Tempest interface. Stache provides a large, fully

associative remote data cache on each node by mapping remote virtual pages into local

memory. Tempest’s fine-grain access control allows coherence on a much smaller granu-

larity. Stache implements a single-writer invalidation-based coherence protocol in soft-

ware.

Any DSM system with a single coherence protocol—including Stache—incurs unneces-

sary communication due to its fixed policy. Tempest gives programmers a practically

unlimited set of options for customizing communications policies to improve the perfor-

mance of shared-memory applications. Section2.4 described the optimizations applied to

six shared-memory programs.

Of course, Tempest is not useful unless it can be implemented portably and efficiently.

We have demonstrated all-software Tempest implementations on generic message-passing

platforms elsewhere [SFL+94, SFH+96]. The next chapter describes and analyzes three

system designs that provide hardware support to accelerate Tempest. This range of imple-

mentation alternatives demonstrates Tempest’s portability. I establish Tempest’s efficiency

by showing (via simulation) that the fastest of these systems—Typhoon—rivals all-hard-

ware distributed shared memory systems in performance.

44

45

Chapter 3

Hardware Support for Tempest

The Tempest interface is a contract between a system’s users and its developers. The

previous chapter focused primarily on the former group, discussing how Tempest can be

used to implement and optimize distributed shared memory. This chapter addresses the

concerns of the latter group: the practicality and performance potential of systems that

implement Tempest.

This chapter describes and analyzes designs for three systems—calledTyphoon,

Typhoon-1, andTyphoon-0—that use custom hardware to support the Tempest interface.

These designs have the following goals:

• to demonstrate that Tempest is portable across a range of implementations, including

high-performance systems;

• to illustrate techniques that can be used to support Tempest in hardware; and

• to provide the basis for obtaining quantitative performance results via simulation.

To further demonstrate the feasibility of these designs, I led the development of a proto-

type implementation of Typhoon-0. This prototype is described in Chapter4.

46

Rather than attempt to cover the full design space of Tempest systems, I focus on a sin-

gle access-control technique—bus-based snooping hardware. Bus-based hardware access

control provides higher performance than software techniques, and complements our other

work in the latter area [SFL+94, SFH+96]. On the other hand, more aggressive hardware

implementations require modified processors or caches, making them economically infea-

sible in the near term. See Section3.5 for further discussion of access control implementa-

tion alternatives.

Within this restricted domain, I develop three different systems by varying the level of

integration, or the coupling, of the logical components used for Tempest support. Greater

integration reduces communication overhead between components, leading to higher per-

formance. However, using a general-purpose off-the-shelf part reduces design time and

complexity compared to implementing that logic as part of a custom integrated device. For

rapidly advancing mass-market technologies such as processors, the off-the-shelf part is

likely to have better raw performance as well. Decoupling (separating) the functional com-

ponents lets designers plug in these off-the-shelf parts when available.

The overall cost difference between integrated and decoupled systems depends on

design complexity and manufacturing volumes. The integrated solution increases design

cost by an amount proportional to the custom device’s complexity. Even if the component

circuits are available, as is the case with embedded processor cores, it is costly to integrate

the circuits and verify the complete design. However, integration typically lowers manu-

facturing costs by reducing board space and physical component count. The integrated

solution is more expensive if the additional design cost, per unit, is greater than the reduc-

tion in manufacturing cost. For a complex component such as a processor in the (cur-

rently) low-volume market for distributed-memory machines, it is likely that design costs

dominate—and thus decoupled systems are cheaper. Of course, integration still is justified

when the need for additional performance outweighs the additional cost.

47

All three systems combine off-the-shelf workstations with a generic point-to-point data

network, leading to the common organization shown in Figure3-1. This “network of

workstations” approach [ACP95] leverages the rapid technological advances and the econ-

omies of scale of the workstation and personal computer markets. However, builders of

these systems are unable to modify or replace existing workstation components. Instead,

they add separate Tempest support hardware to each workstation node, interfacing with

both the node’s processor–memory bus and the network.

In each system, the Tempest support hardware comprises three logical components, plus

glue that connects them, as shown in Figure3-2. The first component, a processor, is dedi-

cated to executing protocol software (message and block access fault handlers). The other

two components directly support two of the three Tempest mechanisms. A network inter-

face, which connects the node to the data network, serves as the foundation for messaging.

Custom bus-snooping logic enforces Tempest’s fine-grain access control. The worksta-

tion’s existing virtual address translation facilities are sufficient for Tempest’s third mech-

anism, local storage management.

As discussed above, the three systems differ primarily in the extent to which they inte-

grate these components. Figure3-3 depicts each system’s level of integration graphically.

Of the three systems, Typhoon provides the highest performance—at the highest cost—by

integrating all three components on a single custom device. Typhoon-1 decouples the pro-

Network

Figure 3-1. Common system organization.

Cache

CPU

Mem Tempest
Support

Cache

CPU

Mem Tempest
Support

48

tocol processor, replacing Typhoon’s integrated processor with an off-the-shelf CPU.

Typhoon-0 achieves the lowest cost by splitting all three components across separate

devices, two of which—the protocol processor and the network interface—can be pur-

chased off the shelf. A relatively simple access control device is Typhoon-0’s only custom

component.

The first section of this chapter describes the common features of the three systems. The

following section (Section3.2) discusses the integrated Typhoon system. Section3.3 cov-

glue

protocol
processor

network
interface

access
control

Cache

CPU

Mem Tempest
Support

Figure 3-2. Logical components of Tempest support.

glue glue

Typhoon-1 Typhoon-0Typhoon

access
control

access
control

access
control

glue

Figure 3-3. Component integration diagram.For each system, a shaded rectangle indicates
the components integrated into custom hardware.

network
interface

protocol
processor

network
interface

network
interface

protocol
processor

protocol
processor

49

ers the two decoupled systems, Typhoon-1 and Typhoon-0. Section3.4 analyzes the per-

formance of all three systems using simulation. Section3.5 describes related work and

Section3.6 summarizes the chapter.

3.1 Common features

To focus on the integration–decoupling trade-off, all three systems use the same basic

techniques to support Tempest. This section describes these common features for each

Tempest mechanism—messaging, local storage management, and fine-grain access con-

trol.

3.1.1 Messaging

Each node interfaces to a reliable point-to-point network through a pair of hardware

queues, one in each direction. Sending a message requires writing a header word indicat-

ing the destination node and message length, followed by the message data, into the send

queue. A message is received by reading words out of the receive queue. A separate signal

indicates when a message is waiting at the head of the receive queue. The message queues

are memory mapped and directly accessible from user-level software via loads and stores,

as in the Thinking Machines CM-5. Although future network interfaces are likely to differ

in some details, I believe they will provide a similar queue abstraction [BCL+95,

MFHW96].

Network buffer management uses a simple acknowledgment-based scheme. Each net-

work interface reserves space in its receive queue for a small number of messages from

each sender. When a message is consumed by software, the NI generates an acknowledg-

ment to notify the sender that the buffer space is free. The sending network interface

counts the number of unacknowledged messages outstanding to each destination, and

rejects messages that would cause this count to exceed the number of reserved spaces at

the destination NI.

50

The run-time library avoids deadlocking for buffer space by queueing blocked messages

in the sending node’s memory and injecting them as acknowledgments arrive.1 Library

send functions may either query the NI’s outstanding message counter before attempting

to send and, if the counter indicates that no destination buffers are available, build the mes-

sage directly in the software queue; or they may attempt to send the message, check a sta-

tus bit afterward, and, if the message was rejected, copy the message out of the hardware

send queue. When the library puts a message in the software queue, it sets a hardware

mode bit that causes acknowledgments to invoke a software handler in the same manner as

protocol messages. This acknowledgment handler sends queued messages and clears the

mode bit when the software queue is empty.

Software implements Tempest’s Active Messages directly on top of the hardware

queues: the first word of each message is used for the receive handler’s program counter.

Tempest’s bulk data transfer functions are implemented in a straightforward fashion on top

of the Active Message layer.

3.1.2 Local storage management

The main processor’s virtual address translation hardware supports Tempest’s local stor-

age management. A special device driver manages a segment of the virtual address space

reserved for shared data, separate from the typical text, stack, and (private) data segments.

Page faults within this segment invoke a per-process user-level handler. The device driver

provides operations that bind and unbind addresses in the segment to physical memory.

Optimized operating system exception paths provide higher performance than the standard

Unix signal interface [RFW93, TL94].

1. Because Tempest does not prevent users from consuming unbounded amounts of buffer space, a
system cannot guarantee that deadlock will never occur (see Section2.2.1). An ill-behaved pro-
gram may terminate if the software queue overflows the sending process’ virtual memory.

51

3.1.3 Fine-grain access control

A snooping device on the memory bus enforces fine-grain access control using the sig-

nals intended for local bus-based coherence. On every bus transaction caused by a proces-

sor cache miss, the device checks its on-board tag store in parallel with the main memory

access. If the access conflicts with the tag, the device inhibits the memory controller’s

response (as if to perform a cache-to-cache transfer) and suspends the access. If the access

does not conflict with the tag, the device allows the memory controller to respond. In the

case of a read access to aReadOnly block, the device asserts the “shared” bus signal to

force the processor cache to load the block in a non-exclusive state. A subsequent write to

the block will cause the processor to initiate an invalidation operation on the bus, which

the device can then detect and suspend. Appendix B provides additional details on the

interactions with the bus-based coherence protocol.

Once a block is loaded into the processor’s cache, accesses that hit cannot be snooped;

these hits must be guaranteed not to conflict with the access tag. For this reason, tag

changes that decrease the accessibility of a block (e.g., fromWritable or ReadOnly to

Invalid) require a bus transaction to invalidate any copies that may be in the hardware

caches. When a block is initiallyWritable, the bus transaction also retrieves an up-to-date

copy, because the data could be modified in a hardware cache.

For efficiency, the snooping device allows direct manipulation of access control tags

from Tempest’s user-level protocol software. This software manipulates tags based on vir-

tual addresses, but—because the hardware sees only physical addresses on the bus—

access control is performed on physical memory locations. If software were to send virtual

addresses directly to the hardware, the device would be required to perform a translation

and a protection check. A shadow space[BLA +94, HGDG94, Thi91] avoids both of these,

as illustrated in Figure3-4. The access control device supports a physical address range—

the shadow space—as large as, and at a fixed offset from, the machine’s physical memory

address range. Accesses to a location in the shadow space are interpreted as operations on

52

the corresponding real memory location. When a user process allocates a physical mem-

ory page, the device driver described in Section3.1.2 provides a mapping to the corre-

sponding shadow space page as well.

3.2 Typhoon: integrated hardware support for Tempest

Typhoon [RLW94] combines the network interface, access control logic, and a user-

level protocol processor on a single device (see Figure3-5). To enable potential reuse of

existing VLSI design components, Typhoon’s protocol device is structured as a standard

processor with closely coupled on-chip peripherals. In contrast, the FLASH system’s

MAGIC chip [KOH+94] implements a specialized data path and control architecture tuned

for software-driven coherence protocol processing.

3.2.1 Protocol processor

The protocol processor is a standard pipelined integer unit, using the same instruction

set as the main CPU. To run user-level code efficiently, the protocol processor includes a

Physical

Physical

User

User

0
1
2
3
4

20000
20001
20002
20003
20004

PhysicalVirtual
0
1

1000
1001

Memory

Tag Space

Memory

Figure 3-4. Shadow tag space example.The hardware device interprets accesses to physical
tag space page2000x as tag operations on physical memory pagex. The user program requests
operations on its virtual pagey by accessing its virtual page100y. The shadow mappings (dashed
arrows) dual the memory mappings (solid arrows), implicitly translating the address component of
the user’s requests.

Tag Space

53

standard TLB and instruction and data caches. The processor, TLB, and cache designs

may be taken from a previous-generation CPU or an embedded ASIC core design.

The other components of the Typhoon device connect to the protocol processor’s cache

bus. Software running on the protocol processor accesses these components via memory-

mapped registers with single-cycle latency.

3.2.2 Access control (RTLB)

Typhoon implements access control using a component called thereverse translation

lookaside buffer, or RTLB (see Figure3-6). The RTLB is a cache with per-page entries

NI/AC/PP

Figure 3-5. Typhoon node, including a block diagram of the network interface/access control/
protocol processor device.RTLB is the reverse TLB; BB is the block buffer; the BAF buffer holds
information on block access faults. The second network send queue is for use by the compute
processor(s).

to network

to memory bus

Cache

CPU

Mem

Block
Xfer
Unit

Dis-
patch
Ctrl

T
L
B

B
B

Bus Interface

RTLB

BAF Buffer

Data
Cache

Instr.
Cache

Protocol
Processor

54

indexed by physical page number. Each entry contains the page’s access tags, the corre-

sponding virtual page number, a pointer to the page’s block access fault handler address

table, a per-page protocol data pointer, and the home node identifier. Each bus transaction

is checked against the tags stored in the RTLB. On a block access fault, the RTLB latches

the access type (load or store), the block’s access tag, the block’s virtual address (formed

from the stored virtual page number and the physical page offset), and the remaining fields

from the RTLB entry in a buffer. (The RTLB’s name comes from this ability to generate

the block’s virtual address from its physical address.) Dispatch code on the protocol pro-

cessor uses the access type, access tag, and handler address table pointer to identify and

invoke the appropriate block access fault handler function registered by the user. The vir-

tual address, protocol data pointer, and home node identifier are passed as arguments to

the handler.

A bus transaction may reference a page whose entry is not resident in the RTLB. In this

case, the RTLB defers the transaction and retrieves the entry from a memory-resident page

VPN

2 x blocks/page

page number block number block offs
Physical address:

2

PPN access tag vector(other)

access tag virtual address

Figure 3-6. Typhoon RTLB diagram.Arrows indicate how a physical bus address is processed
by the RTLB to generate the block’s access tag and virtual address. The handler table pointer, user
data pointer, and home node ID RTLB fields are not shown. The PPN field holds the physical page
number; VPN is the virtual page number.

55

table. To increase the RTLB’s coverage, an entry may indicate a region larger than a page

that does not require block access checks, such as text or kernel areas.

Protocol software manipulates the access tag values by reading and writing an RTLB-

supported shadow space. Tags are modified in the RTLB entry and written back to mem-

ory on replacement. An update to a non-resident entry first loads the entry from memory.

Values written to the shadow space may specify that, in addition to the tag change, the

memory block data should be transferred atomically to or from the network queues, as

described in Section2.2.4. By specifying a null tag change, software can use these com-

mands to perform simple block-sized network DMA transfers. These operations, as well

as other tag changes requiring a bus transaction (see Section3.1.3), are handled in con-

junction with the block transfer unit.

3.2.3 Block transfer unit and block buffer

The block transfer unit and block buffer help move data blocks efficiently into and out of

the Typhoon device. Their services play a role in supporting Tempest’s access control and

messaging functions. The block transfer unit copies data blocks directly between main

memory, the block buffer, and the network send and receive queues. Copies involving

main memory take advantage of burst transfers on the memory bus. In coordination with

the RTLB, the unit uses coherent memory operations to implement access tag downgrades

and the atomic block transfer and access tag change operations.

The block buffer functions as a flexible write buffer for data being copied to main mem-

ory. It is a 256-byte direct-mapped coherent data cache, organized as four cache blocks

with two 32-byte subblocks each, matching the compute processor’s cache block struc-

ture. The block transfer unit writes data destined for main memory into the block buffer,

where it is tagged with the destination address and marked as modified. The buffer may

perform a bus invalidation to guarantee that it has an exclusive copy with respect to the

local coherence protocol. If the block’s access tag isInvalid at the time of the write, as is

typical when data is received from the network, the access control logic guarantees that no

56

copies are cached, so the bus invalidation can be skipped. Because only entire blocks are

written, the buffer never fetches the previous version as a standard cache would. To keep

replacement-induced writebacks off the critical path, the buffer autonomously flushes

modified blocks to memory in the background.

Efficient data transfer on the completion of remote misses is an important benefit of the

block buffer. Data from the response message is copied into the block buffer without gen-

erating any bus traffic. When the main CPU retries the faulting access, the block is fetched

directly from the buffer (as a cache-to-cache transfer) without waiting for the data to be

written to memory.

3.2.4 Handler dispatch

Dispatch hardware accelerates the invocation of user handlers in response to message

arrivals and block access faults. Four memory-mapped registers provide a program

counter and three handler arguments. The scheduling loop simply loads these four values

into the processor’s register file, placing the arguments in the conventional argument-pass-

ing registers, and jumps to the PC. Hardware populates the dispatch registers from the

BAF buffer, if a block access fault has occurred, or from the network interface receive

queue, if a message is waiting there. If no events are pending, the dispatch hardware stalls

the register loads until an event occurs.

3.2.5 Primary CPU access

Most Tempest functions can be invoked both inside and outside of protocol handlers.

Computation threads executing on the primary CPU may send messages and manipulate

access tags. Typhoon provides a second send queue in the network interface to allow the

primary CPU to construct messages concurrently with the protocol processor. The two

send queues arbitrate for a single network port. To support tag manipulations from the pri-

mary CPU, the RTLB’s shadow space is accessible via the bus interface as well.

57

3.3 Decoupled hardware support for Tempest

Typhoon provides competitive high-end performance for Tempest, as will be shown by

the simulation results in Section3.4, but it requires a complex piece of custom hardware

that is expensive to design and manufacture. Designers can reduce the cost and complexity

of Tempest support—at the expense of some performance—by decoupling Typhoon’s

integrated components and replacing them with off-the-shelf parts, when available. This

section describes two decoupled designs: Typhoon-1 and Typhoon-0. Both designs replace

Typhoon’s integrated protocol processor with a general-purpose off-the-shelf CPU.

Typhoon-1 uses a custom device which integrates access control logic and a network inter-

face. Typhoon-0 also replaces the network interface with an off-the-shelf device, leaving

the access control logic as its only custom component.

A significant portion of Typhoon’s complexity is due to the integrated protocol proces-

sor. Even if the basic design for the processor and its caches is recycled from another

source, the cache bus and memory bus interface must be extended or redesigned to accom-

modate the additional components, and these components must deal with concurrent

accesses from the internal and external busses. Also, the die space consumed by the pro-

cessor and caches contributes significantly to the manufacturing cost. In contrast, an off-

the-shelf CPU is a mass-produced part that simply plugs into the memory bus. Because

Typhoon’s protocol processor is constrained by die size and faces the additional design

delay of component integration, the off-the-shelf processor is likely to have higher raw

performance as well.

Decoupling the protocol processor from the other Tempest-specific hardware creates an

opportunity as well. Instead of dedicating a processor, protocol processing tasks can be

shared among all of the processors. In effect, a virtual protocol processor is bound dynam-

ically, as needed, to a physical CPU. When there are no protocol events to handle, all of a

node’s processors can work on the application’s primary computation. Falsafi and Wood

[FW96b] show that this dynamic model is often more efficient than dedicating a protocol

58

processor, particularly when there are only two processors per node. Both the Typhoon-1

and Typhoon-0 hardware designs are capable of supporting either model. However, to pro-

vide a direct performance comparison with Typhoon’s dedicated, integrated protocol pro-

cessor, this dissertation assumes that the decoupled systems dedicate a protocol processor

on each node.

This section begins with three topics that apply to both decoupled designs. Section3.3.1

describescacheable control registers, a novel technique that reduces the overhead of com-

municating between an off-the-shelf CPU and a bus-based hardware device. Section3.3.2

describes how the systems use hardware-generated program counters to accelerate handler

dispatch. Section3.3.3 discusses the access control implementation shared by Typhoon-1

and Typhoon-0, including the specifics of dispatching block access fault handlers. Like

Typhoon, these systems use the snooping approach described in Section3.1.3; however,

the decoupling of the protocol processor indicates an implementation other than

Typhoon’s RTLB. Finally, Sections3.3.4 and 3.3.5 discuss the specifics of Typhoon-1 and

Typhoon-0, respectively.

3.3.1 Cacheable control registers

The drawback to decoupling the protocol processor is its effect on performance: the pro-

cessor must communicate with the other components across the memory bus, which is

both slower than an on-chip interconnect and subject to contention. Both decoupled sys-

tems use a novel technique,cacheable control registers, to efficiently transfer information

across the bus. A cacheable control register is a device register accessed using the local

bus cache coherence protocol. When the register is read, the device responds with a cache

block of data. Whenever the contents of the register change, the device issues a bus trans-

action to invalidate the cached copy. A cacheable control register has two features:

• As long as the register’s value does not change (and the block is not replaced),

repeated accesses are satisfied in the processor’s cache, reducing access latency and

bus traffic. This allows a processor to poll the register efficiently.

59

• An entire cache block of data is transferred in a single burst. If multiple words of data

must be fetched from the device, a burst is much more efficient than a series of

uncached loads, each requiring a separate bus transaction.

Both Typhoon-1 and Typhoon-0 use a cacheable control register, thedispatch register, to

accelerate the invocation of protocol handlers. The dispatch register leverages both cache-

able control register features, allowing the protocol processor to poll efficiently for events

and transferring several words of event information in one cache block (see Section3.3.3).

The Typhoon-0 design includes a second cacheable register—its block buffer, described

in Section3.3.5. This cacheable register lets the protocol processor fetch the buffer’s con-

tents—a full block of data—in a single burst transfer.

3.3.2 Handler dispatch

Unlike Typhoon, the decoupled systems do not map events directly to user handlers in

hardware. As described in the following section, their simplified access control hardware

does not store enough information to generate either the fault handler’s address or its argu-

ments. Also, Typhoon-0’s independent network interface prevents that system’s custom

hardware from dispatching message handlers directly. Each event requires a small amount

of dispatch software to determine the appropriate user handler address and set up the han-

dler’s arguments.

In both decoupled systems, custom hardware helps the protocol processor efficiently

check for events and invoke the appropriate dispatch software. The user arranges event

dispatch code in a table, much like a processor trap vector table.Hardware forms a pro-

Dispatch Table Base (24) 0 (6)

Block Access Fault (1)
Message Received (1)

Figure 3-7. Dispatch program counter format.Parenthesized numbers are field widths in bits.

60

gram counter within this table by concatenating an offset to the user-specified base address

[HJ92] (see Figure3-7). The offset is a bit vector indicating the set of pending events.

Four offsets encode the two possible events (message arrivals and block access faults).1

The offset is shifted up six bits, allowing up to sixty-four bytes (sixteen SPARC instruc-

tions) for each table entry.

Instead of testing device status bits explicitly, the protocol processor polls by simply

loading and jumping to the program counter address. The initial code table entry contains

the polling loop; when no events are pending, the offset is zero and the indirect jump

returns to the top of the loop.

This dispatch hardware also supports systems without dedicated protocol processors, as

discussed earlier. In these systems, the initial code table entry contains a return instruction

rather than the polling loop. A thread polls for events in the midst of other computation by

performing an indirect call on the dispatch PC. Control returns to the computation imme-

diately if no events are pending. Each poll expands code size by as few as two instruc-

tions—a load and an indirect call—assuming that a CPU register contains the device

register’s address and that the call’s delay slot can be filled with useful work. (On SPARC

version 8 systems, this sequence has the additional advantage that it does not modify the

processor’s condition codes, which are costly to save and restore.) The run-time overhead

of the poll includes the cost of the control transfer and the execution of the return instruc-

tion in the dispatch table.

3.3.3 Access control

Typhoon’s RTLB is not necessarily the best access control structure for a decoupled sys-

tem. The RTLB both enforces fine-grain access control and caches the per-page data

needed by a block access fault handler. The latter feature is useful primarily because the

RTLB is tightly coupled with the protocol processor. Decoupling also reduces the benefit

1. The Typhoon-0 prototype adds two software-controlled event types, for a total of 16 offsets.

61

of integrating these two functions—i.e., combining the access tag and per-page data look-

ups, and using the stored virtual page number to perform the full reverse translation in

hardware—because the overhead of sending the event notification across the memory bus

dominates the handler invocation latency. Instead, the decoupled systems separate these

functions, enforcing access control in custom hardware but caching handler data in the

protocol processor’s data cache. The larger size of the off-the-shelf processor’s data cache,

relative to the one afforded by Typhoon’s integrated device, mitigates the performance

impact of storing this additional data.

In both decoupled systems, the access control device maintains only the two-bit access

tags for each memory block. The device stores the tags for all of physical memory in an

on-board SRAM array indexed directly by physical address. (For a 32-byte block size, one

Mbyte of SRAM holds the tags for 128 Mbytes of physical memory.) As in Typhoon, a

shadow space provides protected user-level tag access.

An inverted page table in cacheable main memory stores the same per-page information

cached by each Typhoon RTLB entry—the virtual page number, a pointer to the page’s

block access fault handler address table, a protocol data pointer, and the home node identi-

fier. Although this table occupies virtual memory proportional to the amount of installed

physical memory, only the portions containing valid entries are allocated and mapped.

On a block access fault, software obtains the physical page number from the access con-

trol hardware and uses it to index the appropriate inverted page table entry. From there, it

combines the virtual page number with the hardware-supplied page offset to form the vir-

tual address, then selects and invokes the appropriate handler. Two features accelerate this

process. First, the cacheable dispatch register transfers all the needed information from the

hardware device in a single burst: the physical address of the block on which the fault

occurred, the access type (read or write), and the block’s tag value. Second, the hardware

formats this data to accelerate fault handling, as shown in Figure3-8. For example, the

physical page number is in a separate word and is pre-shifted to form an index into the

62

inverted page table. From the detection of a block access fault to the invocation of the

appropriate Tempest user handler requires only eight SPARC instructions (detailed in

Figure3-9).

To avoid expensive switches between processor privilege levels, the dispatch software is

unprivileged, user-level code, just like the Tempest handlers it invokes. Exposing physical

addresses to the user does not compromise security, because the addresses are only mean-

ingful as indices for the inverted page table. If a virtual page is remapped to a different

physical page, the operating system transparently relocates the corresponding table entry.

However, after the user obtains a physical address from the hardware, the operating sys-

tem should not remap the physical page until the dispatch software has retrieved the infor-

mation from the inverted page table. By restricting the valid operations on and the lifetime

of addresses retrieved from the hardware, the operating system can detect that the physical

address is in use and either avoid remapping the page in that interval or restart the transla-

tion sequence after completing the remap [BRE92].

3.3.4 Typhoon-1

The Typhoon-1 design divides its Tempest support into two parts: a general-purpose off-

the-shelf CPU and a separate device that combines the network interface and access con-

trol logic, as shown in Figure3-10. The network interface queues, block transfer unit, and

block buffer are identical to the corresponding Typhoon components, except that they con-

nect only to the memory bus interface. Unlike Typhoon, the device provides only one net-

work send queue; software must guarantee mutual exclusion between conflicting accesses

from the protocol and computation threads.

The access control logic operates as described in Section3.3.3. It implements a shadow

space functionally identical to that supported by Typhoon’s RTLB. As in Typhoon, the

integrated block transfer unit and network interface cooperate to support atomic block

transfer and access tag change operations. The block buffer holds data to be written to

memory and accelerates the completion of remote misses.

63

Dispatch PC (32)

Physical Page Number (24)

Page Offset (12)

Access Type (1)
Tag (2)

0 (4)0 (4)

0 (2)0 (27)

0 (20)

Figure 3-8. Dispatch register layout for block access faults. Parenthesized numbers are field
widths in bits. The access control device aligns fault information to accelerate the handler dispatch
code (see Figure3-9). Because this register is cacheable, these four words are transferred in a
single bus transaction.

offset: 0

4

8

12

ldd [%l7+8], %l2 load from dispatch register:
fault page offset→ %l2
fault tag/access type (shifted)→ %l3

ldd [%l5+%l1], %o0 . . load from inverted page table:
virtual page number→ %o0
user protocol data pointer→ %o1

ldd [%l6+%l1], %o2 . . load from inverted page table:
home node ID→ %o2
handler table ptr→ %o3

ld [%o3+%l3], %o3 . . load from handler table:
user handler function ptr→ %o3

or %o0, %l2, %o0 . . . fault virtual address (virtual page number| offset)→ %o0
call %o3call user handler; arguments are:

%o0 – fault virtual address
%o1 – user protocol data pointer
%o2 – home node ID

ldd [%l7+0], %l0 load from dispatch register:
dispatch PC→ %l0
fault physical page number (shifted)→ %l1

jmp %l0jump to event-specific dispatch code

Local registers are initialized as follows:
%l5 – inverted page table base
%l6 – inverted page table base + 8
%l7 – device dispatch register base

Event polling code:

Block access fault dispatch code:

Figure 3-9. Dispatch code for block access faults. The SPARCldd instruction loads a 64-bit
doubleword into two adjacent 32-bit registers. In practice, the instructions are reordered to fill
delay slots and minimize load-use stalls. Assuming cache hits, these eight instructions take ten
cycles on the Ross HyperSPARC, a dual-issue processor with a one-cycle load-use delay.

64

The Typhoon-1 device’s cacheable dispatch register integrates dispatch of access fault

and message handlers. For either event type, the device supplies enough information in the

dispatch register block to invoke the appropriate user handler with arguments. When a

block access fault occurs, the device provides fault information as described in

Section3.3.3. If a received message is indicated, the other words in the block contain the

message’s source, its length, the sender-specified handler PC, and the first word of the

body (used for the cache block virtual address in a typical coherence protocol). Because

the register block can supply fault or message information, but not both, the hardware

must select one event when both types are outstanding. To avoid starving local misses

under heavy load, block access faults take precedence over received messages.

Cache

NI/AC

Cache

Mem

Figure 3-10. Typhoon-1 node,including a block diagram of the network interface/access
control device. Control logic, other than the block transfer unit, is not shown.

Bus Interface

to memory bus

addr

2
data

to network

compute
CPU

protocol
CPU

Block
Buffer

Tag
SRAMBlock

Xfer
Unit

Dispatch
Reg

65

The dispatch mechanism must guarantee that exactly one handler is invoked for each

event. The cacheable dispatch register cannot use clear-on-read semantics—the standard

solution for this situation—because the processor must read multiple words from the dis-

patch block; these reads may result in multiple fetches from the device if the block is

replaced from the cache, which could occur at any time due to conflicts or interrupts.

Instead, Typhoon-1 uses a circular queue of four dispatch registers. The protocol processor

polls a register, starting with the first, until an event occurs. After the event is handled, it

continues polling using the next register in the queue. The access to the new dispatch reg-

ister informs the device that the previous event has been handled. The device invalidates

the old register so it is ready for use the next time around the queue. In the unlikely case

that the device is unable to invalidate old register copies as quickly as the protocol proces-

sor consumes new ones, the device may stall dispatch register requests until it catches up.

3.3.5 Typhoon-0

The protocol processor is not the only Tempest component that can potentially be pur-

chased off the shelf. Low-latency commercial networks such as Myricom’s Myrinet

[BCF+95] and DEC’s Memory Channel [Gil96] are emerging on the market. These propri-

etary interconnects interface to standard I/O busses such as PCI. To take advantage of

these off-the-shelf networks, Typhoon-0 separates Tempest support functions across three

devices: a protocol processor, a network interface, and a fine-grain access control device.

The first two components are off-the-shelf parts, while only the third is custom hardware.

Figure3-11 shows a block diagram of a Typhoon-0 node. Chapter4 describes a prototype

implementation of Typhoon-0, including a custom FPGA-based access control device,

which demonstrates the feasibility and relative simplicity of this design.

Typhoon-0’s access control device implements the two-bit directory described in

Section3.3.3. It also provides a shadow space for user-level tag manipulation. A read from

the shadow space returns the corresponding tag value; a write modifies the tag. When

access to a block is downgraded (e.g., fromWritable to Invalid), the device issues a read-

66

invalidate bus operation to invalidate any cached copies and retrieve the current version,

which may reside only in a processor’s cache.

The block buffer (shown in Figure3-11) holds the data returned by the latest read-inval-

idate. The block buffer is a cacheable register, so a processor can read its contents in a sin-

gle burst. Because Typhoon-0’s block buffer is not involved in transfers from the network

to main memory, it is much simpler than that of Typhoon or Typhoon-1: it holds only one

block, resides at a fixed address and does not have an address tag.

Atomic block transfer and access tag change operations—implemented in hardware in

Typhoon and Typhoon-1—require software-controlled sequences of suboperations in

Typhoon-0. These sequences must be designed carefully to avoid the race conditions

described in Section2.2.4. For example, to combine a block send with a tag change from

Writable to Invalid, the processor first changes the tag, initiating a read-invalidate from the

access control device. The processor then synchronizes with the device, using an uncached

Figure 3-11. Typhoon-0 node,including a block diagram of the access control device. The
device’s control logic is not shown. The network interface is shown on the memory bus, but may
be attached to an I/O bus instead.

1

Bus Interface

to memory bus

addr

2
data

Cache

NI

Cache

ACMem

from NI

to network

compute
CPU

protocol
CPU

Dispatch
Reg

Block
Buffer Tag

SRAM

67

load, to guarantee that the read-invalidate has completed. Finally, it copies the contents of

the block buffer to the network interface. Similarly, when combining a block receive with

a tag change fromInvalid to Writable or ReadOnly, the processor writes the data via an

uncached alias that bypasses the access tag check, then upgrades the tag.

The Typhoon-0 access control device provides a dispatch register similar to that of

Typhoon-1. Of course, unlike Typhoon-1, this single-purpose device cannot fully integrate

the dispatch of message and block access fault handlers. However, to avoid having the pro-

tocol processor poll the access control device and the network interface separately, the dis-

patch register can indicate message arrivals as well as access faults. If the network

interface provides an accessible message arrival interrupt signal, it can drive an input on

the access control device, as shown in Figure3-11. This input signal controls a status bit in

the dispatch register. To remain independent of the semantics of the NI’s interrupt line, the

dispatch register sets the message status bit on any transition of the input signal; software

clears the bit after it has drained the NI queue. Even with this optimization, the dispatch

register indicates only the existence of a message; the NI must be accessed explicitly to

determine the message handler to invoke.

Unlike Typhoon-1, Typhoon-0’s hardware does not prioritize events. When both block

access fault and message events are pending, the dispatch register sets both status bits.

Event prioritization is left to software, which handles block access faults first. After an

event is handled, a write to an uncached register clears the corresponding status bit.

Because the access control device supports only a single dispatch register, the processor

must perform an uncached load to guarantee that the stale copy has been invalidated

before it resumes polling.

3.4 Performance

This section compares the performance of these three designs via simulation. I first

describe the simulation parameters and methodology, then present results for a simple

microbenchmark and a set of application macrobenchmarks. Section3.4.3 examines the

68

impact of network latency on application performance, and Section3.4.4 examines the

impact of integrating a lower-performance protocol processor in Typhoon.

The nodes of the simulated systems are based on the technology used for the Typhoon-0

prototype. Each node has a 200MHz dual-issue SPARC processor with a 1Mbyte direct-

mapped data cache with 64-byte address blocks and 32-byte subblocks.1 The instruction

cache is not modeled; all instruction references are treated as hits. The instruction laten-

cies, issue rules, and memory hierarchy are modeled after the Ross HyperSPARC [Ros93,

Sho94].

A 50 MHz MBus, as used in the Sun SPARCStation20, connects the processor(s), mem-

ory, access control and network interface devices within each node. The MBus is a 64-bit,

multiplexed address/data bus that maintains coherence on 32-byte blocks using a MOESI

protocol [Sun91]. On a cache miss, main memory returns the critical doubleword 140ns

(seven bus cycles or 28 processor cycles) after the MBus request is issued, followed by the

remaining doublewords in consecutive bus cycles. Miss detection, processor/bus clock

synchronization, and bus arbitration add 11-14 processor cycles to the total miss latency.

The bus simulation accounts fully for occupancy, contention, and arbitration delays; the

model is sufficiently detailed and accurate that the same simulator was used for initial

functional design of the Typhoon-0 prototype’s access control device.

On a block access fault, the access control logic inhibits the memory controller and gives

the requesting processor an MBusrelinquish and retry response, forcing the processor to

rearbitrate for the bus. The access control device masks the arbiter to keep the processor

off the bus until the access can be completed [LLG+92]. Although this technique cannot

be implemented on an unmodified SPARCstation20, its performance is representative of

more recent systems which support deferred responses, either explicitly (lik e the Intel P6

[Gwe95]) or using a split-transaction bus.

1. These processor parameters reflect announced technology that could be installed in the proto-
type system; because the prototype was assembled at an earlier date, and under cost constraints,
it uses 66MHz processors with 256 Kbyte caches.

69

Timing parameters for the Typhoon-0 and Typhoon-1 access control devices are taken

from the FPGA-based Typhoon-0 implementation. The devices are clocked at bus speed

(50Mhz). Tag and control register accesses take three and four bus cycles, respectively.

For reads to cacheable control registers, the first data word is returned in three bus cycles

and additional words are returned on every second cycle.

To equalize the comparison with Typhoon-0 and Typhoon-1, which store all the access

tags on the access control device, the Typhoon RTLB is assumed to be large enough to

map all the active shared pages on each node. Because simulation limits the size of the

data sets, it is unlikely that replacement overheads due to a finite RTLB would affect the

results significantly.

The network interface queues transfer up to 64 bits per cycle, at the bus clock rate in

Typhoon-1 and Typhoon-0 and at the protocol processor clock rate in Typhoon. Each node

may have at most four messages outstanding to each other node. The simulated

Typhoon-0’s network interface queues are located in an independent MBus device, similar

to the CM-5 NI, with a message arrival signal that feeds the access control device’s dis-

patch register. Register access delays are set to match measured results from the CM-5:

seven bus cycles for reads and three for writes.

Network contention is modeled at the interfaces, but not internally. As a result, the net-

work wire latency, measured from the injection of the tail at the sending network interface

to the arrival of the head at the receiving interface, is constant. To emphasize the perfor-

mance impact of DSM support, the default latency is a fairly aggressive 0.5µs

(100processor cycles). Although dedicated MPP interconnects may surpass this speed,

current off-the-shelf networks are typically slower by an order of magnitude or more.

Section3.4.3 examines the overall performance impact of higher latency networks.

The systems have identical hardware support for barrier synchronization. As each node

arrives at a barrier, it sets a bit in a bus device register and spins on a second bit, which the

70

hardware sets after all nodes have arrived. The latency from the last arrival to notification

matches the one-way network latency. The notification bit resides in a cacheable control

register so that processors can spin-wait without consuming bus bandwidth. Although this

barrier hardware is inspired by MPPs such as the CM-5 [LAD+92] and Cray T3D [KS93],

PAPERS [DCMM94] demonstrates how it can be added inexpensively to a cluster of PCs

or workstations. None of the benchmarks in Section3.4.2 performs a significant amount

of barrier synchronization, so the absence of this feature would not noticeably affect the

results.

To isolate the effects of decoupling, Typhoon-0, Typhoon-1, and the integrated Typhoon

all use a dedicated protocol CPU identical to the compute CPU. Although this assumption

results in a more controlled experiment, it diverges from expected practice in two ways.

First, the symmetric dual-processor nodes of the decoupled designs may be used more

efficiently by dynamically scheduling protocol handlers and computation across both pro-

cessors (see page57). Second, the design effort required for an actual Typhoon implemen-

tation would likely result in an integrated protocol processor that is a generation or more

behind the compute processor. Section3.4.4 examines the effect of using a slower proces-

sor in the integrated Typhoon device.

To quantify the performance impact of software protocols, a fourth system—an ideal-

ized implementation of Simple COMA [HSL94]—is included as a baseline. This system

is similar to Typhoon, but replaces the protocol processor with a hardwired engine imple-

menting a full-map invalidation-based coherence protocol. The idealized protocol engine

processes each access fault or message event with zero overhead, including manipulation

of protocol state and the injection of an arbitrary number of messages. Events are pro-

cessed at a maximum rate of 200MHz. Messages observe latency due to network trans-

port, potential queueing at the controller, and fetching data over the MBus. Due to the

structure of the simulator, messages observe an additional cycle of pipelined latency

between arrival and processing.

71

To obtain results, application codes are compiled and linked with portable software pro-

tocols (written in C using the Tempest interface) and platform-specific Tempest runtime

software, exactly as they would be for an actual implementation. A rewriting tool (based

on EEL [LS95]) processes the resulting SPARC binaries, replacing memory accesses with

calls to the simulator and adding instrumentation to count instruction execution cycles.

Direct execution of the modified binaries drives the detailed discrete-event simulator. To

enable larger systems and data sets, the system nodes are simulated in parallel on a Think-

ing Machines CM-5 using a conservative, synchronous parallel simulation algorithm

based on the Wisconsin Wind Tunnel [RHL+93].

3.4.1 Microbenchmark

To gain insight into the overheads of these systems, this section breaks down the latency

of a simple remote read miss. When the miss occurs, a cache page is already allocated on

the caching node and the block is idle (unshared) at the home node. On the caching node,

the miss access invokes a block access fault handler—part of the hardware state machine

on Simple COMA, or software on the Typhoon systems—which sends a request to the

home node. At the home, the message handler downgrades the block fromWritable to

ReadOnly and sends a copy to the requester. Back at the caching node, the response mes-

sage handler writes the data to memory, changes the block’s tag toReadOnly, and signals

the compute processor to retry the access.

The results are presented in Table3.1. The common system assumptions lead to a mini-

mum latency of 299 processor cycles. The home node latency includes two bus cycles

(eight processor cycles) to request and acquire the bus and ten bus cycles (40 processor

cycles) to fetch the block. (Block data is not pipelined into the network.) On the caching

node, the final step (“fetch data, resume”) includes seven bus cycles (28 processor cycles)

to fetch the critical word and three processor cycles to forward the data to the CPU and

complete the load. The idealized Simple COMA system requires one additional cycle per

message, for a total of 301 processor cycles, or about 1.5µs. For comparison, the Stanford

72

FLASH designers report remote read miss latencies of 1.11 and 1.45µs, depending on

whether the data is dirty in the remote processor’s cache [HKO+94].1

1. Because the systems described here always fetch data over the coherent memory bus, latencies
are independent of data’s hardware cache status.

Table 3.1:Remote miss latency breakdown for simulated systems.

Location Step
Latency (200MHz cycles)

S-COMA Typhoon Typhoon-1 Typhoon-0

Caching
node

detect HW cache miss,
issue bus transaction 10 10 10 10

detect access fault,
dispatch handler 0 6 101 101

get fault state 0 16 18 18

send msg 0 13 45 45

Network request msg latency 100 100 100 100

Home
node

dispatch msg handler 1 6 78 159

read msg 0 3 7 40

directory lookup, branch 0 20 20 20

send msg header 0 17 38 52

fetch data from memory,
change tag, send 48 48 122 293

Network response msg latency 100 100 100 100

Caching
node

dispatch msg handler 1 6 78 159

read msg header 0 3 7 40

read msg data, change tag 0 12 20 261

unmask CPU,
reissue bus transaction 10 10 32 32

fetch data, resume 31 31 31 31

Totals 200 MHz CPU cycles 301 401 807 1461

50 MHz bus cycles 76 101 202 366

microseconds 1.5 2.0 4.0 7.3

bus transactions 3 3 16 36

73

Because these fundamental latencies dominate, Typhoon takes only 33% longer to sat-

isfy the miss despite the cost of running software handlers. The decoupled designs do not

fare as well in this comparison. Going from Typhoon to Typhoon-1, the miss latency

roughly doubles; going to Typhoon-0, it nearly doubles again. As expected, this correlates

with a large increase in the number of bus transactions needed to satisfy the miss.

3.4.2 Macrobenchmarks

To determine how these overheads translate into application performance, I simulated

the six shared-memory applications described in Section2.4. All benchmarks are written

in C and were compiled with gcc version 2.6.3 at optimization level -O2. Table3.2 sum-

marizes the applications and indicates the data sets used.

Table3.2 also reports each application’s fragmentation overhead—the amount of addi-

tional physical memory consumed because of Tempest’s page-granularity allocation. Spe-

cifically, the table reports the number of allocated but unused physical memory blocks,

expressed as a percentage of the number of allocated and used blocks. A block is consid-

Table 3.2:Benchmark applications and data sets.

Benchmark
Application

domain
Primary data
structure(s)

Data set
Frag.

overhead

appbt CFD 3D array 32x32x32 array, 5 iterations 58%

Barnes hierarchical
N-body

oct-tree 16,384 bodies, dtime=0.025,
tstop=0.075 (4 iterations)

373%

DSMC Monte Carlo
particle-in-cell

cell array,
particle list

48,000 particles in 9720 cells,
increasing to 72,000 particles,
400 iterations

68%

EM3D electro-
magnetics

static bipartite
graph

192,000 nodes, degree 5,
5% remote edges, 20iterations

175%

moldyn molecular
dynamics

molecule list,
interaction list

8788 particles, 30iterations,
interaction list rebuilt once

16%

unstructuredCFD static mesh 9428 nodes, 59863edges,
5864faces, 5iterations

129%

74

ered used if it contained valid data at any point in the program. These values were obtained

from simulations using 64-byte blocks, 4096-byte pages, and unlimited physical memory

at each node. Restricting the available physical memory could force page repplacements,

reducing the actual physical memory overhead.

Although I simulated the full applications, I report results for only the second and fol-

lowing computation iterations to focus on the portion of execution where a production ver-

sion will spend most of its time. For most of the applications, iteration times are very

regular, so meaningful results require only a few iterations. There are two exceptions. In

moldyn, the molecule interaction list is occasionally rebuilt, resulting in an iteration that is

an order of magnitude longer than the others; I simulate far enough to include the first of

these rebuilds. DSMC simulates gas particles in a region with an incoming flow, so at first

the number of particles increases with each iteration. It is impractical to simulate far

enough to reach steady state, so I arbitrarily chose to run for 400 iterations. As the number

of particles increases, the speedup also increases, but very slowly; I do not expect results

for a longer run to be qualitatively different.

Although parallel simulation on the CM-5 allows larger benchmark runs than sequential

simulation, working set sizes are still too small to cause replacements in each node’s main-

memory–based remote data cache. Because no page replacement and very little initial

page allocation occurs during the measured interval, the Simple COMA results provide an

approximate upper bound for the performance of hardwired CC-NUMA systems similar

to DASH [LLG+92].

All of the benchmarks except EM3D use the first-touch migrate-once scheme described

on page24. EM3D explicitly allocates the graph so that writes are always to local pages.

Figure3-12 shows speedups for the transparent–shared-memory (TSM) applications on

32-node systems. For the Tempest systems, this requires simply linking with the standard

protocol library, which implements the same sequentially consistent full-map invalidation

75

protocol used in the Simple COMA system. These speedups are relative to the best avail-

able sequential version on a workstation identical to one node of the parallel system.

Although these applications do not take advantage of the Tempest interface, they have

been tuned for performance within the TSM model; see Falsafi etal. [FLR+94] and

Mukherjee etal. [MSH+95] for details. These benchmarks achieve speedups of 19 or bet-

ter on the Simple COMA system, with the exception of unstructured at under five. (The

large speedup for appbt is due to cache effects; one third of the sequential execution is

spent waiting for cache misses.)

I ran all of the benchmark/system combinations for block sizes of 32, 64, 128, and 256

bytes. For the larger block sizes, every inter-node coherence action involves multiple

32-byte MBus blocks. Due to space restrictions, I only present results for 64-byte coher-

ence blocks. The 64-byte block size is within 10% of the best performance for most cases.

The only exceptions are EM3D, which is 10–40% faster with 512 byte blocks, and

unstructured, for which Typhoon and Typhoon-1 are 12–14% faster at 256 bytes.

���

��

��

��

��

���

���

	�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�		�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���

���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

��

��

��

���

��

��

���

�������������������������

�����������������������������������

���������������
����������

0
4
8

12
16
20
24
28
32
36
40
44
48

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Benchmark/System

S
pe

ed
up

appbt barnes dsmc em3d moldyn unstructured

Figure 3-12. Application speedups for transparent shared memory on 32-node systems.
SC=Simple COMA, T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

76

To facilitate system comparisons, Figure3-13 presents execution times for the TSM

benchmarks normalized to the Simple COMA system, breaking out the time spent by the

main processor on computation and on read, write, TLB, and synchronization stalls. Two

of the benchmarks—EM3D and unstructured—have poor processor efficiency, spending

less than a third of the time computing even on the Simple COMA system. Unstructured

fails to produce much speedup for any platform. EM3D achieves speedup on the inte-

grated systems because its large (20MB) data set thrashes the uniprocessor’s cache and

TLB, but fits in the caches and TLBs of the parallel system. The uniprocessor execution

spends over 87% of its time waiting for the memory system—45% on cache misses and

42% on TLB misses.

Even on these unmodified applications, Typhoon’s performance is at most 25% less than

the idealized Simple COMA’s, and is under 10% for the four benchmarks with higher effi-

ciencies. Typhoon demonstrates that the flexibility of Tempest’s user-level software proto-

col processing is compatible with high performance.

��

��

��

��

���

���

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�"

#�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�##�#�#

$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$$�$�$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%

&�&�&&�&�&&�&�&&�&�&&�&�&

'�'�''�'�''�'�''�'�''�'�'

(�(�((�(�((�(�((�(�((�(�(

)�)�))�)�))�)�))�)�))�)�)

��**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�**�*�*

+�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,,�,�,

-�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�--�-�-

.�.�.�..�.�.�..�.�.�..�.�.�..�.�.�..�.�.�..�.�.�.

/�/�//�/�//�/�//�/�//�/�//�/�//�/�/

0�0�00�0�00�0�00�0�00�0�00�0�00�0�0

1�1�11�1�11�1�11�1�11�1�11�1�11�1�1

2�2�22�2�22�2�2
3�3�3�33�3�3�33�3�3�33�3�3�3

4�4�44�4�44�4�44�4�44�4�44�4�4

5�5�55�5�55�5�55�5�55�5�55�5�55�5�55�5�55�5�55�5�55�5�5

6�6�66�6�66�6�66�6�66�6�6

7�7�77�7�77�7�77�7�77�7�7

8�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�8

9�9�99�9�99�9�99�9�99�9�99�9�99�9�99�9�99�9�9

:�:�: ;�;�; <�<�<<�<�< =�=�=�==�=�=�==�=�=�=

>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>>�>�>

?�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�?

@�@�@

A�A�A

B�B�BB�B�BB�B�B
C�C�CC�C�CC�C�C

D�D�DD�D�DD�D�DD�D�DD�D�D

E�E�EE�E�EE�E�EE�E�EE�E�EE�E�EE�E�E

F�F�F�FF�F�F�FF�F�F�F
G�G�G�GG�G�G�GG�G�G�GG�G�G�G

H�H�HH�H�HH�H�HH�H�HH�H�HH�H�HH�H�H

I�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�I

J�J�JJ�J�J K�K�K�KK�K�K�K L�L�LL�L�LL�L�LL�L�LL�L�L
M�M�MM�M�MM�M�MM�M�MM�M�MM�M�M

N�N�N O�O�O
P�P�P�PP�P�P�P Q�Q�QQ�Q�QQ�Q�Q

R�R�R S�S�SS�S�S T�T�TT�T�T U�U�U�UU�U�U�UU�U�U�U V�V�VV�V�V W�W�WW�W�WW�W�WW�W�WW�W�W

X�X�X Y�Y�YY�Y�Y Z�Z�ZZ�Z�Z
[�[�[[�[�[[�[�[[�[�[

\�\�\�\\�\�\�\]�]�]�]]�]�]�]
^�^�^^�^�^^�^�^^�^�^^�^�^

��__�_�__�_�__�_�__�_�__�_�_

`�`�` a�a�a�a

b�b�b

c�c�c

d�d�dd�d�d e�e�e
f�f�f�f

g�g�g

h�h�h i�i�i
j�j�j

k�k�k�k l�l�ll�l�l

m�m�m

n�n�n

o�o�o�o
p�p�p�p

q�q�q

r�r�r

s�s�ss�s�ss�s�ss�s�s
t�t�t�tt�t�t�tt�t�t�tt�t�t�tt�t�t�t u�u�uu�u�uu�u�uu�u�uu�u�uu�u�u

v�v�vv�v�vv�v�vv�v�vv�v�vv�v�vv�v�vv�v�vv�v�vv�v�v

w�w�ww�w�w x�x�xx�x�x y�y�y�yy�y�y�yy�y�y�yy�y�y�y z�z�zz�z�zz�z�zz�z�zz�z�zz�z�zz�z�zz�z�z

{�{�{{�{�{{�{�{{�{�{{�{�{{�{�{

|�|�||�|�||�|�||�|�||�|�||�|�|

}�}�}}�}�}}�}�}}�}�}}�}�}}�}�}}�}�}

~�~�~�~~�~�~�~~�~�~�~~�~�~�~~�~�~�~~�~�~�~~�~�~�~~�~�~�~~�~�~�~

����������

����������

�������������������������
�������������������������

�����������������������������������
���

��

��

���

��

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
S

C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Benchmark/System

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

������ Synch
������
���

TLB miss
������
���

Write miss
������
���

Read miss
������ Compute

5.3 3.3

appbt barnes dsmc em3d moldyn unstructured

2.8

Figure 3-13. Execution time breakdown for transparent shared memory. SC=SimpleCOMA,
T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

77

Moving from the integrated to the decoupled designs increases the total stall time signif-

icantly—by 41–213% for Typhoon-1 and by 92–522% for Typhoon-0 relative to Simple

COMA. However, the effect of this increase on bottom-line performance varies according

to the contribution of the stall times to the overall execution. For the benchmarks with rel-

atively high efficiency—appbt, Barnes, DSMC, and moldyn—the effect of increased over-

heads is mitigated by their smaller overall contribution. On these applications, Typhoon-1

is 11–30% slower than Typhoon, and Typhoon-0 is 28–84% slower than Typhoon (13–

38% and 30–94% slower than Simple COMA, respectively). On the low-efficiency bench-

marks—EM3D and unstructured—the decoupled designs show their weakness, turning in

performance a factor of two or more slower than the integrated systems.

Figure3-14 repeats Figure3-12, adding the speedups for the Tempest-optimized ver-

sions of the benchmarks described in Section2.4. Because the Simple COMA system uses

a hardwired protocol engine, it is incapable of supporting the Tempest-specific optimiza-

tions. These application-specific protocols were written and optimized for a very different

system—Blizzard-E [SFL+94] on the CM-5—with much slower processors and even

���

��

��

��

��

���

���

���

���

���

���

���

���

��

��

��

���

��

 � � � � � � � � � � � � � � � � � � � � � � � � � � � �

¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡¡�¡�¡

¢�¢�¢�¢¢�¢�¢�¢¢�¢�¢�¢¢�¢�¢�¢¢�¢�¢�¢

£�£�££�£�££�£�££�£�££�£�£

¤�¤�¤¤�¤�¤¤�¤�¤
¥�¥�¥¥�¥�¥

¦�¦�¦¦�¦�¦¦�¦�¦¦�¦�¦¦�¦�¦¦�¦�¦

§�§�§§�§�§§�§�§§�§�§§�§�§§�§�§§�§�§§�§�§§�§�§§�§�§

¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨¨�¨�¨

©�©�©©�©�©
ª�ª�ªª�ª�ª

«�«�««�«�«

¬�¬�¬¬�¬�¬
­�­�­­�­�­­�­�­

®�®�®®�®�®®�®�®®�®�®®�®�®

¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯

°�°�°

±�±�±

²�²�²²�²�²
³�³�³³�³�³

´�´�´´�´�´´�´�´´�´�´

µ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µµ�µ�µ

¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶¶�¶�¶

·�·�··�·�··�·�··�·�··�·�··�·�··�·�··�·�··�·�··�·�··�·�··�·�··�·�·

0
4
8

12
16
20
24
28
32
36
40
44
48

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Benchmark/System

S
pe

ed
up

¸�¸�¸¸�¸�¸¸�¸�¸
Custom protocol

¹�¹�¹¹�¹�¹
Transparent SM

appbt barnes dsmc em3d moldyn unstructured

67 65 63

Figure 3-14. Application speedups on 32-node systems, including application-specific
protocols.SC=Simple COMA, T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

78

higher relative overheads. Although their impact is reduced by the lower overheads of

these hardware-assisted systems, all of the custom protocols still provide some improve-

ment over transparent shared memory. Two show dramatic improvement even on

Typhoon—86% for EM3D and 384% for unstructured—causing them to outperform the

Simple COMA system by nearly the same margins as well. (The large absolute speedup

for EM3D is due to the memory system effects mentioned above.)

Moving to Typhoon-1 and Typhoon-0, the higher overheads leave greater room for

improvement, so the more efficient protocols have a greater impact. Only for moldyn and

Barnes do the custom protocols on each of the Tempest platforms fail to outperform trans-

parent shared memory on any system, including Simple COMA. Of course, there are other

methods to improve the performance of the TSM programs without resorting to custom

protocols—for example, adding prefetch instructions or using a weaker consistency

model. Nevertheless, these results indicate significant potential for custom protocols in

some situations.

Figure3-15 breaks down the execution times for the Tempest-optimized applications,

normalized to the TSM version on Simple COMA as in Figure3-13. Because time that the

main processor spends doing explicit message passing is counted as computation, most of

the application-specific protocols actually increase the amount of computation over the

original version; computation time varies on the different platforms due to varying mes-

sage-passing overheads. Reductions in the stall times compensate for these increases.

Unstructured is an exception to this pattern: both the computation and stall times decrease

significantly. This effect is due to the optimized version’s more efficient reduction phase.

Where the original application performs a global reduction on an array of values, the opti-

mized code sums only the non-zero contributions for each value (see Section2.4.6).

Although the primary intent of this optimization is to eliminate the communication of the

zero values, it also eliminates the computation involved in summing them into the result.

79

TLB misses, which are not a factor for any of the transparent–shared-memory bench-

marks, are a noticeable component of execution time for two of the Tempest-optimized

codes (roughly 6% for Barnes and 10% for EM3D). These costs merely reflect differences

in reference locality between the TSM and custom-protocol versions; it is not inherent to

Tempest or the hardware platforms. The custom-protocol version of Barnes splits the body

structure so that different protocols can be applied to different fields. As a result, the data

for one body, which is contiguous in the original code, is spread across three structures on

three different pages. The difference in TLB behavior for EM3D is due to a locality opti-

mization in the TSM version that was not applied to the application-specific protocol ver-

sion. This optimization, which pulls the writable data values out of the otherwise read-

only graph structure and allocates them in a separate array, improves cache locality for

remote references in the TSM version. The custom-protocol version leaves the writable

values embedded in the graph nodes because (1)packing values from multiple graph

nodes in a single cache block complicates dynamic sharing pattern detection and (2)the

values are updated using a custom protocol, so spatial locality for remote misses is not a

º�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�ºº�º�º

»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»»�»�»�»

¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼

½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½½�½�½

¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾¾�¾�¾

¿�¿�¿

À�À�À�À

Á�Á�Á

Â�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�ÂÂ�Â�Â

Ã�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�ÃÃ�Ã�Ã

Ä�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�ÄÄ�Ä�Ä

Å�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�Å

Æ�Æ�ÆÆ�Æ�ÆÆ�Æ�ÆÆ�Æ�ÆÆ�Æ�ÆÆ�Æ�Æ

Ç�Ç�ÇÇ�Ç�ÇÇ�Ç�ÇÇ�Ç�ÇÇ�Ç�ÇÇ�Ç�ÇÇ�Ç�ÇÇ�Ç�Ç

È�È�ÈÈ�È�ÈÈ�È�ÈÈ�È�ÈÈ�È�ÈÈ�È�ÈÈ�È�ÈÈ�È�ÈÈ�È�È

É�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�É

Ê�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�Ê

Ë�Ë�Ë

Ì�Ì�Ì

Í�Í�Í

Î�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�ÎÎ�Î�Î�Î

Ï�Ï�ÏÏ�Ï�ÏÏ�Ï�ÏÏ�Ï�ÏÏ�Ï�Ï

Ð�Ð�ÐÐ�Ð�ÐÐ�Ð�ÐÐ�Ð�ÐÐ�Ð�ÐÐ�Ð�Ð

Ñ�Ñ�ÑÑ�Ñ�ÑÑ�Ñ�ÑÑ�Ñ�ÑÑ�Ñ�ÑÑ�Ñ�Ñ

Ò�Ò�ÒÒ�Ò�ÒÒ�Ò�ÒÒ�Ò�Ò
Ó�Ó�Ó�ÓÓ�Ó�Ó�Ó Ô�Ô�ÔÔ�Ô�Ô Õ�Õ�ÕÕ�Õ�Õ

Ö�Ö�ÖÖ�Ö�ÖÖ�Ö�ÖÖ�Ö�ÖÖ�Ö�ÖÖ�Ö�Ö
×�×�××�×�× Ø�Ø�Ø�ØØ�Ø�Ø�ØØ�Ø�Ø�Ø

Ù�Ù�ÙÙ�Ù�ÙÙ�Ù�ÙÙ�Ù�ÙÙ�Ù�Ù

Ú�Ú�ÚÚ�Ú�Ú Û�Û�ÛÛ�Û�Û Ü�Ü�Ü Ý�Ý�Ý�Ý

Þ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�Þ

ß�ß�ßß�ß�ßß�ß�ßß�ß�ßß�ß�ßß�ß�ß

à�à�àà�à�àà�à�àà�à�àà�à�à

á�á�áá�á�áá�á�áá�á�áá�á�á

â�â�ââ�â�â ã�ã�ãã�ã�ãã�ã�ã ä�ä�ää�ä�ää�ä�ä
å�å�åå�å�åå�å�åå�å�å

æ�æ�æ�ææ�æ�æ�ææ�æ�æ�ææ�æ�æ�æ

ç�ç�ç è�è�è é�é�é

ê�ê�êê�ê�ê
ë�ë�ë�ëë�ë�ë�ë ì�ì�ìì�ì�ì í�í�íí�í�í

î�î�î ï�ï�ï ð�ð�ð�ð
ñ�ñ�ññ�ñ�ñ

ò�ò�ò ó�ó�ó ô�ô�ô õ�õ�õ�õ
ö�ö�öö�ö�öö�ö�ö

÷�÷�÷÷�÷�÷ ø�ø�øø�ø�ø
ù�ù�ùù�ù�ùù�ù�ù

ú�ú�ú û�û�û
ü�ü�ü ý�ý�ýý�ý�ý

þ�þ�þ�þþ�þ�þ�þ

ÿ�ÿ�ÿ ����������

����������
������� ����� �����

����� ���������� 	�	�	�		�	�	�	
�
�

�
�

����� �����
�
�
 �������

�����

���������������
��������������� ���������������

�����

�������

����� ����� �����

�������������������������

����������������������������
��������������������

������������������������� ����������
��������������� �����������������������������������

���

 � � � � � � � � � � � � � � � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�"

#�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�##�#�#�#
$�$�$$�$�$$�$�$

%�%�%%�%�%%�%�% &�&�&&�&�&
'�'�''�'�'

(�(�((�(�((�(�((�(�((�(�((�(�(

)�)�))�)�))�)�))�)�))�)�)
��**�*�**�*�**�*�**�*�**�*�*

+�+�++�+�++�+�++�+�++�+�++�+�+

,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,,�,�,�,

-�-�--�-�- .�.�..�.�. /�/�//�/�/

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
S

C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Benchmark/System

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

0�0�00�0�0
Compute 1�1�11�1�1 Read miss

2�2�22�2�22�2�2
Write miss 3�3�33�3�33�3�3

TLB miss
4�4�44�4�4 Synch

appbt barnes dsmc em3d moldyn unstructured

Figure 3-15. Execution time breakdown for the application-specific protocols, normalized to
transparent shared memory on Simple COMA.SC=SimpleCOMA, T=Typhoon, T1=Typhoon-1,
T0=Typhoon-0.

80

performance issue. With some effort, this data restructuring could be applied to the cus-

tom-protocol EM3D, bringing its TLB performance in line with the TSM version.

Figure3-15 also shows that the efficiency of each application on Simple COMA corre-

lates inversely with the effectiveness of the application-specific protocols. Intuitively, the

applications with higher overheads have more to gain by eliminating those overheads. The

two benchmarks with very low efficiency, EM3D and unstructured, show impressive

gains, while the improvements for DSMC, moldyn, and Barnes are smaller. Appbt strad-

dles the fence: the custom protocol gains a factor of two on Typhoon-0 but only 18% on

Typhoon.

The application-specific protocols also serve to diminish the performance difference

between the various Tempest implementations. Typhoon-0 is 28–327% slower than

Typhoon for transparent shared memory, but only 5–47% slower for the custom protocols.

Similarly, Typhoon-1’s worst-case performance disadvantage is reduced from 122% to

13%. There are two reasons for this trend. First, the custom protocols eliminate most of

the demand fetches from the computation iterations. The access control mechanism is only

lightly used, if at all, so its overheads are insignificant. Second, the optimized communica-

tion in the custom protocols usually takes the form of message sends from the compute

processor. These sends must cross the bus on all three systems; the tight coupling of the

network interface and protocol processor on Typhoon improves performance only on the

receiving node.

3.4.3 Impact of network latency

To emphasize the impact of Tempest support, the previous section assumed a fairly

aggressive network latency of 0.5µs. Although dedicated MPP networks may match or

surpass this speed, current high-performance off-the-shelf networks are more typically in

the 10–30µs range. This section examines the effect of these larger network latencies on

system performance.

81

Figures3-16 and 3-17 show speedups for both versions of each application for one-way

network latencies of 0.5, 2.5, 5, 25, and 50µs (100, 500, 1,000, 5,000, and 10,000 proces-

sor cycles, respectively). The first group of columns in each graph (at 0.5µs) corresponds

to Figure3-14.

Because the application-specific protocols reduce or eliminate stalling for demand

misses, they generally tolerate large network latencies better than transparent shared mem-

ory. As the latency increases from 0.5 to 50µs, the TSM benchmarks on the idealized

Simple COMA system slow down by at least a factor of five and as much as a factor of 33.

In contrast, the custom-protocol versions slow down by as little as 1% (for EM3D) and at

worst a factor of 3.6 (for Barnes). As a result, the relative improvement provided by the

application-specific protocols grows with increasing latency. For example, the Barnes

application-specific protocol provides a speedup of only 6% over the TSM version on

Typhoon at a 0.5µs latency, but at a 50µs latency this improvement grows to 80%.

Higher network latencies also reduce the performance difference between the systems,

especially for transparent shared memory. Increasing the fraction of execution time due to

the network itself diminishes the relative impact of other overheads.

3.4.4 Impact of protocol-processing performance

As discussed on page70, the results presented thus far assume that Typhoon’s integrated

protocol processor is as powerful as the off-the-shelf general-purpose CPU used by

Typhoon-1 and Typhoon-0. This assumption allows us to attribute all of the performance

differences between these designs to the effects of decoupling. However, it is unrealistic;

due to the additional design time required, it is probable that Typhoon’s integrated proces-

sor will be slower than a contemporary off-the-shelf CPU.

To examine the effect of this assumption, I simulated two additional versions of

Typhoon, changing the protocol processor to be two and four times slower than the com-

pute CPU. Figure3-18 shows the execution times for each of the TSM benchmarks on

82

5�5�5

6�6�6�6

7�7�7�7

8�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�88�8�8�8

9�9�9�9

:�:�:

;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;;�;�;�;

<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<<�<�<�<

=�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�=

>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>

?�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�??�?�?

@�@�@@�@�@@�@�@@�@�@@�@�@@�@�@@�@�@@�@�@@�@�@@�@�@@�@�@

A�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�A

B�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�B

C�C�C�CC�C�C�CC�C�C�CC�C�C�CC�C�C�C

D�D�D�DD�D�D�DD�D�D�DD�D�D�DD�D�D�D

E�E�EE�E�EE�E�E
F�F�F�FF�F�F�FF�F�F�F

G�G�G�GG�G�G�GG�G�G�G
H�H�H�HH�H�H�HH�H�H�H

I�I�I�II�I�I�II�I�I�II�I�I�II�I�I�II�I�I�I

J�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�JJ�J�J�J

K�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�KK�K�K�K

L�L�LL�L�LL�L�LL�L�LL�L�LL�L�LL�L�LL�L�LL�L�L

M�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�MM�M�M�M

N�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�NN�N�N�N

O�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�OO�O�O�O

P�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�PP�P�P

Q�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�QQ�Q�Q

R�R�R�R

S�S�S�S

T�T�T�T

U�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�UU�U�U�U

V�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�VV�V�V�V

W�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�WW�W�W�W

Appbt

0

8

16

24

32

40
S

C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Network Latency/System

S
pe

ed
up

X�XX�X
X�X

Custom protocol
Y�YY�Y Transparent SM

0.5 µs 2.5 µs 5 µs 25 µs 50 µs

Z�Z�Z

[�[�[

\�\�\�\

]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]]�]�]�]

^�^�^�^

��_

`�`�`

a�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�aa�a�a

b�b�b�b

c�c�c�c

d�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�dd�d�d�d

e�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�ee�e�e

f�f�f�ff�f�f�ff�f�f�ff�f�f�ff�f�f�ff�f�f�ff�f�f�ff�f�f�ff�f�f�f

g�g�g�gg�g�g�gg�g�g�gg�g�g�gg�g�g�gg�g�g�gg�g�g�gg�g�g�gg�g�g�g

h�h�h�hh�h�h�hh�h�h�hh�h�h�hh�h�h�hh�h�h�hh�h�h�hh�h�h�hh�h�h�h

i�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�ii�i�i�i

j�j�jj�j�jj�j�jj�j�jj�j�jj�j�j

k�k�kk�k�kk�k�kk�k�kk�k�kk�k�k

l�l�l�ll�l�l�ll�l�l�ll�l�l�ll�l�l�l

m�m�m�mm�m�m�mm�m�m�mm�m�m�mm�m�m�mm�m�m�m

n�n�nn�n�nn�n�n

o�o�o�oo�o�o�o

p�p�p�pp�p�p�p
q�q�qq�q�qq�q�qq�q�q

r�r�rr�r�rr�r�rr�r�rr�r�r

s�s�s�ss�s�s�ss�s�s�ss�s�s�ss�s�s�ss�s�s�s
t�t�t�tt�t�t�tt�t�t�tt�t�t�tt�t�t�t

u�u�u�uu�u�u�uu�u�u�uu�u�u�uu�u�u�uu�u�u�u

v�v�vv�v�vv�v�vv�v�vv�v�vv�v�v

w�w�w�ww�w�w�ww�w�w�ww�w�w�ww�w�w�ww�w�w�w

x�x�x�xx�x�x�xx�x�x�xx�x�x�xx�x�x�x

y�y�y�yy�y�y�yy�y�y�yy�y�y�yy�y�y�yy�y�y�y

z�z�z�zz�z�z�zz�z�z�zz�z�z�z
{�{�{�{{�{�{�{{�{�{�{{�{�{�{

|�|�|�||�|�|�||�|�|�||�|�|�|

Barnes

0

8

16

24

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Network Latency/System

S
pe

ed
up

}�}�}}�}�}}�}�}
Custom protocol

~�~�~~�~�~
Transparent SM

0.5 µs 2.5 µs 5 µs 25 µs 50 µs

��

���

���

��

��

��

��

��

���

���

��

��

��

��

���

���

������������������������������

��

��

��

���������������������

�����������������������������������

���
�������������������������

���

���

��

���

���

���

���

��

��

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡¡�¡�¡�¡

DSMC

0

8

16

24

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Network Latency/System

S
pe

ed
up

¢�¢�¢¢�¢�¢¢�¢�¢
Custom protocol

£�£�££�£�£
Transparent SM

0.5 µs 2.5 µs 5 µs 25 µs 50 µs

Figure 3-16. Speedups for appbt, Barnes, and DSMC on 32-node systems at various network
latencies.SC=SimpleCOMA, T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

83

¤�¤�¤

¥�¥�¥

¦�¦�¦�¦

§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§§�§�§�§

¨�¨�¨�¨

©�©�©

ª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ªª�ª�ª

«�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�««�«�«

¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬¬�¬�¬�¬

­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­­�­�­�­

®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®®�®�®�®

¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯

°�°�°�°°�°�°�°°�°�°�°°�°�°�°°�°�°�°°�°�°�°°�°�°�°

±�±�±�±±�±�±�±±�±�±�±±�±�±�±±�±�±�±±�±�±�±±�±�±�±

²�²�²�²²�²�²�²²�²�²�²²�²�²�²²�²�²�²²�²�²�²

³�³�³�³³�³�³�³³�³�³�³³�³�³�³³�³�³�³³�³�³�³

´�´�´´�´�´´�´�´´�´�´
µ�µ�µµ�µ�µµ�µ�µµ�µ�µ

¶�¶�¶�¶¶�¶�¶�¶¶�¶�¶�¶¶�¶�¶�¶
·�·�·�··�·�·�··�·�·�··�·�·�·

¸�¸�¸¸�¸�¸

¹�¹�¹�¹¹�¹�¹�¹¹�¹�¹�¹

º�º�º�ºº�º�º�ºº�º�º�ºº�º�º�ºº�º�º�º »�»�»»�»�»»�»�»»�»�»»�»�»

¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼¼�¼�¼

½�½�½�½½�½�½�½½�½�½�½½�½�½�½½�½�½�½½�½�½�½

¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾¾�¾�¾�¾

¿�¿�¿�¿¿�¿�¿�¿¿�¿�¿�¿¿�¿�¿�¿¿�¿�¿�¿¿�¿�¿�¿¿�¿�¿�¿¿�¿�¿�¿

À�À�ÀÀ�À�ÀÀ�À�ÀÀ�À�ÀÀ�À�ÀÀ�À�ÀÀ�À�ÀÀ�À�À

Á�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�ÁÁ�Á�Á�Á

Â�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�ÂÂ�Â�Â�Â

Ã�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�ÃÃ�Ã�Ã�Ã

Ä�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�ÄÄ�Ä�Ä�Ä

Å�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�ÅÅ�Å�Å�Å

Æ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�ÆÆ�Æ�Æ�Æ

Moldyn

0

8

16

24

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Network Latency/System

S
pe

ed
up

Ç�Ç�ÇÇ�Ç�ÇÇ�Ç�Ç
Custom protocol

È�È�ÈÈ�È�È
Transparent SM

0.5 µs 2.5 µs 5 µs 25 µs 50 µs

É�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�ÉÉ�É�É

Ê�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�ÊÊ�Ê�Ê

Ë�Ë�Ë�ËË�Ë�Ë�ËË�Ë�Ë�ËË�Ë�Ë�ËË�Ë�Ë�ËË�Ë�Ë�ËË�Ë�Ë�Ë

Ì�Ì�Ì�ÌÌ�Ì�Ì�ÌÌ�Ì�Ì�ÌÌ�Ì�Ì�Ì
Í�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�ÍÍ�Í�Í�Í

Î�Î�ÎÎ�Î�ÎÎ�Î�ÎÎ�Î�ÎÎ�Î�ÎÎ�Î�ÎÎ�Î�ÎÎ�Î�Î

Ï�Ï�ÏÏ�Ï�ÏÏ�Ï�ÏÏ�Ï�ÏÏ�Ï�ÏÏ�Ï�Ï

Ð�Ð�ÐÐ�Ð�ÐÐ�Ð�ÐÐ�Ð�Ð
Ñ�Ñ�Ñ�ÑÑ�Ñ�Ñ�ÑÑ�Ñ�Ñ�ÑÑ�Ñ�Ñ�ÑÑ�Ñ�Ñ�ÑÑ�Ñ�Ñ�Ñ

Ò�Ò�Ò�ÒÒ�Ò�Ò�ÒÒ�Ò�Ò�ÒÒ�Ò�Ò�ÒÒ�Ò�Ò�ÒÒ�Ò�Ò�Ò

Ó�Ó�Ó�ÓÓ�Ó�Ó�ÓÓ�Ó�Ó�ÓÓ�Ó�Ó�ÓÓ�Ó�Ó�Ó

Ô�Ô�ÔÔ�Ô�ÔÔ�Ô�Ô
Õ�Õ�Õ�ÕÕ�Õ�Õ�Õ Ö�Ö�Ö�ÖÖ�Ö�Ö�Ö

×�×�×�××�×�×�× Ø�Ø�Ø�ØØ�Ø�Ø�Ø
Ù�Ù�ÙÙ�Ù�Ù Ú�Ú�ÚÚ�Ú�Ú

Û�Û�Û�ÛÛ�Û�Û�Û Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü

Ý�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�ÝÝ�Ý�Ý

Þ�Þ�Þ�Þ

ß�ß�ß�ß

à�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�àà�à�à

á�á�á

â�â�â�â

ã�ã�ã�ã

ä�ä�ä�ä

å�å�å

æ�æ�æ�æ

ç�ç�ç�ç

è�è�è�è

é�é�é�é

ê�ê�ê�ê

ë�ë�ë�ë

EM3D

0

10

20

30

40

50

60

70

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Network Latency/System

S
pe

ed
up

ì�ìì�ì Custom protocol
í�íí�í
í�í

Transparent SM

0.5 µs 2.5 µs 5 µs 25 µs 50 µs

î�î�îî�î�îî�î�îî�î�îî�î�îî�î�îî�î�î

ï�ï�ïï�ï�ïï�ï�ïï�ï�ïï�ï�ïï�ï�ï

ð�ð�ð�ðð�ð�ð�ðð�ð�ð�ðð�ð�ð�ð
ñ�ñ�ñ�ññ�ñ�ñ�ññ�ñ�ñ�ñ

ò�ò�ò�òò�ò�ò�òò�ò�ò�òò�ò�ò�ò
ó�ó�óó�ó�óó�ó�óó�ó�ó

ô�ô�ôô�ô�ôô�ô�ô
õ�õ�õõ�õ�õõ�õ�õ

ö�ö�ö�öö�ö�ö�öö�ö�ö�ö
÷�÷�÷�÷÷�÷�÷�÷÷�÷�÷�÷

ø�ø�ø�øø�ø�ø�ø ù�ù�ùù�ù�ù
ú�ú�ú�úú�ú�ú�ú û�û�û�ûû�û�û�û

ü�ü�ü�üü�ü�ü�ü ý�ý�ý�ýý�ý�ý�ý
þ�þ�þ ÿ�ÿ�ÿ ������� �������

���

���

��

��

��

	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���

���

���

��

��

Unstructured

0

8

16

24

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

S
C T T
1

T
0

Network Latency/System

S
pe

ed
up

���������������
Custom protocol

����������
Transparent SM

0.5 µs 2.5 µs 5 µs 25 µs 50 µs

Figure 3-17. Speedups for EM3D, moldyn, and unstructured on 32-node systems at various
network latencies.SC=SimpleCOMA, T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

84

these systems, normalized to the benchmark’s execution time assuming a protocol proces-

sor identical to the compute processor (as reported in Figure3-13 on page76). While

slowing the protocol processor by a factor of two reduces application performance by at

most 28%, a factor of four processor slowdown reduces overall performance by up to

90%. Among the more efficient benchmarks—excluding EM3D and unstructured—appli-

cation performance is reduced by at most 8% and 24%, respectively. For comparison,

Figure3-18 also includes the Typhoon-1 results from Figure3-13. For most of the appli-

cations, Typhoon-1 is nearly as fast as the Typhoon version with the fourfold-slower pro-

tocol processor, and is faster for Barnes. These results suggest that Typhoon’s protocol

processor need not be as fast as the compute CPU, but at some point protocol processor

speed does become a bottleneck. For the parameters used here, this point occurs when the

protocol CPU is between two and four times slower than the compute CPU; in general, the

required protocol CPU speed is probably dependent on network, memory, and bus band-

widths as well as the speed of the compute CPU.

��

��

��

��

��

��

��

��

���

��

���

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!!�!�!!�!�!
"�"�""�"�""�"�"

#�#�##�#�##�#�#
$�$�$$�$�$$�$�$

%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%%�%�%�%

&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&

'�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�'

(�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�(

)�)�)�))�)�)�))�)�)�))�)�)�))�)�)�)

��**�*�**�*�**�*�**�*�*

+�+�++�+�++�+�++�+�++�+�+

,�,�,,�,�,,�,�,,�,�,,�,�,

-�-�--�-�--�-�-
.�.�.�..�.�.�..�.�.�.

/�/�//�/�//�/�//�/�/
0�0�00�0�00�0�00�0�00�0�0

1�1�11�1�11�1�11�1�1
2�2�22�2�22�2�22�2�22�2�2

3�3�3�33�3�3�33�3�3�33�3�3�33�3�3�33�3�3�3

4�4�44�4�44�4�44�4�44�4�4
5�5�5 6�6�6 7�7�7 8�8�8�8

9�9�99�9�99�9�99�9�99�9�99�9�99�9�99�9�99�9�99�9�99�9�9

:�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�::�:�:

;�;�;

<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<<�<�<

=�=�=�==�=�=�= >�>�>>�>�>
?�?�??�?�? @�@�@@�@�@@�@�@

A�A�A�AA�A�A�AA�A�A�A
B�B�B�BB�B�B�BB�B�B�B

C�C�CC�C�CC�C�CC�C�C
D�D�DD�D�DD�D�DD�D�DD�D�D

E�E�EE�E�E F�F�F�FF�F�F�F G�G�GG�G�GG�G�G
H�H�HH�H�HH�H�H

I�I�I J�J�J K�K�K�KK�K�K�K L�L�LL�L�L

M�M�M N�N�N O�O�OO�O�O P�P�P�PP�P�P�P Q�Q�QQ�Q�QQ�Q�Q R�R�RR�R�RR�R�RR�R�R

S�S�SS�S�SS�S�SS�S�SS�S�SS�S�SS�S�S
T�T�TT�T�TT�T�TT�T�TT�T�TT�T�TT�T�T

U�U�U�U V�V�VV�V�V W�W�WW�W�W X�X�XX�X�X

Y�Y�Y�YY�Y�Y�YZ�Z�Z�ZZ�Z�Z�ZZ�Z�Z�Z
[�[�[[�[�[[�[�[\�\�\\�\�\\�\�\]�]�] ^�^�^�^

��_ `�`�` a�a�a b�b�bb�b�b c�c�c�c d�d�d

e�e�e f�f�f�f
g�g�g

h�h�h

i�i�i

j�j�j

k�k�kk�k�k l�l�l
m�m�mm�m�mm�m�m

n�n�n�nn�n�n�nn�n�n�nn�n�n�n o�o�oo�o�oo�o�oo�o�o
p�p�pp�p�pp�p�pp�p�pp�p�p

q�q�qq�q�q r�r�rr�r�r s�s�s�ss�s�s�ss�s�s�ss�s�s�s
t�t�tt�t�tt�t�t

u�u�uu�u�uu�u�uu�u�uu�u�u

v�v�vv�v�vv�v�vv�v�vv�v�v
w�w�ww�w�ww�w�ww�w�ww�w�w

x�x�x�xx�x�x�xx�x�x�xx�x�x�xx�x�x�xx�x�x�x
y�y�y

z�z�z

{�{�{{�{�{

|�|�|

}�}�}�}}�}�}�}}�}�}�}}�}�}�}
~�~�~~�~�~~�~�~~�~�~

��������������������
�������������������������

��

��

���

��

0

0.5

1

1.5

2

2.5
T

-1
X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

Benchmark/System

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

����������
Synch

����������
TLB miss

���������������
Write miss

���������� Read miss
����������

Compute

appbt barnes dsmc em3d moldyn unstructured

Figure 3-18. Execution time for transparent shared memory on Typhoon, varying the protocol
processor speed.T-nX=Typhoon with protocol CPUn times slower than compute CPU,
T1=Typhoon-1. Network latency is 0.5µs.

85

Figure3-19 repeats Figure3-18 using the application-specific protocol versions of the

benchmarks. As we saw with the decoupled systems, the application-specific protocols

mitigate the impact of increased overheads; the twofold and fourfold decreases in protocol

processing power reduce overall performance by at most 7% and 21%, respectively;

excluding the outlying Barnes, the reductions are at most 1% and 7%, respectively. Again,

however, the protocol processor can become the bottleneck: the slowest Typhoon system

is slower than Typhoon-1 for two of the applications (Barnes and DSMC) and nearly as

slow for the others.

3.5 Related work

The designs in this chapter are related both to systems that implement Tempest using

different techniques and to non-Tempest systems that use similar techniques. This section

restricts its focus to implementation issues; Section2.5 discusses related work in the con-

text of the Tempest interface itself.

��

��

��

���

���

���

���

���

���

���

���

���

��

��

��

���

���

���

���

��

��

��

 � �

¡�¡�¡
¢�¢�¢¢�¢�¢ £�£�££�£�£ ¤�¤�¤�¤¤�¤�¤�¤

¥�¥�¥¥�¥�¥ ¦�¦�¦¦�¦�¦
§�§�§§�§�§§�§�§

¨�¨�¨�¨¨�¨�¨�¨¨�¨�¨�¨¨�¨�¨�¨
©�©�©©�©�©©�©�©

ª�ª�ª «�«�« ¬�¬�¬¬�¬�¬ ­�­�­�­

®�®�®®�®�®®�®�®®�®�®®�®�®®�®�®®�®�®®�®�®

¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯¯�¯�¯

°�°�°°�°�°°�°�°°�°�°°�°�°°�°�°°�°�°°�°�°

±�±�±±�±�±±�±�±±�±�±±�±�±±�±�±±�±�±±�±�±
²�²�²�²²�²�²�²

³�³�³³�³�³³�³�³
´�´�´´�´�´´�´�´ µ�µ�µµ�µ�µµ�µ�µµ�µ�µ

¶�¶�¶�¶¶�¶�¶�¶ ·�·�··�·�·
¸�¸�¸¸�¸�¸ ¹�¹�¹¹�¹�¹º�º�ºº�º�º »�»�»»�»�» ¼�¼�¼�¼¼�¼�¼�¼

½�½�½½�½�½ ¾�¾�¾ ¿�¿�¿ À�À�À�À Á�Á�ÁÁ�Á�Á

Â�Â�Â Ã�Ã�Ã Ä�Ä�Ä Å�Å�Å�Å Æ�Æ�ÆÆ�Æ�Æ
Ç�Ç�ÇÇ�Ç�Ç È�È�ÈÈ�È�È

É�É�ÉÉ�É�ÉÉ�É�É Ê�Ê�Ê�ÊÊ�Ê�Ê�Ê Ë�Ë�ËË�Ë�Ë Ì�Ì�Ì Í�Í�ÍÍ�Í�Í
Î�Î�Î�Î Ï�Ï�Ï Ð�Ð�ÐÐ�Ð�Ð Ñ�Ñ�ÑÒ�Ò�Ò Ó�Ó�Ó Ô�Ô�Ô�Ô Õ�Õ�Õ Ö�Ö�ÖÖ�Ö�ÖÖ�Ö�Ö ×�×�××�×�××�×�×

Ø�Ø�Ø�ØØ�Ø�Ø�Ø Ù�Ù�ÙÙ�Ù�Ù

Ú�Ú�Ú Û�Û�Û Ü�Ü�Ü Ý�Ý�Ý�Ý Þ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�ÞÞ�Þ�Þ

ß�ß�ßß�ß�ßß�ß�ßß�ß�ßß�ß�ß

à�à�àà�à�àà�à�àà�à�àà�à�à
á�á�áá�á�áá�á�áá�á�áá�á�á

â�â�â ã�ã�ã
ä�ä�ä�ä å�å�å æ�æ�æ ç�ç�çç�ç�çè�è�èè�è�èè�è�èè�è�èè�è�è

é�é�éé�é�éé�é�éé�é�éé�é�é
ê�ê�ê�êê�ê�ê�êê�ê�ê�êê�ê�ê�êê�ê�ê�ê

ë�ë�ëë�ë�ëë�ë�ëë�ë�ëë�ë�ë
ì�ì�ìì�ì�ìì�ì�ì í�í�íí�í�íí�í�íí�í�í

î�î�î�îî�î�î�îî�î�î�îî�î�î�îî�î�î�îî�î�î�î

ï�ï�ïï�ï�ïï�ï�ïï�ï�ïï�ï�ï

ð�ð�ðð�ð�ðð�ð�ðð�ð�ðð�ð�ðð�ð�ðð�ð�ðð�ð�ð

ñ�ñ�ññ�ñ�ññ�ñ�ññ�ñ�ññ�ñ�ññ�ñ�ññ�ñ�ñ

ò�ò�òò�ò�òò�ò�òò�ò�òò�ò�òò�ò�òò�ò�òò�ò�ò

ó�ó�ó�óó�ó�ó�óó�ó�ó�óó�ó�ó�óó�ó�ó�óó�ó�ó�óó�ó�ó�óó�ó�ó�ó

ô�ô�ôô�ô�ôô�ô�ôô�ô�ô
õ�õ�õõ�õ�õõ�õ�õõ�õ�õ

ö�ö�öö�ö�öö�ö�öö�ö�ö
÷�÷�÷÷�÷�÷÷�÷�÷

ø�ø�ø�øø�ø�ø�øø�ø�ø�øø�ø�ø�øø�ø�ø�ø

ù�ù�ùù�ù�ùù�ù�ùù�ù�ùù�ù�ù

ú�ú�úú�ú�úú�ú�úú�ú�úú�ú�úú�ú�ú
û�û�ûû�û�ûû�û�ûû�û�ûû�û�ûû�û�û

ü�ü�ü�üü�ü�ü�üü�ü�ü�üü�ü�ü�üü�ü�ü�üü�ü�ü�üü�ü�ü�ü

ý�ý�ýý�ý�ýý�ý�ýý�ý�ýý�ý�ýý�ý�ýý�ý�ý

þ�þ�þþ�þ�þþ�þ�þþ�þ�þþ�þ�þþ�þ�þþ�þ�þþ�þ�þ

ÿ�ÿ�ÿÿ�ÿ�ÿÿ�ÿ�ÿÿ�ÿ�ÿÿ�ÿ�ÿÿ�ÿ�ÿÿ�ÿ�ÿÿ�ÿ�ÿ

0

0.2

0.4

0.6

0.8

1

1.2

1.4
T

-1
X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

T
-1

X

T
-2

X

T
-4

X T
1

Benchmark/System

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

������
���

Compute ������
���

Read miss
������ Write miss ������ TLB miss
������ Synch

appbt barnes dsmc em3d moldyn unstructured

Figure 3-19. Execution time for the application-specific protocols on Typhoon, varying the
protocol processor speed.T-nX=Typhoon with protocol CPUn times slower than compute CPU,
T1=Typhoon-1. Network latency is 0.5µs.

86

These systems do not represent the entire design space for Tempest support. In another

publication [SFL+94], we list several alternate approaches to fine-grain access control, and

describe two software implementations that run on an unmodified Thinking Machines

CM-5 (and were later ported to a cluster of workstations [SFH+96]). The Blizzard-E sys-

tem manipulates the memory controller’s error correction codes (ECC) to force bus

errors—inducing processor traps—on accesses to invalid blocks.1 Read-only blocks are

synthesized using page-level protection. Custom operating system extensions manipulate

ECC via a memory controller diagnostic mode [RFW93, SFH+96]. I was involved in the

design of an enhanced memory controller that extended ECC semantics to include a read-

only state and provided limited user-level access [Nim93].

Another implementation we report, Blizzard-S [SFL+94], uses an executable editor to

insert software access checks before each load and store. This approach is very portable,

requiring no special hardware or operating system support. A variety of optimizations can

lower the overhead of executing the access checks [SFH+96, SGT96]. Horowitz et al.

[HMMS96] propose a processor feature that can be used to execute the access check code

only on hardware cache misses.

A modified TLB on the compute processor can also support fine-grain access control.

The IBM 801’s lock bits [CM88] implement a form of TLB-based fine-grain access con-

trol, but with only two access states. MIT’s M-Machine [FKD+95] provides all three of

Tempest’s states specifically to support DSM. Although this approach provides low over-

head for both access checks and handler invocations, it introduces a coherence problem in

multiprocessor nodes [ENCH96].

Tempest’s protocol processing does not require a dedicated CPU. In both Blizzard sys-

tems on the CM-5, the single processor on each node executes both application and proto-

col code. To handle asynchronous message arrivals, the systems either use hardware

1. This technique, and the code that implements it, was taken from the Wisconsin Wind Tunnel
[RHL+93], where it was used for direct-execution cache simulation.

87

interrupts or poll from the application code. In the latter case, the polling code is added

automatically via binary editing. Even when multiple processors are available on each

node, Falsafi and Wood [FW96b] show that dynamically scheduling application and proto-

col tasks is typically more efficient than dedicating a protocol processor (see page57).

The designs in this chapter share several features with non-Tempest systems. DASH

[LLG+92] also implements fine-grain access control for distributed shared memory using

custom snooping logic that participates in an off-the-shelf multiprocessor’s bus-based

coherence protocol. Unlike the Tempest systems, which provide direct access to fine-grain

access control from user-level software, DASH’s snooping logic interfaces directly to the

hardware state machines that implement the global coherence protocol. DASH also modi-

fied the multiprocessor node to gain control over bus arbitration. The simulations of

Section3.4 use this feature as well, but more recent bus designs—with split or deferred

transactions—enable similar performance with no hardware changes to a commodity

workstation node.

Typhoon’s integrated device is similar to FLASH’s MAGIC chip [KOH+94]. Both inte-

grate a processor, a network interface, and access control. MAGIC integrates the memory

controller as well, which provides greater control over bus transaction handling and the

opportunity for higher bandwidth, but precludes off-the-shelf workstation nodes. Instead

of using hardware access control to filter memory references, MAGIC runs a software

handler, which incorporates the access control check, on every main memory request.

MAGIC incorporates a number of hardware optimizations, including a message handling

macropipeline and a separate datapath for memory and message data. These features

reduce the latency and occupancy of software handlers [HHS+95], enabling high perfor-

mance on transparent shared memory [HKO+94].

Although both FLASH and Tempest espouse software protocols, they embody different

approaches to flexibility and performance. FLASH minimizes the performance impact on

transparent shared memory by using aggressive hardware and restricting access to the sys-

88

tem’s flexibility . In contrast, Tempest seeks primarily to maximize user-level flexibility .

Although this flexibility may impact performance on demanding shared-memory applica-

tions (such as EM3D and unstructured), it enables custom protocols which can provide

good performance on a wider range of implementations.

Like Typhoon-0 and Typhoon-1, Start-NG [CAA+95] uses an off-the-shelf protocol pro-

cessor. This processor has two tightly coupled peripherals on the level-2 cache bus: a net-

work interface and an address capture device (ACD). The ACD latches bus transactions in

software-accessible registers, allowing software-based access control similar to FLASH.

As discussed in Section2.5, all protocol software is privileged in both FLASH and

Start-NG, making them unable to directly support Tempest.

SHRIMP [BDFL96] and FLASH [HGDG94] use shadow space mappings to specify

source and destination addresses for network data transfers, as do Typhoon-1 and

Typhoon.1 In SHRIMP’s user-level DMA, the transfer forms a complete message and the

sender specifies both the source and destination addresses. In the Typhoon systems, the

transfer is one part of a larger message and the destination address is specified by the

receiver’s message handler (as in Alewife [KA93]). Because FLASH’s shadow space is

simply a technique for communicating addresses between the compute CPU and the

embedded protocol processor, FLASH can implement a variety of DMA protocols. All

these systems must guarantee that stale translations are never used for DMA operations.

Because only local addresses are involved and the transfer size is limited to a single cache

block, Typhoon and Typhoon-1 can use simple techniques such as FLASH’s hold-off

approach or SHRIMP’s address register check.

3.6 Summary

This chapter describes three system designs—Typhoon, Typhoon-1, and Typhoon-0—

that provide hardware support for the Tempest interface. All three use off-the-shelf work-

1. The shadow space was not part of the original Typhoon design [RLW94], but was retrofitted
after the design of Typhoon-1 to support operations from the compute processor.

89

station nodes and enforce Tempest’s fine-grain access control with custom bus-snooping

logic. They differ in the extent to which they integrate this logic with two other Tempest

support components, a network interface and a protocol processor. These different levels

of integration place the systems at different points on the cost–performance spectrum.

Typhoon achieves high performance by integrating all three components on a single

device. Simulation results show that Typhoon’s performance for unmodified shared-mem-

ory applications is competitive with an idealized hardwired protocol engine—within 25%

across six benchmarks on 32-node systems. The results also provide strong evidence for

Tempest’s flexibility: in spite of Typhoon’s effectiveness for transparent shared memory,

application-specific protocols sped up one benchmark by 86% and another by 384%—

almost a factor of five.

Typhoon-1 simplifies Typhoon’s integrated device by decoupling its most complex sub-

component, the protocol processor. Instead, an off-the-shelf general-purpose CPU exe-

cutes protocol software and controls a custom network interface/access control device. A

novel invention, acacheable control register, lets the device and the processor communi-

cate across the memory bus more efficiently than traditional uncached device registers.

Typhoon-1 is no more than 30% slower than Typhoon for the four benchmarks with good

processor efficiency (65% or better on the idealized hardwired system), but is roughly a

factor of two slower for the two benchmarks with low efficiency. Using the custom-proto-

col versions of the benchmarks, which avoid demand misses and communicate more effi-

ciently, reduces Typhoon-1’s worst-case performance penalty to 13%.

Typhoon-0 decouples the Tempest support components further. Like Typhoon-1, it uses

an off-the-shelf CPU for protocol processing; however, it also uses a generic off-the-shelf

network interface. A standalone access control device is the only custom component.

While this separation of components simplifies the design and reduces costs, some com-

mon operations require a large number of bus transactions to coordinate the devices. For

transparent shared memory, Typhoon-0 is 28–84% slower than Typhoon for the four

90

benchmarks with higher processor efficiency, and three to four times slower for the low-

efficiency benchmarks. Because Typhoon-0’s overheads are higher, the custom protocols

produce a larger performance improvement; using these benchmarks, Typhoon-0 is at

most 47% slower than Typhoon.

The simulation results mentioned thus far assume a fairly low network latency (0.5µs).

If the network latency is increased, it dominates other overheads, deemphasizing the per-

formance difference between the system designs. Because they generally replace demand

fetches with direct updates, the custom-protocol benchmarks tolerate high network laten-

cies much better than the transparent–shared-memory versions.

In addition to serving as a contrast to Typhoon and Typhoon-1, Typhoon-0 is simple

enough to implement in an academic environment. In the next chapter, I describe a work-

ing hardware prototype of the Typhoon-0 system that demonstrates the feasibility of the

designs discussed here.

91

Chapter 4

The Typhoon-0 Prototype

This chapter describes a prototype implementation of the Typhoon-0 system. This proto-

type demonstrates the feasibility of combining custom fine-grain access control logic with

user-level protocol software—the common theme of the three designs presented in the

previous chapter. In addition, the prototype’s performance correlates with results from the

simulator, strengthening the credibility of the results reported in the previous chapter.

Typhoon-0’s decoupled design is ideal for prototyping: other than the fine-grain access

control logic—implemented on a FPGA-based board calledVortex—the system is built

entirely from off-the-shelf components. The relatively small effort required to construct

the prototype—approximately two student-years—clearly demonstrates the advantage of

this approach.

The first two sections of the chapter describe the hardware and software components of

the Typhoon-0 prototype, respectively. Section4.3 reports performance measurements

from the prototype, and Section4.4 compares some of these measurements with results

obtained from the simulator. Section4.5 summarizes the chapter.

92

4.1 Hardware

The Typhoon-0 prototype builds on Wisconsin’s Cluster Of Workstations (COW), infra-

structure shared by several UW-Madison investigators researching cluster-based systems.

The COW comprises forty Sun SPARCStation20s (SS-20s) connected with a Myricom

Myrinet [BCF+95] network (in addition to standard 10- and 100-Mbps Ethernet). Myrinet

is a commercial local-area network derived from the high-speed, low-latency interconnect

developed for the Caltech Mosaic machine, a research MPP.

Figure4-1 shows a block diagram of a Typhoon-0/COW node. The SS-20 uses proces-

sor daughtercards that plug into either of two slots, to allow adding or upgrading proces-

sors in the field. Because these slots are intended for cache-coherent processors, they

provide full access to the coherent processor–memory bus (the MBus [Sun91]). The proto-

type uses one of these slots for the Vortex fine-grain access control board. The other MBus

slot holds a module with two CPUs, one for computation and one for protocol software.

The COW’s processor modules have two 66-MHz Ross HyperSPARC processors, each

with a 256-KB unified cache.

Hyper

256 KB

Sun SPARCstation 20 Motherboard

MBus slot 0 MBus slot 1

Dual-CPU Module Vortex Card

Memory
ControllerDRAM

SBus
Bridge SBus I/O

(4 slots)
Built-in I/O:
SCSI-2, Ethernet,
video, EPROM, etc.

SPARC
Hyper

SPARC

(to Myrinet switch)

Myrinet Interface

INT

SBus slot 0

(compute) (protocol)

SRAM

Tag

Figure 4-1. Block diagram of a Typhoon-0/COW node.The Myrinet LANai chip integrates a
simple processor, a DMA engine, network transceivers, and most of the bus interface logic.

FPGA2

SRAM

LANai
Cache

256 KB
Cache

FPGA1

93

Our original design for the prototype interconnected the nodes with a Thinking

Machines CM-5E network. (The CM-5E was an enhanced version of the CM-5; from our

perspective, the only significant difference was a greater maximum message length.) The

CM-5E design included a single-chip MBus network interface connecting each node’s

SPARC processor to the custom interconnect. The only effort required for the prototype

was to obtain a network in a stand-alone package and physically integrate the network

interface chip and connectors onto the Vortex card. Unfortunately, at the time we began

the prototype effort, Thinking Machines encountered financial problems that led to their

exit from the hardware business. After this avenue closed, we selected the Myricom Myri-

net as the fastest commercially available interconnect at the time.

Each node connects to the Myrinet network using a standard Myrinet host interface card.

This card plugs into the SBus, Sun’s standard I/O Bus [Mas94]. Most of the interface’s

functionality—including a simple processor and a DMA engine—is contained on a single

chip, the LANai. The card also has 128 KB of SRAM to store the LANai processor’s code

and data. The host processors can access the LANai’s SRAM directly using uncached

memory operations. However, the LANai can access host memory only via the DMA

engine.

The Vortex card implements the Typhoon-0 access control device as described in

Section3.3.5, with one exception. Because the SS-20’s bus arbiter does not allow masking

of all processor bus requests,1 Vortex cannot simply suspend a bus operation that conflicts

with the access tags as was assumed in the previous chapter. Instead, it aborts these opera-

tions by returning an error acknowledgment, causing the memory reference instruction to

fault. After the block access fault is handled, software reissues the instruction to resume

computation.

1. The arbiter has a control register that masks requests from bus devices, but—presumably to pre-
vent inadvertent deadlocks—processor 0’s requests cannot be masked.

94

To keep design time short and costs low, Vortex uses FPGA technology rather than a

custom ASIC or gate array. No contemporary FPGA was both dense enough to implement

all the logic and capable of running at the 50MHz MBus clock rate, so we partitioned the

logic across two devices. Two standard 4Mx1 SRAMs store 4M two-bit tags; given

MBus’s 32-byte block size, this configuration supports up to 128 MB of physical memory.

Rob Pfile’s master’s report [Pfi95] details the implementation of Vortex.

The Myrinet interface does not provide an accessible message interrupt line to drive the

message status bit in Typhoon-0’s dispatch register (see page67). We improvised this fea-

ture by co-opting a software-programmable status LED. As we installed each Myrinet

interface, we removed the LED and replaced it with a connector. A short wire routes the

signal to the input on the Vortex board.

4.2 Software

Typhoon-0/COW’s software starts with Solaris2.4 and adds drivers and other system

code to support the Vortex and Myrinet devices. A user-level run-time library builds on

these system components and exports the Tempest interface. Job control software derived

from DJM [Min95] lets users initiate and control parallel jobs across multiple COW

nodes.

As with the hardware, Typhoon-0/COW leverages existing or shared components for

much of its software support. The off-the-shelf Solaris2.4 system is of course the most

significant piece. The Myrinet interface software is based on Berkeley’s LANai Active

Messages [CLMY96]; modifications to make it more suitable for Tempest are shared with

other software-only COW Tempest implementations [SFH+96]. The parallel job manage-

ment software is part of the larger COW infrastructure.

This section focuses on software specific to the Typhoon-0 prototype. The first four sub-

sections cover software issues related to Vortex: the first describes the steps required to

configure a Typhoon-0/COW node each time it boots, the second relates how a user pro-

95

cess works with the device driver to access Vortex, the third reports other needed Solaris

modifications, and the fourth discusses system issues that have not yet been fully

addressed in the prototype. The final subsection briefly describes the Myrinet interface

software.

4.2.1 Vortex configuration

To enforce access control, “coherent invalidate” (CI) transactions onReadOnly blocks

must fail, invoking a block access fault handler. (CIs result from writes to blocks that are

in a shared state in a processor’s hardware cache.) The MBus specifies that a single device

(typically the memory controller) acknowledges all CIs; in Typhoon-0/COW, Vortex takes

over this task so that it can provide the proper response based on the tag state. Switching

responsibility from the memory controller to Vortex in a running system is nearly impossi-

ble: an unacknowledged CI—or one with two acknowledgments—will crash the system.

Instead, we disable the memory controller’s CI acking, and enable Vortex’s, when the sys-

tem is powered up or reset—before the processors enable their caches. Using the SS-20’s

OpenBoot features [Sun94], we store a command sequence in nonvolatile memory and set

it to execute on each hard reset.

The Vortex device driver performs the remaining configuration tasks when it is loaded.

First, the driver checks whether the installed memory configuration is compatible with

Vortex and, if so, sets up Vortex’s address mapping appropriately.1 It then maps the super-

visor (privileged) device registers into the kernel address space, initializes the SRAM tags

to ReadWrite, and enables Vortex’s tag checking.

4.2.2 Process setup

To use Vortex for fine-grain access control, a process first opens the Vortex device driver.

The process then maps the user device registers into its address space via anmmap() call.

1. In the SS-20, the set of populated physical addresses is not necessarily contiguous and depends
on the size of the installed SIMMs. To simplify the logic that maps physical addresses to tag
array indices, Vortex supports only systems where all SIMMs are the same size.

96

In addition to installing the mapping, the driver informs Vortex of the virtual page number

where the cacheable control registers (the dispatch register and the block buffer) are

mapped. Because the HyperSPARCs use virtually indexed caches larger than the page

size, Vortex’s cacheable control register invalidations must provide the low-order bits of

this virtual page number. (The MBus provides eight bits in the transaction specifier for this

purpose.)

To limit the impact of fine-grain access control on the kernel, the driver allows modifica-

tion of access control tags only on a special memory segment which it manages directly

[RFW93]. Although the standard text, static data, and stack segments cannot be tagged,

this model supports the PARMACS macros [BBD+87] used by our benchmark applica-

tions, which assume that shared memory must be dynamically allocated via a special ver-

sion ofmalloc().

The process initializes the taggable memory segment via a Vortex driverioctl(). The

driver creates three same-sized segments in the process’s virtual address space: one that

contains the primary (cached) memory mapping, one that maps the corresponding Vortex

shadow space pages for tag access and manipulation (see page51), and a third—an alias

of the first—that provides uncached memory access for bypassing tag checks (see

page67). These segments are initially empty; the process allocates physical pages as

needed via anotherioctl(). The process specifies the initial value for the new page’s

access tags and the primary virtual address. The driver acquires a physical page frame, ini-

tializes its tags, maps it at the specified address in the primary segment, and creates

shadow space and uncached mappings at the same offset within the other virtual segments.

As described in Section3.3.3, dispatch software—part of the user-level runtime

library—uses an inverted page table to translate the physical addresses provided by Vortex

on a block access fault to virtual addresses for the user-level protocol handlers. The cur-

rent implementation pins taggable pages in physical memory, so we avoid the complexi-

ties of page remapping discussed in Section3.3.3; for simplicity, the user-level runtime

97

library maintains the inverted page table. The table is a sparse demand-allocated array, set

up using anmmap() on/dev/zero. When allocating a taggable page, the library uses the

physical page number—returned by the device driver—to populate the appropriate entry.

To provide access to the same per-page information given only a virtual address—as when

a remote protocol request is received—a similar sparse array maps virtual page numbers to

their inverted page table entries.

4.2.3 Other Solaris modifications

Ideally, all OS support for Vortex should be encapsulated cleanly in a device driver writ-

ten to published kernel interfaces. Unfortunately, Solaris—like any other commercial

Unix variant—emphasizes monolithic featurism over flexibility and efficiency, so three

modifications outside the purview of a standard device driver were required. Despite the

unusual nature of these changes, we were able to implement them in a dynamically load-

able module; however, this module is not portable to other Solaris versions and cannot be

unloaded.1

First, a new memory segment driver supports the three segments provided by the Vortex

driver. In Solaris, a memory segment driver is a piece of code that manages a region of a

virtual address space in a particular fashion. For example, one driver manages mapped

files while another manages mapped devices. Although Solaris provides a variety of mem-

ory segment drivers, none have the flexibility needed to manage three related segments in

a coherent fashion.

Second, modified trap vector code accelerates the invocation of user-level synchronous

trap handlers. As described earlier, Vortex responds with an error acknowledgment on

block access faults, causing a synchronous exception on the issuing (compute) processor.

The compute processor waits for the protocol processor to indicate that the miss handling

is complete, then restarts the aborted memory access instruction. The standard Unix signal

1. These changes—and the module that implements them—are shared with Blizzard-E/COW, a
Tempest implementation that uses ECC for fine-grain access control as described on page86.

98

interface supports this scenario, albeit slowly: in Solaris2.4, the trip from the exception

through the signal handler and back to the faulting instruction takes roughly 100µs—

longer than servicing a simple remote miss over the Myrinet. In contrast, using simple,

known techniques [RFW93, TL94], our modified kernel delivers a synchronous exception

to a user handler in under 5µs. The suspended thread can be resumed without going

through the kernel. (In the version 8 SPARC architecture, user code cannot resume a

faulted instruction in a control transfer delay slot. The prototype avoids this scenario by

using an EEL-based tool [LS95] to move loads and stores out of delay slots. The version 9

SPARC architecture corrects this oversight.)

Finally, an unsavory workaround gives the device driver control over the cacheability of

mappings. The Solaris kernel controls page cacheability internally, assuming that all

device registers are uncacheable and that all main memory is cacheable. Both Vortex’s

cacheable registers and the uncached tag-bypass memory alias violate this assumption. By

manipulating internal kernel function pointers, the driver intercepts calls to the function

that writes entries into the hardware page tables. At each call, the driver examines the

mapping represented by the page table entry; if it corresponds to either of our special

cases, it adjusts the cacheability attribute before performing the write.

4.2.4 System issues

This section discusses four system issues that have not yet been fully addressed in the

prototype: paging tagged memory, kernel and DMA accesses to tagged memory, and mul-

tiprogramming the Vortex device. Although the solutions here have not been implemented

fully, this discussion should provide a framework for future work in this area.

Conceptually, tagged memory can be paged simply by moving each page’s tag values to

and from disk along with the memory data. To better fit in the kernel’s page-oriented vir-

tual memory framework, the driver can allocate additional memory—backing tag mem-

ory—to serve as backing store for tag values. This memory can be charged to the process

allocating tagged memory, but it need not be mapped into the process’s address space.

99

When a tagged page is written to disk, its tags are copied to a backing tag page; after all

the pages supported by a backing tag page have been written to disk, the backing tag page

can be written out as well. Similarly, when a tagged page is read back in, the tags are

restored from the backing tag page (after reading it from disk also, if necessary). For

Typhoon-0/COW, one backing tag page could support 128 tagged memory pages. Unfor-

tunately, Solaris does not provide hooks to notify a segment or device driver when a page

is written out, so our current implementation pins tagged pages in physical memory.

The handling of kernel accesses to tagged memory is a more difficult issue. For the ker-

nel to have the same view of shared memory as the user, kernel references that conflict

with access tags should cause block access faults handled by the user-level protocol. How-

ever, this solution would leave a suspended kernel thread waiting on an unreliable user-

level protocol. Instead, we can provide a library of wrapper functions for system calls that

pass pointers into the kernel. If the pointer arguments reference shared memory, the wrap-

pers copy the data into local-memory buffers; any needed block access faults will occur

during this user-level copy operation. To protect against inadvertent or malicious use of

tagged-memory pointer arguments, the internal kernel routines used to access user mem-

ory can detect access tag conflicts and return an error code, as they would for any other

invalid pointer.

DMA accesses to tagged memory raise a similar issue, although with two significant dif-

ferences. First, the desired semantics are unclear; for example, it is inappropriate to invoke

the coherence protocol when paging tagged memory to disk. Second, the DMA hardware

restricts the available options: a DMA access that receives a bus error acknowledgment

typically crashes the machine. Because paging is unimplemented, the first issue is unre-

solved. Vortex addresses the second problem by suppressing the access tag check on bus

transactions initiated by the MBus DMA controller.

Although Vortex was designed to work with one user process at a time, software could

virtualize the device to enable multiprogramming. The kernel can read and write all Vor-

100

tex’s state via the supervisor register space, so the user registers can be timeshared among

multiple processes (as done with the CM-5 network interface). A more serious obstacle is

that the user-accessible dispatch register signals every block access fault, regardless of the

processor (or thread) that caused it. To avoid having one process erroneously handle

another’s block access faults, either a process’s threads must be strictly gang scheduled

(within each node) or direct access to Vortex’s user registers must be disallowed. In the lat-

ter case, the kernel could notify a process of block access faults via the bus error exception

handler. Because the block buffer—a shared resource—is modified on tag downgrades,

the kernel must deny users direct write access to the tag space as well. The kernel would

mediate use of the block buffer, most likely requiring a kernel call for every tag change.

4.2.5 Messaging

This section briefly describes the Myrinet software used in Typhoon-0/COW. This soft-

ware is derived from Berkeley’s LANai Active Messages [CLMY96]. Modifications and

enhancements for Tempest are described by Schoinas etal. [SFH+96].

As with most high-speed networks, the Myrinet’s primary bottleneck is the transfer from

the application through the interface and onto the switching fabric. From the hardware

perspective, the SBus-based Myrinet achieves the lowest latency when the main processor

accesses the shared SRAM on the Myrinet interface card; the highest bandwidth comes

when the LANai (the embedded processor on the interface card) accesses main memory

using its DMA engine. As in the Berkeley implementation, our software allocates send

and receive queues in the shared SRAM. Each fixed-size queue entry holds header infor-

mation, a small amount of message data, and an optional pointer to a larger message in

main memory. Short messages achieve low latency because they pass entirely through the

shared SRAM; larger messages enjoy the higher bandwidth of a DMA transfer.

To eliminate kernel intervention, the Myrinet device driver maps the shared SRAM

directly into the process’s address space. Due to the structure of the I/O MMU on the

MBus/SBus bridge, the DMA engine can access only kernel virtual addresses. The driver

101

allocates a dedicated kernel buffer for the Myrinet and maps it into the process’s address

space as well. As with Vortex, this Myrinet configuration supports only one process at a

time, although it could be timeshared in a gang-scheduled environment.

4.3 Performance

This section discusses the performance of the Typhoon-0 prototype. As in Section3.4, I

use simple microbenchmarks to illustrate system overheads, then examine a set of applica-

tion macrobenchmarks. Finally, I compare the prototype’s measured performance with

simulation results.

4.3.1 Microbenchmarks

This section shows where the prototype spends its time when servicing a remote miss.

To measure the individual operations, I collected traces of MBus activity using a logic

analyzer attached to one node of the prototype system. The prototype ran a simple test

program that generated three types of misses on 32-byte blocks: read misses, write misses,

and write upgrades (writes to shared blocks). For each type of miss, I ignored the initial

miss that involved allocation of the cache page, then used the fastest of at least a dozen

samples to eliminate the effects of unnecessary cache and TLB misses.

The MBus traces allow a fairly accurate accounting of the activity on one node. (The

HyperSPARC’s write buffers introduce some approximation when attributing time to a

specific task.) However, because only a single logic analyzer was available, I could not

observe both the caching and home nodes for any one transaction. Instead, I ran the test

program twice, reversing the role of the node attached to the analyzer. For a given type of

transaction, subtracting the time spent on the home node from the latency observed on the

caching node gives a value for the total network latency. For the write upgrade transaction,

which involves two short messages, I estimated the one-way latency by taking half of the

total network latency. Read and write misses involve a short request and a bulk (DMA)

102

response. For these, I assumed the request message had the same latency as in the write

upgrade case, and attributed the remaining network latency to the response.

Table4.1 presents timing breakdowns for a read miss and a write upgrade. Write miss

timing differs from read miss timing in only one respect: because the home node does not

keep a read-only copy on a write miss, the “write data to memory” and “change tag to

ReadOnly” steps are eliminated, making write misses almost one microsecond faster than

read misses. The write upgrade is significantly faster, primarily because the response mes-

sage does not transfer data. The write upgrade also enjoys a slight (80ns) advantage on the

initial bus transaction; Vortex can abort an MBus invalidate faster than a read because it

need not suppress the memory controller’s response.

Table4.1 shows that, for either transaction, nearly 70% of the latency is attributed to the

network. This latency—spanning from the acknowledgment of the sending protocol pro-

cessor’s last write to the LANai memory until the receiving node’s Vortex card starts to

invalidate the status cacheable control register (CCR)—is over 12µs for a short message

and over 23µs for a message involving a 32-byte DMA. The nodes communicate through

a single Myrinet switch with a worst-case latency of 550ns [BCF+95], so virtually all of

this time is consumed by the SBus bridge and the LANai device. The primary culprit is

control software running on the LANai processor—a 16-bit non-pipelined CISC processor

clocked at 25MHz. Newer versions of the Myrinet SBus interface card use a 32-bit pro-

cessor with a lower CPI clocked at 50MHz; these devices would significantly improve the

prototype’s performance.

The high cost of executing instructions on the Myrinet interface processor also contrib-

utes to the large additional latency for messages involving DMA. Software must parse the

message header to detect the DMA request, then write the appropriate parameters to the

DMA engine’s control registers. The MBus traces reveal that 3.0µs elapse on the sending

node from the final write of the outgoing message header to the initiation of the DMA. On

the receiver, 2.2µs pass by from the completion of the incoming DMA until Vortex sig-

103

nals the message arrival by invalidating the status CCR. The DMA itself consumes about

0.5µs on the MBus, roughly half of which is due to a TLB miss in the I/O MMU on the

a. This operation is not on the critical path.
b. This time includes a TLB miss on the protocol processor (see text).

Table 4.1:Remote miss latency breakdown for the Typhoon-0 prototype.

Location Step

Latency (microseconds)

Read miss Write upgrade

Inc. Cum. Inc. Cum.

Caching
node

detect HW cache miss, issue
(aborted) bus transaction 0.24 0.24 0.16 0.16

invalidate, refetch status CCR 0.52 0.76 0.52 0.68

dispatch & execute handler 0.70 1.46 0.70 1.38

send msg 1.14 2.60 1.16 2.54

Network request msg latency 12.58 15.18 12.58 15.12

Home
node

invalidate, refetch status CCR 0.52 15.70 0.52 15.64

read msg, dispatch handler 2.12 17.82 2.12 17.76

directory lookup, branch 0.72 18.54 0.72 18.48

send msg header 1.84 20.38 1.14 19.62

change tag toInvalid 0.94 21.32 0.94a 19.62

fetch block buffer 0.52 21.84 n.a. 19.62

write data to DMA region 0.64b 22.48 n.a. 19.62

write data to memory 0.56 23.04 n.a. 19.62

change tag toReadOnly 0.14 23.18 n.a. 19.62

finish msg send 0.62 23.80 n.a. 19.62

Network response msg latency 23.22 47.02 12.58 32.20

Caching
node

invalidate, refetch status CCR 0.52 47.54 0.52 32.72

read msg header, dispatch handler 2.20 49.74 2.84 35.56

copy msg data to memory 1.78 51.52 n.a. 35.56

change tag 0.12 51.64 0.12 35.68

resume flag handshake 1.30 52.94 1.30 36.98

reexecute bus transaction 0.42 53.36 0.18 37.16

Total 53.36 37.16

104

Sbus bridge. (The LANai interface treats the DMA region as a circular queue of pages,

reserving a full page for each message, so accesses to the DMA region—from both the

protocol processor and the SBus bridge—practically always involve a TLB miss.)

4.3.2 Macrobenchmarks

To measure the prototype’s application-level performance, I ran the six applications

from Section2.4 using the same data sets as in the previous chapter. (Table3.2 on page73

summarizes the applications and data sets.) As in Section3.4.2, the reported speedups are

relative to the best available sequential version and exclude initialization and the first par-

allel iteration. To reduce variation from external factors, I ran each experiment three times

and selected the fastest run.

Figure4-2 displays speedups obtained on 16 nodes of the prototype. The shortest bars

indicate the speedup using transparent shared memory with 64-byte blocks. The darker

bars show additional speedup gained by selecting the best block size for the specific appli-

cation (up to 2048 bytes)— but still using transparent shared memory. For these results,

��������������
��������������
�������
��������������
���������������������
��������������

��������������
��������������
�������
��������������
���������������������
��������������

��������������
��������������
�������
��������������
���������������������
��������������

��������������
��������������
�������
��������������
���������������������
��������������
���������������������
�������

��������������
���������������������
��������������
���������������������
��������������
���������������������
�������

��������������
���������������������
��������������
���������������������
��������������
���������������������
�������

	�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	

	�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	

	�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�		�	�	�		�	�	�	
	�	�	�		�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������������
��������������
�������
��������������
���������������������
��������������
��������������

��������������
���������������������
��������������
���������������������
��������������
��������������

��������������
���������������������
��������������
���������������������
��������������
��������������

��������������
�������

��������������
�������

��������������
�������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������������� �������������� �������������� ���������������������
�������

���������������������
�������

���������������������
�������

�������
��������������
���������������������
��������������
���������������������
�������

�������
��������������
���������������������
��������������
���������������������
�������

�������
��������������
���������������������
��������������
���������������������
�������

��������������
��������������
���������������������

��������������
��������������
���������������������

��������������
��������������
���������������������

��������������
�������

��������������
�������

��������������
�������

��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
�������

��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
�������

��������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
�������

��������������
��������������

��������������
��������������

��������������
��������������

��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

�������
�������

�������
�������

�������
�������

�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

�������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
���������������������
��������������
�������

0

4

8

12

16

20

appbt barnes dsmc em3d moldyn unstructured

Benchmark

S
pe

ed
up

������ Custom protocol
���
���

Transparent - best

������
���

Transparent - 64b

Figure 4-2. Application speedups on 16 nodes of the prototype system.

105

appbt and Barnes use a block size of 128 bytes, DSMC uses 256 bytes, unstructured uses

1024 bytes, and EM3D and Moldyn use 2048 bytes. The hatched bars show speedups

from the custom Tempest protocols described in Section2.4—except for Barnes, for

which the custom protocol is slightly slower than the transparent shared-memory version.

In general, Figure4-2 confirms the results of Section3.4.2: appbt, EM3D, and unstruc-

tured see a significant gain from custom protocols, while the other benchmarks do not.

Unfortunately, it is difficult to compare Figure4-2 with the results for larger network

latencies in Section3.4.3 due to a number of differences, including system size (16 vs.

32nodes) and processor speed (66 vs. 200MHz). The next section correlates measured

prototype performance with results from the simulator by eliminating these discrepancies

in the simulated system.

4.4 Comparison of measured and simulated results

The Typhoon-0 prototype provides the opportunity to substantiate the accuracy of the

simulation system used in the previous chapter. If the simulator’s results for a configura-

tion similar to the prototype correlate with measurements, it increases our confidence in its

predictions for other configurations.

To simulate the prototype, I made several modifications to the simulated Typhoon-0 sys-

tem from the previous chapter. Most were simple:

• processor speed (200MHz vs. 66MHz),

• cache size (1MB vs. 256KB),

• block access fault suspend/resume (arbiter control vs. error abort/software restart), and

• barrier synchronization (hardware vs. software).

Simulating the Myrinet’s performance was more involved. The simulations in the previ-

ous chapter assume a minimal, CM-5–like network interface; the host processor copies

data in and out of hardware queues directly attached to the network. In contrast, the Myri-

net interface is the dominant contributor to latency (as seen in the Section4.3.1) and the

106

bottleneck for message throughput [CLMY96]. Rather than introduce detailed models of

the SBus bridge and LANai device—with its processor and DMA engine—I approximated

the effect by adding an occupancy component to the existing network interface model.

Every message passing through the interface, in either direction, occupies a single server

for a specified interval. Messages queue at the server in FIFO order. To simulate the over-

head of DMA, messages longer than eight words incur a larger base occupancy plus a

small additional per-word occupancy at both the sending and receiving interfaces. To

mimic Myrinet’s higher host CPU overhead—including copying data into and out of the

DMA region, which is not explicitly simulated—I also increased the cost of reads and

writes to the simulated NI’s registers. I ran a message-passing microbenchmark on the

prototype to select network parameter values—occupancies, register access costs, and

mean node-to-node latency.

The simulated Typhoon-0 and the prototype also differ in their strategy for message

buffering. Tempest implementations must be prepared to buffer message data in main

memory to avoid deadlock (see Section2.2.1). For historical reasons, the simulated sys-

tem buffers at the sender but the prototype buffers messages at the receiver. Although this

difference may seem subtle—and is moot if traffic is low enough that no buffering

occurs—it results in a 20% discrepancy for the custom-protocol version of appbt. In this

program, as each node produces a new column of values, it sends them to its neighbor in a

series of short messages—enough to trigger the credit-based flow-control mechanism—

before going on to compute the next column. The simulated system’s sender buffering

allows the producer node’s compute processor to buffer its outgoing messages and con-

tinue computing, with the protocol processor injecting the buffered messages as flow-con-

trol credits become available. In contrast, the prototype’s receiver buffering forces the

producer to block while the consumer processes its messages. Rather than modifying

either system—a significant effort—I modified the application to send data in fewer,

longer messages to avoid triggering flow-control stalls.

107

The results are quite positive. Figures 4-3 and 4-4 plot the simulated and actual speedups

for appbt and Barnes for both the transparent shared memory (64-byte blocks) and the cus-

tom protocol versions. The mean error is 3.8% and the worst case is 7.4% (for the Barnes

custom protocol on four nodes). The accuracy is higher for transparent shared memory

���

���

���

����� ���

 � � !�!

"�"

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
pe

ed
up

TSM simulated
TSM measured
Custom simulated
Custom measured

Figure 4-3. Simulated and measured speedups for Appbt.

#�#

$�$

%�%

&�&�& '�'

(�(�()�)

�

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
pe

ed
up

TSM simulated
TSM measured
Custom simulated
Custom measured

Figure 4-4. Simulated and measured speedups for Barnes.

108

than for the custom protocols (2.6% vs. 5.0% mean error). This trend is reasonable,

because the custom protocols, with their bursty communication patterns, place more stress

on the network—probably the least accurately modeled component.

4.5 Summary

A working prototype of the Typhoon-0 system serves several purposes. First, it demon-

strates the feasibility of the bus-based fine-grain access control that underlies all of the

proposed implementations in Chapter3.

Second, the relatively small amount of effort required to construct the prototype—

approximately two student-years from concept to the first running application—validates

the contention that architects can leverage off-the-shelf components for faster, cheaper

designs.

Third, the correlation of simulator results with the prototype’s measured performance—

with a worst-case error of under 8%—strengthens the credibility of the simulation results

in the previous chapter.

Finally, the prototype provides a production-scale platform for others to continue exper-

imentation with applications, languages, and operating systems for fine-grain distributed

shared memory.

109

Chapter 5

Conclusion

Distributed shared memory (DSM) systems provide a programmer-friendly shared-

memory abstraction on top of a scalable distributed-memory physical organization. By

partitioning processors and memory into network-connected nodes, the distributed-mem-

ory organization eliminates central bottlenecks and enables hundred- and thousand-pro-

cessor systems. Distributed shared memory automates inter-node data distribution and

communication, giving programmers the simple, familiar abstraction of a single, global

shared memory. Unfortunately, DSM systems control memory and communication by

rote, even when programmers or compilers have the potential to manage these resources

more efficiently.

This thesis proposes a new approach to distributed shared memory. Systems implement

primitive DSM mechanisms without restricting the protocols (policies) governing their

use. Standard software libraries provide universal protocols—similar to those found in

current DSM machines. However, programmers and compilers can also manage memory

and communication directly using the same primitive mechanisms. When appropriate,

110

they can optimize performance using custom protocols that rely on application- or

domain-specific knowledge.

This chapter summarizes the detailed contributions of this thesis, then suggests direc-

tions for future work in this area.

5.1 Summary

This thesis:

• identifies a set of mechanisms that support distributed shared memory;

• describesTempest, an interface to these mechanisms;

• describes three system designs—Typhoon, Typhoon-1,and Typhoon-0—that support

Tempest, and evaluates their performance through simulation; and

• reports on a hardware prototype of Typhoon-0.

Three mechanisms, in combination, are sufficient for distributed shared memory: mes-

saging, local storage management, and memory access control.Tempest is a concrete, por-

table interface to these mechanisms. Tempest’s messaging borrows from vonEicken’s

Active Messages [vECGS92]. Standard virtual address translation mechanisms are used

for local storage management, as in software DSM systems [LH89]. The most innovative

aspect of Tempest is its specification offine-grain access control, a feature that enables

fine-grain coherence and provides scalability to high-performance systems.

The Stache protocol uses Tempest to provide standard, application-transparent distrib-

uted shared memory. This thesis also describes custom, application-specific protocols

hand-written for six shared-memory benchmarks [FLR+94, MSH+95]. These user-level

custom protocols can achieve message-passing levels of efficiency while supporting a uni-

form global address space.

Three system designs explore the implementation side of the Tempest interface.

Although Tempest requires no special hardware, these designs use different levels of cus-

111

tom hardware support to address different cost/performance points.Typhoon achieves high

performance by closely integrating three components—an access control device, a net-

work interface, and a protocol processor—on a single device. Typhoon-1 andTyphoon-0

employ the same logical components, but trade some performance for simpler, potentially

less costly designs. Specifically, both Typhoon-1 and Typhoon-0 use off-the-shelf proces-

sors for protocol software execution; Typhoon-0 uses an off-the-shelf network interface as

well. Both systems usecacheable control registers to communicate events efficiently from

a bus-based hardware device to the protocol processor.

Simulation provides performance results for the three designs using both transparent

(standard) and custom shared memory protocols. As a baseline for comparison, I also sim-

ulated a comparable, idealized hardwired-protocol system similar to Simple COMA

[HSL94]. These results indicate several conclusions:

• Systems based on primitive mechanisms can provide high performance. On six

unmodified shared-memory benchmarks, Typhoon’s performance is within 25% of the

hardwired-protocol system—within 7% for the four with higher computational effi-

ciencies. Although supporting user-level software protocols involves some opportunity

cost, these systems are not inherently confined to lower echelons of performance.

• Even high-performance, low-overhead DSM systems can benefit from custom proto-

cols. For two of the benchmarks, custom-protocol versions on Typhoon execute 50%

and four times faster than optimized standard shared-memory versions on the hard-

wired-protocol system.

• Custom protocols can be the key to good performance on systems with high overheads.

Custom protocols are generally more capable of coping with high overheads and large

network latencies than standard shared-memory models. On the most demanding

transparent shared memory benchmark, Typhoon-1 and Typhoon-0 are a factor of two

and four slower than Typhoon, respectively; custom protocols reduce the differences to

13% and 47%. Custom protocols also provide more robust application performance in

112

the face of other increased overheads, such as larger network latencies and, for

Typhoon, slower embedded protocol processors.

A prototype hardware implementation of Typhoon-0 demonstrates the feasibility of

these designs and provides a real-world system for benchmarking. Despite a high-over-

head commercial messaging network, five of the six benchmarks achieve better than 58%

efficiency on sixteen nodes of the prototype. Application-specific protocols are critical to

achieving this efficiency in three of the five cases. The prototype’s measured performance

agrees substantially with simulator projections.

5.2 Future directions

Future work stemming from this thesis falls into three areas: modifications and enhance-

ments to Tempest, applications, and implementation techniques.

Experience with Tempest has exposed a few compromises in the current incarnation.

First, users cannot implement software write buffers or forward writes to other nodes. To

support these operations, systems must be capable of completing writes by delivering the

write data to a software handler. (Currently, writes complete only by modifying a valid,

local copy of the referenced block.) Although this feature is feasible in a software system

such as Blizzard-S, it is practically impossible given bus-based hardware access control

and writeback caches.

Tempest’s single-threaded handler execution model (see Section2.2.4) is another poten-

tial limitation. Although this model avoids locking protocol data structures, it prevents

concurrent execution of protocol handlers on multiprocessor nodes, which can increase

throughput on communication-intensive benchmarks [FW96a].

An important field unexplored in this thesis is the development of software tools that

manage and exploit Tempest’s flexibility . There are already several examples of work in

this area. Teapot [CRL96] is a language/compiler system for developing Tempest proto-

113

cols. A compiler for the data-parallel language C** [VL96] automatically exploits Tem-

pest-based custom protocols [LRV94] to improve performance. FlashPoint [MOH96] uses

a custom protocol for performance monitoring on Stanford’s FLASH system.

On the implementation front, researchers should continue to explore the design space for

fine-grain access control. Although the snooping hardware described in this thesis pro-

vides zero-overhead access checks, it requires either restartable bus error exceptions or a

dedicated protocol processor to avoid deadlock. Section3.5 describes other implementa-

tion possibilities, including software-only techniques, integration of access control tags

with memory error correcting codes, and integrated processor support. The tradeoffs are

only partially understood [SFL+94], and will change as technology advances. For exam-

ple, hardware techniques for recent processors must cope with non-blocking and specula-

tive memory accesses. The interaction between access control techniques and operating

system features such as multiprogramming and I/O also deserves further investigation (see

Section4.2.4).

Handling simple critical-path operations in hardware could increase the performance of

decoupled designs similar to Typhoon-1. In current Tempest implementations, the system

invokes a software handler to send a request message when it detects a miss; similarly,

software handles the response message and signals that the miss has been satisfied.

Although software control of these paths provides important flexibility , invocation and

execution of this code is on the critical path for remote data requests.

A hypothetical enhanced version of Typhoon-1’s access control/network interface

device could automatically generate requests in response to block access faults and handle

the data transfer portion of simple requests and responses. Software handlers run in the

background to update protocol data structures. In complex or unusual cases, the system

falls back on software control and behaves like the current Typhoon-1. By removing soft-

ware from the critical path, this design’s performance may approach or even exceed that of

Typhoon, while still avoiding an embedded protocol processor. Several issues must be

114

addressed before we can realize this hypothetical system. How flexible is the device’s state

machine, and how do we control it? How do we synchronize between the device’s state

machine and software handlers? How do we compile Tempest handlers (or modify Tem-

pest) to take advantage of hardware acceleration?

In the longer term, trends point to the integration of processors and main memory on a

single chip [BGK96, SPN96]. Several likely characteristics of this future environment

make it a ripe target for mechanism-based distributed shared memory:

• Any system containing more than one processor–memory chip has a distributed-mem-

ory organization.

• On-chip processing is much faster than off-chip communication, making it worthwhile

to optimize communication using software protocols.

• Integration allows tight coupling of access control and protocol processing resources

(as in Typhoon).

• An abundance of processing resources, perhaps coupled with novel execution models

[KD92, TEL95], may allow low-overhead invocation and execution of protocol soft-

ware without dedicating a processor to the task.

Even if distributed-memory systems do not become commodities, they will be common

wherever users need more performance than just a few processors can provide. In either

case, the concepts proposed in this thesis point the way to more flexible and efficient sys-

tems in the future.

115

References

[AAWC94]MichaelS. Allen, Michael Alexander, Chuck Wright, and Joe Chang. Design-
ing the PowerPC 60X bus.IEEE Micro, 14(5):42–51, October 1994.

[ABC+95] Anant Agarwal, Ricardo Bianchini, David Chaiken, KirkL. Johnson, David
Kranz, John Kubiatowicz, Beng-Hong Lim, Ken Mackenzie, and Donald Yeung.
The MIT Alewife machine: Architecture and performance. InProceedings of the
22nd Annual International Symposium on Computer Architecture, pages 2–13, June
1995.

[ACD+96] Cristiana Amza, AlanL. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwanepoel. Treadmarks: Shared
memory computing on networks of workstations.IEEE Computer, 29(2):18–28,
February 1996.

[ACP95]ThomasE. Anderson, David E. Culler, and David A. Patterson. A case for NOW
(networks of workstations).IEEE Micro, 15(1):54–64, February 1995.

[AH90] SaritaV. Adve and MarkD. Hill. Weak ordering - a new definition. InProceedings
of the 17th Annual International Symposium on Computer Architecture, pages 2–14,
May 1990.

[AKK +93] A. Agarwal, J.Kubiatowicz, D.Kranz, B.-H. Lim, D.Yeung, G.D’Souza, and
M. Parkin. SPARCLE: An evolutionary processor design for multiprocessors.IEEE
Micro, 13(3):48–61, June 1993.

[ALBL91] ThomasE. Anderson, HenryM. Levy, BrianN. Bershad, and EdwardD.
Lazowska. The interaction of architecture and operating systems. InProceedings of
the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), pages 108–120, April 1991.

[BBD+87] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfield, Ewing Lusk,
Ross Overbeek, James Patterson, and Rick Stevens.Portable Programs for Parallel
Processors. Holt, Rinehart and Winston Inc., 1987.

[BBLS91] David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The NAS paral-
lel benchmarks. Technical Report RNR-91-002 Revision 2, Ames Research Center,
August 1991.

[BCF+95] NanetteJ. Boden, Danny Cohen, RobertE. Felderman, AlanE. Kulawik,
CharlesL. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-sec-
ond local area network. IEEE Micro, 15(1):29–36, February 1995.

116

[BCL+95] Eric A. Brewer, FredericT. Chong, LokT. Liu, ShamikD. Sharma, and John
Kubiatowicz. Remote queues: Exposing message queues for optimization and atom-
icity. In Proceedings of the Seventh ACM Symposium on Parallel Algorithms and
Architectures (SPAA), 1995.

[BDFL96] MatthiasA. Blumrich, Cesary Dubnicki, EdwardW. Felten, and Kai Li. Pro-
tected, user-level DMA for the SHRIMP network interface. InProceedings of the
2nd International Symposium on High-Performance Computer Architecture
(HPCA), pages 154–165, February 1996.

[Bel85] C. Gordon Bell. Multis: A new class of multiprocessor computers.Science,
228:462–466, 1985.

[BGK96] Doug Burger, JamesR. Goodman, and Alain Kägi. Memory bandwidth limita-
tions of future microprocessors. InProceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 78–89, May 1996.

[BJ81]Özalp Babaoglu and William Joy. Converting a swap-based system to do paging in
an architecture lacking page-referenced bits. InProceedings of the Eighth ACM
Symposium on Operating System Principles (SOSP), pages 78–86, December 1981.

[BKT92] HenriE. Bal, M.Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A language
for parallel programming of distributed systems.IEEE Transactions on Software
Engineering, 18(3), March 1992.

[BLA +94] MatthiasA. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, EdwardW.
Felten, and Jonathon Sandberg. Virtual memory mapped network interface for the
SHRIMP multicomputer. In Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture, pages 142–153, April 1994.

[BM95] Doug Burger and Sanjay Mehta. Parallelizing appbt for a shared-memory multi-
processor. Technical Report 1286, Computer Sciences Department, University of
Wisconsin–Madison, September 1995.

[BR90] Roberto Bisiani and Mosur Ravishankar. PLUS: A distributed shared-memory sys-
tem. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 115–124, June 1990.

[BRE92]BrianN. Bershad, David D. Redell, and JohnR. Ellis. Fast mutual exclusion for
uniprocessors. InProceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS V), pages
223–237, Boston, Massachusetts, 1992.

[Bri70] Per Brinch Hansen. The nucleus of a multiprogramming system.Communications
of the ACM, 13(4):238–250, April 1970.

[BZS93]BrianN. Bershad, Matthew J. Zekauskas, and WayneA. Sawdon. The Midway
distributed shared memory system. InCOMPCON 1993, 1993.

117

[CAA+95] Derek Chiou, BoonS. Ang, Arvind, MichaelJ. Beckerle, Andy Boughton,
Robert Greiner, JamesE. Hicks, and JamesC. Hoe. StarT-NG: Delivering seamless
parallel computing. Technical Report CSG Memo 371, MIT Laboratory for Com-
puter Science, February 1995.

[CAL+89] Jeffrey S. Chase, FranzG. Amador, EdwardD. Lazowska, HenryM. Levy, and
RichardJ. Littlefield. The Amber system: Parallel programming on a network of
multiprocessors. InProceedings of the Twelfth ACM Symposium on Operating Sys-
tem Principles (SOSP), pages 147–158, December 1989.

[CBZ91] JohnB. Carter, JohnK. Bennett, and Willy Zwaenepoel. Implementation and
performance of Munin. InProceedings of the Thirteenth ACM Symposium on Oper-
ating System Principles (SOSP), pages 152–164, October 1991.

[CDG+93] David E. Culler, Andrea Dusseau, SethCopen Goldstein, Arvind Krishnamur-
thy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel program-
ming in Split-C. InProceedings of Supercomputing ’93, pages 262–273, November
1993.

[CGB89]David R. Cheriton, HendrikA. Goosen, and PatrickD. Boyle. Multi-level shared
caching techniques for scalability in VMP-MC. InProceedings of the 16th Annual
International Symposium on Computer Architecture, pages 16–24, June 1989.

[CGB91]David R. Cheriton, HendrikA. Goosen, and PatrickD. Boyle. Paradigm: A
highly scalable shared-memory multiprocessor. IEEE Computer, 24(2):33–46, Feb-
ruary 1991.

[CGBG88]David R. Cheriton, Anoop Gupta, PatrickD. Boyle, and HendrikA. Goosen.
The VMP multiprocessor: Initial experience, refinements and performance evalua-
tion. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 410–421, June 1988.

[Cha94]David L. Chaiken. Mechanisms and Interfaces for Software-Extended Coherent
Shared Memory. PhD thesis, Massachusetts Institute of Technology, September
1994. Available as MIT/LCS/TR-644.

[CKA91] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories:
A scalable cache coherence scheme. InProceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV), pages 224–234, April 1991.

[CKP91]David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV), pages 40–52, April
1991.

[CLMY96] David E. Culler, Lok Tin Liu, RichardP. Martin, and ChadO. Yoshikawa.
Assessing fast network interfaces.IEEE Micro, pages 35–43, February 1996.

118

[CM88] Albert Chang and MarkF. Mergen. 801 storage: Architecture and programming.
ACM Transactions on Computer Systems, 6(1):28–50, February 1988.

[CR95]Martin C. Carlisle and Anne Rogers. Software caching and computation migration
in Olden. InFifth ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), 1995.

[Cra96]Cray Research, Inc. The CRAY J90se computer systems. World Wide Web docu-
ment, 1996. http://www.cray.com/PUBLIC/product-info/J90/J90se.html.

[CRL96] Satish Chandra, Brad Richards, and JamesR. Larus. Teapot: Language support
for writing memory coherence protocols. InProceedings of the SIGPLAN ’96 Con-
ference on Programming Language Design and Implementation (PLDI), May 1996.

[CSB86]David R. Cheriton, GertA. Slavenburg, and PatrickD. Boyle. Software-con-
trolled caches in the VMP multiprocessor. In Proceedings of the 13th Annual Inter-
national Symposium on Computer Architecture, pages 366–374, June 1986.

[DCF+89] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Michael Larivee, Rich Lethin, Peter Nuth, Scott Wills, Paul Carrick, and Greg Fyler.
The J-Machine: A fine-grain concurrent computer. In G.X. Ritter, editor, Informa-
tion Processing 89, pages 1147–1153. Elsevier North-Holland, Inc., 1989.

[DCMM94] H. G. Dietz, W. E. Cohen, T. Muhammad, and T. I. Mattox. Compiler tech-
niques for fine-grain execution on workstation clusters using papers. InProceedings
of the Seventh Annual Workshop on Languages and Compilers for Parallel Comput-
ing, August 1994.

[DCZ96] Sandhya Dwarkadas, AlanL. Cox, and Willy Zwaenepoel. An integrated com-
pile-time/run-time software distributed shared memory system. InProceedings of
the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII), pages 186–197, October 1996.

[DL92] Czarek Dubnicki and ThomasJ. LeBlanc. Adjustable block size coherence caches.
In Proceedings of the 19th Annual International Symposium on Computer Architec-
ture, pages 170–179, June 1992.

[DW89] William J. Dally and D.Scott Wills. Universal mechanisms for concurrency. In
PARLE ’89: Parallel Architectures and Languages Europe. Springer-Verlag, June
1989.

[EK89] SusanJ. Eggers and RandyH. Katz. The effect of sharing on the cache and bus
performance of parallel programs. InProceedings of the Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS III), pages 257–270, 1989.

[ENCH96]Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy. Soft-
FLASH: Analyzing the performance of clustered distributed virtual shared memory.
In Proceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS VII), October 1996.

119

[Eno96]Enorex Microsystems, Inc. Enorex opens direct-mail channel for superfast Alpha
desktop PCs. World Wide Web document, November 1996. http://www.enorex.com/
pr111896.htm.

[FKD+95] Marco Fillo, StevenW. Keckler, William J. Dally, NicholasP. Carter, Andrew
Chang, Yevgeny Gurevich, and WhayS. Lee. The M-Machine multicomputer. In
28th Annual International Symposium on Microarchitecture (MICRO-28), pages
146–156, December 1995.

[FLR+94] Babak Falsafi, AlvinR. Lebeck, StevenK. Reinhardt, Ioannis Schoinas,
Mark D. Hill, JamesR. Larus, Anne Rogers, and David A. Wood. Application-spe-
cific protocols for user-level shared memory. In Proceedings of Supercomputing ’94,
pages 380–389, November 1994.

[FV93] Matthew I. Frank and MaryK. Vernon. A hybrid shared memory/message passing
parallel machine. InProceedings of the 1993 International Conference on Parallel
Processing (Vol. I Architecture), pages 232–236, August 1993.

[FW96a]Babak Falsafi and David A. Wood. Parallel network interfaces for smp nodes.
Submitted for publication, December 1996.

[FW96b]Babak Falsafi and David A. Wood. When does dedicated protocol processing
make sense? Technical Report 1302, Computer Sciences Department, University of
Wisconsin–Madison, February 1996.

[GGK+83] Allan Gottlieb, Ralph Grishman, ClydeP. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. The nyu ultracomputer—designing an mimd shared mem-
ory parallel computer. IEEE Transactions on Computers, C-32(2):175–189, Febru-
ary 1983.

[Gil96] RichardB. Gillett. Memory channel network for PCI.IEEE Micro, 16(1):12–18,
February 1996.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. InProceedings of the 17th Annual International
Symposium on Computer Architecture, pages 15–26, June 1990.

[GVW89] JamesR. Goodman, MaryK. Vernon, and PhilipJ. Woest. Efficient synchroni-
zation primitives for large-scale cache-coherent multiprocessors. InProceedings of
the Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS III), pages 64–77, April 1989.

[Gwe95]Linley Gwennap. Intel’s P6 bus designed for multiprocessing.Microprocessor
Report, 9(7), May 30, 1995.

[HGDG94]John Heinlein, Kourosh Gharachorloo, ScottA. Dresser, and Anoop Gupta.
Integration of message passing and shared memory in the Stanford FLASH multi-
processor. In Proceedings of the Sixth International Conference on Architectural

120

Support for Programming Languages and Operating Systems (ASPLOS VI), pages
38–50, October 1994.

[HHS+95] Chris Holt, Mark Heinrich, JaswinderPal Singh, Edward Rothberg, and John
Hennessy. The effects of latency, occupancy, and bandwidth in distributed shared
memory multiprocessors. Technical Report CSL-TR-95-660, Computer Systems
Laboratory, Stanford University, January 1995.

[HJ92]DanaS. Henry and ChristopherF. Joerg. A tightly-coupled processor-network
interface. InProceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS V), pages
111–122, October 1992.

[HKO+94] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Baxter,
JaswinderPal Singh, Richard Simoni, Kourosh Gharachorloo, David Nakahira,
Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The perfor-
mance impact of flexibility in the Stanford FLASH multiprocessor. In Proceedings
of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VI), pages 274–285, 1994.

[HLH92] Erik Hagersten, Anders Landin, and Seif Haridi. DDM — a cache-only memory
architecture.IEEE Computer, 25(9):44–54, September 1992.

[HLRW93] Mark D. Hill, JamesR. Larus, StevenK. Reinhardt, and David A. Wood.
Cooperative shared memory: Software and hardware for scalable multiprocessors.
ACM Transactions on Computer Systems, 11(4):300–318, November 1993. Earlier
version appeared in ASPLOS V.

[HMMS96] Mark Horowitz, Margaret Martonosi, ToddC. Mowry, and MichaelD. Smith.
Informing memory operations: Providing memory performance feedback in modern
processors. InProceedings of the 23rd Annual International Symposium on Com-
puter Architecture, pages 260–270, May 1996.

[HSL94] Erik Hagersten, Ashley Saulsbury, and Anders Landin. Simple COMA node
implementations. InProceedings of the 27th Hawaii International Conference on
System Sciences, January 1994.

[IDFL96] Liviu Iftode, Cesary Dubnicki, EdwardW. Felten, and Kai Li. Improving
release-consistent shared virtual memory using automatic update. InProceedings of
the 2nd International Symposium on High-Performance Computer Architecture
(HPCA), pages 14–25, February 1996.

[Int95] Intel Corporation. Intel supercomputer teraflops program. World Wide Web docu-
ment, 1995. http://www.ssd.intel.com/tflop.html.

[JKW95] Kirk L. Johnson, M.Frans Kaashoek, and DeborahA. Wallach. CRL: High-per-
formance all-software distributed shared memory. In Proceedings of the Fifteenth
ACM Symposium on Operating System Principles (SOSP), pages 213–228, Decem-
ber 1995.

121

[KA93] John Kubiatowicz and Anant Agarwal. Anatomy of a message in the Alewife mul-
tiprocessor. In Proceedings of the 7th ACM International Conference on Supercom-
puting, July 1993.

[KCPT95]D.A. Koufaty, X. Chen, D.K. Poulsen, and J.Torrellas. Data forwarding in scal-
able shared-memory multprocessors. InProceedings of the 1995 International Con-
ference on Supercomputing, 1995.

[KCZ92] Pete Keleher, AlanL. Cox, and Willy Zwanepoel. Lazy release consistency for
software distributed shared memory. In Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, pages 13–21, May 1992.

[KD92] StephenW. Keckler and William J. Dally. Processor coupling: Integrating compile
time and runtime scheduling for parallelism. InProceedings of the 19th Annual
International Symposium on Computer Architecture, pages 202–213, May 1992.

[KDCZ94] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. Tread-
Marks: Distributed shared memory on standard workstations and operating systems.
In Proceedings of the Winter 94 Usenix Conference, pages 115–131, January 1994.

[Ken92]Kendall Square Research. Kendall Square Research technical summary, 1992.

[KJA+93] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong
Lim. Integrating message-passing and shared-memory: Early experience. InFourth
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
(PPOPP), pages 54–63, May 1993.

[KOH+94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz,
Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH multi-
processor. In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pages 302–313, April 1994.

[KS93] R. E. Kessler and J.L. Schwarzmeier. Cray t3d: A new dimension for cray
research. InProceedings of COMPCON 93, pages 176–182, San Francisco, Califor-
nia, Spring 1993.

[LAD +92] CharlesE. Leiserson, ZahiS. Abuhamdeh, David C. Douglas, CarlR. Feyn-
man, MaheshN. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,
Margaret A.St. Pierre, David S. Wells, MonicaC. Wong, Shaw-Wen Yang, and
Robert Zak. The network architecture of the Connection Machine CM-5. InPro-
ceedings of the Fourth ACM Symposium on Parallel Algorithms and Architectures
(SPAA), July 1992.

[Lar94] JamesR. Larus. Compiling for shared-memory and message-passing computers.
ACM Letters on Programming Languages and Systems, 2(1-4):165–180, March–
December 1994.

122

[LCC+75] R. Levin, E.Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism
separation in Hydra. InProceedings of the Fifth ACM Symposium on Operating Sys-
tem Principles (SOSP), pages 132–140, November 1975.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321–359, November 1989.

[Li86] Kai Li. Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD thesis,
Yale University, October 1986.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber,
Anoop Gupta, John Hennessy, Mark Horowitz, and Monica Lam. The Stanford
DASH multiprocessor. IEEE Computer, 25(3):63–79, March 1992.

[LRV94] JamesR. Larus, Brad Richards, and Guhan Viswanathan. LCM: Memory system
support for parallel language implementation. InProceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS VI), pages 208–218, October 1994.

[LS95] JamesR. Larus and Eric Schnarr. EEL: Machine-independent executable editing.
In Proceedings of the SIGPLAN ’95 Conference on Programming Language Design
and Implementation (PLDI), pages 291–300, June 1995.

[Mas94]SusanA. Mason.SBus Handbook. SunSoft Press, 1994.

[McC96] JohnD. McCalpin. Stream benchmark results - standard set. World Wide Web
document, November22 1996. http://www.cs.virginia.edu/stream/standard/Band-
width.html.

[MCS91]JohnM. Mellor-Crummey and MichaelL. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors.ACM Transactions on Computer
Systems, 9(1):21–65, February 1991.

[MFHW96] ShubhenduS. Mukherjee, Babak Falsafi, MarkD. Hill, and David A. Wood.
Coherent network interfaces for fine-grain communication. InProceedings of the
23rd Annual International Symposium on Computer Architecture, pages 247–258,
May 1996.

[MG91] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors.Journal of Parallel and Distributed
Computing, 12:87–106, June 1991.

[Mic96] MicroDesign Resources. Chart watch: Workstation processors.Microprocessor
Report, 10(9):19, July8, 1996.

[Min95] Minnesota Supercomputer Center, Inc. Distributed job manager. World Wide Web
document, 1995. http://www.msc.edu/msc/docs/djm.

123

[MKAK94] Kenneth Mackenzie, John Kubiatowicz, Anant Agarwal, and Frans Kaashoek.
Fugu: Implementing translation and protection in a multiuser, multimodel multipro-
cessor. Technical Report TM-503, MIT LCS, October 1994.

[MKBS95] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and
MichaelL. Scott. Using simple page placement policies to reduce the cost of cache
fills in coherent shared-memory systems. InNinth International Parallel Processing
Symposium, April 1995.

[MOH96] Margaret Martonosi, David Ofelt, and Mark Heinrich. Integrating performance
monitoring and communication in parallel computers. InProceedings of the 1996
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems,
pages 138–147, May 1996.

[MSH+95] ShubhenduS. Mukherjee, ShamikD. Sharma, MarkD. Hill, JamesR. Larus,
Anne Rogers, and Joel Saltz. Efficient support for irregular applications on distrib-
uted-memory machines. InFifth ACM SIGPLAN Symposium on Principles & Prac-
tice of Parallel Programming (PPOPP), July 1995.

[Nim93] Nimbus Technology. Nim 6133 memory controller specification. Technical
report, Nimbus Technology, 1993.

[Pfi95] RobertW. Pfile. Typhoon-Zero implementation: The Vortex module. Technical
Report 1290, Computer Sciences Department, University of Wisconsin–Madison,
October 1995.

[RAK89] Umakishore Ramachandran, Mustaque Ahamad, and M.YousefA. Khalidi.
Coherence of distributed shared memory: Unifying synchronization and data trans-
fer. In Proceedings of the 1989 International Conference on Parallel Processing
(Vol. II Software), pages 160–169, August 1989.

[Rei95]StevenK. Reinhardt. Tempest interface specification (revision 1.2.1). Technical
Report 1267, Computer Sciences Department, University of Wisconsin–Madison,
February 1995.

[RFW93]StevenK. Reinhardt, Babak Falsafi, and David A. Wood. Kernel support for the
Wisconsin Wind Tunnel. InProceedings of the USENIX Symposium on Microker-
nels and Other Kernel Architectures, pages 73–89, September 1993.

[RHL+93] StevenK. Reinhardt, MarkD. Hill, JamesR. Larus, AlvinR. Lebeck, JamesC.
Lewis, and David A. Wood. The Wisconsin Wind Tunnel: Virtual prototyping of
parallel computers. InProceedings of the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 48–60, May 1993.

[RLW94] StevenK. Reinhardt, JamesR. Larus, and David A. Wood. Tempest and
Typhoon: User-level shared memory. In Proceedings of the 21st Annual Interna-
tional Symposium on Computer Architecture, pages 325–337, April 1994.

[Ros93]Ross Technology, Inc.SPARC RISC User’s Guide: hyperSPARC Edition, Septem-
ber 1993.

124

[RPW96]StevenK. Reinhardt, RobertW. Pfile, and David A. Wood. Decoupled hardware
support for distributed shared memory. In Proceedings of the 23rd Annual Interna-
tional Symposium on Computer Architecture, pages 34–43, May 1996.

[RSW+93] E. Rosti, E.Smirni, T.D. Wagner, A.W. Apon, and L.W. Dowdy. The ksr1:
Experimentation and modeling of poststore. InProceedings of the 1993 ACM Sig-
metrics Conference on Measurement and Modeling of Computer Systems, pages 74–
85, May 1993.

[SFH+96] Ioannis Schoinas, Babak Falsafi, MarkD. Hill, JamesR. Larus, ChristopherE.
Lucas, ShubhenduS. Mukherjee, StevenK. Reinhardt, Eric Schnarr, and David A.
Wood. Implementing fine-grain distributed shared memory on commodity smp
workstations. Technical Report 1307, Computer Sciences Department, University of
Wisconsin–Madison, March 1996.

[SFL+94] Ioannis Schoinas, Babak Falsafi, AlvinR. Lebeck, StevenK. Reinhardt,
JamesR. Larus, and David A. Wood. Fine-grain access control for distributed
shared memory. In Proceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS VI),
pages 297–306, October 1994.

[SGT96]DanielJ. Scales, Kourosh Gharachorloo, and ChandramohanA. Thekkath.
Shasta: A low overhead, software-only approach for supporting fine-grain shared
memory. In Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VII), pages
174–185, October 1996.

[SH91]Richard Simoni and Mark Horowitz. Dynamic pointer allocation for scalable cache
coherence directories. InInternational Symposium on Shared Memory Multipro-
cessing, pages 72–81, April 1991.

[Sho94]Doug Shore. Personal communication, November 1994.

[Sil96] Silicon Graphics, Inc. Origin servers: Technical overview of the origin family.
World Wide Web document, 1996. http://www.sgi.com/Products/hardware/servers/
technology/overview.html.

[SL94] DanielJ. Scales and MonicaS. Lam. The design and evaluation of a shared object
system for distributed memory machines. InFirst USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages 101–114, November 1994.

[SPN96]Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the memory wall:
The case for processor/memory integration. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pages 90–101, May 1996.

[Sun91]Sun Microsystems Inc.SPARC M{Bus Interface Specification, April 1991.

[Sun94]Sun Microsystems Computer Corporation.Writing F{Code Programs. SunSoft
Press, 1994.

125

[SWG92]JaswinderPal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stan-
ford parallel applications for shared memory. Computer Architecture News, 20(1):5–
44, March 1992.

[TEL95] DeanM. Tullsen, SusanJ. Eggers, and HenryM. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. InProceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 392–403, June 1995.

[Thi91] Thinking Machines Corporation. The Connection Machine CM-5 technical sum-
mary, 1991.

[TL94] ChandramohanA. Thekkath and HenryM. Levy. Hardware and software support
for efficient exception handling. InProceedings of the Sixth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS VI), pages 110–119, October 1994.

[vECGS92]Thorsten von Eicken, David E. Culler, SethCopen Goldstein, and KlausErik
Schauser. Active Messages: a mechanism for integrating communication and com-
putation. InProceedings of the 19th Annual International Symposium on Computer
Architecture, pages 256–266, May 1992.

[VL96] Guhan Viswanathan and JamesR. Larus. Compiler-directed shared-memory com-
munication for iterative parallel applications. InProceedings of Supercomputing
’96, November 1996.

[WCC+74] W. Wulf, E. Cohen, W. Corwin, A.Jones, R.Levin, C.C. Pierson, and
F. Pollack. Hydra: The kernel of a multiprocessor operating system.Communica-
tions of the ACM, 17(6):337–345, June 1974.

[WCF+93] David A. Wood, Satish Chandra, Babak Falsafi, MarkD. Hill, JamesR. Larus,
Alvin R. Lebeck, JamesC. Lewis, ShubhenduS. Mukherjee, Subbarao Palacharla,
and StevenK. Reinhardt. Mechanisms for cooperative shared memory. In Proceed-
ings of the 20th Annual International Symposium on Computer Architecture, pages
156–168, May 1993. Also appeared in CMG Transactions, Spring 1994.

[WHL92] Larry D. Wittie, Gudjon Hermannsson, and AiLi. Eager sharing for efficient
massive parallelism. InProceedings of the 1992 International Conference on Paral-
lel Processing, pages 251–255, August 1992.

[WJI+94] Andrew W. Wilson Jr., Richard P. LaRowe Jr., RobertJ. Ionta, RalphP. Valen-
tino, Beeching Hu, PeterR. Breton, and Pocheong Lau. Update propagation in the
Galactica Net distributed shared memory architecture. InProceedings of the Inter-
national Workshop on Support for Large Scale Shared Memory Architecture, 1994.

[Wul81] William A. Wulf. Compilers and computer architecture.IEEE Computer,
14(7):41–48, July 1981.

126

127

Appendix A

Tempest Interface Specification

This appendix is a formal specification of the Tempest interface taken from [Rei95]. The

specification is divided into two parts: SectionA.1 describes the general execution model

of a Tempest application and SectionA.2 documents the specific interface functions for

the C programming language. In addition to the interface specification, comments labeled

“Rationale” and “Implementation note” are provided to give insight into the motivation

for certain features and to suggest implementation approaches, respectively.

A.1 Execution model

The Tempest architecture assumes a host that consists of many processing nodes, where

each node contains one or more processors connected to a single memory module (that is,

sharing a single physical address space). Communication between nodes occurs only

through message-passing and the (as yet undefined) global operations (e.g., barriers). A

Tempest application has a distinct virtual address space on each processing node. The

SPMD (“single program, multiple data”) model is used, i.e., the same program text is

loaded at the same location in every address space, though each processor executes that

text independently. Each address space may also contain other per-node private segments

128

for data and stacks. In addition, a contiguous segment at the same location in each address

space is designated theuser-managed virtual segment. Within this segment, the user maps

virtual pages to physical memory, handles accesses to unmapped pages, and controls the

accessibility of mapped memory at a fine granularity. Providing user-level control over the

same virtual address region on every node is the basis of constructing a transparent single-

address-space execution environment with user-defined semantics.

Tempest provides fine-grain memory access control by associating ablock access tag

with every aligned 2k-byte region of memory (amemory block). The value ofk is imple-

mentation-dependent, but is typically five, six, or seven; that is, memory blocks are typi-

cally 32, 64, or 128 bytes. The Tempest interface is designed so that code written

assuming some block sizeb will be portable across all implementations whose block size

is smaller than or equal tob. The actual block size supported by an implementation is

referred to as the implementation’sminimum block size, and blocks of the minimum block

size are calledminimal blocks.

Each block access tag has one of four values:Invalid, Busy, ReadOnly, andWrit-

able. A block whose tag isInvalid or Busy is referred to asinvalid, while blocks

taggedReadOnly or Writable are calledvalid. (Invalid andBusy have the same

access semantics, but can be used by software to encode protocol information; e.g.,

whether or not a request is pending.) Loads and stores are checked against the value of the

referenced block’s access tag; conflicting accesses cause ablock access fault (see

TableA.1). The fault suspends the accessing thread and invokes a user-level handler to

Table A.1:Access tag semantics.

Access
Tag

Invalid Busy ReadOnly Writable

load fault fault return data return data

store fault fault fault write data

129

process the fault. The handler typically performs some protocol actions to make the access

permissible. Once access is allowed, the block’s tag is changed and the faulting thread is

resumed.

Each address space (and thus each node) can support multiple threads of execution.

These threads may execute concurrently on multiprocessor nodes. One of the threads is

distinguished as theprotocol thread. All other threads are referred to ascomputation

threads. The management of computation threads (creation, scheduling, etc.) is outside the

domain of Tempest. The protocol thread is scheduled by Tempest and exists solely to exe-

cute user-definedhandler functions to processprotocol events: network message arrivals,

timer expirations, and the page faults and block access faults of computation threads. Han-

dler functions are executed sequentially, i.e., if a protocol event occurs while the protocol

thread is executing a handler function, the event will be queued until the current handler

function completes. If multiple events are queued, block access faults and page faults are

given first priority, followed by timer expirations, and then message arrivals.

Rationale: By dedicating a single thread for protocol processing and running handler func-
tions to completion, the need for locking on protocol data structures is reduced or eliminated.
If concurrency is desired in processing protocol events, the protocol thread’s handler function
can hand off tasks to computation threads.

Rationale: Event prioritization is based on the following observations:

• Message arrivals are beyond the control of the local node, so any event with lower priority
may be subject to starvation. This is avoided by giving message arrivals lowest priority.

• Servicing of faulting accesses should be given high priority to maximize application
throughput. The number of concurrent page and block access faults is limited by the num-
ber of concurrently-executing computation threads, so starvation of other event types is
not a problem.

Only the loads and stores of computation threads are guaranteed to be checked against

the access tags. Normally, the protocol thread only references tagged memory indirectly

via Tempest functions; the behavior of a direct protocol thread access that conflicts with

the block’s tag is undefined.

The type of protocol event determines the user-level handler function that is executed by

the protocol thread. The handler for a message arrival is chosen by the sender and encoded

130

in the message header (as in Active Messages [vECGS92]). The handler for a timer expi-

ration is specified when the timer is initialized. Handlers for page faults and block access

faults are registered locally by the application. All page faults are serviced by a single han-

dler. The handler invoked for a block access fault is determined by the combination of the

access type (load vs. store), the tag value, and the memory page on which the referenced

block is located. Specifically, the user associates a small integer (thepage mode) with

every page, and registers a set of five handlers (one for each of the “fault” cases in

TableA.1) for each page mode.

Rationale: The ability to associate different sets of handlers with different memory blocks
facilitates the use of multiple protocols within a single application. Associating handlers with
pages rather than individual blocks trades a small loss of flexibility for a large decrease in stor-
age overhead. (Actions can still be specialized at block granularity in software.) Use of the
page mode value rather than allowing a separate set of handlers for each page further reduces
storage overheads.

A.2 The Tempest interface for C

This section defines a standard C user interface for Tempest to provide source-level

application compatibility across all Tempest implementations. Implementations will typi-

cally provide a user library that bridges the gap between Tempest and the native operating

system. A Tempest implementation may involve more than a library with which the appli-

cation is linked. For example, the application source may be preprocessed to convert Tem-

pest function calls to some intermediate form, or the compiled application may be

postprocessed to insert code that provides fine-grain access control [SFL+94]. The key

characteristic is that an automated process is provided that converts interface-compliant

source into a functioning program.

The following subsections specify the operations provided by the interface, grouped by

function: virtual memory management, fine-grain memory access control, fine-grain mes-

saging, bulk data transfer, timers, and thread management.

131

A.2.1 Virtual memory management

As described in SectionA.1, Tempest gives user-level control over a region of the virtual

address space on each node. This region, known as theuser-managed virtual segment, is

located at the same address in every address space and is at least 1 Gbyte in size. Physical

memory allocation and address translation are performed on the basis of pages. Pages

mapped in the user-managed virtual segment are referred to asuser-managed pages. Only

user-managed pages support block access tags. Each user-managed page must be assigned

a page mode number, which determines the set of block access fault handlers that are

invoked for block access faults on that page.

A.2.1.1 Page size

#define TPPI_PAGE_SHIFT implementation-specific

#define TPPI_PAGE_SIZE (1 << TPPI_PAGE_SHIFT)

The page size in bytes is exported in the constantTPPI_PAGE_SIZE.
TPPI_PAGE_SHIFT is the width in bits of a page offset (i.e. log2(TPPI_PAGE_SIZE)).

lmplementation note:The Tempest page size should be as small as possible to avoid memory
fragmentation. Typically it is the same as the platform’s MMU page size; e.g., the SPARC
MMU page size is 4K so all existing implementations (which are all SPARC-based) have a 4K
page size.

A.2.1.2 Page modes

typedef implementation-specific TPPI_PageMode;

#define TPPI_NUM_PAGE_MODES implementation-specific

#define TPPI_MAX_PAGE_MODE (TPPI_NUM_PAGE_MODES - 1)

Page mode numbers are small consecutive integers starting at 0.TPPI_PageMode is an
unsigned integer type of implementation-defined size used to hold page mode numbers. The
constantTPPI_NUM_PAGE_MODES indicates the number of page modes supported by the
implementation, andTPPI_MAX_PAGE_MODE indicates the largest page mode number.

A.2.1.3Page allocation and deallocation

int TPPI_alloc_and_map(void *pg, TPPI_PageMode mode, TPPI_BlkAccTag acc, TPPI_NodeId
home, void *user_ptr);

Allocates a page of physical memory and maps it in the user-managed virtual segment at the
page-aligned addresspg. By definition, the allocated page is a user-managed page. The page
mode (for block access fault handler selection) is set according tomode. The block access
tags for all blocks on the page are initialized toacc (see SectionA.2.2.1). Thehome and
user_ptr fields are not interpreted by the system, but are intended to hold the node identi-
fier (see SectionA.2.3.1) of the page’s directory node and a pointer to a per-page protocol data

132

structure, respectively. Thehome anduser_ptr values can be retrieved via function calls
(using the virtual address as a key) and are automatically provided to block access fault han-
dlers for the page.

The return value is 1 if successful, 0 if unsuccessful. The call will fail if there is insufficient
physical memory, pg is not aligned to the page size, a mapping already exists for the virtual
addresspg, orpg is not within the user-managed virtual segment.

lmplementation note: Page-level protection may be used in the place of a true fine-grain
access control mechanism if, whenever the user invokes a tag-modifying block operation, the
specified block length is always equal to or greater than the page size. Because pages are
always initialized with the same tag on every block, this optimization can be performed opti-
mistically; that is, the fine-grain access control mechanism need not be used for a given page
until the first time the user invokes a tag-modifying block operation with a block length smaller
than the page size.

int TPPI_unmap_and_free(void *pg);

Removes the mapping for user-managed page pointed to by the aligned addresspg.

int TPPI_remap(void *old_pg, void *new_pg);

Removes the mapping for user-managed pageold_pg and remaps the physical page to the
addressnew_pg, which must also be in the user-managed virtual segment. The block access
tags, page mode, home node ID, and user pointer are unchanged. Bothold_pg andnew_pg
must be page-aligned.

Rationale: While TPPI_unmap_and_free followed byTPPI_alloc_and_map
has a similar effect,TPPI_remap differs in two significant ways. First, the same physical
page is kept, so the data is not lost. Second,TPPI_remap keeps the page continuously
under the ownership of the application; the TPPI_unmap_and_free/
TPPI_alloc_and_map sequence is non-atomic so it is possible that another application
could perform an allocation in the middle causing theTPPI_alloc_and_map to fail due
to insufficient memory.

A.2.1.4Page fault handlers

typedef void (*TPPI_PageFaultHandlerPtr)(void *va, int pc, int is_write);

void TPPI_register_page_fault_handler(TPPI_PageFaultHandlerPtr fn);

Registers fn as the user’s page fault handler. When a computation thread accesses an
unmapped virtual address in the user-managed virtual segment, the Tempest implementation
will notify the user by causing the protocol thread to invoke this function. The handler will be
invoked as

void (*fn)(void *va, int pc, int is_write)

whereva is the unmapped address that was accessed andpc is the program counter of the
load or store that caused the fault. Theis_write parameter is non-zero if the access was a
store, or zero if it was a load. The faulting thread is suspended untilTPPI_resume_va is
called (see SectionA.2.6), either by the page fault handler, a future message handler, or a dif-
ferent thread.

Before resuming the faulting access, the page fault handler may directly request needed data

133

from a remote node or it may simply initialize all blocks on the page to
TPPI_Blk_Invalid. In the latter case, when the access is retried after the thread is
resumed it will generate a block access fault. This approach may be favored because it keeps
protocol-specific code out of the page fault handler.

Rationale: The page fault handler will typically useTPPI_alloc_and_map to add a
page at the desired address. It may need to send a request to a remote node to determine the
appropriate page mode; in this case, theTPPI_alloc_and_map and the resumption of
the faulting thread will be performed by the response message handler.

A.2.1.5 Retrieving per-page information

typedef struct {
implementation-specific

} TPPI_PageInfo;

int TPPI_get_page_info(void *va, TPPI_PageInfo *info_ptr);

Provides information about the virtual page containing the arbitrarily-aligned addressva in
the user-managed virtual segment. The return value is 0 if the page is not mapped, 1 if it is
mapped, and -1 if there is an error (becauseva is not in the user-managed virtual segment or
info_ptr is not suitably aligned). Ifinfo_ptr is non-null and the return value is 1, the
mode, user_ptr, andhome values provided when the page was mapped are written to the
fields of the same name in the structure pointed to byinfo_ptr. The exact definition of
TPPI_PageInfo is implementation-dependent, but it must contain at least these three
fields:TPPI_PageMode mode, void *user_ptr, andTPPI_NodeId home.

void *TPPI_get_page_user_ptr(void *va);

Returns theuser_ptr pointer supplied toTPPI_alloc_and_map when the page con-
taining the arbitrarily-aligned addressva was mapped. The return value is undefined if the
page is not in the user-managed virtual segment or is not mapped.

TPPI_PageMode TPPI_get_page_mode(void *va);

Returns themode value supplied toTPPI_alloc_and_map when the page containing the
arbitrarily-aligned addressva was mapped. The return value is undefined if the page is not in
the user-managed virtual segment or is not mapped.

TPPI_NodeId TPPI_get_page_home(void *va);

Returns thehome value supplied toTPPI_alloc_and_map when the page containing the
arbitrarily-aligned addressva was mapped. The return value is undefined if the page is not in
the user-managed virtual segment or is not mapped.

A.2.2 Block access control

The semantics of block access tags are discussed in SectionA.1. Tag values are initial-

ized during page allocation (see SectionA.2.1.3). Note that tags can also be modified as a

side-effect of sending or receiving blocks using theBa item type (see SectionA.2.3).

134

A.2.2.1 Access tag values

typedef enum {

TPPI_Blk_Busy, TPPI_Blk_Invalid, TPPI_Blk_ReadOnly,

TPPI_Blk_Writable

} TPPI_BlkAccTag;

#define TPPI_NUM_BLK_ACC_TAGS 4

#define TPPI_MAX_BLK_ACC_TAG(TPPI_NUM_BLK_ACC_TAGS - 1)

The TPPI_BlkAccTag type enumerates the possible access tag values for a block. The
enumeration constants will be named as specified and valued from 0 to 3 inclusive, but their
ordering is implementation-dependent. The constantsTPPI_NUM_BLK_ACC_TAGS and
TPPI_MAX_BLK_ACC_TAG indicate the number of supported access tags and the largest
access tag value, respectively.

A.2.2.2 Tag block size

#define TPPI_TAG_BLK_SHIFT implementation-specific

#define TPPI_TAG_BLK_SIZE (1 << TPPI_TAG_BLK_SHIFT)

The implementation’s minimum tag block size in bytes (see SectionA.1) is exported in the
constantTPPI_TAG_BLK_SIZE. TPPI_TAG_BLK_SHIFT is the width in bits of an off-
set within a block (i.e., log2(TPPI_TAG_BLK_SIZE)).

A.2.2.3 Specifying memory blocks

A memory block is specified with two parameters: an address and a length in bytes.

These appear as a pair of arguments:void *blk_va, int blk_len. Whenever an

address/length pair is used to specify a block as the target of a Tempest operation, the

length must be a power of two and must be greater than or equal to the implementation’s

minimum block size. The address does not have to be aligned; it may point anywhere

within the block.

Rationale: For systems with hardware support, it is trivial to ignore unused address bits, so
forcing the user to align addresses introduces unnecessary overhead. For software-based sys-
tems, the potential exists for address alignment to be inlined at the call site, with common sub-
expression elimination allowing a single alignment operation to serve for multiple Tempest
function calls. Assuming these optimizations, there is little performance advantage in forcing
the user to perform alignment.

135

If the specified length is greater than the minimum block size, the block is called a

superblock. Operations on superblocks are subject to the following constraints:

• The operation should be viewed as a non-atomic series of operations on the constituent

minimal blocks. The atomicity guarantees of SectionA.2.2.6 only apply to the mini-

mal-block operations.

• If a tag change operation (of typeTPPI_BlkTagChange) is applied to a superblock, it

must be a valid tag change for each of the constituent minimal blocks. Note that this

does not mean that all of the minimal blocks must have the same original tag (though

this is likely to be the case). For example,TPPI_Blk_Invalidate could be applied

to a superblock in which some minimal blocks are taggedTPPI_Blk_ReadOnly and

othersTPPI_Blk_Writable.

Otherwise, it should be transparent to the user whether an operation is applied to a single

minimal block or a superblock.

A.2.2.4 Reading access tags

TPPI_BlkAccTag TPPI_get_blk_acc(void *va);

Returns the block access tag associated with the block containingva. The result is undefined
if the address is not in the user-managed virtual segment or is not mapped.

A.2.2.5 Changing access tags

typedef enum {
TPPI_Blk_Validate_RW, TPPI_Blk_Upgrade_RW, TPPI_Blk_Validate_RO,
TPPI_Blk_Downgrade_RO, TPPI_Blk_Invalidate, TPPI_Blk_Mark_Busy,
TPPI_Blk_No_Tag_Change, TPPI_Blk_Invalid_To_Busy, TPPI_Blk_Busy_To_Invalid

} TPPI_BlkTagChange;

Block access tag modifications are made using theTPPI_BlkTagChange constants. These
not only specify the desired tag value but also imply the current value of the tag, as specified in
TableA.2. If the user applies a tag change operation to a block whose tag is not one of those
implied by the operation (i.e., the operation does not appear in the row corresponding to that
tag in TableA.2), the resulting state of the block is indeterminate. Note that
TPPI_Blk_Invalidate, TPPI_Blk_Mark_Busy, and TPPI_Blk_Validate_RW
(and of courseTPPI_Blk_No_Tag_Change) can be applied to any block, regardless of its
initial state, though in some cases the same tag change may be performed more efficiently
using a different operation.

Rationale: Reducing access to a block typically requires that the block be flushed from any
hardware caches, while increasing or not changing block access does not. These cache flushes

136

can be very expensive and need to be avoided when possible. A simple “set tag” function is not
sufficient to identify when flushes are necessary, and requiring the implementation to look up
the current tag before it is changed (to determine is a flush is required) may also be expensive.
The current tag state is usually implied by the user protocol state, so the user code typically has
enough information to supply the tag change operation with no extra overhead.

void TPPI_change_blk_acc(void *blk_va, int blk_len, TPPI_BlkTagChange chg);

Changes the access tag of the block specified by (blk_va, blk_len).

void TPPI_change_blk_acc_and_copy(void *blk_va, int blk_len, TPPI_BlkTagChange chg, void
*from);

Copies data from memory starting atfrom to the block specified by (blk_va, blk_len)
and changes the tag of the block according tochg.

A.2.2.6Atomicity of data access and tag changes

Threads may be executed concurrently on implementations with multiprocessor nodes,

so while one thread is in the middle of a tag change, other threads may issue loads and

stores. Tempest operations that combine data transfer and access tag changes (including

TPPI_change_blk_acc_and_copy , send_*Ba*, andrecv_Ba) provide the following useful

semantics:

• If data is read from a block and the block’s access is downgraded fromWritable, the

block data that is read is guaranteed to reflect all writes that complete before the tag

change.

a. All values are prefixed byTPPI_Blk_, e.g.,TPPI_Blk_No_Tag_Change. Where two values
are listed in a single entry, the first is preferred.

Table A.2:Block tag change enumeration values (typeTPPI_BlkTagChange).

Current
Tag

New Taga

Invalid Busy ReadOnly Writable

Invalid No_Tag_Change,
Invalidate

Invalid_To_Busy,
Mark_Busy

Validate_RO Validate_RW

Busy Busy_To_Invalid,
Invalidate

No_Tag_Change,
Mark_Busy

Validate_RO Validate_RW

ReadOnly Invalidate Mark_Busy No_Tag_Change Upgrade_RW,
Validate_RW

Writable Invalidate Mark_Busy Downgrade_RO No_Tag_Change,
Validate_RW

137

• If data is written to a block and the block’s access is upgraded, any load or store that

does not fault but would have faulted given the previous access tag is guaranteed to be

performed after the block’s contents are updated with the new data.

A.2.2.7 Block access fault handlers

typedef void (*TPPI_BlkAccFaultHandlerPtr)(void *va, void *user_ptr, TPPI_NodeId home);

void TPPI_register_blk_acc_fault_handler(TPPI_PageMode mode, TPPI_BlkAccTag tag, int acc,
TPPI_BlkAccFaultHandlerPtr fn);

Registers functionfn as the block access fault handler for accesses of typeacc (which should
be one of the defined constantsTPPI_ReadAccess or TPPI_WriteAccess) to blocks
tagged withtag on pages of modemode. The handler will be invoked as

void (*fn)(void *va, void *user_ptr, TPPI_NodeId home)

whereva is an address within the block on which the faulting access was performed and
user_ptr andhome are the values supplied toTPPI_alloc_and_map when the page
containingva was mapped. The actual address that was accessed by the faulting thread and
va will be in the same minimal block, but are not necessarily related otherwise.

Rationale: Implementations using hardware external to a commodity processor will only
observe the cache miss that results from a faulting access, not the faulting access itself. In this
case, the relationship between the observed address and the accessed address will be deter-
mined by the processor implementation.

Only five of the eighttag/acc combinations are meaningful (see TableA.1); specifying han-
dlers for the other three (TPPI_Blk_ReadOnly/TPPI_ReadAccess,
TPPI_Blk_Writable/TPPI_ReadAccess, and TPPI_Blk_Writable/
TPPI_WriteAccess) may have undesirable implementation-dependent effects and should
be avoided. (Ideally, the implementation will detect attempts to specify handlers for the other
cases and warn the user.)

A.2.3 Fine-grain messaging

Fine-grain messaging provides low-overhead message sending and reception, optimized

for short message lengths.

Rationale: Both cache coherence protocols and fine-grain parallel applications employ short
asynchronous messages whose contents are immediately consumed on receipt (e.g., cache miss
or remote read requests and responses). Much of the message data originates in the sender’s
registers and is consumed in the receiver’s registers. The memory-to-memory transfers pro-
vided by most message-passing models (and by Tempest’s bulk data transfer operations) are
inappropriate for these applications since both the management of memory buffers and the
need to copy data into and out of these buffers add significant overhead.

138

Tempest’s fine-grain messaging facility is based on Active Messages [vECGS92]. In the

Active Message model, the first word of every message is the starting program counter of

the handler to be executed at the receiver. Messages are queued and the handlers are exe-

cuted serially by the protocol thread.

A.2.3.1 Node identifiers

typedef implementation-specific TPPI_NodeId;

unsigned TPPI_num_nodes;

TPPI_NodeId TPPI_self_address;

TPPI_NodeId is an unsigned integer type of implementation-defined size used to hold node
identifiers. Node identifiers are in the range 0 ton-1 for n-node systems. Two integer variables,
TPPI_num_nodes andTPPI_self_address, provide the number of available nodes
and the local node’s identifier, respectively.

A.2.3.2 Sending

typedef void (*TPPI_MessageHandlerPtr)(TPPI_NodeId src, int size);

void TPPI_send_typelist(TPPI_NodeId dest, TPPI_MessageHandlerPtr pc, arglist);

This set of functions sends a message to the specified node, where the message will be handled
by executing code starting at the specified program counter. The body of the message is con-
structed using the specified (possibly empty) item list. In the current C binding, the item list
specification is split: the types of the items in are encoded in a string that is part of the function
name, while the parameters describing the items are part of the argument list. A given item
may require more than one parameter.

Rationale: Abstractly, TPPI_send is a polymorphic function that takes an arbitrary number
of arguments selected from a set of types (word, memory block, and memory region). Unfortu-
nately, C does not support this polymorphism. The C++ binding (when complete) will have a
singleTPPI_send function that is overloaded to support all possible message formats.

The following item types are available (with the type string given in parentheses):

• Word (W). A single machine word is sent. The corresponding parameter is the word
value, of typeint.

• Block with access change (Ba). The contents of a memory block are sent, and the mem-
ory block’s access tag is modified. The corresponding parameters are the block specifier
(void *blk_va, int blk_len) (see SectionA.2.2.3) and the tag change (type
TPPI_BlkTagChange) (see SectionA.2.2.5).

• Region (R). The contents of a region of memory are sent. The region must start on a
word boundary and contain an integral number of words. The corresponding parameters
are the region start address (typevoid *) and the region length in bytes (typeint).
The region length must be a multiple of the word size.

• Forward (F). Data from the current received message is sent. This option is only valid

139

when the send is called in the context of a message handler. The corresponding parame-
ter is the number of bytes to forward (typeint), which must be a multiple of the word
size.

For example, the following call sends a word of data (word) along with a memory block of
sizeblk_len at addressblk_va, atomically changing the block’s tag from ReadOnly to
Invalid:

TPPI_send_WBa(dest, handler_pc, word, blk_va, blk_len,
TPPI_Blk_Invalidate);

As a syntactically special case, the ‘_’ in the function name is elided when a message with no
body is sent, e.g.,TPPI_send(dest, pc).

The message body is constructed by concatenating data items, in the specified order, into an
untyped stream of words.

A.2.3.3Receiving

On the receiver, the system logically queues the message until the protocol thread is idle.

The sender-specified function is invoked with two parameters: the source node (type

TPPI_NodeId) and the size of the message body in bytes (typeint). The message body

is provided as a logical queue of words. Data is read from this queue and consumed using

the following calls, which correspond to the types available for sending:

int TPPI_recv_W();

The next word is returned.

void TPPI_recv_Ba(void *blk_va, int blk_len, TPPI_BlkTagChange chg);

The next blk_len bytes are read from the queue and written to the memory block specified
by (blk_va, blk_len) (see SectionA.2.2.3), whose access tag is changed (see
SectionA.2.2.5).

void TPPI_recv_R(void *va, int len);

The next len bytes of data are read from the queue and written to the specified region of
memory. The region must start on a word boundary and contain an integral number of words.

In addition, message data can be consumed using a “forwarded block” item in a send

operation. Note that even though the send and receive operations use the same types, the

message body is transferred as a typeless word stream, so the types used to send and

receive a particular message do not need to match. However, the receive handler must con-

sume the entire message body. If a receive handler leaves data in the message queue when

140

it terminates, some implementations may interpret this data as part of a separate message.

The resulting behavior is undefined.

A.2.3.4 Message size limit

#define TPPI_MAX_AM_BYTES implementation-specific

A Tempest implementation will typically have an upper bound on the size of message that can
be supported in terms of the number of bytes in the message body. This upper bound is
exported in the constantTPPI_MAX_AM_BYTES and is guaranteed to be at least
(TPPI_TAG_BLK_SIZE + 16).

Rationale: This minimum size allows for a block and 16 bytes of control information (e.g.,
four 32-bit words, or two 32-bit words and a 64-bit address).

lmplementation note: Tempest provides an Active Message interface without enforcing an
Active Message implementation. In an actual Active Message implementation, the entire mes-
sage is put into a single packet. On a system that cannot support a
(TPPI_TAG_BLK_SIZE + 16)-byte payload in a single packet, packetization and
reassembly must be supported, but messages that are “small enough” may still be handled in a
true Active Message fashion.

A.2.4 Bulk data transfer

Bulk data transfer provides high-bandwidth, connection-oriented, memory-to-memory

data movement between nodes.

Rationale: A memory-to-memory transfer model is desirable because it simplifies system flow
control and buffering issues by inherently providing buffer space on both the sender and
receiver, and it can be efficiently supported with typical DMA hardware. A connection-ori-
ented model allows connection set-up overhead to be amortized over multiple transfers when a
repetitive communica
tion pattern exists.

lmplementation note: All memory-to-memory transfers could be implemented on top of a
suitable Active Messages layer.

A.2.4.1Channel allocation

typedef void (*TPPI_ChannelHandlerPtr)(NodeId, int channel);

int TPPI_set_channel_src(TPPI_NodeId dest, TPPI_ChannelHandlerPtr fn);

int TPPI_set_channel_dst(TPPI_NodeId src, int channel, void *buffer, int bytes,
TPPI_ChannelHandlerPtr fn);

Channel allocation requires allocation of an endpoint on both the source (sending) and desti-
nation (receiving) nodes. The source node must first callTPPI_set_channel_src() to obtain a
channel ID number.1 The arguments are the destination node and a pointer to a function which

1. The channel ID may be relative to a source/destination pair, i.e., distinct channel IDs are only
required when there a multiple active channels between a given source and destination.

141

will be invoked at the completion of each send. The sender must communicate the returned
channel ID to the destination node (typically via an active message). The destination node then
calls TPPI_set_channel_dst() to initialize the receiving end, passing in the source node ID,
the channel ID from the source, the address and length of a receive buffer, and a pointer to a
function that will be invoked at the completion of each receive.

Both the send and receive callbacks are invoked with the ID of the corresponding node and the
channel ID. In either case, a null function pointer may be provided in which case no callback
will be performed. On the source node, invocation of the callback means only that the send
buffer can be reused; it does not imply that the data has been received at the destination.

int TPPI_set_channel_dst_notify(TPPI_NodeId src, int channel,
void *buffer, int bytes,
TPPI_ChannelHandlerPtr fn);

int TPPI_is_channel_estd(TPPI_NodeId dst, int channel);

TPPI_set_channel_dst_notify() performs the same function as
TPPI_set_channel_dst() and sends an active message back to the source to notify it that the
endpoint has been established. The source node may useTPPI_is_channel_estd() to
poll for the establishment of the destination endpoint. It will return non-zero only after the
arrival of the notification message.

A.2.4.2Sending data

void TPPI_channel_send(TPPI_NodeId dest, int channel, void *buffer, int bytes);

The source node callsTPPI_channel_send() to initiate a data transfer ofbytes bytes
starting at the pointerbuffer. The transfer may be asynchronous; the send callback, if any,
will be invoked when the buffer memory may be reused. The number of bytes specified in the
send must exactly match the number specified by the destination node in its call to
TPPI_set_channel_dst().

int TPPI_is_channel_ready(TPPI_NodeId src, int channel);

The destination node may callTPPI_is_channel_ready() to poll for the arrival of data (in lieu
of specifying a receive callback function). This function will return non-zero when the destina-
tion has received the number of bytes specified in its call toTPPI_set_channel_dst().
It will continue to return non-zero until the endpoint is reset viaTPPI_reset_channel().

void TPPI_reset_channel(TPPI_NodeId src, int channel);

The destination node must callTPPI_reset_channel() to reset the receive endpoint of
the channel after each data transmission before the source can perform another send. The des-
tination and source nodes must synchronize to guarantee that the destination has called
TPPI_reset_channel() before the source callsTPPI_channel_send().

void TPPI_reset_channel_notify(TPPI_NodeId src, int channel_id);

int TPPI_is_channel_reset(TPPI_NodeId dst, int channel);

TPPI_reset_channel_notify() performs the same function as
TPPI_reset_channel() and sends an active message back to the source to notify it that the
endpoint has been reset. The source node may useTPPI_is_channel_reset() to poll

142

for this event. It will return non-zero only after the arrival of the notification message.

A.2.4.3Channel deallocation

void TPPI_destroy_channel_src(TPPI_NodeId dest, int channel);

void TPPI_destroy_channel_dst(TPPI_NodeId dest, int channel);

As with allocation, both the source and destination nodes must explicilty deallocate their end-
points. Results are unpredictable if either endpoint is deallocated before all of the data that
sent on the channel has been received at the destination.

A.2.4.4 User pointers

void TPPI_set_src_channel_user_ptr(TPPI_NodeId dst, int channel,
void *ptr);

void *TPPI_get_src_channel_user_ptr(TPPI_NodeId dst, int chan-
nel);

void TPPI_set_dst_channel_user_ptr(TPPI_NodeId src, int channel,
void *ptr);

void *TPPI_get_dst_channel_user_ptr(TPPI_NodeId src, int chan-
nel);

Each endpoint (source and destination) contains storage for an arbitrary pointer so that the
user may associate application-specific structures with the channel. These functions provide
access to that storage.

A.2.4.5Transfer size limit

#define TPPI_MAX_CHANNEL_BYTES implementation-specific

The constantTPPI_MAX_CHANNEL_BYTES indicates the maximum number of bytes that
can be transferred through a channel between calls toTPPI_reset_channel().

A.2.5 Timers

Efficient timers are useful for implementing protocol time-outs and providing flexible

forward-progress guarantees.

typedef void (*TPPI_TimerHandlerPtr)(void *user_ptr);

void TPPI_schedule_timer(int ticks, TPPI_TimerHandlerPtr fn, void *user_ptr);

Schedules a timer event forticks units of time in the future. The units forticks are imple-
mentation-dependent. After the timer event occurs, the handler functionfn will be invoked by
the protocol thread with the single argumentuser_ptr.

A.2.6 Thr ead management

void TPPI_resume_va(void *blk_va, int blk_len);

Resumes the set of threads suspended due block access faults on a particular block. The thread

143

must be blocked due to a page fault or block access fault. For page faults, the faulting instruc-
tion is reissued. For block access faults, the faulting instruction may be reissued or the access
may be completed without reissuing (e.g., if the faulting access was a buffered store). The
block access tag may or may not be checked again; that is, if the faulting access still conflicts
with the tag value, whether the access completes or another block access fault occurs is imple-
mentation-dependent. Thus a user protocol must eventually change the access tag to make the
access legal in order to achieve forward progress.

void TPPI_sleep(volatile int *sem_ptr);

Increments the semaphore pointed to bysem_ptr. If the resulting semaphore value is greater
than zero, the calling thread is suspended until the semaphore value is less than or equal to
zero.

void TPPI_wakeup(volatile int *sem_ptr);

Decrements the semaphore pointed to bysem_ptr. If the resulting semaphore value is equal
to zero, any threads waiting on the semaphore (viaTPPI_sleep()) will be resumed.

void TPPI_atomic_incr(volatile int *sem_ptr);

Increments the semaphore pointed to bysem_ptr. Because Tempest implementations may
schedule threads concurrently or preemptively, it is unsafe for users to perform read-modify-
write operations directly on semaphores.

144

145

Appendix B

Access Control Via Bus Snooping

The three Typhoon designs described in Chapter3 and the Typhoon-0 prototype

described in Chapter4 implement fine-grain access control using bus-based snooping

hardware. This appendix discusses the general requirements of this approach.

This access-control hardware leverages the support for bus-based cache coherence found

in nearly all modern microprocessors. I will assume an invalidation-based protocol that

employs copyback, allocate-on-write caches, where a write miss results in a read-invali-

date (read-for-ownership) bus transaction. Update-based protocols and write-through

caches do not necessarily preclude implementing access control via bus snooping, but

these features are uncommon in current systems so they will not be addressed here.

The three sections of this appendix cover enforcing tag semantics, handling transactions

that cause block access faults, and maintaining hardware cache consistency modifying tag

values.

146

B.1 Enforcement of tag semantics

Access control is enforced by a bus monitor, a hardware module with associated tag

storage that sits on the bus and observes the requests made by the processor(s). For each

processor request, the monitor looks up the tag for the corresponding memory block.

According to the block tag and the type of transaction, the bus monitor may also affect the

transaction in one of two ways:

• If the bus transaction indicates a reference that conficts with the tag, the monitor must

prevent the transaction from completing successfully and invoke a block access fault

handler. The following section (SectionB.2) discusses techniques for suspending the

transaction.

• On a read miss to aReadOnly block, the monitor forces the processor to load the block

in a read-only state, so that subsequent reads hit but a subsequent write requires an

invalidate request. The monitor relies on detecting this invalidate request to prevent

writes to the block. These features are typically supported using dedicated open-col-

lector bus signals that provide a wired-OR of the corresponding outputs of all snoop-

ing agents.

TableB.1 summarizes the actions that the bus monitor takes in response to observed pro-

cessor transactions. In the cases labeled “fault”, the monitor suspends the transaction and

invoke a block access fault handler. An invalidate request implies that a cache has a read-

only copy of a block, so an invalidate should not occur when the block’s access tag is

Invalid.

Table B.1:Bus monitor snooping behavior.

Bus request
Access tag

Writable ReadOnly Invalid

read no action force read-only fault

read-invalidate no action fault fault

invalidate no action fault (not allowed)

147

B.2 Block access faults

The particular method used to handle faulting transactions depends on the features of the

native bus protocol. There are three major alternatives: defer the transaction directly, cause

the processor to retry the transaction, or abort the transaction and reissue the access via

software.

If the processor supports cache-to-cache transfers on a bus with split transactions or

deferred responses, the monitor may handle faulting transactions directly. The bus monitor

simply takes responsibility for responding, as if performing a cache-to-cache transfer, and

delays the response until the remote data has arrived. Because there is no software

involved in resuming the computation, the latency from the arrival of the miss response to

the successful completion of the faulting access can be greatly reduced. This approach

assumes that another processor is available to execute the access fault handler.1 Also, the

processor that incurs the access fault may continue to compute if it has a non-blocking

cache, possibly generating more access faults whose latency can be overlapped with the

first. The bus monitor must have a set of buffers to track the pending transactions for

which it is responsible. Ideally, the number of buffers matches the number of processors

times the number of outstanding requests each processor supports; if fewer buffers are

available, the monitor can abort transactions that fault when all buffers are occupied.

A second alternative—applicable to protocols such as Sun’s MBus that do not support

deferred transactions—is to retry the transaction rather than abort it. In this case, the pro-

cessor’s bus interface will rearbitrate for the bus and reexecute the transaction. As with the

direct approach, the latency of resuming the access is low because no software is involved,

but another processor must execute the access fault handler. To avoid consuming bus

bandwidth with pointless retries—interfering with the execution of the fault handler, mes-

sage handlers, and other computation threads—the system should be able to mask the

1. This requirement can be avoided if the processor can be interrupted while a memory access is
outstanding, as in the Alewife system [AKK+93]. Unfortunately, current commercial micropro-
cessors do not provide this feature.

148

faulting processor from arbitration, preventing it from reacquiring the bus until the access

can be satisfied. In some machines, this can be done by modifying an arbiter register. The

Stanford DASH system [LLG+92] uses this technique, although it requires hardware mod-

ification to the commercial system on which the nodes are based. The simulated Typhoon

systems in Chapter3 also use this approach.

Finally, the transaction can be aborted, typically by responding with an error status. The

faulting processor will invoke an exception handler, which must recognize that the cause

of the bus error is an access fault and wait for notification to restart the faulting instruction.

(If the access fault handler will be executed on the same processor, the exception handler

must save the current state and begin execution of the access fault handler.) Aborting

transactions is a heavy-handed approach to access faults. The performance cost of taking

exceptions on deeply pipelined superscalar processors is high. The latency of restoring

processor state and restarting the access lies on the critical path for misses. The processor

must provide a restartable (but not necessarily precise) exception on an aborted bus trans-

action. The Typhoon-0 prototype described in Chapter4 uses this approach.

B.3 Tag value modification

In addition to enforcing access control based on existing tag values, the bus monitor

must allow modification of tag values. Because the bus monitor cannot observe or affect

accesses which hit in the processor caches, it must maintain these invariants:

• If a block’s tag isInvalid, it is not present in any processor caches.

• If a block’s tag isReadOnly, it may be present in one or more processor caches in a

read-only state.

• If a block’s tag isWritable, it may be present in one or more processor caches in any

state. The native bus protocol will guarantee that at most one cached copy is writable

at any given time.

Upgrading access—that is, changing fromInvalid to ReadOnly or Writable, or from

ReadOnly to Writable—relaxes the restrictions on caching blocks, so no action is required

149

other than modifying the value in tag storage. However, when access is downgraded—

from Writable to ReadOnly, or from ReadOnly or Writable to Invalid—copies that may

reside in processor caches must be invalidated.1 If the original access tag isWritable, the

only up-to-date copy may be in a cache; this modified copy must be written back to mem-

ory. These operations must occur atomically with the update of the value in tag storage. In

general, to downgrade fromWritable, the bus monitor must acquire the bus and atomically

perform a read-invalidate, write the block data to memory, and modify the value in tag

storage. (The PowerPC 60X bus [AAWC94] supports a block flush transaction that forces

any cache with a modified copy to do a writeback, which could be used in place of the

read-invalidate/write sequence.) To downgrade fromReadOnly, a simple invalidate is suf-

ficient, with no memory write.

1. On a transition fromWritable to ReadOnly, it is theoretically sufficient to remove write access
from any cached copies. In practice, ownership must also be taken away from the cache, which
in most protocols requires an invalidation.

