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Abstract

Symmetric multiprocessor (SMP) clusters are emerging as the cost-effective medium- to

large-scale parallel computers of choice, exploiting the superior cost-performance of SMP

desktops and servers. These machines implement communication among SMP nodes by

sending/receiving messages through an interconnection network. Many applications and

systems use a variety of software protocols to coordinate this communication. As such,

protocol performance can significantly impact communication time and overall system

performance.

This thesis proposes and evaluates techniques to improve fine-grain software protocol

performance. Rather than provide embedded network interface processors, some systems

schedule and execute the protocol code on the SMP processors to reduce hardware com-

plexity and cost. This thesis evaluateswhen it is beneficial to dedicate one or more proces-

sors in every SMP to always execute the protocol code. Results from simulating a fine-

grain software distributed shared memory (DSM) indicate that a dedicated protocol pro-

cessor:

• benefits light-weight protocols much more than heavy-weight protocols;

• benefits systems with four or more processors per node;

• will also result in the best cost-performance when scheduling overheads are much

higher than protocol weight.

Much like ordinary application software, the protocol code can execute either sequen-

tially or in parallel. The central contribution of this thesis is a novel set of mechanisms,

parallel dispatch queue (PDQ), for efficient parallel execution of fine-grain protocols.

PDQ is based on the observation that by partitioning system resources among protocol
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threads, multiple threads can execute in parallel each accessing an exclusive set of

resources thereby obviating the need for synchronization.

This thesis proposes two fine-grain DSM systems—Hurricane andHurricane-1—which

execute software coherence protocols in parallel using PDQ. Hurricane achieves high per-

formance by integrating embedded protocol processors into a network interface device.

Hurricane-1 reduces cost by using SMP processors to execute the software protocol. Sim-

ulation results comparing the Hurricane systems to an all-hardware DSM implementation

indicate that:

• PDQ helps significantly improve software protocol performance;

• Hurricane with four embedded processors performs as well as an all-hardware imple-

mentation;

• Hurricane-1 performs within 75% of an all-hardware implementation on average.
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Chapter 1

Fine-Grain Software Protocols in SMP Clusters

Advances in semiconductors fabrication processes have led to a tremendous increase in

clock speeds and transistor counts in today’s single-chip devices. Higher clock speeds

along with novel architectural techniques exploiting the abundance of transistors in single-

chip devices have improved microprocessor performance by orders of magnitude in the

last decade [BG97]. In spite of the dramatic improvements in a single chip’s performance,

computer customers continue to demand higher performance to solve large classes of

important scientific and commercial problems [AG89].

To increase performance beyond a single chip, computer designers have studied tech-

niques to package two or more microprocessors in a single computer system. The most

common form of thesemultiprocessors organizes two or more microprocessor chips on a

single board and interconnects them through a system bus to a single memory system

[Bel85]. Such a system is called a symmetric multiprocessor (SMP) because each proces-

sor has equal access to memory. An SMP is a cost-effective computer organization

because it amortizes the cost of memory and peripheral I/O subsystems over multiple pro-

cessors.
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Electrical characteristics of wires in a shared system bus, however, limit the scalability

of SMPs to a few tens of processors [AB86]. Rather than engineer a new computer organi-

zation with processors repackaged into custom boards, computer designers are using

SMPs as building blocks to further scale the system size. The high sales volumes and

economies of scales of commodity SMPs allows computer designers to build cost-effec-

tive medium- to large-scale multiprocessors. Clustering several SMPs through a high-

bandwidth low-latency network (Figure1-1) also eliminates the single bus bottleneck

offering performance scalability with a large number of processors.

To program these multiprocessors, computer designers provide a variety of program-

ming abstractions and languages. These (parallel) programming abstractions allow a pro-

cessor tocompute—i.e., produce—a data item in memory and subsequentlycommunicate

it—i.e., make it available—to other processors. Multiprocessors provide a variety of

mechanisms for processors to communicate data among each other. Whereas processors

within an SMP use a common (physically) shared memory to produce and communicate

data, processorsacross SMPs communicate by sending messages through the interconnec-

tion network.

To schedule and coordinate communication, both applications and systems employ a

variety of protocols. The SMP system bus, for instance, implements a shared-memory pro-

����� ���	��


Figure 1-1. Architecture of a cluster of SMPs.
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tocol in hardware to provide a consistent image of a single shared memory among the

SMP processors. The protocols implementing communication across SMPs provide a

variety of functions. At the highest level, the protocols implement application-level pro-

gramming abstractions such as a client-server model in databases. Application-level proto-

cols in turn are often programmed in lower-level abstractions such as distributed shared

memory (DSM)—providing a single global address space over an SMP cluster—or simple

point-to-point message passing. At the lowest level, the protocols provide message deliv-

ery services—such as checksums, reliable delivery, fragmentation and re-assembly, and

flow control—to guarantee that messages are safely transferred between two SMPs.

Multiprocessor systems can implement communication protocols in either hardware or

software. Hardware implementations often offer superior performance over software.

Hardware protocols also implement communication transparently without involving the

application or system programmer. Hardware DSM, for instance, can mimic the fine-grain

shared-memory communication mechanisms of an SMP, allowing SMP programs to trans-

parently run on a larger-scale SMP cluster.

A hardware protocol typically implements a fixed policy for coordinating communica-

tion. Although such a policy may be well-suited for some applications, it fails to meet the

communication requirements of all classes of applications. Conversely, software is advan-

tageous because it provides flexibility allowing programmers to tailor software protocols

to fit the communication patterns of an application [QB97,FLR+94]. Software also serves

as a suitable substrate for experimenting with complex protocols. By reducing the fre-

quency of network messages, customized software protocols can dramatically improve an

application’s performance.

Vendors may also use software protocols simply because of their reduced manufacturing

cost [Mei93] and shorter design times [LC96]. Communication protocols are typically

implemented in the form of finite-state machines. Large and complex finite-state machines

are difficult to debug [Cha97] and require enormous amounts of computing resources to
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even partially verify [DDHY92]. Rectifying hardware bugs also requires repeating the

design and manufacturing process which increases cost.

Software protocols can also increase portability [SFH+97,JKW95,SFL+94] by providing

a common high-level programming interface which systems in turn implement on various

systems using platform-specific lower-level communication mechanisms. Portable inter-

faces allow programmers to develop and debug applications on low-cost small-scale sys-

tems and subsequently execute them on expensive large-scale machines.

Rapid improvements in networking technology, however, are dramatically reducing

point-to-point message latencies between two SMP nodes [KC94]. As a result, software

protocol execution is beginning to dominate the communication time. To address this

problem, computer designers are studying various techniques to improve software proto-

col performance. Much like an ordinary application, software protocol performance can be

improved in two basic ways: (i) accelerating the sequential execution, and (ii) parallelizing

the execution of the protocol code.

The primary contributions of this thesis are to develop and evaluate several techniques to

both accelerate sequential execution and parallelize the execution of software protocols.

The thesis focuses on software protocols that implementfine-grain communication where

two processors exchange data at small granularities of a few tens or hundreds of bytes. An

example of such a protocol is a fine-grain DSM coherence protocol which transfers data

among SMPs within a cluster at a cache block (e.g., 32-128 bytes) granularity. Fine-grain

communication is characteristic of many important classes of scientific applications

[BH86,CSBS95]. Commercial applications such as web servers, file servers, and database

engines run on SMP servers using the SMP fine-grain shared-memory mechanisms. These

applications can transparently run on an SMP cluster with the help of fine-grain DSM.

The rest of this section motivates and describes the contributions of this thesis.

Section1.1 describes the software model and explains how software protocols are invoked
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and executed on SMP multiprocessors. Section1.2 briefly describes the mechanisms for

parallel execution of fine-grain software protocols which is a key contribution of this the-

sis. Section1.3 briefly presents the experimental results of this thesis. Section1.4

describes the overall thesis organization.

1.1  Protocol Execution Semantics & Scheduling Policy

Fine-grain applications produce and communicate data in small granularities. As such,

communication in these applications often involves frequent protocol invocations—e.g., to

access remote data in distributed shared memory. Fine-grain applications also rely on

quick protocol turn-around time because communication often lies on the critical path of

execution. To boost a fine-grain protocol’s performance, systems employ various hardware

and software techniques to accelerate both protocol invocation and execution. Protocol

invocation consists of detecting when communication is required and subsequently initiat-

ing the execution. Protocol execution involves running the software protocol on a proces-

sor.

At one extreme, a hardware-centric design may provide all the resources necessary to

invoke and execute the software protocol in a single custom device (Figure1-2 left). Such

a device minimizes protocol invocation overhead upon arrival of network messages by

executing the protocol on a device that directly interfaces to the network. This approach

may significantly improve performance but also increases cost by requiring the design and

manufacturing of a custom device.

At the other extreme, the system uses a commodity network interface device with little

or no hardware support for protocol execution. The system software schedules and exe-

cutes the protocol code on the SMP processors (Figure1-2 right). Such a decoupling of

hardware resources—e.g., processors from the network interface—increases both protocol

invocation and execution overhead. Software (rather than hardware) schedules the proto-

col code, increasing the invocation overhead. Network accesses from processors must also
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traverse the system bus, increasing the protocol execution time. Such a system, however,

can reduce cost by exploiting commodity network hardware.

Traditionally, both hardware-centric and software-centric designs for executing software

protocols execute the protocol code sequentially. Hardware-centric systems provide a sin-

gle embeddedprotocol processor on the network interface card [Mei93]. Software-centric

systems, instead, execute the software protocol on either a uniprocessor node [HT93] or

one of the SMP processors [Int93]. To reduce a software protocol’s execution time, either

design may parallelize the protocol’s execution over multiple processors.

This thesis proposes a taxonomy for a software protocol’s execution semantics:single-

threaded andmulti-threaded execution correspond to serial and parallel execution of pro-

tocols respectively. Multi-threaded protocol execution has been extensively studied in the

context of coarse-grain networking software (e.g., TCP/IP) [Kai93]. Fine-grain protocols

typically have short running times due to the fine granularity of communication. Conven-

tional locking techniques used to parallelize coarse-grain protocols may result in excessive

overheads in a fine-grain protocol’s execution.

Figure 1-2. Software protocol execution models.Executing software protocol on (left)
custom hardware, (right) SMP processors
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This thesis is the first to investigate mechanisms for implementing parallel fine-grain

software protocols. A key contribution of this thesis is a novel set of mechanisms,parallel

dispatch queue (PDQ), that allows efficient parallel execution of fine-grain protocols.

PDQ is based on the observation that protocols can be synchronization-free if the system

resources can be partitioned among multiple protocol processors, providing each proces-

sor access to an exclusive set of resources.

This thesis also investigates techniques for reducing protocol invocation overhead in the

software-centric systems—i.e., systems executing the software protocol on SMP proces-

sors (Figure1-2 right). The thesis proposes a taxonomy for two classes of software proto-

col scheduling policies:dedicated andmultiplexed policies. A dedicated policy eliminates

scheduling overhead and maximizes communication throughput by dedicating one or

more SMP processors to always execute the protocol software. A multiplexed policy, how-

ever, maximizes processor utilization by allowing all processors to contribute to computa-

tion and dynamically schedules the protocol code on one or more processors when the

application needs to communicate.

Much like protocol execution semantics, protocol scheduling has been extensively stud-

ied in the context of coarse-grain networking protocols [SKT96]. Because of short proto-

col running times, fine-grain protocol performance is also more sensitive to scheduling

overhead. This thesis is the first to evaluate protocol scheduling policies for fine-grain

software protocols.

1.2  PDQ: Parallel Execution of Synchronization-Free Protocols

A key contribution of this thesis is parallel dispatch queue (PDQ), a novel set of mecha-

nisms for programming synchronization-free protocols—i.e., protocols that do not require

explicit synchronization mechanisms such as locks. PDQ is based on the observation that

system resources can be partitioned among the protocol processors so that each processor

is provided access to an exclusive set of resources. In such a manner, the protocol code can

execute free of explicit synchronization mechanisms.
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PDQ requires minimal system support—e.g., network interface hardware—to classify

and dispatch a protocol message or request (e.g., from the application to access remote

data) to the protocol processor in the appropriate resource partition. Packet classifiers in

parallelized networking protocols (such as TCP/IP [BGP+94]) and multi-snoop memory

buses in high-performance SMP servers (such as the Gigaplane-XB [CPWG97]) use hard-

ware mechanisms analogous to PDQ to dispatch and handle packets/transactions in paral-

lel.

PDQ gives rise to a range of implementations varying in cost and performance. High-

performance PDQ designs dynamically balance the load among the protocol processors in

hardware by dispatching protocol messages or requests to idle protocol processors. Less

hardware-intensive designs statically select the protocol messages and requests that dis-

patch to a distinct protocol processor. Similarly, both hardware-centric and software-cen-

tric models for executing software protocols (Figure1-2) can take advantage of PDQ

mechanisms to parallelize the protocol execution.

1.3  Experimenting with Software Fine-Grain DSM

This thesis evaluates protocol execution semantics and scheduling policies for software

protocols in the context of fine-grain DSM on an SMP cluster. DSM implements a (virtu-

ally) global image of a single address space over (physically) distributed SMP memories.

Conventional software implementations of DSM allocate and maintain coherence at the

page granularity (or larger). Transparent page-level coherence, however, often results in

frequent movement of (large) data pages among SMP memories and poor performance in

fine-grain applications. To mitigate this problem, most page-based software DSMs require

programmers to carefully annotate applications with system-specific synchronization

primitives thereby sacrificing transparency.

Fine-grain DSMallocates shared memory at the page granularity, but maintains coherence at

cache block granularity (e.g., 32-128 bytes).Fine-grain DSM is a particularly attractive

implementation of DSM on SMP clusters because it transparently—i.e., without the



9

involvement of the application programmer—extends an SMP’s fine-grain shared-memory

abstraction across a cluster. Such a shared-memory system enables the portability of SMP

server-based applications across a cluster of SMPs.

The following presents the simulation methodology for the systems evaluated in this the-

sis. The rest of the section presents the goals and the results from the two experimental

studies in the thesis. Section1.4 concludes the chapter by describing the thesis organiza-

tion.

1.3.1  A Model for the System Architecture

The experimental methodology in this thesis is a simulation model for fine-grain DSM

implemented on an SMP cluster. I use the Wisconsin Wind Tunnel II (WWT-II)

[MRF+97]—a parallel simulator of SMP clusters—as the simulation test-bed. Figure1-1

(on page2) illustrates the general organization of an SMP cluster multiprocessor. Each

machine node consists of one or more 400-MHz dual-issue statically-scheduled proces-

sors (modeled after the Ross hyperSPARC), each with a 256-entry direct-mapped TLB

and a 1-Mbyte one-level data cache. WWT-II assumes instruction cache references are all

single-cycle hits. Such an assumption does not invalidate the results and conclusions of

this thesis, because the software protocols studied have very short running times.

Processor caches are kept coherent within each SMP using a 100-MHz split-transaction

256-bit wide memory bus. WWT-II also assumes a constant point-to-point network

latency of 100 processor cycles, but accurately models contention at the network inter-

faces.

WWT-II assumes an operating system both provides local services and manages the

nodes collectively as a single parallel machine [ACP95,HT93]. Parallel applications fol-

low the SPMD programming model. This thesis assumes space sharing—where the nodes

are logically allocated to separate parallel tasks. More general time sharing is of course

possible, but is beyond the scope of this work.
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1.3.2  Scheduling Policies for Single-Threaded Protocols

Cost-effective (rather than high-performance) multiprocessor designs may interconnect

low-cost small-scale SMPs with commodity networking hardware. Many such systems

provide little support to accelerate protocol execution and run a single software protocol

thread on every SMP. To reduce protocol invocation and execution overhead, these sys-

tems sometimes dedicate one of the SMP processors to always run the protocol thread. A

dedicated protocol processor, however, may waste processor cycles (e.g., when the appli-

cation is compute-bound) which could have contributed to computation.

The first experimental study asks the question “when does it make sense to dedicate one

processor in each SMP node specifically for protocol processing?”The central issue is

when do the overheads eliminated by a dedicated protocol processor offset its lost contri-

bution to computation? The study addresses this question by examining the performance

and cost-performance trade-offs of two scheduling policies for a single-threaded protocol:

• Fixed, a dedicated policy where one processor in an SMP is dedicated to execute the

protocol thread, and

• Floating, a multiplexed policy where all processors compute and alternate acting as

protocol processor.

Results from running shared-memory applications on a simulation model for fine-grain

DSM using a software coherence protocol indicate that:

• Fixed benefits fine-grain protocols Å(e.g., fine-grain DSM) much more than coarse-

grain protocols (e.g., page-based DSM).

• Fixed generally offers superior performance for systems with four or more processors

per SMP.

• Floating’s performance is not very sensitive to protocol invocation overhead.

• Fixed always results in the most cost-effective design for systems with high protocol

invocation overheads (e.g., systems with no OS support for fast exception handling)

running fine-grain protocols.
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1.3.3  Executing a Fine-Grain DSM Protocol in Parallel

Computer designers can also build higher-performance multiprocessors from large-scale

SMPs. Large-scale SMPs increase the demand on software protocol execution within

every SMP and may significantly benefit from parallel protocol execution. This thesis pro-

posesPTempest(Parallel Tempest), a parallel programming abstraction for building fine-

grain DSM protocols based on Tempest [Rei95] and PDQ.

Tempest defines a set of mechanisms for implementing user-level fine-grain DSM proto-

cols in software. Tempest’s mechanisms allow a protocol to map/unmap shared-memory

pages in an application’s address space. Using Tempest, a protocol can also manipulate

shared-memory access semantics to fine-grain (e.g., 32-128 bytes) memory blocks on the

mapped pages. Protocol handlers in Tempest, however, are based on Active Messages

[vECGS92] and have single-threaded execution semantics. PTempest relaxes the single-

threaded execution semantics of Tempest using the PDQ parallel protocol execution

mechanisms.

The second experimental study evaluates fine-grain DSM systems based on two imple-

mentations of PTempest—Hurricane andHurricane-1—with varying degrees of hardware

support. Both systems integrate PDQ with fine-grain shared-memory access control logic

and networking hardware in a custom network interface device. Hurricane also tightly

integrates one or more embedded protocol processors with the custom device representing

a high-performance PTempest implementation. In contrast, Hurricane-1 is representative

of a lower-cost PTempest implementation and uses the SMP processors to execute the

software protocol.

To gauge the impact of parallel protocol execution on software fine-grain DSM’s perfor-

mance, the experiment compares the Hurricane systems against S-COMA, a hardware
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implementation of fine-grain DSM [HSL94]. Results from running shared-memory appli-

cations on simulation models for the Hurricane systems and S-COMA indicate that:

• PDQ helps significantly improve the performance of software protocol implementa-

tions, alleviating the software protocol execution bottleneck.

• A Hurricane system with four embedded processors either outperforms or performs as

well as S-COMA.

• A cost-effective Hurricane-1 system with no extra dedicated protocol processors (i.e.,

using SMP processors for both computation and executing protocols) performs within

75% of S-COMA on average.

1.4  Thesis Organization

Chapter2 and Chapter3 describe the taxonomy for software protocol execution seman-

tics and scheduling policies respectively. These chapters qualitatively discuss the perfor-

mance and cost-performance trade-offs between the classes within each taxonomy.

Chapter2 also describes PDQ and discusses its design and implementation spectrum with

respect to performance and cost-performance. Chapter4 presents the first experimental

study evaluating the scheduling policies for single-threaded protocols. Chapter5 describes

the second experimental study evaluating how PDQ can help improve software fine-grain

DSM’s performance by parallelizing the protocol execution. Finally, Chapter6 concludes

the thesis with a summary and future directions for this work.
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Chapter 2

Protocol Execution Mechanisms & Semantics

This thesis investigates techniques for improving fine-grain software protocol perfor-

mance in SMP clusters. This chapter studies alternative execution semantics for fine-grain

software protocols. Distributed-memory parallel computers traditionally used uniproces-

sor nodes and executed the software protocols on either a node’s single commodity pro-

cessor along with computation [SGT96,KDCZ93,HT93,CBZ91,Int90,AS88], or an

embedded processor on the network interface [K+94,RLW94,Mei93]. As a result, fine-

grain software protocols in these machines had sequential execution semantics.

To take advantage of the superior cost-performance of SMPs, computer designers are

also constructing parallel computers using SMPs as building blocks

[LC96,WGH+97,CA96]. SMP nodes, however, increase the demand on software protocol

execution because multiple SMP processors simultaneously generate protocol requests—

e.g., to fetch remote memory blocks. Grouping processors into SMPs also reduces the

number of nodes, and as a consequence, the number of network interface cards in the sys-

tem. Decreasing the number of network interface cards also increases the protocol traffic

into a node. The combined effect of a higher protocol request rate and a faster incoming
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protocol traffic quickly makes software protocol execution a communication bottleneck as

SMP nodes become larger [MNLS97,LC96].

One approach to mitigate the software protocol bottleneck is to parallelize the protocol

execution. Software protocols may run on either multiple embedded processors on the net-

work interface card, or several SMP-node commodity processors. Parallel protocol execu-

tion using SMP processors is particularly attractive for clusters of large-scale SMPs.

Large-scale SMPs increase the likelihood of many (computation) processors being idle

(e.g., waiting for synchronization) enabling them to contribute to software protocol execu-

tion. Such a design both improves performance by increasing the parallelism in protocol

execution and reduces cost by obviating the need for extra dedicated protocol processors

[FW97c,FW96].

In this chapter, I present a taxonomy of software protocol execution semantics:

• Single-threaded protocol execution allows for only a single protocol thread to run on

an SMP node at any given time.

• Multi-threadedprotocol execution allows multiple protocol threads to simultaneously

execute on an SMP node.

I propose a novel set of mechanisms calledparallel dispatch queue (PDQ) for imple-

menting synchronization-free parallel protocols. Because of the short running time of pro-

tocol handlers in fine-grain protocols, parallelizing protocol execution using conventional

locking schemes (e.g., software spin-locks) would result in prohibitively high synchroni-

zation overheads. PDQ helps obviate the need for explicit synchronization mechanisms by

partitioning the protocol resources and requiring protocols to label protocol events with

the appropriate partition id. PDQ efficiently parallelizes protocol execution by dispatching

and executing protocol handlers in parallel for protocol events with distinct partition ids.

The following (Section2.1) first describes the mechanisms and resources typically

required to execute fine-grain software protocols. Section2.2 describes the taxonomy and
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compares and contrasts the advantages of each protocol execution semantics. Section2.3

presents the PDQ mechanisms for parallel execution of synchronization-free protocols,

and qualitatively evaluates the design and implementation space for PDQ. Section2.4 and

Section2.5 discuss the related work and summarize the chapter’s contributions respec-

tively.

2.1  Protocol Execution Mechanisms & Resources

Many high-level parallel programming abstractions are implemented using software

communication protocols [JKW95,RLW94,CDG+93]. These protocols typically imple-

ment simple finite-state machines which read as input aprotocol event and the correspond-

ing state, make a state transition, and write as output a subsequent protocol event and the

new state. A protocol event is typically either a network message or an application’s

request for protocol invocation on a remote node. Protocol state often corresponds to a

data entity in an application, and protocol events implement communication by moving

data between the network and memory.

Protocols require a set of mechanisms and resources to generate events and implement

the corresponding state transitions. Figure2-1 illustrates an example of protocol resources
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required by a simple fine-grain software communication protocol (like Split-C

[CDG+93]). Protocol messages communicate an application’s data among the machine

nodes. Simple software protocols may cache remote data temporarily into a protocol cache

to eliminate multiple network traversals to access remote memory. A set of protocol states

maintains the access semantics to data in main memory and the protocol cache. Applica-

tions submit requests—e.g., to fetch remote data—to the protocol through a request queue.

A protocol also moves data among machine nodes using a pair of send/receive message

queues.

Cost and performance are the critical factors in choosing whether protocol resources

should be implemented in hardware or software. At one extreme, low-cost implementa-

tions maintain the protocol cache, protocol state, and/or the request queue in main mem-

ory using software [JKW95,SFL+94,CDG+93]. These systems also use send/receive

message queues on commodity network cards, and execute the software protocol on the

node’s commodity processor(s). At the other extreme, high-performance designs (as in

tightly-coupled custom hardware support for fine-grain DSM) use SRAM to implement

the protocol cache and state, and tightly integrate them with the request and message

queues and one or more embedded processors on a custom board [K+94,RLW94]. Less-

integrated designs with hardware support for only performance-critical resources are also

feasible based on the desired cost and performance trade-offs [RPW96,BLA+94].

2.2  Protocol Execution Semantics

There are two types of protocol execution semantics: single-threaded and multi-

threaded. This section describes the two execution semantics and discusses their advan-

tages/disadvantages.

2.2.1  Single-Threaded Protocol Execution

Single-threaded protocol execution is the conventional way of executing software proto-

cols; the protocol simply runs in a single thread on every node. Software protocols imple-
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menting parallel programming abstractions on uniprocessor-node machines—such as fine-

grain [SFL+94] and page-based software DSM [CBZ91,KDCZ93], messaging abstrac-

tions based on Active Messages [WHJ+95,CDG+93], and object-based distributed systems

[BTK90,BJK+95]—all use single-threaded protocol execution semantics.

In systems with single-threaded execution semantics, protocol resources (such as the

protocol cache, protocol state, and the messaging queues) are only accessible to a single

protocol thread. As such, there is no need for synchronizing and coordinating accesses to

the resources. Moreover, a single thread precludes contention and queueing of accesses at

the resources. Eliminating synchronization and queueing reducesprotocol occupancy—

i.e., the time to handle a single protocol event [HHS+95]—decreasing overall communica-

tion time.

Single-threaded protocol execution is advantageous for applications that primarily bene-

fit from low protocol latency. In latency-bound applications, communication is generally

asynchronous, sporadic, and mainly relies on quick protocol round-trip time. Due to the

lack of protocol event queueing at the protocol processor, these applications can not take

advantage of parallel (i.e., multi-threaded) protocol event handling. Such applications,

however, may benefit much from a low protocol occupancy characteristic of a single-

threaded protocol execution.

Single-threaded protocol execution also favors clusters of small-scale (“narrow”) rather

than large-scale (“fat”) SMPs. SMPs with only a small number of processors may not gen-

erate enough demand for software protocol execution to justify parallelizing it. Grouping

processors into small-scale SMPs also increases the number of nodes in the system.

Because every node executes a single protocol thread, a larger number of nodes reduces

the demand on protocol execution on a single protocol thread. On the contrary, large-scale

SMPs place a large demand on protocol execution and may make a single protocol thread

the communication bottleneck.
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Hardware support can help accelerate single-threaded protocol execution, alleviating the

protocol execution bottleneck. Pipelined execution of protocol events (e.g., performing

protocol state update and memory access in separate pipeline stages) can help increase

single-threaded protocol execution bandwidth. Tight integration of protocol resources

with embedded protocol processors on a custom device [K+94,RLW94] lowers protocol

occupancy. Latency-hiding techniques such as speculative execution of protocol handlers

[Muk98] and speculative accesses to protocol resources [HKO+94] also lower the protocol

occupancy. A lower protocol occupancy improves protocol execution bandwidth without

requiring multi-threaded protocol execution.

2.2.2  Multi-Thr eaded Protocol Execution

Multi-threaded protocol execution allows simultaneous invocation of several protocol

threads in parallel. Executing a protocol in parallel increases communication bandwidth

by reducing queueing delays at the protocol processor. Higher communication bandwidth

benefits bandwidth-bound applications—i.e., applications experiencing large queueing

delays at the protocol processor. Parallel protocol execution also favors clusters of large-

scale (rather than small-scale) SMPs because large SMPs place high demands on protocol

execution.

Multi-threaded protocol execution also relaxes restrictions on protocol complexity.

Many systems require protocols to quickly drain the network to avoid contention. Proto-

cols are forced to have short handlers that simply integrate data from the network into an

application’s data structures and optionally send a reply message. Allowing multiple han-

dlers to execute simultaneously somewhat relaxes the restrictions on handler running

times. A higher handler running time allows for more aggressive protocols that optimize

communication by making complex state transitions to reduce message frequencies

[GJ91], vectorizing messages [FLR+94], performing simple computations [BALL90], and

creating/managing light-weight threads [WHJ+95]. Simultaneously executing handlers
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also helps reduce network contention and backward pressure by increasing the message

reception rate.

Many systems also require protocols to have non-blocking handlers to avoid network

deadlocks. Non-blocking handlers, however, restrict arbitrary synchronization between the

computation and the protocol. Some systems simply avoid synchronization and implement

intricate handler invocation schemes to make handlers non-blocking [BCL+95]. Others

allow synchronizing handlers but significantly increase handler execution time in the case

where synchronization actually occurs [WHJ+95]. These systems use complex mecha-

nisms to detect synchronization, and subsequently buffer the protocol event and create a

separate computation thread to execute the protocol handler.

With the help of multi-threaded protocol execution, the system can avoid network dead-

locks while allowing for blocking protocol handlers. The system can specialize one or

more protocol processors to exclusively run non-blocking handlers. By requiring protocols

to label protocol events with the handler execution type (i.e., blocking or non-blocking),

the system can distinguish and execute protocol handlers on the appropriate protocol pro-

cessors. The specialized protocol processors will always be available to drain the network

thereby avoiding deadlocks.

Executing protocols in parallel also comes at a cost. Parallel execution requires accesses

to (shared) protocol resources to be mutually exclusive. Parallelized legacy network proto-

cols (such as TCP/IP) often implement mutual exclusion and synchronization using spin-

locks [SKT96,BG93,Kai93,HP91]. Legacy protocols, however, typically have long run-

ning times and a coarse granularity of data structure accesses. As such, the overhead of

acquiring/releasing spin-locks does not impact the overall performance in these protocols.

In fine-grain communication protocols, handlers have very short running times and typi-

cally move a fine-grain (e.g., 32-128 byte) data block between memory and message

queues, update the corresponding protocol state, and/or remove an entry from the request
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queue. Because of the handlers’ short running time, the overhead of acquiring/releasing

locks around message queues and protocol data structures could prohibitively increase

handler occupancy [BG93]. Furthermore, moving data between memory and message

queues often dominates handler running time and synchronizing around message queues

would effectively serialize handler execution. As such, parallel execution of fine-grain

protocols requires efficient support for handler synchronization.

Parallel handler execution may also result in contention for protocol resources. Multiple

handlers may simultaneously contend for common protocol resources. Parallel execution

may also increase the access frequency to protocol resources—e.g., due to protocol data

migration among multiple protocol processor caches [SKT96,TG89]—further exacerbat-

ing the resource contention. In the absence of efficient support for high-bandwidth access

paths to resources, resource contention may become a bottleneck rendering parallel execu-

tion less beneficial.

High-bandwidth memory systems, however, are only characteristic of high-cost

medium- to large-scale SMP servers. These systems are typically equipped with inter-

leaved memory banks and out-of-order wide memory buses allowing multiple protocol

handlers to simultaneously access memory. Because accessing memory often dominates

handler execution time in fine-grain protocols, low-performance memory systems may

effectively serialize the execution of parallel protocol handlers.

Providing high-bandwidth access paths to protocol resources in tightly-integrated cus-

tom devices also may significantly increase cost. Rather than provide high-bandwidth

access paths, some systems opt to specialize resource accesses to specific embedded pro-

cessors on the custom device [MNLS97,CAA+95]. Specializing resource accesses, how-

ever, may result in load imbalance in protocol execution and offset the advantages of

parallel protocol execution.
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Resource synchronization and contention in multi-threaded protocol execution may also

significantly increase protocol occupancy resulting in poor single-thread performance.

Single-thread performance plays a major role for latency-bound applications which prima-

rily rely on quick protocol round-trip times and exhibit little or no queueing at the protocol

processor. Lower single-thread performance may also increase critical-path execution time

and decrease overall performance in applications with large load imbalance.

Parallel handler execution may also lead to out-of-order processing of protocol events.

Users often specify protocols in terms of finite-state machines. The larger the state space,

the more complex the process of debugging, verifying and maintaining of the protocol

code. Out-of-order message delivery and request processing forces protocol writers to

introduce intermediate machine states, resulting in a larger and more complex protocol

[Cha97,GJ91].

2.3  Synchronization-Free Parallel Protocols

Access synchronization is only necessary if the handlers indeed simultaneously access

common resources. Careful partitioning of resources among the protocol threads would

guarantee mutual exclusion in accessing resources and obviates the need for synchroniza-

tion. The protocol programming abstraction can provide mechanisms for labelling proto-

col events. The system can then dispatch a protocol event based on its partition label to the

corresponding protocol thread with exclusive access to its own set of protocol resources.

This approach allows parallel execution of protocol handlers for events with distinct parti-

tion labels.

Protocol resources can be partitioned based on application, programming abstraction, or

system characteristics. In many parallel programming abstractions such as fine-grain DSM

[K+94,RLW94], high-level languages [HKT92,BCF+93,CDG+93] or run-time systems

[JKW95] implementing a global address space, and object-based distributed systems

[BK93,BTK90,BST89], data entities exist in the form of immutable memory objects. A

memory coherence block in fine-grain DSM is an example of an immutable object. Parti-
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tioning the protocol resources at an object granularity in these systems allows protocols to

access resources without requiring explicit synchronization mechanisms.

Protocol resources for an object consist of several components (e.g., the object data in

memory or protocol cache, or the object protocol state). The protocol writer and the sys-

tem designer can make resource accesses corresponding to distinct objects mutually exclu-

sive by careful implementation and storage of the object components. For instance, if a

protocol maintains the object state in the form of bit vectors—as in the directory state in a

typical DSM—then the machine must provide mechanisms for updating one object’s state

bits without accessing other bits in the vector. Instead, if protocol state is maintained in

main memory, the protocol may have to store the state in a form that is in accord with the

machine’s native memory access granularity—e.g., a byte or word—to guarantee mutual

exclusion.

To identify which object partition a protocol event—i.e., a protocol message or a

request—is associated with, a protocol is required to label protocol events with partition

ids. Upon generating an event, a protocol may simply provide an id along with the event

[BCL+95]. To dispatch a protocol event, the system must firstdemultiplex the event into a

partition based on the partition id. The system must alsobind an object partition to a pro-

tocol thread. Protocol event demultiplexing and binding mechanisms are very similar in

nature to those in parallelized network stack protocols where message packets are demul-

tiplexed into protocol stacks [BGP+94,DPD94] and protocol stacks are assigned to proces-

sors [SKT96].

In some parallel programming environments, handler execution may occasionally

involve accessing multiple object partitions. In fine-grain DSM, for example, the majority

of protocol handlers manipulate protocol resources associated with a single memory

coherence block. Occasionally, however, a protocol handler may map/unmap a page of

data including multiple memory blocks (e.g., to migrate a page between two nodes). To

maintain consistency of protocol data structures and application data, the handler execu-
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tion must appear atomic. Because such handlers execute infrequently, the system can sim-

ply execute the handlers sequentially providing them access to the entire set of protocol

resources. To indicate a sequential handler execution semantics, the protocol can label

protocol events with special (reserved) partition ids. Upon receiving a protocol event with

the special partition id, the dispatching mechanisms must first allow all protocol handlers

to complete executing, dispatch the protocol event with sequential execution semantics,

and wait for the sequential handler to complete executing before dispatching other proto-

col events.

Similarly, a software fine-grain protocol may have handlers that do not require access

synchronization. Accessing read-only remote data structures, for instance, in Split-C

[CDG+93] does not require handler synchronization because neither the protocol nor the

application modify the (read-only) data. By labeling protocol events with special partition

ids, multiple instances of such protocol handlers can simultaneously execute in parallel

without any dispatch and execution restrictions.

This section proposes a novel set of protocol dispatching mechanisms calledparallel

dispatch queue (PDQ) for parallel execution of synchronization-free protocols. It qualita-

tively evaluates the PDQ design spectrum in terms of both cost and performance.

Chapter5 evaluates a high-performance implementation of PDQ in the context of fine-

grain distributed shared memory.

2.3.1  Parallel Dispatch Queue (PDQ)

Parallel dispatch queue is a set of mechanisms that allows programmers to write syn-

chronization-free parallel protocols. PDQ requires a protocol to group its data structures

into object partitions and label protocol events with the corresponding partition id. By

simultaneously dispatching protocol handlers only from distinct object partitions, PDQ

allows parallel execution of protocols without requiring synchronization of accesses to

protocol resources. PDQ also provides special partition ids for sequential handler execu-
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tion semantics and for handlers with restriction-free dispatch semantics (as discussed in

the previous section).

Figure2-2 illustrates an example of how a PDQ implementation may dispatch protocol

events in parallel in a fine-grain DSM. There are two types of protocol events. Amessage

typically carries either a memory block’s data or coherence information such as an invali-

dation. Ablock access fault corresponds to a request for a remote memory block (gener-

ated locally). A memory block constitutes an object partition and therefore both protocol

event types are labeled with a memory block’s global address. Protocol data structures are

grouped so that handler accesses to distinct memory blocks are mutually exclusive. Proto-

col events corresponding to (distinct) global addressesx andy may dispatch in parallel.

Multiple protocol events for a global addressx must be handled serially even though there

is an idle protocol thread ready to dispatch.

To dispatch an event to a protocol thread, a PDQ implementation must first demultiplex

the event into a dispatch queue representing an object partition. A dispatch queue must

also bind to a protocol thread before the thread can remove and handle an event off of the

queue. Demultiplexing events and binding dispatch queues can be performed either stati-

cally or dynamically based on the desired system cost and performance.

Figure 2-2. Parallel protocol event dispatch in fine-grain DSM.
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The simplest form of a PDQ implementation statically demultiplexes (i.e., inserts) an

event into protocol dispatch queues solely based on its object partition id. To allow a pro-

tocol thread to remove and handle protocol events from a dispatch queue, such a system

also binds a protocol thread (statically) to a dispatch queue for the duration of an applica-

tion’s execution. Because protocol events in such a system are always handled by the same

protocol thread, a skewed distribution of protocol events can lead to a load imbalance

among the protocol threads.

To mitigate the load imbalance, a PDQ implementation can (statically) demultiplex pro-

tocol events into a large number of dispatch queues and provide mechanisms for a proto-

col thread to (dynamically) bind to a non-empty dispatch queue. Although such a system

helps distribute the event execution load among the protocol threads, dynamic binding to

dispatch queues may incur high overheads offsetting the advantages of protocol load dis-

tribution.

The highest-performance PDQ implementation statically binds a (single-entry) dispatch

queue to each protocol thread and dynamically demultiplexes a protocol event into a dis-

patch queue upon demand. A dynamic demultiplexing PDQ only inserts an event into an

empty dispatch queue if there are no events with the same partition id in other dispatch

queues. Dynamic demultiplexing offers superior performance by allowing events to

demultiplex into any dispatch queue thereby eliminating load imbalance. Dynamic demul-

tiplexing, however, increases hardware complexity and cost by requiring an associative

search of dispatch queues upon demultiplexing. Because event distribution among dis-

patch queues only occurs upon demand, dynamic demultiplexing obviates the need for

protocol load distribution through dynamic binding.

The following section describes static and dynamic demultiplexing in detail and qualita-

tively evaluates the cost-performance trade-offs between the two schemes.
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2.3.2  Statically Demultiplexing Protocol Events

Static demultiplexing divides the object partitions among a set of protocol dispatch

queues based on their ids. For example, with two dispatch queues, even objects go to one

queue and odd objects go to the other queue. Such a scheme is advantageous because pro-

tocol events can be demultiplexed quickly and early entirely based on partition ids.

Because an object with a given id is always demultiplexed to the same dispatch queue, dis-

patch queues need not be searched for already-dispatched instances of an event associated

with the object. By not requiring an associative search, static demultiplexing also reduces

the hardware complexity and cost of a PDQ implementation.

Early demultiplexing allows dispatch queues to be implemented as simple hardware

fifos on the network interface card. Dispatch queues can take advantage of hardware cach-

ing techniques to increase event (e.g., message) buffering and overflow their contents to

memory (as in cachable queues [MFHW96]). A large influx of protocol events can quickly

demultiplex into the appropriate queues and spill to memory removing backward pressure

from the network.

The simplest form of a PDQ implementation statically binds a single dispatch queue to a

protocol thread. Such a design is analogous to conventional hardware message queues in

parallel machines [Int93,HT93] where a protocol thread dispatches events off of a single

message queue. Figure2-3 (left) illustrates protocol event dispatch for statically demulti-

plexed events and statically bound dispatch queues. An application or the network gener-

ate protocol events labeled with object (partition) ids. There is a dispatch queue

corresponding to every partition id. There are also as many dispatch queues as protocol

threads; each protocol thread polls on its designated dispatch queue.

Static binding may be advantageous because the protocol code and data structures can

exploit locality of references in the protocol processor’s cache hierarchy. Moreover, from a

design standpoint, it may improve both cost and performance to make certain hardware

protocol resources (e.g., such as the directory in fine-grain DSM) available only to a single
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processor [MNLS97,CAA+95]. Such a processor would be responsible for handling proto-

col events that require access to the specific resource.

Static partitioning of objects into a small number of dispatch queues, however, may

result in load imbalance. Alternatively, the protocol events may be demultiplexed into a

larger number of dispatch queues, where each queue is responsible for a smaller object

partition. Reducing the size of object partitions allows for a better event load distribution

among the dispatch queues. Because there are more dispatch queues than protocol threads,

dispatch queues must dynamically bind to protocol threads. Dynamic binding, therefore,

alleviates the load imbalance among the protocol threads by allowing them to choose

among a large group of non-empty dispatch queues.

Dynamic binding may also be advantageous in systems which preempt the protocol

thread execution. There are protocol scheduling policies which alternate scheduling the

Figure 2-3. Static protocol event demultiplexing: protocol events can be both statically
demultiplexed and bound (left) or statically demultiplexed and dynamically bound (right) to
protocol threads.
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execution of an application and the protocol on the same processor (Chapter3). As a

result, these scheduling policies may preempt a protocol thread’s execution. Dispatch

queues bound to preempted protocol threads are not accessible and can not be serviced by

other protocol threads potentially resulting in a load imbalance. To mitigate load imbal-

ance in the presence of a preempting protocol scheduling policy, the system must allow a

protocol thread to dynamically bind to a dispatch queue when the thread is scheduled to

execute.

Figure2-3 (right) illustrates protocol event dispatch for statically demultiplexed events

and dynamically bound dispatch queues. When idle, a protocol thread requests to bind to a

non-empty dispatch queue. Upon binding, the protocol thread polls and dispatches events

from the queue until the queue is empty. The protocol thread subsequently relinquishes the

queue and requests to bind to another non-empty queue.

Dynamic binding is common in systems with multiple protocol event queues. An exam-

ple of such a system is the Typhoon-0 fine-grain DSM, that uses separate block access

fault and message receive queues (as in Typhoon-0 [Rei96]). Other examples are messag-

ing systems which use backup message buffer space in memory due to limited message

buffering on the network interface card [Sch97,MFHW96].

Dynamic binding also allows for the use of cachable queues. Cachable queues typically

maintain information as to whether a queue is full or empty in the network interface hard-

ware even though the queue itself may mostly reside in memory [MFHW96]. A PDQ

implementation can simply keep track of which cachable queues are non-empty and bind

queues to protocol threads accordingly.

Dynamic binding also has its disadvantages. Dynamic binding requires mechanisms for

checking which dispatch queues are non-empty and maintaining a record of whether a dis-

patch queue has been bound to a protocol thread. Binding also incurs overhead which
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increases the protocol event handling time and reduces performance in the absence of

queueing.

2.3.3  Dynamically Demultiplexing Protocol Events

Static demultiplexing reduces a PDQ implementation’s hardware complexity but may

result in a load imbalance and lower performance. Dynamic binding helps mitigate load

imbalance but may incur high dispatch overhead and decrease a protocol’s single-thread

performance if dispatching events frequently require binding. Alternatively, a PDQ imple-

mentation can entirely eliminate load imbalance by demultiplexing protocol events

dynamically upon demand.

Figure2-4 depicts protocol event dispatch for dynamically demultiplexed events. Every

protocol thread is assigned a single-entry protocol dispatch queue. A protocol dispatch

queue temporarily holds the event being handled by a protocol thread. A protocol event is

inserted into a protocol event queue upon arrival. When a protocol thread polls on an

Figure 2-4. Dynamic protocol event demultiplexing.
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empty protocol dispatch queue, a protocol event is demultiplexed from the protocol event

queue and is subsequently placed in the protocol dispatch queue. Demultiplexing a proto-

col event consists of selecting an event from the protocol event queue and searching in the

protocol dispatch queues to guarantee that no other protocol events with the same partition

id are dispatched. A protocol thread clears the entry in its dispatch queue when it com-

pletes handling a protocol event.

Dynamic demultiplexing increases a PDQ implementation’s hardware complexity by

requiring an associative search through the protocol event queue entries and the protocol

dispatch queues. Furthermore, associative search may be slow when the search space is

large. To accelerate the search, the search space can be limited to a small number of entries

at the head of the protocol event queue. Limiting the search space, however, may limit the

parallelism in event dispatch and lower performance. Alternatively, to alleviate the search

speed limitation the search can be initiated early (e.g., as soon as an event is dispatched).

Late demultiplexing also complicates the use of cachable queues. Protocol event queue

entries may spill to memory requiring event search to access memory. Applications bene-

fitting from parallel protocol execution typically exhibit bursty communication phases.

Memory spilling of queue entries will be frequent in these bandwidth-bound applications,

increasing the likelihood that the event search will involve accessing memory. Searching

in memory to dispatch available protocol events would be prohibitively slow and may off-

set the gains from parallel protocol execution.

Customizing the PDQ design, however, may allow for the use of cachable queues. Buff-

ering several entries at the head of the protocol event queue in hardware (on the network

interface card) allows the search engine to proceed without frequently accessing the mem-

ory. Such a scheme allows the entire protocol event queue to spill to memory much like a

cachable queue. Buffer entries can be prefetched from memory upon an event dispatch to

hide the latency of the memory access.
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Protocol event search also only requires the use of object partition ids. To reduce hard-

ware storage requirement or to increase the search space, a PDQ implementation could

maintain just the partition ids of several entries at the head of protocol event queue. Upon

event dispatch, the system must fetch the event from memory and place it in the appropri-

ate protocol dispatch queue. Alternatively, the system can place the queue entry index in

the protocol dispatch queue and let the protocol thread fetch the queue entry from mem-

ory.

To further reduce the hardware storage requirements for partition ids, a PDQ implemen-

tation using a cachable event queue can instead store a small number of bits from each par-

tition id. Such an optimization, however, may decrease the parallelism in event dispatch

because the system may falsely identify independent object partitions to be identical,

thereby dispatching them serially.

2.4  Related Work

There is a myriad of literature on parallel implementations of stack protocols—such as

TCP/IP—in the networking community [SKT96,BG93,Kai93,HP91]. These protocols

typically use spin-locks to guarantee mutually exclusive accesses to protocol resources

from parallel protocol threads. Because stack protocols have long handler running times,

the overhead of acquiring/releasing spin-locks can be amortized over the long execution of

a handler. In contrast, fine-grain communication protocols—such as fine-grain DSM—

have protocol handlers with short running times and require more efficient synchroniza-

tion mechanisms to provide mutual exclusion for accessing protocol resources in parallel.

Many researchers have studied early packet demultiplexing in stack protocols using

classifiers either directly in hardware [BGP+94] or in software running on an embedded

network processor [DPD94]. Packet classifiers (statically) demultiplex network packets

into the corresponding protocol stacks. This work builds upon previous research on event

demultiplexing by proposingdynamic demultiplexing mechanisms for dispatching events

(such as network messages) to protocol threads.
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Several studies on clusters of SMPs implementing fine-grain DSM conclude that the

high demand on software protocol execution due to multiple SMP-node processors can

make single-threaded software protocol execution the bottleneck [MNLS97,LC96]. One

such study evaluates a limited form of parallel protocol execution which statically demul-

tiplexes protocol events into two parallel protocol threads [MNLS97]. The study reports a

high load imbalance between protocol threads and a utilization gap of up to 65%.

2.5  Summary

This chapter proposes a taxonomy for software protocol execution on a node of a paral-

lel system:

• Single-threaded protocol execution allows for a single protocol thread to execute at

any given time.

• Multi-threaded protocol execution allows multiple protocol threads to execute simulta-

neously.

The chapter presents application and system characteristics that impact the cost-perfor-

mance trade-offs between the two classes of protocol execution semantics. Both single-

threaded and multi-threaded protocol execution have been previously studied in the con-

text of coarse-grain network stack protocols. Fine-grain software protocols, however, have

traditionally executed in a single thread on every node of a distributed-memory parallel

machine. Because of the short handler running times, fine-grain protocols can not employ

conventional high-overhead locking techniques (such as spin-locks) to synchronize and

coordinate parallel protocol threads.

The central contribution of this chapter is a novel set of mechanisms, PDQ, for efficient

multi-threaded execution of fine-grain software protocols. PDQ is based on the key obser-

vation that careful partitioning of protocol resources—such as protocol cache and state—

among protocol threads allows multiple handlers to simultaneously access the resources

synchronization-free. The chapter presents a qualitative evaluation of the design and

implementation spectrum for PDQ.
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Chapter 3

Protocol Scheduling Policies

Chapter2 discussed how protocol execution semantics can impact the communication

bandwidth and thereby the system performance in SMP clusters. This chapter examines

the impact of protocol invocation overhead in systems that execute software protocols on

the SMP processors. Because both the application and the software protocol execute on

the SMP processors, scheduling software protocol execution may also impact the system

performance.

Early distributed-memory parallel machines contained uniprocessor nodes

[HT93,Int90,AS88] and used a simple scheduling policy of alternating execution of com-

putation and the software protocol. An SMP node enables the opportunity to dedicate one

or more processors to only execute protocol threads. Therefore, SMP nodes give rise to

two basic classes of protocol scheduling policies:dedicated andmultiplexed.

A dedicated policy (statically) schedules one or more SMP-node processors to only exe-

cute protocol threads. A multiplexed policy allows all processors to perform computation

and (dynamically) schedules one or more protocol threads to execute when processors
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become idle (e.g., due to waiting for a remote request or synchronization operation) or

upon arrival of a protocol message.

This chapter describes and qualitatively evaluates the two classes of scheduling policies.

Section3.1 presents a description of the two classes. Section3.2 enumerates mechanisms

required to implement the policies. Section3.3 discusses the choice of policy based on

design and functionality requirements of the target system. Section3.4 identifies applica-

tion and system characteristics that have a significant impact on the performance of poli-

cies. Section3.5 presents the policy trade-offs from a cost-performance perspective.

Section3.6 presents a summary of related work, and finally Section3.7 summarizes the

chapter.

3.1  Dedicated vs. Multiplexed Protocol Scheduling

A dedicated policy allocates one or more SMP processors to only execute protocol

threads. By always polling the protocol event queues when otherwise idle, dedicated pro-

tocol processors eliminate the need for message interrupts or polling by compute proces-

sors. In addition to decreasing the total overhead, a dedicated policy invokes protocol

handlers more quickly, reducing the protocol occupancy and round-trip latency.

The disadvantage of a dedicated policy is that protocol processors may waste cycles that

could have productively contributed to computation. Multiplexed policies address this

dilemma by using all processors to perform computation; however, when a processor

becomes idle it becomes a protocol processor. Since all processors may be computing,

either interrupts or (instrumented) periodic polling is still required to ensure timely proto-

col event handling. On the other hand, once a processor becomes a protocol processor,

handler dispatch may be as efficient as in a dedicated policy.

Figure3-1 illustrates scheduling a simple request/reply protocol with single-threaded

execution semantics (i.e., one protocol thread executing on every node) on a machine with

two dual-processor nodes. The figure illustrates protocol scheduling under a dedicated
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policy. The compute processor N1CP submits a request to the protocol processor N1PP,

which in turn sends a message. At the destination node, protocol processor N2PP immedi-

ately invokes the protocol handler and sends the appropriate reply. Because of the dedi-

cated protocol processor, compute processor N2CP proceeds uninterrupted. Finally, the

reply arrives and the handler runs on N1PP, which then resumes the computation thread.

Figure3-2 illustrates scheduling the same request/reply protocol, but under a multi-

plexed policy. The (compute) processor N1CP2 submits a request, becomes the protocol

processor and sends a message. When the message arrives at node 2, all processors are

busy computing. Thus, an interrupt is generated causing processor N2CP1 to act as proto-

col processor. The requesting processor incurs the overhead of two context switches (to

and from the protocol thread) and the resulting cache pollution. The replying processor

additionally incurs the overhead of delivering (and returning from) the interrupt. An idle

processor acting as protocol processor (N1CP2) can immediately handle a request by

another processor on the node (N1CP1), thereby eliminating the interrupt overhead.

Figure 3-1. Protocol scheduling under a dedicated policy.
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Multi-threaded execution semantics gives rise to a variety of multiplexed scheduling

policies. While most multiplexed policies schedule a protocol thread when a processor

becomes idle, the policies may differ as to whether to interrupt the computation on one

processor when there are protocol threads running on others. At one extreme, to eliminate

excessive scheduling overhead, a policy may only interrupt the computation on one pro-

cessor when there are no protocol threads running on others. At the other extreme, to min-

imize protocol invocation latency, a policy may interrupt the computation on all the

processors to schedule protocol threads as long as there are outstanding protocol events.

3.2  Protocol Scheduling Mechanisms

Protocol invocation and scheduling requires system mechanisms to detect the arrival of a

protocol event—e.g., a message—invoke the protocol, and to suspend/resume the compu-

tation (Figure3-1 and Figure3-2). To invoke the protocol, the system must provide mech-

anisms to schedule a protocol thread’s execution. This section describes in detail the

Figure 3-2. Protocol scheduling under a multiplexed policy.
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protocol invocation and scheduling mechanisms required by the two classes of scheduling

policies.

3.2.1  Detecting Protocol Events

To detect a protocol event’s arrival, processors must either poll the appropriate queues—

e.g., a protocol request queue or a message queue (Figure2-1 on page15)—or the system

must deliver an interrupt to a processor. Previous work has extensively studied the trade-

offs between polling and interrupts [BCL+95,vECGS92]. This section briefly describes

the trade-offs and their implications on the mechanisms required to efficiently implement

either technique.

Polling is the natural approach to detecting protocol events under a dedicated policy.

Dedicated protocol processors always poll on the protocol event queues and minimize pro-

tocol invocation overhead by immediately detecting a protocol event’s arrival. Polling,

however, may introduce high overheads without the appropriate system support. Message

queues, for instance, typically reside on the network interface card which is typically

placed on either the memory bus (e.g., in a tightly-coupled parallel machine [HT93,Int93])

or a peripheral bus (e.g., in a machine with commodity desktop nodes [BCF+95]). To

check for message arrivals, a protocol thread typically uses an uncached memory opera-

tion to read the status of the message queue. Frequent polling using uncached accesses

may generate excessive memory traffic. Peripheral device accesses must also cross a

memory-to-I/O bus bridge which further increases the memory bus utilization.

Hardware support can provide efficient polling mechanisms. Cachable control registers

[MFHW96,Pfi95] allow device registers to be cached in processor caches much like mem-

ory. A device is responsible for invalidating a cachable control register from processor

caches when the content of the register changes (e.g., as in a message arrival at the head of

the queue). In the common case of no messages, polling a cachable control register results

in a cache hit, eliminates the memory bus transaction, and incurs minimal overhead.
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To make (compute) processors poll the protocol event queues under a multiplexed pol-

icy, the system either uses executable editing [LS95] or a compiler [vECGS92] toinstru-

ment an application’s executable with instructions to periodically poll the protocol event

queues. Frequent polling through instrumentation, however, may introduce significant

delays in the computation. This effect is exacerbated in the absence of system support for

efficient polling—such as cachable control registers. System designers often opt to reduce

polling overhead by decreasing polling frequency thereby sacrificing protocol invocation

speed.

In the absence of support for efficient polling, a system may invoke protocols by deliver-

ing an interrupt to a processor. Network interface cards typically provide mechanisms for

delivering an interrupt signal to either a processor or an interrupt arbiter. SMPs are typi-

cally equipped with programmable interrupt arbitration circuitry [int97]. These devices

can be programmed to implement basic interrupt distribution policies. A multiplexed pol-

icy may program an interrupt arbiter to distribute interrupts round-robin among the pro-

cessors. A dedicated policy may program the interrupt arbiter to only distribute the

interrupts among the dedicated protocol processors.

If the protocol is executing at the user level, the operating system must also provide

mechanisms for delivering the interrupt to the user protocol code. Fast user-deliverable

interrupts, however, are only typical of specialized operating systems on parallel comput-

ers [RFW93]. User-deliverable interrupts on stock operating systems are extremely slow

[TL94] and would be prohibitive for fine-grain parallel applications. Masking/unmasking

interrupts may also require invoking system calls which incur high overheads. The operat-

ing system, however, can be customized to provide low-overhead user-level interrupt

masking schemes [SFL+94,SCB93].

Systems may also provide a hybrid of polling and interrupt mechanisms. To eliminate

polling across the memory bus into a peripheral device, a processor can poll on a user-

accessible cachable memory location instead. By customizing the network interface
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device driver, a low-level interrupt routine can signal a message arrival through a user-

accessible (cachable) memory location, effectively emulating a cachable control register

[Sch97].

3.2.2  Scheduling a Protocol Thread

Both dedicated and multiplexed policies require system mechanisms to schedule a pro-

tocol thread’s execution. A dedicated policy requires a mechanism to bind a protocol

thread to a processor. To guarantee the protocol thread is always executing, the system

must also prevent other (computation or protocol) threads from executing on the dedicated

protocol processor. Variations of such mechanisms are commonly available in stock oper-

ating systems running on commodity SMP desktops and servers. Solaris, for example,

provides a system call by which a user can bind a (protocol) thread to a specific SMP pro-

cessor [SS92].

A multiplexed policy typically schedules a protocol thread for execution when a proces-

sor becomes idle—e.g., waiting for synchronization—or when a message arrival interrupts

the computation. To schedule and execute a protocol thread, the system must provide

mechanisms to swap the processor state corresponding to the computation with that of the

protocol thread. Commodity operating systems running on SMPs also typically provide

thread packages that allow (dynamic) scheduling of protocol thread execution [SS92].

In many systems employing fine-grain software protocols, a user-level protocol invoca-

tion can be as simple as a procedure call. Such systems require the protocol handlers to

have short running times and execute to completion upon servicing a protocol event

(Chapter2). As a result, protocol handler execution in these system does not leave stack

state (corresponding to nested procedure calls) behind. Rather than use a separate thread

stack, the software protocol simply executes on a computation thread’s stack much like

trap/interrupt service routines in some customized operating systems [RFW93]. Such sys-

tems directly invoke a user-level protocol through a procedure call within the computation

thread.
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3.2.3  Suspending & Resuming the Computation

Both classes of policies require mechanisms to suspend (and subsequently resume) the

computation when an application submits a protocol request (e.g., to access remote data).

Under a multiplexed policy, a message arrival may also interrupt and suspend the compu-

tation. The mechanisms provided to suspend and resume the computation may affect the

choice of policy in a given system.

In many systems employing software protocols, the application submits a protocol

request through a software handshake [JKW95,SFL+94,CDG+93,BTK90]. Upon a proto-

col request, the system can simply suspend the computation by making a processor spin

on a memory flag waiting for the request to be satisfied. The protocol signals request com-

pletion and resumes the computation by writing to the memory flag. A multiplexed policy

may also schedule a protocol thread while the computation is waiting for a protocol

request to complete. To detect a protocol request completion and resume the computation,

the system must provide mechanisms for a protocol thread to poll on the request comple-

tion (memory) flag, as well as, the protocol event queues.

Some fine-grain DSM systems use hardware support to detect when a processor is

accessing remote data [Pfi95,SFL+94]. In many such systems, hardware detects accesses

to remote data by inspecting transactions on the memory bus. Upon detecting a remote

data access, some systems generate a bus error exception in response to the memory bus

transaction [Rei96]. Upon a bus error, the system saves the processor state—e.g., the con-

dition code registers and the program counter—necessary to resume the computation

exactly at the point of the exception. These systems can also use a simple software hand-

shake for resuming the computation by simply making the processor spin on a memory

flag inside the bus error exception routine waiting for the remote data to arrive.

Modern commodity microprocessors do not always support precise (or even restartable)

bus error exceptions [SP88]. In the absence of precise bus errors or to reduce communica-

tion overhead, some fine-grain DSM systems suspend and resume the faulting (compute)
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processor directly in hardware [Rei96]. These systems suspend/resume the computation

by masking/unmasking the faulting processor from memory bus arbitration. Such a mech-

anism would preclude using a multiplexed policy because the faulting processor can no

longer access memory until the access violation is satisfied (i.e., the remote data is

fetched).

Under a multiplexed policy, a message arrival may require suspending the computation

to invoke a protocol. Message arrivals invoke a protocol either through interrupts or instru-

mented polling. An interrupt suspends the computation using system exception mecha-

nisms similar to a bus error. Much like systems with a software handshake for protocol

request submission, instrumented polling suspends the computation by simply invoking

the protocol scheduling mechanisms directly in software. In both the interrupt- and poll-

ing-based systems, the scheduling mechanisms can immediately resume the computation

(i.e., schedule the computation thread for execution) once the protocol thread finishes

draining the event queues and becomes idle.

3.2.4  Mechanisms for Choosing a Policy

An operating system may choose one protocol scheduling policy statically at boot time

or allow users to choose a policy at runtime. Many parallel systems provide mechanisms

to change and invoke protocols that are optimized for specific communication patterns

during an application’s execution [KDCZ93,CBZ91]. Likewise, systems can provide

application-level mechanisms to change and invoke a scheduling policy optimized for a

given communication phase. During a computation-intensive phase, an application may

choose to use a multiplexed policy allowing all processors to contribute to computation,

while in a communication-intensive synchronous phase a dedicated policy may be prefer-

able allowing the system to pin a protocol thread to a specific processor eliminating proto-

col thread migration overhead.
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3.3  Design & Functionality Requirements

Systems may choose a policy over another because of several system design and func-

tionality requirements. A dedicated policy may be preferred over a multiplexed policy

when specialized hardware resources (e.g., hardware support for fine-grain shared mem-

ory) are only accessible to specific SMP-node processors [CAA+95]; multiplexing such

processors may create a load imbalance in the computation thereby lowering performance.

Some parallel environments require protected messaging between individual processors

across machine nodes [LHPS97,Int93]. To provide protected communication, such sys-

tems allow access to protocol resources (e.g., such as the network interface board) through

the operating system. A multiplexed policy in such an environment would require a sys-

tem call upon every invocation of the protocol thread and may incur prohibitively high

overheads. A dedicated policy, however, would eliminate the system call overhead by

always executing a protocol thread on a dedicated processor in system mode.

Statically scheduling processors to execute protocol threads may also be preferable from

both design and manufacturing standpoint. Dedicated protocol processors eliminate the

hardware and software requirements for preempting the computation and invoking the

protocol threads thereby reducing design complexity and turn-around time.

3.4  Policy Performance Trade-Off

There are several application and system characteristics that impact performance under a

specific scheduling policy. A multiplexed policy favors applications that are computation-

intensive and systems in which the overhead of (dynamically) scheduling and executing a

protocol thread accounts for a negligible fraction of overall execution time. Conversely, a

dedicated policy favors applications in which communication accounts for a significant

fraction of overall execution time. Systems with high protocol scheduling overheads also

benefit from a dedicated policy. This section enumerates factors that have a significant

impact on system performance under the policies.
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3.4.1  Application Characteristics

Applications with low communication-to-computation ratios (e.g., such as dense matrix

codes) can exhaust all the computational resources available on a node. These applications

exhibit good speedups even with heavy-weight page-based DSM protocols

[KDCZ93,CBZ91]. Such applications would underutilize dedicated protocol processors,

wasting processor cycles that could have otherwise contributed to computation.

Applications with bursty communication patterns are also likely to benefit from a multi-

plexed policy. Examples of such applications are those in which communication and com-

putation proceed in synchronous phases. Bursty communication is also characteristic of

shared-memory applications using software prefetching, relaxed memory consistency

models, and customized application-specific protocols. Bursty communication allows the

processors to schedule protocol thread(s) once for the duration of the communication,

thereby eliminating overhead.

The choice of policy also depends on the communication and computation granularity in

an application. Several classes of important applications exhibit fine-grain and asynchro-

nous communication. Examples of such applications are gravitational N-body simulation

[BH86], cholesky factorization [WOT+95], and fine-grained sparse-matrix methods

[CSBS95]. These applications exploit parallelism by overlapping fine-grain communica-

tion and computation among machine nodes. By balancing the load between the computa-

tion and protocol processors, fine-grain applications with asynchronous communication

favor a dedicated policy. Dedicated protocol processors also eliminate the protocol thread

scheduling overhead which is frequent in such applications.

3.4.2  Overhead in a Multiplexed Policy

There are two types of overhead in a multiplexed policy: scheduling overhead to invoke

a protocol thread upon arrival of a protocol event, and cache interference overhead

between the computation and protocol thread. Processors either voluntarily schedule a
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protocol thread when they become idle (e.g., while waiting for a protocol request or at a

synchronization), or involuntarily through a scheduling invocation mechanism such as

interrupts or instrumented polling.

Naive implementations of user-level interrupts and instrumented polling may incur high

overheads (see Section3.2) and result in poor performance under a multiplexed policy.

Large-scale SMPs increase the likelihood of one or more processors being idle, signifi-

cantly reducing the frequency of interrupts [FW97c,KS96]. Instrumented polling, how-

ever, always incurs a minimum overhead of checking for protocol events.

Executing protocol threads on a compute processor may pollute the processor’s instruc-

tion [MPO95] and data [PC94] cache hierarchy. A dedicated policy has the advantage of

providing a separate set of instruction and data caches for the protocol thread to use,

avoiding cache interference with computation. Cache interference under a multiplexed

policy, however, may be minimal depending on the number of cache references made the

protocol thread. Fine-grain communication protocols (e.g., a coherence protocol in fine-

grain DSM) have handlers with very short running times and typically only access a fine-

grain (e.g., 32-256 bytes) memory block and update the corresponding protocol state. As

such, these protocols are likely to incur minimal cache interference under a multiplexed

policy.

Network interfaces equipped with data caches (such as Typhoon’s block buffer

[RPW96] or CNI’s cachable queues [MFHW96]) allow protocols to leave the protocol

data in the network interface cache. A requesting (computation) processor may directly

load the data from the network interface cache reducing the protocol thread’s cache inter-

ference with computation. Protocols may also induce a positive cache interference

[FW97a] under a multiplexed policy by leaving the requested data in the requestor’s data

cache if the requesting processor is also the processor running the protocol thread

[FW97c,SFH+97].
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3.4.3  Multiprocessing & Multithreading

Both the degree of multiprocessing (i.e., the number of processors per node) and multi-

threading (i.e., the number of threads running on a single compute processor) have several

effects on the policy trade-off. More processors increase the likelihood that at least one

processor is idle (e.g., waiting for a protocol response). Under a multiplexed policy, such a

processor voluntarily schedules and runs a protocol thread, eliminating the scheduling

overhead upon arrival of a protocol event. With parallel protocol dispatch support (e.g.,

using the PDQ mechanisms), multiple processors can contribute to protocol execution,

significantly increasing the communication bandwidth. Dedicated protocol processors,

however, also save the cache interference overhead which may improve performance in

the presence of high bus utilization.

By parallelizing the computationwithin a node, multiple compute processors also

increase theapparent communication-to-computation ratio. Multi-threading the compute

processors also increases the apparent communication-to-computation ratio by overlap-

ping communication with computation among multiple threads [Aga92,GHG+91]; a pro-

cessor can schedule and execute one computation thread while waiting for a protocol

request for another. A dedicated policy increases the communication bandwidth by elimi-

nating the protocol scheduling and execution overhead favoring a higher apparent commu-

nication-to-computation ratio. Large-scale SMP nodes also make a dedicated policy

advantageous by reducing the opportunity cost (in lost computation) of the dedicated pro-

tocol processors.

3.4.4  Protocol Weight

Protocol weight is a qualitative measure of the protocol’s execution time. It is a function

of the protocol complexity, the architecture of the network and the network interface

device. Protocol weight affects the policy trade-off because for heavy-weight protocols

(i.e., protocols with long running times) the overheads saved by a dedicated policy become

an insignificant fraction of the overall communication time. Thus, a dedicated policy
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should be more beneficial for light-weight protocols (e.g., active-message-based protocols

[JKW95,CDG+93]) than for heavy-weight protocols (e.g., page-based DSM

[KDCZ93,CBZ91,LH89]). This runs counter to the common intuition that dedicating a

protocol processor helps off-load heavy-weight protocols from the compute processor.

Protocol complexity is a function of the high-level abstractions required by an applica-

tion. An application may require simple point-to-point messaging as in Active Messages, a

shared global address space as in DSM, or more general models in which the protocol per-

forms arbitrary computation as in RPC [BN84]. Many applications and systems also opt

for higher protocol complexity to reduce the frequency of messaging. Adaptive cache

coherence shared-memory protocols, for instance, minimize communication by monitor-

ing the sharing behavior of data at runtime and selecting one out of many protocols suit-

able for enforcing coherence on a given data item [FW97b,CF93,SBS93,BCZ90].

Network interface cards may provide hardware support for high-level abstractions. For

instance, CNI’s [MFHW96] hardware moves data in cache block granularities between the

network interface card and processor caches. Typhoon-1’s [RPW96] shared-memory hard-

ware atomically moves a fine-grain memory block between memory (or processor caches)

and the network and updates the corresponding protocol state. Similarly, DMA engines

[BDFL96] decouple constructing a message (performed by the protocol) from the actual

data transfer (performed by the engine). The above mechanisms all reduce protocol com-

plexity and thereby protocol weight.

Low-level messaging services also contribute to protocol complexity. Parallel applica-

tions typically require low-level messaging services such as checksumming, reliable deliv-

ery, in-order delivery, flow control, and fragmentation and reassembly. Tightly-coupled

distributed-memory machines usually provide such services in hardware both at the level

of the network switch and the interface card [HT93]. Commodity networks, however, typ-

ically do not implement these services entirely in hardware and require software protocols

to provide some of the functionality [KC94]. These low-level protocols either run on a
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high-speed embedded processor on the network interface card [BVvE95] or must execute

on a host (node) processor along with higher-level abstractions [Sch97].

The network interface card’s location with respect to a processor also affects the proto-

col weight. Tightly-coupled parallel machines have traditionally positioned the network

interface card on the memory bus to provide a low-latency access path from the processors

to the network. Current commodity network interface cards are placed on peripheral buses

which require crossing the memory bus through an I/O bridge to access a device. Periph-

eral addresses are also typically protected. As such, accessing the network through a user-

level protocol requires copying message data multiple times among protection boundaries

[Sch97]. Network interface cards placed on peripheral buses can significantly increase the

protocol weight.

3.5  Policy Cost-Performance Trade-Off

System designers often use cost-performance rather than performance as the primary

metric for evaluating a design. Cost-performance is important when comparing the policy

trade-off because adding one or more dedicated protocol processors can always improve

performance given large enough SMP nodes. Cost-performance, however, only improves

if the performance improvement is large enough to offset the additional cost of the dedi-

cated processors [WH95,FW94].

Whereas the manufacturing cost of computer products is typically related to the cost of

components, cost from a customer’s perspective is related to price which is also dictated

by market forces [HP90]. High-performance products, for instance, tend to target smaller

markets and therefore carry larger margins and higher price premiums. Parallel machines

can either use small-scale desktop SMPs or medium- to large-scale SMP servers as build-

ing blocks. Depending on the degree of multiprocessing, SMP products can belong to

either a low-margin desktop or high-margin server market. Adding (dedicated) protocol

processors to high-premium SMPs may considerably improve performance while not sig-

nificantly increase the cost, resulting in a cost-effective system.
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3.6  Related Work

Process and thread scheduling has been a topic of considerable interest in parallel sys-

tems research community [ABLL92,VZ91,DBRD91,SL90,TG89]. Similarly, researchers

in the networking community have extensively studied scheduling policies for parallelized

network communication protocols [SKT96,BG93,Kai93,HP91]. Other researchers have

studied scheduling VM-based software DSM protocols [KS96,ENCH96] on SMP clus-

ters.

This thesis primarily focuses on scheduling fine-grain communication protocols. In the

past, several systems providing software fine-grain communication protocols on SMP

clusters have employed a dedicated scheduling policy because of special hardware

resources available only to a particular SMP-node processor [CAA+95], or to provide effi-

cient protected communication by always running the protocol thread in system mode

[Int93,LHPS97], or to simply eliminate the context switch overhead between computation

and the protocol thread [RPW96].

This thesis is the first to propose a taxonomy for protocol scheduling policies. The thesis

also evaluates system and application characteristics that affect performance and cost-per-

formance trade-offs between the two classes of taxonomy.

3.7  Summary

Rather than provide embedded processors on a custom device to execute software proto-

cols, some cost-effective parallel computers execute the protocols on the node’s commod-

ity processor. This chapter evaluates scheduling policies for software protocols in a cluster

of SMPs. A taxonomy of scheduling policies defines two classes of policies:

• A dedicated policy (statically) schedules one or more SMP-node processors to only

execute protocol threads,

• A multiplexed policy allows all processors to perform computation and (dynamically)

schedules one or more protocol threads to execute when processors become idle (e.g.,
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due to waiting for a remote request or synchronization operation) or upon arrival of a

protocol message.

This chapter describes in detail the two classes of scheduling policies. Choice of policy

may depend on the required mechanisms to schedule and invoke protocols, the system

design and functionality requirements, or the performance and cost-performance trade-

offs between the scheduling policies. The chapter identifies the key application and system

characteristics that affect the performance trade-offs between the two policies:

• Application’s characteristics such as communication-to-computation ratio and bursti-

ness in communication,

• Scheduler invocation and thread migration overhead in a multiplexed policy,

• Degree of multiprocessing or multi-threading,

• Protocol weight which is a function of protocol’s complexity and network architecture

and speed.
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Chapter 4

Scheduling Policies for a Single-Threaded Protocol

Chapter2 and Chapter3 presented a taxonomy for software protocol execution seman-

tics and scheduling policies respectively. This chapter presents an evaluation of protocol

scheduling policies for single-threaded execution of fine-grain software protocols on a

cluster of small-scale SMPs.

Small SMP systems—such as the Intel Pentium-Pro-based servers—are becoming

widely available, making them attractive building blocks for parallel computers

[LC96,WGH+97,CA96]. Some cost-effective multiprocessor designs implement commu-

nication protocols in software and use little or no custom hardware support for protocol

execution [SGA97,SFH+97]. These machines interconnect SMP nodes using relatively

simple commodity network interfaces [BCF+95] and perform most protocol processing in

a single protocol thread running on a regular SMP-node processor.

Much like other OS services, communication protocols employ a scheduling policy on

SMP processors. One SMP processor may either be statically scheduled (i.e., dedicated) to

run only the protocol thread for the duration of an application’s execution, or any SMP-
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node processor performing computation may be dynamically scheduled (i.e., multiplexed)

to instead run the protocol thread for a while.

Several proposed and/or implemented systems dedicate one processor specifically for

protocol processing because of special hardware resources available only to a particular

SMP-node processor [CAA+95], or to provide efficient protected communication by

always running the protocol thread in system mode [Int93,LHPS97], or to simply elimi-

nate the context switch overhead between computation and the protocol thread [RPW96].

While a dedicated protocol processor can improve communications performance, it pro-

vides little benefit for compute-bound programs. These applications would rather use the

dedicated processor for computation. In a recent experiment, Womble, et al., demonstrated

that using the Paragon’s protocol processor for computation (via a low-level cross-call

mechanism under SUNMOS) improved performance on LINPACK by more than 50%

[WG94]. Similarly, others have shown that a dedicated protocol processor provides little

benefit for systems with large communication latencies and overheads as in ATM [KS96]

or HIPPI [ENCH96] networks.

In this chapter, I ask the question:“when does it make sense to dedicate one processor in

each SMP node specifically for protocol processing?” The central issue is when do the

overheads eliminated by a dedicated protocol processor offset its lost contribution to com-

putation? I address this question by examining the performance and cost-performance

trade-offs of two scheduling policies for a single-threaded protocol:

• Fixed, a dedicated policy where one processor in an SMP node is dedicated for proto-

col processing, and

• Floating, a multiplexed policy where all processors compute and alternate acting as

protocol processor.

To evaluate the two scheduling policies, this study models a fine-grain DSM on an SMP

cluster. The system implements intra-node communication through the MOESI coherence
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protocol on the SMP bus, and uses a software DSM coherence protocol to extend the fine-

grain shared-memory mechanisms of an SMP bus across a cluster. The coherence protocol

used,Stache [RLW94], is an invalidation-based full-map directory protocol which uses a

portion of each node’s main memory to cache remote data much like S-COMA [HSL94].

Stache implements caching by allocating data at page granularity but maintaining coher-

ence (within the page) at cache block (e.g., 32-128 bytes) granularity. Although the exper-

iments in this study are in the context of Stache, the results are applicable to more general

software communication protocols.

Much like other simple request/reply protocols [CDG+93,JKW95], Stache implements

protocol actions using Active Messages [CDG+93]. Active messages require the execution

of the handlers to appear atomic. Stache simply guarantees this requirement by executing

the protocol in a single thread on every node.

The next section describes in detail the protocol processing mechanisms and the network

interface architecture. Section4.2 describes the two protocol processing policies in more

detail. Section4.3 present performance results from a microbenchmark and a mac-

robenchmark experiment, respectively and uses a simple cost model to evaluate policy

cost/performance. Section4.4 presents a discussion of related work. Finally, Section4.5

concludes the chapter.

4.1  Protocol Execution & Scheduling Mechanisms

Fine-grain software coherence protocols require mechanisms for detecting a remote

block miss and a subsequent dispatch of a protocol handler. Protocol actions are also

invoked through messages across machine nodes and require mechanisms for sending a

message and dispatching the corresponding protocol handler upon receiving the message.

Systems may provide mechanisms for remote block miss detection and protocol handler

dispatch either in software or hardware [SFL+94]. While the results of this study are

largely independent of whether these mechanisms are implemented in hardware or soft-

ware, we assume a hardware implementation via a Typhoon-1 board [RPW96].
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Figure4-1 illustrates the architecture of a Typhoon-1 network interface. An SRAM

device maintains the fine-grain tags used to enforce access control semantics on shared-

memory loads and stores that miss in the cache. The board snoops on cache fills appearing

in the form of memory transactions on the bus and performs a tag lookup. Upon access

violation, the board enters the faulting address, the access type, the tag value, and the

address of the protocol handler to be dispatched into aprotocol event queue. The protocol

event queue also maintains the incoming (active) messages from other nodes.

The protocol thread polls on aprotocol dispatch register (PDR) which is the head entry

in the protocol dispatch queue. The protocol dispatch register is cachable control register

[RPW96,MFHW96] located on the Typhoon-1 board. Cachable control registers eliminate

excessive poll traffic on the memory bus by allowing a processor to poll on a device regis-

ter directly in its cache. Typhoon-1 notifies a processor when an entry has been inserted in

the protocol event queue by invalidating the cached copy of the protocol dispatch register.

Typhoon-1 is also equipped with a block buffer; a small direct-mapped cache that serves

as an intermediary storage device for moving memory blocks between the node’s memory

hierarchy (e.g., processor caches or main memory) and the message queues. Removing/
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Figure 4-1. The Typhoon-1 network interface.The network interface contains a protocol
dispatch register, a block buffer, and a message send queue. There is a single SRAM device
maintaining the fine-grain tags for cached remote data, and a protocol dispatch queue recording
block access faults and incoming messages on the node.
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placing remote data from/into a node also typically involves modifying the state of the

block maintained by the fine-grain tags. Shared-memory access semantics dictates that

moving data and updating the corresponding tag value should appear to execute atomi-

cally. The block buffer implements this atomic operation directly in hardware.

To allow dynamic scheduling of the protocol thread upon message arrival, Typhoon-1

also allows invoking interrupts on the memory bus. A memory-mapped interrupt arbiter

device distributes interrupts among the processors in a round-robin fashion.

To avoid invoking high-overhead system calls for masking/unmasking interrupts in a

critical section the system uses a low-overhead software interrupt masking scheme

[SCB93]. Each computation thread is assigned a user- and system-accessible flag in mem-

ory to set and reset upon entering and exiting a critical section. When an interrupt arrives

in the middle of a critical section (determined by checking the flag), the system sets an

interrupt-pending flag and masks further interrupts. Upon exiting the critical section, a

computation thread checks for pending interrupts. If an interrupt is pending, the computa-

tion thread clears the pending flag, invokes the protocol code to handle messages, and

unmasks interrupts. This interrupt masking scheme optimizes the overhead in the common

case of no interrupts in a critical section to a small number of memory accesses.

4.2  Protocol Scheduling Policies

In this study, we examine two scheduling policies for protocol processing:Fixed and

Floating. Because Stache is single-threaded, each node is limited to one processor execut-

ing protocol events at any one time. Regardless of the policy we say that this processor is

acting as protocol processor.

The Fixed policy dedicates one processor of a multiprocessor node to perform only proto-

col processing. The dedicated protocol processor executes all the remote miss and active

message handlers. By always polling the network when otherwise idle, the protocol pro-

cessor eliminates the need for message interrupts or polling by the compute processor(s).
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The disadvantage of dedicating a protocol processor is that it may waste cycles that could

have productively contributed to computation. The Floating policy addresses this dilemma

by using all processors to perform computation; however, when one becomes idle (e.g.,

due to waiting for a remote request or synchronization operation) it assumes the role of

protocol processor. Since all processors may be computing, either interrupts or periodic

polling are required to ensure timely handling of active messages. On the other hand, once

a processor assumes the role of protocol processor, it acts much like a dedicated protocol

processor. We use the termSingle to refer to the special case of a single processor (per

node) performing all protocol processing as well as all computation.

4.3  When does dedicated protocol processing make sense?

In this study, I pose the question: “when does dedicated protocol processing make

sense?” I address this question by evaluating when one of our two protocol processing pol-

icies performs better or is more cost-effective than the other. While there are many fac-

tors—including system software complexity, and protection [LHPS97]—I believe that

performance and cost-performance are important.

To quantify cost-effectiveness, I use the simple cost model from Wood and Hill [WH95].

A change, e.g., adding a second processor, is cost-effective if and only if the increase in

cost (or costup) is less than the increase in performance (or speedup). In this paper, we say

a system iscost-effectiveif its cost-performance ratio is less than a uniprocessor node’s. A

system ismost cost-effectiveif it achieves the lowest cost-performance ratio. This simple

cost model assumes that a processor represents 30% of the cost of a uniprocessor node.1

Thus, a two-processor node and a five-processor node have costups of 1.3 and 2.2, respec-

tively.

1. The incremental cost of an additional processor varies greatly depending on the processor, memory hierarchy, peripher-
als, and the overall system cost per node. In many cases the incremental cost may be less than 30% which will shift cost-
performance in favor of Fixed.
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To answer “when” one policy is better than another, I use results from microbenchmark

and macrobenchmark experiments to compare policy performance. The experiments vary

application and system characteristics that have a first-order impact on policy performance

(as discussed in Chapter3).

4.3.1  Methodology

I use the simulation methodology and system parameters described in Section1.3.1 to

simulate an SMP cluster interconnected with a Typhoon-1 network interface. This study

models a memory system characteristic of small-scale SMP desktops and therefore

assumes a single memory bank with a four-entry write-buffer in the memory controller.

Unless specified otherwise, the simulator assumes an interrupt overhead and a bus error

trap overhead of 200 cycles, characteristic of carefully tuned parallel computers [RFW93].

4.3.2  Microbenchmark Experiment

In this section I evaluate the Fixed and Floating policies using two simple synthetic

benchmarks. We base our benchmarks on a simple request/reply protocol, similar to that

employed by many parallel computing paradigms [CDG+93,JKW95,CBZ91,RLW94].

The benchmark times the execution of a tight loop running on a two-node machine. Each

iteration alternates between computing and issuing a remote request using a simple

request/reply protocol. To induce cache effects, computation is interleaved with uniformly

random accesses to a (private) processor-specific segment of the address-space. The size

of the segment is equal to the size of the processor cache. The compute processor caches

warm up before the start of measurements.

The experiment uses two request/reply protocols with different protocol weights. Anull-

handler protocol represents the lightest-weight protocol achievable in the simulated sys-

tem. The protocol handlers do nothing but send the appropriate active message, i.e., the

reply handler simply sends a null message back to the requester.
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A fetch-block protocol is representative of the medium-weight protocols needed to sup-

port fine-grain distributed shared-memory systems [JKW95,SFL+94]. I do not consider a

heavy-weight protocol, e.g., page-based DSM, since prior work indicates that a dedicated

protocol processor will be of little use [KS96,ENCH96]. The processors randomly request

a 128-byte block of data from the private segment of a remote processor. The protocol

handlers manipulate the memory block state in a protocol table. Both the data block trans-

fer and accesses to protocol table contribute to cache pollution.

Let Lmin to be minimum round-trip latency under the Fixed policy. Under the modeled

system assumptions, the protocol round-trip times are 1.7µs for the null-handler protocol

and 6.2µs for the fetch-block protocol. We vary the following parameters in the experi-

ment:

C = mean computation time between requests,
U = thread compute-utilization in the absence of protocol contention(C/(C+Lmin)),

Oint = overhead of handling an interrupt.

The experiment uses an exponential random stream with meanC to generate computa-

tion times, and adjustsC to derive various values forU. To vary Oint, the system delays

executing a thread upon an interrupt for a fixed number of cycles. The number of iterations

in a loop is inversely proportional to the number of compute processors per node, e.g.,

Floating on a two-processor node and Fixed on a four-processor node execute half and

one-third as many iterations as Single, respectively.

Figure4-2 (left) compares the performance for the null-handler protocol in one and two-

processor node machines. The figure plots execution times of Single and Floating normal-

ized to Fixed as thread compute-utilization increases. Points above the horizontal line

indicate that Floating (Single) performs worse than Fixed. The thick and thin lines depict

high and low interrupt overheads, respectively. The graphs for Single (solid curves) illus-

trate the intuitive result that communication-intensive programs (smallU) benefit more

from a dedicated protocol processor than computation-intensive programs (large U).

When the program becomes communication-bound (C << Lmin), however, the compute
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processor in Single becomes idle and acts like a protocol processor, reducing the number

of taken interrupts. The graphs also indicate that, when interrupt overhead is high, even a

small number of interrupts severely impacts the execution time.

The dashed curves plot the normalized execution time for a two-processor node under

the Floating policy. With high interrupt overheads, the Floating policy behaves like the

Fixed policy; the two (compute) processors alternate acting as the protocol processor elim-

inating the interrupt overhead. Protocol thread migration overhead, however, slightly

reduces performance under Floating relative to Fixed. With low interrupt overheads, there

is little benefit from a dedicated protocol processor, but potential gain from improving

computation time. Under Floating, both processors perform computation, resulting in sig-
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nificantly better performance at higher compute-utilizations. This is not surprising since

the microbenchmark is perfectly parallelizable.

Figure4-2 (right) compares the performance of the policies for the fetch-block protocol.

The figure corroborates the intuition that a dedicated protocol processor is more beneficial

for light-weight protocols than for heavy-weight protocols. The result follows from the

observation that Fixed does best when the interrupt overhead is much greater than the

round-trip latency (Oint >> Lmin). This result suggests that dedicated protocol processors

may become more attractive as interrupt latencies go up (due to faster processors) and pro-

tocol weights go down (due to faster network interfaces).

This graph illustrates the surprising result that for a communication-bound program and

low interrupt overhead, Single outperforms Fixed. This occurs because our synthetic pro-

tocol always reads message data into the protocol processor’s cache. Under Fixed, the

compute processor always misses on message data, resulting in a cache-to-cache transfer.

Conversely, under Single, there is only one cache, so the transfer is eliminated. Fetch-

block is a simple request/reply protocol and does not take advantage of Typhoon-1’s block

buffer for direct cache-to-cache transfer of the data block.

Unlike the null-handler protocol, the Floating policy maintains its advantage over Fixed

even at low compute-utilizations. Overheads in the fetch-block protocol account for an

small fraction of communication time. Moreover, at low compute-utilizations the extra

compute processor in Floating parallelizes communication by doubling the number of out-

standing requests per node. Much as in Single, it is also likely that an acting protocol pro-

cessor under Floating reads message data into the requesting compute processor cache,

eliminating the extra data transfer. The combined effect of the above improves Floating’s

performance over Fixed at low compute-utilizations.

4.3.2.1  Multiple compute processors per Node. More processors per node helps Floating

by increasing the likelihood that an idle processor is acting as protocol processor. The
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added benefit of an extra compute processor, however, diminishes with a larger number of

processors. Multiple compute processors also increase the contention for the single proto-

col processor. Under low compute-utilization, Floating approximates Fixed, since an act-

ing protocol processor eliminates the interrupt overhead. Fixed, however, provides better

throughput by also eliminating the overheads associated with protocol thread migration.

Figure4-3 (left) plots execution time for the null-handler protocol under the Floating

policy normalized to Fixed, while varying the number of processors per node. Fixed gen-

erally outperforms Floating particularly with three or more processors per node; greater

demand for protocol processing with a larger number of processors makes communication

the bottleneck. Because the dedicated protocol processor minimizes protocol processor

occupancy, Fixed provides greater throughput and can support a larger number of compute

processors. The graphs indicate that performance under Fixed can significantly improve,
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by up to 75%, over Floating. With four or more compute processors, Floating fails to

improve performance over Fixed even at a 90% compute-utilization.

At low compute utilizations, an increase in the number of processors increases Float-

ing’s performance relative to Fixed. Multiple compute processors running communica-

tion-bound applications increase protocol processor utilization and result in queueing at

the protocol processor. Fixed experiences queueing more quickly than Floating because

request rates in Floating remain lower than those in Fixed; an acting protocol processor

under Floating must return to computation before it can contribute to request traffic. As

such, the system begins to exhibit queueing with a fewer number of compute processors

and at a higher compute-utilization under Fixed than Floating. Queueing delays under

Fixed reduce the performance gap between the two policies.

Compute-intensive programs take advantage of the extra compute processor in Floating

to improve computation time. An increase in the number of processors, however, gradu-

ally diminishes Floating’s advantage over Fixed because the added benefit of an extra

compute processor becomes insignificant.

Figure4-3 (right) plots the same graphs for the fetch-block protocol. Much like the null-

handler protocol, Fixed outperforms Floating when protocol processor utilization is high,

i.e., there are more than two processors per node and compute-utilization is low. Because

overhead in the fetch-block protocol accounts for a small fraction of protocol occupancy,

Fixed loses its performance advantage over Floating. The graphs indicate that Fixed at

most improves performance by 20% over Floating.

4.3.2.2  Cost/Performance. Cost-performance (rather than performance) becomes a more

meaningful metric from a design perspective when increasing the number of processors

per node. Adding processors may always result in incremental performance improvement.

The performance improvement, however, may not be high enough to justify the additional

cost of processors. Similarly, cost-performance also serves as a better metric for compar-
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ing scheduling policy trade-offs. Given a large enough number of processors per node,

Fixed will outperform Floating because communication eventually becomes the bottle-

neck. At this point, however, the resulting system may not be the most cost-effective

design point.

Figure4-4 (left) illustrates cost-performance for the null-handler protocol. The figure

plots cost-performance ratio where 1 represents a uniprocessor node. Values under the

horizontal line (at 1) correspond to systems that are cost-effective—i.e., systems with bet-

ter (lower) cost-performance than a uniprocessor node. The figure examines both policies

at two compute-utilizations, against the number of processors per node. Adding up to four

processors to a uniprocessor node under either policy results in a cost-effective system.

Interrupt overhead significantly increases execution time in Single for the null-handler

Figure 4-4. Relative cost-performance.The figure plots cost-performance of Fixed and
Floating (Oint = 0.5 µs) against varying the number of processors per node for two values of
compute-utilization (U = 0.3 andU = 0.7). Costups and speedups are calculated with respect to a
uniprocessor node (Single). The graphs assume that the cost of a processor is 30% of the cost of a
uniprocessor node. Values over the horizontal line at 1 indicate design points that are not cost-
effective.
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protocol allowing Fixed and Floating to improve performance by virtually eliminating

interrupts.

Not surprisingly, the Fixed policy always provides the most cost-effective system for the

null-handler protocol. Figure4-3 (left) indicated that Fixed always improves performance

over Floating for low (U = 0.3) compute-utilizations. For moderate compute-utilizations

(U = 0.7), Fixed outperforms Floating with three or more processors per node. Because of

high compute-utilizations, the benchmark continues to exhibit reasonable speedups with a

larger (> three) number of processors per node. A larger number of processors also reduce

the relative cost-increment from an additional processor. The combined effect drives cost-

performance lower under Fixed.

Figure4-4 (right) illustrates the cost-performance graphs for the fetch-block protocol.

Unlike the null-handler protocol, adding processors to a node is not always cost-effective.

Interrupt overhead does not have as high of an impact on Single’s performance because of

high protocol occupancies in the fetch-block protocol. When compute-utilization is low

(U = 0.3), Floating with three or more processors and Fixed with either two or five or more

processors per node result in systems that are not cost-effective. A higher compute-utiliza-

tion (U = 0.7), however, results in high speedups with a larger number of processors per

node, offsetting the cost-increment of the additional processors, resulting in systems that

are cost-effective.

Unlike the null-handler protocol, Fixed does not always result in the most cost-effective

system. At the lower compute-utilizations, Floating (with two processors per node) results

in the most cost-effective system. At high compute-utilizations, however, the system con-

tinues to achieve lower cost-performance with four or more processors per node. Fixed,

however, outperforms Floating with a large number of processors per node (Figure4-3

(right)) and therefore results in the most cost-effective system.
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In summary, when interrupt overhead is high with respect to protocol occupancy—as in

light-weight protocols, Fixed is likely to result in the most cost-effective system indepen-

dent of an application’s communication-to-computation ratio. In contrast, when interrupt

overhead is low, Fixed results in the most cost-effective system for applications with high

compute-utilizations.

4.3.3  Macrobenchmark Experiment

Although microbenchmark analysis helps develop intuition about relative performance,

it makes many simplifying assumptions. For example, the experiments ignored synchroni-

zation, burstiness of communication, cache effects due to large data sets, and bandwidth

limitations of the memory bus. In this section, I re-examine the policies in the context of a

network of 16 multiprocessor workstations, each with five processors.

Table4.1 lists the applications and corresponding input data sets we use in this study.

Barnes, lu, andwater-sp are all from the SPLASH-2 suite [WOT+95]. Em3dis a shared-

memory implementation of the Split-C benchmark [CDG+93]. Gauss is a simple shared-

memory implementation of a gaussian elimination kernel [CLR94].

Table 4.1:Applications and input sets.

Benchmark Description Input Set

barnes Barnes-Hut N-body simulation 16K particles

em3d 3-D electromagnetic wave propagation 76K nodes, degree 5, 15%
remote, distance of 16, 10 iters

gauss Gaussian elimination using a linear
system of equations

1920x1920 matrix

lu Blocked dense LU factorization 1200x1200 matrix,
16x16 blocks

water-sp Spatial water molecule force simulation4096 molecules
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This study uses the Stache fine-grain DSM coherence protocol to extend the shared-

memory abstraction of an SMP across a cluster. Stache, uses Typhoon-1’s block buffer to

move memory blocks directly from the network into the requesting compute processor’s

cache, eliminating the transfer to the protocol processor cache. Such a mechanism under

Floating either reduces cache pollution or increases cache-to-cache transfers depending on

whether the acting protocol processor is also the requesting compute processor (as dis-

cussed in Section3.4).

Unless specified otherwise, this study uses a 128-byte Stache protocol. The measure-

ments indicate a minimum running time of 1490 processor cycles (3.73µs) of round-trip

latency for simply fetching a memory block from a remote node. While this latency is not

competitive with high-end all-hardware implementations of fine-grain DSM (such as the

SGI Origin 2000 [LL97]), it is a factor of two better than some embedded-processor-based

implementations (such as the Sequent STiNG [LC96]).

4.3.3.1  Baseline System.Figure4-5 compares the performance of Fixed and Floating with

varying number of processors per node. The graphs plot application speedups for two-,

three-, and four-processor nodes under Fixed and Floating over a uniprocessor node (Sin-

gle). All systems include a total of 16 nodes. Except forem3d, adding a dedicated protocol

processor to a uniprocessor node improves performance by at most 25%.Em3d is our

most communication-intensive application with a compute-utilization of less than 25%.

The application iterates over a bipartite graph, computing new values for each graph node.

Fetching remote node values dominates the running time of an iteration. Eliminating inter-

rupt overhead allows Fixed to improve performance by 41%.

Using the second processor for computation—under the Floating policy—improves per-

formance by 35%-90% in all applications. Except forem3d, all the applications exhibit

moderate to high compute-utilizations and can take advantage of the second computation

processor. In em3d, the second processor both contributes to computation and alternates

with the other processor to act as protocol processor. As such, Floating manages to main-
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tain performance to within 5% of Fixed. Therefore, as predicted by the microbenchmark

experiment, at two processors per node Floating offers superior overall performance ver-

sus Fixed.

As we increase the number of processors per node, we increase both computational

resources and demand for protocol processing.Water-sp is the most compute-bound appli-

cation (U > 0.9) and primarily benefits from addition of compute processors. It takes five

processors per node to increase protocol processor utilization high enough to allow Fixed

to slightly (< 6%) improve performance over Floating.

Barnesis 50% compute-bound and exhibits moderate speedups with an increase in the

number of processors per node.Barnes becomes communication-bound with four proces-

sors per node, at which point Fixed improves performance over Floating by 18%. Increas-

ing the number of compute processors from four to five (under both policies) results in a

Figure 4-5. Baseline system performance comparison.The figure plots application speedups
over Single (uniprocessor-node) under Fixed and Floating with increasing number of processors
per node. The numbers appearing over the horizontal line at 1 indicate a better performance over
Single.
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performance drop due to high contention for locks. Under Fixed,barnes shows a speedup

of three over Single with five processors per node.

Em3d with its low compute-utilization exhibits surprisingly high speedups.Em3d’s

bipartite graph is initially constructed so that processors share a fraction of their edges

with neighboring processors. An increase in the number of processors increases the likeli-

hood that processors share graph data within a (SMP) node, reducing the aggregate num-

ber of remote accesses per node. Becauseem3d is primarily communication-bound, it

heavily utilizes the protocol processor resulting in better performance under Fixed with

only two (compute) processors. High protocol occupancy and protocol thread migration

overhead further increases the performance gap between Fixed and Floating to 32% with

five processors per node.

Gauss exhibits a more moderate level of compute-utilization (U = 0.75). Communica-

tion and computation ingauss proceed in synchronous phases. Communication consists of

broadcasting a row of a matrix to all compute processors, and quickly becomes the bottle-

neck with an increase in the number of processors per node and preventsgauss from

speeding up. Because communication does not overlap with computation, all compute

processors remain idle for duration of the broadcast. As such, an idle processor remains as

the acting protocol processor under Floating during the entire communication phase. By

eliminating the protocol thread migration overhead, Floating mimics the behavior of Fixed

and reduces the performance gap to 10% with five processors per node.

Although Lu is a compute-intensive application with a compute-utilization of 85%, it

suffers from significant load imbalance [WOT+95] and exhibits only moderate speedup.

Load imbalance inlu also increases the probability of a processor being idle on the nodes

acting as protocol processor. The combined effect of high compute-utilization and load

imbalance shifts the balance between the two policies in favor of Floating. Fixed margin-

ally (< 5%) outperforms Floating with five processors per node.
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In summary, the majority of the applications favor the Floating policy with two or three

processors, and the Fixed policy with four or more processors per node. Large-scale SMP

nodes with more than five processors per node may result in prohibitively high protocol

processor utilization (unless the application is 100% compute-intensive). Single-threaded

software protocols may not sustain enough bandwidth for machines with large-scale SMP

nodes. Chapter5 studies mechanisms for executing protocols in parallel.

4.3.3.2  Interrupt Overhead.Floating’s (Single’s) performance is sensitive to how quickly

the system can interrupt a processor and dispatch a protocol handler. Today’s commercial

operating systems do not provide fast delivery of user-level interrupts. Exception handling

on these systems can take up to 200µs [TL94], one to two orders of magnitude longer

than that on some carefully tuned parallel computers [RFW93]. This experiment studies

the sensitivity of the policy trade-off to interrupt overheads.

Table4.2 presents execution times of Single and two-processor Floating, normalized to

two-processor Fixed for three values of interrupt overhead. The numbers appearing in bold

are points where Fixed outperforms Floating. As predicted by the microbenchmark analy-

sis, very high interrupt overheads severely impact Single’s performance. Increasing inter-

rupt overhead by two orders of magnitude can increase running time under Single by over

400%. This result corroborates the observation that with stock operating systems, net-

works of workstations (NOWs) [ACP95] may have to rely on program instrumentation

[LS95,vECGS92] to perform periodic polling.

Another observation, consistent with the microbenchmark results, is that a very high

interrupt overhead has a much smaller impact on Floating’s performance than Single’s. In

all applications, a two orders-of-magnitude increase in interrupt overhead slows the pro-

gram down by at most 45%. This is because an idle processor acting as protocol processor

eliminates many of the interrupts. High interrupt overhead has the largest impact onbar-

nes, because communication inbarnes is primarily asynchronous and processors have a

high probability of being busy computing when protocol messages arrive.
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4.3.3.3  Protocol Block Size. A key factor in the performance trade-off between the poli-

cies is protocol weight. Heavier-weight protocols reduce the impact of protocol processing

overhead on performance (Section4.3.2). By making overhead a small fraction of proto-

col occupancy, a higher-weight protocol shifts the performance trade-off towards Floating.

Because much of protocol occupancy in fine-grain DSM is due to transferring data

between memory and the network [Rei96], protocol weight is very sensitive to block size.

Figure4-6 compares the performance of Fixed and Floating for a 64-byte protocol (above)

and a 256-byte protocol (below). The 64-byte and 256-byte protocol have round-trip miss

times for a simple remote read of 1204 cycles (3.01µs) and 2055 cycles (5.14µs) respec-

tively.

Much as in baseline system results, Floating’s performance dominates for two-processor

nodes even with the lower-weight 64-byte protocol. The 256-byte protocol increases

Floating’s performance relative to Fixed at a higher number of processors per node.

Em3d’s performance under Floating significantly improves the performance break-even

point between the two policies, increasing it from two to four processors per node.Gauss

also exhibits a performance boost under Floating increasing performance to within 5% of

Table 4.2:Policy performance sensitivity to interrupt overhead.

Application

Interrupt Overhead (Oint)

Single / 2-proc Fixed 2-proc Floating / 2-proc Fixed

0.5µs 5 µs 50 µs 0.5µs 5 µs 50 µs

barnes 1.17 1.45 3.25 0.69 0.76 1.00

em3d 1.41 1.85 5.44 1.04 1.05 1.12

gauss 1.01 1.04 1.57 0.72 0.75 0.75

lu 1.06 1.17 1.99 0.69 0.74 0.92

water-sp 1.03 1.10 1.59 0.54 0.56 0.70
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Fixed at five processors per node. The change in protocol weight, however, is not high

enough to shift the (average) performance break-even point between the two policies to

more than four processors per node.

Figure 4-6. Performance sensitivity to protocol block size.The figure plots application
speedups over Single under Fixed and Floating with increasing number of processors per node for
a 64-byte protocol (above) and 256-byte protocol (below). The numbers appearing over the
horizontal line at 1 indicate a better performance over Single.
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Surprisingly, a higher protocol weight increases the performance gap between the two

policies at five processors per node for two of the applications. Bothlu andwater-sp expe-

rience false sharing due to the large block size. Performance under Floating drops relative

to Fixed because false sharing increases the apparent communication intensity in these

applications.

4.3.3.4  Cache Size. Under Fixed, a dedicated protocol processor is equipped with sepa-

rate caches to store protocol code and data. In contrast, protocol references under Floating

leave a footprint in the compute processor’s cache, interfering with computation. There-

fore, small compute processor caches can benefit from a dedicated protocol processor.

Small caches, however, also may thrash if an application’s primary working set does not fit

in the cache [RSG93]. When processor caches thrash, communication becomes a small

component of running time and a high-overhead protocol processing policy (e.g., Float-

ing) becomes more competitive. The performance trade-off between the two policies

depends on which of the above two factor has a dominant effect.

Figure4-7 compares the performance of Fixed and Floating for 16-Kbyte (above) and

128-Kbyte (below) processor caches. Compared to the baseline system results with 1-

Mbyte caches (Figure4-5), Floating’s performance increases relative to Fixed for both

cache sizes in four of the applications. Consequently, the performance break-even point

between the two policies increases from four to five processors per node. Smaller caches

result in thrashing and thereby decreasing an application’s apparent communication-to-

computation ratio. A lower communication-to-computation ratio makes Floating more

competitive.

Em3d with its large data set thrashes even with the 1-Mbyte processor caches. Therefore,

smaller processor caches do not significantly affect the performance trade-off between the

policies inem3d. Floating’s performance slightly decreases relative to Fixed from 128-

Kbyte to 16-Kbyte processor caches; protocol interference in the 16-Kbyte processor

caches reduces Floating’s performance. Much likeem3d, barnes andgauss exhibit a slight
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decrease in Floating’s performance relative to Fixed when caches are scaled down due to

protocol interference in processor caches.

Figure 4-7. Performance sensitivity to processor cache size.The figure plots application
speedups over Single under Fixed and Floating with increasing number of processors per node for
16-Kbyte processor caches (above) and 128-Kbyte processor caches (below). The numbers
appearing over the horizontal line at 1 indicate a better performance over Single.
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4.3.3.5 Cost/Performance. Figure4-8 plots cost-performance for two applications with

moderate (barnes) to high (water-sp) compute-utilizations versus the number of proces-

sors. The graphs indicate that adding a dedicated protocol processor to a uniprocessor

node is never cost-effective for the lower interrupt overhead (left). This is not surprising

since performance improves by at most 17% whereas the system cost goes up by 30%.

When overhead is high (right), performance inbarnes improves by 45% justifying the cost

of the dedicated protocol processor. Computation inwater-sp remains the dominant factor

in the running time. Even with higher interrupt overhead the program benefits little from a

dedicated protocol processor. A second compute processor, however, improves perfor-

mance in the two applications by at least 71% and is therefore cost-effective.

Figure 4-8. Relative cost-performance of Fixed and Floating.The figure plots cost-
performance of Fixed and Floating forbarnes and water-sp against varying the number of
processors per node for two values of interrupt overhead (Oint = 0.5µs andOint = 50µs). Costups
and speedups are calculated with respect to a uniprocessor node (Single). The graphs assume that
the cost of a processor is 30% of the cost of a uniprocessor node. Values over the horizontal line at
1 indicate design points that are not cost-effective.
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Much as the microbenchmarks predicted, when interrupt overhead is low—as compared

to protocol weight—the system is most cost-effective under the Floating policy. For bar-

nes, cost-performance under Fixed reaches a minimum close to, but not the same as, that

under Floating.Water-sp speeds up linearly and therefore always reaches a lower cost-per-

formance under Floating. When the number of processors is large enough (> six), speedup

dominates cost-performance inwater-sp causing it to eventually level off. At this point,

Floating results in a marginal improvement in cost-performance over Fixed.

High interrupt overhead, however, changes the balance.Barnes achieves a minimum

cost-performance under the Fixed policy. The high overhead increases protocol processor

occupancy, resulting in a higher protocol processing to running time ratio. The Fixed pol-

icy reduces protocol processor occupancy, allowing the protocol processor to accommo-

date a larger number of processor before protocol processing saturates. At this point, the

performance improvement due to a dedicated protocol processor is large enough to offset

its incremental cost. Floating remains most cost-effective for the more compute-intensive

application,tomcatv. High interrupt overhead, however, slightly closes the gap in cost-per-

formance between to the two policies for this application.

4.4  Related Work

Several designs for parallel computers using SMP nodes dedicate one SMP processor on

every node to run communication protocols. The Intel Paragon [Int93] and the proposed

Message Proxies on a cluster of Power PC SMPs [LHPS97] implement a protected mes-

saging boundary among SMP-node processors by dedicating a single processor on an

SMP node to run software protocols in system mode. By eliminating high-overhead sys-

tem calls, these designs allow for high-performance protected communication among

SMP nodes. In contrast, my work focuses on SMP-node processors that collectively run a

single application in user-level and where protection among multiple SMP-node proces-

sors is not required.
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Karlsson, et al. and Erlichson, et al. have independently studied the trade-off of dedi-

cated versus multiplexed protocol scheduling for VM-based software DSM protocols

[KS96,ENCH96]. Both studies conclude a dedicated protocol processor will be of little

use in systems with such heavy-weight protocols. In contrast, this study indicates that a

dedicated protocol processor is advantageous for fine-grain DSM protocols when there are

a large number (more than four) of processors per node, or when interrupt overheads are

very high (as in commodity stock operating systems).

Previous studies did not consider cost in their analysis. Cost is important in the trade-off

analysis of scheduling policies because given a large enough number of processors, a ded-

icated protocol processor eventually results in a superior performance but may not always

result in a cost-effective design point (i.e., the cost of adding a dedicated protocol proces-

sor may not justify the performance gain). In addition to a performance analysis, this study

also includes a cost-performance analysis of the two policies.

4.5  Summary

This chapter examined how a single-threaded protocol should be scheduled on an SMP-

node parallel machine. The chapter presented results from synthetic benchmarks for two

general request/reply protocols to illustrate the trade-offs between the policies. The results

showed that:

• A dedicated protocol processor benefits light-weight protocols much more than heavy-

weight protocols; overheads saved by a dedicated protocol processor represent a sig-

nificant fraction of protocol occupancy in light-weight protocols.

• A dedicated protocol processor is generally advantageous when there are four or more

processors per node.

• Interrupt overhead has a much higher impact on Single’s performance than Floating’s

corroborating previous results [KS96]; protocol messages are likely to find an idle pro-
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cessor on multiprocessor node acting as the protocol processor thereby eliminating

interrupts.

• The system with the lowest cost-performance will include a dedicated protocol proces-

sor when interrupt overheads are much higher than protocol weight—as in light-

weight protocols.

Finally, the chapter evaluated these policies in the context of a fine-grain user-level dis-

tributed shared-memory system. The chapter presented results from simulating a network

of 16 SMP workstations—each with five processors—running five shared-memory appli-

cations using a software coherence protocol. Besides corroborating the findings from the

first experiment, the results also showed that:

• Bursty and synchronous communication patterns in some applications reduce over-

head and therefore decrease the benefit of the Fixed policy.

• Smaller processor caches make Floating more competitive. Smaller caches increase

the local memory traffic on a node. A larger local memory traffic decreases the appar-

ent communication-to-computation ratio (Section3.4.3), shifting the balance towards

Floating.

The results also indicated that—with the exception of highly compute-bound applica-

tions—single-threaded software protocol execution on SMP processors may become a

communication bottleneck in clusters of large-scale SMPs (with five or more processors).

These machines may require mechanisms for either faster protocol execution (e.g., an

embedded protocol processor on the network interface card), or parallel protocol execu-

tion. Chapter5 examines parallel software protocol execution as an approach to mitigate

the single-thread protocol execution bottleneck.
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Chapter 5

Executing Fine-Grain Protocols in Parallel

Chapter4 evaluated scheduling policies for single-threaded protocol execution on SMP

clusters. The results indicated that although a single protocol thread may be suitable for

small-scale SMP nodes, communication may become a performance bottleneck with an

increase in the number of processors per node. Applications requiring very fine communi-

cation granularities increase protocol activity in the system and exacerbate the software

protocol bottleneck [CSBS95,BH86]. Parallel execution of software protocols can help

reduce queueing delays by overlapping the execution of multiple protocol events.

In this chapter, I study parallel implementations of fine-grain DSM coherence protocols.

Parallel dispatch queue (Chapter2) provides a simple and efficient set of mechanisms for

parallelizing fine-grain software protocols. I proposePTempest, a set of mechanisms for

implementing parallel fine-grain DSM protocols. PTempest unifies the user-level fine-

grain DSM mechanisms of Tempest [Rei95] with parallel protocol execution mechanisms

of PDQ.
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This chapter presents the design and evaluation of two parallel fine-grain DSM systems,

Hurricane andHurricane-1, that provide different levels of hardware support for PTem-

pest. I compare the performance of the Hurricane systems to S-COMA [HSL94], an all-

hardware implementation of fine-grain DSM. Much like Typhoon [RPW96], Hurricane

integrates one or more embedded processors with fine-grain shared-memory support and

the networking hardware (i.e., message queues) on a custom device. Similarly, Hurricane-

1 is like Typhoon-1 [RPW96] and integrates shared-memory and messaging hardware on a

custom device but relies on the node’s commodity processors to run the software protocol.

The Hurricane devices differ from their Typhoon counterparts in that they use the PDQ

mechanisms to support parallel protocol execution. To evaluate PDQ’s potential to

increase performance in a software fine-grain DSM, the Hurricane systems use a high-per-

formance dynamically demultiplexed implementation of PDQ (Chapter2). Dynamic

demultiplexing evenly distributes the protocol execution load among the protocol proces-

sors by demultiplexing protocol events upon demand.

To facilitate the discussion in the rest of this chapter, I use the termprotocol processor to

refer to either S-COMA’s finite-state-machine (FSM) hardware protocol implementation,

an embedded processor on Hurricane, or a commodity SMP-node processor in Hurricane-

1. Following this terminology, S-COMA is a single-processor device, and Hurricane and

Hurricane-1 are either single-processor or multiprocessor devices.

In this chapter, I first describe PTempest, the mechanisms enabling the implementation

of parallel fine-grain DSM coherence protocols, and PStache, a simple parallel coherence

protocol. Section5.2 describes the Hurricane family of devices implementing PTempest in

hardware. Section5.3 presents in detail a performance evaluation of the Hurricane

devices. Section5.5 presents a discussion of the related work. Finally, Section5.5 con-

cludes the chapter with a summary of results.
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5.1  PTempest: Parallelizing Fine-Grain DSM Protocols

Parallel Tempest (PTempest) unifies the Tempest mechanisms for implementing user-

level fine-grain DSM with the PDQ mechanisms for parallel protocol execution. Tem-

pest’s mechanisms enable a user-level protocol to map/unmap shared-memory pages in an

application’s address space. A user-level protocol also uses the mechanisms to manipulate

shared-memory access semantics to fine-grain (e.g., 32-128 bytes) memory blocks on the

mapped pages. Tempest also provides low-overhead fine-grain messaging to transfer

memory blocks and invoke protocol action across machine nodes.

Tempest implements request/reply protocol actions in the form of a block access fault

(i.e., request) or a message (i.e., reply/response) handlers. As in Active Messages

[CDG+93], Tempest handlers are defined to a have a single-threaded execution semantics

and must appear to execute atomically. To relax Tempest’s single-threaded execution

semantics, PTempest augments the active-message handler interface of Tempest with par-

allel handler dispatch mechanisms of PDQ.
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Figure5-1 illustrates the protocol resources required in a typical PTempest implementa-

tion. Shared data pages are distributed among the nodes, with every node serving as a des-

ignatedhome for a group of pages. Adirectory maintains sharing status for all the memory

blocks on the home nodes. Aremote cache either on a custom network device or in main

memory serves as a temporary repository for data fetched from remote nodes. A set of

fine-grain tags enforce access semantics for shared memory blocks. A protocol event

queue to gather block access faults (generated by the application) and incoming network

messages. One or more message send queues (one per protocol thread) allow protocol

threads to transfer memory blocks and invoke protocol action on remote nodes.

To guarantee mutually exclusive accesses to protocol resources from multiple protocol

threads, PTempest requires protocols to partition the resources into object groups and label

protocol events with the appropriate group id. In fine-grain DSM, a protocol event is typi-

cally associated with a fine-grain memory block (e.g., a block access fault or an invalida-

tion message). Therefore, protocol resources can be partitioned so that accessing resources

(e.g., fine-grain tags) corresponding to distinct memory blocks are mutually exclusive. By

labelling a protocol event with a block’s shared-memory (virtual) global address, a proto-

col allows PTempest to dispatch the event to the appropriate protocol thread.

Figure5-2 depicts parallel protocol dispatch in a dynamically demultiplexed PTempest

implementation (Section2.3.3). A protocol event queue holds block access faults and
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incoming messages. Each entry in the queue is labeled with an object partition id which

typically corresponds to a memory block’s global address. PTempest dispatches events to

protocol processors based on an event id much like a packet classifier in conventional net-

work communication software/hardware [BGP+94]. The queue entries also maintain

information as to whether a specific entry has been dispatched. A protocol thread receives

an event through a per-thread protocol dispatch register (PDR). Upon event dispatch, the

system searches for the first available entry with an id different from the currently dis-

patched ids in the PDRs. A protocol thread signals the completion of a handler execution

by clearing the corresponding PDR.

PTempest also provides two other types of handler execution semantics using distinct id

values corresponding to invalid shared-memory global addresses: single-thread execution

semantics and parallel execution semantics without dispatch synchronization. The first

allows executing the less-frequent protocol handlers such as virtual memory management

code (e.g., allocating a page in the shared global address space) to execute mutually exclu-

sively with other handlers. A PTempest implementation dispatches such a handler after all

protocol events in front of it in the event queue have dispatched and completed. Further-

more, no further handlers are dispatched until such a handler complete execution. The sec-

ond allows handlers such as those accessing read-only data structures or performing

remote stores to always dispatch immediately without synchronization with other han-

dlers.

Transparent shared-memory protocols running on Tempest can simply be parallelized

using PTempest. This study usesParallel Stache (PStache), a parallelized version of

Stache [RLW94] (discussed in Chapter4), an S-COMA-like invalidation-based full-bit-

map coherence protocol which replicates remote data in the main memory on every

machine node.
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5.2  Hurricane: Hardware Support for PTempest

Hurricane is a family of custom devices that provide hardware support for PTempest.

Hurricane devices are closely derived from the Typhoon family of custom devices [Rei96]

and integrate shared-memory access control logic and networking hardware. The key dif-

ference between the Typhoon and Hurricane devices is that the Hurricane devices imple-

ment the PDQ mechanisms to collect and dispatch block access faults and incoming

messages. This study evaluates two Hurricane designs: a fully-integrated high-perfor-

manceHurricane device which contains embedded processors to run the coherence proto-

col, and a less-integrated more cost-effective Hurricane-1 device which uses a node’s

commodity processors to run the protocol. The section describes the hardware details of

Hurricane and Hurricane-1.

5.2.1  Hurricane

Hurricane integrates the fine-grain access control logic, messaging queues, a number of

embedded protocol processors, and the PDQ mechanisms for protocol event dispatch all

on a single device. Figure5-3 illustrates the architecture of a Hurricane custom device. A

protocol event queue collects all block access faults (generated on the node) and incoming

messages (from remote nodes). A protocol thread running on a protocol processor

removes entries from a protocol event queue by accessing its PDR. Much as in Typhoon,

the PDRs reside on the cache bus and can be loaded in a single cycle [Rei96].

PTempest protocols use shared-memory global addresses to name memory blocks. The

access control logic, however, snoops on physical addresses on the memory bus to detect

block access faults. PTempest uses a reverse translation table to map physical addresses

from the memory bus to shared global addresses. The table also maintains the fine-grain

tags associated with a memory block to enforce shared-memory access semantics. Hurri-

cane implements a Typhoon-like reverse translation look-aside buffer (RTLB) in SRAM

which caches the recently accessed entries in the reverse translation table. Upon a block
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access fault, the contents of the tag are read and placed in a protocol event queue entry.

Fine-grain tags are updated by writing to the RTLB.

Like other software fine-grain DSMs [K+94,RLW94], Hurricane maintains the directory

in main memory and uses protocol processor caches to access the directory entries. Many

studies on fine-grain DSM have concluded that directory entries exhibit locality which can

be exploited by small hardware caches [HKO+94,SH91]. Such an approach obviates the

need for on-board SRAM-based implementations which are both more expensive and

limit scalability.

Protocol processors are each equipped with a block buffer which is a small direct-

mapped cache that serves as an intermediary storage device for moving memory blocks

between the node’s memory hierarchy (e.g., processor caches or main memory) and the

message queues. Removing/placing remote data from/into a node also typically involves
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Figure 5-3. The Hurricane custom device.The device contains two or more protocol
processors, each with a protocol dispatch register, a Typhoon-like block buffer, and a message send
queue. The processors share an RTLB which holds the fine-grain access control tags for cached
remote data. There is also a message send queue for every compute processor on the node, and a
parallel protocol dispatch queue recording block access faults and incoming messages on the node
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modifying the state of the block maintained by the fine-grain tags. Shared-memory access

semantics dictates that moving data and updating the corresponding tag value should

appear to execute atomically. The block buffer implements this atomic operation directly

in hardware [Rei96].

To obviate the need for synchronization upon sending messages, every protocol proces-

sor is equipped with a message send queue. As in Tempest, PTempest supports user-level

messaging directly from the node’s (computation) processors, and therefore Hurricane

also provides a separate send queue for each compute processor.

Hurricane provides hardware for suspending/resuming computation on a compute pro-

cessor after a block access fault. Upon a block access fault, Hurricane’s hardware masks

the faulting processor from bus arbitration and returns a request-and-retry as an acknowl-

edgment to the faulting bus transaction. Upon receiving the memory block and resuming

the compute processor, Hurricane simply unmasks bus arbitration for the resuming com-

pute processor.

5.2.2  Hurricane-1

Hurricane-1 (Figure5-4) combines the fine-grain access control logic with the messag-

ing queues on a single device but uses the SMP-node commodity processors for running

the software protocol. As in Hurricane, a single (dynamically demultiplexed) PDQ gathers

information about all block access faults generated on the node and all of the incoming

messages. Hurricane-1 provides a set of PDR and block buffer pairs implementing parallel

protocol dispatch and execution. The number of PDR and block buffer pairs restricts the

number of protocol threads scheduled to run on every SMP node. To allow synchroniza-

tion-free user-level messaging from both computation and protocol processors, every

SMP-processor also has a separate message send queue.

In Hurricane-1, each PDR is a cachable control register [RPW96]. Cachable control reg-

isters behave like memory and can be cached in processor caches. Polling on a cachable
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control register results in a cache hit in the absence of protocol events thereby eliminating

polling traffic over the memory bus. Upon dispatching a protocol event, Hurricane-1 inval-

idates the cached copy of the PDR forcing a protocol processor to read the new contents of

the PDR.

Much like Hurricane, Hurricane-1 implements the directory and a reverse translation

table for mapping physical addresses to shared global addresses in main memory. Fine-

grain tags, however, are directly stored in SRAM on the custom Hurricane-1 device.

Because the tags only store two bits per memory block, the memory overhead is low for

practical DSM implementations [Rei96]. Such an approach limits the size of shared phys-

ical memory per node but allows for a cost-effective implementation by not requiring a

hardware cache.

To further simplify hardware complexity and reduce cost, Hurricane-1 also does not sup-

port masking/unmasking bus arbitration on the memory bus. As such, upon a block access

fault, the faulting processor takes a bus error and spins on a per-processor software flag in
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Figure 5-4. The Hurricane-1 custom device.The device contains two or more pairs of
protocol dispatch registers and Typhoon-like block buffers, and a message send queue per
processor on the node. There is a single SRAM device maintaining the fine-grain tags for cached
remote data, and a parallel protocol dispatch queue recording block access faults and incoming
messages on the node.
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memory inside the trap routine. The protocol software is responsible for resuming the

compute processor by signalling the corresponding flag.

A Hurricane-1 device supports both dedicated and multiplexed scheduling of protocols

on SMP processors. To allow multiplexed scheduling of a protocol thread upon a message

arrival, Hurricane-1 provides mechanisms for invoking interrupts on the memory bus. A

memory-mapped interrupt arbiter device located on the memory bus distributes interrupts

among the processors in a round-robin fashion. Hurricane-1 uses a software interrupt

masking/unmasking scheme similar to the one in Typhoon-1 described in Section4.1.

5.3  Performance Evaluation

The system performance using the Hurricane devices depends on the memory system

performance and the available parallelism in protocol event execution. Parallel protocol

execution may increase the number of outstanding memory requests which in turn requires

a higher bandwidth memory system (e.g., split-transaction bus, highly-interleaved mem-

ory, etc.). Available parallelism also depends on whether there are independent outstand-

ing protocol events. Parallel protocol execution may make software protocols competitive

to an all-hardware protocol implementation if the performance gain due to parallelism off-

sets the effect of higher protocol occupancy of software protocols.

This study compares the performance of DSM systems using Hurricane devices to a

simple all-hardware protocol implementation, Simple-COMA (S-COMA)

[HSL94,RPW96]. S-COMA is an invalidation-based full-map directory protocol much

like Stache. The simulation model for S-COMA assumes minimum protocol occupancies

accounting for only SRAM and DRAM memory access times. As such, S-COMA’s per-

formance numbers in this study are optimistic, making the comparison to S-COMA con-

servative.

In this section, I first present the methodology I use to carry out the experiments. Then, I

analyze the minimum protocol occupancy in Hurricane and Hurricane-1, and compare
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them to S-COMA. Next, in a microbenchmark experiment, I measure the maximum band-

width of data out of a node using the various custom devices. Finally, I use shared-mem-

ory applications to evaluate to what extent parallel software protocol execution improves

application performance.

5.3.1  Methodology

I use the simulation methodology and system parameters described in Section1.3.1 to

simulate SMP clusters interconnected with Hurricane, Hurricane-1, and S-COMA net-

work interfaces. The simulator assumes 1-Mbyte data caches for the Hurricane processors

and 2-Kbyte block buffers for all the systems. This study models a infinitely-interleaved

memory system to mimic the behavior of high-performance memory systems characteris-

tics of large-scale SMP servers. The simulator assumes an interrupt overhead and a bus

error trap overhead of 200 cycles in a Hurricane-1 system, characteristic of carefully tuned

parallel computers [RFW93].

5.3.2  Protocol Occupancy

Communication in parallel applications running on a DSM cluster is either latency-

bound or bandwidth-bound. Latency-bound applications are those in which protocol

events experience little queueing delays at the network interface and communication per-

formance is determined by minimum round-trip time of a remote miss. Bandwidth-bound

applications, however, are those in which protocol events are generated in bursts and can

lead to large queueing delays at the network interface.

Latency-bound applications primarily benefit from low-occupancy protocol implemen-

tations (such as hardware DSM) because lower protocol occupancy directly impacts

round-trip miss times and thereby communication time. Bandwidth-bound applications,

however, may eventually saturate a single protocol processor even in a low-occupancy

protocol implementation due to a large number of outstanding protocol events which lead

to queueing. Such applications may benefit from parallel network interfaces instead.
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5.3.3  Microbenchmark Experiment

To compare the latency and bandwidth characteristics of the Hurricane systems to those

of S-COMA, I use a simple remote read microbenchmark consisting of a tight loop. In

every loop iteration, a processor simply reads a memory block belonging to a remote node

but not available in the processor’s cache/memory, i.e. a remote block in the invalid state.

The benchmark measures the average time it takes for a loop iteration to complete.

Table5.1 depicts the breakdown of time for various system events on a simple remote

read of a 64-byte block. The table groups the system events into three categories. A

request category on the caching node accounts for all the events from the detection of a

block access fault to sending a request message to the home node. A reply category on the

home node consists of all events from the detection and dispatch of the request message to

sending the 64-byte block to the caching node. A response category on the caching node

accounts for all events from the detection and dispatch of the reply message to resuming

the computation.

S-COMA maintains the fine-grain tags and the directory state in SRAM. Similarly, Hur-

ricane caches the fine-tags in the RTLB and accesses the directory state through the proto-

col processor caches. In the common case of cache hits, S-COMA and Hurricane both

incur the same exact memory access times for updating the state and data for a memory

block. Hurricane additionally uses software to dispatch message handlers and invoke the

SRAM and DRAM accesses. This additional software overhead substantially increases the

minimum request/response occupancy by 315%. The minimum reply occupancy and the

total round-trip latency increase only by 41% and 33% respectively.

Similarly, in the common case accesses to the reverse translation table and the directory

state (both stored in main memory) in Hurricane-1 hit in the protocol processor caches. A

protocol processor, however, must traverse the memory bus to initiate a fine-tag change

and access the block buffer. Resuming the compute processor also requires writing to a

memory flag on which the compute processor spins. Both the write to the flag by the pro-
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Table 5.1:Remote read miss latency breakdown for a 64-byte protocol.

Network Interface
(latencies in 400 MHz cycles)

Action S-COMA Hurricane Hurricane-1

detect cache miss,
issue bus transaction

5 5 5

detect block access fault,
reverse translation,
dispatch handler

12 16 87

get fault state,
send message

0 36 141

network latency 100 100 100

dispatch message handler 1 3 51

reverse translation,
directory lookup

8 61 121

fetch data,
change tag,
send message

136 140 205

network latency 100 100 100

dispatch message handler 1 4 50

reverse translation 8 16 34

place data, change tag 0 34 29

resume,
reissue bus transaction

6 6 178

fetch data,
complete load

63 63 63

Total 440 584 1164
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tocol processor and the subsequent read by the compute processor incur cache misses.

These high overhead operations increase the request/response occupancy, reply occu-

pancy, and total round-trip latency in Hurricane-1 by 518%, 160%, and 165% as compared

to S-COMA respectively.

The round-trip latencies in Table5.1 indicate that for latency-bound applications, i.e.,

applications in which communication is not bursty and protocol events do not experience

long queueing delays at the protocol processors, S-COMA offers a moderate advantage

over Hurricane, but may significantly improve performance over Hurricane-1. Bandwidth-

bound applications, however, may benefit from multiple protocol processors simulta-

neously processing independent protocol events.

I use two microbenchmarks to compare bandwidth characteristics of S-COMA with

those of Hurricane and Hurricane-1. A reply-bandwidth benchmark measures the reply

bandwidth out of a single node in the machine by running a tight loop on multiple

(request) nodes generating read misses to distinct remote memory blocks satisfied by a

single (reply) node. A request-bandwidth benchmark measures the request bandwidth out

of a single node by running a tight loop on multiple processors of a (request) node gener-

ating read misses to distinct remote memory blocks satisfied by multiple (reply) nodes.

Figure5-5 compares the protocol event bandwidth in S-COMA, Hurricane, and Hurri-

cane-1 for a 64-byte protocol. Figure5-5 (above left) compares the reply bandwidth

against the number of requesters in S-COMA and Hurricane with up to four protocol pro-

cessors. The graphs indicate that the reply bandwidth immediately saturates for systems

with a single protocol processor with an increase in the number of requesters. The satura-

tion bandwidth varies among the systems based on the reply occupancy (Table5.1). Not

surprisingly, S-COMA saturates highest at a bandwidth of 89 MBytes/sec due its low

reply occupancy, improving the peak bandwidth by 51% over a single-processor Hurri-

cane system.
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The graphs also indicate that increasing the number of protocol processors results in a

significant increase the saturation bandwidth. The saturation bandwidth, however, does

not increase linearly with the number of protocol processors. Using four protocol proces-

sors instead of one increases the saturation bandwidth only by a factor of three times.

Because protocol state—such as directory entries—migrates between multiple protocol
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Figure 5-5. Protocol bandwidth in S-COMA, Hurricane, and Hurricane-1.The four figures
compare S-COMA’s reply (left) and request/response bandwidth (right) bandwidth with those in
Hurricane (above) and Hurricane-1 (below) for a 64-byte protocol.

Number of Requesters Number of Requesters

B
an

dw
id

th
 (

M
B

yt
es

/s
)

2 4 8 12 16
0

40

80

120

160

200

240

280  S-COMA
 Hurricane 1pp
 Hurricane 2pp
 Hurricane 4pp

2 4 8 12 16
0

40

80

120

160

200

240

280

Reply Bandwidth Request/Response Bandwidth

2 4 8 12 16
0

40

80

120

160

200

240

280  S-COMA
 Hurricane-1 1pp
 Hurricane-1 2pp
 Hurricane-1 4pp

2 4 8 12 16
0

40

80

120

160

200

240

280



92

processor caches, the reply occupancy in multiprocessor Hurricane devices increases with

respect to the single-processor devices. An increase in the reply occupancy prevents the

saturation bandwidth from increasing linearly. Protocol state migration may be alleviated

by using static (rather than dynamic) demultiplexing PDQ mechanisms in the Hurricane

devices.

Parallel execution also allows the software protocol’s reply bandwidth to become com-

petitive with that of S-COMA. With four requesters, the reply bandwidth in two-processor

and four-processor Hurricane systems reach that in S-COMA. When there are eight or

more requesters, two-processor and four-processor Hurricane systems improve the reply

bandwidth over S-COMA by 73% and 175% respectively.

Figure5-5 (above right) compares the request/response bandwidth against the number of

requesters in S-COMA and Hurricane. The request/response bandwidth in S-COMA

reaches a much higher saturation point than the reply bandwidth because the combined

request and response occupancies are much lower than the reply occupancy. The response

occupancy remains low with an increase in the number of requesters even though the

block buffers generate a considerable amount of writeback traffic in this microbenchmark;

the block buffers are regularly flushed to memory to make room for newly arriving remote

blocks. This study assumes large (2-Kbyte) block buffers and a highly-interleaved mem-

ory system. In systems with either smaller block buffers or lower memory interleaving,

block buffer writeback traffic may limit the response or reply bandwidths.

The single-processor Hurricane system also reaches a higher maximum request/response

bandwidth than the reply bandwidth. Much like the reply occupancy, protocol state migra-

tion among multiple protocol processor caches increases both the request and the response

occupancies. Because the request and response occupancies, however, are rather small,

incurring a single cache miss (≈ 60 cycles) nearly doubles the occupancies. As a result, a

second protocol processor in Hurricane only slightly improves the request/response band-
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width. Four-processor Hurricane systems help improve the request/response saturation

bandwidth but fail to reach the peak bandwidth in S-COMA.

Figure5-5 (below) compares the reply bandwidth (left) and the request/response band-

width (right) in S-COMA and Hurricane-1 with up to four protocol processors. Multiple

protocol processors increase the reply saturation bandwidth almost linearly; protocol state

migration overhead accounts for a negligible fraction of the reply occupancy. Multiproces-

sor Hurricane-1 systems can also improve the maximum reply bandwidth over S-COMA.

Because the saturation bandwidth in a single-processor Hurricane-1, however, is much

lower than that in S-COMA, it takes four protocol processors in Hurricane-1 and twelve or

more requesters to improve the saturation bandwidth by 25% over S-COMA.

Unlike a Hurricane device, the single-processor Hurricane-1 device reaches a lower

maximum request/response bandwidth than reply bandwidth because of the high com-

bined request/response occupancies. The saturation bandwidth also slightly decreases with

an increase in the number of requesters because multiple requesting processors increase

the memory bus traffic and result in queueing on the bus.

Much like Hurricane, protocol state migration in a two-processor Hurricane-1 system

almost doubles the request/response occupancies relative to a single-processor. Such a

large occupancy offsets the gains from parallel protocol processors resulting in a very low

overall saturation bandwidth even with four protocol processors.

5.3.3.1  Protocol Block Size. Protocol block size impacts the relative performance of

hardware and software protocol implementations. Larger blocks require a longer transfer

time between the network and memory, increasing the fraction of protocol occupancy due

to memory data transfer. Longer data transfer times, therefore, reduce the fraction of pro-

tocol occupancy due to software overhead and decrease the performance gap between

hardware and software implementations.
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Figure5-6 illustrates the impact of changing the block size from 32 bytes (left) to 128

bytes (right) on the systems’ reply bandwidth. Not surprisingly, the smaller block size

makes the Hurricane devices less competitive relative to S-COMA. A two-processor Hur-

ricane system (Figure5-6 top left) no longer improves the maximum reply bandwidth over

S-COMA. It takes a four-processor Hurricane system with eight or more requesters to
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Figure 5-6. Impact of block size on protocol reply bandwidth.The figures plot reply
bandwidth for a 32-byte (left) and a 128-byte (right) protocol for Hurricane (above) and
Hurricane-1 (below).
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slightly improve the reply bandwidth over S-COMA. A 32-byte block also reduces the

overall peak bandwidth even with a four-processor Hurricane device to less than 120

MBytes/sec. Similarly, a 32-byte block prevents a Hurricane-1 system from reaching a

maximum reply bandwidth greater than that in S-COMA even with four protocol proces-

sors.

Figure5-6 (right) compares the request/response bandwidth in the Hurricane devices

and S-COMA for a 128-byte block. A larger block reduces the performance gap between

single-processor Hurricane devices and S-COMA. A larger block also reduces the impact

of protocol state migration in multiprocessor devices because the larger data transfer time

between the network and memory accounts for a larger fraction of the protocol occupancy.

Therefore, larger blocks increase the performance improvement due to multiple protocol

processors.

Block size impacts the request/response bandwidth (not shown) much like the reply

bandwidth. A larger block size makes the parallel Hurricane devices more competitive

with S-COMA. A 128-byte block allows a four-processor Hurricane system to increase

the request/response bandwidth to 328 MBytes/sec improving S-COMA’s peak bandwidth

by 17%.

5.3.3.2  Protocol Processor Performance. Hurricane’s performance is also sensitive to

assumptions about the embedded processors’ technology and clock speed. To reduce

design time, some network interface devices with an embedded processor (e.g., Typhoon)

use a previous-generation commodity processor consisting of a general-purpose integer

core, TLB, and caches with the message queues and fine-grain DSM hardware support.

This study models the technology gap between previous and current generation processors

using different clock speeds.

Figure5-7 plots the protocol event (reply and request/response) bandwidth in Hurricane

with current-generation (400-MHz) processors and previous-generation (200-MHz) pro-



96

cessors. The graphs indicate that the number of processors has a much greater impact on

saturation bandwidth than processor clock rate. Whereas doubling the number of proces-

sors increases peak bandwidth by 81%, doubling the processor clock rate increases peak

bandwidth by only 37%.

Because much of the protocol event occupancy is due to data transfer time between

memory and the network, the system benefits much more from multiple outstanding mem-

ory requests than faster protocol code execution. This result suggests that hardware sup-

port for hiding memory latency—such as speculatively fetching memory blocks

[HKO+94]—or increasing the number of outstanding memory request—such as non-

blocking memory fetch—can help single-processor devices reach the performance of mul-

tiprocessor devices.
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Figure 5-7. Impact of processor clock rate on Hurricane’s protocol bandwidth.The two
figures plot the reply bandwidth (left) and the request/response bandwidth (right) for one-, two-,
and four-processor Hurricane devices for current generation (400MHz) and previous generation
(200MHz) processor clock speeds.
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Unlike the reply bandwidth, the request/response bandwidth exhibits a higher sensitivity

to protocol processor clock rate (Figure5-7 right). Doubling the processor clock rate

increases the request/response saturation bandwidth in a single-processor device by 100%.

In contrast, doubling the number of processors increases the peak bandwidth by only 39%.

Because requests and responses (in a single-processor device) do not involve memory data

transfer, much of their occupancies is due to protocol instruction execution. Thus, a higher

clock rate significantly impacts the request/response occupancies. A multiprocessor

device, however, incurs protocol state migration overhead which offsets the benefits due to

parallelism. With four slow processors, memory parallelism is high enough to offset the

negative impact of protocol state migration improving the peak request/response band-

width over a two-processor device with faster processors.

5.3.4  Macrobenchmark Experiment

The microbenchmark experiment in the preceding section helped analyze the latency

and bandwidth characteristics of S-COMA and the Hurricane systems for simple remote

read misses. Real applications, however, exhibit more complex interactions between the

memory system and the protocol. Remote misses, for instance, can result in messages

Table 5.2:Applications and input sets.

Benchmark Description Input Set

barnes Barnes-Hut N-body simulation 16K particles

cholesky Sparse Cholesky Factorization tk29.O

em3d 3-D electromagnetic wave propagation 76K nodes, degree 5, 15%
remote, distance of 16, 10 iters

fft Complex 1-D radix-  six-step FFT 1M points

fmm Fast Multipole N-body simulation 16K particles

radix Integer radix sort 4M integers, radix 1024

water-sp Spatial water molecule force simulation4096 molecules

n
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among three nodes in a producer/consumer relationship if neither the producer nor the

consumer are the home node for the data. Real data sets also typically do not fit in caches

and produce additional memory traffic on the bus. In this section, I re-evaluate the perfor-

mance of the network interfaces using real applications.

Table5.2 presents the applications I use in this study and the corresponding input

parameters.Barnes, cholesky, fft, fmm, radix andwater-sp are all from the SPLASH-2

[WOT+95] benchmark suite.Em3d is a shared-memory implementation of the Split-C

benchmark [CDG+93].

Table5.3 presents the applications’ execution times (in cycles) on a uniprocessor and the

corresponding speedup on an S-COMA interconnected cluster of 8 8-way SMPs imple-

menting a 64-byte protocol.Water-sp is primarily computation-intensive and achieves

near-linear speedups because communication overhead does not impact its performance.

Cholesky is primarily communication-bound, suffers from a severe load imbalance

[WOT+95], and does not speed up much.Barnes, fmm, andem3dhave moderate commu-

nication-to-computation ratios and achieve a 50% efficiency with 64 processors.Fft and

radix are communication-bound and exhibit poor speedups.

Table 5.3:Application uniprocessor execution time and speedups.

Benchmark
Execution Time
(Million Cycles)

S-COMA Speedup
(Cluster of 8 8-way SMPs)

barnes 2,284 31

cholesky 976 5

em3d 740 34

fft 2,489 19

fmm 3,351 31

radix 903 12

water-sp 3,965 61
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This section presents a performance comparison of S-COMA, Hurricane, and Hurri-

cane-1 systems using the macrobenchmarks. Because Hurricane-1 uses SMP-node proces-

sors to execute the software protocol, the system can employ a variety of protocol

scheduling policies (Chapter3). This study evaluates two protocol scheduling policies on

SMP processors. The base system,Hurricane-1,uses extra dedicated SMP processors and

statically schedules a protocol thread to execute on every dedicated protocol processor.

The second system,Hurricane-1 Mult,uses a multiplexed scheduling policy. Much like

the single-threaded Floating policy in Chapter4, Hurricane-1 Mult obviates the need for

extra dedicated protocol processors by using only idle SMP-node compute processors to

assume the role of protocol processors. Under this policy, when a processor becomes idle

(due to waiting for synchronization or a remote miss) it schedules a protocol thread. For

example, in a system with 8-way SMPs, there may be up to eight protocol threads sched-

uled to execute depending on the number of idle compute processors. When there are no

idle compute processors, the system invokes an interrupt and forces a processor to handle

the protocol event. To eliminate extra scheduling overhead, the system at most interrupts

the computation on one processor. Such a policy assumes that interrupts are infrequent and

are only invoked to prevent long protocol invocation delays.

5.3.4.1  Base System Performance. Figure5-8 depicts a performance comparison of the

base case systems. The figure depicts application speedups normalized to S-COMA, for

Hurricane systems with upto four embedded processors and Hurricane-1 systems with

upto four extra (dedicated) SMP processors executing the protocol. The figure indicates

that S-COMA improves performance over a software protocol running on an embedded

processor (Hurricane 1pp) on the average by 32%. The figure also indicates that S-COMA

significantly improves performance (by up to 89%) over a software protocol implementa-

tion running on a commodity SMP processor (Hurricane-1 1pp). These results are consis-

tent with those of Reinhardt et al. comparing Typhoon and Typhoon-1 (which are similar

to single-processor Hurricane and Hurricane-1) against S-COMA [RPW96].
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The graphs indicate that there are three classes of applications. The first class iswater-sp

which is primarily computation-intensive and is not sensitive to protocol execution speed.

All systems perform within 91% of S-COMA forwater-sp.

The second class consists ofbarnes andfmm which are primarily latency-bound and do

not substantially benefit from parallel protocol execution. In these applications, much of
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Figure 5-8. Baseline system performance comparison.The figure compares Hurricane’s
(above) and Hurricane-1’s (below) performance with S-COMA on a cluster of 8 SMPs. The
Hurricane, Hurricane-1 Mult, and S-COMA systems use 8-way SMPs. The rest of Hurricane-1
systems use additional dedicated protocol processors per SMP. The graphs plot application
speedups in one- (1pp), two- (2pp), and four-processor (4pp) Hurricane and Hurricane-1 systems,
and Hurricane-1 Mult system. The speedups are normalized to S-COMA. Values appearing under
the horizontal line at 1 indicate a better performance under S-COMA.
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the execution time is spent in a force calculation phase between bodies in a galaxy. Com-

munication in this phase is sporadic and evenly distributed among the nodes. These appli-

cations benefit from a reduction in protocol occupancy much more than an increase in

protocol execution bandwidth.

A single-processor Hurricane system performs well (within 90% of S-COMA) running

barnes and fmm.A two-processor and four-processor Hurricane system improve perfor-

mance over a single-processor configuration by at most 11% and 13% respectively. A sin-

gle-processor Hurricane-1 system reduces the performance to approximately within 60%

of S-COMA making room for performance improvement. Nevertheless, adding protocol

processors to Hurricane-1 increases the performance to at most within 84% of S-COMA.

Furthermore, a Hurricane-1 with four dedicated protocol processors improves perfor-

mance over Hurricane-1 Mult because the parallelism in protocol execution is not high

enough to offset the multiplexed protocol scheduling overhead (Chapter3).

The third class consists of cholesky, em3d, fft, andradix which are all bandwidth-bound

applications.Cholesky incurs a large number of compulsory misses to data that is not

actively shared. As such, the reply handlers in cholesky frequently involve reading data

from memory and have high occupancies. Multiprocessor devices substantially improve

performance over single-processor devices by parallelizing the memory accesses thereby

increasing the reply bandwidth. A two-processor Hurricane actually improves perfor-

mance over S-COMA by 23%. Limited parallelism in protocol execution, however, limits

Hurricane’s performance improvement over S-COMA to at most 32% with four protocol

processors.

In cholesky, Hurricane-1’s performance also extensively benefits from multiple protocol

processors. Adding protocol processors significantly improves performance even up to

four processors. The high protocol occupancy in Hurricane-1 results in large queueing

delays at the protocol processor. Parallel protocol processors reduce queueing delays and

thereby improve performance. The four-processor Hurricane-1 outperforms S-COMA,
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and the Hurricane-1 Mult system both performs very close to S-COMA and improves cost

by eliminating the extra dedicated protocol processors.

Communication and computation inem3d, fft, andradix proceed in synchronous phases.

Communication in these applications is highly bandwidth-intensive, bursty, and of a pro-

ducer/consumer nature. Inem3d, communication involves reading/writing memory blocks

from/to neighboring processors.Fft, andradix both perform all-to-all communication with

every processor exchanging its produced data with other processors.

The large degrees of sharing inem3d, fft, andradix, results in frequent coherence activ-

ity. Coherence events often involve executing protocol handlers that only modify state and

send control messages (e.g., an invalidation). Because the handlers do not transfer data

between the memory and the network, the handlers’ occupancy in a software protocol is

primarily due to instruction execution. Software protocol implementations, therefore, have

a much higher occupancy for control messages than hardware implementations. The figure

indicates that a single-processor Hurricane system at best perform within 61% of S-

COMA. The single-processor Hurricane-1 systems exhibit extremely poor performance

and at best reach within 25% of S-COMA’s performance.

Multiprocessor Hurricane systems help mitigate the software protocol execution bottle-

neck inem3d, fft, andradix. The two-processor Hurricane systems improve performance

over a single-processor system by at most 40% because parallelizing protocol execution

incurs protocol state migration overhead (as discussed in Section5.3.4.1). The four-pro-

cessor Hurricane’s performance ranges from competitive relative to S-COMA (inradix) to

36% better than S-COMA (infft). Hurricane-1’s also significantly improves with multiple

protocol processors but at best reaches within 76% of S-COMA (infft under Hurricane-1

Mult).

To summarize the results, a four-processor Hurricane system on the average increases

speedups by 12% over S-COMA, and a four-processor Hurricane-1 on the average per-
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forms within 76% of S-COMA. More importantly, the most cost-effective Hurricane-1

Mult system performs within 74% of an all-hardware S-COMA system without requiring

extra dedicated protocol processors.

5.3.4.2  Impact of Clustering Degree. The degree of clustering refers to the number of pro-

cessors in every SMP node. This section evaluates the impact of clustering degree on the

relative performance of the systems while maintaining the number of processors and the

total amount of memory in the system constant.

Clustering typically increases the total amount of protocol traffic generated per machine

node [SFH+97]. The increase in protocol traffic, however, depends on an application’s

sharing patterns. On the one hand, clustering allows processors to share a single cached

copy of remote data, reducing protocol traffic generated per processor. On the other hand,

in the absence of sharing, clustering may linearly increase protocol traffic in/out of a node

with the increase in the number of processors per node. Clustering also reduces the num-

ber of network interfaces in the system, placing higher demands on the protocol proces-

sors favoring parallel protocol execution.

Figure5-9 compares Hurricane’s performance against S-COMA for a cluster of 16 4-

way SMPs (above) and a cluster of 4 16-way SMPs (below). The graphs indicate that a

higher clustering degree increases the performance gap between the single-processor Hur-

ricane devices and S-COMA in most of the applications. This result indicates that queue-

ing delays due to a smaller number of network interface devices in the system has a higher

impact on performance than the gains from sharing remote data.

Multiple protocol processors in Hurricane systems help close the performance gap

between software and hardware implementations. With a clustering degree of 16, a four-

processor Hurricane system outperforms S-COMA in all the applications except for

water-sp; Hurricane’s performance inwater-sp is within 99% of S-COMA. With an
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increase in the clustering degree from 4 to 16, four protocol processor in Hurricane

increase performance from a 7% to a 13% improvement over S-COMA’s.

Figure5-10 illustrates the impact of clustering degree on Hurricane-1’s performance. A

high clustering degree has large impact on the single-processor Hurricane-1’s perfor-

mance. Because of the poor performance of single-processor (base) system, even the large

Figure 5-9. Impact of clustering degree on Hurricane’s performance.The figure compares
performance in S-COMA and Hurricane on a cluster of 16 4-way SMPs (above), and a cluster of 4
16-way SMPs (below). The graphs plot application speedups in one- (1pp), two- (2pp), and four-
processor (4pp) Hurricane systems. The speedups are normalized to S-COMA. Values appearing
under the horizontal line at 1 indicate a better performance under S-COMA.
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performance improvements due to four protocol processors fail to make the Hurricane-1

system competitive with S-COMA. Not surprisingly, Hurricane-1 Mult substantially bene-

fits from a high clustering degree and outperforms a four-processor Hurricane-1 system in

all bandwidth-bound applications. Increasing the clustering degree from 4 to 16 also

allows Hurricane-1 Mult to improve performance from 65% to 80% of S-COMA.

Figure 5-10. Impact of clustering degree on Hurricane-1’s performance.The figure compares
performance in S-COMA and Hurricane-1 on a cluster of 16 (above) and 4 (below) SMPs. The S-
COMA and Hurricane-1 Mult systems use 4-way (above) and 16-way (below) SMPs respectively.
The rest of the Hurricane-1 systems use additional dedicated protocol processors per SMP. The
graphs plot application speedups in one- (1pp), two- (2pp), and four-processor (4pp) Hurricane-1,
and Hurricane-1 Mult systems. The speedups are normalized to S-COMA. Values appearing under
the horizontal line at 1 indicate a better performance under S-COMA.
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5.3.4.3  Impact of Block Size. An increase in the protocol block size increases the overall

protocol bandwidth out of a node. Large block sizes also increase the fraction of protocol

occupancy due to data transfer time between memory and the network. Amortizing soft-

ware protocol overhead over a larger overall occupancy reduces the performance gap

between software and hardware protocol implementations.

Large blocks, however, result in false sharing in applications with very fine sharing gran-

ularities thereby increasing protocol activity. Higher protocol activity intensifies queueing

at the protocol processors and results in a larger performance gap between hardware and

software protocol implementations. Parallelizing protocol execution alleviates the perfor-

mance loss due to false sharing by reducing queueing at the protocol processors.

Figure5-11 compares Hurricane’s performance against S-COMA for a 32-byte protocol

(above) and a 128-byte protocol (below). The graphs corroborate the intuition that an

increase in the block size increases the performance gap between single-processor Hurri-

cane systems and S-COMA in some applications. With a 128-byte block,cholesky, em3d,

fft, radix, water-sp all exhibit better performance under single-processor Hurricane sys-

tems relative to S-COMA.Barnes and fmm share data at very fine granularities, suffer

from false sharing with 128-byte blocks, and therefore experience a larger performance

gap between the single-processor Hurricane and S-COMA.

The graphs also indicate that a large block size not only favors the single-processor base

case Hurricane system, but also the multiprocessor systems. Two protocol processors

make a Hurricane system competitive with S-COMA in all the applications. A four-pro-

cessor Hurricane system on the averages speeds up application execution time by 20%

over S-COMA. These results, indicate that pipelining protocol event execution to allow

for multiple outstanding memory requests may allow single-processor devices to achieve a

high protocol bandwidth with large blocks.
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Figure5-12 illustrates the impact of protocol block size on Hurricane-1’s performance.

A large block size has a higher impact on the performance of a single-processor Hurri-

cane-1 system as compared to Hurricane. Large blocks benefit systems with high software

protocol overheads (as in Hurricane-1) allowing the system to amortize the overhead over

a larger protocol occupancy. Much as in Hurricane systems, multiprocessor Hurricane-1
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systems close the performance gap between Hurricane-1 and S-COMA. A four-processor

Hurricane-1 system, and a Hurricane-1 Mult system both reach approximately within 88%

of S-COMA’s performance.

5.3.4.4  Protocol Processor Performance. The microbenchmark results in Section5.3.4.4

indicated that protocol processor clock frequency has a lower impact on the reply band-
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width than the number of protocol processors. The results also indicated that the clock fre-

quency may have a low or high impact on the request/response bandwidth depending on

the number of protocol processors.

Figure5-13 plots application speedups under 400-MHz and 200-MHz Hurricane devices

normalized to those under S-COMA. The graphs plot performance for one-, two-, and

four-processor Hurricane devices. The graphs indicate that doubling the number of pro-

cessors in a previous-generation single-processor Hurricane device results in comparable

performance to upgrading the single processor to current-generation technology. This

result indicates that the applications equally utilize the available reply bandwidth (benefit-

ting from a larger number of processors) and the request/response bandwidth (benefitting

from a higher clock frequency) in the system.

The trade-off between a higher clock frequency and a larger number of processors

becomes more visible for two-processor devices in bandwidth-bound applications.

Cholesky exhibits limited parallelism in protocol event activity and as such benefits from a
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Figure 5-13. Impact of protocol processor clock rate on Hurricane’s performance.The figure
compares Hurricane’s performance with 400-MHz and 200-MHz protocol processors on a cluster
of 8 8-way SMPs. The graphs plot application speedups normalized to S-COMA for one-, two-,
and four-processor Hurricane devices. Values appearing under the horizontal line at 1 indicate a
better performance under S-COMA.
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higher clock frequency. Two protocol processors can not exploit all the event parallelism

in em3d, fft, andradix. These applications highly benefit from parallelizing protocol event

execution. Furthermore, protocol state migration equally impacts protocol occupancies in

multiprocessor Hurricane systems with higher or lower clock frequencies; protocol state

migration overhead is time spent in the memory system and is independent of processor

speed. In bandwidth-bound applications with high protocol event parallelism, adding more

protocol processor from previous-generation technology improves performance over

upgrading the existing processors to a newer technology.

5.4  Related Work

Erlichson, et al. study the impact of using multiple dedicated protocol processors on sys-

tem’s performance in a cluster of SMPs [ENCH96]. Their study focuses on page-based

rather than fine-grain software DSM and they do not consider hardware support for paral-

lel protocol execution. Holt, et al. study the effect of protocol occupancy on system’s per-

formance and conclude that high protocol occupancy significantly limits performance for

bandwidth-bound applications [HHS+95]. Lovett, et al. also study a software protocol

implementation on an embedded processor and conclude that for some bandwidth-bound

database applications, the high protocol occupancy of software implementations severely

limits performance [LC96]. Reinhardt, et al. compare software and hardware implementa-

tions of fine-grain DSM but only consider single-threaded protocol execution

[RPW96,RLW94].

Michael, et al. compare S-COMA’s performance with that of network interfaces with

two embedded processors [MNLS97]. They implement a static partitioning of request/

response handlers and reply handlers between the two protocol processors. They conclude

that even with two protocol processors, software implementations significantly lag in per-

formance for bandwidth-bound applications. Their results, however, also indicate a large

load imbalance between the two protocol processors due to static partitioning of handlers.
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5.5  Summary

PDQ is a novel set of mechanisms for efficient parallel execution of fine-grain software

protocols. This chapter proposes and evaluates hardware support for parallel execution of

fine-grain software DSM using the PDQ mechanisms. The chapter introduces two designs,

Hurricane and Hurricane-1, for parallel fine-grain software DSM and compares their per-

formance to an all-hardware S-COMA implementation. Hurricane integrates embedded

processors, fine-grain sharing, and networking hardware into a single device. Hurricane-1

integrates fine-grain sharing and networking hardware into a single device, but relies on

the host processors to run the software protocols.

Results from a set of microbenchmarks and seven fine-grain shared memory applica-

tions indicated that:

• PDQ helps significantly improve the performance of software protocol implementa-

tions, alleviating the software protocol execution bottleneck.

• A Hurricane system with four embedded processors either outperforms or performs

within 95% of S-COMA.

• A cost-effective Hurricane-1 Mult system (with no extra dedicated protocol proces-

sors) on the average performs as close as within 75% of S-COMA.

Besides the main conclusions of the study, further evaluation of the systems led to the

following results:

• Higher clustering degree increases demand for protocol execution and further

increases performance improvement from parallel protocol execution.

• A high clustering degree makes Hurricane-1 Mult more competitive with S-COMA.

• Larger block sizes both reduce the performance gap between software and hardware

implementations, and boost the performance improvement from parallel protocol exe-

cution.

• A multiprocessor Hurricane system benefits more from an increase in the number of

protocol processors than an upgrade to faster protocol processors. Much of the proto-
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col occupancy is spent moving data between the memory and the network. Multiple

processors increase the protocol bandwidth by parallelizing memory requests.
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Chapter 6

Conclusions

Parallel computing is becoming ubiquitous with the wide availability of SMP multipro-

cessors in the form of desktop machines and servers. Computer designers have begun to

construct large-scale parallel computers using SMPs as cost-effective building blocks.

SMP clusters interconnect several SMPs into a single parallel computer using a high-

bandwidth low-latency commodity network. To communicate across SMP nodes, proces-

sors send messages through the interconnection network. Applications and systems use a

variety of software protocols to coordinate and schedule the communication. This thesis

proposes and evaluates techniques to improve fine-grain software protocol performance in

an SMP cluster.

6.1  Thesis Summary

The contributions of this thesis are:

• a taxonomy for software protocol execution semantics;

• a novel set of mechanisms,PDQ, for parallel fine-grain software protocol execution;

• a taxonomy for software protocol scheduling policies on SMP processors;

• an evaluation of two scheduling policies for single-threaded protocol execution;

• an evaluation of two fine-grain DSMs—Hurricane andHurricane-1—using PDQ to

parallelize the software protocol execution.
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The above contributions fall into two high-level strategies to improve software protocol

performance. Much like an ordinary application, software protocol performance can

increase by either (i) improving the sequential execution or (ii) parallelizing the execution

of the protocol code.

The first contribution of the thesis is a taxonomy for protocol execution semantics:sin-

gle-threaded or sequential execution, andmulti-threaded or parallel execution. Tradition-

ally, distributed memory parallel computers execute fine-grain software protocols

sequentially either on embedded processor on the network interface card or on a node’s

single commodity processor. This thesis explores techniques for parallel execution of fine-

grain software protocols.

Fine-grain software protocols by definition have very short running times. Conventional

locking techniques (e.g., software spin-locks) to synchronize accesses to common systems

resources from parallel protocol threads would incur prohibitively high overheads in fine-

grain software protocols. This thesis proposesPDQ, a novel set of mechanisms for parallel

execution of synchronization-free protocols. PDQ is based on the observation that by par-

titioning system resources among protocol threads, multiple protocol threads can execute

in parallel free of explicit synchronization mechanisms.

Another approach to improve software protocol performance is to accelerate the sequen-

tial execution of the software. Protocol execution consists of scheduling and invoking the

protocol’s execution and subsequently executing the protocol code. This thesis evaluates

protocol scheduling policies on systems in which software protocols execute on SMP pro-

cessors. By not providing embedded protocol processors on a custom network interface

card to execute software protocols, such systems reduce both hardware complexity and

cost.

Another contribution of this thesis is a taxonomy for protocol scheduling policies. On an

SMP node, software protocols can either run on one or more dedicated protocol proces-
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sors, or the system software can schedule (i.e., multiplex) the application and protocol

execution on the same processors. Therefore, SMPs give rise to two classes of protocol

scheduling policy: dedicated andmultiplexed. A dedicated policy eliminates scheduling

overhead and maximizes communication throughput by dedicating one or more SMP pro-

cessors to always execute the protocol software. A multiplexed policy, however, maxi-

mizes processor utilization by allowing all processors to contribute to computation and

dynamically schedules the protocol code on one or more processors when the application

needs to communicate.

Cost-effective (rather than high-performance) SMP clusters use low-cost small-scale

SMPs and interconnect them with commodity networking hardware with little or no sup-

port to accelerate protocol execution. These systems typically execute software protocols

in a single thread on every SMP. In the context of single-threaded protocol execution, this

thesis asks the question “when does it make sense to dedicate one processor in each SMP

node specifically for protocol processing?”The central issue is when do the overheads

eliminated by a dedicated protocol processor offset its lost contribution to computation?

The thesis addresses this question by examining the performance and cost-performance

trade-offs of two scheduling policies for a single-threaded protocol:

• Fixed, a dedicated policy where one processor in an SMP is dedicated to execute the

protocol thread, and

• Floating, a multiplexed policy where all processors compute and alternate acting as

protocol processor.

Performance results from running shared-memory and synthetic applications on a simu-

lation model for software fine-grain DSM together with simple cost model [WH95] indi-

cate that:

• Fixed is advantageous for light-weight pr otocols. A dedicated protocol processor

benefits light-weight protocols Å(e.g., fine-grain DSM) much more than coarse-grain

protocols (e.g., page-based DSM) because the overheads eliminated by a dedicated
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protocol processor account for a significant fraction of protocol execution time in

light-weight protocols.

• Fixed offers superior performance when there are four or more SMP processors.

Systems with very small-scale SMPs (with less than four processors) underutilize a

dedicated protocol processor. Eliminating protocol scheduling overheads does not sig-

nificantly impact execution time in these systems. Because of a small number of SMP

processors in these systems, the opportunity cost in lost computation due to a dedi-

cated protocol processor is high. These systems would rather use all the processors for

computation and dynamically schedule a protocol thread to execute on one processor.

• Floating’s performance is not very sensitive to protocol invocation overhead. A

two-orders-of-magnitude increase in protocol invocation (i.e., interrupt) overhead

increases execution time in a two-processor SMP cluster under the Floating policy by

at most 45%. In comparison, the same increase in interrupt overhead increases execu-

tion time in uniprocessor-node systems by 400%. It is highly likely that at least one

processor in an SMP node is idle at any given time thus acting as protocol processor

thereby eliminating interrupts.

• Fixed is the most cost-effective design in fine-grain systems with high protocol

invocation overhead. Given large enough SMPs, software protocol execution eventu-

ally becomes a bottleneck and Fixed improves performance over Floating. Although

increasing the size of an SMP may improve performance, it does not always result in a

cost-effective system; the performance improvement may not justify the cost of addi-

tional processors. Fine-grain systems with high protocol invocation overheads allow

SMP nodes to significantly improve performance over uniprocessor nodes by eliminat-

ing the protocol invocation overheads. These systems become most cost-effective—

with respect to a uniprocessor-node system—with four or more SMP processors. At

such a design point, the cost of an additional dedicated protocol processor becomes

negligible and is easily offset by the performance improvement.
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This thesis also examines two parallel fine-grain DSM systems based on PDQ. The the-

sis first proposesPTempest, a set of mechanisms for implementing parallel fine-grain soft-

ware DSM protocols derived from Tempest [Rei95] and PDQ. The thesis evaluates two

hardware implementations of PTempest,Hurricane andHurricane-1.Much like Typhoon

[RPW96], Hurricane integrates one or more embedded processors with fine-grain shared-

memory support and the networking hardware (i.e., message queues) on a custom device.

Similarly, Hurricane-1 is like Typhoon-1 [RPW96] and integrates shared-memory and

messaging hardware on a custom device but relies on the node’s commodity processors to

run the software protocol.

To gauge the impact of parallel protocol execution on software fine-grain DSM’s perfor-

mance, this thesis compares the Hurricane systems against S-COMA, a hardware imple-

mentation of fine-grain DSM [HSL94]. Results from running shared-memory applications

on simulation models for the Hurricane systems and an idealized (conservative) simula-

tion model for S-COMA indicate that:

• PDQ helps significantly improve software fine-grain DSM’s performance.Single-

processor Hurricane and Hurricane-1 systems each perform within 24% and 53% of S-

COMA respectively. Parallelizing the protocol execution allows a Hurricane system

with four embedded processors to either outperform or perform within 95% of S-

COMA. Similarly, a Hurricane-1 system with four extra dedicated SMP processors

reaches within 76% of S-COMA’s performance.

• PDQ’s impact is highest for Hurricane-1 systems with large-scale SMPs.A Hurri-

cane-1 system can multiplex SMP processors to both compute and execute software

protocols. Under a multiplexed scheduling policy, large-scale SMPs (with eight or

more processors) significantly increase the number of processors contributing to paral-

lel protocol execution, improving performance of Hurricane-1 to within 80% of S-

COMA.

• Lar ge-scale SMPs obviate the need for extra dedicated SMP processors. Although

multiplexed policies incur high protocol scheduling and execution overhead, the high



118

parallelism in protocol execution due to a large number of SMP processors offsets the

protocol scheduling and execution overhead. Large-scale SMPs (with eight or more

processors) allow a Hurricane-1 system with multiplexed protocol scheduling to out-

perform or perform close to a Hurricane-1 system with a small number of (e.g., up to

four) extra dedicated protocol processors. A multiplexed policy is also advantageous

because it reduces cost by obviating the need for extra dedicated SMP processors.
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