Fine-Grain Protocol Eecution Mechanisms &

Scheduling Policies on SMP Clusters

by

Babak Rlsafi

A dissertation submitted in partial fulfilment of

the requirements for the gieee of

Doctor of Philosoph

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN—MADISON

1998

Abstract

Symmetric multiprocessor (SMP) clusters are gingras the cost-ffctive medium- to
large-scale parallel computers of choicgleiting the superior cost-performance of SMP
desktops and sesvs. These machines implement communication among SMP nodes by
sending/rec&ing messages through an interconnection agtwMary applications and
systems use aaviety of softvare protocols to coordinate this communication. As such,
protocol performance can significantly impact communication time &adalb system

performance.

This thesis proposes andaguates techniques to imme fine-grain software protocol
performance. Rather than prde embedded netwk interface processors, some systems
schedule andxecute the protocol code on the SMP processors to reducednardem-
plexity and cost. This thesivaluatesvhenit is beneficial to dedicate one or more proces-
sors in gery SMP to alays &ecute the protocol code. Results from simulating a fine-
grain softvare distriluted shared memory (DSM) indicate that a dedicated protocol pro-

cessor:
» benefits light-weight protocols much more thanvyeaeight protocols;
* benefits systems with four or more processors per node;

* will also result in the best cost-performance when schedulegheads are much

higher than protocol weight.

Much like ordinary application sofi@ave, the protocol code careeute either sequen-
tially or in parallel. The central contrtion of this thesis is a nel set of mechanisms,
parallel dispatd queue(PDQ), for eficient parallel gecution of fine-grain protocols.

PDQ is based on the obsatiwn that by partitioning system resources among protocol

i
threads, multiple threads cameeute in parallel each accessing aclesive set of

resources thereby wviating the need for synchronization.

This thesis proposes tine-grain DSM systemsHurricane andHurricane-—which
execute softwre coherence protocols in parallel using PDQ. Hurricaneeshiegh per-
formance by intgrating embedded protocol processors into a otwnteriace deice.
Hurricane-1 reduces cost by using SMP processoreettute the softare protocol. Sim-
ulation results comparing the Hurricane systems to an all-laaedidSM implementation
indicate that:

* PDQ helps significantly impxe software protocol performance;
* Hurricane with four embedded processors performs as well as an allanardwple-
mentation;

* Hurricane-1 performs within 75% of an all-hah& implementation orvarage.

Acknowledgments

| dedicate this thesis to my parents Houshaalgdfi and Meimanat Lotfi. itout their
guidance, moral, and financial support, duMd not hae made it thisdr. | am forever
indebted to them for who | am. Thanks to my sistar#a and Rebecca who weravays
supportve of me in setting high academic and education standards. Thanks to Babak F
saii and Mohammad Moein, my brother invia for being my role models in pursuing a

Ph.D. Thanks to Babak for teaching me first about computers.

Many thanks to my advispDavid Wood, for teaching me moto write, hav to speak,
and hav to think, for the mayyears of financial support in graduate school, and for intro-

ducing me to some of the finest micraksan Wsconsin.

Thanks to Mark Hill for teaching me Wwoto be stratgic both in research and in my
graduate careeMary thanks to Guri Sohi for teaching mevwhto objectvely evaluate the
goals and means of my research. Thanks to both Mark and Guri for advising nveton ho
prepare for an academic careBnanks to Jim Goodman and Jim Smith for sitting on my

thesis committee and theialuable feedback on my research.

Thanks to Scott Breach, Doug Ber, Alain Kagi, and TN. Vijaykumar for all the time
we spent together in Madison fronorking late night hours on Project Jihad, Friday night
dinners, Atlas Bsta and Eureka Jgefunches and cfe#fe breaks, and all theomnderful
social @therings. Special thanks to Scott for accompapnme most to Anchora and
Eureka Joe for an espresso drink, Alain for all themderful ski trips, Doug for chatting
with me about thegme, and lastui not least, Yay for keeping me compagrwith all the
J.R. Ultimos, the Glenlets, and the Pierre Ferrands.

iv
Thanks to Jigneshakel for being anxxellent friend, house-mate, and cook. Thanks to
Jignesh for all the BoryeM. music, the Chicago trip that turned my life around, and much

more.

Many thanks to Stefnos Kaxiras, Angeliki Balganni, Andreas Moshms, \asiliki
Draganigou, loannis Schoinas, and Leak® for all the wnderful time in Madison, Chi-
cago, and The Great Dane. Thanks to SubbaaaxFarla for telling me abouterything
that was going on around me and asvnot aare of. Thanks to John afous for the

Chocolate Porter we bred together

Alvy Lebeck, Dionisios Pnanatikatos, and Rajesh Mansharamanvygted me with all
the guidance | needed from senior graduate students. Thankse¢dr&iahardt for teach-
ing me hav to write systems code and for not complaining the least bit about all the nag-
ging | did while reading/neriting his code. Stee provided me with the lgconsin Whd

Tunnel 1l which sered as thex@erimentation testbed for all my dissertatioorkv

Thanks to the folks in the computer sciences department in general and the computer
architecture community in particular atid&nsin. | hae never come across a group of

people who can get along so well both professionally and socially

Most of all, thanks to Anastassia Ailamaki, for all herelosupport, and encouragement

throughout the time | &s writing and completing this dissertation.

Contents
ADSHraCT. . . . [
Acknowledgments.
LiSt Of FIQUIeS.o viil. . . .
Listof Tables X
Chapter 1. Fine-Grain Software Protocols in SMP Clusters. 1.
1.1 Protocol Execution Semantics & Scheduling Policy 5.
1.2 PDQ: Parallel Execution of Synchronization-Free Protocals.......... 7.
1.3 Experimenting with Software Fine-Grain DSM. 8..
1.3.1 A Model for the System Architecture 9..
1.3.2 Scheduling Policies for Single-Threaded Protocals. 10
1.3.3 Executing a Fine-Grain DSM Protocol in Parallel. 11
1.4 Thesis Organization. 12. ..
Chapter 2. Protocol Execution Mechanisms & Semantics. 13
2.1 Protocol Execution Mechanisms & Resources. 15.
2.2 Protocol Execution SemantiCs i 16..
2.2.1 Single-Threaded Protocol Execution 16.
2.2.2 Multi-Threaded Protocol Execution. 18.
2.3 Synchronization-Free Parallel Protocals. 21 .
2.3.1 Parallel Dispatch Queue (PDQ)., 23 .
2.3.2 Statically Demultiplexing Protocol Events 26.

2.3.3 Dynamically Demultiplexing Protocol Events 29

2.4 Related WOrK. 31...
2.5 SUMMaAIY . .. 32....
Chapter 3. Protocol Scheduling Policies. 33..
3.1 Dedicated vs. Multiplexed Protocol Scheduling. 34.
3.2 Protocol Scheduling Mechanisms 36. .
3.2.1 Detecting ProtocolEvents 37..
3.2.2 Scheduling a Protocol Thread 39. .
3.2.3 Suspending & Resuming the Computation 40
3.2.4 Mechanisms for Choosinga Policy. 41 .
3.3 Design & Functionality Requirements. 42 .
3.4 Policy Performance Trade-Off. 42 . .
3.4.1 Application CharacteristiCs. 43. .
3.4.2 Overhead in a Multiplexed Policy 43 .
3.4.3 Multiprocessing & Multithreading 45 .
3.4.4 ProtocolWeight. 45. ..
3.5 Policy Cost-Performance Trade-Off. 41 .
3.6 Related Work. 48 . ..
ST SUMMAIY . . ot e 48. . ..
Chapter 4. Scheduling Policies for a Single-Threaded Protocol 50
4.1 Protocol Execution & Scheduling Mechanisms 52.
4.2 Protocol Scheduling Policies. 54 ..
4.3 When does dedicated protocol processing make sense?. 55
4.3.1 Methodology. 56. ..
4.3.2 Microbenchmark Experiment. 56. .
4.3.2.1 Multiple compute processors perNode. 59
4.3.2.2 Cost/Performance.c i, 61..
4.3.3 Macrobenchmark Experiment 64

4.3.3.2 InterruptOverhead. 68..
4.3.3.3 Protocol Block Size. 69. .
4334 CacheSize. L
4.3.3.5 Cost/Performance. 73..
4.4 Related Work. T4 ...
A S SUMMAIY . . ot e 75. ...
Chapter 5. Executing Fine-Grain Protocols in Parallel 17.
5.1 PTempest: Parallelizing Fine-Grain DSM Protocols 79
5.2 Hurricane: Hardware Support for PTempest 82.
521 HUIMICANE.o 82...
5.2.2 Hurricane-1. 84...
5.3 Performance Evaluation. 86. ..
5.3.1 Methodology. 87. ..
5.3.2 Protocol OCCUPaNCY. . . .o oo vttt 87 ..
5.3.3 Microbenchmark Experiment. 88. .
5.3.3.1 Protocol Block Size......... ..., 93..
5.3.3.2 Protocol Processor Performance.. 95.
5.3.4 Macrobenchmark Experiment 97. .
5.3.4.1 Base System Performance.. a9 .
5.3.4.2 Impact of ClusteringDegree. 103
5.3.4.3 ImpactofBlock Size. 106.
5.3.4.4 Protocol Processor Performance. 108
5.4 Related WOrK. 110..
5. SUMMaAIY . ..o 111. ..
Chapter 6. CoNCIUSIONS oo e 113..
6.1 ThesSiS SUMMaArY. e 113..

ReferenCes o 119...

Figure 14.
Figure 12.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 34.
Figure 32.
Figure 44.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.

viii

List of Figures

Architecture of aclusterof SMPs. 2
Software protocol execution models. 6
Resources for a simple fine-grain software protocol. 15
Parallel protocol event dispatch in fine-grain DSM. 24
Static protocol event demultiplexing:. L. 27
Dynamic protocol event demultiplexing 29
Protocol scheduling under a dedicated policy 35.
Protocol scheduling under a multiplexed policy. 36
The Typhoon-1 network interface.. 53 .
Relative performance with varying interrupt overhead. 58

Relative performance with varying number of processors/node. . . .60

Relative cost-performance 62..
Baseline system performance comparison.. 66.
Performance sensitivity to protocol block size. 70.
Performance sensitivity to processor cache size. 12
Relative cost-performance of Fixed and Floating 73
Accessing protocol resources in PTempest. 79.
Parallel protocol dispatch in PTempest.. 80.
The Hurricane customdevice. 83..
The Hurricane-1 customdevice. 85. .
Protocol bandwidth in S-COMA, Hurricane, and Hurricane-1. 91
Impact of block size on protocol reply bandwidth.. 94

Impact of processor clock rate on Hurricane’s protocol bandwidth.. 96
Baseline system performance comparison. 100

Impact of clustering degree on Hurricane’s performance.. 104

Figure 510. Impact of clustering degree on Hurricane-1's performance. 105
Figure 511. Impact of block size on Hurricane’s performance. 107
Figure 5412. Impact of block size on Hurricane-1's performance 108

Figure 513. Impact of protocol processor clock rate on Hurricane’s performanci&09

Table 4.1:
Table 4.2:
Table 5.1:
Table 5.2:
Table 5.3:

List of Tables

Applications and inputsets. i 64..
Policy performance sensitivity to interrupt overhead.. 69
Remote read miss latency breakdown for a 64-byte protocal. 89
Applications and inputsets. 97..

Application uniprocessor execution time and speedups.. 98

Chapter 1

Fine-Grain Software Protocols in SMP Clusters

Advances in semiconductorabfrication processesValed to a tremendous increase in
clock speeds and transistor counts in toslafhgle-chip déces. Higher clock speeds
along with n@el architectural techniquegm@oiting the alnndance of transistors in single-
chip devices hae improsed microprocessor performance by orders of magnitude in the
last decade [BG97]. In spite of the dramatic inweroents in a single chpperformance,
computer customers continue to demand higher performance ® lage classes of

important scientific and commercial problem$329].

To increase performanceymnd a single chip, computer designersehatudied tech-
niques to package twor more microprocessors in a single computer system. The most
common form of thesmultiprocessos organizes tw or more microprocessor chips on a
single board and interconnects them through a systentda single memory system
[Bel85]. Such a system is called a symmetric multiprocessor (SMP) because each proces-
sor has equal access to memoiyn SMP is a cost-&dctive computer aanization
because it amortizes the cost of memory and peripheral I/O subsystmmsuitiple pro-

Cessors.

Dt || ...
I |

— =N

Network

Figure 1. Architecture of a cluster of SMPs.

Electrical characteristics of wires in a shared systas) bavever, limit the scalability
of SMPs to a f& tens of processors [AB86]. Rather than engineemacoenputer agani-
zation with processors repackaged into custom boards, computer designers are using
SMPs as bilding blocks to further scale the system size. The high salesnes and
economies of scales of commodity SMPswafiacomputer designers taild cost-efec-
tive medium- to lage-scale multiprocessors. Clusteringgesal SMPs through a high-
bandwidth lev-lateny network (Figurel-1) also eliminates the singleud bottleneck

offering performance scalability with a ¢gg number of processors.

To program these multiprocessors, computer designevidpra \ariety of program-
ming abstractions and languages. These (parallel) programming abstractions jtm
cessor tcompute—i.e., produce—a data item in memory and subsequeothmunicate
it—i.e., male it available—to other processors. Multiprocessorsvigl® a \ariety of
mechanisms for processors to communicate data among eachVdtieeeas processors
within an SMP use a common ically) shared memory to produce and communicate
data, processoexrossSMPs communicate by sending messages through the interconnec-

tion netvork.

To schedule and coordinate communication, both applications and systemg amplo

variety of protocols. The SMP systemshfor instance, implements a shared-memory pro-

3
tocol in hardvare to preide a consistent image of a single shared memory among the

SMP processors. The protocols implementing communication across SMRde pao
variety of functions. At the highestviel, the protocols implement applicatiorvéé pro-
gramming abstractions such as a clientwemodel in databases. Applicationééproto-
cols in turn are often programmed iwier-level abstractions such as distribd shared
memory (DSM)—prweiding a single global address spagercan SMP cluster—or simple
point-to-point message passing. At thevdst level, the protocols prade message deh
ery services—such as checksums, reliablevesli fragmentation and re-assembénd

flow control—to guarantee that messages are safely transferred betwegiRs.

Multiprocessor systems can implement communication protocols in eitheradrardw
software. Hardware implementations often fef superior performancever software.
Hardware protocols also implement communication transparently withgalving the
application or system programmetardware DSM, for instance, can mimic the fine-grain
shared-memory communication mechanisms of an, alMwing SMP programs to trans-

parently run on a lgerscale SMP cluster

A hardware protocol typically implements a éa poliy for coordinating communica-
tion. Although such a pocmay be well-suited for some applications aitS to meet the
communication requirements of all classes of applicationsveZsely software is adan-
tageous because it pides flibility allowing programmers to tailor sofeawe protocols
to fit the communication patterns of an application [QB97 ;4R Software also sees
as a suitable substrate forperimenting with compbe protocols. By reducing the fre-
queng of network messages, customized sate protocols can dramatically impean

applications performance.

Vendors may also use so#ve protocols simply because of their reduced naatuifing
cost [Mei93] and shorter design times [LC96]. Communication protocols are typically
implemented in the form of finite-state machinesgeaand complefinite-state machines

are dificult to delug [Cha97] and require enormous amounts of computing resources to

4
even partially erify [DDHY92]. Rectifying hardware lugs also requires repeating the

design and manatturing process which increases cost.

Software protocols can also increase portability [SFHIKWO5,SFLI94] by praviding
a common high-kel programming integice which systems in turn implement @rigus
systems using platform-specifionler-level communication mechanisms. Portable inter-
faces allav programmers to deelop and delng applications on @-cost small-scale sys-

tems and subsequentlyezute them onxpensve laige-scale machines.

Rapid impreements in netarking technology howvever, are dramatically reducing
point-to-point message latencies betweea §MP nodes [KC94]. As a result, soére
protocol e&ecution is bginning to dominate the communication time address this
problem, computer designers are studyiagous techniques to impre software proto-
col performance. Much l&kan ordinary application, sofare protocol performance can be
improved in two basic vays: (i) accelerating the sequentiateution, and (ii) parallelizing

the execution of the protocol code.

The primary contribtions of this thesis are towddop and ealuate seeral techniques to
both accelerate sequentiadeeution and parallelize thexecution of softwre protocols.
The thesis focuses on so#ive protocols that implemefibe-gain communication where
two processorsxehange data at small granularities ofw fens or hundreds of bytes. An
example of such a protocol is a fine-grain DSM coherence protocol which transfers data
among SMPs within a cluster at a cache block (e.g., 32-128 bytes) grankiaetgrain
communication is characteristic of nyammportant classes of scientific applications
[BH86,CSBS95]. Commercial applications such as welesgriile sergrs, and database
engines run on SMP sams using the SMP fine-grain shared-memory mechanisms. These

applications can transparently run on an SMP cluster with the help of fine-grain DSM.

The rest of this section muétes and describes the conitibns of this thesis.

Sectionl.1 describes the sofare model andxplains hev software protocols are wioked

5
and eecuted on SMP multiprocessors. Sectian briefly describes the mechanisms for

parallel ecution of fine-grain softare protocols which is agl« contritution of this the-
sis. Sectiorl.3 briefly presents thexperimental results of this thesis. Sectiod

describes thewerall thesis aganization.

1.1 Protocol Execution Semantics & Scheduling dlicy

Fine-grain applications produce and communicate data in small granularities. As such,
communication in these applications oftevoives frequent protocol wocations—e.g., to
access remote data in distribd shared memaryine-grain applications also rely on
quick protocol turn-around time because communication often lies on the critical path of
execution. D boost a fine-grain protocslperformance, systems empl@rious hardware
and softvare techniques to accelerate both protocaebdation and xecution. Protocol
invocation consists of detecting when communication is required and subsequently initiat-
ing the &ecution. Protocolxcution ivolves running the softare protocol on a proces-

SOr.

At one &treme, a hardare-centric design may prde all the resources necessary to
invoke and gecute the softare protocol in a single customuitee (Figurel-2 left). Such
a device minimizes protocol wocation @erhead upon awxal of network messages by
executing the protocol on a dee that directly intedces to the netwk. This approach
may significantly impree performanceut also increases cost by requiring the design and

manufcturing of a custom dee.

At the other gtreme, the system uses a commodity oekwnterface deice with little
or no hardware support for protocolxecution. The system sofare schedules ance
cutes the protocol code on the SMP processors (FigRraght). Such a decoupling of
hardware resources—e.g., processors from the oritimterface—increases both protocol
invocation and xeecution werhead. Softare (rather than hardwe) schedules the proto-

col code, increasing theviocation werhead. Netwrk accesses from processors must also

QQ Q -
ce QO-@
I . : I

S/W Protocol E?;:;gz
Custom H/W Commodity H/W

Figure 12. Software protocol eecution modelsExecuting softvare protocol on (lef
custom hardware, (right) SMP processors

traverse the systemub, increasing the protocakecution time. Such a system wever,

can reduce cost bploiting commodity netwrk hardvare.

Traditionally, both hardware-centric and softave-centric designs foxkecuting softvare
protocols &ecute the protocol code sequentialyardware-centric systems priole a sin-
gle embeddegrotocol pocessoron the netwrk interface card [Mei93]. Softare-centric
systems, insteadxecute the softare protocol on either a uniprocessor node [HT93] or
one of the SMP processors [Int93h fleduce a softare protocok execution time, either

design may parallelize the protosoékecution wer multiple processors.

This thesis proposes a taxonomy for a safevprotocob execution semanticsingle-
threadedandmulti-threadedexecution correspond to serial and paralidaution of pro-
tocols respeciely. Multi-threaded protocobecution has beerxtensvely studied in the
contet of coarse-grain netwking software (e.g., TCP/IP) [Kai93]. Fine-grain protocols
typically have short running times due to the fine granularity of communicatiorve@en
tional locking techniques used to parallelize coarse-grain protocols may resgkase

overheads in a fine-grain protocoecution.

7
This thesis is the first to wvastigate mechanisms for implementing parallel fine-grain
software protocols. A & contrikution of this thesis is a nel set of mechanismpatrallel
dispatdr queue(PDQ), that alls eficient parallel gecution of fine-grain protocols.
PDQ is based on the obsation that protocols can be synchronization-free if the system
resources can be partitioned among multiple protocol processoralipgoeach proces-

sor access to arxeéusive set of resources.

This thesis also restigates techniques for reducing protocaldoation @erhead in the
software-centric systems—i.e., systemxea@uting the softare protocol on SMP proces-
sors (Figurel-2 right). The thesis proposes a taxonomy fay bhasses of softare proto-
col scheduling policiesledicatedandmultiplexedpolicies. A dedicated polceliminates
scheduling verhead and maximizes communication throughput by dedicating one or
more SMP processors tonalys execute the protocol soffawe. A multipleed polig/, how-
ever, maximizes processor utilization by alimg all processors to contribe to computa-
tion and dynamically schedules the protocol code on one or more processors when the

application needs to communicate.

Much like protocol gecution semantics, protocol scheduling has batemsvely stud-
ied in the contet of coarse-grain netwking protocols [SKT96]. Because of short proto-
col running times, fine-grain protocol performance is also more sengitischeduling
overhead. This thesis is the first teakiate protocol scheduling policies for fine-grain

software protocols.

1.2 PDQ: Rarallel Execution of Synchionization-Free Piotocols

A key contritution of this thesis is parallel dispatch queue (PDQ) valrset of mecha-
nisms for programming synchronization-free protocols—i.e., protocols that do not require
explicit synchronization mechanisms such as locks. PDQ is based on theatibseihat
system resources can be partitioned among the protocol processors so that each processor
Is provided access to ax@usie set of resources. In such a mantier protocol code can

execute free of xplicit synchronization mechanisms.

8
PDQ requires minimal system support—e.g., oekninterface hardwre—to classify

and dispatch a protocol message or request (e.g., from the application to access remote
data) to the protocol processor in the appropriate resource partiichet lelassifiers in
parallelized netarking protocols (such as TCP/IP [B&R]) and multi-snoop memory

buses in high-performance SMP senwv(such as the Giglane-XB [CPWG97]) use hard-

ware mechanisms analogous to PDQ to dispatch and handktgiaeksactions in paral-

lel.

PDQ gves rise to a range of implementatiorgying in cost and performance. High-
performance PDQ designs dynamically balance the load among the protocol processors in
hardware by dispatching protocol messages or requests to idle protocol processors. Less
hardware-intensie designs statically select the protocol messages and requests that dis-
patch to a distinct protocol process8milarly, both hardware-centric and softave-cen-
tric models for gecuting softvare protocols (Figurgé-2) can tak adwantage of PDQ

mechanisms to parallelize the protocxdeution.

1.3 Experimenting with Software Fine-Grain DSM

This thesis ealuates protocolxecution semantics and scheduling policies for saféw
protocols in the conig of fine-grain DSM on an SMP clust&SM implements a (virtu-
ally) global image of a single address spager ¢plysically) distrituted SMP memories.
Corventional softvare implementations of DSM allocate and maintain coherence at the
page granularity (or lger). Transparent pagesel coherence, heever, often results in
frequent mgement of (lage) data pages among SMP memories and poor performance in
fine-grain applications.drmitigate this problem, most page-based safeADSMs require
programmers to carefully annotate applications with system-specific synchronization

primitives thereby sacrificing transpargnc

Fine-grain DSMallocates shared memory at the page granylamitynaintains coherence at
cache block granularity (e.g., 32-128 bytéspe-grain DSM is a particularly attracei

implementation of DSM on SMP clusters because it transparently—i.e., without the

9
involvement of the application programmerxtends an SMR'fine-grain shared-memory

abstraction across a clust8uch a shared-memory system enables the portability of SMP

sener-based applications across a cluster of SMPs.

The folloving presents the simulation methodology for the systemls&ted in this the-
sis. The rest of the section presents the goals and the results frono tegpénmental
studies in the thesis. Sectitr} concludes the chapter by describing the thegena-

tion.

1.3.1 A Model br the System Architecture

The perimental methodology in this thesis is a simulation model for fine-grain DSM
implemented on an SMP cluster use the Wsconsin Whd Tunnel 1l (WWTII)
[MRF*97]—a parallel simulator of SMP clusters—as the simulation test-bed. Rigure
(on page) illustrates the general ganization of an SMP cluster multiprocessBach
machine node consists of one or more 400-MHz dual-issue statically-scheduled proces-
sors (modeled after the RosgpkerSRARC), each with a 256-entry direct-mapped TLB
and a 1-Mbyte one-el data cache. WWTI assumes instruction cache references are all
single-gcle hits. Such an assumption does nealidate the results and conclusions of

this thesis, because the sadie protocols studied %@ very short running times.

Processor caches arept coherent within each SMP using a 100-MHz split-transaction
256-bit wide memory ls. WWTFII also assumes a constant point-to-point roekw
lateny of 100 processorycles, lut accurately models contention at the retwinter-

faces.

WWT-Il assumes an operating system bothvigtes local services and manages the
nodes collectiely as a single parallel machineQR95,HT93]. Rrallel applications fol-
low the SPMD programming model. This thesis assumes space sharing—where the nodes
are logically allocated to separate parallel tasks. More general time sharing is of course

possible, bt is begond the scope of thisowk.

10
1.3.2 Scheduling Blicies for Single-Threaded Potocols

Cost-efective (rather than high-performance) multiprocessor designs may interconnect
low-cost small-scale SMPs with commodity netiing hardvare. May such systems
provide little support to accelerate protocakeution and run a single sotive protocol
thread on eery SMP To reduce protocol wocation and xecution werhead, these sys-
tems sometimes dedicate one of the SMP processomadgsatun the protocol thread. A
dedicated protocol processtiowever, may waste processorycles (e.g., when the appli-

cation is compute-bound) which couldvieacontrituted to computation.

The first eperimental study asks the questiovhen does it maksense to dedicate one
processor in eat SMP node specifically for gocol pocessing?"The central issue is
when do the werheads eliminated by a dedicated protocol procestsat afs lost contri-
bution to computation? The study addresses this questiorayimng the performance

and cost-performance tradds0bf two scheduling policies for a single-threaded protocol:
» Fixed a dedicated policwhere one processor in an SMP is dedicateceowte the
protocol thread, and

* Floating, a multiplexed poligy where all processors compute and alternate acting as

protocol processor

Results from running shared-memory applications on a simulation model for fine-grain

DSM using a softare coherence protocol indicate that:

e Fixed benefits fine-grain protocols (e.g., fine-grain DSM) much more than coarse-
grain protocols (e.g., page-based DSM).

» Fixed generally dérs superior performance for systems with four or more processors
per SMP

* Floatings performance is noevy sensitre to protocol imocation werhead.

» Fixed aWays results in the most cosftesftive design for systems with high protocol
invocation eerheads (e.g., systems with no OS supportdst &ception handling)

running fine-grain protocols.

11
1.3.3 Executing a Fine-Grain DSM Potocol in Parallel

Computer designers can aladglt higherperformance multiprocessors fromdarscale
SMPs. Lage-scale SMPs increase the demand on softvprotocol ecution within
every SMP and may significantly benefit from parallel protogetation. This thesis pro-
posesPTempesiParallel Tempest), a parallel programming abstraction falding fine-
grain DSM protocols based oempest [Rei95] and PDQ.

Tempest defines a set of mechanisms for implementingavstifine-grain DSM proto-
cols in softvare. Empests mechanisms alo a protocol to map/unmap shared-memory
pages in an applicatiyaddress space. Usingripest, a protocol can also manipulate
shared-memory access semantics to fine-grain (e.g., 32-128 bytes) memory blocks on the
mapped pages. Protocol handlers empest, haever, are based on Aske Messages
[VECGS92] and ha single-threadedxecution semantics. Rmpest relaas the single-
threaded ®ecution semantics ofempest using the PDQ parallel protocakeution

mechanisms.

The second»perimental studywaluates fine-grain DSM systems based om itwple-
mentations of PAmpest—Hurricane andHurricane-1—with varying dgyrees of hardare
support. Both systems imgeate PDQ with fine-grain shared-memory access control logic
and netwrking hardvare in a custom netwk interface deice. Hurricane also tightly
integrates one or more embedded protocol processors with the custiom répresenting
a high-performance Rmpest implementation. In contrast, Hurricane-1 is representati
of a lovercost PEmpest implementation and uses the SMP processorsetote the

software protocol.

To gauge the impact of parallel protocakeution on softare fine-grain DSM perfor-

mance, the g@eriment compares the Hurricane systemairey S-COMA, a hardare

12
implementation of fine-grain DSM [HSL94]. Results from running shared-memory appli-
cations on simulation models for the Hurricane systems and S-COMA indicate that:

* PDQ helps significantly impx@ the performance of sofare protocol implementa-
tions, alleviating the software protocol eecution bottleneck.

e A Hurricane system with four embedded processors either outperforms or performs as
well as S-COMA.

* A cost-efective Hurricane-1 system with natea dedicated protocol processors (i.e.,
using SMP processors for both computation atating protocols) performs within
75% of S-COMA on eerage.

1.4 Thesis Oganization

Chapter2 and ChapteB describe the taxonomy for sofive protocol ¥ecution seman-
tics and scheduling policies respeety. These chapters qualitegly discuss the perfor-
mance and cost-performance tradis-dbetween the classes within each taxonomy
Chapter2 also describes PDQ and discusses its design and implementation spectrum with
respect to performance and cost-performance. Chaptegsents the firstxperimental
study @aluating the scheduling policies for single-threaded protocols. CHagescribes
the second>)@erimental studywaluating hav PDQ can help impree software fine-grain
DSM’s performance by parallelizing the protoce¢eution. Finally Chaptei6 concludes

the thesis with a summary and future directions for tloikw

13

Chapter 2

Protocol Execution Mechanisms & Semantics

This thesis imesticates techniques for imprimg fine-grain softwre protocol perfor-
mance in SMP clusters. This chapter studies altematecution semantics for fine-grain
software protocols. Distrited-memory parallel computers traditionally used uniproces-
sor nodes andxecuted the softare protocols on either a nodesingle commodity pro-
cessor along with computation [SGT96,KDCZ93,HT93,CBZ91,Int90,AS88], or an
embedded processor on the ratwinterface [K'94,RIW94,Mei93]. As a result, fine-

grain software protocols in these machines had sequeniaiution semantics.

To take adwantage of the superior cost-performance of SMPs, computer designers are
also constructing parallel computers using SMPs asildibg blocks
[LC96,WGH'97,CA96]. SMP nodes, n@ver, increase the demand on saite protocol
execution because multiple SMP processors simultaneously generate protocol requests—
e.g., to fetch remote memory blocks. Grouping processors into SMPs also reduces the
number of nodes, and as a consequence, the number ofketterface cards in the sys-
tem. Decreasing the number of netw interface cards also increases the protocolit¢raf

into a node. The combinedfett of a higher protocol request rate anéstdr incoming

14
protocol trafic quickly males softvare protocol gecution a communication bottleneck as

SMP nodes become tger [MNLS97,LC96].

One approach to mitage the softare protocol bottleneck is to parallelize the protocol
execution. Softvare protocols may run on either multiple embedded processors on the net-
work interface card, or seral SMP-node commodity processorardfel protocol gecu-
tion using SMP processors is particularly attractfor clusters of layje-scale SMPs.
Large-scale SMPs increase theelikood of mag (computation) processors being idle
(e.g., vaiting for synchronization) enabling them to conitéto softvare protocol xecu-
tion. Such a design both immes performance by increasing the parallelism in protocol
execution and reduces cost byvaiing the need forxra dedicated protocol processors
[FW97¢c,FW96].

In this chapterl present a taxonomy of sofme protocol gecution semantics:

« Single-theadedprotocol &ecution allavs for only a single protocol thread to run on

an SMP node at grgiven time.

* Multi-threadedprotocol eecution allevs multiple protocol threads to simultaneously

execute on an SMP node.

| propose a neel set of mechanisms callgdrallel dispatt queue(PDQ) for imple-
menting synchronization-free parallel protocols. Because of the short running time of pro-
tocol handlers in fine-grain protocols, parallelizing protogelcation using carentional
locking schemes (e.g., sofiwe spin-locks) wuld result in prohibitiely high synchroni-
zation wwerheads. PDQ helpsahte the need fonglicit synchronization mechanisms by
partitioning the protocol resources and requiring protocols to label proteeaisewith
the appropriate partition id. PD(Xiefently parallelizes protocolxecution by dispatching

and eecuting protocol handlers in parallel for protocegts with distinct partition ids.

The followving (Sectior2.1) first describes the mechanisms and resources typically

required to recute fine-grain softare protocols. Sectiah2 describes the taxonomy and

15

Application

Message Queues

Application Data

Receive

Pr [
Protocol State
Send
Protocol Cache ‘

Figure 241. Resources for a simple fine-grain safte protocol.

(ds)

compares and contrasts the agkages of each protocotezution semantics. Secti@mi
presents the PDQ mechanisms for parabkelcation of synchronization-free protocols,
and qualitatrely evaluates the design and implementation space for PDQ. S&ctiamd
Section2.5 discuss the relatedovk and summarize the chapgecontrilutions respec-

tively.

2.1 Protocol Execution Mechanisms & Resouwes

Many high-level parallel programming abstractions are implemented using aseftw
communication protocols [JKW95,R¥94,CDG 93]. These protocols typically imple-
ment simple finite-state machines which read as inptdtacol ezentand the correspond-
ing state, mad a state transition, and write as output a subsequent protectlasd the
newv state. A protocol vent is typically either a netwk message or an applicatisn’
request for protocol wocation on a remote node. Protocol state often corresponds to a
data entity in an application, and protocekrts implement communication by wiag

data between the netwk and memory

Protocols require a set of mechanisms and resources to gewnerateand implement

the corresponding state transitions. FigeuEillustrates anxample of protocol resources

16
required by a simple fine-grain sofive communication protocol (kk Split-C
[CDG*93]). Protocol messages communicate an applicatidata among the machine
nodes. Simple softare protocols may cache remote data temporarily into a protocol cache
to eliminate multiple netaerk traversals to access remote memdayyset of protocol states
maintains the access semantics to data in main memory and the protocol cache. Applica-
tions submit requests—e.g., to fetch remote data—to the protocol through a request queue.
A protocol also mees data among machine nodes using a pair of sengfenessage

queues.

Cost and performance are the criticattbrs in choosing whether protocol resources
should be implemented in hardwe or softare. At one gtreme, lav-cost implementa-
tions maintain the protocol cache, protocol state, and/or the request queue in main mem-
ory using softwre [JKW95,SFF94,CDG93]. These systems also use send/vecei
message queues on commodity reiwvcards, andx@cute the softare protocol on the
nodes commodity processor(s). At the othetreme, high-performance designs (as in
tightly-coupled custom hardawe support for fine-grain DSM) use SRAM to implement
the protocol cache and state, and tightly grage them with the request and message
queues and one or more embedded processors on a custom B@ardR[KW94]. Less-
integrated designs with har@ne support for only performance-critical resources are also
feasible based on the desired cost and performance tisd®BW96,BLA 94].

2.2 Protocol Execution Semantics

There are tw types of protocol »ecution semantics: single-threaded and multi-
threaded. This section describes the ®secution semantics and discusses theiandv

tages/disadantages.

2.2.1 Single-Theaded Potocol Execution

Single-threaded protocokecution is the carentional vay of executing softvare proto-

cols; the protocol simply runs in a single thread wrgnode. Softare protocols imple-

17
menting parallel programming abstractions on uniprocesstde machines—such as fine-

grain [SFL'94] and page-based sofive DSM [CBZ91,KDCZ93], messaging abstrac-
tions based on Aate Messages [WH95,CDG 93], and object-based distited systems
[BTK90,BJK95]—all use single-threaded protocakeution semantics.

In systems with single-threadedegution semantics, protocol resources (such as the
protocol cache, protocol state, and the messaging queues) are only accessible to a single
protocol thread. As such, there is no need for synchronizing and coordinating accesses to
the resources. Moreer, a single thread precludes contention and queueing of accesses at
the resources. Eliminating synchronization and queueing regwotEsol occupancy-

i.e., the time to handle a single protoco¢et [HHS 95]—decreasing\@rall communica-

tion time.

Single-threaded protocokecution is adantageous for applications that primarily bene-
fit from low protocol lateng. In lateng-bound applications, communication is generally
asynchronous, sporadic, and mainly relies on quick protocol round-trip time. Due to the
lack of protocol eent queueing at the protocol processiese applications can not ¢éak
advantage of parallel (i.e., multi-threaded) protoceére handling. Such applications,
however, may benefit much from avoprotocol occupanc characteristic of a single-

threaded protocolecution.

Single-threaded protocokecution alsodvors clusters of small-scale (“naw9 rather
than lage-scale (“&t”) SMPs. SMPs with only a small number of processors may not gen-
erate enough demand for soéing protocol ®ecution to justify parallelizing it. Grouping
processors into small-scale SMPs also increases the number of nodes in the system.
Because wery node recutes a single protocol thread, ay&arnumber of nodes reduces
the demand on protocokecution on a single protocol thread. On the conttarge-scale
SMPs place a lge demand on protocokecution and may maka single protocol thread

the communication bottleneck.

18
Hardware support can help accelerate single-threaded protaamitéon, alleiating the

protocol e&ecution bottleneck. Pipelineckecution of protocol wents (e.g., performing
protocol state update and memory access in separate pipeline stages) can help increase
single-threaded protocolxecution bandwidth. ifjht integration of protocol resources

with embedded protocol processors on a custoviceldK 94,RIW94] lowers protocol
occupany. Lateng-hiding techniques such as specwhatixecution of protocol handlers
[Muk98] and speculate accesses to protocol resources (FB4] also laver the protocol
occupanyg. A lower protocol occupancimproves protocol kecution bandwidth without

requiring multi-threaded protocoxecution.

2.2.2 Multi-Threaded Potocol Execution

Multi-threaded protocol»ecution allevs simultaneous uocation of seeral protocol
threads in parallel. Eecuting a protocol in parallel increases communication bandwidth
by reducing queueing delays at the protocol procebsgher communication bandwidth
benefits bandwidth-bound applications—i.e., applicatioxgerencing lage queueing
delays at the protocol processBarallel protocol recution alsodvors clusters of laye-
scale (rather than small-scale) SMPs becauge BMPs place high demands on protocol

execution.

Multi-threaded protocol »ecution also relaes restrictions on protocol compgity.
Many systems require protocols to quickly drain the oeknto avoid contention. Proto-
cols are forced to wa short handlers that simply igrate data from the nebsk into an
applications data structures and optionally send a reply messagiddionultiple han-
dlers to eecute simultaneously somkat relaes the restrictions on handler running
times. A higher handler running time alle for more aggress protocols that optimize
communication by making complestate transitions to reduce message frequencies
[GJ91], \ectorizing messages [FL'B4], performing simple computations4ABL90], and

creating/managing light-weight threads [WKE3]. Simultaneously >e&cuting handlers

19
also helps reduce netwk contention and backwd pressure by increasing the message

reception rate.

Many systems also require protocols tovéanon-blocking handlers tov@d network
deadlocks. Non-blocking handlerswever, restrict arbitrary synchronization between the
computation and the protocol. Some systems simidaynchronization and implement
intricate handler wocation schemes to makhandlers non-blocking [BCB5]. Others
allow synchronizing handleraubsignificantly increase handlexezution time in the case
where synchronization actually occurs [WHS3]. These systems use compimecha-
nisms to detect synchronization, and subsequenffgibthe protocol ¥ent and create a

separate computation thread i@eute the protocol handler

With the help of multi-threaded protocolexution, the system camad network dead-
locks while allaving for blocking protocol handlers. The system can specialize one or
more protocol processors twodusively run non-blocking handlers. By requiring protocols
to label protocol eents with the handlerxecution type (i.e., blocking or non-blocking),
the system can distinguish andeeute protocol handlers on the appropriate protocol pro-
cessors. The specialized protocol processors withygs be wailable to drain the netwk

thereby &oiding deadlocks.

Executing protocols in parallel also comes at a castllRl execution requires accesses
to (shared) protocol resources to be mutualblesive. Rarallelized lgacy network proto-
cols (such as TCP/IP) often implement mutuall@sion and synchronization using spin-
locks [SKT96,BG93,Kai93,HP91]. Igacy protocols, hwever, typically hare long run-
ning times and a coarse granularity of data structure accesses. As sucsieriieaa of

acquiring/releasing spin-locks does not impact trexall performance in these protocols.

In fine-grain communication protocols, handlergehgery short running times and typi-
cally move a fine-grain (e.g., 32-128 byte) data block between memory and message

queues, update the corresponding protocol state, and/oveeancentry from the request

20
gueue. Because of the handlers’ short running time, wBghead of acquiring/releasing

locks around message queues and protocol data structures could pedhibitrease
handler occupanc[BG93]. Furthermore, mong data between memory and message
gueues often dominates handler running time and synchronizing around message queues
would efectively serialize handlerxecution. As such, parallekecution of fine-grain

protocols requires Bfient support for handler synchronization.

Parallel handlerxecution may also result in contention for protocol resources. Multiple
handlers may simultaneously contend for common protocol resousraiePexecution
may also increase the access frequdngorotocol resources—e.g., due to protocol data
migration among multiple protocol processor caches [SKT96,TG89]—furkiaeeat-
ing the resource contention. In the absencefmieiit support for high-bandwidth access
paths to resources, resource contention may become a bottleneck rendering pecalel e

tion less beneficial.

High-bandwidth memory systems, viiver, are only characteristic of high-cost
medium- to lage-scale SMP seevs. These systems are typically equipped with inter-
leaved memory banks and out-of-order wide memauges allaving multiple protocol
handlers to simultaneously access memBgcause accessing memory often dominates
handler gecution time in fine-grain protocols,weperformance memory systems may

effectively serialize thexecution of parallel protocol handlers.

Providing high-bandwidth access paths to protocol resources in tighttyratésl cus-
tom devices also may significantly increase cost. Rather thawidadigh-bandwidth
access paths, some systems opt to specialize resource accesses to specific embedded pro-
cessors on the customwvitee [MNLS97,CAA95]. Specializing resource accessesy-ho
ever, may result in load imbalance in protocoleeution and déet the adantages of

parallel protocol gecution.

21
Resource synchronization and contention in multi-threaded proteecliion may also

significantly increase protocol occupgniesulting in poor single-thread performance.
Single-thread performance plays a major role for Iatdrazind applications which prima-
rily rely on quick protocol round-trip times anghgbit little or no queueing at the protocol
processarLower single-thread performance may also increase critical-gatugon time

and decreaseverall performance in applications withderload imbalance.

Parallel handler xeecution may also lead to out-of-order processing of protomoits.
Users often specify protocols in terms of finite-state machines. Tger ke state space,
the more comple the process of delgging, \erifying and maintaining of the protocol
code. Out-of-order message #elly and request processing forces protocol writers to
introduce intermediate machine states, resulting ingelaand more compteprotocol
[Cha97,GJ91].

2.3 Synchonization-Free Rarallel Protocols

Access synchronization is only necessary if the handlers indeed simultaneously access
common resources. Careful partitioning of resources among the protocol thieads w
guarantee mutuakelusion in accessing resources andiates the need for synchroniza-
tion. The protocol programming abstraction canvigl® mechanisms for labelling proto-
col events. The system can then dispatch a prota@itdbased on its partition label to the
corresponding protocol thread witkRobusive access to itswn set of protocol resources.

This approach alls parallel gecution of protocol handlers fovents with distinct parti-

tion labels.

Protocol resources can be partitioned based on application, programming abstraction, or
system characteristics. In maparallel programming abstractions such as fine-grain DSM
[KT94,RIW94], high-level languages [HKT92,BCR3,CDG93] or run-time systems
[JKW95] implementing a global address space, and object-based ulesiribystems
[BK93,BTK90,BST89], data entitiesxist in the form of immutable memory objects. A

memory coherence block in fine-grain DSM is aareple of an immutable objectali-

22
tioning the protocol resources at an object granularity in these systews jaittitocols to

access resources without requirinxglecit synchronization mechanisms.

Protocol resources for an object consist ekesal components (e.g., the object data in
memory or protocol cache, or the object protocol state). The protocol writer and the sys-
tem designer can makesource accesses corresponding to distinct objects mukally e
sive by careful implementation and storage of the object componemtgdtance, if a
protocol maintains the object state in the form of bittars—as in the directory state in a
typical DSM—then the machine must pile mechanisms for updating one objectate
bits without accessing other bits in thector Instead, if protocol state is maintained in
main memorythe protocol may he to store the state in a form that is in accord with the
machines natve memory access granularity—e.g., a byte orda~to guarantee mutual

exclusion.

To identify which object partition a protocolvent—i.e., a protocol message or a
request—is associated with, a protocol is required to label proteeotsewith partition
ids. Upon generating avent, a protocol may simply primle an id along with thevent
[BCL*95]. To dispatch a protocolent, the system must firdemultiples the event into a
partition based on the partition id. The system mustkitsan object partition to a pro-
tocol thread. Protocolvent demultiplging and binding mechanisms arery similar in
nature to those in parallelized netk stack protocols where message péslare demul-
tiplexed into protocol stacks [BGP4,DPD94] and protocol stacks are assigned to proces-
sors [SKT96].

In some parallel programming \@ronments, handler xecution may occasionally
involve accessing multiple object partitions. In fine-grain DSM, ¥angple, the majority
of protocol handlers manipulate protocol resources associated with a single memory
coherence block. Occasionallyavever, a protocol handler may map/unmap a page of
data including multiple memory blocks (e.g., to migrate a page betweendules). @

maintain consisterycof protocol data structures and application data, the handieu-e

23
tion must appear atomic. Because such handkesuée infrequentlythe system can sim-

ply execute the handlers sequentially yading them access to the entire set of protocol
resources. @ indicate a sequential handleteeution semantics, the protocol can label
protocol eents with special (resesd) partition ids. Upon recgng a protocol eent with
the special partition id, the dispatching mechanisms must first allgrotocol handlers
to complete xecuting, dispatch the protocolent with sequentialxecution semantics,
and wait for the sequential handler to completeaiting before dispatching other proto-

col events.

Similarly, a softvare fine-grain protocol may ¥ handlers that do not require access
synchronization. Accessing read-only remote data structures, for instance, in Split-C
[CDG"93] does not require handler synchronization because neither the protocol nor the
application modify the (read-only) data. By labeling protoseints with special partition
ids, multiple instances of such protocol handlers can simultaneotestyte in parallel

without ary dispatch and»ecution restrictions.

This section proposes aveb set of protocol dispatching mechanisms capladillel
dispatd queug(PDQ) for parallel @ecution of synchronization-free protocols. It qualita-
tively evaluates the PDQ design spectrum in terms of both cost and performance.
Chapters evaluates a high-performance implementation of PDQ in the xiootefine-

grain distrituted shared memary

2.3.1 Rarallel Dispatch Queue (PDQ)

Parallel dispatch queue is a set of mechanisms thatsaiwogrammers to write syn-
chronization-free parallel protocols. PDQ requires a protocol to group its data structures
into object partitions and label protocoleats with the corresponding partition id. By
simultaneously dispatching protocol handlers only from distinct object partitions, PDQ
allows parallel gecution of protocols without requiring synchronization of accesses to

protocol resources. PDQ also pides special partition ids for sequential handhexce-

global address

Protocol Event Queue

data/fault type

is dispatched?

X

message

no

y

message

yes

X

block access fault

yes

24

dispatch
v

Handling x Handling y Idle

Protocol Thread Protocol Thread Protocol Thread

Figure 22. Parallel protocol eent dispatch in fine-grain DSM.

tion semantics and for handlers with restriction-free dispatch semantics (as discussed in

the preious section).

Figure2-2 illustrates anxample of hav a PDQ implementation may dispatch protocol
events in parallel in a fine-grain DSM. There are types of protocolwents. Amessge
typically carries either a memory bloskdata or coherence information such as aaliin
dation. Ablock access faultorresponds to a request for a remote memory block (gener-
ated locally). A memory block constitutes an object partition and therefore both protocol
event types are labeled with a memory blsaifobal address. Protocol data structures are
grouped so that handler accesses to distinct memory blocks are mutakisye. Proto-
col events corresponding to (distinct) global addressaady may dispatch in parallel.
Multiple protocol @ents for a global addregsnust be handled seriallyen though there

is an idle protocol thread ready to dispatch.

To dispatch anwent to a protocol thread, a PDQ implementation must first demultiple
the eent into a dispatch queue representing an object partition. A dispatch queue must
also bind to a protocol thread before the thread canvemuaod handle arvent of of the
queue. Demultipbang events and binding dispatch queues can be performed either stati-

cally or dynamically based on the desired system cost and performance.

25
The simplest form of a PDQ implementation statically demukgse(i.e., inserts) an

event into protocol dispatch queues solely based on its object partitiom adlo&/ a pro-

tocol thread to reme and handle protocolents from a dispatch queue, such a system
also binds a protocol thread (statically) to a dispatch queue for the duration of an applica-
tion’s execution. Because protocolents in such a system argvalys handled by the same
protocol thread, a slwed distrilution of protocol eents can lead to a load imbalance

among the protocol threads.

To mitigate the load imbalance, a PDQ implementation can (statically) demulpige
tocol events into a lage number of dispatch queues andviste mechanisms for a proto-
col thread to (dynamically) bind to a non-empty dispatch queue. Although such a system
helps distrilnte the gent execution load among the protocol threads, dynamic binding to
dispatch queues may incur higheoheads déetting the adantages of protocol load dis-

tribution.

The highest-performance PDQ implementation statically binds a (single-entry) dispatch
queue to each protocol thread and dynamically demuw@pla protocolvent into a dis-
patch queue upon demand. A dynamic demukipte PDQ only inserts arvent into an
empty dispatch queue if there are nvergs with the same partition id in other dispatch
queues. Dynamic demultipimg offers superior performance by allmg events to
demultiplec into ary dispatch queue thereby eliminating load imbalance. Dynamic demul-
tiplexing, havever, increases hardave complgity and cost by requiring an assoorati
search of dispatch queues upon demulbtiplgz Becausewent distrilution among dis-
patch queues only occurs upon demand, dynamic demxitigl®bviates the need for

protocol load distribtion through dynamic binding.

The following section describes static and dynamic demukipéein detail and qualita-

tively evaluates the cost-performance tradis-bietween the tavschemes.

26
2.3.2 Statically Demultiplexing Potocol Events

Static demultiplging divides the object partitions among a set of protocol dispatch
queues based on their idaarfexample, with tvo dispatch queuesyen objects go to one
gueue and odd objects go to the other queue. Such a schemaniggduus because pro-
tocol events can be demultipted quickly and early entirely based on partition ids.
Because an object with avgn id is alvays demultiplged to the same dispatch queue, dis-
patch queues need not be searched for already-dispatched instancesot asseciated
with the object. By not requiring an assoasiatsearch, static demultipieg also reduces

the hardvare complgity and cost of a PDQ implementation.

Early demultipleing allows dispatch queues to be implemented as simple haedw
fifos on the netwrk interface card. Dispatch queues caretakantage of hardare cach-
ing techniques to increasgeat (e.g., messagefbering and werflov their contents to
memory (as in cachable queues [MFHW96]). Ayéainflux of protocol gents can quickly
demultiplec into the appropriate queues and spill to memory vemgabackvard pressure
from the network.

The simplest form of a PDQ implementation statically binds a single dispatch queue to a
protocol thread. Such a design is analogous tgesdional hardwre message queues in
parallel machines [Int93,HT93] where a protocol thread dispatateegseof of a single
message queue. Figuze3 (left) illustrates protocolwent dispatch for statically demulti-
plexed events and statically bound dispatch queues. An application or therkegener-
ate protocol eents labeled with object (partition) ids. There is a dispatch queue
corresponding towery partition id. There are also as matispatch queues as protocol

threads; each protocol thread polls on its designated dispatch queue.

Static binding may be adutageous because the protocol code and data structures can
exploit locality of references in the protocol processaeche hierarghMoreover, from a
design standpoint, it may impm@ both cost and performance to malertain hardare

protocol resources (e.g., such as the directory in fine-grain D&Malale only to a single

27

Protocol Event
Protocol Event

v — /) T,
/
)

bind & poll

Binding Hardware

bind & poll bind & poll

Protocol
Thread

Protocol
Thread

Protocol
Thread

Protocol
Thread

Protocol
Thread

Protocol

Thread

Static Binding Dynamic Binding

Figure 23. Static protocol eent demultipl&ing: protocol @ents can be both statice
demultiplexed and bound (left) or statically demultipéel and dynamically bound (right)
protocol threads.

processor [MNLS97,CAA95]. Such a processonowld be responsible for handling proto-

col events that require access to the specific resource.

Static partitioning of objects into a small number of dispatch queuesvép may
result in load imbalance. Alternegily, the protocol eents may be demultipted into a
larger number of dispatch queues, where each queue is responsible for a smaller object
partition. Reducing the size of object partitions\ador a better\ent load distrilation
among the dispatch queues. Because there are more dispatch queues than protocol threads,
dispatch queues must dynamically bind to protocol threads. Dynamic binding, therefore,
alleviates the load imbalance among the protocol threads byiagjothem to choose

among a lage group of non-empty dispatch queues.

Dynamic binding may also be amhtageous in systems which preempt the protocol

thread &ecution. There are protocol scheduling policies which alternate scheduling the

28
execution of an application and the protocol on the same processor (C)apiera

result, these scheduling policies may preempt a protocol teresetution. Dispatch

queues bound to preempted protocol threads are not accessible and can not be serviced by
other protocol threads potentially resulting in a load imbalanzenifigate load imbal-

ance in the presence of a preempting protocol scheduling,piblecsystem must aloa

protocol thread to dynamically bind to a dispatch queue when the thread is scheduled to

execute.

Figure2-3 (right) illustrates protocolvent dispatch for statically demultipied events
and dynamically bound dispatch queues. When idle, a protocol thread requests to bind to a
non-empty dispatch queue. Upon binding, the protocol thread polls and dispatafiss e
from the queue until the queue is emftige protocol thread subsequently relinquishes the

gueue and requests to bind to another non-empty queue.

Dynamic binding is common in systems with multiple protoeeint queues. Anxam-
ple of such a system is thgphoon-0 fine-grain DSM, that uses separate block access
fault and message reeeiqueues (as inyphoon-0 [Rei96]). Othen@mples are messag-
ing systems which use backup messagiéeb space in memory due to limited message
buffering on the netark interface card [Sch97,MFHW96].

Dynamic binding also alles for the use of cachable queues. Cachable queues typically
maintain information as to whether a queue is full or empty in theonlkeiwterface hard-
ware &en though the queue itself may mostly reside in memory [MFHW96]. A PDQ
implementation can simplyelep track of which cachable queues are non-empty and bind

queues to protocol threads accordingly

Dynamic binding also has its disadhtages. Dynamic binding requires mechanisms for
checking which dispatch queues are non-empty and maintaining a record of whether a dis-

patch queue has been bound to a protocol thread. Binding also iveungax which

29

Protocol Event

Protocol Event Queu

I

‘ Protocol ‘ ‘ Dispatch ‘ ‘ Queues ‘

poll

Protocol
Thread

Protocol
Thread

Protocol
Thread

Figure 24. Dynamic protocol eent demultipl&ing.

increases the protocolent handling time and reduces performance in the absence of

queueing.

2.3.3 Dynamically Demultiplexing Potocol Events

Static demultiplging reduces a PDQ implementatisriiardvare complgity but may
result in a load imbalance andMer performance. Dynamic binding helps mnatig load
imbalance bt may incur high dispatchverhead and decrease a protacsingle-thread
performance if dispatchingrents frequently require binding. Alternagly, a PDQ imple-
mentation can entirely eliminate load imbalance by demutiipde protocol eents

dynamically upon demand.

Figure2-4 depicts protocolvent dispatch for dynamically demultigked events. Eery
protocol thread is assigned a single-entry protocol dispatch queue. A protocol dispatch
queue temporarily holds theent being handled by a protocol thread. A protogeheis

inserted into a protocolvent queue upon aval. When a protocol thread polls on an

30
empty protocol dispatch queue, a protoaard is demultipleed from the protocolvent

queue and is subsequently placed in the protocol dispatch queue. Dexingipl@roto-

col event consists of selecting aveait from the protocohent queue and searching in the
protocol dispatch queues to guarantee that no other prot@uakevith the same partition

id are dispatched. A protocol thread clears the entry in its dispatch queue when it com-

pletes handling a protocolent.

Dynamic demultiplging increases a PDQ implementat®riardvare complgity by
requiring an associat search through the protocelat queue entries and the protocol
dispatch queues. Furthermore, assom@asiearch may be slowhen the search space is
large. 10 accelerate the search, the search space can be limited to a small number of entries
at the head of the protocotant queue. Limiting the search spaceyéar, may limit the
parallelism in gent dispatch and Veer performance. Alternatly, to alleviate the search

speed limitation the search can be initiated early (e.g., as soon\anaisalispatched).

Late demultiplging also complicates the use of cachable queues. Protetdl gueue
entries may spill to memory requiringent search to access memakpplications bene-
fitting from parallel protocol xecution typically &hibit bursty communication phases.
Memory spilling of queue entries will be frequent in these bandwidth-bound applications,
increasing the liglihood that thevent search will imolve accessing memar$earching
in memory to dispatchvailable protocol eents would be prohibitrely slov and may df

set the gins from parallel protocolxecution.

Customizing the PDQ design,wever, may allav for the use of cachable queues.Buf
ering seeral entries at the head of the protoosre queue in hardave (on the netark
interface card) allvs the search engine to proceed without frequently accessing the mem-
ory. Such a scheme alls the entire protocolent queue to spill to memory muchdila
cachable queue. Bief entries can be prefetched from memory uponvantedispatch to

hide the latenc of the memory access.

31
Protocol @ent search also only requires the use of object partition adseduce hard-

ware storage requirement or to increase the search space, a PDQ implementation could
maintain just the partition ids of\gral entries at the head of protocegéet queue. Upon

event dispatch, the system must fetch thené from memory and place it in the appropri-

ate protocol dispatch queue. Alternaty, the system can place the queue entryxnde

the protocol dispatch queue and let the protocol thread fetch the queue entry from mem-

ory.

To further reduce the har@dwe storage requirements for partition ids, a PDQ implemen-
tation using a cachableent queue can instead store a small number of bits from each par-
tition id. Such an optimization, @ver, may decrease the parallelism wreet dispatch
because the system magiskely identify independent object partitions to be identical,

thereby dispatching them serially

2.4 Related VWork

There is a myriad of literature on parallel implementations of stack protocols—such as
TCP/IP—in the neterking community [SKT96,BG93,Kai93,HP91]. These protocols
typically use spin-locks to guarantee mutuabglesve accesses to protocol resources
from parallel protocol threads. Because stack protoceis leeag handler running times,
the averhead of acquiring/releasing spin-locks can be amortizexdtioe long gecution of
a handlerIn contrast, fine-grain communication protocols—such as fine-grain DSM—
have protocol handlers with short running times and require méicgeet synchroniza-

tion mechanisms to pvade mutual gclusion for accessing protocol resources in parallel.

Many researchers ka studied early paek demultipl@ing in stack protocols using
classifiers either directly in hardwne [BGP94] or in softvare running on an embedded
network processor [DPD94]. &ket classifiers (statically) demultiplenetwork paclets
into the corresponding protocol stacks. Thakvouilds upon preious research orvent
demultipling by proposinglynamicdemultiplexiing mechanisms for dispatchingesats

(such as netark messages) to protocol threads.

32
Several studies on clusters of SMPs implementing fine-grain DSM conclude that the
high demand on softave protocol xecution due to multiple SMP-node processors can
malke single-threaded softwe protocol xecution the bottleneck [MNLS97,LC96]. One
such study aluates a limited form of parallel protocoleeution which statically demul-
tiplexes protocol eents into tvo parallel protocol threads [MNLS97]. The study reports a

high load imbalance between protocol threads and a utilizagipmigup to 65%.

2.5 Summary

This chapter proposes a taxonomy for safevprotocol ecution on a node of a paral-
lel system:
» Single-threaded protocokecution allevs for a single protocol thread taezute at
ary given time.
« Multi-threaded protocobecution allevs multiple protocol threads taxecute simulta-

neously

The chapter presents application and system characteristics that impact the cost-perfor-
mance trade-¢$ between the tw classes of protocokecution semantics. Both single-
threaded and multi-threaded protocréeution hae been pnéously studied in the con-
text of coarse-grain netvk stack protocols. Fine-grain sofive protocols, heever, hare
traditionally executed in a single thread omeey node of a distrilited-memory parallel
machine. Because of the short handler running times, fine-grain protocols can ngt emplo
cornventional high-werhead locking techniques (such as spin-locks) to synchronize and

coordinate parallel protocol threads.

The central contrilition of this chapter is a wel set of mechanisms, PDQ, fofieient
multi-threaded xecution of fine-grain softare protocols. PDQ is based on tleg &bser-
vation that careful partitioning of protocol resources—such as protocol cache and state—
among protocol threads alls multiple handlers to simultaneously access the resources
synchronization-free. The chapter presents a quaétatialuation of the design and

implementation spectrum for PDQ.

33

Chapter 3

Protocol Scheduling Blicies

Chapter2 discussed o protocol eecution semantics can impact the communication
bandwidth and thereby the system performance in SMP clusters. This chapbenes
the impact of protocol wocation werhead in systems thatexzute softwre protocols on
the SMP processors. Because both the application and theusoftivotocol ecute on
the SMP processors, scheduling saftevprotocol xecution may also impact the system

performance.

Early distriuted-memory parallel machines contained uniprocessor nodes
[HT93,Int90,AS88] and used a simple scheduling gatitalternating recution of com-
putation and the sofave protocol. An SMP node enables the opportunity to dedicate one
or more processors to onlyxexute protocol threads. Therefore, SMP nodes gse to

two basic classes of protocol scheduling poliaiieslicatedandmultiplexed

A dedicated polig (statically) schedules one or more SMP-node processors toxenly e
cute protocol threads. A multipled polig/ allows all processors to perform computation

and (dynamically) schedules one or more protocol threadgeimute when processors

34
become idle (e.g., due toawting for a remote request or synchronization operation) or

upon armval of a protocol message.

This chapter describes and qualitaly evaluates the tw classes of scheduling policies.
Section3.1 presents a description of theotalasses. Sectidh2 enumerates mechanisms
required to implement the policies. Sect®B discusses the choice of pglibased on
design and functionality requirements of thgé&irsystem. Sectio®i4 identifies applica-
tion and system characteristics thatda significant impact on the performance of poli-
cies. Sectior3.5 presents the polictrade-ofs from a cost-performance perspeeti
Section3.6 presents a summary of relatedrky and finally SectioB.7 summarizes the

chapter

3.1 Dedicated vs. Multiplexed Potocol Scheduling

A dedicated polig allocates one or more SMP processors to orgcae protocol
threads. By alays polling the protocolent queues when otherwise idle, dedicated pro-
tocol processors eliminate the need for message interrupts or polling by compute proces-
sors. In addition to decreasing the totaemnead, a dedicated palicnvokes protocol

handlers more quicklyeducing the protocol occupanand round-trip laterc

The disadantage of a dedicated palits that protocol processors mapste gcles that
could hae productrely contrituted to computation. Multipi@d policies address this
dilemma by using all processors to perform computatiowebher, when a processor
becomes idle it becomes a protocol procesSorce all processors may be computing,
either interrupts or (instrumented) periodic polling is still required to ensure timely proto-
col event handling. On the other hand, once a processor becomes a protocol processor

handler dispatch may be asi@ént as in a dedicated polic

Figure3-1 illustrates scheduling a simple request/reply protocol with single-threaded
execution semantics (i.e., one protocol thresecating on eery node) on a machine with

two dual-processor nodes. The figure illustrates protocol scheduling under a dedicated

35

N1CP N1PP N2PP N2CP

Suspend
Computation
A
Request

Round-trip
Latency Reply
Response

Résume Y
Computation .
Time

Figure 3. Protocol scheduling under a dedicated polic

policy. The compute processor N1CP submits a request to the protocol processor N1PP
which in turn sends a message. At the destination node, protocol processor N2PP immedi-
ately invokes the protocol handler and sends the appropriate Bpbause of the dedi-
cated protocol processarompute processor N2CP proceeds uninterrupted. Firlady

reply arrves and the handler runs on N1RRich then resumes the computation thread.

Figure3-2 illustrates scheduling the same request/reply protoctolubder a multi-
plexed polig.. The (compute) processor N1CP2 submits a request, becomes the protocol
processor and sends a message. When the message atrnode 2, all processors are
busy computing. Thus, an interrupt is generated causing processor N2CP1 to act as proto-
col processorThe requesting processor incurs tierbead of tw contet switches (to
and from the protocol thread) and the resulting cache pollution. The replying processor
additionally incurs theerhead of delering (and returning from) the interrupt. An idle
processor acting as protocol processor (N1CP2) can immediately handle a request by

another processor on the node (N1CP1), thereby eliminating the intereupéad.

36

N1CP1 N1CP2 N2CP1 N2CP2
J_ Suspend Computation
Schedule Protocol Thread
Request
Interrupt Computation
Schedule Protocol Thread
Reply
sher node Resume Computation
Response
Resume Computation

T "

Figure 32. Protocol scheduling under a multipésl poligy.

Multi-threaded gecution semantics s rise to a ariety of multiplexed scheduling
policies. While most multipbeed policies schedule a protocol thread when a processor
becomes idle, the policies mayfdif as to whether to interrupt the computation on one
processor when there are protocol threads running on others. Attograe to eliminate
excessve scheduling werhead, a polic may only interrupt the computation on one pro-
cessor when there are no protocol threads running on others. At thextit&ereg to min-
imize protocol inocation lateng, a poliy may interrupt the computation on all the

processors to schedule protocol threads as long as there are outstanding eesol e

3.2 Pmtocol Scheduling Mechanisms

Protocol ivocation and scheduling requires system mechanisms to detectyheddrai
protocol @ent—e.g., a message—voke the protocol, and to suspend/resume the compu-
tation (Figure3-1 and Figure3-2). To invoke the protocol, the system must\ide mech-

anisms to schedule a protocol thresaekecution. This section describes in detail the

37
protocol irvocation and scheduling mechanisms required by tbheclasses of scheduling

policies.

3.2.1 Detecting Potocol Events

To detect a protocolhent’s arrival, processors must either poll the appropriate queues—
e.g., a protocol request queue or a message queue (Eitjurne pagel5)—or the system
must deler an interrupt to a process&revious work has &tensvely studied the trade-
offs between polling and interrupts [BCR5,vECGS92]. This section briefly describes
the trade-dk and their implications on the mechanisms requiredficiegftly implement

either technique.

Polling is the natural approach to detecting protosehts under a dedicated pglic
Dedicated protocol processorsvals poll on the protocolvent queues and minimize pro-
tocol invocation @werhead by immediately detecting a protocedrd’s arrval. Polling,
however, may introduce highwerheads without the appropriate system support. Message
queues, for instance, typically reside on the pétwinterface card which is typically
placed on either the memorys(e.qg., in a tightly-coupled parallel machine [HT93,Int93])
or a peripheral s (e.g., in a machine with commodity desktop nodes [BEJ. To
check for message arails, a protocol thread typically uses an uncached memory opera-
tion to read the status of the message queue. Frequent polling using uncached accesses
may generate xeessve memory trefc. Peripheral déce accesses must also cross a

memory-to-1/O lns bridge which further increases the memary wtilization.

Hardware support can pvale eficient polling mechanisms. Cachable contrgiseers
[MFHW96,Pfi95] allav device ragisters to be cached in processor caches muelmidém-
ory. A device is responsible for walidating a cachable controlgister from processor
caches when the content of thgister changes (e.g., as in a messageahat the head of
the queue). In the common case of no messages, polling a cachable coistesl results

in a cache hit, eliminates the memounshransaction, and incurs minimaleohead.

38
To male (compute) processors poll the protooadré queues under a multigésd pol-
icy, the system either useseeutable editing [LS95] or a compiler [VECGS92]ristru-
mentan applicatiors executable with instructions to periodically poll the protoocdre
queues. Frequent polling through instrumentatiorweaer, may introduce significant
delays in the computation. Thidedt is exacerbated in the absence of system support for
efficient polling—such as cachable contrgjisters. System designers often opt to reduce
polling overhead by decreasing polling frequgnicereby sacrificing protocolwoncation

speed.

In the absence of support fofieent polling, a system mayvaoke protocols by deler-
ing an interrupt to a processdfetwork interface cards typically puxade mechanisms for
delivering an interrupt signal to either a processor or an interrupt ailBNt?s are typi-
cally equipped with programmable interrupt arbitration circuitry [int97]. Theseeake
can be programmed to implement basic interrupt digtob policies. A multiplged pol-
icy may program an interrupt arbiter to distiti® interrupts round-robin among the pro-
cessors. A dedicated pagtianay program the interrupt arbiter to only disitd the

interrupts among the dedicated protocol processors.

If the protocol is recuting at the user\el, the operating system must alsovle
mechanisms for defering the interrupt to the user protocol codastFusedeliverable
interrupts, havever, are only typical of specialized operating systems on parallel comput-
ers [RFW93]. Usedeliverable interrupts on stock operating systems sreraely slov
[TL94] and would be prohibitre for fine-grain parallel applications. Masking/unmasking
interrupts may also requirevioking system calls which incur higherheads. The operat-
ing system, haever, can be customized to pide low-overhead uselevel interrupt
masking schemes [SF@4,SCB93].

Systems may also primle a lybrid of polling and interrupt mechanisms &liminate
polling across the memoryb into a peripheral g&e, a processor can poll on a user

accessible cachable memory location instead. By customizing therkeimerface

39
device drier, a lov-level interrupt routine can signal a messagevakithrough a user

accessible (cachable) memory locatiotie@ively emulating a cachable controbister
[Scha7].

3.2.2 Scheduling a Rstocol Thread

Both dedicated and multipted policies require system mechanisms to schedule a pro-
tocol threacs execution. A dedicated poljcrequires a mechanism to bind a protocol
thread to a processofo guarantee the protocol thread iwas &ecuting, the system
must also pneent other (computation or protocol) threads fromoeiting on the dedicated
protocol processoWariations of such mechanisms are commomdilable in stock oper-
ating systems running on commodity SMP desktops anckrser@olaris, for>ample,
provides a system call by which a user can bind a (protocol) thread to a specific SMP pro-
cessor [SS92].

A multiplexed polig typically schedules a protocol thread faeeution when a proces-
sor becomes idle—e.g. aiting for synchronization—or when a messagevakinterrupts
the computation. @ schedule andxecute a protocol thread, the system musvigeo
mechanisms to sap the processor state corresponding to the computation with that of the
protocol thread. Commaodity operating systems running on SMPs also typicallgegoro

thread packages that allddynamic) scheduling of protocol threaxkeution [SS92].

In mary systems empiong fine-grain softwre protocols, a uségvel protocol ivoca-
tion can be as simple as a procedure call. Such systems require the protocol handlers to
have short running times andkexute to completion upon servicing a protoceére
(Chapter2). As a result, protocol handlexezution in these system does nowé&eatack
state (corresponding to nested procedure calls) behind. Rather than use a separate thread
stack, the softare protocol simply>ecutes on a computation threadtack much li&
trap/interrupt service routines in some customized operating systems [RFW93]. Such sys-
tems directly imoke a usetevel protocol through a procedure call within the computation
thread.

40
3.2.3 Suspending & Resuming the Computation

Both classes of policies require mechanisms to suspend (and subsequently resume) the
computation when an application submits a protocol request (e.g., to access remote data).
Under a multiplged polig/, a message aval may also interrupt and suspend the compu-
tation. The mechanisms ptided to suspend and resume the computation niegtdahe

choice of polig in a gven system.

In mary systems emplong software protocols, the application submits a protocol
request through a softwe handshak[JKW95,SFIF94,CDG 93,BTK90]. Upon a proto-
col request, the system can simply suspend the computation by making a processor spin
on a memory flag aiting for the request to be satisfied. The protocol signals request com-
pletion and resumes the computation by writing to the memory flag. A mxétipolicy
may also schedule a protocol thread while the computatioraigng for a protocol
request to completeoTdetect a protocol request completion and resume the computation,
the system must pvade mechanisms for a protocol thread to poll on the request comple-

tion (memory) flag, as well as, the protocetet queues.

Some fine-grain DSM systems use haadevsupport to detect when a processor is
accessing remote data [Pfi95,SB4]. In mary such systems, har@wne detects accesses
to remote data by inspecting transactions on the memaryUpon detecting a remote
data access, some systems generates &isor gception in response to the memonsb
transaction [Rei96]. Upon aub erroy the system s&s the processor state—e.g., the con-
dition code rgisters and the program counter—necessary to resume the computation
exactly at the point of thexeeption. These systems can also use a simple aeftaand-
shale for resuming the computation by simply making the processor spin on a memory

flag inside the s error gception routine iting for the remote data to arei

Modern commodity microprocessors do natals support precise (oven restartable)
bus error &ceptions [SP88]. In the absence of precisedrrors or to reduce communica-

tion overhead, some fine-grain DSM systems suspend and resunaeiitivegf(compute)

41
processor directly in hardwe [Rei96]. These systems suspend/resume the computation
by masking/unmasking thadlting processor from memorydarbitration. Such a mech-
anism would preclude using a multipled poliy because theatilting processor can no
longer access memory until the access violation is satisfied (i.e., the remote data is
fetched).

Under a multiplged polig, a message aval may require suspending the computation
to invoke a protocol. Message asails invoke a protocol either through interrupts or instru-
mented polling. An interrupt suspends the computation using systegpt®n mecha-
nisms similar to a s error Much like systems with a sofawe handshakfor protocol
request submission, instrumented polling suspends the computation by singiingn
the protocol scheduling mechanisms directly in safew In both the interrupt- and poll-
ing-based systems, the scheduling mechanisms can immediately resume the computation
(i.e., schedule the computation thread frecaition) once the protocol thread finishes

draining the eent queues and becomes idle.

3.2.4 Mechanismsdr Choosing a Plicy

An operating system may choose one protocol schedulingystatically at boot time
or allow users to choose a paliat runtime. Mawn parallel systems pwide mechanisms
to change and woke protocols that are optimized for specific communication patterns
during an applicatios’ execution [KDCZ93,CBZ91]. Likwise, systems can priae
application-l@el mechanisms to change angldke a scheduling poljcoptimized for a
given communication phase. During a computation-intenghase, an application may
choose to use a multipded poligy allowing all processors to contrite to computation,
while in a communication-inteng synchronous phase a dedicated patiay be prefer-
able allaving the system to pin a protocol thread to a specific processor eliminating proto-

col thread migration\erhead.

42
3.3 Design & Functionality Requiements

Systems may choose a pgliover another because ofveeal system design and func-
tionality requirements. A dedicated pglicnay be preferredver a multipleed polig
when specialized hardgwe resources (e.g., harawe support for fine-grain shared mem-
ory) are only accessible to specific SMP-node processors {@3JAmultiplexing such

processors may create a load imbalance in the computation thessbyntpperformance.

Some parallel anronments require protected messaging betweenithdil processors
across machine nodes [LHPS97,Int93). drovide protected communication, such sys-
tems allev access to protocol resources (e.g., such as themeiwerface board) through
the operating system. A multipded polig/ in such an enronment would require a sys-
tem call upon eery invocation of the protocol thread and may incur prohiéiyi high
overheads. A dedicated paolichovever, would eliminate the system calverhead by

always e&ecuting a protocol thread on a dedicated processor in system mode.

Statically scheduling processors t@eute protocol threads may also be preferable from
both design and maradturing standpoint. Dedicated protocol processors eliminate the
hardware and softare requirements for preempting the computation awmoking the

protocol threads thereby reducing design corifyl@nd turn-around time.

3.4 PRolicy Performance Trade-Off

There are seeral application and system characteristics that impact performance under a
specific scheduling polc A multiplexed polig/ favors applications that are computation-
intensve and systems in which theevhead of (dynamically) scheduling ancteuting a
protocol thread accounts for aghigible fraction of werall execution time. Coversely a
dedicated polig favors applications in which communication accounts for a significant
fraction of werall execution time. Systems with high protocol scheduliagrbeads also
benefit from a dedicated pojicThis section enumerateactors that ha a significant

impact on system performance under the policies.

43
3.4.1 Application Characteristics

Applications with lev communication-to-computation ratios (e.g., such as dense matrix
codes) canxhaust all the computational resourceailable on a node. These applications
exhibit good speedups ven with heay-weight page-based DSM protocols
[KDCZ93,CBZ91]. Such applicationsamld underutilize dedicated protocol processors,

wasting processorycles that could hee otherwise contrilted to computation.

Applications with lirsty communication patterns are als@hkto benefit from a multi-
plexed polig. Examples of such applications are those in which communication and com-
putation proceed in synchronous phases. Bursty communication is also characteristic of
shared-memory applications using safter prefetching, rel@d memory consistepc
models, and customized application-specific protocols. Bursty communicatios #hle
processors to schedule protocol thread(s) once for the duration of the communication,

thereby eliminating werhead.

The choice of polig also depends on the communication and computation granularity in
an application. Seeral classes of important applicationghidit fine-grain and asynchro-
nous communication. Examples of such applications axétgtianal N-body simulation
[BH86], cholesk factorization [WOT'95], and fine-grained sparse-matrix methods
[CSBS95]. These applicationgmoit parallelism by werlapping fine-grain communica-
tion and computation among machine nodes. By balancing the load between the computa-
tion and protocol processors, fine-grain applications with asynchronous communication
favor a dedicated poljc Dedicated protocol processors also eliminate the protocol thread

scheduling verhead which is frequent in such applications.

3.4.2 Owerhead in a Multiplexed Rolicy

There are tw types of gerhead in a multipleed polig/: scheduling werhead to imoke
a protocol thread upon aral of a protocol eent, and cache interferenceeochead

between the computation and protocol thread. Processors aifbetavily schedule a

44
protocol thread when tlgebecome idle (e.g., whileaiting for a protocol request or at a

synchronization), or woluntarily through a schedulingvacation mechanism such as

interrupts or instrumented polling.

Naive implementations of usével interrupts and instrumented polling may incur high
overheads (see Secti@2) and result in poor performance under a muitgadepoligy.
Large-scale SMPs increase theelikood of one or more processors being idle, signifi-
cantly reducing the frequenof interrupts [FW97¢,KS96]. Instrumented pollingwho

ever, aways incurs a minimumverhead of checking for protocolents.

Executing protocol threads on a compute processor may pollute the processtonc-
tion [MPO95] and data [PC94] cache hieratchA dedicated polig has the adantage of
providing a separate set of instruction and data caches for the protocol thread to use,
avoiding cache interference with computation. Cache interference under a rretiple
policy, howvever, may be minimal depending on the number of cache references made the
protocol thread. Fine-grain communication protocols (e.g., a coherence protocol in fine-
grain DSM) hae handlers with ery short running times and typically only access a fine-
grain (e.g., 32-256 bytes) memory block and update the corresponding protocol state. As

such, these protocols aredli to incur minimal cache interference under a mulkipde

policy.

Network interfaces equipped with data caches (such wyshdons block luffer
[RPW96] or CNIs cachable queues [MFHW96]) aligorotocols to leae the protocol
data in the netark interiace cache. A requesting (computation) processor may directly
load the data from the netwk interiace cache reducing the protocol threagiche inter-
ference with computation. Protocols may also induce a pesdache interference
[FW97a] under a multipkeed poligy by leaving the requested data in the requestddta
cache if the requesting processor is also the processor running the protocol thread
[FW97¢c,SFH97].

45
3.4.3 Multiprocessing & Multithreading

Both the dgree of multiprocessing (i.e., the number of processors per node) and multi-
threading (i.e., the number of threads running on a single compute process@¥aeal
effects on the polig trade-of. More processors increase theelikood that at least one
processor is idle (e.g.,aiting for a protocol response). Under a multiela polig/, such a
processor @luntarily schedules and runs a protocol thread, eliminating the scheduling
overhead upon arral of a protocol eent. With parallel protocol dispatch support (e.g.,
using the PDQ mechanisms), multiple processors can aatetrib protocol xecution,
significantly increasing the communication bandwidth. Dedicated protocol processors,
however, also sae the cache interferenceeshead which may impve performance in

the presence of higtub utilization.

By parallelizing the computatiowithin a node, multiple compute processors also
increase th@pparent communication-to-computation ratio. Multi-threading the compute
processors also increases the apparent communication-to-computation ratierlag-o
ping communication with computation among multiple threadsa@RgGHG91]; a pro-
cessor can schedule angeeute one computation thread whilaiting for a protocol
request for anotheA dedicated polig increases the communication bandwidth by elimi-
nating the protocol scheduling arxkeution werhead &oring a higher apparent commu-
nication-to-computation ratio. Lge-scale SMP nodes also reak dedicated polc
advantageous by reducing the opportunity cost (in lost computation) of the dedicated pro-

tocol processors.

3.4.4 Potocol Weight

Protocol weight is a qualitat measure of the protocekxecution time. It is a function
of the protocol complety, the architecture of the netwk and the netark interface
device. Protocol weight &cts the polig trade-of because for heg-weight protocols
(i.e., protocols with long running times) theeoheads seed by a dedicated polidecome

an insignificant fraction of theverall communication time. Thus, a dedicated polic

46
should be more beneficial for light-weight protocols (e.g.yeatiessage-based protocols

[JKW95,CDG93]) than for heay-weight protocols (e.g., page-based DSM
[KDCZ93,CBZ91,LH89]). This runs counter to the common intuition that dedicating a

protocol processor helpsfdbad heay-weight protocols from the compute processor

Protocol compleity is a function of the high-ieel abstractions required by an applica-
tion. An application may require simple point-to-point messaging as ineAlglessages, a
shared global address space as in DSM, or more general models in which the protocol per-
forms arbitrary computation as in RPC [BN84]. Mapplications and systems also opt
for higher protocol complaty to reduce the frequepcof messaging. Adapt cache
coherence shared-memory protocols, for instance, minimize communication by monitor-
ing the sharing bek&r of data at runtime and selecting one out of ynamotocols suit-
able for enforcing coherence on a&eagi data item [FW97b,CF93,SBS93,BCZ90].

Network interface cards may pvade hardvare support for high-leel abstractions. df
instance, CNE [MFHW96] hardvare maes data in cache block granularities between the
network interface card and processor cachgghbon-15 [RPW96] shared-memory hard-
ware atomically mees a fine-grain memory block between memory (or processor caches)
and the netark and updates the corresponding protocol state. SimiRMA engines
[BDFL96] decouple constructing a message (performed by the protocol) from the actual
data transfer (performed by the engine). Thevabroechanisms all reduce protocol com-

plexity and thereby protocol weight.

Low-level messaging services also conitdto protocol compldty. Parallel applica-
tions typically require lav-level messaging services such as checksumming, reliable del
ery, in-order delery, flow control, and fragmentation and reassembightly-coupled
distributed-memory machines usually pite such services in hardwe both at the el
of the netwark switch and the intesite card [HT93]. Commodity netrks, havever, typ-
ically do not implement these services entirely in hamvand require sofave protocols

to provide some of the functionality [KC94]. Thesenidevel protocols either run on a

47
high-speed embedded processor on the oritimteriace card [BVVE95] or musixecute

on a host (node) processor along with higlkeel abstractions [Sch97].

The netvork interface cards location with respect to a processor al$ects the proto-
col weight. Tghtly-coupled parallel machines \etraditionally positioned the netrk
interface card on the memory®to preide a lav-lateng access path from the processors
to the netwrk. Current commodity netwk interface cards are placed on peripheteds
which require crossing the memorysothrough an I/O bridge to access wicke Periph-
eral addresses are also typically protected. As such, accessing thekribtaugh a user
level protocol requires cging message data multiple times among protection boundaries
[Sch97]. Netverk interface cards placed on peripherasés can significantly increase the

protocol weight.

3.5 Policy Cost-Rerformance Trade-Off

System designers often use cost-performance rather than performance as the primary
metric for ealuating a design. Cost-performance is important when comparing thg polic
trade-of because adding one or more dedicated protocol processorsveas ahproe
performance gen lage enough SMP nodes. Cost-performanceeler, only improves
if the performance impr@ment is lage enough to édet the additional cost of the dedi-
cated processors [WH95,FW94].

Whereas the mana€turing cost of computer products is typically related to the cost of
components, cost from a custonseperspecte is related to price which is also dictated
by marlet forces [HP90]. High-performance products, for instance, tendget temaller
markets and therefore carry ¢@r magins and higher price premiumsarBllel machines
can either use small-scale desktop SMPs or medium-ge-tarale SMP seevs as bild-
ing blocks. Depending on the gtee of multiprocessing, SMP products can belong to
either a lev-magin desktop or high-mgm sener marlet. Adding (dedicated) protocol
processors to high-premium SMPs may considerably wepperformance while not sig-

nificantly increase the cost, resulting in a coftaive system.

48
3.6 Related Wrk

Process and thread scheduling has been a topic of considerable interest in parallel sys-
tems research community [ABLL92,VZ91,DBRD91,SL90,TG89]. Similawdgearchers
in the netwarking community hee extensvely studied scheduling policies for parallelized
network communication protocols [SKT96,BG93,Kai93,HP91]. Other researchees ha
studied scheduling VM-based softe DSM protocols [KS96,ENCH96] on SMP clus-

ters.

This thesis primarily focuses on scheduling fine-grain communication protocols. In the
past, seeral systems pxading software fine-grain communication protocols on SMP
clusters hee emplyed a dedicated scheduling pglibecause of special hardre
resources\ailable only to a particular SMP-node processor [C93, or to preide efi-
cient protected communication bywalys running the protocol thread in system mode
[Int93,LHPS97], or to simply eliminate the coxttswitch overhead between computation
and the protocol thread [RPW96].

This thesis is the first to propose a taxonomy for protocol scheduling policies. The thesis
also ealuates system and application characteristics tfettaferformance and cost-per-

formance trade-&§ between the tavclasses of taxonomy

3.7 Summary

Rather than prade embedded processors on a custowcddo eecute softwre proto-
cols, some cost-fefctive parallel computerscecute the protocols on the noslebommod-
ity processarThis chapterwaluates scheduling policies for soétse protocols in a cluster
of SMPs. A taxonomy of scheduling policies defines tlasses of policies:
* A dedicated polig (statically) schedules one or more SMP-node processors to only
execute protocol threads,
* A multiplexed polig/ allows all processors to perform computation and (dynamically)

schedules one or more protocol threads<azete when processors become idle (e.g.,

49
due to vaiting for a remote request or synchronization operation) or upmalasfia

protocol message.

This chapter describes in detail theotelasses of scheduling policies. Choice of polic
may depend on the required mechanisms to schedule awigk iprotocols, the system
design and functionality requirements, or the performance and cost-performance trade-
offs between the scheduling policies. The chapter identifiesjhapplication and system
characteristics thatfaict the performance tradef®between the tapolicies:
» Application’s characteristics such as communication-to-computation ratiowastt b

ness in communication,

* Scheduler imocation and thread migrationerhead in a multipleed polig,
* Degree of multiprocessing or multi-threading,
» Protocol weight which is a function of protomtompleaity and netwark architecture

and speed.

50

Chapter 4

Scheduling Plicies or a Single-Threaded Potocol

Chapter2 and ChapteB presented a taxonomy for softse protocol xecution seman-
tics and scheduling policies respeety. This chapter presents avatiation of protocol
scheduling policies for single-threadexieeution of fine-grain softare protocols on a

cluster of small-scale SMPs.

Small SMP systems—such as the Intel Pentium-Pro-baseérserare becoming
widely available, making them attragé huilding blocks for parallel computers
[LC96,WGH"97,CA96]. Some cost-ffctive multiprocessor designs implement commu-
nication protocols in softare and use little or no custom hagde support for protocol
execution [SGA97,SFFD7]. These machines interconnect SMP nodes usingvediati
simple commodity netark interfaces [BCF95] and perform most protocol processing in

a single protocol thread running on gukar SMP-node processor

Much like other OS services, communication protocols eynalscheduling policon
SMP processors. One SMP processor may either be statically scheduled (i.e., dedicated) to

run only the protocol thread for the duration of an applicatieecution, or ap SMP-

51
node processor performing computation may be dynamically scheduled (i.e., medtjple

to instead run the protocol thread for a while.

Several proposed and/or implemented systems dedicate one processor specifically for
protocol processing because of special hardwesourcesvailable only to a particular
SMP-node processor [CAAS], or to praide eficient protected communication by
always running the protocol thread in system mode [Int93,LHPS97], or to simply elimi-

nate the conte switch overhead between computation and the protocol thread [RPW96].

While a dedicated protocol processor can inaprcommunications performance, it pro-
vides little benefit for compute-bound programs. These applicationklwather use the
dedicated processor for computation. In a recgpeement, Vémble, et al., demonstrated
that using the &agons protocol processor for computation (via a-evel cross-call
mechanism under SUNMOS) imped performance on LINKCK by more than 50%
[WG94]. Similarly, others hee shavn that a dedicated protocol processorwvtes little
benefit for systems with Ige communication latencies angecheads as in M [KS96]
or HIPPI [ENCH96] netwrks.

In this chapterl ask the questioriwhen does it mai sense to dedicate on@pessor in
eadh SMP node specifically for giiocol pocessing?’The central issue is when do the
overheads eliminated by a dedicated protocol procesfsat @k lost contribtion to com-
putation? | address this question byamining the performance and cost-performance

trade-ofs of two scheduling policies for a single-threaded protocol:

» Fixed a dedicated policwhere one processor in an SMP node is dedicated for proto-

col processing, and

* Floating, a multiplexed poliey where all processors compute and alternate acting as

protocol processor

To evaluate the tw scheduling policies, this study models a fine-grain DSM on an SMP

cluster The system implements intra-node communication through the MOESI coherence

52
protocol on the SMPUs, and uses a sofine DSM coherence protocol tetend the fine-

grain shared-memory mechanisms of an SM&dxross a clustérhe coherence protocol
used,Stahe [RLW94], is an ivalidation-based full-map directory protocol which uses a
portion of each nods’main memory to cache remote data muotl 8kCOMA [HSL94].
Stache implements caching by allocating data at page granulatritgdintaining coher-
ence (within the page) at cache block (e.g., 32-128 bytes) granufditityugh the rper-
iments in this study are in the coxttef Stache, the results are applicable to more general

software communication protocols.

Much like other simple request/reply protocols [CI3G,JKW95], Stache implements
protocol actions using Aste Messages [CD®3]. Active messages require theeution
of the handlers to appear atomic. Stache simply guarantees this requiremestuiing

the protocol in a single thread oveey node.

The net section describes in detail the protocol processing mechanisms and theknetw
interface architecture. Sectidn2 describes the twprotocol processing policies in more
detail. Sectio.3 present performance results from a microbenchmark and a mac-
robenchmark x@eriment, respectely and uses a simple cost model valeate poliy
cost/performance. Secti@dn4 presents a discussion of relatearky Finally, Sectiord.5

concludes the chapter

4.1 Protocol Execution & Scheduling Mechanisms

Fine-grain software coherence protocols require mechanisms for detecting a remote
block miss and a subsequent dispatch of a protocol hamil@ocol actions are also
invoked through messages across machine nodes and require mechanisms for sending a
message and dispatching the corresponding protocol handler upsingetee message.
Systems may prade mechanisms for remote block miss detection and protocol handler
dispatch either in softare or hardare [SFLT94]. While the results of this study are
largely independent of whether these mechanisms are implemented irafe@wsoft-

ware, we assume a hardre implementation via ayfphoon-1 board [RPW96].

53

Block Access Faults Incoming Messages

; ‘ Send Queue

Protocol Event Queue A

Interrupt

Fine-Grain |

POR | | BlockBuffer |

Memory Bus

Figure 4. The Typhoon-1 netwrk interface.The netvork interface contains a protoc
dispatch rgister a block lnffer, and a message send queue. There is a single SRk
maintaining the fine-grain tags for cached remote data, and a protocol dispatch queue r
block accessaiults and incoming messages on the node.

Figure4-1 illustrates the architecture of gphoon-1 netwrk interface. An SRAM
device maintains the fine-grain tags used to enforce access control semantics on shared-
memory loads and stores that miss in the cache. The board snoops on cache fills appearing
in the form of memory transactions on thestand performs a tag lookup. Upon access
violation, the board enters thaulting address, the access type, the &gey and the
address of the protocol handler to be dispatched iptotacol ezent queueThe protocol

event queue also maintains the incoming (@jtmessages from other nodes.

The protocol thread polls onpaotocol dispath register (PDR) which is the head entry
in the protocol dispatch queue. The protocol dispatgister is cachable controlgister
[RPW96,MFHW96] located on theypphoon-1 board. Cachable contrajisters eliminate
excessve poll trafic on the memory s by allaving a processor to poll on avlee reagis-
ter directly in its cache.yphoon-1 notifies a processor when an entry has been inserted in

the protocol gent queue by walidating the cached cgmf the protocol dispatch gester

Typhoon-1 is also equipped with a bloakffier; a small direct-mapped cache that esrv
as an intermediary storagevie for moing memory blocks between the naglaiemory

hierarcly (e.g., processor caches or main memory) and the message queuegngemo

54
placing remote data from/into a node also typicaliyoives modifying the state of the

block maintained by the fine-grain tags. Shared-memory access semantics dictates that
moving data and updating the corresponding talyie’ should appear txecute atomi-

cally. The block liffer implements this atomic operation directly in haadsv

To allov dynamic scheduling of the protocol thread upon messagalaffyphoon-1
also allavs invoking interrupts on the memory$®. A memory-mapped interrupt arbiter

device distritutes interrupts among the processors in a round-rabhidn.

To avoid invoking high-averhead system calls for masking/unmasking interrupts in a
critical section the system uses awvdoverhead softare interrupt masking scheme
[SCB93]. Each computation thread is assigned a aser system-accessible flag in mem-
ory to set and reset upon entering axitireg a critical section. When an interrupt aes
in the middle of a critical section (determined by checking the flag), the system sets an
interrupt-pending flag and masks further interrupts. Upating the critical section, a
computation thread checks for pending interrupts. If an interrupt is pending, the computa-
tion thread clears the pending flagyakes the protocol code to handle messages, and
unmasks interrupts. This interrupt masking scheme optimizeséhneead in the common

case of no interrupts in a critical section to a small number of memory accesses.

4.2 Prmotocol Scheduling Blicies

In this study we examine two scheduling policies for protocol processifged and
Floating. Because Stache is single-threaded, each node is limited to one progeesstr e
ing protocol gents at ay one time. Rgardless of the policwe say that this processor is

actingas protocol processor

The Fixed poliy dedicates one processor of a multiprocessor node to perform only proto-
col processing. The dedicated protocol processecwges all the remote miss and &eti
message handlers. Bynalys polling the netark when otherwise idle, the protocol pro-

cessor eliminates the need for message interrupts or polling by the compute processor(s).

55
The disadantage of dedicating a protocol processor is that it nestengcles that could

have productyely contrituted to computation. The Floating pgliaddresses this dilemma

by using all processors to perform computationyév@r, when one becomes idle (e.g.,
due to vaiting for a remote request or synchronization operation) it assumes the role of
protocol processoiSince all processors may be computing, either interrupts or periodic
polling are required to ensure timely handling of\acthessages. On the other hand, once

a processor assumes the role of protocol processmts much lik a dedicated protocol
processarWe use the ternsingleto refer to the special case of a single processor (per

node) performing all protocol processing as well as all computation.

4.3 When does dedicated tocol processing mak sense?

In this study | pose the question: “when does dedicated protocol processing mak
sense?” | address this question agleating when one of our twprotocol processing pol-
icies performs better or is more costeetive than the othewhile there are manfac-
tors—including system sofve complgity, and protection [LHPS97]—I belie that

performance and cost-performance are important.

To quantify cost-déctiveness, | use the simple cost model fromod/and Hill [WH95].
A change, e.g., adding a second processarost-efective if and only if the increase in
cost (or costup) is less than the increase in performance (or speedup). In thiz@apgr
a system isost-efectiveif its cost-performance ratio is less than a uniprocessor sioéle’
system ignost cost-ééctiveif it achieves the lavest cost-performance ratio. This simple
cost model assumes that a processor represents 30% of the cost of a uniproce%sor node.
Thus, a tw-processor node and ad#processor node Y costups of 1.3 and 2.2, respec-

tively.

1. The incremental cost of an additional processoieg greatly depending on the processmmory hierarch peripher-
als, and theeerall system cost per node. In igarases the incremental cost may be less than 30% which will shift cost-
performance indvor of Fixed.

56
To answer “when” one polcis better than anothdruse results from microbenchmark

and macrobenchmarkgeriments to compare pojigperformance. Thexperiments ary
application and system characteristics thaehafirst-order impact on pojiperformance

(as discussed in Chapt&.

4.3.1 Methodology

| use the simulation methodology and system parameters described in $e&ficio
simulate an SMP cluster interconnected withyphbon-1 netwrk interiace. This study
models a memory system characteristic of small-scale SMP desktops and therefore
assumes a single memory bank with a fewntry write-tuffer in the memory controller
Unless specified otherwise, the simulator assumes an intexenpiead and aus error

trap overhead of 200ycles, characteristic of carefully tuned parallel computers [RFW93].

4.3.2 Microbenchmark Experiment

In this section | ealuate the Figd and Floating policies using awsimple synthetic
benchmarks. W base our benchmarks on a simple request/reply protocol, similar to that
employed by mawg parallel computing paradigms [CD&3,JKW95,CBZ91,RW94].

The benchmark times theexution of a tight loop running on agwode machine. Each
iteration alternates between computing and issuing a remote request using a simple
request/reply protocol.dlinduce cache fects, computation is interleed with uniformly

random accesses to a {faie) processespecific sgment of the address-space. The size

of the sgment is equal to the size of the processor cache. The compute processor caches

warm up before the start of measurements.

The periment uses tarequest/reply protocols with tkfent protocol weights. Aull-
handler protocol represents the lightest-weight protocol aeltike in the simulated sys-
tem. The protocol handlers do nothingt Isend the appropriate actimessage, i.e., the

reply handler simply sends a null message back to the requester

57
A fetdh-blodk protocol is representag of the medium-weight protocols needed to sup-
port fine-grain distribted shared-memory systems [JKW95,5%4]. | do not consider a
heavy-weight protocol, e.g., page-based DSM, since priarkvindicates that a dedicated
protocol processor will be of little use [KS96,ENCH96]. The processors randomly request
a 128-byte block of data from the yate sgment of a remote processdihe protocol
handlers manipulate the memory block state in a protocol table. Both the data block trans-

fer and accesses to protocol table contalio cache pollution.

Let Ly, to be minimum round-trip lategaunder the Figd poligy. Under the modeled
system assumptions, the protocol round-trip times argslf@r the null-handler protocol

and 6.2us for the fetch-block protocol. \ary the follaving parameters in thexperi-

ment:
C = mean computation time between requests,
U = thread compute-utilization in the absence of protocol contef@ge+L,;)),

Ojt = overhead of handling an interrupt.

The periment uses arxponential random stream with me@rto generate computa-
tion times, and adjustS to derve \arious \alues forU. To vary O;, the system delays
executing a thread upon an interrupt for &fnumber ofycles. The number of iterations
in a loop is inersely proportional to the number of compute processors per node, e.g.,
Floating on a tw-processor node and Epk on a fouprocessor nodexecute half and

one-third as maniterations as Single, respeey.

Figure4-2 (left) compares the performance for the null-handler protocol in one and tw
processor node machines. The figure plgé&seation times of Single and Floating normal-
ized to Fied as thread compute-utilization increases. Pointgseabe horizontal line
indicate that Floating (Single) perform®mse than Figd. The thick and thin lines depict
high and lev interrupt werheads, respeeély. The graphs for Single (solid c@s) illus-
trate the intuitre result that communication-intemsiprograms (small) benefit more
from a dedicated protocol processor than computation-inermiograms (lae U).

When the program becomes communication-bo&< L), hovever, the compute

58

Null-Handler Fetch-Block
4.0 e — 4.0 L e
Fixed Better — Single, high O
3.5¢ 13.5] — Single, low Oj
GE) - = = Floating, high Oj;
= 3.0 13.01 - - -Floating, low Oint
c
2 257 1257
]
[S]
o
o 2.0f 1207
]
(]
g 15 I 1 15 I /—\
5
£
S 1.0 - to——
05} _ - fost T
Floating Better
00—F"F5 "5 "5 "~z ~5 oo 00—F"—F" ">~~~
0.1 0.2030405060.7080.9 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Compute Utilization (U) Compute Utilization (U)

Figure 42. Relatve performance witharying interrupt serheadThe figure compare
execution times of Fied and Floating anst thread compute-utilizatiotJ). The graphs plc
execution times of Single and vaprocessor Floating normalized tookprocessor Fied for two
values of interruptwerhead Qj); low and highO;,; correspond toalues of 0.5us (200 gcles)
and 5pus (2000 gcles) respectely. Values oer the horizontal line at 1 indicate bet
performance under the Fed polig.

processor in Single becomes idle and acts dikprotocol processareducing the number
of taken interrupts. The graphs also indicate that, when interugohead is high,ven a

small number of interrupts eerely impacts thexecution time.

The dashed cues plot the normalizedkecution time for a te-processor node under
the Floating polig. With high interrupt werheads, the Floating pojibehaes like the
Fixed poligy; the two (compute) processors alternate acting as the protocol processor elim-
inating the interrupt werhead. Protocol thread migrationechead, hwaever, slightly
reduces performance under Floating re&ato Fixed. With low interrupt werheads, there
is little benefit from a dedicated protocol processnt potential @in from impraing

computation time. Under Floating, both processors perform computation, resulting in sig-

59
nificantly better performance at higher compute-utilizations. This is not surprising since

the microbenchmark is perfectly parallelizable.

Figure4-2 (right) compares the performance of the policies for the fetch-block protocol.
The figure corroborates the intuition that a dedicated protocol processor is more beneficial
for light-weight protocols than for hegweight protocols. The result folls from the
obsenation that Fied does best when the interrupediead is much greater than the
round-trip lateng (Oj; >> Lyin). This result suggests that dedicated protocol processors
may become more attraati as interrupt latencies go up (dueastér processors) and pro-

tocol weights go don (due to &ster netwrk interfaces).

This graph illustrates the surprising result that for a communication-bound program and
low interrupt ewerhead, Single outperforms Eck This occurs because our synthetic pro-
tocol alvays reads message data into the protocol processache. Under Fed, the
compute processorvahys misses on message data, resulting in a cache-to-cache .transfer
Corversely under Single, there is only one cache, so the transfer is eliminated. Fetch-
block is a simple request/reply protocol and does netaakantage of yphoon-15 block

buffer for direct cache-to-cache transfer of the data block.

Unlike the null-handler protocol, the Floating pglimaintains its acdantage wver Fixed
even at lav compute-utilizations. Garheads in the fetch-block protocol account for an
small fraction of communication time. Monew, at lov compute-utilizations thex&a
compute processor in Floating parallelizes communication by doubling the number of out-
standing requests per node. Much as in Single, it is alsly ikat an acting protocol pro-
cessor under Floating reads message data into the requesting compute processor cache,
eliminating the rtra data transfeiThe combined &ct of the abwe improses Floatings

performance wer Fixed at lav compute-utilizations.

4.3.2.1 Multiple compute pcessos per NodeMore processors per node helps Floating

by increasing the lélihood that an idle processor is acting as protocol proceBker

60

Null-Handler Fetch-Block
1.8 T T T T 1.8 . . : .
170 T TN 1 1.7 Fixed Better
16f 7 N 11.6¢
g . ,) / ‘\\ \ \\ .
= 15¢ s \ \ 1157t
5 14} N 11.4;
3 1.3¢ SN 113}
e Ny gl .
X o12f .. 112f ——="= —~.
g 11 RN 111t T .
g7 B R
z 10 1.0 e BN
£ BRI
S 09(109} -
— — - — 5procs ..
081 - — - 4procs 108}
0.7 ------ 3 procs 107¢
067 —— 2procs 1 0.6 Floating Better
0-57510203040506070809 *° 0102030405060.70809
Compute Utilization (U) Compute Utilization (U)
Figure 43. Relatve performance witharying number of processors/nodée figure

compares xecution times of Fied and Floating anst thread compute-utilizatiold). The
graphs plot Floating’ execution time normalized to Fexl for \arious number of processors |
node QOj,; = 0.5us). Values wer the horizontal line at 1 indicate a better performance undt
Fixed polig.

added benefit of arxra compute processdrovever, diminishes with a lgrer number of
processors. Multiple compute processors also increase the contention for the single proto-
col processorUnder lav compute-utilization, Floating approximates &dlx since an act-
ing protocol processor eliminates the interrpgrbead. Figd, havever, provides better

throughput by also eliminating th@erheads associated with protocol thread migration.

Figure4-3 (left) plots e&ecution time for the null-handler protocol under the Floating
policy normalized to Figd, while \arying the number of processors per nodeedrigen-
erally outperforms Floating particularly with three or more processors per node; greater
demand for protocol processing with aglar number of processors neskcommunication
the bottleneck. Because the dedicated protocol processor minimizes protocol processor
occupany, Fixed pravides greater throughput and can supportgelanumber of compute

processors. The graphs indicate that performance undedt Ean significantly impre,

61
by up to 75%, wer Floating. Vith four or more compute processors, Floatiadsfto

improve performancewer Fixed een at a 90% compute-utilization.

At low compute utilizations, an increase in the number of processors increases Float-
ing’s performance relat to Fixed. Multiple compute processors running communica-
tion-bound applications increase protocol processor utilization and result in queueing at
the protocol processoFixed periences queueing more quickly than Floating because
request rates in Floating remairwker than those in Fed; an acting protocol processor
under Floating must return to computation before it can camérito request tra€. As
such, the system gims to ehibit queueing with a f@er number of compute processors
and at a higher compute-utilization underdeixthan Floating. Queueing delays under

Fixed reduce the performancapbetween the twvpolicies.

Compute-intensie programs tak adwantage of thex¢ra compute processor in Floating
to improve computation time. An increase in the number of processoxgvén gradu-
ally diminishes Floating adwantage wer Fixed because the added benefit of amae

compute processor becomes insignificant.

Figure4-3 (right) plots the same graphs for the fetch-block protocol. Muettli& null-
handler protocol, Fied outperforms Floating when protocol processor utilization is high,
i.e., there are more thandwprocessors per node and compute-utilizationws Because
overhead in the fetch-block protocol accounts for a small fraction of protocol ocgupanc
Fixed loses its performance ahtage wer Floating. The graphs indicate that éexat

most impraes performance by 20%er Floating.

4.3.2.2 Cost/erformance Cost-performance (rather than performance) becomes a more
meaningful metric from a design perspeetivhen increasing the number of processors
per node. Adding processors maways result in incremental performance imgment.

The performance impwement, haever, may not be high enough to justify the additional

cost of processors. Similaylgost-performance also sepsas a better metric for compar-

62

Null-Handler Fetch-Block
15 - - - 15 - . :
1.4+ — U=0.3 Floating 11.4+ Not Cost-Effective
1.3t 77 U=0.3 F:xed 11.3¢
| = U=0.7 Floating | |
° L2p ... U=0.7 Fixed 1.2 L
o 11} 11.1¢ .
3 *
£ 1.0 1.0 v
2 097 10.9¢
2 08} los} .
g . | "
Q 0.7} 10.7 ¢ Seel
®) cee
06 | / . 06 - —
05¢ . 1057
0.4} 104+
0371 10.3| Cost-Effective
0.2 2 3 4 5 0.2 2 3 4 5
Number of Processors per Node Number of Processors per Node

Figure 44. Relatve cost-performancdhe figure plots cost-performance of &k anc
Floating Oj,; = 0.5 pus) aguinst \arying the number of processors per node fay values of
compute-utilizationy = 0.3 andJ = 0.7). Costups and speedups are calculated with respe
uniprocessor node (Single). The graphs assume that the cost of a processor is 30% of the
uniprocessor node.alues wer the horizontal line at 1 indicate design points that are not
effective.

ing scheduling polig trade-ofs. Given a lage enough number of processors per node,
Fixed will outperform Floating because communicatieentually becomes the bottle-
neck. At this point, heever, the resulting system may not be the most cdstife

design point.

Figure4-4 (left) illustrates cost-performance for the null-handler protocol. The figure
plots cost-performance ratio where 1 represents a uniprocessor mabakes Wnder the
horizontal line (at 1) correspond to systems that are clesttieé—i.e., systems with bet-
ter (lower) cost-performance than a uniprocessor node. The figaneiges both policies
at two compute-utilizations, anst the number of processors per node. Adding up to four
processors to a uniprocessor node under eitherypagults in a cost-&fctive system.

Interrupt averhead significantly increasegeeution time in Single for the null-handler

63
protocol allaving Fixed and Floating to impwe performance by virtually eliminating

interrupts.

Not surprisingly the Fixed poliy always preides the most costfekctive system for the
null-handler protocol. Figuré-3 (left) indicated that Fed alvays improes performance
over Floating for lev (U = 0.3) compute-utilizations.df moderate compute-utilizations
(U =0.7), Fired outperforms Floating with three or more processors per node. Because of
high compute-utilizations, the benchmark continuestobé reasonable speedups with a
larger (> three) number of processors per node. gefanumber of processors also reduce
the relatve cost-increment from an additional proces$be combined &ct drves cost-

performance lwver under Fied.

Figure4-4 (right) illustrates the cost-performance graphs for the fetch-block protocol.
Unlike the null-handler protocol, adding processors to a node iswesatost-déctive.
Interrupt werhead does not @ as high of an impact on Singlgderformance because of
high protocol occupancies in the fetch-block protocol. When compute-utilizatiow is o
(U =0.3), Floating with three or more processors anddririth either tw or five or more
processors per node result in systems that are not ¢estivef. A higher compute-utiliza-
tion (U = 0.7), howvever, results in high speedups with ager number of processors per
node, ofsetting the cost-increment of the additional processors, resulting in systems that

are cost-déctive.

Unlike the null-handler protocol, Fed does not alays result in the most costiegtive
system. At the lver compute-utilizations, Floating (with dwprocessors per node) results
in the most cost-éctive system. At high compute-utilizations wewer, the system con-
tinues to achie lover cost-performance with four or more processors per noded,Fix
however, outperforms Floating with a Ige¢ number of processors per node (Figli8e

(right)) and therefore results in the most coftaive system.

64

Table 4.1:Applications and input sets.

Benchmark || Description Input Set
barnes Barnes-Hut N-body simulation 16K patrticles
em3d 3-D electromagnetic awve propagtion | 76K nodes, dgree 5, 15%

remote, distance of 16, 10 itg

gauss Gaussian elimination using a linear | 1920x1920 matrix
system of equations

lu Blocked dense LUdctorization 1200x1200 matrix,
16x16 blocks

water-sp Spatial vater molecule force simulati0|n4096 molecules

In summarywhen interrupt werhead is high with respect to protocol occuganas in
light-weight protocols, Fiegd is likely to result in the most costfettive system indepen-
dent of an applicatios’communication-to-computation ratio. In contrast, when interrupt
overhead is o, Fixed results in the most costetive system for applications with high

compute-utilizations.

4.3.3 Macmobenchmark Experiment

Although microbenchmark analysis helpve&lep intuition about relate performance,
it makes mawgy simplifying assumptions.df example, the xperiments ignored synchroni-
zation, lurstiness of communication, cachéeefs due to laye data sets, and bandwidth
limitations of the memoryus. In this section, | rexamine the policies in the conteof a

network of 16 multiprocessor erkstations, each with fevprocessors.

Table4.1 lists the applications and corresponding input data sets we use in this study
Barnes, Iy andwatersp are all from the SPLASH-2 suite [@"95]. Em3dis a shared-
memory implementation of the Split-C benchmark [CR@. Gaussis a simple shared-

memory implementation of aagssian eliminationdenel [CLR94].

65
This study uses the Stache fine-grain DSM coherence protocgtetiodethe shared-

memory abstraction of an SMP across a clu§tche, usesyphoon-15 block lffer to
move memory blocks directly from the nedvk into the requesting compute processor’
cache, eliminating the transfer to the protocol processor cache. Such a mechanism under
Floating either reduces cache pollution or increases cache-to-cache transfers depending on
whether the acting protocol processor is also the requesting compute processor (as dis-
cussed in Sectiod.4).

Unless specified otherwise, this study uses a 128-byte Stache protocol. The measure-
ments indicate a minimum running time of 1490 procesgdes (3.73us) of round-trip
lateng for simply fetching a memory block from a remote node. While this latisnoot
competitve with high-end all-hardare implementations of fine-grain DSM (such as the
SGlI Origin 2000 [LL97]), it is adctor of two better than some embedded-procebssed
implementations (such as the SequeniN&I[LC96]).

4.3.3.1 Baseline SysteRigure4-5 compares the performance of &ixand Floating with
varying number of processors per node. The graphs plot application speedups-for tw
three-, and fouprocessor nodes under EBtkand Floating\eer a uniprocessor node (Sin-
gle). All systems include a total of 16 nodes. ExcepéfnBd adding a dedicated protocol
processor to a uniprocessor node impsoperformance by at most 25&m3dis our
most communication-intena application with a compute-utilization of less than 25%.
The application iteratesver a bipartite graph, computingmealues for each graph node.
Fetching remote nodealues dominates the running time of an iteration. Eliminating inter-

rupt overhead allars Fixed to impree performance by 41%.

Using the second processor for computation—under the Floating-pefigproves per-
formance by 35%-90% in all applications. Exceptdar3d all the applicationsxibit
moderate to high compute-utilizations and care tathantage of the second computation
processarin em3d the second processor both conités to computation and alternates

with the other processor to act as protocol procegsosuch, Floating manages to main-

66

4.0
35 O Single .
a = Floating
2 30 m Fixed _
g
S 25 —
©
Q20 F —
©
€ 15 - :
2
1.0
05 .
0.0
12345 12345 12345 12345 12345
barnes em3d gauss lu water-sp

Number of Processors per Node

Figure 45. Baseline system performance compariddre figure plots application speedt
over Single (uniprocessarode) under Figd and Floating with increasing number of proces
per node. The numbers appearinvgrothe horizontal line at 1 indicate a better performanee
Single.

tain performance to within 5% of F@d. Therefore, as predicted by the microbenchmark
experiment, at tw processors per node Floatingeo$ superior werall performance er-

sus Fixed.

As we increase the number of processors per node, we increase both computational
resources and demand for protocol proces$Madger-spis the most compute-bound appli-
cation U > 0.9) and primarily benefits from addition of compute processors.ds tak
processors per node to increase protocol processor utilization high enougtv tbiztio

to slightly (< 6%) impree performancewer Floating.

Barnesis 50% compute-bound anahebits moderate speedups with an increase in the
number of processors per no&arnesbecomes communication-bound with four proces-
sors per node, at which point Etkimpraes performancever Floating by 18%. Increas-

ing the number of compute processors from four ® funder both policies) results in a

67
performance drop due to high contention for locks. Undexd;barnesshavs a speedup

of three @er Single with fie processors per node.

Em3d with its lovw compute-utilization »hibits surprisingly high speedupEma3ds
bipartite graph is initially constructed so that processors share a fraction of their edges
with neighboring processors. An increase in the number of processors increasetithe lik
hood that processors share graph data within a (SMP) node, reducing tlyategowen-
ber of remote accesses per node. Becausgdis primarily communication-bound, it
heavily utilizes the protocol processor resulting in better performance unded Riith
only two (compute) processors. High protocol occugased protocol thread migration
overhead further increases the performarae lgetween Fed and Floating to 32% with

five processors per node.

Gaussexhibits a more moderatevel of compute-utilizationl = 0.75). Communica-
tion and computation igaussproceed in synchronous phases. Communication consists of
broadcasting a mw of a matrix to all compute processors, and quickly becomes the bottle-
neck with an increase in the number of processors per node amshtpigaussfrom
speeding up. Because communication does wetlap with computation, all compute
processors remain idle for duration of the broadcast. As such, an idle processor remains as
the acting protocol processor under Floating during the entire communication phase. By
eliminating the protocol thread migratiomeshead, Floating mimics the befa of Fixed

and reduces the performanapgo 10% with fie processors per node.

Although Lu is a compute-intenge application with a compute-utilization of 85%, it
suffers from significant load imbalance PV*95] and &hibits only moderate speedup.
Load imbalance itu also increases the probability of a processor being idle on the nodes
acting as protocol processdrhe combined &ct of high compute-utilization and load
imbalance shifts the balance between the pwlicies in &vor of Floating. Fied magin-

ally (< 5%) outperforms Floating with fvprocessors per node.

68
In summarythe majority of the applicationavor the Floating polig with two or three

processors, and the et poligy with four or more processors per node.deascale SMP
nodes with more than fvprocessors per node may result in prowélyi high protocol
processor utilization (unless the application is 100% compute-im&nSingle-threaded
software protocols may not sustain enough bandwidth for machines vg#idaale SMP

nodes. Chaptes studies mechanisms farezuting protocols in parallel.

4.3.3.2 Interrupt Overheadrloatings (Singles) performance is sens# to hav quickly
the system can interrupt a processor and dispatch a protocol hdodiyr's commercial
operating systems do not pide fast delery of usetlevel interrupts. Exception handling
on these systems can ¢alip to 20Qus [TL94], one to tw orders of magnitude longer
than that on some carefully tuned parallel computers [RFW93]. Xpevrienent studies

the sensitiity of the poligy trade-of to interrupt @erheads.

Table4.2 presentsxecution times of Single and dAaprocessor Floating, normalized to
two-processor Fixd for three &lues of interruptwerhead. The numbers appearing in bold
are points where Fed outperforms Floating. As predicted by the microbenchmark analy-
sis, \ery high interrupt werheads serely impact Single’ performance. Increasing inter-
rupt overhead by tw orders of magnitude can increase running time under Singheeby o
400%. This result corroborates the obaé@ion that with stock operating systems, net-
works of workstations (N@Vs) [ACP95] may hee to rely on program instrumentation
[LS95,vECGS92] to perform periodic polling.

Another obseration, consistent with the microbenchmark results, is thara kigh
interrupt verhead has a much smaller impact on Floatipgrformance than Singte’In
all applications, a tw orders-of-magnitude increase in interrupérnead shas the pro-
gram devn by at most 45%. This is because an idle processor acting as protocol processor
eliminates may of the interrupts. High interruptverhead has the Ig@st impact orar-
nes because communication lnarnesis primarily asynchronous and processorgeha

high probability of being lisy computing when protocol messagesvarri

69

Table 4.2:Policy performance sensiity to interrupt werhead.

Interrupt Oerhead ©;,)

Application Single / 2-proc Figd 2-proc Floating / 2-proc Fed
0.5us | 5Spus 50us 0.5us 5us 50 us
barnes 1.17 1.45 3.25 0.69 0.76 1.00
em3d 1.41 1.85 5.44 1.04 1.05 1.12
gauss 1.01 1.04 1.57 0.72 0.75 0.75
lu 1.06 1.17 1.99 0.69 0.74 0.92
watersp 1.03 1.10 1.59 0.54 0.56 0.70

4.3.3.3 Potocol Blo&k SizeA key factor in the performance tradd-bketween the poli-
cies is protocol weight. Heger-weight protocols reduce the impact of protocol processing
overhead on performance (Secti®8.2). By making werhead a small fraction of proto-
col occupanyg, a highesweight protocol shifts the performance tradétofvards Floating.
Because much of protocol occupgnion fine-grain DSM is due to transferring data
between memory and the neikk [Rei96], protocol weight isery sensiite to block size.
Figure4-6 compares the performance of éixand Floating for a 64-byte protocol (aép
and a 256-byte protocol (b&lp. The 64-byte and 256-byte protocolbaound-trip miss
times for a simple remote read of 12@¢les (3.01us) and 2055yxles (5.14us) respec-
tively.

Much as in baseline system results, Floasmgrformance dominates fordavprocessor
nodes een with the laverweight 64-byte protocol. The 256-byte protocol increases
Floatings performance relat to Fided at a higher number of processors per node.
Em3ds performance under Floating significantly imge the performance breakes
point between the twpolicies, increasing it from twto four processors per nodgauss

also hibits a performance boost under Floating increasing performance to within 5% of

70

4.0
64-byte protocol)
35 1 Single .
a O Floating
330 m Fixed .
2
&25r —
°©
§20 N
I
£ 15 _
2
1.0
05 _
0.0
12345 12345 12345 12345 12345
barnes em3d gauss lu water-sp
Number of Processors per Node
4.0
256-byte protocol i
35 1 Single .
a = Floating
2 30 r = Fixed .
[}
[}
& 25 - —
]
820 r —
©
€ 15 _
o
<10
05 —
0.0
12345 12345 12345 12345 12345
barnes em3d gauss lu water-sp

Number of Processors per Node

Figure 46. Performance sensiity to protocol block sizeThe figure plots applicatio
speedups\er Single under Fed and Floating with increasing number of processors per not
a 64-byte protocol (abe) and 256-byte protocol (b&p. The numbers appearingiay the
horizontal line at 1 indicate a better performaneer &ingle.

Fixed at five processors per node. The change in protocol weighvievig is not high
enough to shift the (@rage) performance breakem point between the twpolicies to

more than four processors per node.

71
Surprisingly a higher protocol weight increases the performamebgtween the twv

policies at fie processors per node forawf the applications. Botln andwatersp expe-

rience flse sharing due to the d¢grblock size. Performance under Floating drops velati

to Fixed becauseafse sharing increases the apparent communication intensity in these

applications.

4.3.3.4 Cabe SizeUnder Ficed, a dedicated protocol processor is equipped with sepa-
rate caches to store protocol code and data. In contrast, protocol references under Floating
leave a footprint in the compute processatache, interfering with computation. There-

fore, small compute processor caches can benefit from a dedicated protocol processor
Small caches, eever, also may thrash if an applicatisrprimary vorking set does not fit

in the cache [RSG93]. When processor caches thrash, communication becomes a small
component of running time and a highechead protocol processing pglie.g., Float-

ing) becomes more competri. The performance tradetdietween the te policies

depends on which of the almotwo factor has a dominantfe€t.

Figure4-7 compares the performance of éilxand Floating for 16-Kbyte (ab® and
128-Kbyte (belw) processor caches. Compared to the baseline system results with 1-
Mbyte caches (Figuré-5), Floatings performance increases relatito Fixed for both
cache sizes in four of the applications. Consequethity performance break«n point
between the tav policies increases from four to diyorocessors per node. Smaller caches
result in thrashing and thereby decreasing an applicategparent communication-to-
computation ratio. A ver communication-to-computation ratio neskFloating more

competitie.

Em3dwith its lage data set thrasheges with the 1-Mbyte processor caches. Therefore,
smaller processor caches do not significanfigcathe performance tradettfetween the
policies inem3d Floatings performance slightly decreases rekatio Fixed from 128-

Kbyte to 16-Kbyte processor caches; protocol interference in the 16-Kbyte processor

caches reduces Floatisgderformance. Much l&em3d barnesandgaussexhibit a slight

72

4.18
4.0
16K-byte caches
35 1 Single .
I Floating
3.0 m Fixed -

Normalized Speedup

25

20 .
15 .
1.0

05 .
0.0 2345

12345 12345 12345 1 12345
barnes em3d gauss lu water-sp
Number of Processors per Node
4.0
128K-byte caches .
35 O Single 7
a O Floating
32 30 m Fixed N
()
()
& 25 - -
]
8 2.0 -
IS
£ 15 | N
o
< 10
05 -
0.0

12345 12345 12345 12345 12345
barnes em3d gauss lu water-sp
Number of Processors per Node

Figure 4-7. Performance sensiity to processor cache siZehe figure plots applicatic
speedups\er Single under Fed and Floating with increasing number of processors per nc
16-Kbyte processor caches (&bp and 128-Kbyte processor caches (@&loThe numbel
appearing eer the horizontal line at 1 indicate a better performanee 8ingle.

decrease in Floating'performance relat to Fixed when caches are scaledvdadue to

protocol interference in processor caches.

73

Oint = 05“5 Oint =50 U.S
1.5 T T T 1.5 T T .
1.4+ Not Cost-Effective 1 1.41 — barnes Floating
13¢ 1 1.31 ----barnes Fixed
1.2¢ 1 1.2 = water-sp Floating
g 11y 1 1.1 <+=<*water-sp Fixed
§ 1.0 1.0
§ 0.9 1 09¢
o 0.8} 1 08¢}
a
g 0.7t 1 0.7+
O 067 . 1067
0571 1057}
047 10471
0.3} 1 03¢
0.2} Cost-Effective 1027
0.1 2 3 4 5 0.1 2 3 4 5
Number of Processors per Node Number of Processors per Node

Figure 438. Relatve cost-performance of Fed and FloatingThe figure plots cost
performance of Fied and Floating folbarnes and watersp against \arying the number o
processors per node fordwalues of interruptwerhead Q;,; = 0.5us andO;,; = 50us). Costups
and speedups are calculated with respect to a uniprocessor node (Single). The graphs as
the cost of a processor is 30% of the cost of a uniprocessor raddes\@er the horizontal line ¢
1 indicate design points that are not coftative.

4.3.3.5 Cost/RerformanceFigure4-8 plots cost-performance for ewapplications with
moderate jarneg to high (vatersp compute-utilizations ersus the number of proces-

sors. The graphs indicate that adding a dedicated protocol processor to a uniprocessor
node is neer cost-efiective for the laver interrupt @erhead (left). This is not surprising

since performance impves by at most 17% whereas the system cost goes up by 30%.
When werhead is high (right), performancebiarnesimproves by 45% justifying the cost

of the dedicated protocol processBomputation irwatersp remains the dominanaétor

in the running time. Ean with higher interruptwerhead the program benefits little from a
dedicated protocol process@ second compute processtionvever, improves perfor-

mance in the ter applications by at least 71% and is therefore cdstiafe.

74
Much as the microbenchmarks predicted, when interngrthead is lw—as compared

to protocol weight—the system is most codeetive under the Floating polic For bar-
nes cost-performance under [reaches a minimum close tof bot the same as, that
under FloatingWater-spspeeds up linearly and thereforeays reaches awer cost-per-
formance under Floating. When the number of processorgedaough (> six), speedup
dominates cost-performance watersp causing it to eentually level off. At this point,

Floating results in a mginal improvement in cost-performanceer Fixed.

High interrupt @erhead, hwever, changes the balancBarnesachieres a minimum
cost-performance under the Btk polig. The high werhead increases protocol processor
occupany, resulting in a higher protocol processing to running time ratio. TrexlFigl-
icy reduces protocol processor occuparalowing the protocol processor to accommo-
date a lager number of processor before protocol processing saturates. At this point, the
performance impnement due to a dedicated protocol processorge lanough to édet
its incremental cost. Floating remains most coltetife for the more compute-inteusi
applicationtomcatv High interrupt @erhead, hevever, slightly closes theap in cost-per-

formance between to the dvpolicies for this application.

4.4 Related VWork

Several designs for parallel computers using SMP nodes dedicate one SMP processor on
every node to run communication protocols. The Ingziagon [Int93] and the proposed
Message Proxies on a cluster oiMeo PC SMPs [LHPS97] implement a protected mes-
saging boundary among SMP-node processors by dedicating a single processor on an
SMP node to run softave protocols in system mode. By eliminating higkrbead sys-
tem calls, these designs alldor high-performance protected communication among
SMP nodes. In contrast, myowk focuses on SMP-node processors that coliglgtrun a
single application in usdevel and where protection among multiple SMP-node proces-

sors is not required.

75
Karlsson, et al. and Erlichson, et alvlandependently studied the tradé-of dedi-

cated ersus multiplged protocol scheduling for VM-based sofive DSM protocols
[KS96,ENCH96]. Both studies conclude a dedicated protocol processor will be of little
use in systems with such lwgaweight protocols. In contrast, this study indicates that a
dedicated protocol processor is adtageous for fine-grain DSM protocols when there are
a lage number (more than four) of processors per node, or when intevarpeads are

very high (as in commodity stock operating systems).

Previous studies did not consider cost in their analysis. Cost is important in the trade-of
analysis of scheduling policies becausesgia lage enough number of processors, a ded-
icated protocol processoventually results in a superior performance tmay not alvays
result in a cost-ééctive design point (i.e., the cost of adding a dedicated protocol proces-
sor may not justify the performancaig). In addition to a performance analysis, this study

also includes a cost-performance analysis of tleepwlicies.

4.5 Summary

This chapterxxamined hw a single-threaded protocol should be scheduled on an SMP-
node parallel machine. The chapter presented results from synthetic benchmarks for tw
general request/reply protocols to illustrate the trafiebstween the policies. The results

shaved that:

» A dedicated protocol processor benefits light-weight protocols much more thgn hea
weight protocols; verheads saed by a dedicated protocol processor represent a sig-

nificant fraction of protocol occupay light-weight protocols.

* A dedicated protocol processor is generallyaad@geous when there are four or more

processors per node.

* Interrupt werhead has a much higher impact on Sisgberformance than Floatirsg’

corroborating préous results [KS96]; protocol messages areljiko find an idle pro-

76
cessor on multiprocessor node acting as the protocol processor thereby eliminating

interrupts.
« The system with the Weest cost-performance will include a dedicated protocol proces-
sor when interrupt verheads are much higher than protocol weight—as in light-

weight protocols.

Finally, the chapterwaluated these policies in the coxitef a fine-grain useevel dis-
tributed shared-memory system. The chapter presented results from simulatingré netw
of 16 SMP verkstations—each with fevprocessors—running éwshared-memory appli-
cations using a sof@ve coherence protocol. Besides corroborating the findings from the
first experiment, the results also sted that:

e Bursty and synchronous communication patterns in some applications reguce o
head and therefore decrease the benefit of thesl Figligy.

* Smaller processor caches raakloating more competie. Smaller caches increase
the local memory tréit on a node. A layer local memory tr&t decreases the appar-
ent communication-to-computation ratio (SectB.3), shifting the balancevtards

Floating.

The results also indicated that—with theception of highly compute-bound applica-
tions—single-threaded sofase protocol recution on SMP processors may become a
communication bottleneck in clusters ofgarscale SMPs (with feror more processors).
These machines may require mechanisms for eitserf protocol xecution (e.g., an
embedded protocol processor on the wekwnterface card), or parallel protocatexu-
tion. Chapteb examines parallel softare protocol xecution as an approach to métg

the single-thread protocokecution bottleneck.

77

Chapter 5

Executing Fine-Grain Protocols in Rarallel

Chapterd evaluated scheduling policies for single-threaded protocat@ion on SMP
clusters. The results indicated that although a single protocol thread may be suitable for
small-scale SMP nodes, communication may become a performance bottleneck with an
increase in the number of processors per node. Applications reqeryngne communi-
cation granularities increase protocol wtfi in the system andxacerbate the softave
protocol bottleneck [CSBS95,BH86]arllel execution of softwre protocols can help

reduce queueing delays byeslapping the xecution of multiple protocolents.

In this chapterl study parallel implementations of fine-grain DSM coherence protocols.
Parallel dispatch queue (ChapBrprovides a simple and f&fient set of mechanisms for
parallelizing fine-grain softare protocols. | propogeTempesta set of mechanisms for
implementing parallel fine-grain DSM protocols. eipest unifies the uskavel fine-
grain DSM mechanisms okeimpest [Rei95] with parallel protocotecution mechanisms
of PDQ.

78
This chapter presents the design avaluation of tvo parallel fine-grain DSM systems,

Hurricane andHurricane-1,that proide different levels of hardvare support for Rm-

pest. | compare the performance of the Hurricane systems to S-COMA [HSL94], an all-
hardware implementation of fine-grain DSM. Muchdikiyphoon [RPW96], Hurricane
integrates one or more embedded processors with fine-grain shared-memory support and
the netvorking hardvare (i.e., message queues) on a custonceleSimilarly Hurricane-

1 is like Typhoon-1 [RPW96] and inggates shared-memory and messaging harelwn a

custom deice kut relies on the node’commaodity processors to run the seaiiterprotocol.

The Hurricane daces difer from their lyphoon counterparts in that thase the PDQ
mechanisms to support parallel protoceke@ition. D evaluate PD(@ potential to
increase performance in a soétw fine-grain DSM, the Hurricane systems use a high-per-
formance dynamically demultipted implementation of PDQ (Chap@®x Dynamic
demultiplxiing evenly distritutes the protocolxecution load among the protocol proces-

sors by demultipbeng protocol gents upon demand.

To facilitate the discussion in the rest of this chaptese the termprotocol poocessorto
refer to either S-COMA finite-state-machine (FSM) hardwe protocol implementation,
an embedded processor on Hurricane, or a commodity SMP-node processor in Hurricane-
1. Following this terminologyS-COMA is a single-processoruilee, and Hurricane and

Hurricane-1 are either single-processor or multiprocessoceate

In this chapterl first describe PAmpest, the mechanisms enabling the implementation
of parallel fine-grain DSM coherence protocols, and PStache, a simple parallel coherence
protocol. Sectiorb.2 describes the Hurricarenily of devices implementing RImpest in
hardware. Sectiob.3 presents in detail a performancealeation of the Hurricane
devices. Sectios.5 presents a discussion of the relatentkwFinally Section5.5 con-

cludes the chapter with a summary of results.

79

Protocol PDQ Mechanisms

Thread

Home Pages

Block Access Fault

Protocol Event
Nueu Application

w

Remote Cache

Thread

Directory Messages

Fine-Grain Tags

Protocol
Thread

Protocol Resources

———s3NBAY PUAS

Figure 541. Accessing protocol resources indPipest.

5.1 PTlempest: Rarallelizing Fine-Grain DSM Protocols

Parallel Tempest(PTempest unifies the €mpest mechanisms for implementing user
level fine-grain DSM with the PDQ mechanisms for parallel protoget&tion. Bm-
pests mechanisms enable a uk®fel protocol to map/unmap shared-memory pages in an
applications address space. A udevel protocol also uses the mechanisms to manipulate
shared-memory access semantics to fine-grain (e.g., 32-128 bytes) memory blocks on the
mapped pages.empest also prades lav-overhead fine-grain messaging to transfer

memory blocks and woke protocol action across machine nodes.

Tempest implements request/reply protocol actions in the form of a block aaulss f
(i.e., request) or a message (i.e., reply/response) handlers. As ue Adtissages
[CDG*'93], Tempest handlers are defined to @eha single-threadedecution semantics
and must appear toxecute atomically To relax Empess single-threadedxecution
semantics, PAmpest augments the aetimessage handler intace of Empest with par-

allel handler dispatch mechanisms of PDQ.

80

key data dispatched?
Protocol Event Queue X no
y yes
X yes
Y
B | 7] | 0
PDRO - —

Protocol Dispatch Registers

Figure 52. Parallel protocol dispatch in Rimpest.

Figure5-1 illustrates the protocol resources required in a typicahipest implementa-
tion. Shared data pages are distrlll among the nodes, withegy node serving as a des-
ignatedhomefor a group of pages. directorymaintains sharing status for all the memory
blocks on the home nodes.r@mote calee either on a custom nebnk desice or in main
memory sergs as a temporary repository for data fetched from remote nodes. A set of
fine-gain tags enforce access semantics for shared memory blocks. A protceat e
queue to gther block accessiilts (generated by the application) and incoming oedw
messages. One or more message send queues (one per protocol threaohotdol

threads to transfer memory blocks angbike protocol action on remote nodes.

To guarantee mutuallyxelusive accesses to protocol resources from multiple protocol
threads, P@mpest requires protocols to partition the resources into object groups and label
protocol &ents with the appropriate group id. In fine-grain DSM, a protosmitas typi-
cally associated with a fine-grain memory block (e.g., a block acaei$®f an inalida-
tion message). Therefore, protocol resources can be partitioned so that accessing resources
(e.g., fine-grain tags) corresponding to distinct memory blocks are mutkeliisiee. By
labelling a protocoleent with a blocks shared-memory (virtual) global address, a proto-

col allovs Pempest to dispatch theent to the appropriate protocol thread.

Figure5-2 depicts parallel protocol dispatch in a dynamically demukgaeP Empest

implementation (SectioR.3.3). A protocol eent queue holds block accesailfts and

81
incoming messages. Each entry in the queue is labeled with an object partition id which
typically corresponds to a memory blogkjlobal address. Bmpest dispatchesents to
protocol processors based on aard id much lilke a packt classifier in corentional net-
work communication softare/hardware [BGP94]. The queue entries also maintain
information as to whether a specific entry has been dispatched. A protocol threagkrecei
an eent through a pahread protocol dispatchgester (PDR). Uponwent dispatch, the
system searches for the firstadable entry with an id diérent from the currently dis-
patched ids in the PDRs. A protocol thread signals the completion of a hawtietien
by clearing the corresponding PDR.

PTempest also prides two other types of handlekecution semantics using distinct id
values corresponding tovialid shared-memory global addresses: single-threaduéon
semantics and parallekecution semantics without dispatch synchronization. The first
allows executing the less-frequent protocol handlers such as virtual memory management
code (e.g., allocating a page in the shared global address spaa)uie enutually xclu-
sively with other handlers. A Bmpest implementation dispatches such a handler after all
protocol @ents in front of it in thevent queue hea dispatched and completed. Further-
more, no further handlers are dispatched until such a handler conxglet¢i@n. The sec-
ond allavs handlers such as those accessing read-only data structures or performing
remote stores to \&hys dispatch immediately without synchronization with other han-

dlers.

Transparent shared-memory protocols running emgest can simply be parallelized
using PEmpest. This study usdZrallel State (PState), a parallelized ersion of
Stache [RMV94] (discussed in Chaptd), an S-COMA-lile invalidation-based full-bit-
map coherence protocol which replicates remote data in the main memomergn e

machine node.

82
5.2 Hurricane: Hardware Support for PTempest

Hurricane is admily of custom deces that preide hardvare support for Rampest.
Hurricane deices are closely desd from the yphoon imily of custom déces [Rei96]
and intgrate shared-memory access control logic andor&tng hardvare. The ky dif-
ference between theyfhoon and Hurricane dees is that the Hurricane wees imple-
ment the PDQ mechanisms to collect and dispatch block acaeks &nd incoming
messages. This studyatuates tw Hurricane designs: a fully-irdeated high-perfor-
manceHurricane device which contains embedded processors to run the coherence proto-
col, and a less-inggated more cost-ffctive Hurricane-1 device which uses a node’
commodity processors to run the protocol. The section describes theahadktails of

Hurricane and Hurricane-1.

5.2.1 Hurricane

Hurricane intgrates the fine-grain access control logic, messaging queues, a number of
embedded protocol processors, and the PDQ mechanisms for pretacbdspatch all
on a single dace. Figureb-3 illustrates the architecture of a Hurricane custowncde A
protocol &ent queue collects all block acceaslfs (generated on the node) and incoming
messages (from remote nodes). A protocol thread running on a protocol processor
removes entries from a protocolent queue by accessing its PDR. Much asyph®on,
the PDRs reside on the cachesland can be loaded in a singfele [Rei96].

PTempest protocols use shared-memory global addresses to name memory blocks. The
access control logic, aever, snoops on pfsical addresses on the memougs o detect
block accessdults. PEmpest uses averse translation table to mapygital addresses
from the memory bis to shared global addresses. The table also maintains the fine-grain
tags associated with a memory block to enforce shared-memory access semantics. Hurri-
cane implements ayphoon-like reverse translation look-asideuffer (RTLB) in SRAM

which caches the recently accessed entries in tleese translation table. Upon a block

83

Incoming Messages Block Access Faults SMP-node Processor
Hurricane Send Queues
Send Queue

Protocol Event
Queue RTLB

| R S S

CPU Send CPU Send CPU Send

Memory Bus

Figure 53. The Hurricane custom diee. The deice contains tw or more protoc
processors, each with a protocol dispatgjister a Typhoon-like block luffer, and a message st
queue. The processors share iR which holds the fine-grain access control tags for c¢
remote data. There is also a message send queugfgrecempute processor on the node, ¢
parallel protocol dispatch queue recording block ac@gtsfand incoming messages on the

accessdult, the contents of the tag are read and placed in a protesul gueue entry

Fine-grain tags are updated by writing to thid_B.

Like other softwre fine-grain DSMs [K94,RLW94], Hurricane maintains the directory
in main memory and uses protocol processor caches to access the directory entyies. Man
studies on fine-grain DSM @ concluded that directory entrieshéit locality which can
be eploited by small hardare caches [HR"94,SH91]. Such an approachvadies the
need for on-board SRAM-based implementations which are both mpensve and

limit scalability.

Protocol processors are each equipped with a blodlerbwhich is a small direct-
mapped cache that ses/as an intermediary storageside for masing memory blocks
between the node’'memory hierargh(e.g., processor caches or main memory) and the

message queues. Revimg/placing remote data from/into a node also typicalplves

84
modifying the state of the block maintained by the fine-grain tags. Shared-memory access

semantics dictates that miog data and updating the corresponding tafyer should
appear toxecute atomicallyThe block kffer implements this atomic operation directly
in hardware [Rei96].

To olviate the need for synchronization upon sending messageg, @otocol proces-
sor is equipped with a message send queue. Asmpdst, P@mpest supports uskvel
messaging directly from the node(computation) processors, and therefore Hurricane

also preides a separate send queue for each compute processor

Hurricane preides hardware for suspending/resuming computation on a compute pro-
cessor after a block accesallt. Upon a block accesauit, Hurricanes hardvare masks
the faulting processor fromus arbitration and returns a request-and-retry as anatkno
edgment to thealulting lus transaction. Upon ree@ig the memory block and resuming
the compute processdfurricane simply unmaska$ arbitration for the resuming com-

pute processor

5.2.2 Hurricane-1

Hurricane-1 (Figur&-4) combines the fine-grain access control logic with the messag-
ing queues on a singledee kut uses the SMP-node commodity processors for running
the softvare protocol. As in Hurricane, a single (dynamically demukigxdg PDQ @thers
information about all block accesaults generated on the node and all of the incoming
messages. Hurricane-1 prdes a set of PDR and bloclfter pairs implementing parallel
protocol dispatch andxecution. The number of PDR and bloakffer pairs restricts the
number of protocol threads scheduled to runwereSMP node. d allov synchroniza-
tion-free usefevel messaging from both computation and protocol processeesy e

SMP-processor also has a separate message send queue.

In Hurricane-1, each PDR is a cachable contigiter [RPW96]. Cachable controbre

isters behee like memory and can be cached in processor caches. Polling on a cachable

85

Block Access Faults Incoming Messages
Send Queues
¢ ¢ — |
P |E
Fine-Grain er?;?]%o vent 1] e
Tags
L Interrupt A ‘ 4

PR |

| Block Buffer | | Block Buffer | | Block Buffer |

Memory Bus

Figure 54. The Hurricane-1 custom diee. The deice contains tw or more pairs |
protocol dispatch gisters and yphoon-like block luffers, and a message send queue
processor on the node. There is a single SRAMcdamaintaining the fine-grain tags for cac
remote data, and a parallel protocol dispatch queue recording block smdéessfid incomir
messages on the node.

control rgister results in a cache hit in the absence of proteeoite thereby eliminating
polling trafiic over the memoryis. Upon dispatching a protocelesmit, Hurricane-1 wal-
idates the cached cppf the PDR forcing a protocol processor to read theaumntents of
the PDR.

Much like Hurricane, Hurricane-1 implements the directory andvarse translation
table for mapping pfsical addresses to shared global addresses in main mdaey
grain tags, heever, are directly stored in SRAM on the custom Hurricane-licge
Because the tags only storeotWits per memory block, the memoryeohead is o for
practical DSM implementations [Rei96]. Such an approach limits the size of shgsed ph
ical memory per nodeub allovs for a cost-déctive implementation by not requiring a

hardware cache.

To further simplify hardwre complgity and reduce cost, Hurricane-1 also does not sup-
port masking/unmaskinguls arbitration on the memory$. As such, upon a block access

fault, the &ulting processor t&ls a s error and spins on a gaocessor softare flag in

86
memory inside the trap routine. The protocol safevis responsible for resuming the

compute processor by signalling the corresponding flag.

A Hurricane-1 deice supports both dedicated and multiel@ scheduling of protocols
on SMP processorsoTallov multiplexed scheduling of a protocol thread upon a message
arrival, Hurricane-1 prades mechanisms forvoking interrupts on the memorys A
memory-mapped interrupt arbitervilge located on the memory$ distritlutes interrupts
among the processors in a round-rokashion. Hurricane-1 uses a sdte interrupt

masking/unmasking scheme similar to the oneypph®on-1 described in Sectidnl.

5.3 Rerformance Ewaluation

The system performance using the Hurricanacegs depends on the memory system
performance and thevailable parallelism in protocolvent execution. Rrallel protocol
execution may increase the number of outstanding memory requests which in turn requires
a higher bandwidth memory system (e.qg., split-transactisn tighly-interleaed mem-
ory, etc.). Available parallelism also depends on whether there are independent outstand-
ing protocol gents. Rrallel protocol recution may mad software protocols compewie
to an all-hardware protocol implementation if the performanegngdue to parallelism tf

sets the déct of higher protocol occupayof software protocols.

This study compares the performance of DSM systems using Hurricaicesd® a
simple all-hardwre protocol implementation, Simple-COMA (S-COMA)
[HSL94,RPW96]. S-COMA is an walidation-based full-map directory protocol much
like Stache. The simulation model for S-COMA assumes minimum protocol occupancies
accounting for only SRAM and DRAM memory access times. As such, S-COpdi-
formance numbers in this study are optimistic, making the comparison to S-COMA con-

senative.

In this section, | first present the methodology | use to carry oukfiegiments. Then, |

analyze the minimum protocol occupgna Hurricane and Hurricane-1, and compare

87
them to S-COMA. Ngt, in a microbenchmarkxgeriment, | measure the maximum band-

width of data out of a node using tharous custom deces. Finally | use shared-mem-
ory applications towaluate to whatxdent parallel softare protocol xecution imprees

application performance.

5.3.1 Methodology

| use the simulation methodology and system parameters described in $e&ficio
simulate SMP clusters interconnected with Hurricane, Hurricane-1, and S-COMA net-
work interfaces. The simulator assumes 1-Mbyte data caches for the Hurricane processors
and 2-Kbyte block bffers for all the systems. This study models a infinitely-intedda
memory system to mimic the betar of high-performance memory systems characteris-
tics of lage-scale SMP seevs. The simulator assumes an interrurbead and aus
error trap eerhead of 200yxles in a Hurricane-1 system, characteristic of carefully tuned

parallel computers [RFW93].

5.3.2 Potocol Occupancy

Communication in parallel applications running on a DSM cluster is either yatenc
bound or bandwidth-bound. Latgnbound applications are those in which protocol
events gperience little queueing delays at the retnvinteriace and communication per-
formance is determined by minimum round-trip time of a remote miss. Bandwidth-bound
applications, heever, are those in which protocolents are generated imrsts and can

lead to lage queueing delays at the netwinterface.

Lateng-bound applications primarily benefit fromwenccupang protocol implemen-
tations (such as hardne DSM) because Wer protocol occupancdirectly impacts
round-trip miss times and thereby communication time. Bandwidth-bound applications,
however, may eentually saturate a single protocol process@nen a lev-occupanyg
protocol implementation due to ada number of outstanding protocekats which lead

to queueing. Such applications may benefit from parallelor&tinterfaces instead.

88
5.3.3 Microbenchmark Experiment

To compare the latep@and bandwidth characteristics of the Hurricane systems to those
of S-COMA, | use a simple remote read microbenchmark consisting of a tight loop. In
every loop iteration, a processor simply reads a memory block belonging to a remote node
but not available in the processarcache/memory.e. a remote block in thevialid state.

The benchmark measures tiverage time it tags for a loop iteration to complete.

Table5.1 depicts the breakdm of time for \arious systemwents on a simple remote
read of a 64-byte block. The table groups the systeente into three cageries. A
request catgory on the caching node accounts for all thenés from the detection of a
block accessault to sending a request message to the home node. A repglgrgate the
home node consists of allents from the detection and dispatch of the request message to
sending the 64-byte block to the caching node. A responsgocaten the caching node
accounts for allwents from the detection and dispatch of the reply message to resuming

the computation.

S-COMA maintains the fine-grain tags and the directory state in SRAM. Simianty
ricane caches the fine-tags in thELB and accesses the directory state through the proto-
col processor caches. In the common case of cache hits, S-COMA and Hurricane both
incur the samexact memory access times for updating the state and data for a memory
block. Hurricane additionally uses soéiwe to dispatch message handlers andkm the
SRAM and DRAM accesses. This additional saiftevaverhead substantially increases the
minimum request/response occupabhy 315%. The minimum reply occupanand the

total round-trip latencincrease only by 41% and 33% respesti

Similarly, in the common case accesses to therse translation table and the directory
state (both stored in main memory) in Hurricane-1 hit in the protocol processor caches. A
protocol processohownever, must traerse the memoryus to initiate a fine-tag change
and access the blockiffer. Resuming the compute processor also requires writing to a

memory flag on which the compute processor spins. Both the write to the flag by the pro-

Table 5.1:Remote read miss latgnbreakdevn for a 64-byte protocol.

Network Interface
(latencies in 400 MHz cycles)

Action S-COMA Hurricane Hurricane-1
)
:;% detect cache miss, 5 5 5
®) issue s transaction
= detect block accesatuilt,
9 £ | reverse translation, 12 16 87
=> § dispatch handler
(O]
o g get fault state, 0 36 141
send message
network lateny 100 100 100
Q _ dispatch message handler 1 3 51
Q
§ g | reverse translation, 8 61 121
9 % directory lookup
@)
> g fetch data,
g £ | change tag, 136 140 205
o send message
network latengy 100 100 100
dispatch message handler 1 4 50
Q
& % reverse translation 8 16 34
o
§ % place data, change tag 0 34 29
[&]
o O | resume, 6 6 178
reissue bs transaction
fetch data, 63 63 63

complete load

Cacher

Total 440 584 1164

90
tocol processor and the subsequent read by the compute processor incur cache misses.

These high werhead operations increase the request/response ocgupaplg occu-
pang, and total round-trip lategdn Hurricane-1 by 518%, 160%, and 165% as compared
to S-COMA respectely.

The round-trip latencies inable5.1 indicate that for lategebound applications, i.e.,
applications in which communication is nairsty and protocolwents do not)gerience
long queueing delays at the protocol processors, S-CONbAsch moderate adwtage
over Hurricane, bt may significantly impnee performancewer Hurricane-1. Bandwidth-
bound applications, heever, may benefit from multiple protocol processors simulta-

neously processing independent protoceings.

| use two microbenchmarks to compare bandwidth characteristics of S-COMA with
those of Hurricane and Hurricane-1. A reply-bandwidth benchmark measures the reply
bandwidth out of a single node in the machine by running a tight loop on multiple
(request) nodes generating read misses to distinct remote memory blocks satisfied by a
single (reply) node. A request-bandwidth benchmark measures the request bandwidth out
of a single node by running a tight loop on multiple processors of a (request) node gener-

ating read misses to distinct remote memory blocks satisfied by multiple (reply) nodes.

Figure5-5 compares the protocovent bandwidth in S-COMA, Hurricane, and Hurri-
cane-1 for a 64-byte protocol. Figlsé (abwe left) compares the reply bandwidth
against the number of requesters in S-COMA and Hurricane with up to four protocol pro-
cessors. The graphs indicate that the reply bandwidth immediately saturates for systems
with a single protocol processor with an increase in the number of requesters. The satura-
tion bandwidth aries among the systems based on the reply occyfdaiole5.1). Not
surprisingly S-COMA saturates highest at a bandwidth of 89 MBytes/sec duenwits lo
reply occupang improving the peak bandwidth by 51%er a single-processor Hurri-

cane system.

91

Reply Bandwidth Request/Response Bandwidth
280 r ®# S-COMA 1 2807
=8 Hurricane 1pp
_. 240 | %% Hurricane 2pp i 240 t
- A4 Hurricane 4pp
() L i L
< 200 200
i)
2 160 f 1 160 f
e
)
s 120 | 1 120t
2 ° . ®
s 80 1 80F
= B = a|
40 1 1 40 1
0 — ‘ : ‘ ‘ 0o — ‘ : ‘ ‘
2 4 8 12 16 2 4 8 12 16
Number of Requesters Number of Requesters
280 r @8 S-COMA 1 280
@8 Hurricane-1 1pp
_ 240 I ©© Hurricane-1 2pp 1 240 t
2 A Hurricane-1 4pp
Q L 4 L
= 200 200
4}
2 160 | 1 160 f
c
)
‘s 120 1 120 ¢
2 _—
g 80t ¢ *1 sof
40 t 5 o1 407¢ 2 3 _
0 — ‘ : : : 0 — ‘ : : :
2 4 8 12 16 2 4 8 12 16
Number of Requesters Number of Requesters

Figure 55. Protocol bandwidth in S-COMA, Hurricane, and Hurrican&tle four figures
compare S-COMA reply (left) and request/response bandwidth (right) bandwidth with the
Hurricane (abee) and Hurricane-1 (bekl) for a 64-byte protocol.

The graphs also indicate that increasing the number of protocol processors results in a
significant increase the saturation bandwidth. The saturation bandwistbyenodoes
not increase linearly with the number of protocol processors. Using four protocol proces-
sors instead of one increases the saturation bandwidth only dutaat 6f three times.

Because protocol state—such as directory entries—migrates between multiple protocol

92
processor caches, the reply occugananultiprocessor Hurricane dees increases with

respect to the single-processorides. An increase in the reply occupameevents the
saturation bandwidth from increasing lineafyotocol state migration may be alkted
by using static (rather than dynamic) demultiplg PDQ mechanisms in the Hurricane

devices.

Parallel execution also alles the softvare protocok reply bandwidth to become com-
petitive with that of S-COMA. Wh four requesters, the reply bandwidth irotprocessor
and fourprocessor Hurricane systems reach that in S-COMA. When there are eight or
more requesters, twprocessor and foiyprocessor Hurricane systems imygdhe reply
bandwidth @er S-COMA by 73% and 175% respgety,.

Figure5-5 (abwe right) compares the request/response bandwidinstghe number of
requesters in S-COMA and Hurricane. The request/response bandwidth in S-COMA
reaches a much higher saturation point than the reply bandwidth because the combined
request and response occupancies are muar khan the reply occupanclhe response
occupang remains lav with an increase in the number of requesteenehough the
block kuffers generate a considerable amount of writebadictiafthis microbenchmark;
the block liffers are rgularly flushed to memory to makoom for nevly arriving remote
blocks. This study assumesdar(2-Kbyte) block bffers and a highly-interlead mem-
ory system. In systems with either smaller blockfdrs or laver memory interleang,

block kuffer writeback traic may limit the response or reply bandwidths.

The single-processor Hurricane system also reaches a higher maximum request/response
bandwidth than the reply bandwidth. Muchelithe reply occupaggcprotocol state migra-
tion among multiple protocol processor caches increases both the request and the response
occupancies. Because the request and response occupane@e&r,hare rather small,
incurring a single cache miss 60 g/cles) nearly doubles the occupancies. As a result, a

second protocol processor in Hurricane only slightly imesahe request/response band-

93
width. Fourprocessor Hurricane systems help inyerdhe request/response saturation

bandwidth lot fail to reach the peak bandwidth in S-COMA.

Figure5-5 (belaw) compares the reply bandwidth (left) and the request/response band-
width (right) in S-COMA and Hurricane-1 with up to four protocol processors. Multiple
protocol processors increase the reply saturation bandwidth almost linearly; protocol state
migration werhead accounts for agigible fraction of the reply occupaypdultiproces-
sor Hurricane-1 systems can also inyerthe maximum reply bandwidtiver S-COMA.
Because the saturation bandwidth in a single-processor Hurricanesenos much
lower than that in S-COMA, it tas four protocol processors in Hurricane-1 and tevelv

more requesters to impre the saturation bandwidth by 25%eo S-COMA.

Unlike a Hurricane dece, the single-processor Hurricane-lvide reaches a Veer
maximum request/response bandwidth than reply bandwidth because of the high com-
bined request/response occupancies. The saturation bandwidth also slightly decreases with
an increase in the number of requesters because multiple requesting processors increase

the memory bs trafic and result in queueing on thesh

Much like Hurricane, protocol state migration in aotprocessor Hurricane-1 system
almost doubles the request/response occupancies/gelatia single-processouch a
large occupangcoffsets the gins from parallel protocol processors resulting iy Vow

overall saturation bandwidttven with four protocol processors.

5.3.3.1 Potocol Blok Size Protocol block size impacts the rel&ti performance of
hardware and softare protocol implementations. Igar blocks require a longer transfer
time between the netwk and memoryincreasing the fraction of protocol occupgnicie

to memory data transtdronger data transfer times, therefore, reduce the fraction of pro-
tocol occupang due to software werhead and decrease the performarege lgetween

hardware and softare implementations.

94

32-byte block 128-byte block
280 I e S-COMA 1 280t
@& Hurricane 1pp
240 ¢ & Hurricane 2pp 1 240 t
%, XA Hurricane 4pp
2 200 | 1 200t
>
i)
2 160 f 1 160 ¢
=
o
s 120t 120 |
e]
8
S 80¢ 80 |
40 40
0 — ‘ : : : 0 — ‘ : : :
2 4 8 12 16 2 4 8 12 16
Number of Requesters Number of Requesters
280 | ee S-COMA 1 280t
=& Hurricane-1 1pp
240 + ¢ Hurricane-1 2pp 1 240 t
'\g A4 Hurricane-1 4pp
L 200 1 200 1
>
i)
2 160 1 1 160 | .
s
2 120 ¢ 1 120 t 1
©
o—*© ° ° °
S 80t { 8ot f :
40 t 40 t = = = a
0 — ; : : : 0 — ; : : :
2 4 8 12 16 2 4 8 12 16
Number of Requesters Number of Requesters
Figure 56. Impact of block size on protocol reply bandwidihhe figures plot rep

bandwidth for a 32-byte (left) and a 128-byte (right) protocol for Hurricanevéaban
Hurricane-1 (belw).

Figure5-6 illustrates the impact of changing the block size from 32 bytes (left) to 128
bytes (right) on the systems’ reply bandwidth. Not surprisjniglg smaller block size
makes the Hurricane gd&es less competite relatve to S-COMA. A tvo-processor Hur-
ricane system (Figurg6 top left) no longer impnees the maximum reply bandwidthkiey

S-COMA. It tales a fowprocessor Hurricane system with eight or more requesters to

95
slightly improve the reply bandwidthver S-COMA. A 32-byte block also reduces the

overall peak bandwidthven with a fowprocessor Hurricane dee to less than 120
MBytes/sec. Similarlya 32-byte block pkents a Hurricane-1 system from reaching a
maximum reply bandwidth greater than that in S-COMArewith four protocol proces-

SOrs.

Figure5-6 (right) compares the request/response bandwidth in the Hurricainesde
and S-COMA for a 128-byte block. A tar block reduces the performan@pdetween
single-processor Hurricanevdees and S-COMA. A larer block also reduces the impact
of protocol state migration in multiprocessorides because the tar data transfer time
between the netwrk and memory accounts for agar fraction of the protocol occupanc
Therefore, lager blocks increase the performance improent due to multiple protocol

processors.

Block size impacts the request/response bandwidth (netrghmuch lilke the reply
bandwidth. A lager block size mads the parallel Hurricane Wlees more competite
with S-COMA. A 128-byte block alles a fourprocessor Hurricane system to increase
the request/response bandwidth to 328 MBytes/sec inmy&-COMAs peak bandwidth
by 17%.

5.3.3.2 Potocol Pocessor Brformance Hurricanes performance is also sengdito
assumptions about the embedded processors’ technology and clock speedude
design time, some nebnk interiace deices with an embedded processor (e.gphbon)
use a preous-generation commodity processor consisting of a general-purpogerinte
core, TLB, and caches with the message queues and fine-grain DSMateasiywport.
This study models the technologgbetween pxgous and current generation processors

using diferent clock speeds.

Figure5-7 plots the protocolvent (reply and request/response) bandwidth in Hurricane

with current-generation (400-MHz) processors andipts-generation (200-MHz) pro-

280 1

240

Bandwidth (MBytes/s)

40

Figure 57.

Reply Bandwidth

200 r

160

120 |

80

2 4 8 12 16
Number of Requesters

Impact of processor clock rate on Hurricangrotocol bandwidthlhe

280

240

200 r

160

120 |

80

40

96

Request/Response Bandwidth

L “ 2b0 MHz 1lpp

=8 200 MHz 2pp

L ©© 200 MHz 4pp

A&A 400 MHz 1pp
v 400 MHz 2pp
** 400 MHz 4pp

2 4 8 12 16

Number of Requesters

two

figures plot the reply bandwidth (left) and the request/response bandwidth (right) for any
and fourprocessor Hurricane diees for current generation (400MHz) andvioes generatic
(200MHz) processor clock speeds.

cessors. The graphs indicate that the number of processors has a much greater impact on

saturation bandwidth than processor clock rate. Whereas doubling the number of proces-

sors increases peak bandwidth by 81%, doubling the processor clock rate increases peak
bandwidth by only 37%.

Because much of the protocalemt occupancis due to data transfer time between

memory and the netwk, the system benefits much more from multiple outstanding mem-

ory requests tharaster protocol codexecution. This result suggests that haadsvsup-

port for hiding memory lateye—such as speculagly fetching memory blocks

[HKO™94]—or increasing the number of outstanding memory request—such as non-

blocking memory fetch—can help single-processeiads reach the performance of mul-

tiprocessor déces.

97

Table 5.2:Applications and input sets.

Benchmark || Description Input Set

barnes Barnes-Hut N-body simulation 16K patrticles

cholesky Sparse CholegkFactorization tk29.0

em3d 3-D electromagnetic awe propagtion | 76K nodes, dgree 5, 15%
remote, distance of 16, 10 itg

fft Complex 1-D radix-/n six-step FFT | 1M points

fmm Fast Multipole N-body simulation 16K patrticles

radix Integer radix sort 4M integers, radix 1024

water-sp Spatial vater molecule force simulati0|n4096 molecules

Unlike the reply bandwidth, the request/response bandwidiibits a higher sensitity
to protocol processor clock rate (Fig&& right). Doubling the processor clock rate
increases the request/response saturation bandwidth in a single-procassdnyd200%.
In contrast, doubling the number of processors increases the peak bandwidth by only 39%.
Because requests and responses (in a single-proceg®sa) de not inolve memory data
transfer much of their occupancies is due to protocol instructk@cwion. Thus, a higher
clock rate significantly impacts the request/response occupancies. A multiprocessor
device, havever, incurs protocol state migrationerhead which d$ets the benefits due to
parallelism. Vith four slav processors, memory parallelism is high enough fgebthe
negative impact of protocol state migration impiag the peak request/response band-

width over a two-processor dece with faster processors.

5.3.4 Maciobenchmark Experiment

The microbenchmarkxperiment in the preceding section helped analyze the jatenc
and bandwidth characteristics of S-COMA and the Hurricane systems for simple remote
read misses. Real applicationswager, exhibit more comple interactions between the

memory system and the protocol. Remote misses, for instance, can result in messages

98

Table 5.3:Application uniprocessorxecution time and speedups.

Benchmark || Execution Time S-COMA Speedup
(Million Cycles) | (Cluster of 8 8-way SMPSs)
barnes 2,284 31
cholesky 976 5
em3d 740 34
fft 2,489 19
fmm 3,351 31
radix 903 12
water-sp 3,965 61

among three nodes in a producer/consumer relationship if neither the producer nor the
consumer are the home node for the data. Real data sets also typically do not fit in caches
and produce additional memory fiafon the los. In this section, | revaluate the perfor-

mance of the netark interiaces using real applications.

Table5.2 presents the applications | use in this study and the corresponding input
parametersBarnes cholesly, fft, fmm radix andwatersp are all from the SPLASH-2
[WOT*95] benchmark suitetEm3dis a shared-memory implementation of the Split-C
benchmark [CDG93].

Table5.3 presents the applicationgegution times (inycles) on a uniprocessor and the
corresponding speedup on an S-COMA interconnected cluster ofey &MPs imple-
menting a 64-byte protocolMater-sp is primarily computation-inteng and achies
nearlinear speedups because communicatigritead does not impact its performance.
Cholesk is primarily communication-bound, $efs from a seere load imbalance
[WOT*95], and does not speed up muBarnes fmm andem3dhave moderate commu-
nication-to-computation ratios and aclgea 50% diciency with 64 processord=ft and

radix are communication-bound anghébit poor speedups.

99
This section presents a performance comparison of S-COMA, Hurricane, and Hurri-

cane-1 systems using the macrobenchmarks. Because Hurricane-1 uses SMP-node proces-
sors to mecute the softare protocol, the system can empla \ariety of protocol
scheduling policies (Chapt8j. This study ealuates tw protocol scheduling policies on

SMP processors. The base systelmricane-1,uses gtra dedicated SMP processors and

statically schedules a protocol threadxeaite on eery dedicated protocol processor

The second systerflurricane-1 Mult,uses a multipbeed scheduling polic Much like
the single-threaded Floating pglicm Chapte#, Hurricane-1 Mult oliates the need for
extra dedicated protocol processors by using only idle SMP-node compute processors to
assume the role of protocol processors. Under thisyaeliten a processor becomes idle
(due to vaiting for synchronization or a remote miss) it schedules a protocol thread. F
example, in a system with 8ay SMPs, there may be up to eight protocol threads sched-
uled to &ecute depending on the number of idle compute processors. When there are no
idle compute processors, the systemokes an interrupt and forces a processor to handle
the protocol gent. 1o eliminate &tra scheduling werhead, the system at most interrupts
the computation on one processduch a polig assumes that interrupts are infrequent and

are only ivoked to pregent long protocol imocation delays.

5.3.4.1 Base SystermarormanceFigure5-8 depicts a performance comparison of the
base case systems. The figure depicts application speedups normalized to S-COMA, for
Hurricane systems with upto four embedded processors and Hurricane-1 systems with
upto four etra (dedicated) SMP processorsseeuting the protocol. The figure indicates

that S-COMA improes performancever a softvare protocol running on an embedded
processor (Hurricane 1pp) on theeeage by 32%. The figure also indicates that S-COMA
significantly impraes performance (by up to 89%)ev a softvare protocol implementa-

tion running on a commodity SMP processor (Hurricane-1 1pp). These results are consis-
tent with those of Reinhardt et al. comparingfoon and ¥phoon-1 (which are similar

to single-processor Hurricane and Hurricane-Rirzg S-COMA [RPW96].

100

14
1 Hurricane 1pp
12 L O3 Hurricane 2pp _
o = Hurricane 4pp
3 10 —
[}] —
o
Y o8 | .
'c —
(&)
N
< 0.6 [M _
£
2 04t -
0.2 —
0.0 barnes cholesky em3d fft fmm radix water-sp
14
I Hurricane-1 1pp
12 k- 3 Hurricane-1 2pp |
) = Hurricane-1 4pp
g 72 Hurricane-1 Mult
- 1.0
[}
3 |
o
v 08 —
©
(&) —
N
< 0.6 [| _
£
2 04 =
0.2 —
0.0 it

barnes cholesky em3d fmm radix water-sp

Figure 58. Baseline system performance compariddre figure compares Hurricase
(above) and Hurricane-§’ (belav) performance with S-COMA on a cluster of 8 SMPs.
Hurricane, Hurricane-1 Mult, and S-COMA systems usea8-8MPs. The rest of Hurricane
systems use additional dedicated protocol processors per BMPgraphs plot applicatic
speedups in one- (1pp),aw(2pp), and fouprocessor (4pp) Hurricane and Hurricane-1 syst
and Hurricane-1 Mult system. The speedups are normalized to S-CCOfes\appearing und
the horizontal line at 1 indicate a better performance under S-COMA.

The graphs indicate that there are three classes of applications. The firstwidessp
which is primarily computation-intens and is not sensit to protocol gecution speed.

All systems perform within 91% of S-COMA fovatersp.

The second class consistsbafrnesandfmmwhich are primarily latercbound and do

not substantially benefit from parallel protocgkeution. In these applications, much of

101
the ecution time is spent in a force calculation phase between bodiesliaxg €om-

munication in this phase is sporadic amdrdy distrituted among the nodes. These appli-
cations benefit from a reduction in protocol occugamuch more than an increase in

protocol eecution bandwidth.

A single-processor Hurricane system performs well (within 90% of S-COMA) running
barnesandfmm.A two-processor and fotprocessor Hurricane system impeoperfor-
mance wger a single-processor configuration by at most 11% and 13% respedtisin-
gle-processor Hurricane-1 system reduces the performance to approximately within 60%
of S-COMA making room for performance impeonent. Neertheless, adding protocol
processors to Hurricane-1 increases the performance to at most within 84% of S-COMA.
Furthermore, a Hurricane-1 with four dedicated protocol processorsviespperfor-
mance @er Hurricane-1 Mult because the parallelism in protogeketion is not high

enough to dbet the multiplged protocol schedulingverhead (Chapted).

The third class consists dfiolesly, em3d fft, andradix which are all bandwidth-bound
applications.Cholesk incurs a lage number of compulsory misses to data that is not
actively shared. As such, the reply handlers in chglésgquently ivolve reading data
from memory and ha high occupancies. Multiprocessownides substantially impke
performance eer single-processor diees by parallelizing the memory accesses thereby
increasing the reply bandwidth. A dwprocessor Hurricane actually impes perfor-
mance ger S-COMA by 23%. Limited parallelism in protocolegution, havever, limits
Hurricanes performance impk@ment @er S-COMA to at most 32% with four protocol

processors.

In cholesly, Hurricane-1s performance alsox&ensvely benefits from multiple protocol
processors. Adding protocol processors significantly ingggerformanceven up to
four processors. The high protocol occupait Hurricane-1 results in lge queueing
delays at the protocol processBarallel protocol processors reduce queueing delays and

thereby imprege performance. The foyamrocessor Hurricane-1 outperforms S-COMA,

102
and the Hurricane-1 Mult system both perforrapaclose to S-COMA and impres cost

by eliminating the xtra dedicated protocol processors.

Communication and computationem3d fft, andradix proceed in synchronous phases.
Communication in these applications is highly bandwidth-intendursty, and of a pro-
ducer/consumer nature. @&m3d communication imolves reading/writing memory blocks
from/to neighboring processofsit, andradix both perform all-to-all communication with

every processon&hanging its produced data with other processors.

The lage dgrees of sharing iem3d fft, andradix, results in frequent coherence acti
ity. Coherencewents often imolve executing protocol handlers that only modify state and
send control messages (e.g., avaiidation). Because the handlers do not transfer data
between the memory and the netly the handlers’ occupayin a softvare protocol is
primarily due to instructionx@cution. Software protocol implementations, thereforeyda
a much higher occupayéor control messages than haate implementations. The figure
indicates that a single-processor Hurricane system at best perform within 61% of S-
COMA. The single-processor Hurricane-1 systemxisilet extremely poor performance
and at best reach within 25% of S-COMAerformance.

Multiprocessor Hurricane systems help natig the softare protocol xecution bottle-
neck inema3d fft, andradix. The two-processor Hurricane systems im@erformance
over a single-processor system by at most 40% because parallelizing pratmdglomn
incurs protocol state migratiorverhead (as discussed in Secto8.4.1). The foupro-
cessor Hurricang’performance ranges from compeétrelatve to S-COMA (inradix) to
36% better than S-COMA (iffit). Hurricane-1$ also significantly imprees with multiple
protocol processorsub at best reaches within 76% of S-COMA fiinunder Hurricane-1
Mult).

To summarize the results, a feuocessor Hurricane system on tiverage increases

speedups by 12%ver S-COMA, and a fouprocessor Hurricane-1 on theeaage per-

103
forms within 76% of S-COMA. More importantlghe most cost-&fctive Hurricane-1

Mult system performs within 74% of an all-harake S-COMA system without requiring

extra dedicated protocol processors.

5.3.4.2 Impact of Clustering Deee The dgree of clustering refers to the number of pro-
cessors invery SMP node. This sectiovaduates the impact of clusteringgee on the
relative performance of the systems while maintaining the number of processors and the

total amount of memory in the system constant.

Clustering typically increases the total amount of protocdidrgénerated per machine
node [SFH97]. The increase in protocol tfiaf hovever, depends on an applicatisn’
sharing patterns. On the one hand, clusteringvallprocessors to share a single cached
copy of remote data, reducing protocol frafgenerated per process@n the other hand,
in the absence of sharing, clustering may linearly increase protodil im&fut of a node
with the increase in the number of processors per node. Clustering also reduces the num-
ber of netwrk interfaces in the system, placing higher demands on the protocol proces-

sors avoring parallel protocobeecution.

Figure5-9 compares Hurricane’performance agnst S-COMA for a cluster of 16 4-
way SMPs (abee) and a cluster of 4 16ay SMPs (belw). The graphs indicate that a
higher clustering dgee increases the performanep dpetween the single-processor Hur-
ricane deices and S-COMA in most of the applications. This result indicates that queue-
ing delays due to a smaller number of rmtninterface deices in the system has a higher

impact on performance than thaigs from sharing remote data.

Multiple protocol processors in Hurricane systems help close the performapce g
between softare and hardare implementations. M a clustering dgree of 16, a four
processor Hurricane system outperforms S-COMA in all the applicaticepte for

watersp Hurricanes performance irwatersp is within 99% of S-COMA. Wh an

14

1.2

1.0

0.8

0.6

Normalized Speedup

0.4

0.2

0.0
14

1.2

1.0

0.8

0.6

Normalized Speedup

0.4

0.2

0.0

Figure 59.

104

16 4-way SMPs

2 Hurricane 1pp
O Hurricane 2pp
&= Hurricane 4pp

barnes

cholesky

em3d fft fmm radix

water-sp

4 16-way SMPs

barnes

cholesky

em3d fft fmm radix

water-sp

Impact of clustering dgee on Hurricang’performanceThe figure compare

performance in S-COMA and Hurricane on a cluster of 1&¢-8MPs (abee), and a cluster of
16-way SMPs (belw). The graphs plot application speedups in one- (1pw} (2pp), and four
processor (4pp) Hurricane systems. The speedups are normalized to S-Ca&is. ppearin
under the horizontal line at 1 indicate a better performance under S-COMA.

increase in the clustering glee from 4 to 16, four protocol processor in Hurricane

increase performance from a 7% to a 13% im@neent ¥er S-COMASs.

Figure5-10 illustrates the impact of clusteringgee on Hurricane-4’performance. A

high clustering dgree has laje impact on the single-processor Hurricarse{iérfor-

mance. Because of the poor performance of single-processor (base) systethe éage

105

14 -
O Hurricane-1 1pp

ol 16 4-way SMPs 1 Hurricane-1 2pp
. = Hurricane-1 4pp
73 Hurricane-1 Mult

1.0

0.8 T

0.6 _

04 —

Normalized Speedup

0.2 - _

0.0 barnes cholesky em3d fft fmm radix water-sp

14

4 16-way SMPs
12 - —

1.0

|
|

0.8 -

06 I~ [7] 7

Normalized Speedup
N

04 - N

0.2 - N

0.0 barnes cholesky em3d fft fmm radix water-sp

Figure 510. Impact of clustering dgee on Hurricane-&’performanceThe figure compare
performance in S-COMA and Hurricane-1 on a cluster of 16v@kend 4 (bel) SMPs. The S
COMA and Hurricane-1 Mult systems use d4yw(abwe) and 16-ay (belav) SMPs respeately.
The rest of the Hurricane-1 systems use additional dedicated protocol processors .pEhe&
graphs plot application speedups in one- (1pp); §&pp), and fouprocessor (4pp) Hurricane-
and Hurricane-1 Mult systems. The speedups are normalized to S-CGillls\Appearing und
the horizontal line at 1 indicate a better performance under S-COMA.

performance impnements due to four protocol processais o male the Hurricane-1
system competie with S-COMA. Not surprisinglyHurricane-1 Mult substantially bene-
fits from a high clustering deee and outperforms a feprocessor Hurricane-1 system in
all bandwidth-bound applications. Increasing the clusterirgyegefrom 4 to 16 also

allows Hurricane-1 Mult to impnee performance from 65% to 80% of S-COMA.

106
5.3.4.3 Impact of BldcSize An increase in the protocol block size increases teead

protocol bandwidth out of a node. garblock sizes also increase the fraction of protocol
occupang due to data transfer time between memory and theonketémortizing soft-
ware protocol wverhead wer a lager overall occupang reduces the performancep

between softare and hardare protocol implementations.

Large blocks, havever, result in &lse sharing in applications witleny fine sharing gran-
ularities thereby increasing protocol &ityi. Higher protocol actity intensifies queueing
at the protocol processors and results in gelaperformanceap between hardave and
software protocol implementationsafllelizing protocol ecution alleiates the perfor-

mance loss due talse sharing by reducing queueing at the protocol processors.

Figure5-11 compares Hurricareeperformance agnst S-COMA for a 32-byte protocol
(above) and a 128-byte protocol (belp The graphs corroborate the intuition that an
increase in the block size increases the performamgdetween single-processor Hurri-
cane systems and S-COMA in some applicationith W128-byte blocksholesk, em3d
fft, radix, watersp all exhibit better performance under single-processor Hurricane sys-
tems relatte to S-COMA.Barnesandfmm share data atevy fine granularities, sigr
from false sharing with 128-byte blocks, and therefoqgedence a layer performance

gap between the single-processor Hurricane and S-COMA.

The graphs also indicate that egablock size not onlyafors the single-processor base
case Hurricane systemutbalso the multiprocessor systemsvoTlprotocol processors
make a Hurricane system competiiwith S-COMA in all the applications. A foiro-
cessor Hurricane system on theeiges speeds up applicatiore@ution time by 20%
over S-COMA. These results, indicate that pipelining protogeheeecution to allav
for multiple outstanding memory requests mayvakingle-processor gees to achiee a

high protocol bandwidth with lge blocks.

107

14

32-byte protocol 3 Hurricane 1pp
12 - 3 Hurricane 2pp _
= Hurricane 4pp

1.0 =

08 _

06 T

Normalized Speedup

04 T

0.2 .

0.0 barnes cholesky em3d fft fmm radix water-sp

1.73 1.80

14

128-byte protocol
12 —

1.0 —

0.8 _ i

06 i

Normalized Speedup

04 —

0.2 - _

0.0 barnes cholesky em3d fft fmm radix water-sp

Figure 511. Impact of block size on Hurricarseperformancerlhe figure compare
performance in S-COMA and Hurricane for a 32-byte Yeband a 128-byte (bel) block
protocol. The graphs plot application speedups in one- (1pp)(Rpp), and fouprocessor (4pp
Hurricane systems. The speedups are normalized to S-COMWe9/ appearing under t
horizontal line at 1 indicate a better performance under S-COMA.

Figure5-12 illustrates the impact of protocol block size on Hurricasepgrformance.
A large block size has a higher impact on the performance of a single-processor Hurri-
cane-1 system as compared to Hurricanegé.étocks benefit systems with high saftes
protocol werheads (as in Hurricane-1) allimg the system to amortize theeshead wer

a lager protocol occupagcMuch as in Hurricane systems, multiprocessor Hurricane-1

108

14
O Hurricane-1 1
32-byte protocol = Hurricane-1 ZBB
12 r m Hurricane-1 4pp '
o3 2 Hurricane-1 Mult
>
S 1.0
()
()
g |
9 08 | .
©
2 |
N |
g 0.6 i
£
o
Z 04 i
0.0 barnes cholesky em3d fft fmm radix water-sp
14
128-byte protocol
12 —
g g
2 10
[} —
8
»n 08 r _
©
N
= 0.6 — B
£
204 r —
0.2 r —
0.0

barnes cholesky em3d fft fmm radix water-sp

Figure 512. Impact of block size on Hurricaneslperformancelhe figure compare
performance in S-COMA and Hurricane-1 for a 32-byte yap@and a 128-byte (bel) block
protocol. The graphs plot application speedups in one- (1pp),(&pp), and fouprocessor (4pp
Hurricane-1, and Hurricane-1 Mult systems. The speedups are normalized to S-Caluvids
appearing under the horizontal line at 1 indicate a better performance under S-COMA.

systems close the performan@pdetween Hurricane-1 and S-COMA. A fquocessor
Hurricane-1 system, and a Hurricane-1 Mult system both reach approximately within 88%

of S-COMAs performance.

5.3.4.4 Potocol Pocessor BrformanceThe microbenchmark results in Sectm3.4.4

indicated that protocol processor clock freqyehas a laver impact on the reply band-

109

1.4 [] 400 MHZ 1pp [200 MHz 1pp
12 L [400 MHz 2pp 200 MHz 2pp |
a I 400 MHz 4pp 200 MHz 4pp
3 10
(¢}
2
3 97
= 0.6 a7
[A4
: 7
S 04 F v
A4
7
02 v
7
0.0 . :

barnes cholesk fmm radix water-sp

Figure 513. Impact of protocol processor clock rate on Hurricamperformancelhe figure
compares Hurricang’performance with 400-MHz and 200-MHz protocol processors on a ¢
of 8 8-way SMPs. The graphs plot application speedups normalized to S-COMA for one-
and fourprocessor Hurricane diees. \alues appearing under the horizontal line at 1 indic:
better performance under S-COMA.

width than the number of protocol processors. The results also indicated that the clock fre-
queny may hae a lav or high impact on the request/response bandwidth depending on

the number of protocol processors.

Figure5-13 plots application speedups under 400-MHz and 200-MHz Hurricaieede
normalized to those under S-COMA. The graphs plot performance for ome;,amd
four-processor Hurricane diees. The graphs indicate that doubling the number of pro-
cessors in a pv@us-generation single-processor Hurricaneiaeresults in comparable
performance to upgrading the single processor to current-generation techidiegy
result indicates that the applications equally utilize tralable reply bandwidth (benefit-
ting from a lager number of processors) and the request/response bandwidth (benefitting

from a higher clock frequegtin the system.

The trade-df between a higher clock frequgnand a lager number of processors
becomes more visible for taprocessor deces in bandwidth-bound applications.

Cholesly exhibits limited parallelism in protocolent actvity and as such benefits from a

110
higher clock frequenc Two protocol processors can nojpioit all the eent parallelism

in em3d fft, andradix. These applications highly benefit from parallelizing protogehée
execution. Furthermore, protocol state migration equally impacts protocol occupancies in
multiprocessor Hurricane systems with higher evdoclock frequencies; protocol state
migration werhead is time spent in the memory system and is independent of processor
speed. In bandwidth-bound applications with high protoesheparallelism, adding more
protocol processor from preus-generation technology immes performance ver

upgrading thexasting processors to awer technology

5.4 Related Vork

Erlichson, et al. study the impact of using multiple dedicated protocol processors on sys-
tem’s performance in a cluster of SMPs [ENCH96]. Their study focuses on page-based
rather than fine-grain sofawe DSM and thedo not consider hardawe support for paral-
lel protocol eecution. Holt, et al. study thefe€t of protocol occupagoon systens per-
formance and conclude that high protocol occupaignificantly limits performance for
bandwidth-bound applications [HAS5]. Lovett, et al. also study a sofiwe protocol
implementation on an embedded processor and conclude that for some bandwidth-bound
database applications, the high protocol occupansoftware implementations gerely
limits performance [LC96]. Reinhardt, et al. compare safénand hardare implementa-
tions of fine-grain DSM & only consider single-threaded protocokeeution
[RPW96,RIW94].

Michael, et al. compare S-CONBAperformance with that of netwk interfaces with
two embedded processors [MNLS97]. Yhenplement a static partitioning of request/
response handlers and reply handlers between thprivtocol processors. Theonclude
that e/en with two protocol processors, sofiwe implementations significantly lag in per-
formance for bandwidth-bound applications. Their resulta;elier, also indicate a lge

load imbalance between theawrotocol processors due to static partitioning of handlers.

111

5.5 Summary

PDQ is a neel set of mechanisms forfieient parallel gecution of fine-grain softare

protocols. This chapter proposes awmdlgates hardare support for parallekecution of

fine-grain softvare DSM using the PDQ mechanisms. The chapter introduoesetsigns,

Hurricane and Hurricane-1, for parallel fine-grain safevDSM and compares their per-

formance to an all-hardwe S-COMA implementation. Hurricane igtates embedded

processors, fine-grain sharing, and reeking hardvare into a single dece. Hurricane-1

integrates fine-grain sharing and netking hardvare into a single dece, kut relies on

the host processors to run the safitevprotocols.

Results from a set of microbenchmarks anegeseine-grain shared memory applica-

tions indicated that:

PDQ helps significantly impre the performance of sofare protocol implementa-
tions, alleviating the software protocol xecution bottleneck.

A Hurricane system with four embedded processors either outperforms or performs
within 95% of S-COMA.

A cost-efective Hurricane-1 Mult system (with notea dedicated protocol proces-

sors) on theaerage performs as close as within 75% of S-COMA.

Besides the main conclusions of the sfudyther ealuation of the systems led to the

following results:

Higher clustering dgree increases demand for protocoleaition and further
increases performance impament from parallel protocokecution.

A high clustering dgree maks Hurricane-1 Mult more competii with S-COMA.

Larger block sizes both reduce the performarme lgetween softare and hardare
implementations, and boost the performance ingmreent from parallel protocoke-

cution.

A multiprocessor Hurricane system benefits more from an increase in the number of

protocol processors than an upgradeasidr protocol processors. Much of the proto-

112
col occupang is spent meing data between the memory and the oekwMultiple

processors increase the protocol bandwidth by parallelizing memory requests.

113

Chapter 6

Conclusions

Parallel computing is becoming ubiquitous with the widailability of SMP multipro-
cessors in the form of desktop machines andesenComputer designersvieabeun to
construct lage-scale parallel computers using SMPs as ctesttee kuilding blocks.

SMP clusters interconnectv&al SMPs into a single parallel computer using a high-
bandwidth lev-latengy commodity netwrk. To communicate across SMP nodes, proces-
sors send messages through the interconnectioronetdpplications and systems use a
variety of softvare protocols to coordinate and schedule the communication. This thesis
proposes andvaluates techniques to immefine-grain softare protocol performance in

an SMP cluster

6.1 Thesis Summary

The contrilutions of this thesis are:
* ataxonomy for softare protocol gecution semantics;
* anovel set of mechanismBDQ), for parallel fine-grain softare protocol xecution;
* ataxonomy for softare protocol scheduling policies on SMP processors;
* an ealuation of tvo scheduling policies for single-threaded protoseicaition;
* an ealuation of two fine-grain DSMs—Hurricane and Hurricane-}—using PDQ to

parallelize the softare protocol gecution.

114

The abee contrilutions &ll into two high-level stratgies to impree software protocol
performance. Much li& an ordinary application, sofare protocol performance can

increase by either (i) impving the sequentialxecution or (ii) parallelizing thexecution

of the protocol code.

The first contrilntion of the thesis is a taxonomy for protoceéeution semanticsin-
gle-threadedor sequentialxecution, andnulti-threadedor parallel &ecution. Tadition-
ally, distributed memory parallel computersxeeute fine-grain softare protocols
sequentially either on embedded processor on theorkeiwterface card or on a node’
single commodity processorhis thesis xplores techniques for paralletexution of fine-

grain software protocols.

Fine-grain softwre protocols by definition i@ very short running times. Ceentional
locking techniques (e.g., sofane spin-locks) to synchronize accesses to common systems
resources from parallel protocol threadswd incur prohibitvely high overheads in fine-
grain softvare protocols. This thesis propos#3Q, a nwel set of mechanisms for parallel
execution of synchronization-free protocols. PDQ is based on the alisarthat by par-
titioning system resources among protocol threads, multiple protocol threadsecatee

in parallel free of ¥plicit synchronization mechanisms.

Another approach to impve software protocol performance is to accelerate the sequen-
tial execution of the softare. Protocolecution consists of scheduling angiaking the
protocols execution and subsequentlyezuting the protocol code. This thesimleates
protocol scheduling policies on systems in which safeaprotocolsxecute on SMP pro-
cessors. By not puiding embedded protocol processors on a customanktinterface
card to e&ecute softwre protocols, such systems reduce both harelwomplgity and

cost.

Another contrilntion of this thesis is a taxonomy for protocol scheduling policies. On an

SMP node, softare protocols can either run on one or more dedicated protocol proces-

115
sors, or the system soffne can schedule (i.e., multig)ethe application and protocol
execution on the same processors. Therefore, SMRsrgie to tw classes of protocol
scheduling polig: dedicatedandmultiplexed A dedicated polig eliminates scheduling
overhead and maximizes communication throughput by dedicating one or more SMP pro-
cessors to alays &ecute the protocol sofave. A multipleed polig/, hovever, maxi-
mizes processor utilization by alMong all processors to contrite to computation and
dynamically schedules the protocol code on one or more processors when the application

needs to communicate.

Cost-efective (rather than high-performance) SMP clusters usectmst small-scale
SMPs and interconnect them with commodity reeking hardvare with little or no sup-
port to accelerate protocakecution. These systems typicallyeeute softvare protocols
in a single thread orvery SMP In the contet of single-threaded protocokecution, this
thesis asks the questiowlien does it maksense to dedicate onepessor in edt SMP
node specifically for ptocol pocessing?”"The central issue is when do theetheads
eliminated by a dedicated protocol processtsedfits lost contribtion to computation?
The thesis addresses this question xgmaning the performance and cost-performance

trade-ofs of two scheduling policies for a single-threaded protocol:

* Fixed a dedicated policwhere one processor in an SMP is dedicateceolge the

protocol thread, and

* Floating, a multiplexed poliey where all processors compute and alternate acting as

protocol processor

Performance results from running shared-memory and synthetic applications on a simu-
lation model for softwre fine-grain DSM together with simple cost model [WH95] indi-

cate that:

* Fixed is adwantageous 6r light-weight protocols A dedicated protocol processor
benefits light-weight protocols (e.g., fine-grain DSM) much more than coarse-grain

protocols (e.g., page-based DSM) because tleeheads eliminated by a dedicated

116
protocol processor account for a significant fraction of protogetwgion time in

light-weight protocols.

Fixed offers superior peribrmance when thee are four or more SMP processors
Systems with gry small-scale SMPs (with less than four processors) underutilize a
dedicated protocol process&liminating protocol schedulingzerheads does not sig-
nificantly impact gecution time in these systems. Because of a small number of SMP
processors in these systems, the opportunity cost in lost computation due to a dedi-
cated protocol processor is high. These systemddarather use all the processors for

computation and dynamically schedule a protocol threadetlcuée on one processor

Floating’s performance is not \ery sensitve to protocol invocation overhead A
two-orders-of-magnitude increase in protocoloication (i.e., interrupt) werhead
increases»ecution time in a ta-processor SMP cluster under the Floating gdbg

at most 45%. In comparison, the same increase in interveptead increasesecu-
tion time in uniprocessanode systems by 400%. It is highlydiig that at least one
processor in an SMP node is idle ay @ven time thus acting as protocol processor

thereby eliminating interrupts.

Fixed is the most cost-effectie design in fine-grain systems with high mtocol
invocation overhead. Given lage enough SMPs, sofare protocol xecution @entu-

ally becomes a bottleneck and &iximpraes performancever Floating. Although
increasing the size of an SMP may impgr@erformance, it does notalys result in a
cost-efective system; the performance impeonent may not justify the cost of addi-
tional processors. Fine-grain systems with high protoaacation werheads ally

SMP nodes to significantly impre performancewer uniprocessor nodes by eliminat-

ing the protocol imocation werheads. These systems become most clesttieé—

with respect to a uniprocessoode system—with four or more SMP processors. At
such a design point, the cost of an additional dedicated protocol processor becomes

negligible and is easily ddet by the performance imprement.

117
This thesis alsoxamines tw parallel fine-grain DSM systems based on PDQ. The the-

sis first proposeBTempesta set of mechanisms for implementing parallel fine-grain soft-
ware DSM protocols dered from Empest [Rei95] and PDQ. The thesislaates tw
hardware implementations of RmpestHurricane andHurricane-1.Much like Typhoon
[RPWO96], Hurricane intgrates one or more embedded processors with fine-grain shared-
memory support and the nedvking hardvare (i.e., message queues) on a custoncele
Similarly, Hurricane-1 is lie Typhoon-1 [RPW96] and inggates shared-memory and
messaging hardave on a custom dee kut relies on the node’commodity processors to

run the softvare protocol.

To gauge the impact of parallel protocaleeution on softare fine-grain DSM perfor-
mance, this thesis compares the Hurricane systeassags-COMA, a hardare imple-
mentation of fine-grain DSM [HSL94]. Results from running shared-memory applications
on simulation models for the Hurricane systems and an idealized (cath&rgimula-
tion model for S-COMA indicate that:

* PDQ helps significantly imprmove software fine-grain DSM’s performance. Single-
processor Hurricane and Hurricane-1 systems each perform within 24% and 53% of S-
COMA respectiely. Parallelizing the protocol»@cution allevs a Hurricane system
with four embedded processors to either outperform or perform within 95% of S-
COMA. Similarly, a Hurricane-1 system with fouxtea dedicated SMP processors

reaches within 76% of S-COMg\performance.

* PDQ’s impact is highest ér Hurricane-1 systems with lage-scale SMPsA Hurri-
cane-1 system can multiplSMP processors to both compute ardcete software
protocols. Under a multipked scheduling polic large-scale SMPs (with eight or
more processors) significantly increase the number of processorsutomgrio paral-
lel protocol &ecution, impreing performance of Hurricane-1 to within 80% of S-
COMA.

» Large-scale SMPs obate the need ér extra dedicated SMP pocessorsAlthough

multiplexed policies incur high protocol scheduling axéaition @erhead, the high

118
parallelism in protocolxecution due to a lge number of SMP processorssets the

protocol scheduling andxecution werhead. Lage-scale SMPs (with eight or more
processors) alle a Hurricane-1 system with multipded protocol scheduling to out-
perform or perform close to a Hurricane-1 system with a small number of (e.g., up to
four) extra dedicated protocol processors. A multigle poligy is also adantageous

because it reduces cost bying the need fordra dedicated SMP processors.

119
References

[AB86] J.Archibald and J.-L. BaefCache coherence protocols:aation using a multi-
processor simulation modeACM Transactions on Computer System§l):273—
298, 1986.

[ABLL92] ThomaskE. Anderson, BriatN. Bershad, EderdD. Lazavska, and Henr.
Levy. Scheduler actations: Efective kernel support for the uséavel management
of parallelism.ACM Transactions on Computer Systemi(1):53-79, February
1992.

[ACP95]Tom Anderson, Dad Culler, and Daid Patterson. A Case for N@ (networks
of workstations)IEEE Micro, 15(1), February 1995.

[AG89]GeoeS. Almasi and Allan GottlielHighly Parallel Computing The Benjamin/
Cummings Publishing Compgninc., 1989.

[Aga92]Anant Agarwal. Performance traddefin multithreaded processofEEE Trans-
actions on Brallel and Distrituted System$(5):525-539, September 1992.

[AS88] William C. Athas and Charlds Seitz. Multicomputers: Message-passing concur-
rent computerdEEE Computer21(8):9-25, August 1988.

[BALL9O0] B. N. Bershad, TE. Anderson, ED. Lazavska, and HM. Levy. Lightweight
remote procedure cahCM Transactions on Computer Syste®d):37-55, Febru-
ary 1990.

[BCF93] Zeki Bozkus, Alok ChoudhayyGeofrey Fox, Tomasz Haupt, and Sanjay
Ranka. ertran 90d/hpf compiler for distritbed memory mimd computers: Design,
implementation, and performance resultsPhoceedings of Supssmputing '93
pages 351-360, Nember 1993.

[BCF*95] Nanette). Boden, Danyn Cohen, RoberE. Felderman, Alai. Kulawik,
Charledl.. Seitz, Jakv N. Seizwic, and Vn-King Su. Myrinet: A gigbit-persec-
ond local area netwk. IEEE Micro, 15(1):29-36, February 1995.

[BCL*95] Eric A. Brewer, FredericT. Chong, LoKT. Liu, ShamikD. Sharma, and John
Kubiatavicz. Remote queues: Exposing message queues or optimization and atom-
icity. In Proceedings of the SixthCM Symposium ondrallel Algorithms and
Architectures (SRA), pages 42-53, 1995.

[BCZ90] JohnK. Bennett, JohmB. Cartey and Wily Zwaenepoel. Adapte software
cache management for distited shared memaryn Proceedings of the 17th

120

Annual International Symposium on Computechitecture, pages 125-134, June
1990.

[BDFL96] MatthiasA. Blumrich, Cesary Dubnicki, EdavdW. Felten, and Kai Li. Pro-
tected Usetevel DMA for the SHRIMP Netwrk Interface. InProceedings of the
Second IEEE Symposium on HigéHBrmance Computer Ahitecture, February
1996.

[Bel85] C. Gordon Bell. Multis: A ne class of multiprocessor computeiScience
228:462-466, 1985.

[BG93] Mats Bjoerkman and Per Gunningdekocking efects in multiprocessor imple-
mentations of protocols. IBIGCOMM '93 pages 74-83, September 1993.

[BG97] Doug Buger and JameR. Goodman. Billion-transistor architecturlSEE Com-
puter, 30(9):46—-48, September 1997.

[BGP94] Mary L. Bailey, Burra Gopal, MichaeA. Pagels, LarryL. Peterson, and Prasen-
jit Sarkar Pathfinder: A pattern-based pa&tlclassifierin Proceedings of theifst
USENIX Symposium on Opéing Systems Design and Implementation (OSDI)
November 1994.

[BH86] J.E. Barnes and. Aut. A hierarchical o(n log n) force calculation algorithm.
Nature, 324(4):446—-449, December 1986.

[BJK*95] RobertD. Blumofe, Christophef. Joeg, Bradley C. Kuszmaul, CharleE.
Leiserson, kithH. Randall, and Wi Zhou. Cilk: An eficient multithreaded runt-
ime system. IrFifth ACM SIGPLAN Symposium on Principles &Btice of Rral-
lel Programming (PPOPR)pages 207-216, August 1995.

[BK93] HenriE. Bal and MFrans Kashoek. Object distution in Orca using compile-
time and run-time techniques. @OPSLA '93: Eighth Annual Confance on
Object-Oriented Rsgramming Systems, Langyes and Applicationspages 162—
177, October 1993.

[BLA "94] MatthiasA. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, EdvdW.
Felten, and Jonathon SandipeYvirtual memory mapped nebwk interface for the
SHRIMP multicomputerin Proceedings of the 21st Annual International Sympo-
sium on Computer &hitecture, pages 142-153, April 1994.

[BN84] Andrew D. Birrel and Brucelay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Syste@d):39-59, February 1984.

[BST89]HenriE. Bal, Jennifefs. Steinegrand Andrev S. Tanenbaum. Programming lan-
guages for distrited computing system&CM Computing Suryes, 21(3):261—
322, September 1989.

[BTK90] Henri E. Bal, Andrev S. Tanenbaum, and Mrrans Kaashoek. Orca: A language
for distributed programmingACM SIGPLAN Notice25(5):17-24, May 1990.

121

[BVVE95] Anindya Basu, Yheet BuchWerner \6gels, and Thorsterom Eicken. U-Net: A
userlevel network interface for parallel and distuited computing. &chnical report,
Department of Computer Science, Cornell\ugnsity, 1995. to appear

[CA96] R. Clark and KAlnes. An SCI interconnect chipset and adapgteSymposium
Recod, Hot Inteconnects I\VAugust 1996.

[CAA*95] Derek Chiou, Boors. Ang, Arvind, Michael. Becherle, Andy Boughton,
Robert GreinerJame<£. Hicks, and James. Hoe. Startdhg: Delvering seamless
parallel computing. IProceedings of EUB-PAR '95 Stockholm, Sweden, 1995.

[CBZ91]JohnB. Carter JohnK. Bennett, and \lly Zwaenepoel. Implementation and
performance of Munin. IfProceedings of the 13thCM Symposium on Opsging
System Principles (SOSPages 152-164, October 1991.

[CDG'93]D.E. Culler A.Dusseau, SC. Goldstein, AKrishnamurtly, S.Lumetta,
T. von Eicken, and KYelick. Parallel programming in Split-C. IRroceedings of
Supecomputing '93 pages 262—-273, Nember 1993.

[CF93]Alan L. Cox and Roberd. Fowler. Adaptive cache coherepdor detecting migra-
tory shared data. IRroceedings of the 20th Annual International Symposium on
Computer Achitecture, pages 98-108, May 1993.

[Cha97]Satish Chandreésoftwae Techniques for Customizable Distuted Shaed Mem-
ory. PhD thesis, Computer Sciences Departmentdssity of Wisconsin—Madison,
1997.

[CLR94] Satish Chandra, JamBs Larus, and Anne Rogers. Where is time spent in mes-
sage-passing and shared-memory program®rdceeedings of the Sixth Interna-
tional Confeence on Achitectual Support for Pogramming Languges and
Opemating Systemgages 6173, San Jose, California, 1994.

[CPWGY97]Alan Charleswrth, Andy Phelps, Ricki Wiams, and Gary Gilbert. Gay
plane-XB: Extending the Ultra Enterprisaniily. In Symposium Recdy Hot Inter-
connects VJuly 1997.

[CSBS95]FredricT. Chong, Shamib. Sharma, Erié. Brewer, and Joel Saltz. Multipro-
cessor runtime support for fine-grained, gukar DAGs. Parallel Processing Let-
ters: Special Issue onaritioning and Sheduling for Rrallel and Distrituted
SystemsDecember 1995.

[DBRD91] RichardP. Draves, BrianN. Bershad, RicharB. Rashid, and RandalV. Dean.
Using continuations to implement thread management and communication in oper-
ating systems. liProceedings of the 13thCM Symposium on Opsting System
Principles (SOSR)October 1991.

[DDHY92] David L. Dill, AndreasJ. Drler, Alan J. Hu, and CHan Yang. Protocol eri-
fication as a hardare design aid. 164992 IEEE International Confence on Com-
puter Design: VLSI in Computeand Pocessaos, pages 522-525, 1992.

122

[DPD94]Peter Druschel, Larrly. Peterson, and Bruc Davie. Experiences with a high-
speed netark adaptor. A softare perspecte. In SIGCOMM 94 pages 2-13,
August 1994,

[ENCH96] Andrew Erlichson, Neal Nuakls, Greg Chesson, and John HennesSgft-
FLASH: Analyzing the performance of clustered disttéal virtual shared memory
supporting fine-grain shared memohy Proceedings of the 8enth International
Confeence on Ashitectuial Support for Pogramming Languges and Opeating
Systems (ASPLOS VI{)ctober 1996.

[FLR+94] Babak Rlsafi, Alvin Lebeck, Steen Reinhardt, loannis Schoinas, MarkHill,
James Larus, Anne Rogers, andvidaWood. Application-specific protocols for
userlevel shared memonyn Proceedings of Supawmputing '94 pages 380-389,
November 1994.

[FW94] Babak Rlsafi and Dad A. Wood. Cost/performance of a parallel computer simu-
lator. In Proceedings of the 8thafkshop on Brallel and Distrituted Simulation
(PADS ’'94) July 1994.

[FW96] Babak Rlsafi and Daid A. Wood. When does dedicated protocol processing
male sense?échnical Report 1302, Computer Sciences Departmentekdity of
Wisconsin—Madison, February 1996.

[FW97a]Babak Rlsafi and Daid A. Wood. Modeling cost/performance of a parallel com-
puter simulatarACM Transactions on Modeling and Computer Simulatid(i),
January 1997.

[FW97b]Babak Rlsafi and Dad A. Wood. Reactie NUMA: A design for unifying S-
COMA and CC-NUMA. InProceedings of the 24th Annual International Sympo-
sium on Computer Ahitecture, pages 229-240, June 1997.

[FW97c]Babak Flsafi and Daid A. Wood. Scheduling communication on an SMP node
parallel machine. IrProceedings of the TlirIEEE Symposium on HiglreRor-
mance Computer Ahnitecture, pages 128-138, February 1997.

[GHG"91] Anoop Gupta, John Hennes#purosh Gharachorlooo@id Mowry, and Wlf-
Dietrich Weber Comparatie evaluation of lateng reducing and tolerating tech-
niques. InProceedings of the 18th Annual International Symposium on Computer
Architecture, pages 254-263, June 1991.

[GJ91]David B. Gustason and Dad V. James, editorsSCI: Scalable Cohent Inter-
face: Layical, Physical and Cdwe Coheence Specificationsolume P1596/D2.00
18Nov9l1. IEEE, Neember 1991. Draft 2.00 for Recirculation to the Balloting
Body.

[HHS"95] Chris Holt, Mark Heinrich, Jaswind®al Singh, Edward Rothbey, and John
HennessyThe efects of lateng, occupang, and bandwidth in distriied shared
memory multiprocessors.ethnical Report CSL-TR-95-660, Computer Systems
Laboratory Stanford Unrersity, January 1995.

123

[HKO™94] Mark Heinrich, Jdfey Kuskin, Daid Ofelt, John Heinlein, Joel Baxter
JaswindePal Singh, Richard Simoni, ¢uirosh Gharachorloo, Da Nakahira,
Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Henn&bssyperfor-
mance impact of flability in the Stanford FLASH multiprocessdn Proceedings
of the Sixth International Confemce on Achitectual Support for Pogramming
Languaes and Opeating Systems (ASPLOS Mppges 274-285, 1994.

[HKT92] Seema Hiranandani,&dd Kennedy and Chau-\Wn Tseng. Compiling fortran d
for mimd distrituted-memory machine€ommunications of theGM, 35(8):66—-80,
August 1992.

[HP90] JohnL. Hennessy and D&l A. PattersonComputer Achitectuie: A Quantitative
Approad. Morgan Kaufmann, 1990.

[HP91]NormanC. Hutchinson and Larry. Peterson. The x-&nel: An architecture for
implementing netark protocols.IEEE Transactions on Softwar Engineering
17(1):64-76, January 1991.

[HSL94] Erik Hagersten, Ashie Saulshiry, and Anders Landin. Simple COMA node
implementations. IrProceedings of the 27th Hawaii International Coefeze on
System Sciencgsage?, January 1994.

[HT93] W. Daniel Hillis and Le&vis W. Tucker. The CM-5 connection machine: A scalable
supercomputeCommunications of theGM, 36(11):31-40, Neember 1993.

[Int90] Intel CorporationiPSC/2 and iPSC/860 UserGuide Intel Corporation, 1990.

[Int93] Intel Corporation. Bragon technical summarytel Supercomputer Systemsvbi
sion, 1993.

[int97] 82093AA 1/0 Adwanced Programmable Interrupt Controller ARIC). http://
developerintel.com/design/pcisets/datashts/290566.htm, 1997.

[JKW95] Kirk L. Johnson, MFrans Kaashoek, and DeborahWallach. CRL: High-per-
formance all-software distrilmted shared memarin Proceedings of the 15thCM
Symposium on Opating System Principles (SOSR)ages 213-228, December
1995.

[Kai93] Mathias Kaiserswerth. The parallel protocol engle&EE/ACM Transactions on
Networking 1(6):650-663, December 1993.

[KC94] Vijay Karamcheti and Andve A. Chien. Softvare werhead in messaging layers:
Where does the time go? Rroceedings of the Sixth International Coefere on
Architectural Support for Pogramming Languges and Opeting Systems (ASP-
LOS VI) October 1994.

[KDCZ93] Pete Keleher Sandlya Dwarkadas, Alan Cox, and ily Zwaenepoel. fiead-
marks: Distriluted shared memory on standarmrkstations and operating systems.
Technical Report 93-214, Department of Computer Science, Riceendity,
November 1993.

124

[KS96] Magnus Karlsson and Per Stenstrom. Performanakiaion of a clustebbased
multiprocessor bild from ATM switches and lis-based multiprocessor sers. In
Proceedings of the Second IEEE Symposium on Higiofithance Computer Ahi-
tecture, February 1996.

[K*94] Jefrey Kuskin etal. The stanford FLASH multiprocessdn Proceedings of the
21st Annual International Symposium on Computahikecture, pages 302-313,
April 1994.

[LC96] Tom Lovett and Russel Clapp. BIG: A CC-NUMA compute system for the
commercial mar&tplace. InProceedings of the 28rAnnual International Sympo-
sium on Computer Ahitecture, May 1996.

[LH89] Kai Li and Rl Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer System@):321-359, Neember 1989.

[LHPS97]Beng-Hong Lim, Phillip Heidelbgr, Pratap Bttanik, and Marc SniMessage
proxies for dficient, protected communication on SMP clustersPioceedings of
the Thid IEEE Symposium on HigheRPormance Computer Ahmitecture, February
1997.

[LL97] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA highly scalable
sener. In Proceedings of the 24th Annual International Symposium on Computer
Architecture, May 1997.

[LS95] JameR. Larus and Eric Schnakel: Machine-independentecutable editing. In
Proceedings of the SIGPLAN '95 Comiece on Rigramming Languge Design
and Implementation (PLDJpages 291-300, June 1995.

[Mei93] Meiko World Inc. Computing suafce 2: Oerviev documentation set, 1993.

[MFHW96] Shubhend®. Mukherjee, Babakafsafi, MarkD. Hill, and Daid A. Wood.
Coherent netark interiaces for fine-grain communication. Rroceedings of the
23rd Annual International Symposium on Computethfectule, pages 247-258,
May 1996.

[MNLS97] Maged Michael, AshwinK. Nanda, Beng-Hong Lim, and Michael Scott.
Coherence controller architectures for SMP-based CC-NUMA mulitprocessors. In
Proceedings of the 24th Annual International Symposium on Compudeitetr
ture, May 1997.

[MPO95] David Mosbeger, Larry L. Peterson, and Sean O’'Malld’rotocol lateng. Mips
and reality Technical Report TR 95-02, Department of Computer Sciencegkdni
sity of Arizona, 1995.

[MRF*97] Shubhends. Mukherjee, StenK. Reinhardt, Babak dfsafi, Mike Litzkow,
Steve Huss-Lederman, Mai®. Hill, JamesR. Larus, and Dad A. Wood. Wscon-
sin Wind Tunnel II: A fast and portable parallel architecture simuldtoWorkshop
on Rerformance Analysis and Its Impact on DesigAl®, June 1997.

125

[Muk98] Shubhendis. MukherjeeA Simulation Study of Network Interface Design Alter-
natives PhD thesis, Computer Sciences Departmentydgsity of Wisconsin—Mad-
ison, 1998.

[PC94]Scott Rkin and Andrer A. Chien. The impact of message tiabn multicomputer
memory hierarch performance. Mastex'thesis, Department of Computer Science,
University of lllinois at Urbana-Champaign, July 1994.

[Pfi95] RobertW. Pfile. lyphoon-Zero implementation: Thenex module. Mastes the-
sis, October 1995.

[QB97] Xiaohan Qin and Jean-Loup Ba@mn the use and performance xpkcit commu-
nication primitves in cache-coherent multiprocessor systemBrdneedings of the
Third IEEE Symposium on HigheRormance Computer Ahitectue, February
1997.

[Rei95] StevenK. Reinhardt. €mpest intedce specification (wsion 1.2.1). €chnical
Report 1267, Computer Sciences Departmentyéssity of Wsconsin—Madison,
February 1995.

[Rei96] StevenK. Reinhardt.Mechanisms for Distribted Shaed Memory PhD thesis,
Computer Sciences Department, émsity of Wisconsin—Madison, 1996.

[RFW93] StevenK. Reinhardt, Babakalsafi, and Dad A. Wood. Kernel support for the
Wisconsin WWhd Tunnel. InProceedings of the Usenix Symposium on dkexmnels
and Other kernel Achitectules September 1993.

[RLW94] StevenK. Reinhardt, JameR. Larus, and Dad A. Wood. Tempest and
Typhoon: Usetevel shared memoryn Proceedings of the 21st Annual Interna-
tional Symposium on ComputerchAitecture, pages 325-337, April 1994.

[RPW96]SterenK. Reinhardt, RobeNV. Pfile, and Daid A. Wood. Decoupled hardave
support for distribted shared memarin Proceedings of the 28rAnnual Interna-
tional Symposium on ComputerchAitectue, May 1996.

[RSG93]Edward Rothbeg, JaswindePal Singh, and Anoop Gupta.dfking sets, cache
sizes, and node granularity issues fogéascale multiprocessors. Rioceedings of
the 20th Annual International Symposium on Computehifectue, pages 14-25,
June 1993.

[SBS93]Per Stenstrom, Mats Brorsson, and Lars Samgdb&idaptve cache coherence
protocol optimized for migratory sharing. Rroceedings of the 20th Annual Inter-
national Symposium on Computerchitecture, pages 109-118, May 1993.

[SCB93]Daniel Stodolsk, J.Brad Chen, and Brian BershaddF interrupt priority man-
agement in operating systems.Sacond USENIX Symposium on Miernels and
Other Kernel Achtitectules pages 105-110, September 1993. Sagd@i€EA.

126

[Sch97]loannis Schoinadzine-Grain Distributed Shaed Memory on a Cluster ofdfk-
stations PhD thesis, Computer Sciences Departmentyddsity of Wsconsin—
Madison, 1997.

[SFH'97] loannis Schoinas, BabakaBafi, MarkD. Hill, James Larus, and Dl A.
Wood. Sirocco: Cost-#dctive fine-grain distribted shared memargpubmitted for
publication, July 1997.

[SFL™94] loannis Schoinas, BabakaBafi, AlvinR. Lebeck, StenK. Reinhardt,
JameR. Larus, and Dad A. Wood. Fine-grain access control for disttid
shared memoryin Proceedings of the Sixth International Coefere on Achitec-
tural Support for Pogramming Languges and Opeating Systems (ASPLOS VI)
pages 297-307, October 1994.

[SGA97]DanielJ. Scales, Burosh Gharachorloo, and Anshu Aggal. Fine-grain soft-
ware distriluted shared memory on SMP clusterschhical Report 97/3, Digital
Equipment Corporation, ®étern Research LaboratpRebruary 1997.

[SGT96]Daniell. Scales, Burosh Gharachorloo, and ChandramohanThekkath.
Shasta: A lw overhead, softare-only approach for supporting fine-grain shared
memory In Proceedings of the 8enth International Confence on Achitectural
Support for Pogramming Languges and Opeting Systems (ASPLOS VIQcto-
ber 1996.

[SH91] Richard Simoni and Mark Howmatz. Dynamic pointer allocation for scalable cache
coherence directories. limternational Symposium on Slear Memory Multipo-
cessingApril 1991.

[SKT96] JameD. Salehi, James Kurose, and Dondwsley. The efectiveness of din-
ity-based scheduling in multiprocessor netking. 4(4), August 1996.

[SL90] Mark S. Squillante and Edavd D. Lazavska. Using processaache dinity infor-
mation in shared-memory multiprocessor scheduliBEE Transactions on &al-
lel and Distributed Systemsgl(2):131-143, April 1990.

[SP88]J.E. Smith and AR. Plezkun. Implementing precise interrupts in pipelined proces-
sors.|IEEE Transactions on ComputgrC-37(5):562-573, May 1988.

[SS92]D. Stein and DShah. Implementing lightweight threads. Pnoceedings of the
Summer '92 USENIX Confarce pages 1-9, June 1992.

[TG89] Andrew Tucker and Anoop Gupta. Process control and scheduling issues for multi-
programmed shared-memory multiprocessorsPtaceedings of the 12thCM
Symposium on Opating System Principles (SOSR)ages 159-166, December
1989.

[TL94] ChandramohaA. Thekkath and Henriyl. Levy. Hardware and softare support
for efficient exception handling. IfProceedings of the Sixth International Confer-
ence on Ashitectural Support for Pogramming Languges and Opeating Systems
pages 110-119, San Jose, California, 1994.

127

[VECGS92]Thorsten wn Eicken, Daid E. Culletr SethCopen Goldstein, and Kla&sik
SchauserActive messages: a mechanism for gnéing communication and com-
putation. InProceedings of the 19th Annual International Symposium on Computer
Architecture, pages 256-266, May 1992.

[VZ91] Raj Vaswani and John Zahorjan. The implications of cachi@igf on processor
scheduling for multiprogrammed, shared memory multiprocessoRobeedings
of the 13th £M Symposium on Opaing System Principles (SOSPages 26—-40,
October 1991.

[WG94] David Womble and Daid Greenbay. LU factorization and the LINKCK bench-
mark on the Intel &agon. ftp://ftp.cs.sandiagpub/papers/dgombl/
paragon_linpack benchmark.ps, March 1994.

[WGH*97] Wolf-Dietrich Webey Stephen Gold, & Helland, @keshi Shimizurhomas
Wicki, and Wnfried Wilcke. The Mercury interconnect architecture: A coftef
tive infrastructure for high-performance sens. InProceedings of the 24th Annual
International Symposium on Computechitecture, May 1997.

[WH95] David A. Wood and MarlD. Hill. Cost-efective parallel computingEEE Com-
puter, 28(2):69-72, February 1995.

[WHJ*95] DeborahA. Wallach, Wison C. Hsieh, KirkL. Johnson, MFrans Kaashoek,
and William E. Weihl. Optimistic actte messages: A mechanism for scheduling
communic ation with computation. Fifth ACM SIGPLAN Symposium on Princi-
ples & Practice of Rrallel Programming (PPOPR)July 1995.

[WOT"95] Steven Cameron Wo, Moriyoshi Ohara, Ean Torrie, JaswindePal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization and methodological con-
siderations. IrProceedings of the 22nd Annual International Symposium on Com-
puter Achitectule, pages 24-36, July 1995.

