
Fall 2003

1. This problem is concerned with the partial differential equation ut +ux = 0 on the
interval [0..1] with booundary data specified at the left-hand side, u(t, 0) = b(t). Consider
the forward-time, backward space scheme,
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written in matrix form as
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where λ = ∆t/∆x.
By analyzing the eigenvalues and other properties of the matrix determine the (von

Neumann) stability of the scheme when λ is a constant.

Solution Call the matrix CM where the number of rows and columns is M + 1.
Stability requires that there be a uniform bound on Cn

M independent of M for 0 ≤ n∆t ≤ T.
for each value of T.

The diagonal elements of Cn
M , other than the first 0, are (1−λ)n and so this quantity

must be bounded. For (1 − λ)n to be bounded we must have |1 − λ| ≤ 1. (Actually, the
upper limit can be 1 + K∆t for some constant K but then λ is not constant.) So we have
0 ≤ λ ≤ 2, so far.

But we need more to get the uniform estimate, by looking at the vector v± =
(1,−1, 1,−1, 1, . . .) we can compute Cn

Mv± and see that the last element is like ±(1− 2λ)n

when n ≤ M. So, we also need that 1 − 2λ is bounded by 1. This gives 0 ≤ λ ≤ 1.
This conditions gives the maximumm norm of CM to be 1. (This is the maximum of

the row sums.) Thus in the maximum norm Cn
M is bounded by 1 for all M and n, hence all

equivalent norms are bounded, including the 2-norm. This is the von Neumann stability
condition.

2. This question deals with a discretization of the boundary value problem for the
nonlinear partial differential equation ∇2u = ln(1 + u) on the unit square with values
of u specified on th e boundary. Consider using the discrete five-point Laplacian ∇2

h to
approximate the differential Laplacian.

Prove that if a solution exists to ∇2
hu = ln(1+u) with data specified on the boundary,

then the solution must be unique.

Solution Using equal spacing for both x and y directions the finite difference scheme
for this problem can be written as
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ln(1 + ui,j)
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(At least, this is the most reasonable of schemes to use.)
If we assume that vi,j is also a solution of the scheme, then the difference wi,j =

ui,j − vi,j satisfies
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where

Pi,j =
ln(1 + ui,j) − ln(1 + vi,j)

ui,j − vi,j

is a positive quantity. Thus we have
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4(1 + h2Pi,j)
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Thus at each point, wi,j is a true sub-average of its neighbors. Now we can use the usual
argument for maximum principles. If wi,j were a positive maximum at an interior point,
it can not be a sub-average of its neighbors. A similar argument applies to a negative
minimum. This contradiction, shows that the only possible solution is for wi,j to be
identically 0. That is, there is a unique solution if there is a solution.

3. The differential equation
y′(t) =

√

y(t)

with initial condition y(0) = 0 has the solution

y(t) =
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4
t2

The Euler scheme for this equation

Yk+1 − Yk = h
√

Yk

with initial condition Y0 = 0 has the solution Yk = 0 for all k.
Discuss why the solution of the finite difference scheme does not converge to the given

solution of the differential equation. Mention appropriate theorems that give convergence
results for finite difference schemes applied to differential equations.

Solution The reason that the usual theorems for convergence of differential equations
do not apply here is that the differential equation does not satisfy a Lipschitz condition or
similar condition. The ode does not have a unique solution, in fact, y(t) = 0 is a solution
to the ode, so the solution of the scheme does converge (i.e., is) a solution of the ode.
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