
	
 1	

University of Wisconsin-Madison
Computer Sciences Department

Database Qualifying Exam

Fall 2012

GENERAL INSTRUCTIONS

Answer each question in a separate book.

Indicate on the cover of each book the area of the exam, your code number, and the
question answered in that book. On one of your books list the numbers of all the
questions answered. Return all answer books in the folder provided. Additional answer
books are available if needed.

Do not write your name on any answer book.

SPECIFIC INSTRUCTIONS

You must answer four (4) of five (5) questions.

Before beginning to answer a question make sure that you read it carefully. If you are
confused about what the question means, state any assumptions that you have made in
formulating your answer. Good luck!

The grade you will receive for each question will depend on both the correctness of your
answer and the quality of the writing of your answer.

Policy on misprints and ambiguities:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,
the exam sometimes contains misprints and ambiguities. If you are convinced a problem
has been stated incorrectly, mention this to the proctor. If necessary, the proctor can
contact a representative of the area to resolve problems during the first hour of the exam.
In any case, you should indicate your interpretation of the problem in your written answer.
Your interpretation should be such that the problem is nontrivial.

	
 2	

1: HIGH PERFORMANCE CONCURRENCY CONTROL
Consider a high-performance main memory database that runs on a modern multicore
machine. So, the entire database is resident in main memory and there are multiple cores
that access the database using a shared-memory architecture. Design a high-performance
optimistic concurrency protocol for accessing B-Trees in this environment. Also, design a
high-performance pessimistic (i.e. locking-based) scheme for this environment. Then, list
at least one workload for each scheme where that scheme works better on that workload
as compared to the other scheme.

2: MODERN BUFFER MANAGER
Traditional hard disk drives are rapidly being replaced by flash storage where the cost of
random access is nearly the same as that of sequential access. Assume you have a
database management system that is designed purely to work on flash-only storage
systems (i.e. there is no need to optimize any part of the system for rotating disks).
Design a high performance buffer manager for this system.

Now, traditional buffer mangers (for rotating disk systems) generally use an LRU-based
replacement policy and often scan the buffer pool to find victim pages for eviction that
are sequentially laid out on disk. Traditional buffer managers also use prefetching to fetch
a small set of sequential pages (e.g. 8 pages) when servicing a buffer miss on a read
access. Explain how your scheme above compares to a traditional buffer manager design.

3: ENTITY LINKING
Let Persons(first-name, last-name, street-address, city, state, zip-code, phone) be a table
with 10 million tuples. Each tuple describes a person and may contain typos, mistakes,
variations, and missing data. For example, the last name "Richard" may be misspelled as
"Rihard" or shortened into "Rick", or may be missing from the tuple.

Now suppose you want to find all pairs of tuples that match, that is, pairs that refer to the
same real-world person. This problem is known as entity matching or record linkage,
among other names, in the literature.

1. Describe an algorithm that runs on a single machine (e.g., a PC) to find all matching
pairs from Table Persons. Your algorithm should try to maximize the matching accuracy
and minimize the matching time.

2. Describe how you measure the matching accuracy. Give the exact definitions of the
accuracy measures that you use.

3. Describe an algorithm that runs on a cluster of machines to find all matching pairs
from Table Persons, in a distributed and parallel fashion.

	
 3	

4: THEORY
In	
 this	
 question,	
 you	
 will	
 be	
 asked	
 to	
 prove	
 some	
 facts	
 about	
 conjunctive	
 queries.	
 	
 If	

you	
 cannot	
 prove	
 a	
 statement	
 formally,	
 don’t	
 fret	
 too	
 much:	
 you	
 will	
 get	
 close	
 to	
 full	

credit	
 by	
 identifying	
 the	
 key	
 issue	
 informally.	
 Recall	
 the	
 containment	
 problem:
	

Given	
 as	
 input	
 two	
 inputs	
 q	
 and	
 q’	
 in	
 some	
 language	
 (relational	
 algebra	
 or	

conjunctive	
 queries).	
 We	
 denote	
 by	
 q(I)	
 the	
 set	
 of	
 answers	
 returned	
 by	
 q	
 when	

applied	
 to	
 I.	
 We	
 say	
 that	
 q	
 is	
 contained	
 in	
 q’	
 if	
 for	
 all	
 instances	
 I	
 q(I)	
 <=	
 q’(I).	
 	

	

That	
 is	
 the	
 answers	
 of	
 q	
 are	
 always	
 a	
 subset	
 q’	
 no	
 matter	
 what	
 input	
 database	
 they	

are	
 applied	
 to.	
 For	
 example,	
 consider	
 q	
 and	
 q’	

	

q(x)	
 :-­‐	
 R(x),S(x)	
 and	
 q’(x)	
 :-­‐	
 R(x)	

	

Here,	
 q	
 is	
 contained	
 in	
 q’,	
 and	
 q’	
 is	
 not	
 contained	
 in	
 q.	

	

Let	
 CQ	
 denote	
 the	
 set	
 of	
 conjunctive	
 queries	
 without	
 constants	
 or	
 inequalities.	

	

a. Suppose	
 someone	
 gives	
 you	
 a	
 function	
 F	
 that	
 correctly	
 decides	
 containment,	

i.e.,	
 given	
 a	
 pair	
 (q,q’)	
 it	
 returns	
 true	
 if	
 q	
 is	
 contained	
 in	
 q’	
 and	
 false	
 otherwise.	

How	
 would	
 you	
 use	
 the	
 function	
 F	
 to	
 decide	
 if	
 q	
 is	
 equivalent	
 to	
 q’?	

	

b. This	
 question	
 deals	
 with	
 containment	
 with	
 constraints.	
 Suppose	
 you	
 have	

three	
 queries	
 q1,	
 q2,	
 and	
 q3	
 such	
 that	
 q1	
 is	
 contained	
 in	
 q2,	
 but	
 q1	
 is	
 not	

contained	
 in	
 q3.	

	

Fix	
 a	
 relation	
 T(x,y)	
 and	
 let	
 IFD	
 be	
 the	
 set	
 of	
 instances	
 I	
 such	
 that	
 T	
 satisfies	

the	
 functional	
 (key)	
 dependency	
 x	
 	
 y.	
 Which	
 of	
 the	
 statements	
 can	
 you	

conclude	
 (and	
 why	
 or	
 why	
 not):	

(i)	
 for	
 all	
 I	
 in	
 IFD	
 q1(I)	
 	
 <=	
 q2(I)?	
 	

(ii)	
 there	
 exist	
 an	
 I	
 in	
 IFD	
 such	
 that	
 q2(I)	
 is	
 not	
 a	
 subset	
 of	
 q3(I)?

	

c. For	
 q,q’	
 in	
 CQ,	
 recall	
 from	
 Aho,	
 Sagiv,	
 and	
 Ullman	
 paper	
 that	
 it	
 is	
 NP-­‐

Complete	
 to	
 decide	
 whether	
 q	
 is	
 contained	
 in	
 q’	
 -­‐-­‐	
 even	
 if	
 q	
 and	
 q’	
 are	

Boolean	
 queries	
 (with	
 no	
 variables	
 in	
 the	
 head	
 of	
 the	
 query).	
 One	
 proof	
 of	

this	
 statement	
 uses	
 the	
 idea	
 of	
 a	
 canonical	
 database,	
 where	
 we	
 construct	
 a	

database	
 D	
 from	
 the	
 query	
 q	
 such	
 that	
 if	
 q’	
 is	
 true	
 on	
 D,	
 then	
 q	
 is	
 contained	
 in	

q’.	
 This	
 suggests	
 that	
 answering	
 a	
 query	
 on	
 a	
 database	
 is	
 NP-­‐Complete.	
 On	

the	
 other	
 hand,	
 every	
 day	
 relational	
 databases	
 across	
 the	
 globe	
 efficiently	

answer	
 conjunctive	
 queries	
 (and	
 more!).	
 Explain	
 this	
 seeming	
 contradiction.

	
 4	

5: PARALLEL RDBMS
Suppose you have been given the task of building a parallel relational DBMS, but instead
of using a traditional storage manager on a shared-nothing cluster upon which to build the
system, you are given a distributed key-value store on a cluster. This key-value store does
what the name implies: you give it pairs (key, value), and it will store them; you can
retrieve or modify or delete the value by presenting the key to the key-value store. This
key-value store is distributed so any (key, value) pair can be read from any node (there is
no explicit notion of the “location” of the pair in the system.) For reliability, this key
value store saves three copies of each (key, value) stored in the system, and makes sure
they are all stored at different nodes in a cluster. For updates it provides “eventual
consistency”, meaning that if no new updates arrive, eventually the three replicas will
converge to the same value.

Your task in this question is to speculate on tradeoffs between a traditional parallel
RDBMS (like GAMMA) and this new “parallel RDBMS on top of a key-value
store.” You can pick an area to focus on – e.g., query evaluation, concurrency control,
etc. If you feel you need to make additional assumptions for your answer, feel free to do
so, but make your assumptions explicit.

Note that this is a very open-ended question, and it is only one of five questions on this
exam. So watch your time, and try to focus on the tradeoffs that best illustrate the
differences in the two approaches to building a parallel relational database management
system.

