Register Communication Strategies for the Multiscalar Architecture

T.N. Vijaykumar, Scott E. Breach and Guri S. Sohi
{vijay, breach, sohi}@cs.wisc.edu
University of Wisconsin-M adison

1210 W. Dayton Street
Madison, WI 53706

Abstract

This paper considers the problem afister communication in the Multiscalar architecture, eeho
paradigm for eploiting instruction lgel parallelism. The Multiscalar architecture enysl@ com-
bination of hardwre and softare mechanisms to partition a sequential program into tasks, and
uses control and data speculationxecaite such tasks in parallel. Intask rgister dependencies
represent igister communication in the architecture. The primary issues in géster communi-
cation for a Multiscalar processor are correctness and performance. Not only must gitggsebe
directed from producers to consumers, thedees must be sent as early as possible from produc-
ing tasks to consuming task in order twid execution stalls which may ke a critical impact on
overall performance. ¥/ present a simple model to ensure thgister communication olge the
sequential semantics of the programo this model, we apply a progression of haadvtech-
nigues (including rgister data speculation) and compiler analyses toialée stalls due to inter
task rgjister communication. Finallywe perform an»perimental ealuation of these hardwe

and compiler techniques on a Multiscalar processor configuration. efhesult we obtained is
that aggresse hardvare support for gster data speculation can be out performed by simpler
hardware supplemented by compiler analyses.

1 Introduction

The Multiscalar architecture[1] [2] is a vel paradigm toxploit instruction leel parallelism. Sequential programs
are partitioned into code fragments caliasks, which are assigned to a collection of processing units connected via
a uni-directional ring for communication. Each processing wmitw@es the instructions of its task until completion.
The simultaneousxecution of multiple tasks on multiple processing units results irkéwugon of multiple instruc-
tions per gcle. The architecture requires that thevidiial execution of each task as well as the aggre ececution

of all tasks maintain the appearance of sequential program order

Prediction unreels the control flov between tasks, and each predicted task is assigned to a processing xaduor e

tion. For this collection of predicted taskxeeution may occur specubatly, but modification of architectural state

can only occur non-specubatly. Upon completion, tasks are retired in program order to maintain sequential seman-
tics. A combination of hardave and softare mechanisms are used to ensure that control and data dependencies are
honored as per the original sequential program specificationg@idiess of what transpires in the actual parallel
execution.

As instructions in tasksxecute, dataalues are produced and consumed within the same task and betierentdif
tasks, corresponding to intra-task and ktéssk communication, respeetly. These dataalues are bound to mem-

ory and rgister storage locations. In the case of memory storage, ificaiifo determine precisely the producers
and consumers of datalues since memory storage names are determined dynamically (via address calculations).
On the other hand, in the case dfister storage, it is straightfoand to identify producers and consumers since all
register storage names are lmostatically (via rgister specifiers).

Regardless of the type of storageatved, data alues passed between instructions represent a créital fin the
implementation of the architecture, impactingtkey aspects of progranxecution: correctness and performance.

To ensure maintaining correctness, dat@aes must be communicated from producing to consuming instructions as
dictated by sequential semantic® aoid constraining performance, dat@wes must be communicated from pro-
ducing to consuming instructions as soon as possible.

While correctness and performance need to be addressed for both intra-task daskimtata communication, the
issues associated with intiisk data communication represent a more pressing challenge, espeallhgt man
of the issues for intra-task data communicatiorelzeen dealt with rigorously in the caxttef scalar processors.
Moreover, experience with the design of Multiscalar processors hasrstitat intertask dominates intra-task data
communication in terms of its impact on mechanisms teigeocorrectness and performance.

In this work, we focus on the communication of daédues bound to gester storage for tavreasons (both related to

the preralence of the load-store model of computation). First, this type of communication is the most common. Sec-
ond, it is the most amenable to analysie.this end, we d®te the rest of this paper to theestigation of a number

of alternatve register communication stragies for the Multiscalar architecture. Theykdea in these strages is to

send rgister \alues from producers to consumers as early as possibleitbegecution delays (See Figuiéa)).

In Section2, we present the Multiscalargister model and correctness criteria. In Secdione describe a range of
alternatve ragister communication strajees. V¥ bagin with a simple base stragtethat guarantees correctness; we
progressiely incorporate hardare and compiler mechanisms to achibigher performance. In Sectiénwe dis-
cuss related ark. In Sectiorb, we &aluate each of these alternat on a set of well-kmean benchmarks to observ
the efects of each additional mechanism aermall performance. In Secti@ we ofer concluding remarks.

2 Register Communication Model

The raister file of a Multiscalar processor pites the appearance of a logically centralizgister file, yet is
implemented as psically decentralized gaster files, queues, and control logic [4]. Each processing unit hamits o
set of hardware rgisters; hence, each task has wsm@enamed &rsion of the hardare r@isters. This approach
allows a Multiscalar processor tgm@oit intra-task rgister communication locality within a single processing unit
and to recwer the precise architecturabister state among multiple processing units in &oiefit manner

Before we proceed with the description gfister communication, we must better define a Multiscalar task, since it
plays an intgral role in the werall model. Put succinctlyasks are single entmultiple &it partitions of the control

flow graph of the program. It is important to realize that this definition plase®&yrictions on the internal control
flow of a task. A task may be part of a basic block, a basic block, multiple basic blocks, a single loop iteration, an
entire loop, oreen a function call to name anfgossibilities. Such fiébility has ramifications on ggster commu-
nication (as we describe in the sections to Wjlo

In the set of all architecturalgisters, there are wmutually eclusive and collectiely exnaustve subsets: the set of
registers that may be modified in the task, calledMbdSet, and the set of gesters that are guaranteed not to be
modified in the task, called thénModSet. Assume that duringkecution, gery task gentually receies \alues for

all the architectural gisters from its predecessor anertually sendsalues for all the architecturalgisters to its
successor (In an actual implementation, there are ynaardware optimizations that reduce the bandwidth demands
of register communication.)

When a rgister \alue arves at a task, the hardve identifies the gister either as a ModSejister or as a UnMod-
Set rgister by consulting the ModSet. The task binds thygster \alue to its hardare rgister regardless of
whether it is a ModSet géster or a UnModSet géster Any register \alue generated during the coursexsdaiting
the instructions of the task is also bound to its appropriate haedwister

The distinction between a ModSet and a UnModSgster is important only when the task sends tgester \alue
to successor tasks.oFa UnModSet mgister the samealue that vas receied is propagted to successor taskoria
ModSet rgister the \alue that vas receied is stopped from propating further; the hardare propagtes whateer
value is bound to the gester when the last modification of theister is encountered in the task. Figlie) illus-
trates the Multiscalar gister model.

The compiler preides the ModSet to the hardve on a per task basis. (The UnModSet is the complement of the
ModSet and therefore is not pided separately Besides determining the ModSet for each task, the compiler/hard-
ware also has to identify at what points in the task each Modgsteremay be sent to successor tasks. Informally
such points are the locations in the taskoloel which the rgister is guaranteed not to be modified by ttexation of

the remaining instructions of the task.

This constraint on correctness may be retbgo that eachgester may be sent multiple times, meaning the compiler/
hardware may send thegister from other basic blocks. ttever, the compiler/hardare must guarantee for each
register on the ModSet that the lasiue to be sent for thegister is the one dictated by sequential semantics. Using
such an approach prides the capability to performgister data speculation duringegution. D ensure sequential
semantics, antask that recees a rgister it has already reeed earlier is squashed and restarted with the latter
value.

The problem of identifying the ModSet is simple and straightiodwit is merely the union of the sets ajisters
that may be modified in grpath through the task. Since tasks mayel@mple& control flav within them, the prob-
lem of identifying at what points to send a ModSgister is some&hat more imolved, especially if the ability to use
register data speculation igexcised.

There are tw correctness constraints on this process. Firstygath that leads to arieof the task must send all
the raisters in the ModSet to later tasks. Second, for egisteein the ModSet, the compiler/hamhe has to iden-
tify the basic block bgond which the rgister is guaranteed not to be modified subsequentlyipath through the
task and has to ensure that thére bound to the géster in this basic block is the last one sent to later tasks.

The first constraint ensures that consuming tasks are natdtarva needed géster \alue, irrespectie of the path
taken by the producing task. The second constraint guarantees that all taskeideel e correct gister \alues as
per the sequential semantics of the prograngeiheythe two constraints guarantee faavd progress and correct-
ness. Neither constraint, Wwever, precludes the use ofgister data speculation (as we describe in tixé section).

3 Register Communication Strategies

In the pre@ious section, wex@lained the rgister model for the Multiscalar architecture. Multiscalar tagkswge in
parallel communicating gister \alues from producers to consumers. In ordewtidastalling consumer tasks for

Time 7a5k1 Task2 giql
—_ cycles
/ Use rl TASK
send rl1- send r2
r — — A
[[
[[2
9
I I 2 ModSet
[[=¢ ¢ Registers
[[o
— |3 > @ >
| | I';roén = [UnModSet Al
| | To
y L — — 4 Successor
€Y (b)

Figure 1: (a) Ferformance impact of register communication. Bsk2 needs egister rl hut is stalled because
Taskl sends rl late. The delay cascades because, imfdrask2 sends r2 late. (b) An abstraction of
Multiscalar r egister communication. All of the egisters arriving at a task are filtered by the ModSet so
that the old values of the UnModSet egisters ae propagated and the new &lues of the Modset egisters
are sent, as and when generated by the task.
register \alues, it is crucial that géster \alues from producer tasks are sent as soon as possible. In this section, we

consider a progression of strgites to achiee high performance implementations of the Multiscalgister model.

3.1 Owerview

The simplest stratyy, calledEnd_Send, to ensure correctness is to send tileas of all the ModSet gesters at the
end of &ecution of the task. A possible impemment in performancever this simple straggy is to send thealue of

a ModSet rgister eery time it is modified. This strajg is calledEager_Send. Since the @lue corresponding to the
last modification of each gester is sent last (and the haate presems the order among the féifent sends of the
same rgister), this stratgy preseres the semantics of the program. Although Eager _Send may g&tdrrelues
earlier than End_Send, Eager_Send may send the sgisterenultiple times, resulting in squashing of subsequent
tasks. If the last modification of each ModSeister is knavn, havever, multiple sends of the sameajigter (and the
resultant squashes) can beided.

To this end, in the i strat@y calledLast_Send, the compiler identifies the last modification of each Mod3gs+e
ter and marks itlicitly for communication. The Last_Send sttevoids squashes by sending gister only
after its last modification is kmm. Nevertheless, in the presence of controhfld is conserative and may delay
sending rgister \alues. The last stragg knovn asSpec_Send, speculatiely sends rgister \alues corresponding to
last modifications from “high frequeyitpaths and resorts to squashes if dow frequeng” paths modify a pné-
ously sent rgister Spec_Send attempts tal both delaying mgister \alues due to infrequent paths and alemes-

sive squashing due to incorrect speculation.

r1:= send |r1 :=
0.9 0.1
/B]\ / \
= 3 - squash|rl := r3 := | send
— resend rl:=|squash
B2 B3 rl: q
resend
\£4 / \ /
(@) send r1,r3 (b) send r3(path B1B2B4)
= rl .=
rl: send r3
send r3 3 = | send send rl := r3 = sqgash
send|rl = __ resend
rl:=|send 1= | 'sond
(c) (d)

Figure 2: An example illustrating the bur strategies. The task comprises basic blocks B1, B2, B3 and B4.
The edge B1B2 is tag&n with probability 0.9 and the edge B1B3 is tadn with probability 0.1. The ModSet
for this task contains registers rl and r3. (a) End_Send: Both rl and r3 arsent at the end. (b)
Eager_Send: rl is sent in B1 Wt since there is a define of r1 in B2 and B3, rl causes a squash and is sent
again. If B2 is taken then r3 is sent at the end otherwise r3 is sent in B3. (c) Last_Send: rl and r2 aent
from B2 and B3. Sending r3 fom B2 may require an extra instruction and in the other cases the existing
instructions may be annotated to send their destinationegisters. (d) Spec_Send: Since B2 is nedirequent
than B3, r3 is speculatvely sent fom B1 and rl is sent fom B2 and B3 like Last_Send. If B3 is takn then
r3 causes a squash and is sent again. Sending r8rfr B1 may require an extra instruction, and in the other
cases the existing instructions annotated likLast_Send.

Before going into the details of tharious stratgies, let us illustrate them through ataeple. Consider the task in

Figure2 comprising basic blocks B1, B2, B3, and B4. Let us assume that the edge B1BA2 isitalprobability

0.9, and the edge B1B3 is takwith probability 0.1. In End_Send (Fig@@)), both r1 and r3 are sent at the end of
execution, causing subsequent tasks that need rl or r&ito EBager_Send (Figu&b)) sends r1 as soon as it is

defined in B1. Since there is a define of rl in both B2 and B3, rl is sém e@using a squash. If B3 iseakthen

r3 is sent as soon as it is defined, otherwise it is sent at the end. Thus, Eager_Send sends r3 earlier than End_Send if
B3 is talen tut incurs &tra squashes due to sending incorratties of rl.

In Last_Send (Figur2(c)), both rl and r3 are sent from B2 or B3, sincg #ie the last modifications of thegie
ters. Since B2 does not define r3, amainstruction may be inserted to send r3. Last_Sesidsathe squashes
incurred by Eager_Send by sending only the corraoes of rl; it sends r3 earlier than Eager_Send viagitie
instruction. Spec_Send (Figuzéd)) speculatiely sends r3 from B1, since B3 is infrequentlyetakand the frequent
path of B1B2B4 does not define r3. If B3 isdakhen r3 is sent am, causing a squash. As is the case for
Last_Send, rl is sent from B2 or B3. Spec_Send sendemn3arlier than Last_Send by taking ahage of specu-
lation. In the frequent case of B2 beingemakr3 is sent earlier from B1 via axpéicit instruction, lut in the infre-
guent case of B3, this send of r3 results in a squash.

3.2 Detalls

Let us nev describe the details in the realization of each of these fourgsémteEnd_Send and Eager_Send may be
implemented with no compiler support and no ISA modification. Last_Send and Spec_Send require compiler analy-
ses to determine the last modification of eagfster in the presence of compleontrol flov. The analyses required

may be formulated in terms ofisting data flav framewvorks. (W present a fe data flev equations instead of the
complete framwork in the sections folleing. We assume in these dataxflequations that only the last modification

of a register in a basic block is considered for the analyses.) In addition, bothissatay require ISA modification

in order to diciently corvey information from the compiler to the hardre.

3.2.1 End_Send

End_Send can be implemented with retly simple hardare and does not requireyacompiler or ISA support.
Once all instructions of the taskveaexecuted, all rgisters in the ModSet may be sent (one by one). Unfortupately
this stratgy is likely to pravide lov performance since gester \alues needed by instructions in a consuming task
must wvait until all instructions in the producing task/eaxecuted. In addition, it does not eaidantage of rgister
data speculation. Nertheless, this strajg is used as a base for each of the other gtestesince mgisters in the
ModSet that are not modified during theeution of the task or that cannot be sent, due to contwgldhttil the end

of the execution of the task are easily handled.

3.2.2 Eager_Send

Eager_Senduilds upon the End_Send base stygthy alloving the hardware to send anmodification of a rgister

as a part of thexecution of the associated instruction; it does not requireampiler or ISA support. The hardve

for this scheme may be quite complsince it must track the modification of alyjigters on the ModSet and ensure
that the last modification is the lastlve to be sent for thegister Assuming instructions are alled to complete
execution out-of-order (gardless of whether instructions issue in-order or out-of-order), it may be necessary to
inspect all instructions in the dynamic windto ensure rgisters are sent in the proper order if sends are not forced
to occur in the specified program order

Nevertheless, this stragg is more lilkely to pravide high performance as compared to the base gyrdtee adan-
tage of this stratgy is that a glue may be sent as soon as tlyster is produced, thereby reducingister wait time
for the \alue to be consumed. Unfortunatehyis form of rgister data speculation has no information about the last

modification of rgisters and therefore is by nature uncontrolled. As such, the digade of this stragg is that

multiple values for the samegister may be sent by the producing task often, thereby causing frequent squashes of
the consuming tasks. Such squashes may increase the cost of ingeetibe enough to gate ay decrease in the
register communication delay

3.2.3 Last_Send

This stratgy uses compiler support to pide static analyses ofgister dependence and may require changes in the
ISA. It is capable of empjing register data speculationytthis addition is reseed for the Spec_Send strgyeThe

key issue in Last_Send (and in Spec_Send, since itasiaion of Last_Send) is, for each ModSefiseer to deter-
mine in the presence of compleontrol flav the basic blocks after which thegigter is guaranteed not to be modi-
fied, and to generate sends for thgigter in the earliest such basic blockwdcary path through the task. Figuse

lists the data fiy equations for Last_Send. NoMoreDef determines the basic blocks after whigster is guaran-
teed not to be modified dm ary path from this point in the task. Send identifies the earliest basic blarkadp

path through the task among such basic blocks.

NoMoreDef (i, r) = |_(I {NoMoreDef (j,r) n -BBDef (], r)}
j Ochildren(i)

Send(i,r) = E —.(NoMoreDef(j,r))%m NoMoreDef (i, r)
Dj [parents(i) U

INITIAL VALUES: NoMoreDef(i,r) = TRUE

Figure 3: Data flav equations br Last_Send: BBDef(i,r) is true if register r is modified in basic block i.
NoMoreDef(i,r) is true if there is a guarantee that egister r is not modified in any successor of basic block i
in the current task. Send(i,r) is true if NoMoeDef(i,r) is true and register r has not been sent in at least one
path from the entry of the task to basic block i.

Informally, NoMoreDef(i,r) is true if bgond basic block i, gister r is not modified in the task. BBDef(i,r) is true if
register r is modified in basic block i. The equation asserts thavdoy ehild of basic block i, if there is no modifi-
cation of the rgister bgond the child, and if the child does not modify thgister then there is no modification of
the reyister bgond basic block i. Ady property of NoMoreDef is that if it is true for a basic block, then it is true for
all of its successors in the task.

Informally, Send(i,r) is true if rgister r is not sent in at least one path from the entry of the task to basic block i, and if
NoMoreDef(i,r) is true. The equation asserts that if there is no modification ofjtheerdgond basic block i, and
if NoMoreDef is false for at least one of the parents of basic block i, thengrstaeis sent from basic block i.

Send indicates the first basic block, foreegi path from the entry of the task, where NoMoreDef changes &lsm f

to true. This basic block is the earliest in theegipath where the gester may be sent. Because a task mag ha
multiple overlapping paths from its entrihere may be multiple first basic blocks (one for each distinct path) where
NoMoreDef changes fronalse to true. As a result, on agm path Send may be true for multiple basic blocks along
the path (corresponding to places where other patrtap). In this case, after the earliest send of thiste is
encountered, all later sends of thgiseer are redundant and are ignored by the hanmelw

3.2.4 Spec_Send

With the analyses of Last_Send, gister is not sent until it can be guaranteed that no further modification ofjthe re
ister can occurThis guarantee implies that an infrequentlgcaited basic block that may modify gisger late in the
task, must delay sending from a frequenfgaited basic block that modifies thgister early in the task. oF the
Spec_Send strajg the early modification of thegister may be sent so long as the late modification of tistee

is sent later if needed. These sends must be distinguished from the redundant sends deseribe@dsibot to be
ignored. The same compléardvare that ensuresgisters are sent in the proper order for the Eager_Sendygtrate
may be required if sends are not forced to occur in the specified program order

This stratgy is similar to the Eager_Send stogteNot surprisinglythe adantage of this stragg is that in the fre-
guent case when the late modification of tlggster does not occuthe register is sent as soon as possible. The dis-
adwantage of this stragg is that in the infrequent case when the late modification of ¢iteedoes occumultiple
values for the samegister may be sent by the producing task, as in the Eager_Senglystteeeby causing
squashes of the consuming tasks wHer, unlike Eager_Send, this strgiedoes hee information about the last
modification of a rgister and may performgester data speculation in a controllegtiion. Gren accurate profiling
information about thexpected characteristics of prograreeution, Spec_Send standsaalietter chance than
Eager_Send of usinggister data speculation profitably

Figure4 lists the data flo equations for Spec_Send. Tley klifference between the analyses for Last_Send and
Spec_Send is that Spec_Send elides the flequeng” defines of rgisters, It otherwise computes SpNoMoreDef

and SpSendxactly as Last_Send computes NoMoreDef and Send. Nolgnore, distinguishes those sends which can-
not be ignored, corresponding to thewl&requeng” defines elided in SpSend.

Informally, SpNoMoreDef(i,r) is true if h@nd basic block i, gster r is not modified in “high frequeyichasic
block i in the task. HiFreqDef(i,r) is true ifgister r is modified in basic block i, and if theseution frequencof the
basic block is greater than a fraction, SpThreshold, of the fregoétize task entty The equation asserts that for
every child of basic block i, if there is no “high frequghmodification of the rgister bgond the child, and if the
child does not modify the géster with “high frequeng’, then there is no “high frequeyitmodification of the rgis-
ter begrond basic block i.

Informally, Nolgnore(i,r) is true if basic block i modifiegyister r with “lov frequeng”, and if SpNoMoreDef(i,r) is
true. The purpose of Nolgnore is to identify the sends that cannot be ignoregistarseelided due to the Yofre-
gueng” of the basic block that performs the modification. Note that Nolgnore may cause multiple sends of the same

SpNoMoreDef (i, r) = u { SpNoMoreDef (j,r) n =HiFregDef (j, r)}
j Ochildren(i)

SpSend(i,r) = E ﬂSpNoMoreDef(j,r)Em SpNoMoreDef (i, r)
Dj O parents(i) L

HiFreqDef (i, r)

BBDef (i, r) n HiFregNode(i)

HiFregNode(i) = Freq(i)/Freq(entry) > SpThreshold
Nolgnore(i,r) = SpNoMoreDef (i,r) n BBDef (i,r) n =HiFregNode(i)

INITIAL VALUES: SpNoMoreDef (i, r) = TRUE

Figure 4: Data flov equations br Spec_Send. HiFegDef(i,r) is true if register r is modified in basic block i
and the execution fequency of the basic block is grater than a fraction (SpThreshold) of the fequency of
the entry of the task. SpNoMoeDef(i,r) is true if there is a guarantee that egister r is not modified in any
“high fr equency” successor of basic block i in the task. SpSend(i,r) is true if SpNoMd@ef(i,r) is true and
register r has not been sent in at least one pathofin the entry of the task to basic block i. Nolgna(i,r) is
true if i is a “low frequency” basic block that modifies the egister .

register resulting in multiple squashes. Such multiple squashes mawioked by restricting the computation of
Nolgnore, lnt we do not discuss this option further here.

3.3 Corveying Information fr om Software to Hardware

The compiler soles the system of dataleequations to determine the basic blocks for which Send or SpSend and
Nolgnore are true. If such a basic block contains an instruction that modifiegite;rinen the instruction is anno-
tated toforward the r@ister Otherwise, anxéra instruction, called eslease instruction, is inserted at the top of the
basic block to send thegister As rayister data communication igifly dense, performing sends by annotating
existing instructions as forards is imperatie, since performing sends with releases requires addiragiestruc-

tions which may ingtably impact the critical path ofkecution through the program. In Figdrethere are tov

examples of tasks with géster communication annotations corresponding to the Last _Sendstrate

3.4 Implications of Dead Registers and Register Assignment

If a register is dead lyond a task, then thegister \alue need not be sent to successor tasks. Dgstierenforma-
tion may be used to reducgigter bandwidth demand as well asid unnecessary release instructions. Degd+e
ter information may be ceosyed to the hardare by @erloading the ModSet. Risters that are deadymnd a task
are included in the ModSet of the taslganelless of whether tljeare defined in the task or not; yet, no fardror

rl:= rl:=
Fl|r2 =
/BN A]\
Flrl:= rel rl Flrl:= r1 =
Flr3:= F|r3:= ‘
B2 B3 B2 B3
\;54/ \34/
Flr2 = rel rli

(i) (ii)

Figure 5: Annotation of Register Communication using Last_Send. wio examples of tasks with egister
communication annotations ae shavn. Forwards of registers ae indicated by Fs beside the instructions.

In example (i), in the path B1B2B4, r1 is last modified in B2 and i®fwarded from B2 and in the path
B1B3B4, rl is not modified past B1 and isaleased in B3. r3 is last modified in B2 and B3, in paths B1B3B4
and B1B2B4 espectvely, and is brwarded from them. r2 is modified only in B4 and isdrwarded from
there. In example (i), rl is last modified in B2 in the path B1B2B4 and isfwarded from B2. Since thee is

a loop in the path B1B3B4, rl is guaranteed not to change only on exibfn the loop and so iseleased in
B4.

release is performed for thesgisgers. If the rgister is defined in the task, then tladue is used within the taskyt

is not propagted to successor tasks. If thgister is not defined in the task, then thtue from a predecessor task is
used within the task,ub is not propagted to successor tasks. Since tlggster is dead, no successor task neai w
for the rgister \alue. Both Last_Send and Spec_Send canddlantage of such deadgister information.

Anti-dependencies introduced bygister assignment may delay the sending ofjsster (See Figuré); the use of
round-robin assignment ofgisters may mitigte this problem. Figur&(a) shavs a task with four basic blocks.
Pseudo-rgister rl is dead in Bdubis live out of B3. Pseudo-gester r2 is Ve out of B4. Pseudogesters rl and r2

have non-@erlapping lve ranges and hence can be assigned the samiegdhaister Figure6(b) shevs such a rg-

ister assignment. df the Last_Send strafg this assignment causes $1 to be sent only in B3. A round-robin assign-
ment, as shen in Figure6(c), aoids delaying the send of $1 for Last_Send by assigning r2 to anojfsicgih

register The Eager_Send strgtewould cause incorrect sends and squashes for the assignment in6iigubet

the round-robin assignmenbwld not incur ay such squashes.

4 Related Work

Data flav analyses ha been applied to a @@ number of problems in compiler optimizations. The bagister
communication problenefls under the cag@ry of simplebadkward flowproblems[5]. Compilers of data parallel
languages lik Fortran D [6] and HPF [7] generate data communication for diggtbmemory machines. But these
works do not include anspeculatre communication.

10

rl:= $1 = F[$1:=
) ! !
B2
/ \ rl dead / \\ / \\
[1
(2 = release $ F| $1 := Fl$2:=
B3 B4
use r2 use $1 use $2
r1 live @ ®) ©

Figure 6: An example of register assignment delaying register send. (a) A task with 4 basic blocks before
register allocation. r1and r2 are pseudo-registers. rlisdead at the beginning of B4 but live at the end of
B3. (b) Bothrland r2 areassigned the sameregister $1, resultingin thereleaseof $1in B3. (c)rlis
assigned $1 and r2 isassigned $2. $1isforwarded in B1, much earlier than B3; $2 isforwarded
independent of the forward of $1.

Annotating instructions with information from compiler analyses has been implemen@dhfi8]. Static specula-
tion have been applied to superscaMkIW and superpipelined machinesechniques lik guarding[9][10], perco-

lation scheduling [12], trace scheduling [13], boosting [1henblock scheduling [16], superblock scheduling [17],
sentinel scheduling[11] and modulo scheduling[12] empayying dgrees of static speculation.

Utilizing speculatie execution in the compiler constitutesawssues: (i) decision of when to perform computation

under speculation, and (ii) raeery from incorrect speculation. The first issue applies to compiling sp&euriafis-

ter communication in the Multiscalar architecture as well. The second issue is addressed by a combination of hard-
ware and compiler in the Multiscalar architecture. The compiler inserts code (in the form of “resends”) toyletect an
incorrect static speculation and the haadsvperforms rea@ry. Unlike most VLIW machines, no boog&ping code

need be inserted in the progrant becavery may be morexpensve since lager numbers of instructions may be
squashed.

5 Experimental Evaluation

We have evaluated the mgister communication stragees for the Multiscalar architecture described in theipus

sections using a compiler dezd from the Gnu C Compileggc) and a simulator that we Veadereloped to model

the characteristics of a Multiscalar procesgdur compiler is configured to produce code for the MIPS1 ISA without

ary delay slots. The code generation phase of gcc has been modified to annotate the assembly output with Multisca-

11

lar specific information. The Gnu Assemblgag) and the Gnu Linér (gld) have also been modified to pass these
annotations to the output binaryhe binary generated by our compiler is run on our simulator waiittiuily mod-
els the behaor of a Multiscalar processor on gote-percycle basis and produces output result files &ification.
All the simulations reported in this paper were run to completion, and the outputsewbee aginst the reference
outputs.

5.1 Framework

To put the problem of compiling gester communication in perspeaj we start out with anverview of the Multi-
scalar compiler The responsibilities of the compiler include partitioning sequential programs into tasks that are
likely to hare fav dependencies between each gtheintaining correctness by specifying control and data depen-
dencies between the tasks to the hamdywand imprang performance by streamlining control and data dependen-
cies between the tasks. Corresponding to these requirements, the problem of compiling for the Multiscalar
architecture imolves: (i) deising heuristics to obtain suitable tasks, (ii) determining4t&sk data (both memory

and rgister) communication and inteask control flav to maintain correctness, and (iii) scheduling itéesk data
(both memory and ggster) communication to mitigge performance loss.

The oganization of our compilervhich is derred fromgcc, is shavn in Figure7. After a series of traditional phases

like jump optimizations, loop optimizations, and common sydvession elimination, the Multiscalar compiler parti-
tions the program into tasksoiRhe purpose of this papéasks may be assumed to be sub-graphs of the contvol flo
graph, with a single entry point and an arbitrary numbekiopeints. W hare implemented simple, greedy heuris-

tics to partition programs into tasks. The heuristics can be augmented by user hints tosehahiereof diferent
partitioning schemes. After the program is partitioned into tasks, the compiler performs optimizations specific to the
Multiscalar architecture léloop restructuring. Rester allocation and instruction scheduling is performed after this
phase in the usual manneit the final code generation phase, the compiler annotates the assembly code with inter

TRADITION AL MUL TISCALAR

Parsing
Jump Optimization

Common Sub-Expression

|

Loop Optimization > Task Partitioning

/Task Specific Optimizations

Register Allocation «— |

Instruction Scheduling—_ __|

Y

Register Communication Annotation
/

Code Generatione———""_|

Figure 7: Organization of the compiler br the Multiscalar ar chitecture.

12

Benchmark | Benchmark Dynamic | Total cycles | Total cycles

Program Input Instructions in-order out-of-order
compress in 70.24 mil 98.17 mil 87.05 mil
xlisp 7 queens 222.48 mil| 313.76 mil| 266.53 mil
gcc integrate.i 69.39 mil 86.17 mil 75.83 mil

Table 1: Base case (End_Send) statistics of benchmarks.

task rgister communication and controlilanformation. In this paper we restrict our attention to the parts of the
compiler that deal with ggster communication.

5.2 Results

All experiments were run with the simulator configured as a Multiscalar processor with 4 processing units. The com-
piler was configured to produce tasks with at mostdetar The control fle predictor used a path based scheme

which selects from 4 tgets per prediction and maintains a 15 bit path histgigter indging into 32k entries. In
addition, it includes a 64 entry return address stack. Each processingsisibnfigured with 32k of 2ay set asso-
ciative instruction cache in 64 byte blocks withyicle hits and 10yxle misses. The data cachasa8-vay inter-

leaved on the lar order bits of the block address, for a total of 64k of direct mapped storage in 16 byte blocks with 2-
cycle hits and 10yaxle misses. Each 8k bank of the interbzhdata cacheas configured with a 32 entry address
resolution liffer[13] to handle memory disambiguation. Both loads and stores were non-blocking. A 128-bit wide
split transaction s connects all caches to the memdegch processing unit can send at most agistez \alue per

cycle to the net processing unit, with a transfer latgraf one gcle. Each processing unitw gven 1-way, out-of-

order or in-order issue characteristics and a 32 entry re-autfer. b

The performance achied by the arious schemes described in SecBatepends upon maifiactors: aerage task

size, werhead of gtra release instructions, andesfiveness of each scheme woaling ragister stalls to name the
most significant. ablel identifies the benchmarkssed in this study and reports the performance for End_Send. All
benchmarks were compiled with the -O2deof optimization flag. Profiling as performed to pxade basic block
frequeng counts, as needed (with f@ifent profile andwaluation inputs). dble2a shavs the &erage dynamic size

of the tasks»ecuted in each of the benchmarkabl&2b reports theverhead of release instructions inserted by the
compiler (for Last_Send and Spec_Send). Figurad Figure® shav the speedups obtained by thdeatiént rgister
communication stratges, Eager_Send, Last_Send, and Spec_Semdhe base stragg of End_Send, for 4 pro-
cessing units with 1-ay out-of-order and in-order issue characteristics, respécti

In Tablel, he columns titled “Gtal Cycles” contain the number ofates talen to éecute each of the benchmarks for

the given input for a Multiscalar processor of 4 processing units witayl im+order and out-of-order issue character-
istics. Since End_Send sends all the ModSgsters at the end of each task, subsequent tasks mitifomregister
values incurring hegy performance loss. The out-of-order issue configuration performs better (13%-17%) than the
in-order configuration due to its ability to tolerate the delaysgister communication for End_Send.

1. To the referees: we intend to simulate all of the SPEC 92 and SPEC 95 benchmarks.

13

Table 2aindicates that, on average, the tasks of these benchmark programs are fairly small. In particular, xlisp is

Benchmark | Dynamic
Program task size
compress 14.37 instrs
xlisp 7.66 instrs
gce 12.30instrs

Table 2a: Averagetask size.

Benchmark | Number of
Program releases
compress 2.7%
xlisp 3.9%
gcc 2.3%

Table 2b: Overhead of releasesfor Last_Send.

smaller than the others due to frequent function callsin the program. This caseisthe result of the current greedy task
selection heuristic used by the compiler which partitions tasks at function call sites. Table 2b shows the number of
release instructions executed by each benchmark program, for Last_Send, as a percentage of the total number of

dynamic instructions executed. The overhead due to release instructions depends on the size of the tasks, since a

larger task encapsulates more register live ranges than a smaller one, reducing the amount of communication per-

formed in the program. To further reduce overhead, these runs also include the dead register optimization discussed

in Section 3.4. Overal, avoiding extrarelease instructions by annotating existing instructions and eliminating the

communication of dead registers are effective means of keeping this execution overhead meager.

14

16—

NN

N

1.0

&3

Eager_Send

compress

=

Eager_Send
no round robin with round robin

gcc

[]

Last Send
no releases

xlisp

N |
Last Send Spec_Send
withreleases with releases

Figure 8: Speedupsfor out-of-order processing units.

Figure8 and Figuré® indicate speedups of thanious rgister communication stragies with 1-vay out-of-order and

1.7+ 4

1.6

1.0 A\ N\ \\

compress gce xlisp

R = [] N H

Eager_Send Eager_Send Last _Send Last_Send Spec_Send
no round robinwith round robin no releases with releases with releases

Figure 9: Speedupsfor in-order processing units.

in-order processing units, respgety. In order from left to right, the bars shepeedups for Eager_Send without
round robin rgister assignment, Eager_Send with round robin assignment, Last_Send wihicittrelease
instructions, Last_Send witkxglicit release instructions, and Spec_Send wiftlieit release instructions. A stack-
like ragister assignment (which is the delt in gcc) is done if round robin assignment is not used. Last_Send with-
out eplicit releases is compiled by annotating instructions with &odwbits only; an release of igisters is done
implicitly by the hardvare at the end of taskecution. ler Spec_Send, thelue of SpThreshold as placed at 0.9.

Considering out-of-order runs first, the best performance isvach@ly when compiler assist is applied. In partic-
ular, changing the gister assignment scheme to round robiegian impreement of 4% in compress and 2% in gcc
over Eager_Send without round robin assignment.bbth gcc and xlisp, the biggest impement in performance is
seen when the compiler generateglieit communication (as in Last_Send) instead of the harelwending each
register @ery time it is defined (as in Eager_Send). Though compressvegby only 1%, gcc and xlisp imye

by as much as 8% and 9%, respeii over Eager_Send with round robin. Last_Sevmlds the squashes incurred
with Eager_Send by being consative, implying that it may be better to stall fogister \alues than to speculegly
send the &lues earlier &t incur squashes on incorrect speculation. The usebtiereleases in Last_Send contrib-

15

ute another 1% for gcc and 3% for xlisp. In compresseher, the werhead of release instruction$sets ay
improvement in rgister communication resulting in performance loss of about\@Ylast Send without releases.
Finally, using Spec_Send impres xlisp by 3% wer Last_Send due to thact that the compiler is able to emplo
controlled rgister data speculation so as wid the negative efect of excessie squashes for uncontrolled, as in
Eager_Send. Qvrall, compiler assist contrikes performance impvements of 6% in compress, 10% in gcc and
12% in xlisp, @er Eager_Send without round robin assignment. These wepents are significant considering the
capability of lateng-tolerant out-of-order processing units.

The in-order configuration folles the trends of the out-of-order configuration clasBhe use of round robingister
assignment boosts the performance of Eager_Send by 6% in compress and 1% imgrer, Hdegrades perfor-
mance in xlisp by 1%. Though Last_Send without releases doesvea haticeable &fct on compress, both gcc
and xlisp improe by 4%. The use of release instructions comtebanother 2% to gcc and 6% to xlisp, respelgti
As was the case in the out-of-order configuration, releases caugeadat®n of performance in compress by 2%.
Using Spec_Send conttites another 1% to gcc and 6% to xlisp with no noticeable impact on comprass.thg
controlled rgister data speculation of the Spec_Send glygieovides better performance than the uncontrollgd re
ister data speculation of Eager_Sendefall, compiler assist contukes performance impvements of 6% in com-
press, 6% in gcc, and 13% in xlispeo Eager _Send without round robin assignment. These weipents indicate
that substantial performance impeonents are possibleen for lateng-intolerant in-order processing units.

6 Summary

Critical paths in programxecution for a Multiscalar processor oftemotve the communication of gester \alues
produced by one task and consumed by anoftveordingly register data communication represents a critiaetidr

in an implementation of the Multiscalar architecture. In theskywwe considered twaspects of this important issue:
correctness and performance. Specify correctness criteria as per sequential semantics, we described an abstract
model of Multiscalar rgister communication.dlachiee high performance, we d&oped a progression of hardre

and compiler techniques that reduce the communication delay implied by the abstract model, sometimegsstsing re
ter data speculation for this purpose. In addition, we discussed the analyses the compiler has to carry out and the
information that it has to cemy to the hardwre to realize a range ofgister communication strajies.

We evaluated the practicality and thdegftiveness of the techniques by implementing them in the GNU C compiler

and our detailed simulator of a Multiscalar procesétr simulated on ourycle-by-g/cle simulator thexecution of

a number of the SPEC92 benchmarks compiled by our compilealita¢e the stratges we deeloped; we com-

pared these strajes to a base case in whiclgister communication is performed at the end of tagkw@ion. The
experimental results indicate that aggresdiardvare with no compiler support to detect the last modification of a
register within a task impnes performance by 28% to as much as 53% for in-order units and 30% to 45% for out-of-
order units. The addition of static compiler analyses that detects the last modificatmiatefseand informs the

hardware through annotation ofisting instructions and insertion oftea instructions (where needed) impes per-
formance by 32% to as much as 67% for in-order processing units and 36% to 59% for out-of-order processing units.

As a result of this wrk, we malk two key obserations. First, we ha found that rgister data speculation can be an
important component in a high performanagister communication mechanism for a Multiscalar procesimy-

16

ever, if such rgister data speculation is used in an uncontrofistlibn, g@ins in performance may be eroded by
losses due to incorreckecution. On the other hand, controlledister data speculation cawoid this pitfll, but
requires accurate information about tlkpected characteristics of prograreeution. Second, we tafound that
conveying information from the softare to the hardare is a @luable tool to impree register communication. Ho-
ever, if providing such information wolves inserting xra instructions, it must be done carefullyhile annotating
existing instructions does notfa€t the critical path through a program, insertirtgainstructions likly does. Con-
sequentlyit is possible that such a decrease gister communication delay time may not be enoughfteba lilely
increase in the critical path.

Acknowledgements

This work was supported in part by NSF Grants CCR-9303030 and MIP-9505853, ONR Grant N00014-93-1-0465,
and by U.S. Army Intelligence Center amoiffHuachuca under ContracABT63-95-C-0127 and AR®order no.

D346. The vievs and conclusions contained herein are those of the authors and should not be interpreted as necessar-
ily representing the &tial policies or endorsements, eithgpeessed or implied, of the U. S. Army Intelligence Cen-

ter and Brt Huachuca, or the U.S. @Garnment.

References

[1] M. Franklin and GS. Sohi. Thexpandable split winde paradigm for rploiting fine-grain parallelism. I€onference Proceedings of the
19th Annual International Symposium on Computer Architecture, pages 58-67. Association for Computing Machinktgy 1992.

[2] M. Franklin.The Multiscalar Architecture. PhD thesis, Urersity of Wisconsin-Madison, Neember 1993.

[3] G.Sohi, SBreach, and TVijaykumar Multiscalar processors. [Ronference Proceedings of the 22nd Annual International Symposium on
Computer Architecture. Association for Computing Machineune 1995.

[4] S.Breach, TVijaykumar and G.Sohi. The anatomy of thegister file in a multiscalar processbr Conference Record of the 25th Annual
International Symposium on Microarchitecture, pages 181-190, San Jose, CAy&mber 1994. Association for Computing Machinery

[5] A. Aho, R.Sethi, and JUllman. Compilers: Principles, Techniques, and Tools. Addison-Wéslg/, Reading, MA, 1986.

[6] S.Hiranandani, KKennedyand C.Tseng. Ealuation of compiler optimizations for fortran d on mimd disttédgl-memory machines. In
Conference Proceedings of the International Conference on Supercomputing, July 1992.

[7] C.Koelbel, D.Loveman, RSchreiberJ.G. Steele, and MJosel.The High Performance Fortran Handbook. The MIT Press, Cambridge,
MA, 1994.

[8] M. Smith, M.Lam, and MHorowitz. Boosting bgond static scheduling in a superscalar process@onference Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 344—-354. Association for Computing Machinday 1990.

[9] P-T. Hsu and EDavidson. Highly concurrent scalar processingCamference Proceedings of the 13th Annual International Symposiumon
Computer Architecture, pages 386—395. Association for Computing Machinirge 1986.

[10] D. Pnermatikatos and GSohi. Guardedx@cution and branch prediction in dynamic ilp processor€otifierence Proceedings of the 21st
Annual International Symposium on Computer Architecture, pages 120-129. Association for Computing Machingpyil 1994.

[11] S.Mahlke, W Chen, WHwu, B.Rau, and MSclansler. Sentinel scheduling for VLIW and superscalar processooriference Proceed-
ings of the Fifth International Symposium on Architectural Support for Programming Languages and Operating Systems, pages 238-247.
Assaociation for Computing Machiner@ctober 1992.

[12] B.Rau, M.Schlanskr, and PTirumalai. Code generation schema for modulo scheduled loofsnfarence Record of the 25th Annual
International Symposium on Microarchitecture, pages 158-169, Portland, OR, December 1992. Association for Computing Machinery

[13] M. Franklin and GS. Sohi. ARB: A hardare mechanism for dynamic memory disambiguatiBRE Transactions on Computers, forth-
coming.

17

