
1

Register Communication Strategies for the Multiscalar Architecture

T.N. Vijaykumar, Scott E. Breach and Guri S. Sohi
{vijay, breach, sohi}@cs.wisc.edu
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, WI 53706

Abstract

This paper considers the problem of register communication in the Multiscalar architecture, a novel
paradigm for exploiting instruction level parallelism. The Multiscalar architecture employs a com-
bination of hardware and software mechanisms to partition a sequential program into tasks, and
uses control and data speculation to execute such tasks in parallel. Inter-task register dependencies
represent register communication in the architecture. The two primary issues in register communi-
cation for a Multiscalar processor are correctness and performance. Not only must proper values be
directed from producers to consumers, these values must be sent as early as possible from produc-
ing tasks to consuming task in order to avoid execution stalls which may have a critical impact on
overall performance. We present a simple model to ensure that register communication obeys the
sequential semantics of the program. To this model, we apply a progression of hardware tech-
niques (including register data speculation) and compiler analyses to alleviate stalls due to inter-
task register communication. Finally, we perform an experimental evaluation of these hardware
and compiler techniques on a Multiscalar processor configuration. The key result we obtained is
that aggressive hardware support for register data speculation can be out performed by simpler
hardware supplemented by compiler analyses.

1 Introduction

The Multiscalar architecture[1] [2] is a novel paradigm to exploit instruction level parallelism. Sequential programs

are partitioned into code fragments calledtasks, which are assigned to a collection of processing units connected via

a uni-directional ring for communication. Each processing unit executes the instructions of its task until completion.

The simultaneous execution of multiple tasks on multiple processing units results in the execution of multiple instruc-

tions per cycle. The architecture requires that the individual execution of each task as well as the aggregate execution

of all tasks maintain the appearance of sequential program order.

Prediction unravels the control flow between tasks, and each predicted task is assigned to a processing unit for execu-

tion. For this collection of predicted tasks, execution may occur speculatively, but modification of architectural state

can only occur non-speculatively. Upon completion, tasks are retired in program order to maintain sequential seman-

tics. A combination of hardware and software mechanisms are used to ensure that control and data dependencies are

honored as per the original sequential program specification [3] regardless of what transpires in the actual parallel

execution.

As instructions in tasks execute, data values are produced and consumed within the same task and between different

tasks, corresponding to intra-task and inter-task communication, respectively. These data values are bound to mem-

ory and register storage locations. In the case of memory storage, it is difficult to determine precisely the producers

and consumers of data values since memory storage names are determined dynamically (via address calculations).

On the other hand, in the case of register storage, it is straightforward to identify producers and consumers since all

register storage names are known statically (via register specifiers).

2

Regardless of the type of storage involved, data values passed between instructions represent a critical factor in the

implementation of the architecture, impacting two key aspects of program execution: correctness and performance.

To ensure maintaining correctness, data values must be communicated from producing to consuming instructions as

dictated by sequential semantics. To avoid constraining performance, data values must be communicated from pro-

ducing to consuming instructions as soon as possible.

While correctness and performance need to be addressed for both intra-task and inter-task data communication, the

issues associated with inter-task data communication represent a more pressing challenge, especially given that many

of the issues for intra-task data communication have been dealt with rigorously in the context of scalar processors.

Moreover, experience with the design of Multiscalar processors has shown that inter-task dominates intra-task data

communication in terms of its impact on mechanisms to provide correctness and performance.

In this work, we focus on the communication of data values bound to register storage for two reasons (both related to

the prevalence of the load-store model of computation). First, this type of communication is the most common. Sec-

ond, it is the most amenable to analysis. To this end, we devote the rest of this paper to the investigation of a number

of alternative register communication strategies for the Multiscalar architecture. The key idea in these strategies is to

send register values from producers to consumers as early as possible to avoid execution delays (See Figure1(a)).

In Section2, we present the Multiscalar register model and correctness criteria. In Section3, we describe a range of

alternative register communication strategies. We begin with a simple base strategy that guarantees correctness; we

progressively incorporate hardware and compiler mechanisms to achieve higher performance. In Section4, we dis-

cuss related work. In Section5, we evaluate each of these alternatives on a set of well-known benchmarks to observe

the effects of each additional mechanism on overall performance. In Section6, we offer concluding remarks.

2 Register Communication Model

The register file of a Multiscalar processor provides the appearance of a logically centralized register file, yet is

implemented as physically decentralized register files, queues, and control logic [4]. Each processing unit has its own

set of hardware registers; hence, each task has its own renamed version of the hardware registers. This approach

allows a Multiscalar processor to exploit intra-task register communication locality within a single processing unit

and to recover the precise architectural register state among multiple processing units in an efficient manner.

Before we proceed with the description of register communication, we must better define a Multiscalar task, since it

plays an integral role in the overall model. Put succinctly, tasks are single entry, multiple exit partitions of the control

flow graph of the program. It is important to realize that this definition places few restrictions on the internal control

flow of a task. A task may be part of a basic block, a basic block, multiple basic blocks, a single loop iteration, an

entire loop, or even a function call to name a few possibilities. Such flexibility has ramifications on register commu-

nication (as we describe in the sections to follow).

In the set of all architectural registers, there are two mutually exclusive and collectively exhaustive subsets: the set of

registers that may be modified in the task, called theModSet, and the set of registers that are guaranteed not to be

modified in the task, called theUnModSet. Assume that during execution, every task eventually receives values for

all the architectural registers from its predecessor and eventually sends values for all the architectural registers to its

successor. (In an actual implementation, there are many hardware optimizations that reduce the bandwidth demands

of register communication.)

3

When a register value arrives at a task, the hardware identifies the register either as a ModSet register or as a UnMod-

Set register, by consulting the ModSet. The task binds the register value to its hardware register, regardless of

whether it is a ModSet register or a UnModSet register. Any register value generated during the course of executing

the instructions of the task is also bound to its appropriate hardware register.

The distinction between a ModSet and a UnModSet register is important only when the task sends the register value

to successor tasks. For a UnModSet register, the same value that was received is propagated to successor tasks. For a

ModSet register, the value that was received is stopped from propagating further; the hardware propagates whatever

value is bound to the register when the last modification of the register is encountered in the task. Figure1(b) illus-

trates the Multiscalar register model.

The compiler provides the ModSet to the hardware on a per task basis. (The UnModSet is the complement of the

ModSet and therefore is not provided separately.) Besides determining the ModSet for each task, the compiler/hard-

ware also has to identify at what points in the task each ModSet register may be sent to successor tasks. Informally,

such points are the locations in the task beyond which the register is guaranteed not to be modified by the execution of

the remaining instructions of the task.

This constraint on correctness may be relaxed so that each register may be sent multiple times, meaning the compiler/

hardware may send the register from other basic blocks. However, the compiler/hardware must guarantee for each

register on the ModSet that the last value to be sent for the register is the one dictated by sequential semantics. Using

such an approach provides the capability to perform register data speculation during execution. To ensure sequential

semantics, any task that receives a register it has already received earlier is squashed and restarted with the latter

value.

The problem of identifying the ModSet is simple and straightforward; it is merely the union of the sets of registers

that may be modified in any path through the task. Since tasks may have complex control flow within them, the prob-

lem of identifying at what points to send a ModSet register is somewhat more involved, especially if the ability to use

register data speculation is exercised.

There are two correctness constraints on this process. First, every path that leads to an exit of the task must send all

the registers in the ModSet to later tasks. Second, for each register in the ModSet, the compiler/hardware has to iden-

tify the basic block beyond which the register is guaranteed not to be modified subsequently in any path through the

task and has to ensure that the value bound to the register in this basic block is the last one sent to later tasks.

The first constraint ensures that consuming tasks are not starved for a needed register value, irrespective of the path

taken by the producing task. The second constraint guarantees that all tasks are provided the correct register values as

per the sequential semantics of the program. Together, the two constraints guarantee forward progress and correct-

ness. Neither constraint, however, precludes the use of register data speculation (as we describe in the next section).

3 Register Communication Strategies

In the previous section, we explained the register model for the Multiscalar architecture. Multiscalar tasks execute in

parallel communicating register values from producers to consumers. In order to avoid stalling consumer tasks for

4

register values, it is crucial that register values from producer tasks are sent as soon as possible. In this section, we

consider a progression of strategies to achieve high performance implementations of the Multiscalar register model.

3.1 Overview

The simplest strategy, calledEnd_Send, to ensure correctness is to send the values of all the ModSet registers at the

end of execution of the task. A possible improvement in performance over this simple strategy is to send the value of

a ModSet register every time it is modified. This strategy is calledEager_Send. Since the value corresponding to the

last modification of each register is sent last (and the hardware preserves the order among the different sends of the

same register), this strategy preserves the semantics of the program. Although Eager_Send may send register values

earlier than End_Send, Eager_Send may send the same register multiple times, resulting in squashing of subsequent

tasks. If the last modification of each ModSet register is known, however, multiple sends of the same register (and the

resultant squashes) can be avoided.

To this end, in the next strategy calledLast_Send, the compiler identifies the last modification of each ModSet regis-

ter and marks it explicitly for communication. The Last_Send strategy avoids squashes by sending a register only

after its last modification is known. Nevertheless, in the presence of control flow, it is conservative and may delay

sending register values. The last strategy, known asSpec_Send, speculatively sends register values corresponding to

last modifications from “high frequency” paths and resorts to squashes if any “low frequency” paths modify a previ-

ously sent register. Spec_Send attempts to avoid both delaying register values due to infrequent paths and also exces-

sive squashing due to incorrect speculation.

Figure 1: (a) Performance impact of register communication. Task2 needs register r1 but is stalled because
Task1 sends r1 late. The delay cascades because, in turn, Task2 sends r2 late. (b) An abstraction of
Multiscalar r egister communication. All of the registers arriving at a task are filtered by the ModSet so
that the old values of the UnModSet registers are propagated and the new values of the Modset registers
are sent, as and when generated by the task.

ModSet

A
ll

R
eg

is
te

rs

UnModSet
Registers

M
od

S
et

TASK

All
Registers

Registers

Predecessor

Successor

From

To

(b)

Use r1

send r1

Stall
cycles

 Task1 Task2Time

send r2

(a)

5

Before going into the details of the various strategies, let us illustrate them through an example. Consider the task in

Figure2 comprising basic blocks B1, B2, B3, and B4. Let us assume that the edge B1B2 is taken with probability

0.9, and the edge B1B3 is taken with probability 0.1. In End_Send (Figure2(a)), both r1 and r3 are sent at the end of

execution, causing subsequent tasks that need r1 or r3 to wait. Eager_Send (Figure2(b)) sends r1 as soon as it is

defined in B1. Since there is a define of r1 in both B2 and B3, r1 is sent again, causing a squash. If B3 is taken then

r3 is sent as soon as it is defined, otherwise it is sent at the end. Thus, Eager_Send sends r3 earlier than End_Send if

B3 is taken but incurs extra squashes due to sending incorrect values of r1.

Figure 2: An example illustrating the four strategies. The task comprises basic blocks B1, B2, B3 and B4.
The edge B1B2 is taken with probability 0.9 and the edge B1B3 is taken with probability 0.1. The ModSet
for this task contains registers r1 and r3. (a) End_Send: Both r1 and r3 are sent at the end. (b)
Eager_Send: r1 is sent in B1 but since there is a define of r1 in B2 and B3, r1 causes a squash and is sent
again. If B2 is taken then r3 is sent at the end otherwise r3 is sent in B3. (c) Last_Send: r1 and r3 are sent
fr om B2 and B3. Sending r3 from B2 may require an extra instruction and in the other cases the existing
instructions may be annotated to send their destination registers. (d) Spec_Send: Since B2 is more frequent
than B3, r3 is speculatively sent from B1 and r1 is sent from B2 and B3 like Last_Send. If B3 is taken then
r3 causes a squash and is sent again. Sending r3 from B1 may require an extra instruction, and in the other
cases the existing instructions annotated like Last_Send.

r1 :=

r1 := r3 :=

B1

B2 B3

B4

r1 :=

0.9 0.1

r1 :=

r1 := r3 :=
r1 :=

r1 :=

r1 :=
r3 :=
r1 :=

r1 :=

r3 :=

r1 :=

send r1,r3

send

squash send

send
send

send

&
resend

send r3

send r3

r1 :=send

send r3

send

(a) (b)

(c) (d)

squash
&

resend

squash
&

resend

(path B1B2B4)

6

 In Last_Send (Figure2(c)), both r1 and r3 are sent from B2 or B3, since they are the last modifications of the regis-

ters. Since B2 does not define r3, an extra instruction may be inserted to send r3. Last_Send avoids the squashes

incurred by Eager_Send by sending only the correct values of r1; it sends r3 earlier than Eager_Send via an explicit

instruction. Spec_Send (Figure2(d)) speculatively sends r3 from B1, since B3 is infrequently taken, and the frequent

path of B1B2B4 does not define r3. If B3 is taken then r3 is sent again, causing a squash. As is the case for

Last_Send, r1 is sent from B2 or B3. Spec_Send sends r3 even earlier than Last_Send by taking advantage of specu-

lation. In the frequent case of B2 being taken, r3 is sent earlier from B1 via an explicit instruction, but in the infre-

quent case of B3, this send of r3 results in a squash.

3.2 Details

Let us now describe the details in the realization of each of these four strategies. End_Send and Eager_Send may be

implemented with no compiler support and no ISA modification. Last_Send and Spec_Send require compiler analy-

ses to determine the last modification of each register in the presence of complex control flow. The analyses required

may be formulated in terms of existing data flow frameworks. (We present a few data flow equations instead of the

complete framework in the sections following. We assume in these data flow equations that only the last modification

of a register in a basic block is considered for the analyses.) In addition, both strategies may require ISA modification

in order to efficiently convey information from the compiler to the hardware.

3.2.1 End_Send

End_Send can be implemented with relatively simple hardware and does not require any compiler or ISA support.

Once all instructions of the task have executed, all registers in the ModSet may be sent (one by one). Unfortunately,

this strategy is likely to provide low performance since register values needed by instructions in a consuming task

must wait until all instructions in the producing task have executed. In addition, it does not take advantage of register

data speculation. Nevertheless, this strategy is used as a base for each of the other strategies, since registers in the

ModSet that are not modified during the execution of the task or that cannot be sent, due to control flow, until the end

of the execution of the task are easily handled.

3.2.2 Eager_Send

Eager_Send builds upon the End_Send base strategy by allowing the hardware to send any modification of a register,

as a part of the execution of the associated instruction; it does not require any compiler or ISA support. The hardware

for this scheme may be quite complex, since it must track the modification of all registers on the ModSet and ensure

that the last modification is the last value to be sent for the register. Assuming instructions are allowed to complete

execution out-of-order (regardless of whether instructions issue in-order or out-of-order), it may be necessary to

inspect all instructions in the dynamic window to ensure registers are sent in the proper order if sends are not forced

to occur in the specified program order.

Nevertheless, this strategy is more likely to provide high performance as compared to the base strategy. The advan-

tage of this strategy is that a value may be sent as soon as the register is produced, thereby reducing register wait time

for the value to be consumed. Unfortunately, this form of register data speculation has no information about the last

7

modification of registers and therefore is by nature uncontrolled. As such, the disadvantage of this strategy is that

multiple values for the same register may be sent by the producing task often, thereby causing frequent squashes of

the consuming tasks. Such squashes may increase the cost of incorrect execution enough to negate any decrease in the

register communication delay.

3.2.3 Last_Send

This strategy uses compiler support to provide static analyses of register dependence and may require changes in the

ISA. It is capable of employing register data speculation, but this addition is reserved for the Spec_Send strategy. The

key issue in Last_Send (and in Spec_Send, since it is a variation of Last_Send) is, for each ModSet register, to deter-

mine in the presence of complex control flow the basic blocks after which the register is guaranteed not to be modi-

fied, and to generate sends for the register in the earliest such basic block down any path through the task. Figure3

lists the data flow equations for Last_Send. NoMoreDef determines the basic blocks after which a register is guaran-

teed not to be modified down any path from this point in the task. Send identifies the earliest basic block down any

path through the task among such basic blocks.

Informally, NoMoreDef(i,r) is true if beyond basic block i, register r is not modified in the task. BBDef(i,r) is true if

register r is modified in basic block i. The equation asserts that for every child of basic block i, if there is no modifi-

cation of the register beyond the child, and if the child does not modify the register, then there is no modification of

the register beyond basic block i. A key property of NoMoreDef is that if it is true for a basic block, then it is true for

all of its successors in the task.

Informally, Send(i,r) is true if register r is not sent in at least one path from the entry of the task to basic block i, and if

NoMoreDef(i,r) is true. The equation asserts that if there is no modification of the register beyond basic block i, and

if NoMoreDef is false for at least one of the parents of basic block i, then the register is sent from basic block i.

Figure 3: Data flow equations for Last_Send: BBDef(i,r) is true if register r is modified in basic block i.
NoMoreDef(i,r) is true if there is a guarantee that register r is not modified in any successor of basic block i
in the current task. Send(i,r) is true if NoMoreDef(i,r) is true and register r has not been sent in at least one
path from the entry of the task to basic block i.

NoMoreDef i r,() NoMoreDef j r,() BBDef j r,()¬∩{ }
j children i()∈

∏=

Send i r,() NoMoreDef j r,()()¬
j parents i()∈

∑ 
 
 

NoMoreDef i r,()∩=

NoMoreDef i r,() TRUE=INITIAL V ALUES:

8

Send indicates the first basic block, for a given path from the entry of the task, where NoMoreDef changes from false

to true. This basic block is the earliest in the given path where the register may be sent. Because a task may have

multiple overlapping paths from its entry, there may be multiple first basic blocks (one for each distinct path) where

NoMoreDef changes from false to true. As a result, on a given path Send may be true for multiple basic blocks along

the path (corresponding to places where other paths overlap). In this case, after the earliest send of the register is

encountered, all later sends of the register are redundant and are ignored by the hardware.

3.2.4 Spec_Send

With the analyses of Last_Send, a register is not sent until it can be guaranteed that no further modification of the reg-

ister can occur. This guarantee implies that an infrequently executed basic block that may modify a register late in the

task, must delay sending from a frequently executed basic block that modifies the register early in the task. For the

Spec_Send strategy, the early modification of the register may be sent so long as the late modification of the register

is sent later if needed. These sends must be distinguished from the redundant sends described above so as not to be

ignored. The same complex hardware that ensures registers are sent in the proper order for the Eager_Send strategy

may be required if sends are not forced to occur in the specified program order.

This strategy is similar to the Eager_Send strategy. Not surprisingly, the advantage of this strategy is that in the fre-

quent case when the late modification of the register does not occur, the register is sent as soon as possible. The dis-

advantage of this strategy is that in the infrequent case when the late modification of the register does occur, multiple

values for the same register may be sent by the producing task, as in the Eager_Send strategy, thereby causing

squashes of the consuming tasks. However, unlike Eager_Send, this strategy does have information about the last

modification of a register and may perform register data speculation in a controlled fashion. Given accurate profiling

information about the expected characteristics of program execution, Spec_Send stands a far better chance than

Eager_Send of using register data speculation profitably.

Figure4 lists the data flow equations for Spec_Send. The key difference between the analyses for Last_Send and

Spec_Send is that Spec_Send elides the “low frequency” defines of registers, but otherwise computes SpNoMoreDef

and SpSend exactly as Last_Send computes NoMoreDef and Send. NoIgnore, distinguishes those sends which can-

not be ignored, corresponding to the “low frequency” defines elided in SpSend.

Informally, SpNoMoreDef(i,r) is true if beyond basic block i, register r is not modified in “high frequency” basic

block i in the task. HiFreqDef(i,r) is true if register r is modified in basic block i, and if the execution frequency of the

basic block is greater than a fraction, SpThreshold, of the frequency of the task entry. The equation asserts that for

every child of basic block i, if there is no “high frequency” modification of the register beyond the child, and if the

child does not modify the register with “high frequency”, then there is no “high frequency” modification of the regis-

ter beyond basic block i.

Informally, NoIgnore(i,r) is true if basic block i modifies register r with “low frequency”, and if SpNoMoreDef(i,r) is

true. The purpose of NoIgnore is to identify the sends that cannot be ignored for registers elided due to the “low fre-

quency” of the basic block that performs the modification. Note that NoIgnore may cause multiple sends of the same

9

register, resulting in multiple squashes. Such multiple squashes may be avoided by restricting the computation of

NoIgnore, but we do not discuss this option further here.

3.3 Conveying Information fr om Software to Hardware

The compiler solves the system of data flow equations to determine the basic blocks for which Send or SpSend and

NoIgnore are true. If such a basic block contains an instruction that modifies the register, then the instruction is anno-

tated toforward the register. Otherwise, an extra instruction, called arelease instruction, is inserted at the top of the

basic block to send the register. As register data communication is fairly dense, performing sends by annotating

existing instructions as forwards is imperative, since performing sends with releases requires adding extra instruc-

tions which may inevitably impact the critical path of execution through the program. In Figure5, there are two

examples of tasks with register communication annotations corresponding to the Last_Send strategy.

3.4 Implications of Dead Registers and Register Assignment

If a register is dead beyond a task, then the register value need not be sent to successor tasks. Dead register informa-

tion may be used to reduce register bandwidth demand as well as avoid unnecessary release instructions. Dead regis-

ter information may be conveyed to the hardware by overloading the ModSet. Registers that are dead beyond a task

are included in the ModSet of the task, regardless of whether they are defined in the task or not; yet, no forward or

Figure 4: Data flow equations for Spec_Send. HiFreqDef(i,r) is true if register r is modified in basic block i
and the execution frequency of the basic block is greater than a fraction (SpThreshold) of the frequency of
the entry of the task. SpNoMoreDef(i,r) is true if there is a guarantee that register r is not modified in any
“high fr equency” successor of basic block i in the task. SpSend(i,r) is true if SpNoMoreDef(i,r) is true and
register r has not been sent in at least one path from the entry of the task to basic block i. NoIgnore(i,r) is
true if i is a “low frequency” basic block that modifies the register r.

SpNoMoreDef i r,() SpNoMoreDef j r,() HiFreqDef j r,()¬∩{ }
j children i()∈

∏=

SpSend i r,() SpNoMoreDef j r,()¬
j parents i()∈

∑ 
 
 

SpNoMoreDef i r,()∩=

HiFreqDef i r,() BBDef i r,() HiFreqNode i()∩=

NoIgnore i r,() SpNoMoreDef i r,() BBDef i r,() HiFreqNode i()¬∩ ∩=

HiFreqNode i() Freq i() Freq entry()⁄ SpThreshold>=

SpNoMoreDef i r,() TRUE=INITIAL V ALUES:

10

release is performed for these registers. If the register is defined in the task, then the value is used within the task, but

is not propagated to successor tasks. If the register is not defined in the task, then the value from a predecessor task is

used within the task, but is not propagated to successor tasks. Since the register is dead, no successor task need wait

for the register value. Both Last_Send and Spec_Send can take advantage of such dead register information.

Anti-dependencies introduced by register assignment may delay the sending of a register (See Figure6); the use of

round-robin assignment of registers may mitigate this problem. Figure6(a) shows a task with four basic blocks.

Pseudo-register r1 is dead in B4 but is live out of B3. Pseudo-register r2 is live out of B4. Pseudo-registers r1 and r2

have non-overlapping live ranges and hence can be assigned the same physical register. Figure6(b) shows such a reg-

ister assignment. For the Last_Send strategy, this assignment causes $1 to be sent only in B3. A round-robin assign-

ment, as shown in Figure6(c), avoids delaying the send of $1 for Last_Send by assigning r2 to another physical

register. The Eager_Send strategy would cause incorrect sends and squashes for the assignment in Figure6(b), but

the round-robin assignment would not incur any such squashes.

4 Related Work

Data flow analyses have been applied to a large number of problems in compiler optimizations. The basic register

communication problem falls under the category of simplebackward flow problems[5]. Compilers of data parallel

languages like Fortran D [6] and HPF [7] generate data communication for distributed memory machines. But these

works do not include any speculative communication.

Figure 5: Annotation of Register Communication using Last_Send. Two examples of tasks with register
communication annotations are shown. Forwards of registers are indicated by F’s beside the instructions.
In example (i), in the path B1B2B4, r1 is last modified in B2 and is forwarded from B2 and in the path
B1B3B4, r1 is not modified past B1 and is released in B3. r3 is last modified in B2 and B3, in paths B1B3B4
and B1B2B4 respectively, and is forwarded from them. r2 is modified only in B4 and is forwarded from
there. In example (ii), r1 is last modified in B2 in the path B1B2B4 and is forwarded from B2. Since there is
a loop in the path B1B3B4, r1 is guaranteed not to change only on exit from the loop and so is released in
B4.

r1 :=

r2 :=

r1 :=
r3 := r3 :=

 rel r1
F

F
F

r1 :=
r2 :=

r1 :=r1 :=F

F

rel r1

(i) (ii)

F

B1

B2 B3

B4

B1

B2 B3
B4

11

Annotating instructions with information from compiler analyses has been implemented in Torch[8]. Static specula-

tion have been applied to superscalar, VLIW and superpipelined machines. Techniques like guarding[9][10], perco-

lation scheduling [12], trace scheduling [13], boosting [15], hyperblock scheduling [16], superblock scheduling [17],

sentinel scheduling[11] and modulo scheduling[12] employ varying degrees of static speculation.

Utilizing speculative execution in the compiler constitutes two issues: (i) decision of when to perform computation

under speculation, and (ii) recovery from incorrect speculation. The first issue applies to compiling speculative regis-

ter communication in the Multiscalar architecture as well. The second issue is addressed by a combination of hard-

ware and compiler in the Multiscalar architecture. The compiler inserts code (in the form of “resends”) to detect any

incorrect static speculation and the hardware performs recovery. Unlike most VLIW machines, no bookkeeping code

need be inserted in the program but recovery may be more expensive since larger numbers of instructions may be

squashed.

5 Experimental Evaluation

We have evaluated the register communication strategies for the Multiscalar architecture described in the previous

sections using a compiler derived from the Gnu C Compiler (gcc) and a simulator that we have developed to model

the characteristics of a Multiscalar processor. Our compiler is configured to produce code for the MIPS1 ISA without

any delay slots. The code generation phase of gcc has been modified to annotate the assembly output with Multisca-

Figure 6: An example of register assignment delaying register send. (a) A task with 4 basic blocks before
register allocation. r1 and r2 are pseudo-registers. r1 is dead at the beginning of B4 but live at the end of
B3. (b) Both r1 and r2 are assigned the same register $1, resulting in the release of $1 in B3. (c) r1 is
assigned $1 and r2 is assigned $2. $1 is forwarded in B1, much earlier than B3; $2 is forwarded
independent of the forward of $1.

r1 :=

r2 :=

use r2

r1 dead

r1 live

$1 :=

$1 :=

use $1

release $1

$1 :=

$2 :=

use $2

F

B1

B2

B3 B4
F F

(a) (b) (c)

12

lar specific information. The Gnu Assembler (gas) and the Gnu Linker (gld) have also been modified to pass these

annotations to the output binary. The binary generated by our compiler is run on our simulator which faithfully mod-

els the behavior of a Multiscalar processor on a cycle-per-cycle basis and produces output result files for verification.

All the simulations reported in this paper were run to completion, and the outputs were verified against the reference

outputs.

5.1 Framework

To put the problem of compiling register communication in perspective, we start out with an overview of the Multi-

scalar compiler. The responsibilities of the compiler include partitioning sequential programs into tasks that are

likely to have few dependencies between each other, maintaining correctness by specifying control and data depen-

dencies between the tasks to the hardware, and improving performance by streamlining control and data dependen-

cies between the tasks. Corresponding to these requirements, the problem of compiling for the Multiscalar

architecture involves: (i) devising heuristics to obtain suitable tasks, (ii) determining inter-task data (both memory

and register) communication and inter-task control flow to maintain correctness, and (iii) scheduling inter-task data

(both memory and register) communication to mitigate performance loss.

The organization of our compiler, which is derived fromgcc, is shown in Figure7. After a series of traditional phases

like jump optimizations, loop optimizations, and common sub-expression elimination, the Multiscalar compiler parti-

tions the program into tasks. For the purpose of this paper, tasks may be assumed to be sub-graphs of the control flow

graph, with a single entry point and an arbitrary number of exit points. We have implemented simple, greedy heuris-

tics to partition programs into tasks. The heuristics can be augmented by user hints to enable evaluation of different

partitioning schemes. After the program is partitioned into tasks, the compiler performs optimizations specific to the

Multiscalar architecture like loop restructuring. Register allocation and instruction scheduling is performed after this

phase in the usual manner. At the final code generation phase, the compiler annotates the assembly code with inter-

Figure 7: Organization of the compiler for the Multiscalar architecture.

MULTISCALAR

Parsing

Jump Optimization

Loop Optimization Task Partitioning

Register Allocation

Code Generation

TRADITION AL

Common Sub-Expression

Task Specific Optimizations

Register Communication Annotation

Instruction Scheduling

13

task register communication and control flow information. In this paper we restrict our attention to the parts of the

compiler that deal with register communication.

5.2 Results

All experiments were run with the simulator configured as a Multiscalar processor with 4 processing units. The com-

piler was configured to produce tasks with at most 4 targets. The control flow predictor used a path based scheme

which selects from 4 targets per prediction and maintains a 15 bit path history register indexing into 32k entries. In

addition, it includes a 64 entry return address stack. Each processing unit was configured with 32k of 2-way set asso-

ciative instruction cache in 64 byte blocks with 1-cycle hits and 10-cycle misses. The data cache was 8-way inter-

leaved on the low order bits of the block address, for a total of 64k of direct mapped storage in 16 byte blocks with 2-

cycle hits and 10-cycle misses. Each 8k bank of the interleaved data cache was configured with a 32 entry address

resolution buffer[13] to handle memory disambiguation. Both loads and stores were non-blocking. A 128-bit wide

split transaction bus connects all caches to the memory. Each processing unit can send at most one register value per

cycle to the next processing unit, with a transfer latency of one cycle. Each processing unit was given 1-way, out-of-

order or in-order issue characteristics and a 32 entry re-order buffer.

The performance achieved by the various schemes described in Section3 depends upon many factors: average task

size, overhead of extra release instructions, and effectiveness of each scheme in avoiding register stalls to name the

most significant. Table1 identifies the benchmarks1 used in this study and reports the performance for End_Send. All

benchmarks were compiled with the -O2 level of optimization flag. Profiling was performed to provide basic block

frequency counts, as needed (with different profile and evaluation inputs). Table2a shows the average dynamic size

of the tasks executed in each of the benchmarks. Table2b reports the overhead of release instructions inserted by the

compiler (for Last_Send and Spec_Send). Figure8 and Figure9 show the speedups obtained by the different register

communication strategies, Eager_Send, Last_Send, and Spec_Send over the base strategy of End_Send, for 4 pro-

cessing units with 1-way out-of-order and in-order issue characteristics, respectively

In Table1, he columns titled “Total Cycles” contain the number of cycles taken to execute each of the benchmarks for

the given input for a Multiscalar processor of 4 processing units with 1-way in-order and out-of-order issue character-

istics. Since End_Send sends all the ModSet registers at the end of each task, subsequent tasks must wait for register

values incurring heavy performance loss. The out-of-order issue configuration performs better (13%-17%) than the

in-order configuration due to its ability to tolerate the delays in register communication for End_Send.

1. To the referees: we intend to simulate all of the SPEC 92 and SPEC 95 benchmarks.

Benchmark
Program

Benchmark
Input

Dynamic
Instructions

Total cycles
in-order

Total cycles
out-of-order

compress in 70.24 mil 98.17 mil 87.05 mil

xlisp 7 queens 222.48 mil 313.76 mil 266.53 mil

gcc integrate.i 69.39 mil 86.17 mil 75.83 mil
Table 1: Base case (End_Send) statistics of benchmarks.

14

Table 2a indicates that, on average, the tasks of these benchmark programs are fairly small. In particular, xlisp is

smaller than the others due to frequent function calls in the program. This case is the result of the current greedy task

selection heuristic used by the compiler which partitions tasks at function call sites. Table 2b shows the number of

release instructions executed by each benchmark program, for Last_Send, as a percentage of the total number of

dynamic instructions executed. The overhead due to release instructions depends on the size of the tasks, since a

larger task encapsulates more register live ranges than a smaller one, reducing the amount of communication per-

formed in the program. To further reduce overhead, these runs also include the dead register optimization discussed

in Section 3.4. Overall, avoiding extra release instructions by annotating existing instructions and eliminating the

communication of dead registers are effective means of keeping this execution overhead meager.

Figure 8: Speedups for out-of-order processing units.

Benchmark
Program

Dynamic
task size

compress 14.37 instrs

xlisp 7.66 instrs

gcc 12.30 instrs
Table 2a: Average task size.

Benchmark
Program

Number of
releases

compress 2.7%

xlisp 3.9%

gcc 2.3%
Table 2b: Overhead of releases for Last_Send.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

compress gcc xlisp

Eager_Send
no round robin

Eager_Send
with round robin

Last_Send
no releases

Last_Send
with releases

Spec_Send
with releases

Sp
ee

du
p

15

Figure8 and Figure9 indicate speedups of the various register communication strategies with 1-way out-of-order and

in-order processing units, respectively. In order from left to right, the bars show speedups for Eager_Send without

round robin register assignment, Eager_Send with round robin assignment, Last_Send without explicit release

instructions, Last_Send with explicit release instructions, and Spec_Send with explicit release instructions. A stack-

like register assignment (which is the default in gcc) is done if round robin assignment is not used. Last_Send with-

out explicit releases is compiled by annotating instructions with forward bits only; any release of registers is done

implicitly by the hardware at the end of task execution. For Spec_Send, the value of SpThreshold was placed at 0.9.

Considering out-of-order runs first, the best performance is achieved only when compiler assist is applied. In partic-

ular, changing the register assignment scheme to round robin gives an improvement of 4% in compress and 2% in gcc

over Eager_Send without round robin assignment. For both gcc and xlisp, the biggest improvement in performance is

seen when the compiler generates explicit communication (as in Last_Send) instead of the hardware sending each

register every time it is defined (as in Eager_Send). Though compress improves by only 1%, gcc and xlisp improve

by as much as 8% and 9%, respectively over Eager_Send with round robin. Last_Send avoids the squashes incurred

with Eager_Send by being conservative, implying that it may be better to stall for register values than to speculatively

send the values earlier but incur squashes on incorrect speculation. The use of explicit releases in Last_Send contrib-

Figure 9: Speedups for in-order processing units.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

compress gcc xlisp

S
pe

ed
up

Eager_Send
no round robin

Eager_Send
with round robin

Last_Send
no releases

Last_Send
with releases

Spec_Send
with releases

1.7

16

ute another 1% for gcc and 3% for xlisp. In compress, however, the overhead of release instructions offsets any

improvement in register communication resulting in performance loss of about 2% over Last_Send without releases.

Finally, using Spec_Send improves xlisp by 3% over Last_Send due to the fact that the compiler is able to employ

controlled register data speculation so as to avoid the negative effect of excessive squashes for uncontrolled, as in

Eager_Send. Overall, compiler assist contributes performance improvements of 6% in compress, 10% in gcc and

12% in xlisp, over Eager_Send without round robin assignment. These improvements are significant considering the

capability of latency-tolerant out-of-order processing units.

The in-order configuration follows the trends of the out-of-order configuration closely. The use of round robin register

assignment boosts the performance of Eager_Send by 6% in compress and 1% in gcc. However, it degrades perfor-

mance in xlisp by 1%. Though Last_Send without releases does not have a noticeable effect on compress, both gcc

and xlisp improve by 4%. The use of release instructions contributes another 2% to gcc and 6% to xlisp, respectively.

As was the case in the out-of-order configuration, releases cause a degradation of performance in compress by 2%.

Using Spec_Send contributes another 1% to gcc and 6% to xlisp with no noticeable impact on compress. Again, the

controlled register data speculation of the Spec_Send strategy provides better performance than the uncontrolled reg-

ister data speculation of Eager_Send. Overall, compiler assist contributes performance improvements of 6% in com-

press, 6% in gcc, and 13% in xlisp, over Eager_Send without round robin assignment. These improvements indicate

that substantial performance improvements are possible even for latency-intolerant in-order processing units.

6 Summary

Critical paths in program execution for a Multiscalar processor often involve the communication of register values

produced by one task and consumed by another. Accordingly, register data communication represents a critical factor

in an implementation of the Multiscalar architecture. In this work, we considered two aspects of this important issue:

correctness and performance. To specify correctness criteria as per sequential semantics, we described an abstract

model of Multiscalar register communication. To achieve high performance, we developed a progression of hardware

and compiler techniques that reduce the communication delay implied by the abstract model, sometimes using regis-

ter data speculation for this purpose. In addition, we discussed the analyses the compiler has to carry out and the

information that it has to convey to the hardware to realize a range of register communication strategies.

We evaluated the practicality and the effectiveness of the techniques by implementing them in the GNU C compiler

and our detailed simulator of a Multiscalar processor. We simulated on our cycle-by-cycle simulator the execution of

a number of the SPEC92 benchmarks compiled by our compiler to evaluate the strategies we developed; we com-

pared these strategies to a base case in which register communication is performed at the end of task execution. The

experimental results indicate that aggressive hardware with no compiler support to detect the last modification of a

register within a task improves performance by 28% to as much as 53% for in-order units and 30% to 45% for out-of-

order units. The addition of static compiler analyses that detects the last modification of registers and informs the

hardware through annotation of existing instructions and insertion of extra instructions (where needed) improves per-

formance by 32% to as much as 67% for in-order processing units and 36% to 59% for out-of-order processing units.

As a result of this work, we make two key observations. First, we have found that register data speculation can be an

important component in a high performance register communication mechanism for a Multiscalar processor. How-

17

ever, if such register data speculation is used in an uncontrolled fashion, gains in performance may be eroded by

losses due to incorrect execution. On the other hand, controlled register data speculation can avoid this pitfall, but

requires accurate information about the expected characteristics of program execution. Second, we have found that

conveying information from the software to the hardware is a valuable tool to improve register communication. How-

ever, if providing such information involves inserting extra instructions, it must be done carefully. While annotating

existing instructions does not affect the critical path through a program, inserting extra instructions likely does. Con-

sequently, it is possible that such a decrease in register communication delay time may not be enough to offset a likely

increase in the critical path.

Acknowledgements

This work was supported in part by NSF Grants CCR-9303030 and MIP-9505853, ONR Grant N00014-93-1-0465,

and by U.S. Army Intelligence Center and Fort Huachuca under Contract DABT63-95-C-0127 and ARPA order no.

D346. The views and conclusions contained herein are those of the authors and should not be interpreted as necessar-

ily representing the official policies or endorsements, either expressed or implied, of the U. S. Army Intelligence Cen-

ter and Fort Huachuca, or the U.S. Government.

References

[1] M. Franklin and G.S. Sohi. The expandable split window paradigm for exploiting fine-grain parallelism. InConference Proceedings of the
19th Annual International Symposium on Computer Architecture, pages 58–67. Association for Computing Machinery, May 1992.

[2] M. Franklin.The Multiscalar Architecture. PhD thesis, University of Wisconsin-Madison, November 1993.

[3] G. Sohi, S.Breach, and T. Vijaykumar. Multiscalar processors. InConference Proceedings of the 22nd Annual International Symposium on
Computer Architecture. Association for Computing Machinery, June 1995.

[4] S.Breach, T. Vijaykumar, and G.Sohi. The anatomy of the register file in a multiscalar processor. In Conference Record of the 25th Annual
International Symposium on Microarchitecture, pages 181–190, San Jose, CA, November 1994. Association for Computing Machinery.

[5] A. Aho, R.Sethi, and J.Ullman.Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

[6] S.Hiranandani, K.Kennedy, and C.Tseng. Evaluation of compiler optimizations for fortran d on mimd distributed-memory machines. In
Conference Proceedings of the International Conference on Supercomputing, July 1992.

[7] C. Koelbel, D.Loveman, R.Schreiber, J.G. Steele, and M.Josel.The High Performance Fortran Handbook. The MIT Press, Cambridge,
MA, 1994.

[8] M. Smith, M.Lam, and M.Horowitz. Boosting beyond static scheduling in a superscalar processor. In Conference Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 344–354. Association for Computing Machinery, May 1990.

[9] P.-T. Hsu and E.Davidson. Highly concurrent scalar processing. InConference Proceedings of the 13th Annual International Symposium on
Computer Architecture, pages 386–395. Association for Computing Machinery, June 1986.

[10] D. Pnevmatikatos and G.Sohi. Guarded execution and branch prediction in dynamic ilp processors. InConference Proceedings of the 21st
Annual International Symposium on Computer Architecture, pages 120–129. Association for Computing Machinery, April 1994.

[11] S.Mahlke, W. Chen, W. Hwu, B.Rau, and M.Sclansker. Sentinel scheduling for VLIW and superscalar processors. InConference Proceed-
ings of the Fifth International Symposium on Architectural Support for Programming Languages and Operating Systems, pages 238–247.
Association for Computing Machinery, October 1992.

[12] B. Rau, M.Schlansker, and P. Tirumalai. Code generation schema for modulo scheduled loops. InConference Record of the 25th Annual
International Symposium on Microarchitecture, pages 158–169, Portland, OR, December 1992. Association for Computing Machinery.

[13] M. Franklin and G.S. Sohi. ARB: A hardware mechanism for dynamic memory disambiguation.IEEE Transactions on Computers, forth-
coming.

