Knapsack: A Zero-Cycle Memory Hierarchy Component*

Todd M. Austin ~ T.N. Vijaykumar Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706
{austin, vijay, sohi}@cs.wisc.edu

November 22, 1993

Abstract

The widening gap between processors and memory necessitates the development of novel
memory hierarchies: hierarchies that can possibly service memory references at register
speeds, since service at cache speeds may not be adequate. We consider the design of a
novel memory hierarchy component, a knapsack, whose purpose is to provide (very) fast
access to frequently-used data objects. Software allocates frequently-used objects into a
knapsack region of the address space; a knapsack provides fast access (at register speeds in
many cases) to these objects. We discuss how a knapsack is different from other memory
hierarchy components, how it can achieve superior performance over other components, and
how it can be integrated transparently into an implementation of existing architectures. We
also carry out a detailed evaluation of a knapsack using several of the SPEC92 benchmark
programs. Our results show that for many programs, both numeric and non-numeric, the
knapsack offers significant opportunity for memory access optimization. Using a profiler-
based packing heuristic which can allocate both globals and locals to the knapsack region,
we found that a knapsack as small as 4k bytes could service a significant number of memory
references for many of our benchmark programs.

*This work was supported by grants from the National Science Foundation (grant CCR-9303030) and Office
of Naval Research (grant N00014-93-1-0465).

1 Introduction

Ever-increasing CPU speeds continue to place greater demands on memory systems. Improving
memory bandwidths, and decreasing memory latencies is of paramount importance if the rate
of increase in processing speeds is to be sustained. To date, most techniques to improve mem-
ory system performance have primarily used hardware-only techniques: caches[14], lockup-free
caches[10][15], multiport caches[15], hardware prefetching[8] and buffers[8], etc. With increasing
on-chip real estate, designers are using the additional resources to integrate larger amounts of
existing memory hierarchy components on chip. Our feeling is that a brute-force integration of
larger sizes of well-known memory hierarchy components may not be the best solution; other

avenues need to be explored.

A trend that has emerged in the design of high-performance processors is the ever-increasing
demands placed upon the software (compilers in particular). Such processors, which exploit
instruction-level parallelism (ILP), benefit greatly from software assist. Without sophisticated
software technology, such processors typically cannot achieve high performance levels. A natural
next step is to use sophisticated software technology to optimize memory hierarchy performance.
This area has received a lot of attention recently; much of this work has concentrated on improv-
ing the performance of an existing memory hierarchy component, namely the cache, using two
main techniques: prefetching to reduce the number of compulsory and conflict misses [2][3][9],
and blocking to increase the reuse of data once it has been cached, by changing the reference

patterns of the application[11].

Our interest in this paper is not to improve the performance of well-known memory hierarchy
components, but to explore the use of another component. The component we have in mind,
a knapsack, could be accessed at register speeds, for the most part, and yet can be introduced
transparently into an implementation (of an architecture). The basic idea is to map a restricted
part of the address space into the knapsack using a very simple mapping strategy. The small
size and restricted mapping facilitate fast access. Sophisticated software is then assigned the
task of allocating frequently-used data objects in this restricted part of the address space, so
that fast access to this part of the address space translates (dynamically) into fast access for a

reasonable number of memory accesses.

The outline of the paper is as follows. Section 2 discusses the attributes of components
found in common memory hierarchies. The purpose of this section is to discuss how certain
attributes influence the use and the performance of the components. Section 3 presents the
proposed memory hierarchy component, a knapsack, along with a discussion of its benefits,

including potential access at register speeds. Section 4 discusses how a compiler can make use

of a knapsack, and Section 5 presents an evaluation of the knapsack using fifteen of the SPEC92

benchmark programs. Finally, Section 6 presents concluding remarks.

2 Components of Common Memory Hierarchies

A memory hierarchy is a collection of storage entities, or components, with each component
consisting of several elements of storage. For purpose of discussion, we can assume that a
program is referencing objects allocated in a (virtual) memory address space; objects in this
address space are mapped onto components of the memory hierarchy during the execution of
the program. The goal of a memory hierarchy is to service memory requests from the program
with the desired latency and the desired bandwidth. A hierarchy typically accomplishes this
by mapping frequently used data objects into components of the hierarchy that can service the
requests faster. By mapping we mean the placement of data objects in the component of the

hierarchy.

We begin by discussing the fundamental issues that characterize a component, and then
discuss common memory hierarchy components. Three fundamental issues characterize how a

component fits in the overall memory hierarchy:

1. Whether the component is architecturally-visible, and has a separate address space,
2. Whether the component is addressable, and

3. The processes of determining which component a referenced object is in, and where it is

in the component.

A component is architecturally-visible if it is visible to the instruction-set architecture (ISA).
That is, the ISA treats the component as a distinct part of the hierarchy. It does so by considering
the component to be part of a separate address space, and providing support in the ISA to access
the component. Because the component is in a separate address space and uses special addressing
mode instructions, software support is required for correct use of the component. An example

of a component in a separate address space is the (architectural) register file.

If a component has its own address space, software is responsible for deciding which objects
reside in (or are mapped into) this component, and when they reside in the component. In
order for software to map objects from one address space (the virtual address space where

most! data objects of a program reside), into another address space (the address space of the

'We say most, not all, since some objects may never exist in the virtual memory space of a program. Examples

component), several problems have to be solved. One, the software has to analyze the memory
references of a program to make sure that there are no aliases involving objects that it maps
into a different address space. In the extreme, this boils down to determining which object
an arbitrary memory operation accesses. The complexity of these analyses, in the presence of
control flow and pointers, limits the number of data objects that can be mapped into a different
address space. Two, since the hierarchy component is very likely much smaller than the size of
all the objects that a program might want fast access to, different objects have to be mapped
into the component at different times in the execution of a program. Software has to decide
which objects are mapped, and when. This problem becomes very hard when the objects are of

varying sizes and can’t be broken up.

If a component does not have a separate address space, it is architecturally-invisible. That
is, software is not required for correct use of the component. (However, architecture-invisibility
does not imply that the component is invisible to the software. While software is not required for
correct use, it can be used to optimize performance of the component.) With an architecturally-
invisible component, data objects can be dynamically mapped, with the mapping process (pri-
marily) being the responsibility of the hardware. Since software is not required to give any
guarantees, extraordinary demands are not placed on it. However, hardware suffers from the
lack of global knowledge of (possible) program reference patterns. Software can assist the hard-
ware by giving it hints and advisory directives. The point worth emphasis here is that software is
assisting the hardware, but is not responsible for providing it with any guarantees: the hardware

can use the memory hierarchy component correctly without any software assistance.

The second fundamental issue deals with the addressability of the component. If elements of
the component can’t be addressed then it is not possible, to map objects that may be referenced
indirectly into this component. (It is worth pointing out that just because a component lies in a
separate address space does not mean that its elements are addressable. For example, registers
form a separate address space from memory, but are not addressable if self-modifying code is
prohibited.) Software analysis to determine which objects can’t be referenced indirectly is hard
in the presence of pointers, thereby limiting the number objects that can be mapped into this
component. Related to the notion of addressability is the notion of indexing. If the component
can’t be addressed, it can’t be indexed, that is, it is not possible to compute the address of a
datum mapped into this component by adding an offset to the address of another datum. The
lack of an indexing ability prevents the mapping of aggregate data objects, such as arrays, into

this component. For example, since primary registers cannot be indexed in most architectures,

include temporaries, parameters, and local variables of a program that are resident only in the register address
space during the execution of a program.

Memory Hierarchy Architecture Addressability Presence detection
Component Invisibility Indexable | Indirect | Aggregates
Registers No No No Limited Compile-time
Caches Yes Yes Yes Yes Run-time
Vector Registers No Yes Yes Yes Compile-time
Traditional Local Memory | No Yes Yes Yes Compile-time
Stack Cache Yes Yes Yes Yes Run-time

| Knapsack | Yes | Yes | Yes | Yes | Run-time |

Table 1: Attributes of Common Memory Hierarchy Components

compilers cannot produce code corresponding to loops that process array elements, if the array

elements are mapped into the registers.

The third fundamental issue deals with accessing data in a memory hierarchy. When a
memory reference is generated, how do we know which memory component it should be directed

to, and where can the referenced object be found in the component.

If the component is architecturally-visible, then the software is responsible for directing the
reference to the component, and hardware is not involved in the decision making. For example,
if a variable is mapped into a register, software ensures that further references to the variable

are directed to the register.

If the component is architecturally-invisible, hardware has to determine which component
the object is in. It does so by imposing an ordering on the components (for example L1 cache
followed by L2 cache, and so on). Selected places are searched in each component, and the
components are searched in order. The complexity of the search process is determined by the
mapping strategy. If the mapping allows many objects from one component to be mapped into
many places in another component (for example many blocks from memory being mapped into
many block frames in a set associative cache), then hardware has to direct the reference to all
parts of the component where the object could reside. Furthermore hardware also needs to
determine which one of the several objects that could map into the selected storage elements is
actually present in the component. The hardware’s task is simplified if there is a many-to-one
mapping (for example in a direct mapped cache), and could be simplified even further if there
is a one-to-one mapping.

Table 1 presents the attributes of primary registers, caches, stack caches[6], and local memories[5]:
components that are found in common memory hierarchies. Primary registers, or simply reg-
isters, are found in all modern architectures. Registers form a different address space from
the memory address space, therefore objects must be mapped into registers by software. It is

generally not possible to take the address of a register, and it is also not possible to index a

primary register file. These restrictions limit the number of data objects that can be mapped
into registers. Typically primary registers are used to hold scalar (global) variables, temporaries,

local variables and parameters.

Caches are architecturally-invisible. It is possible to take the address of a datum allocated
to cache, index elements, and map aggregates. This flexibility, however, is achieved at some
expense — hardware for presence detection. For example, tag bits are needed to determine which
one of the many blocks that could map onto a cache block frame is actually present in the cache.
Moreover, because of the general many-to-many mapping strategy, special-case optimizations

are not possible.

Vector registers[13], found in vector machines, are another interesting memory hierarchy
component. It is generally possible to take the address of an element of a vector register (a
scalar register contains the address of the element), and use indexing to step through elements
of a vector register. Thus, it is possible to allocate vectors in a vector register, and use scalar
instructions (in a loop) to process elements of a structure mapped into a vector register. However,
because vector registers form a separate address space, only data objects whose complete alias

information is available can be mapped into vector registers.

Very few architectures have local memories; only the Cray-2[5] comes to mind. The Cray-2
local memory is conceptually very similar to a vector register (that is, it has its own address
space), only much larger. The one difference is that, because of its size, it can hold many
different, unrelated data objects at a time, unlike a vector register which typically holds part of
one object. This extra flexibility, however, opens up additional problems: the issue of packing
multiple, variable-sized objects into a fixed amount of space. Because of these issues, the primary

use of the Cray-2 local memory has been a place to spill vector registers.

A stack cache, proposed for the C machine, is another interesting memory hierarchy component[6].
The goal of the stack cache is to provide fast access to local objects and parameters of procedures
— objects that reside on the top of a run-time stack (for the typical execution of block-structured
languages). By prohibiting modifications to the stack pointer during the execution of a proce-
dure, by providing special instructions to adjust pointers at procedure entries and exits, and
by predecoding instructions to determine if their operands are mapped into region of memory
currently held by the stack cache, the stack cache allows top-of-stack elements to be accessed
at register speeds. Even though the stack cache does not have a separate address space, it is
not completely invisible to the software. Special instructions (enter and catch) are needed to

adjust pointers into the stack cache?. Furthermore, a stack cache holds all local variables of

20One way of looking at the software requirement is as follows. Since the stack cache could hold a region

a procedure, rather than only variables that have suitable access characteristics (for example,

high access frequencies).

To summarize the above discussion, there are three desirable attributes of a memory compo-
nent. First, the component should be architecturally-invisible: software should not be required
for correct use. This also implies that it does not have a separate address space, and can be
addressed and indexed. Second, software should be able to assist in performance aspects. Third,
run-time decision making, regarding where a referenced memory object is present, should be as

simple as possible.

The next section describes a new memory hierarchy component, a knapsack, that we propose
and study in this paper. The goal of the knapsack is to achieve the same purpose as a very
large addressable and indexable register file (fast access), but be architecturally-invisible so
that software is not required for correct use, and therefore it can be used in implementations
of existing architectures. We accomplish these goals by restricting the mapping of memory
locations into the knapsack, thereby simplifying the hit detection process (and allowing fast

access), and relying on software to map frequently-accessed memory objects into the knapsack.

3 A Knapsack

3.1 Basic Idea

The idea of a knapsack?® , is very simple: provide fast access to a restricted part of the mem-
ory address space (using a knapsack), and use a one-to-one mapping strategy to simplify the
hardware decision-making process. The basic idea of fast access to a part of an address space
in not new — it has been used many times before. The novelty of the work presented in this
paper is profitably integrating this simple idea into the memory hierarchy of a modern pro-
cessor. Software is not essential to the use or to the correct operation of this component, but
software can (and should) be used to optimize its performance. Figures 1la) and 1b) illustrate
the concept of a knapsack. Without a knapsack, generally an element residing in any part of
the address space can reside in a memory hierarchy component, for example, in a cache. With
a knapsack, the memory address space is divided into two regions: X and Y. The knapsack is

respousible solely for providing fast access to region X, also called the knapsack region; other

of memory that is much larger than it size, at different times during the execution of a program, software is
required to ensure that only a fixed-size region of memory (and everything from that fixed-size region of memory)
is mapped into a stack cache, at a given time.

3The name comes from the fact that the allocation of variables to this memory component is similar to the
Knapsack Problem[4]. Moreover, a knapsack serves as a repository for objects that are “valuable” to a program.

ONE TO ONE
MAPPING

REGION
X
KNAPSACK

MANY
TO
MANY
MAPPING MANY
TO
MANY
MAPPING

J

ADDRESS SPACE

MEMORY HIERARCHY
COMPONENT
ADDRESS SPACE

REGION Y

J

MEMORY HIERARCHY
COMPONENT

Cache,
Primary Memory,
€etc.

Cache,
Primary Memory,
etc.

) b)

Figure 1: a) Mapping from the Address Space to the Memory Hierarchy b) Mapping from the
Address Space to the Knapsack and the rest of the Memory Hierarchy

hierarchy components, for example caches, could be used to provide fast access to region Y,
the non-knapsack region. There is a one-to-one mapping between the elements of the knapsack

region and the knapsack, i.e., the size of the knapsack region is equal to the size of the knapsack.

An architecture could be completely unaware of the existence of the knapsack, that is, a
knapsack is architecturally invisible: the software knows of only a single address space. Since
there is only a single address space, any data object can be allocated to any part of the address
space (including the knapsack region), without any concern for aliasing. An implementation is
aware of the existence of a knapsack, and therefore the address range of the knapsack region.
When an address is generated in an implementation, if the address is in the knapsack region, it

is forwarded to the knapsack, else it is forwarded to other components of the hierarchy.

Since a knapsack is not architecturally-visible, software is not required for correctness. If
an implementation has a knapsack, compilers for that implementation are instructed to place
frequently-used objects in the knapsack region of the address space, in the hope that dynamically
these objects would end up in the fast knapsack during an execution of the program. If software
is generated without knowledge of a knapsack, it will still function correctly, but without the
performance benefits of the knapsack. This architecture-invisibility allows a knapsack to be

incorporated transparently into future implementations of existing architectures.

3.2 Knapsack Design Space

Having presented the basic concept of a knapsack, let us now consider some more important
details. Before proceeding further, however, a comparison between a knapsack and a cache is
in order. Both components are (typically) architecture-invisible components that map elements
from the memory address space; they do not constitute a separate address space. Because of the
similarities, problems in the knapsack domain have parallels in the cache domain; solutions used
in the cache domain could profitably be used in the knapsack domain. However, a knapsack
has a major difference: the process of mapping elements from the memory addresses space. A
knapsack maps only a (very) small part of the address space, using a one-to-one mapping; a
cache maps a much larger part of the address space, with a more general mapping. There are
several performance implications of this restriction that will become apparent in the following

discussion.

The most significant decision to be made is whether a knapsack maps virtual or physical
addresses. As we shall see, mapping virtual addresses into a knapsack seem to make the most
sense given our thrust, but we do not preclude mapping physical addresses. Other decisions
regarding a dynamically-mapped memory hierarchy component include: (i) the mapping strat-
egy or the placement policy, (ii) the replacement policy, (iii) what is required to make the hit

decision (and what happens on a miss), and (iv) the write policy.

In a knapsack, the placement policy and the replacement policy are trivial since there is a
one-to-one mapping. Making the hit decision is also quite straightforward. The hit or miss check
is if the address falls into the knapsack region or not. The Kbase ptr which holds the address
where the knapsack region starts, is used for this. See Figure 2. A reference to the knapsack
consists of an address which can be viewed as an offset from the kbase ptr. The offset is used to
index into the knapsack and a present bit used to indicate if the referenced word is present in
the knapsack. A miss occurs if the present bit is not set. We discuss what happens on a miss,

and the write policy, after we discuss which address space should be mapped into a knapsack.

Conceptually a knapsack could map either a physical or a virtual address space. A problem
with mapping physical addresses is that user-level software has little control over the placement
of objects in the physical address space. Compilers, which we will rely on to pack frequently-used
objects into the knapsack region, can only control objects in the virtual address space. One could
ask the OS to restrict page placement so that the knapsack region in a virtual space is mapped
onto a knapsack region in a physical space. However, this is likely to cause heavy thrashing with
multiple processes since heavily-accessed regions of many virtual spaces are mapped into the

same physical space. Because of these issues, we do not consider mapping physical addresses in

EA L
ﬁ @ ﬁ £
KBASE PTR & a
Data Block
TLB
A B
z
§ o}
g ?
e S
é X
o}
9 CACHE
['q %
o
CacheHit
Knapsack Hit T I
< DATA i >
PA h 4 h 4 '

Figure 2: The Knapsack’s Placement in a Conventional Memory Hierarchy.

this paper. Rather, we concentrate on mapping virtual addresses, and on solving the problems
that arise when virtual addresses are mapped into a memory component. (The fundamental
concepts will not change, but we will require the cooperation of another piece of software —
the OS.) An important point to keep in mind for the following discussion is that a knapsack is
going to contain a small number of virtual pages, contiguous in the address space, from a single
address space (we discuss multiple virtual address spaces below)*. This restriction simplifies
many of the problems associated with mapping virtual addresses. The issues to be considered

here are: (1) what to do on a miss, (2) the issue of synonyms[14], and (3) the write policy.

On a miss, a translation needs to be done to retrieve the data from the physical memory. A
TLB at the back end of the knapsack (called the KTLB) is needed for this purpose (see Fig. 2).
If the knapsack contains only a single page, the KTLB need include only a single entry; address

translation can be a simple address concatenation.

We now consider the issue of synonyms. The first concern here is whether the knapsack can
contain data from multiple (virtual) address spaces at the same time, with Process Identifiers
(PIDs) being used to distinguish the address space. (PIDs are commonly used to avoid flushing
virtually addressed caches on an address space change.) We feel that mapping multiple virtual

address spaces into a knapsack is not a good idea for two reasons. One, because of the many-

“In fact, if the architecture supports multiple page sizes, the compiler could instruct the OS to map all of the
knapsack region into a single page — the knapsack would contain data from only a single page

10

to-one mapping (mapping from many virtual address spaces into a knapsack, as opposed to
mapping from many places in a single address space into a single location), extra hardware, in
the form of PID tags and matching logic, is needed. Two, since each process will be compiled
to put heavily-used data in a knapsack, it is likely that a process will reference most of the
knapsack when it is running, kicking out data from another context. Allowing multiple contexts

in the knapsack therefore appears to be of questionable value.

Since only one address space is mapped into a knapsack, synonyms from multiple address
spaces can not occur. However, it is possible that synonyms exist in the same address space.
For example, in the Mach [18] operating system, the same object could get mapped to different
addresses in the same process. Such synonyms can occur only for heap objects and since heap
objects are not allocated in the knapsack, the synonyms will not cause a problem. If static
objects create synonyms in the same address space, the compiler would have to be aware of this

and hence can avoid allocating such objects to the knapsack.

A knapsack can use either a write-through or a store-in policy. Either policy will require
a back-end address translation. If write-through is used, the knapsack need not be flushed
on a context switch; the new process can start right away after the present bits have been
cleared. With store-in, the knapsack needs to be flushed. The flushing process need not be as
burdensome as it sounds since is may be possible to flush the knapsack on-the-fly, concurrently
with the execution of the new context, with a small amount of additional hardware. The
contiguous property of the data in the knapsack simplifies the flushing process since only one
address translation is needed per page; (physical) addresses within a page can be formed with a

simple bit concatenation.

3.3 Zero-Cycle Knapsack Access

The latency of a memory referencing operation is typically measured as the number of cycles
(or pipeline stages) from the time the effective address is calculated until time the results of the
memory operation are available for use. In a typical 5-stage pipeline[7] (Instruction fetch(IF),
Instruction Decode(ID), Execute(EX), Memory Access(MEM), Write Back(WB)), the effective
address is computed in the EX stage, and the result of a load is available at the end of the MEM
stage. If the result of a load is available before the load enters the EX stage, we will say that
it has a zero cycle latency. Similarly, we say that a store has a zero-cycle latency if it can be

completed by the end of the EX stage.

We now see how, with suitable support from the software, a knapsack opens up the possibility

of zero-cycle loads. Accesses that refer to objects allocated in the knapsack region directly by

11

name (and not through pointers) could be specified as a displacement from a knapsack pointer,

or kp> We call such loads as direct loads and such stores as direct stores.

If software reserves a general purpose register as the kp, and the knapsack size is smaller
than the region of memory than can be accessed with the displacement, then zero-cycle loads
can be achieved in the following manner. When an instruction enters the decode (ID) stage, the
displacement field bits could be used to index into the knapsack and read the contents of the
accessed location. In parallel, the decode hardware can check to see if the instruction is a load,
and if the base register is kp. In case of a hit in the knapsack, the result of the direct load is
available at the end of the ID stage — even before the effective address (for a normal memory

operation) is calculated!®

Darect stores into the knapsack region would have to wait until it is known that the knapsack
region is being accessed. This can be done in the ID stage (store address is an offset from the £p),
and the store could complete in the EX stage. Memory operations falling into the non-knapsack
region would be serviced in the MEM stage (by a cache perhaps). Memory operations accessing
the knapsack region indirectly, i.e., that are not specified directly as displacements from the kp,
can’t be handled early in the pipeline since the effective address is calculated in the EX stage.

Such references would have to be serviced, by the knapsack, in the MEM stage.

Since memory operations to the same hierarchy component (the knapsack) can complete in
different stages of the pipeline, special care needs to be taken to ensure that the out-of-order
memory operations do not violate dependencies. Interlocks to prevent this (which are necessary
whenever there is the possibility of simultaneous or out-of-order memory operations), can be

implemented with fairly routine hardware.

4 Allocating Data Objects in the Knapsack Region

We now consider the role of the software, a compiler, in making effective use of a knapsack.
A key point to remember in the following discussion is that a knapsack will function correctly
without compiler help, but likely with no performance benefits. The goal of the compiler, then,
is to allocate frequently-used static objects in the knapsack region, so that they would end up in

the (fast) knapsack during program execution. We can’t address the multitude of issues involved

°It is important to realize than not all addresses that fall into the knapsack region of the address space could
(or need) be specified directly, as a displacement from the kp in a general case, since this implies that we have
perfect knowledge about the reference patterns of the program, and that there is no aliasing. As mentioned
earlier, this is very hard, or even impossible, in the presence of control flow and pointers. Moreover, addresses to
elements of arrays cannot generally be specified as a (constant) offset from a (constant) base pointer.

8 Assuming, of course, that the memory array for the knapsack can be accessed in a single cycle.

12

in compiling for a knapsack, so we give only a brief overview in this paper.

A first cut for the compiler is to allocate only global objects (scalars as well as aggregates) in
the knapsack region. However, we expect many frequently-used objects to be local variables of
functions — variables that typically exist on a run-time stack; fast access to such objects is clearly
desirable. Furthermore, if it is clear that two functions do not have overlapping lifetimes, then
we can reuse the same portion of the knapsack region to hold the local objects of both functions.
(We call this temporal reuse.) With these objectives, the compiler allocation problem can be
stated as follows: allocate program objects in the knapsack region such that: (i) the knapsack
is allocated to the most frequently accessed variables, and (ii) local objects from functions with

overlapping lifetimes do not interfere in the knapsack.

4.1 Information about Objects

Given the above objectives, the information needed by the compiler includes: (i) the sizes of
objects, (ii) the frequency of access of objects, and (iii) for local objects, information about

which other functions have overlapping lifetimes.

The information about (static) object size can be obtained trivially in any compiler. Ac-
cess frequency information can either be estimated statically, by analyzing the program, or be
obtained using profiling. For gathering information about which functions (and therefore their
local objects) do not have overlapping lifetimes, we need the program call graph. We also need
the call graph to determine which functions are involved in cycles, since the number of copies
of local variables for such functions is unknown at compile time, and therefore they cannot be

allocated in the knapsack region.

It is quite straightforward to build the call graph for programs without calls through pointers.
For programs with calls through pointers, there is a range of solutions from the most conservative
(requiring no analysis) to the most accurate (requiring a lot of analysis). The simplest solution
is to assume that a call through a pointer could go to any function in the program. The most
accurate is to do data flow analysis[1] and converge to the least subset of functions that a call
through a pointer could go to. A solution which is not too conservative but does not require a
lot of analysis is to assume that a call through a pointer can go to any function whose address
occurs in an expression in the program. This requires identification of functions whose addresses

are taken in the program, and this can be done in a straightforward manner.

13

4.2 Allocation Decision

Given the relevant information, the problem of deciding what to allocate in a knapsack can be
formulated as an optimization problem. The details of the formulation are beyond the scope
of this paper; they will appear in a separate paper. However, it is worth mentioning that
the problem resembles the well-known fractional Knapsack Problem. Due to the architectural
invisibility of the knapsack, the compiler can allocate a variable that does not completely fit into
the knapsack and let it extend across the knapsack boundary. This has an important implication

on the complexity of the allocation problem.

Since optimal solutions to the problem are hard, we resort to heuristics. The heuristics
arrange the program objects in the order of gain per unit size, and walk through the sorted list
to make the allocation decision. (With temporal reuse, the heuristic also needs to determine
that a local variable object does not violate lifetime constraints in the call graph.) Since we are
interested in improving memory hierarchy performance, gain for our purposes is measured as

number of references.

Figure 3 gives an example of the allocation decision process. Function F1 has one local
variable al, F2 has 2 local objects b2 and ¢2 and F3 has one local variable d3. F1 calls F2 and
F3, and F2 and F3 do not have overlapping lifetimes. There are 2 global objects gl and g2.
The size, the gain function, and the gain per unit size for each of the objects is also given in the
figure. The knapsack size is 4 units. An optimal allocation will allocate g1, b2, d3 and 1 unit
of a3 (denoted as a3’) (d3 can use the same storage location as b2 or ¢2 since it is never live at
the same time as b2 or c¢2), for a total gain of 33. A heuristic which allocates objects using gain
per unit size as the metric, and does no temporal use (heuristic H1), will allocate gl, al and 1
unit of b2 (denoted as b2’) for a total gain of 25. A heuristic with the same metric, but with
temporal reuse (heuristic H2), will allocate g1, al, (b2’,d3’), for a total gain of 29.5.

Before proceeding further, it is worth mentioning that the heuristics that we have developed
so far to assist us in the knapsack region allocation process are by no means the best possible.

We are investigating other heuristics that can results in a better allocation decision.

4.3 Facilitating Zero-cycle Knapsack Access

Having made the allocation decision, the compiler could facilitate zero-cycle access (as described
in section 3.3), by referring to knapsack-allocated objects directly as offsets from the knapsack

pointer wherever it can. This requires little additional effort on the part of the compiler.

14

VAR |SIZE |GAIN |GIS
al

gl 1 8 8

al 2 12 6

b2 2 10 5
d3 2 9 45
b2,c2 a3 c2 2 7 35
GOBALS: glg2 9@ 4 2 0.5

KNAPSACK SIZE: 4

Optima Soln: g1, b2,d3, al’
H1 Soln: g1, a1, b2’
H2 Soln: g1, al, b2', d3’

Figure 3: Example of the various allocation strategies.

Data Reference
Profiler Reference Allocation
Statistics Map Modified M
emory
Knapsack Address Trace Hierarch
Cycle-free lierarcny
Call Graph Allocator Demangler Simulator
Call Graph
Generator/
Post-processor
Program
QPT-based Trace
Trace Generatol

Figure 4: Experimental Framework.
5 Experimental Evaluation

5.1 Evaluation Methodology

To study the performance of the knapsack, we built a set of tools to perform knapsack allocation

and simulate the memory hierarchy. Figure 4 shows our experimental framework for this work.

As discussed earlier, effective knapsack allocation requires that frequently referenced vari-
ables be allocated to the knapsack region. The data profiler provides reference frequency infor-
mation for all global and local variables allocated to memory. We use QPT[12] to generate an
address and call/return trace of the program being analyzed. The profiler then tries to bind

each reference to a program variable name. References to the heap and to unnamed locals

15

(e.g., temporary storage used for register spilling) cannot be bound to a program name, so we
do not consider these variables for knapsack allocation. This limitation makes our simulation
results somewhat conservative, as sufficient compiler and/or run-time support could allow these

unnamed variables to reside in the knapsack.

To implement temporal reuse of local variables, the knapsack allocator must determine which
locals have overlapping lifetimes. The program call graph provides a representation suitable
for this analysis. Any two locals residing in functions that share a path in the program call
graph have overlapping lifetimes. We modified GCCI[17] to output function definitions, calls,
calls through pointers, and function casts. We then construct the call graph by connecting
all callers to callees; we conservatively approximate run-time resolved calls by connecting all
calls through pointers to functions that were used in a function cast. This procedure produces
a static representation of the dynamic call graph. In a post-pass, we generate the transitive
closure graph of the call graph. In this graph, any function connected to itself is the member
of a cycle, thus its local variables are not subject to knapsack allocation. The cycle nodes are

collapsed into a single node with no locals.”

The knapsack allocator takes the variable reference statistics from the data profiler and the
cycle-free call graph information from the call graph analyzer and produces an allocation map
for the knapsack. Variables are packed in descending references-per-byte order using a packing
heuristic. The packing heuristic allows locals with non-overlapping lifetimes to (possibly) reside
in the same memory location. We assume the target architecture implements a traditional
memory hierarchy immediately after the knapsack region, thus the last allocated variable may

span the boundary between the knapsack region and the non-knapsack region.

The final stage of knapsack allocation is address demangling. We do not actually re-compile
and re-link the program, instead, at simulation time we use the knapsack allocation map to
generate adjusted addresses for all references. Knapsack references are adjusted to their location
in the knapsack region (specified in the allocation map), and non-knapsack region references are
adjusted by first subtracting out a delta equal to the total size of the preceding knapsack variables
and then translating the variable to the address space immediately following the knapsack region.
Demangling allows us to examine the exact address stream of the simulated system without

having to rework all the compilation tools.

The memory hierarchy simulator models a memory hierarchy like that of Figure 1(b). The

"Again we are erring to the conservative here, as with sufficient compiler integration, some recursive locals
could be allocated to the knapsack region. If the life time of a local falls completely before any potentially
recursive call or completely after, the variable will never interfere with itself and it could be allocated to the
knapsack region.

16

Program | Language Class Input Analyzed Trace Length
Profiled | Analyzed Insts | Refs |
espresso | C integer | bca.in opa.in 134,680,083 31,572,136
xlisp C integer | fibonacci.lsp queens-6.1sp 55,231,503 20,100,599
eqntott C integer | int_pri_3.eqn short.eqn 170,571,688 38,911,048
compress | C integer | compress.qpt in 88,288,154 23,082,124
sc C integer | loada2 loadal 230,284,664 57,262,806
gee C integer | linsn-recog.i 1stmt.i 143,227,311 45,784,882
doduc FORTRAN | float doducin (35s) doducin (37s) 310,814,795 | 116,850,911
mdljdp2 | FORTRAN | float mdlj2.dat (30s) mdlj2.dat (50s) 167,487,751 70,398,607
tomcatv | FORTRAN | float N=33 N=65 156,387,135 53,715,341
ora FORTRAN | float ITER=25000 ITER=15200 199,079,533 57,583,559
alvinn C float NUM_EPOCHS=2 | NUM_EPOCHS=3 | 161,461,025 42,977,946
ear C float short.m22 short.m22 508,367,705 | 123,172,020
mdljsp2 | FORTRAN | float mdlj2.dat (200s) mdlj2.dat (100s) 614,279,710 | 152,384,363
swm256 FORTRAN | float ITMAX=36 ITMAX=12 175,060,447 43,976,687
su2cor FORTRAN | float ITER=1 ITER=2 821,702,244 | 379,781,984

Table 2: Analyzed Programs.

knapsack region size and write policy can be specified. The non-knapsack region is modelled
as a traditional memory hierarchy; at the highest level is a cache with parameterizable set size,
block size, and associativity. Below the cache is a memory system with an adjustable bus width,
memory access delay, and interleaving factor. The knapsack and cache writeback accesses are
serialized, so if timing simulations are being performed, we can examine the effects of conflicts

at the memory system.

5.2 Benchmarks

We analyzed fifteen programs from the SPEC ’92 benchmark suite[16]. Figure 2 details the
programs analyzed, their inputs and trace lengths. Whenever possible, we used an input other
than the analyzed input to generate profile statistics. In some cases, this was not possible, as
the program was not supplied with an alternate input in which case we varied a key parameter

such as the number of iterations executed or the tolerated error.

All programs were compiled and simulated on DECstation 5000/3100 workstations using
MIPs cc (version 2.1) at optimization level ‘-O’. The FORTRAN programs were first converted
to C code using f2c¢ (version 26.90).

17

100% —

90%rt == m = n oo R Y) RO P % N % () EREPRORY B B Sl S SORY BN err BRI DRSSP DD o BEDY 8 EON SPPORRERES

80% == n=n-+ R Y) RO P % N % () EREPRORY B T S S S (N BF ORE B DEE S PRSI D 8 EON SPPORRERE

70% == nemee R) RO P O M e RS [0 S0 EEEE B SEUY B IR SR ORE B DRSSPI RS I D 8 EON SPPORRER

60%1

50%

40%-

30%

Percent of All References

20%7

10%

0%

esp xlisp egn comp sc gcc dod mdp2 tomv ora alvi ear msp2 swm su2

I Direct Loads [Direct Stores [Indirect Accesses
[] Cycle Accesses [| Heap Accesses

Figure 5: Reference Breakdown for All Program References.

5.3 Experimental Results
5.3.1 Knapsack Allocation

Before examining the efficacy of allocation and execution with a fixed size knapsack, we first
examine the how well we could utilize an infinitely large one. With an unlimited size knapsack,
the program performance improvement is simply limited by what we cannot allocate to the

knapsack.

Figure 5 shows the dynamic breakdown of all memory references into five categories. Direct
Loads and Direct Stores are memory accesses in which the address of the load or store was
completely known at compile time; these accesses are typically to scalars and structures. The
only array accesses that will fall under this category are those with a constant index. The Indirect
Accesses are loads and stores to variables in which the access was indexed (e.g., array accesses
with a variable index) or made through a pointer. Cycle Accesses are accesses to variables in the
local frames of (potentially) recursive functions, and the Heap Accesses are un-named, dynamic
storage accesses. Under our allocation scheme, heap references and references to the locals of

recursive functions cannot be allocated in the knapsack.

18

Program Program Variable Sizes Allocation Size

Total (% of allocatable dynamic refs)

Globals Locals Naive w/Reuse

Scalars | Aggregates Scalars | Aggregates

espresso 148 (0+%) 7,410 (77%4) | 1,220 (23%) 372 (0+%) 9,150 7,946
x1lisp 332 (994 6,305 (0+%) 64 (0+%) 356 (0+4) 7,057 7,029
eqntott 164 (95%) 9,618 (4%) 121 (0+%4) 300 (0+4) 10,203 10,102
compress 108 (29%) 414,764 (61%) 56 (10%) 0 (0% 414,928 414,928
sc 648 (347%) 35848 (56%) 428 (10%) 2368 (0+%) 39,292 39,012
gcc 1,766 (43%) 40,444 (25%) | 1,993 (26%) 2,921 (6%) 47,124 44,523
doduc 3,328 (26%) 99,948 (48%) | 2,552 (204 15,488 (6%) 121,316 111,920
md1jdp2 844 (36%) 204,207 (61%) 384 (24 368 (0+%4) 205,803 205,371
tomcatv 180 (0+%) 12,212 (6%) 108 (11%) 236,600 (82%) 249,100 249,100
ora 556 (75%) 20,744 (134 24 (12 0 (OW 21,324 21,324
alvinn 40 (2% 456,124 (74%) 68 (0+%) 528 (24%) 456,760 456,696
ear 236 (1% 19,992 (88%) 152 (0+%4) 520 (11%) 20,900 20,748
mdljsp2 624 (19%) 162467 (76%) 124 (5%) 356 (0+4) 163,571 163,391
swm256 304 (0+%) | 3,714,772 (99%) 100 (0+%) 0 (0%) | 3,715,176 | 3,715,136
su2cor 428 (1%) | 1,183,459 (29%) 752 (0+%) | 1,967,020 (70%) | 3,151,659 | 2,973,675

Table 3: Program Intrinsics.

Table 3 further decomposes the allocatable references into the size of the accessed storage
(broadly, scalar or aggregate) and the location, either global or local. For each storage class,
the table shows the total size of the class and (in parenthesis) the total percent of allocatable

dynamic references directed to that particular storage class.

Since FORTRAN does not allow recursion or dynamic storage allocation, all the references
made in these programs could be directed to the knapsack (given that the knapsack was large
enough). The C programs, on the other hand, can employ dynamic allocation and recursion.
Xlisp is the least amenable to knapsack allocation with 78% of its references accessing heap
storage or local variables in recursive functions. Surprisingly, gcc, which relies heavily upon
dynamic storage and recursion still allows about half of its memory references to be knapsack
allocatable. Alvinn, ear and compress are C programs which spend most of their execution

manipulating large global arrays, so most of their references are knapsack allocatable.

Opportunities for direct loads and stores vary widely. For programs which spend much of
their time manipulating named scalars, i.e., compress, sc, doduc, mdljdp2, ora and mdljsp2, a
large fraction (37% - 88%) of the dynamic reference stream are direct accesses. Tomcatv, alvinn,
ear, swm256 and suZcor all manipulate very large array variables, thus they have few direct
accesses. Any speedup realized for these programs will have to be attributed to speedup of
knapsack indirect accesses or increased bandwidth through simultaneous access to the knapsack

and cache.

The cost of directing references to the knapsack region is the storage required to hold the

variables. Table 3 shows the amount of storage required to hold all allocatable program variables.

19

The Naive column is the total storage required if temporal reuse is not employed; w/Reuse is

the total storage required if the variables are packed with our packing heuristic.

For the programs with sizable locals, i.e., espresso, gcc, doduc, and sulcor, temporal reuse is
quite effective for reducing the size of storage required to hold the knapsack variables. Tomcatv

has only one function, so temporal reuse is not possible.

Having examined allocation for an infinite size knapsack, we now examine the utility of a
fixed size knapsack. Figure 6 shows the reference breakdown for all references for knapsack sizes
of 1k, 4k, and 16k bytes. For the non-numeric programs, a 1k knapsack captures nearly all
of the allocatable references. A 4k knapsack captures slightly more references for espresso, sc,
and gcc, and a 16k knapsack only marginally improves the results of compress, sc and gcc. The
diminishing return for these program results from frequency based allocation; most of the high
profit variables find their way into the knapsack very early on. For the non-numeric programs,
these are typically small scalar variables; for example, for zlisp, 99% of the allocatable references

go to 332 bytes of scalar variables.

All the numeric programs, except ear and doduc (somewhat), manipulate large array vari-
ables. As we allocate to larger knapsacks, more of the references are captured. The slope of
this improvement is proportional to the size of the variables in the program, as can be seen by
comparing alvinn and ear. Alvinn manipulates extremely large arrays, thus allocating a small
portion of those arrays shows little improvement. Far, on the other hand, manipulates much
smaller arrays resulting in many more indirect accesses being directed to the knapsack. With-
out the ability to span the last allocated variable across the knapsack/non-knapsack boundary,
mdlydp2, alvinn, ear, mdljsp2, and sulcor would show virtually no improvement since their most
frequently accessed arrays are all larger than 16k bytes (and thus would never be allocated in

the knapsack).

Table 4 shows the fraction of total references directed to the knapsack with and without
temporal reuse packing, and the knapsack constituency for knapsack sizes of 1k, 4k, and 16k.
Also shown is the static breakdown of allocated sizes by variable size (i.e., scalar vs. aggregate)
and by variable location (i.e., global vs. local). The number in parenthesis is the fraction of

total storage from that class allocated to the knapsack.

The difference in dynamic fractions between the allocation with reuse and the allocation
without reuse becomes less pronounced as the size of the knapsack increases. This is expected
because if the size goes to infinity, then there is no difference between the two allocations. Gee
and doduc show a significant difference for 1k knapsack because they have a large collection

of locals and hence more opportunity to make use of temporal reuse. In general, there is

20

Percent of All References

Percent of All References

1009
G0Y == == == e = e e e e e e e e e e
Y == == == = e e e e e e e e e
T0% = ========eeceeceecccssececcccsecnscsscesscesscesasceneennaaaad B e R B e R R LR LR
[T T IR B B LT TP TP PR
[0 SR E e T T e P LT L LT L LT CREEPLEE LT EETEPEETEERTRECLLELE sebel oo e s
T g e
T T IR B B) S B] TV EPIRRR
L]
200 == === == == e T P P - BN hodebodeonn- - R
I I I O L - uln
10%- === === mmm B e - ----- - - - B B EEEEEEEEE
=
1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k
espresso xlisp eqntott compress sc gcc

I Direct Loads [Direct Stores [Indirect Accesses

1009

SO] —— |
0% == === m s 1t prommme e e
0 S O N e
60%— === === === mmm e Lol E T [ST L o R S CLE LT e EEEE R
L RARRRLELEE i EECECEELIS EECEECECEREEEEE & & SECEECEECECEESELE RS REEEEEEEE o R e
71072 SRR R e [R R
30%— - - - memmmm .- N P B —— RSRS8O I
20%— - - - - ---- - N F— - R 1 e
100 - - - === ISR R U T R N
0%~

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16kI Ilkl4kI16k 1k 4k 16k 1k 4k 16k 1k 4k 16k
doduc mdljdp2 tomcatv ora alvinn ear mdljsp2 swm256 su2cor

[Direct Loads [Direct Stores [Indirect Accesses

Figure 6: Reference Breakdowns for Various Knapsack Sizes.

21

Knap- With Temporal Reuse Dyn Frac Dyn Frac

Program sack Global Local to Knapsack | to Knapsack
Size Scalar | Aggr Scalar | Aggr with Reuse w/o Reuse

1K 3(0.08) 3(0.20) | 114(0.38) 0(0.00) 0.2164 0.2058

espresso 4K 37(1.00) | 14(0.93) | 303(1.00) 5(1.00) 0.2392 0.2392
16K 37(1.00) | 15(1.00) | 304(1.00) 5(1.00) 0.2393 0.2393

1K 39(0.48) 4(1.00) 8(0.50) 0(0.00) 0.1685 0.1685

xlisp 4K 82(1.00) 9(0.82) 16(1.00) 1(1.00) 0.1688 0.1688
16K 82(1.00) | 11(1.00) 16(1.00) | 11(1.00) 0.1689 0.1689

1K 23(0.54) 7(0.35) 29(0.93) 0(0.00) 0.2629 0.2629

eqntott 4K 27(0.64) | 15(0.75) 31(1.00) 1(1.00) 0.2630 0.2630
16K 42(1.00) | 20(1.00) 31(1.00) 1(1.00) 0.2631 0.2631

1K 11(0.41) 5(0.50) 6(1.00) 0(----) 0.7506 0.7506

compress 4K 11(0.41) 5(0.50) 6(1.00) 0(----) 0.7521 0.7521
16K 11(0.41) 5(0.50) 6(1.00) 0(----) 0.7589 0.7589

1K 62(0.40) | 10(0.17) 63(0.62) 0(0.00) 0.3046 0.3042

sc 4K 90(0.58) | 23(0.40) 79(0.77) 0(0.00) 0.3289 0.3264
16K 97(0.63) | 33(0.57) 84(0.82) 2(0.50) 0.3350 0.3350

1K | 105(0.24) 8(0.10) | 427(0.88) | 12(0.35) 0.2347 0.2103

gece 4K | 202(0.47) | 18(0.38) | 448(0.92) | 27(0.79) 0.2796 0.2796
16K | 252(0.58) | 40(0.52) | 457(0.94) | 28(0.82) 0.2987 0.2963

1K 82(0.18) 4(0.02) | 229(0.66) | 12(0.27) 0.2604 0.1926

doduc 4K | 286(0.62) | 12(0.05) | 326(0.94) | 19(0.42) 0.4148 0.3780
16K | 287(0.62) | 25(0.11) | 329(0.95) | 19(0.42) 0.5948 0.5760

1K 16(0.12) 1(0.01) 58(0.94) 4(0.40) 0.3824 0.3813

md1jdp2 4K 16(0.12) 1(0.01) 58(0.94) 4(0.40) 0.4573 0.4562
16K 16(0.12) 5(0.06) 58(0.94) 4(0.40) 0.7350 0.7339

1K 17(0.43) 5(0.23) 12(0.67) 0(0.00) 0.1684 0.1684

tomcatv 4K 31(0.78) 7(0.32) 18(1.00) 0(0.00) 0.1689 0.1689
16K 40(1.00) | 22(1.00) 18(1.00) 0(0.00) 0.1689 0.1689

1K 28(0.29) 2(0.07) 3(0.75) 0(----) 0.8663 0.8663

ora 4K 28(0.29) 3(0.10) 3(0.75) 0(----) 0.9508 0.9508
16K 76(0.79) | 15(0.52) 3(0.75) 0(----) 0.9508 0.9508

1K 2(0.20) 2(1.00) 17(1.00) 3(0.75) 0.2798 0.2798

alvinn 4K 2(0.20) 9(0.43) 17(1.00) 3(0.75) 0.3015 0.3014
16K 2(0.20) | 11(0.52) 17(1.00) 3(0.75) 0.3148 0.3148

1K 1(0.01) 2(0.06) 0(0.00) 0(0.00) 0.3565 0.3565

ear 4K 7(0.12) 7(0.23) 30(1.00) 1(1.00) 0.7874 0.7872
16K 57(0.98) | 28(0.90) 30(1.00) 1(1.00) 0.9654 0.9654

1K 11(0.09) 1(0.01) 17(0.59) 1(0.10) 0.1936 0.1920

mdljsp2 4K 11(0.09) 2(0.03) 17(0.59) 1(0.10) 0.4092 0.4091
16K 15(0.11) 8(0.10) 17(0.59) 1(0.10) 0.7617 0.7617

1K 4(0.06) 1(0.02) 10(0.40) 0(0.00) 0.0092 0.0092

swm256 4K 12(0.17) 2(0.04) 10(0.40) 0(0.00) 0.1600 0.1600
16K 12(0.17) 2(0.04) 10(0.40) 0(0.00) 0.1650 0.1650

1K 3(0.03) 2(0.03) 52(0.35) 5(0.05) 0.0160 0.0158

su2cor 4K 3(0.03) 2(0.03) | 108(0.69) | 12(0.12) 0.0372 0.0359
16K 3(0.03) 2(0.03) | 108(0.69) | 22(0.22) 0.1381 0.1104

Table 4: Knapsack Constituency.

22

no significant difference between the two allocations for a knapsack of size 4k or more. A
large number of global scalars get allocated to the knapsack. Traditional register allocation,
due to aliases and relatively small number of registers, does not allocate registers to so many
global scalars. In comparison to caches, direct accesses to these globals would cut down the
access latency more. Global aggregates get into the knapsack if they are small enough. In the
FORTRAN programs, the global aggregates are mostly too big to fit into even a 16k knapsack.
Almost all of the locals fit into even a 1k knapsack. There are not many local aggregates used in
the programs. But, whatever few local aggregates are present get allocated in knapsack of size
4k or more. Only for sulcor and doduc, many of the local aggregates are too big to fit even in a
16k knapsack. Overall, for the C programs a knapsack of size 1k comes close to accommodating
as many variables as a 4k knapsack. There is practically no difference between 4k and 16k
knapsacks. On the other hand, the FORTRAN programs have much larger global and local

aggregates and hence the larger knapsacks consistently allocate more than the smaller ones.

5.3.2 Impact on Cache Performance

Introduction of the knapsack memory component into the memory hierarchy has the effect of
diverting a portion of the reference stream away from the cache to the knapsack. Table 5 shows
the cache hit rates for a memory system with a 4k byte knapsack memory and either 16k,
32k, 64k, or 128k byte direct-mapped cache memories (with 32 byte blocks). Also shown (in
parenthesis) is the cache hit rate for the same execution without the 4k knapsack memory. For
each simulation, we also incorporated the effects of context switching by flushing the cache each

500,000 instructions and at each system call.

We expected that the introduction of the knapsack would adversely effect the cache hit rate
of the remaining reference stream. This suspicion arose because we were diverting from the
cache reference stream the most frequently accesses variables, those with very high temporal
locality. In all cases, except compress, the difference in the cache hit rate when executing with
a 4k knapsack is almost negligible, even for a 16k direct-mapped cache. With larger caches, the

difference is even less noticeable.

Compress, on the other hand, spends nearly all of its execution manipulating a few small
scalars and a very large hash table. Knapsack allocation pulls all of the scalar accesses out
of the cache reference stream leaving only accesses to the hash table array. These hash table
array accesses are very sparse and exhibit little spatial or temporal locality. The resulting cache

performance is very poor.

One program, su2cor, showed an improvement in cache performance for 32k and 64k cache

23

Program Cache Size
Hit Rate with 4k knapsack (hit rate without knapsack)
16k | 32k | 64k | 128k |

espresso | 0.9798 (0.9823) | 0.9890 (0.9900) | 0.9919 (0.9935) | 0.9924 (0.9939)
xlisp 0.9591 (0.9664) | 0.9672 (0.9717) | 0.9709 (0.9750) | 0.9731 (0.9752)
eqntott 0.9495 (0.9600) | 0.9560 (0.9650) | 0.9616 (0.9709) | 0.9666 (0.9750)
compress | 0.4197 (0.8495) | 0.4702 (0.8642) | 0.5318 (0.8811) | 0.5997 (0.8988)
sc 0.8119 (0.8467) | 0.8133 (0.8482) | 0.8138 (0.8488) | 0.8143 (0.8511)
gcc 0.9103 (0.9230) | 0.9538 (0.9569) | 0.9637 (0.9684) | 0.9679 (0.9748)
doduc 0.9568 (0.9639) | 0.9673 (0.9757) | 0.9771 (0.9875) | 0.9802 (0.9880)
md1jdp2 0.9788 (0.9838) | 0.9831 (0.9884) | 0.9880 (0.9913) | 0.9888 (0.9935)
tomcatv 0.9116 (0.9250) | 0.9132 (0.9271) | 0.9570 (0.9638) | 0.9605 (0.9669)
ora 0.9992 (0.9996) | 0.9992 (0.9996) | 0.9992 (0.9997) | 0.9992 (0.9997)
alvinn 0.9575 (0.9672) | 0.9632 (0.9721) | 0.9648 (0.9745) | 0.9661 (0.9757)
ear 0.9942 (0.9979) | 0.9944 (0.9980) | 0.9946 (0.9980) | 0.9948 (0.9980)
md1ljsp2 0.9762 (0.9874) | 0.9792 (0.9894) | 0.9878 (0.9894) | 0.9883 (0.9930)
swm256 0.9157 (0.9311) | 0.9182 (0.9355) | 0.9182 (0.9356) | 0.9182 (0.9356)
su2cor 0.7709 (0.7745) | 0.8634 (0.8602) | 0.9046 (0.9036) | 0.9276 (0.9281)

Table 5: Impact on Cache Performance.

sizes when the 4k knapsack was added. Closer examination of the knapsack allocation gives
a possible clue as to why this effect occurs. With a 4k knapsack, nearly all scalars and 6,052
bytes® of frequently accessed array storage are allocated to the knapsack. The array variables
likely exhibited poor temporal and spatial locality in the cache, thus by removing them from
cache (through knapsack allocation) we can increase the hit rate. The effect diminishes with

larger caches.

6 Concluding Remarks

The performance of a processor continues to be dictated by the performance of the memory
hierarchy: the increasing gap between logic and memory speeds demands novel memory hierar-
chies. In the age of increasing on-chip real estate, it is tempting to incorporate larger amounts
of existing memory hierarchy components (e.g., caches) on a chip. We feel that a brute-force
increase in the size of known memory hierarchy components may not be the best solution, and

other avenues need to be explored.

This paper presented and evaluated a knapsack — a novel memory hierarchy component. The
goal of a knapsack was to provide very fast (register-like in many cases) access to frequently-used
data objects, and still be integrated transparently into an implementation of an existing archi-

tecture. A knapsack achieves its goal of fast access by mapping a restricted part of the memory

8This value is larger than 4k because some of the allocated variables were arrays with non-overlapping lifetimes.

24

address space (the knapsack region) into fast storage elements (the knapsack). By restricting
the mapping to one-to-one (instead of the many-to-many found in a cache, for example), a knap-
sack simplifies the run-time decision-making process, resulting in fast access. Access is further
sped up (reduced to register access times, or zero-cycle access) for memory references that can
be specified as a constant offset into this knapsack region at compile time. To achieve good
performance for a knapsack, however, extensive use of sophisticated software is required. We

discussed the requirements of the compiler to make effective use of a knapsack.

We also carried out a detailed (but by no means complete) evaluation of a knapsack, using
most of the SPEC92 benchmarks. Our evaluation showed that a significant portion of program
references could be directed to the knapsack, even for programs which employ dynamic storage
allocation and recursion. Using a packing heuristic that allocates both global and local variables
to the knapsack, we found that a knapsack as small as 4k could capture most of the allocatable
references; for the non-numeric programs, as little as 1k could. We also evaluated the impact of
diverting part of the reference stream away from the cache, and saw that the impact, for most

programs, was negligible.

Size limitations allowed us to address only a few of the potential performance benefits of a
knapsack in this paper. We feel that a knapsack allows many performance optimizations that
still need to be explored. For example, we feel that the presence of a knapsack facilitates the
multiporting of the memory system because: (i) a knapsack provides a second memory port;
references to the knapsack and a cache can be serviced simultaneously, and (ii) it is easier to
multiport a knapsack than it is to multiport a cache. Further performance benefits of a knapsack
need to be explored and evaluated. We also need to investigate more sophisticated use of a
knapsack, for example: (i) allocating portions of the heap and (some) local variables of functions
involved in cycles into the knapsack, and (ii) better compiler heuristics (and algorithms) for
allocating variables in the knapsack region. Finally, we need to further evaluate the multitude
of issues that arise in the design of any memory hierarchy component, such as write policies,
which address space it should map, impact of context switches, its interactions with other

hierarchy components, etc.

Acknowledgements

We would like to thank Jim Goodman, Mark Hill, and David Wood for their insightful comments

on this paper.

25

References

[1]
2]

(3]

(4]

[5]
[6]

[9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]
[17]
18]

F. E. Allen and J. Cocke. A program data flow analysis procedure. CACM, 19(3):137-147, 1976.

D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In 4th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 40-52, Santa
Clara, CA, April 1991.

W. Y. Chen, S. A. Mahlke, P. P. Chang, and W. W. Hwu. Data access microarchitectures for
superscalar processors with compiler-assisted data prefetching. In Proceedings of the 24th Annual
Workshop on Microprogramming and Microarchitecture (Micro 24), pages 69-73, November 1991.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw Hill Book
Company, 1990.

Cray Research, Inc., Mendota Heights, MN. Cray Computer Systems: Cray-2 Hardware Reference
Manual, 1985.

D. R. Ditzel and H. R. McLellan. Register allocation for free: the C machine stack cache. In
1st International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 48-56, Palo Alto, CA, March 1982.

J. L. Hennesey and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1990.

N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 364-373, Seattle, WA, May 1990.

A. C. Klaiber and H. M. Levy. An architecture for software-controlled data prefetching. In Pro-
ceedings of the 18th Annual International Symposium on Computer Architecture, pages 43—-53, May
1991.

D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the 8th Annual
International Symposium on Computer Architecture, pages 81-87, May 1981.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of block
algorithms. In 4th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 63-74, Santa Clara, CA, April 1991.

James R. Larus. Efficient program tracing. IEEE Computer, 26(5):52-61, May 1993.
R. M. Russell. The CRAY-1 computer system. CACM, 21(1):63-72, January 1978.
A. J. Smith. Cache memories. Computing Surveys, 14(3):473-530, September 1982.

G. S. Sohi and M. Franklin. High-bandwidth data memory systems for superscalar processors. In
4th International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 53-62, Santa Clara, CA, April 1991.

SPEC newsletter, December 1991.
Richard M. Stallman. Using and Porting GNU CC. Free Software Foundation, 1993.

Michael Young, Avidis Tevanian, Richard F. Rashid, David Golub, J. Eppinger, Jonathan Chew,
William Bolosky, David Black, and Robert Baron. The duality of memory and communication in
the implementation of a multiprocessor operating system. In Proceedings of the 11th Symposium on
Operating System Principles, November 1987.

26

