University of Wsconsin-Madison Computer Sciences Departmenhiiical Report #1342, June, 1997.

The SimpleScalar Tool Set, Version 2.0

Doug Buger*

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wsconsin 53706 USA

*Cont act :

Todd M. Austin

MicroComputer Research Labs, JF3-359
Intel Corporation, 2111 NE 25thvAnue
Hillsboro, OR 97124 USA

dbur ger @s. wi sc. edu

http://ww. cs. w sc. edu/ ~nscal ar/ si npl escal ar. ht n

This report describes release 2.0 of the SmpleScalar tool set,
a suite of free, publicly available simulation tools that offer both
detailed and high-performance simulation of modern micropro-
cessors. The new release offers more tools and capabilities, pre-
compiled binaries, cleaner interfaces, better documentation,
easier ingtallation, improved portability, and higher perfor-
mance. This report contains a complete description of the tool
set, including retrieval and installation instructions, a descrip-
tion of how to use the tools, a description of the target SmpleS
calar architecture, and many details about the internals of the
tools and how to customize them. With this guide, the tool set can
be brought up and generating results in under an hour (on sup-
ported platforms).

1 Overview

Modern processors are incredibly complaanels of engi-
neering that are becoming increasingly hard aluate. This

easy annotation of instructions, without requiring a getad
compiler for incremental changes. The instruction definition
method, along with the ported GNU tools, reskev simulators
easy to write, and the old onegea simpler to etend. Finally
the simulators hae been aggresa&ly tuned for performance,
and can run codes approaching “real” sizes in tractable amounts
of time. On a 200-MHz Pentium Pro, thesfest, least detailed
simulator simulates about four million machingles per sec-
ond, whereas the most detailed processor simulator simulates
about 150,000 per second.

The current release dwsion 2.0) of the tools is a major
improvement @er the preious release. Compared tergion 1.0
[2], this release includes better documentation, enhanced perfor-
mance, compatibility with more platforms, precompiled SPEC95
SimpleScalar binaries, cleaner ingenés, tw nev processor
simulators, option and statistic management packages, a source-
level delugger (DLite!) and a tool to trace the out-of-order pipe-
line.

report describes the SimpleScalar tool set (release 2.0), which The rest of this document contains information about obtain-
performs &st, fleible, and accurate simulation of modern pro- ing, installing, running, using, and modifying the tool set. In
cessors that implement the SimpleScalar architecture (a closesection2 we proide a detailed procedure forwinloading the
derivative of the MIPS architecture [4]). The tool setesbina- release, installing it, and getting it up and running. In Se&jon
ries compiled for the SimpleScalar architecture and simulatese describe the SimpleScalar architecture and details about the
their execution on one of seral pravided processor simulators. tamget (simulated) system. In Sectiénwe describe the SimpleS-
We provide sets of precompiled binaries (including SPEC95), calar processor simulators and discuss their interoetings. In
plus a modified ersion of GNU GCC (with associated utilities) Section5, we describe tw tools that enhance the utility of the
that allavs you to Compile yourven SimpIeScaIar test binaries tool set: a pipe”ne tracer and a sourc@leje[mgger (for Step_
from FORTRAN or C code. ping through the program being simulated). In Sediome pro-

The adantages of the SimpleScalar tools are higkitflkty vide the history of the tools’ stelopment, describe current and
portability, extensibility, and performance. &include fie ee- planned dbrts to etend the tool set, and conclude. In
cution-driven processor simulators in the release.yTtange AppendixA and AppendixB contain detailed definitions of the
from an atremely fst functional simulator to a detailed, out-of- SimpleScalar instructions and system calls, resyyti
order issue, superscalar processor simulator that supports non-
blocking caches and speculatiexecution. ;

The tool set is portable, requiring only that the GNU tools 2 Installation and Use
may be installed on the host system. The tool set has been tested The only restrictions on using and distiiing the tool set are
extensvely on magy platforms (listed in SectioB). The tool set that (1) the copright notice must accompgrall re-releases of
is easily atensible. V¢ designed the instruction set to support the tool set, and (2) third parties (i.e., you) are forbidden to place

ary additional distrilntion restrictions on>@ensions to the tool

This work was initially supported by NSF Grants CCR-9303030, CCR- set that you release. The goght notice can be found in the dis-
9509589, and MIP-9505853, ONR Grant N00014-93-1-0465, a donation tribution directory as well as at the head of all simulator source
from Intel Corp., and by U.S. Army Intelligence Center aod Hua- files. We have included the copight here as well:

chuca under ContractABT63-95-C-0127 and AR® order no. D346. . .
The current support for thisosk comes from aariety of sources, all of Copyright (C) 1994, 1995, 1996, 1997 by Todd M. Austin

to which we are indebted.

This tool set is distrilted “as is” in the hope that it will be
useful. The tool set comes with no veaty, and no author or
distributor accepts anyesponsibility for the consequences of its
use

Everyone is ganted permission to copsodify and edistrib-
ute this tool set under the following conditions:

This tool set is distrited for non-commeial use only
Please contact the maintainer foestrictions applying to
commecial use of these tools.

Permission is gainted to anyone to melor distritute cop-
ies of this tool set, either agaeived or modified, in any
medium, povided that all copyright notices, permission and
nonwarmanty notices a preserved, and that the disttitor
grants the ecipient permission for furtheedistrikution as
permitted by this document.

Permission is ganted to distribte these tools in compiled
or executable form under the same conditions that apply for
source code provided that either: (1) it is accompanied by
the coresponding mdine-readable sowre codeor (2) it
is accompanied by a writtenfef, with no time limit, to give
anyone a mdune-readable copy of the casponding
source code ineturn for rimtursement of the cost of distri-
bution. This written dér must permit verbatim duplication
by anyoneor (3) it is distrituted by someone wheaeived
only the &ecutable form, and is accompanied by a copy of
the written dffer of souce code that thereceived concur-
rently.

In other words, you are welcome to use, share and ingro

these tools. Ju are forbidden to forbid gone else to use, share

and impra@e what you gie them.

2.1 Obtaining the tools

The tools can either be obtained through therltvVWide
Web, or by cowentional ftp. er example, to get the filsi m
pl esi mtar. gz via the WWW enter the URL:

ftp://ftp.cs.w sc. edu/ sohi/ Code/ si npl escal ar/
sinplesimtar

and to obtain the same file with traditional ftp:

ftp ftp.cs.w sc. edu

user: anonynous

password: enter your e-nmil
cd sohi/ Code/ si npl escal ar
get sinplesimtar

address here

Note the “taigz” sufix: by requesting the file without the “.gz"
suffix, the ftp serer uncompresses it automaticallip get the
compressedarsion, simply request the file with the “.gz” fsuf
The five distritution files in the directory (which are symbolic
links to the files containing the lategtrsion of the tools) are:

simplesim.targz - contains the simulator sources, the
instruction set definition macros, and test program source
and binaries. The directory is 1 MB compressed and 4 MB
uncompressed. When the simulators andt,lithe directory
(including object files) will require 11 MB. This file is
required for installation of the tool set.

simpleutils.tar.gz - contains the GNU binutils sourceetv
sion 2.5.2), retgeted to the SimpleScalar architecture.

These utilities are not required to run the simulators them-
selwes, hut is required to compile youram SimpleScalar
benchmark binaries (e.g. test programs other than the ones
we provide). The compressed file is 3 MB, the uncom-
pressed file is 14 MB, and thaild requires 52 MB.

simpletools.targz - contains the retgeted GNU compiler
and library sources needed taild SimpleScalar bench-
mark binaries (GCC 2.6.3, glibc 1.0.9, and f2c), as well as
pre-huilt big- and little-endian &rsions of libc. This file is
needed only todild benchmarks, not to compile or run the
simulators. The tools are 11 MB compressed, 47 MB
uncompressed, and the full installation requires 70 MB.
simplebench.bigtar.gz - contains a set of the SPEC95
benchmark binaries, compiled to the SimpleScalar architec-
ture running on a big-endian host. The binaries takder 5

MB compressed, and are 29 MB when uncompressed.
simplebench.little.tar.gz - same as abe, ecept that the
binaries were compiled to the SimpleScalar architecture
running on a little-endian host.

Once you hee selected the appropriate files, place therdo
loaded files into the desired g@t directory If you obtained the
files with the “.gz” sufix, run the GNU decompress utility (gun-
zip). The files should mo have a “.tar” sufix. To remae the
directories from the arche:

tar xf filenane.tar

If you download and unpack all files, release, you shoule ha
the following subdirectories with follwing contents:
simplesim-2.0- the sources of the SimpleScalar processor
simulators, supporting scripts, and small test benchmarks. It
also holds precompiled binaries of the test benchmarks.
binutils-2.5.2 - the GNU binary utilities code, ported to the
SimpleScalar architecture.

sshig-na-sstrix- the root directory for the tree in which the
big-endian SimpleScalar binary utilities and compiler tools
will be installed. The unpaekl directories contain header
files and a pre-compiled cppf libc and a necessary object
file.

sslittle-na-sstrix - same as abe, except that this directory
holds the little-endianersions of the SimpleScalar utilities.
gcc-2.6.3- the GNU C compiler code, geted twvard the
SimpleScalar architecture.

glibc-1.09- the GNU libraries code, ported to the SimpleS-
calar architecture.

f2c-1994.09.27- the 1994 release of TRT Bell Labs’
FORTRAN to C translator code.

spec95-big - precompiled SimpleScalar SPEC95 bench-
mark binaries (big-endiarevsion).

spec95-little - precompiled SimpleScalar SPEC95 bench-
mark binaries (little-endianersion)

2.2 Installing and running Simplescalar

We depict a graphicalverviev of the tool set in Figurg.
Benchmarks written in FORRAN are comerted to C using Bell
Labs’ f2c comerter Both benchmarks written in C and those
corverted from FORRAN are compiled using the SimpleScalar

FORTRAN

benchmark source benchmark source

SimpleScalar

’ GCC

f2c

.<_

SimpleScalar
assembly

SimpleScalar
GAS

_ ¢ Object files
SSlibc.a

Simulator source
(e.g., sim-outorder.c)

Host C compile

—» RESULTS

Simpl |

implescalar

ol
_ 9

SimpleScalar
executables

v

k Precompiled SS

binaries (test, SPEC95)

Figure 1. SimpleScalar tool set overview

version of GCC, which generates SimpleScalar asseribly
SimpleScalar assembler and loada&ilong with the necessary
ported libraries, produce SimpleScalaeeutables that can then
be fed directly into one of the prded simulators. (The simula-
tors themseles are compiled with the host platfosmatve
compiler; ay ANSI C compiler will do).

sstrix --with-gnu-as --with-gnu-1d --pre-
fix=$I DR

make

make install

$HOST here is a “canonical configuration” string that represents
your host architecture and system (CPU-C@MF-SYSTEM).

If you use the precompiled SPEC95 binaries or the precom- The string for a Sparcstation running SunQ&ila be sparc-sun-

piled test programs, all youVeto install is the simulator source
itself. If you wish to compile yourvwen benchmarks, you will
have to install and bild the GCC tree and optionally (recom-
mended) the GNU binutils. If you wish to modify the support
libraries, you will hae to install, modify and lild the glibc
source as well.

The SimpleScalar architecture,dikhe MIPS architecture [4],
supports both big-endian and little-endia®@&utables. The tool
set supports compilation for either of thesgéss; the names for
the big-endian and little-endian architecture ssbig-na-sstrix
and sslittle-na-sstrix, respectiely. You should use the wet

sunos4.1.3, running Solaris: sparc-sun-solaris2, a 386 running
Solaris: i386-sun-solaris2.4, etc. A complete list of supported
$HOST strings resides i DI R/ gcc- 2. 6. 3/ | NSTALL.

This installation will create the needed directorie$lil R
(these includéi n/, |'i b/, i ncl ude/, andman/). Once the
binutils hare been hilt, build the simulators themseads. This is
necessary to do beforeilding GCC, since one of the binaries is
needed for the cross-compilenilol. You should edi$l DI R/
si npl esi m 2. 0/ Makef i | e to use the desired compile flags
(e.g., the correct optimizationviel). To use the GNU BFD
loader instead of the custom loader in the simulators, uncomment

endian-ness that matches your host platform; the simulators mayDBFD_LOADER in the Malefile. To huild the simulators:

not work correctly if you force the compiler to pide cross-
endian support. @ determine which endian your host uses, run
the endian program located in thei npl esi m 2. 0/ direc-
tory. For simplicity, the folloving instructions will assume a big-
endian installation. In the folleing instructions, we will refer to
the directory in which you are installing SimpleScalar as
$ID K.

The simulators come equipped with thewroloadey and
thus you do not need taiitd the GNU binary utilities to run sim-
ulations. Hovever, mary of these utilities are useful, and we rec-
ommend that you install them. If desiredjld the GNU binary
utilities™:

cd $IDIR/ binutils-2.5.2

configure --host=$HOST --target=sshig-na-

1. You must hee GNU Male to do the majority of installations described
in this document. @ check if you hee the GNU ersion, gecute “malk -

V" or “gmake -v”. The GNU ersion understands this switch and displays
version information.

cd $IDIR/ sinplesim2.0
make

If desired, hild the compiler:

cd $IDIR/ gcc-2.6.3

configure --host=$HCST --target =sshi g- na-
sstrix --with-gnu-as --with-gnu-1d --pre-
fix=$ID R

make LANGUAGES=c

../sinplesim2.0/simsafe ./enquire -f >!
float. h-cross

make install

We provide pre-lilt copies of the necessary librariesisbi g-
na-sstrix/lib/, soyou do not need tauitd the code in
glibc-1.09 unless you change the library code. Building these
libraries is tricly, and we do not recommend it unless youeha
specific need to do so. In thakat, to lild the libraries:

cd $IDIR/ glibc-1.09
configure --prefix=$l D R/ sshig-na-sstrix
sshi g-na-sstrix

setenv CC $I DI R/ bi n/ sshi g-na-sstrix-gcc description of each. Both the number and the semantics of the

unsetenv TZ registers are identical to those in the MIPS-IV ISA.
Uniet env MACHI NE In Figure3, we depict the three instruction encodings of Sim-
make

pleScalar instructionsegister, immediate, andjump formats. All
instructions are 64 bits in length.

Note that you must va already bilt the SimpleScalar simula- The reister format is used for computational instructions.
tors to huild this library since the glibc tild requires a compiled The immediate format supports the inclusion of a 16-bit constant.
simulator to test tget machine-specific parameters such as The jump format supports specification of 24-bit jummess.

make install

endian-ness. The raister fields are all 8 bits, to suppoxtension of the archi-
If you have FOR'RAN benchmarks, you will need tauitd tected rgisters to 256 ingger and floating point gesters. Each
f2c: instruction format has a fxi-location, 16-bit opcode field that
cd $I DR/ f2c-1994. 09, 27 facilitates &st instruction decoding.
make The annote field is a 16-bit field that can be modified post-
make install compile, with annotations to instructions in the assembly files.

The annotation inteace is useful for synthesizingwenstruc-
tions without haing to change and recompile the assembler
Annotations are attached to the opcode, and comedifiavors:

bit and field annotations. A bit annotation is written as ¥adlo

The entire tool set should wdoe ready for use. 8\provide pre-
compiled test binaries (big- and little-endian) and their sources in
$I DI R/ si npl esi n2. 0/ t est s). To run a test:

cd $IDIR/ sinplesim2.0
simsafe tests/bin.big/test-math Iwa $r6, 4($r7)

The test should generate about a page of output, and wileryn v 1he annotation in thisxample is /a. It specifies that the first bit
quickly. The release has been ported to—and should run on—thePf the annotation field should be set. Bit annotations /a through /p

following systems: set bits 0 through 15, respeety. Field annotations are written
in the form:
- gcc/AIX 413/RS6000
- XIc/AIX 413/RS6000 Iw6:4(7) 3r6,4(8r7)
- gcc/HPUX/RA-RISC This annotation sets the specified 3-bit field (from bit 4 to bit 6
- gcc/SunOsS 4.1.3/3RC within the 16-bit annotation field) to thalue 7.
- gcc/Linux 1.3/x86 System calls in SimpleScalar are managed by a proxy handler
- gec/Solaris 2/SRRC (located insyscal | . ¢) that intercepts system calls made by
- gcc/Solaris 2/x86 the simulated binarydecodes the system call, copies the system
- gcc/DEC Unix 3.2/Alpha call aguments, mads the corresponding call to the hestherat-
- c89/DEC Unix 3.2/Alpha ing system, and then copies the results of the call into the simu-
- gcc/FreeBSD 2.2/x86 lated prograns memory If you are porting SimpleScalar to a
- gcc/WIndowsNT/x86 new platform, you will hae to code the system call translation
from SimpleScalar to your host machinesipscal | . c. A list
3 The Simplescalar architecture of all SimpleScalar system calls is piged in AppendixB.

SimpleScalar uses a 31-bit address space, and its virtual
The SimpleScalar architecture is ded from the MIPS-IV memory is laid out as folles:

ISA _[4]. The tool swt_e defines b_oth I|ttIe-end_|_an and blg-_endlan 000000000 Unused

versions of .the archltectqre t.o impeo portability (the ersion . 0x00400000 Start of text segment
used on a gen host machine is the one that matches the endian- 4, 10000000 Start of data segment
ness of the host). The semantics of the SimpleScalar ISA are a gx7fff c000 Stack base (grows down)
superset of MIPS with the follang notable diferences and
additions:

« There are no architected delay slots: loads, stores, and con
trol transfers do notecute the succeeding instruction.

e Loads and stores supportdvaddressing modes—for all
data types—in addition to those found in the MIPS architec-

The top of the data gement (which includes init and bss) is held
in mem_br k_poi nt. The areas belo the tt sggment and
above the stack base are unused.

4 Simulator internals

ture. These are: inded (reister+rgister), and auto-incre- In this section, we describe the functionality of the processor
ment/decrement. simulators that accompgrthe tool set. & describe each of the

« A square-root instruction, which implements both single- Simulators, their functionalitycommand-line guments, and
and double-precision floating point square roots. internal structures.

The compiler outputs binaries that are compatible with the
MIPS ECOFF object format. Library calls are handled with the
ported ersion of GNU GLIBC and POSIX-compliant Unix sys-
tem calls. The simulators currentlyezute only uselevel code.

All SimpleScalairelated &tensions to GCC are contained in the
é:onfi g/ ss subdirectory of the GCC source tree that comes

¢ An extended 64-bit instruction encoding.

We list all SimpleScalar instructions in FigiteWe provide
a complete list of the instruction semantics (as implemented in
the simulator) in AppendiR. In Tablel, we list the architected
registers in the SimpleScalar architecture, their haréwand
software names (which are recognized by the assembler), and

Control
j - jump

ja - jump and link

Jr - jump register

jar - jump and link register
beq - branch ==

bne - branch !=0

blez - branch <=0

bgtz - branch >0

bltz - branch< 0

bgez - branch>=0

bct - branch FCC TRUE
bef - branch FCC FALSE

Load/Store

Ib - load byte

Ibu - load byte unsigned

Ih - load half (short)

Ihu - load half (short) unsigned
Iw - load word

diw - load double word

|.s- load single-precision FP
|.d - load double-precision FP
sb - store byte

sbu - store byte unsigned

sh - store half (short)

shu - store haf (short) unsigned

sw - store word

dsw - store double word

S.s- store single-precision FP
s.d - store double-precision FP

addressing modes:

(©)

(reg+C) (with pre/post inc/dec)
(reg+reg) (with pre/post inc/dec)

Integer Arithmetic

add - integer add

addu - integer add unsigned
sub - integer subtract

subu - integer subtract unsigned
mult - integer multiply

multu - integer multiply unsigned
div - integer divide

divu - integer divide unsigned
and - logical AND

or - logical OR

xor - logical XOR

nor - logical NOR

sl - shift left logical

srl - shift right logical

sra - shift right arithmetic

dt - set less than

Sltu - set less than unsigned

Figure 2. Summar y of SimpleScalar instructions

Floating Point Arithmetic

add.s - single-precision (SP) add
add.d - double-precision (DP) add
sub.s - SP subtract

sub.d - DP subtract

mult.s- SP multiply

mult.d - DP multiply

div.s- SPdivide

div.d - DP divide

abs.s - SP absolute value

abs.d - DP absolute value

neg.s - SP negation

neg.d - DP negation

sqrt.s - SP square root

sgrt.d - DP square root

cvt - int., single, double conversion
c.s- SP compare

c.d - DP compare

Miscellaneous

nop - no operation

syscal - system call

break - declare program error

Hardware Name | Software Name | Description

$0 $zero Zero-valued source/sink
$1 $at reserved by assembler
$2-%3 $v0-$v1 fn return result regs
$4-$7 $a0-%$a3 fn argument value regs
$8-$15 $to-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $kO-$k1 reserved by OS

$28 $gp global pointer

$29 $sp stack pointer

$30 $s8 saved regs, callee saved
$31 $ra return address reg

$hi $hi high result register

$lo $lo fow result register
$f0-$f31 $f0-$f31 floating point registers
$fce $fce floating point condition code

Table 1: SimpleScalar ar chitecture register definitions

Register format: |

Immediate for mat:

Jump format: |

16-annote 16-opcode 8-rs 8-rt 8-rd 8-ru/shamt
63 32 31

16-annote 16-opcode 8-rs 8-rt 16-imm
63 32 31

16-annote 16-opcode 6-unused 24-target
63 32 31 0

Figure 3. SimpleScalar ar chitecture instruction f ormats

with the distrilution.
The architecture is defined ®s. def, which contains a
macro definition for each instruction in the instruction set. Each

macro defines the opcode, name, flags, operand sources and des-

tinations, and actions to be &@kfor a particular instruction.

The instruction actions (which appear as macros) that are
common to all simulators are definedds. h. Those actions
that require dferent implementations in ddrent simulators are
defined in each simulator code file.

When running a simulatorrai n() (defined innmai n. c)
does all the initialization and loads thegetr binary into mem-
ory. The routine then callsi m_nmai n(), which is simulator
specific, defined in each simulator code figg.m rmai n() pre-
decodes the entirexesegment for &ster simulation, and then
begins simulation from the tget program entry point.

The folloving command-line guments are\ailable in all
simulators included with the release:

-h prints the simulator help message.

-d turn on the delg message.

-i start xecution in the DLite! delgger (see
Section5.2). This option is not supported in
thesim-fast simulator

-q terminate immediately (for use with -dump-

config).
-dumpconfig <file>
generate a configuration filevsiag the com-
mand-line parameters. Comments are per-
mitted in the config files, and i@ with a #.
read in and use a configuration file. These
files may reference other config files.

-config <file>

4.1 Functional smulation

The fastest, least detailed simulatain{-fast) resides in
simfast.c. sm-fast does no time accounting, only func-
tional simulation—it gecutes each instruction serialgimulat-
ing no instructions in parallesim-fast is optimized for rev
speed, and assumes no cache, instruction checking,
support for DLite!.

A separate ersion ofsim-fast, calledsim-safe, also performs

functional simulation, bt checks for correct alignment and
access permissions for each memory reference. Although similar
sim-fast and sim-safe are split (i.e., protection is not toggled
with a command-line gument in a mered simulator) to maxi-
mize performance. Neither of the simulators accept addi-
tional command-line guments. Both ersions are ery simple:
less than 300 lines of code—ththerefore mai good starting
points for understanding the internabrkings of the simulators.
In addition to the simulator file, botim-fast andsim-safe use
the follonving code files (not including header fileggi n. c,
syscall.c, nmenory.c, regs.c, |loader.c, ss.c,
endi an. ¢, andm sc. c. sim-safealso usesdl| i te. c.

4.2 Cachesimulation

The SimpleScalar distriion comes with tw functional
cache simulatorssm-cache andsim-cheetah. Both use the file
cache. c, and thg use si m cache.c and si m chee-

t ah. c, respectiely. These simulators are ideal fast simula-
tion of caches if the &fct of cache performance omegution

time is not needed.

sim-cache accepts the follwing aguments, in addition to the
universal aguments described in Sectidn

-cache:dl1 <config>
-cache:dI2 <config>
-cache:ill <config>
-cache:il2 <config>
-tlb:dtlb <config>

configures a kel-one data cache.
configures a lel-two data cache.
configures a Mel-one instrcache.
configures a Mel-two instr cache.
configures the data TLB.

-tlb:itlb <config> configures the instruction TLB.
-flush <boolean> flush all caches on a system call;
(<boolean>=0| 1 | true | UE | false | ALSE).
remap SimpleScala’ 64-bit
instructions to a 32-bit equalent in

the simulation (i.e., model
machine with 4-wrd instructions).

generate a l@-based profile, as
described in Sectiof.3.

The cache configuration (<config>) is formatted as ¥aito

-icompress

a

-pcstat <stat>

<nane>: <nset s>: <bsi ze>: <assoc>: <repl >

Each of these fields has the foliag meaning:

<name> cache name, must be unique.

<nsets> number of sets in the cache.

<hsize> block size (for TLBs, use the page size).
<assoc> associatiity of the cache (pwer of two).
<repl> replacement polic(l | f| r), where

I = LRU, f = FIFO,r = random replacement.
The cache size is therefore the product of <nsets>, <bsize>, and
<assoc>. ® have a unified leel in the hierarcy “point” the
instruction cache to the name of the data cache in the correspond-
ing level, as in the follwing example:
i1 il 1:128: 64: 1:
dil2 dl 2
:dl 1 dl 1: 256: 32: 1:
:dl 2 ul 2: 1024: 64: 2:

-cache
-cache
-cache
-cache

and has "Phe deaults used imim-cache are as follavs:

L1 instruction cache: il1:256:32:1. (8 KB)

L1 data cache: di1:256:32:1:1 (8 KB)

L2 unified cache: ul2:1024:64:4:1 (256 KB)
instruction TLB: itlb:16:4096:4:I (64 entries)
data TLB: dtlb:32:4096:4:1 (128 entries)

sim-cheetah is based on ark performed by Ragin Sugumar and
Santosh Abraham while thevere at the Uniersity of Michigan.

It uses their Cheetah cache simulation engine [6] to generate sim-
ulation results for multiple cache configurations with a single
simulation. The Cheetah engine simulates fully assoeiati
caches diciently, as well as simulating a sometimes-optimal
replacement polic This poliy was called MIN by Belady [1],
although the simulator refers to it @. Opt uses future knd-

edge to select a replacement; it chooses the block that will be ref-
erenced the furthest in the future (if at all). This polgcoptimal

for read-only instruction streams. It is not optimal for write-back
caches because it may be maxpensve to replace a block ref-
erenced further in the future if the block must be written back, as
opposed to a clean block referenced slightly lasenfthe future.

Horwitz et al. [3] formally described an optimal algorithm that
includes writes; hwever, only MIN is implemented in the simu-
lator.

-pcstat <stat>

where <stat> is the inger counter that you
wish to profile by tet address.

We have included the Cheetah engine as a stand-alone library To generate the statistics for the profile, falithe follaving

which is huilt and resides in thei bcheet ah/ directory sim-
cheetahaccepts the follwing command-line guments, in addi-
tion to those listed at the gi@ning of Sectior:

-refs [inst | data | unified]
specify which reference stream to analyze.
-C[fa|sa|dm]

fully associatie, set associat, or direct-
mapped cache.

-R [lru | opt] replacement polic

-a <sets> log base 2 minimum bound on number of
sets to simulate simultaneously

-b <sets> log base 2 maximum bound on set number

-l <line> cache line size (in bytes).

-n <assoc> maximum associatity to analyze (in log
base 2).

-in <intenal> cache size inteal to report when simulating
fully associatve caches.

-M <size> maximum cache size of interest.

-C <size> cache size for direct-mapped analyses.

Both of these simulators are ideal for performing higlelle
cache studies that do not ¢alaccess time of the caches into

example:

simprofile -pcstat simnum.insn test-math >&!
t est - mat h. out
obj dunp -dl test-math >! test-math.dis
textprof.pl test-math.dis test-math. out
si m_num.insn_by_pc
We shav a sgment of the tet profile output in Figurd. Make
sure that “objdump” is theersion created when compiling the
binutils. Also, the first line of ext pr of . p| must be changed
to reflect your systers’path to Perl (which must be installed on
your system for you to use this script). As an aside, note that “-
taddrprof” is equialent to “-pcstat sim_num_insn”.

4.4 Out-of-order processor timing simulation

The most complicated and detailed simulator in the distrib
tion, by far, is sim-outorder (the main code file for which is
si m out or der . c—about 3500 lines long). This simulator
supports out-of-order issue anxkeution, based on the §ister
Update Unit [5]. The RU scheme uses a reorderffier to auto-
matically rename gisters and hold the results of pending
instructions. Each ycle the reorder Wffer retires completed
instructions in program order to the architectegister file.

account (e.g., studies that are concerned only with miss rates). T The processos' memory system empjs a load/store queue.

measure the &dct of cache @anization upon thexecution time
of real programs, heever, the timing simulator described in
Sectiond4.4 must be used.

4.3 Profiling

The distrilution comes with a functional simulator that pro-
duces wluminous and aried profile informationsim-profile
can generate detailed profiles on

addresses, x& symbols, memory accesses, branches, and dataFigure5. The main

segment symbols.
sim-profile takes the follving command-line guments,
which toggle the a&rious profiling features:

-iclass instruction class profiling (e.g. ALU,
branch).

-iprof instruction profiling (e.g., bnez, addi).

-brprof branch class profiling (e.g., direct, calls, con-
ditional).

-amprof addr mode profiling (e.g., displaced, R+R).

-sggprof load/store sgment profiling (e.g., data,
heap).

-tsymprof execution profile by te&t symbol (functions).

-dsymprof reference profile by datagrment symbol.

-taddrprof execution profile by tet address.

-all turn on all profiling listed ahe.

Three of the simulatorssifn-profile, sim-cache and sim-out-
order) support tet seyment profiles for statistical irger
counters. The supported counters includg aaded by users, so
long as thg are correctly “rgistered” with the SimpleScalar
stats package included with the simulator code (see Sécfhn
To use the counter profiles, simply add the command-line flag:

Store \alues are placed in the queue if the store is speailati
Loads are dispatched to the memory system when the addresses
of all previous stores are kmon. Loads may be satisfied either by
the memory system or by an earlier stoatug residing in the
gueue, if their addresses match. Speorddthads may generate
cache misses uip speculatie TLB misses stall the pipeline until
the branch condition is kma.

instruction classes and We depict the simulated pipeline dfim-outorder in

loop of the simulatorlocated in
si m_mai n(), is structured as folles:

ruu_init();

for (;;) {
ruu_commit();
ruu_witeback();
I'sq_refresh();
ruu_i ssue();
ruu_di spatch();
ruu_fetch();

}

This loop is &ecuted once for each ¢t (simulated)
machine gcle. By walking the pipeline in reerse, inteistage
latch synchronization can be handled correctly with only one
pass through each stage. When thgeaprogram terminates
with an exit() system call, the simulator performs a
I ongj np() tormai n() to generate the statistics.

The fetch stage of the pipeline is implemented in
ruu_fetch(). The fetch unit models the machine instruction
bandwidth, and tads the follaving inputs: the program counter
the predictor state, and misprediction detection from the branch
execution unit(s). Eachycle, it fetches instructions from only
one I-cache line (and it blocks on an I-cache miss until the miss

00401a10: (13, 0.01): <strtod+220> addiu $al[5], $zero[O0], 1
executed

13 time strtod.c: 79
00401a18: (13, 0.01): <strtod+228> bclf 00401a30 <strtod+240>
strtod. c: 87
never { 00401a20: : <strtod+230> addi u $s1[17], $s1[17],1
execute 00401a28: . <strtod+238> | 00401a58 <strtod+268>
strtod. c: 89
00401a30: (13, 0.01): <strtod+240> mul.d $f2, $f 20, $f4
{ 00401a38: (13, 0.01): <strtod+248> addiu $v0[2], $v1[3], -48
00401a40: (13, 0.01): <strtod+250> mtcl $vO[2], $f0

Figure 4. Sample output fr om te xt segment statistical pr ofile

v |

Fetch |—»| Dispatch|—»| Schedule[—»| Exec |—»| Writeback|—»| Commit

Memory

schedulet Mem

[-Cache| D-Cache D-TLB
\ Virtual memory/

Figure 5. Pipeline f or sim-outor der

completes). After fetching the instructions, it places them in the load is sent to the memory system.

dispatch queue, and probes the line predictor to obtain the correct The eecute stage is also handledrinu_i ssue() . Each

cache line to access in thexheycle. cycle, the routine gets as mameady instructions as possible
The code for the dispatch stage of the pipeline resides infrom the scheduler queue (up to the issue width). The functional

ruu_di spat ch() . This routine is where instruction decoding units’ availability is also cheodd, and if thg have available

and rgister renaming is performed. The function uses the access ports, the instructions are issued. Fin#ily routine

instructions in the input queue filled by the fetch stage, a pointer schedules writebackvents using the latepcof the functional

to the actie RUU, and the rename table. Once pgsle, the dis- units (memory operations probe the data cache to obtain the cor-

patcher taks as maninstructions as possible (up to the dispatch rect lateng of the operation). Data TLB misses stall the issue of

width of the taget machine) from the fetch queue and places the memory operation, are serviced in the commit stage of the

them in the scheduler queue. This routine is the one in which pipeline, and currently assume aefilateng. The functional

branch mispredictions are noted. (When a misprediction occurs,units’ latencies are hardcoded in the definition of

the simulator uses speculatistate bffers, which are managed fu_config[] insi moutorder.c.

with a copy-on-write polig/). The dispatch routine enters and The writeback stage residesrmu_wr i t eback() . Each
links instructions into the BU and the load/store queue (LSQ), cycle it scans thevent queue for instruction completions. When
as well as splitting memory operations intmtseparate instruc- it finds a completed instruction, italks the dependence chain of
tions (the addition to compute thdegftive address and the mem- instruction outputs to mark instructions that are dependent on the
ory operation itself). completed instruction. If a dependent instruction @tiwg only

The issue stage of the pipeline is contained in for that completion, the routine marks it as ready to be issued.
ruu_i ssue() andl sq_refresh(). These routines model The writeback stage also detects branch mispredictions; when it
instruction vakeup and issue to the functional units, trackirgg re determines that a branch misprediction has occurred, it rolls the
ister and memory dependences. Eagtie; the scheduling rou- state back to the checkpoint, discarding the erroneously issued
tines locate the instructions for which thegister inputs are all instructions.
ready The issue of ready loads is stalled if there is an earlier ruu_conm t () handles the instructions from the writeback
store with an unresobd efective address in the load/store stage that are ready to commit. This routine does in-order com-
queue. If the address of the earlier store matches that obitie w mitting of instructions, updating of the data caches (or memory)
ing load, the storealue is forvarded to the load. Otherwise, the with store alues, and data TLB miss handling. The routieeds

retiring instructions at the head of th&JR that are ready to
commit until the head instruction is one that is not resdyen
an instruction is committed, its result is placed into the archi-
tected rgister file, and the RU/LSQ resources deted to that
instruction are reclaimed.
sim-outorder runs about an order of magnitudeveto than
sim-fast. In addition to the guments listed at the gi@ning of
Sectiond, sm-outorder uses the follwing command-line gu-
ments:
Specifying the processor core
-fetch:ifgsize <size>
set the fetch width to be <size> instructions.
Must be a pwer of two. The dedult is 4.
-fetch:speed <ratio>

set the ratio of the front end speed refato
the ecution core (allwing <ratio> times as
mary instructions to be fetched as decoded
per gcle).

-fetch:mplat <gcles>

set the branch misprediction latgnthe
default is 3 gcles.

-decode:width <insts>

set the decode width to be <insts>, which

must be a poer of two. The dedult is 4.
-issue:width <insts>

set the maximum issue width in ag

cycle. Must be a pmer of two. The dedwult is
4.

-issue:inorder force the simulator to use in-order issue. The
default is flse.

-issue:wrongpath

allow instructions to issue after a misspecu-
lation. The dedult is true.

-ruu:size <insts>

capacity of the RU (in instructions). The
default is 16.

-Isq:size <insts>
capacity of the load/store queue (in instruc-
tions). The dedult is 8.
-res:ialu <num>
specify number of ingger ALUs. The dedfult
is 4.
-res:imult <num>

specify number of ingger multipliers/dvid-
ers. The defult is 1.

-res:memports <num>

specify number of L1 cache ports. The
default is 2.

-res:fpalu <num>

specify number of floating point ALUs. The
default is 4.

-res: fpmult <num>

specify number of floating point multipliers/
dividers. The defult is 1.

Specifying the memory hierarchy
All of the cache ajuments and formats used sim-cache
(listed at the bginning of Sectiort.2) are also used sim-out-

order, with the folloving additions:

-cache:dlllat <gcles>

specify the hit latencof the L1 data cache.
The dedult is 1 gcle.

-cache:d12lat scles>

specify the hit latencof the L2 data cache.
The dedwult is 6 gcles.

-cache:illlat <gcles>

specify the hit latencof the L1 instruction
cache. The delilt is 1 gcle.

-cache:il2lat <gcles>

specify the hit latencof the L2 instruction
cache. The dalilt is 6 gcles.

-mem:lat <1st> <nd>

specify main memory access latgiffirst,
rest). The defults are 18yrles and 2ycles.

-mem:width <bytes>

specify width of memory s in bytes. The
default is 8 bytes.

-tlb:lat <gycles>

specify lateng (in cycles) to service a TLB
miss. The defult is 30 gcles.

Specifying the branch predictor

Branch prediction is specified by choosing the feifg flag
with one of the six subsequengaments. The dafilt is a bimo-
dal predictor with 2048 entries.

-bpred <type>

nottaken always predict not tadn.

taken always predict taén.

perfect perfect predictor

bimod bimodal predictgr using a branch tget
buffer (BTB) with 2-bit counters.

2lev 2-level adaptie predictor

comb combined predictor (bimodal and 24#

adaptve).
The predictoispecific aguments are listed belo

-bpred:bimod <size>
set the bimodal predictor table size to be
<size> entries.

-bpred:2le <l1size> <I2size> <hist_size> <xor>
specify the 2-leel adaptie predictor
<l1size> specifies the number of entries in
the first-level table, <I2size> specifies the
number of entries in the secondéétable,
<hist_size> specifies the history width, and
<xor> allons you to xor the history and the
address in the second/é of the predictor
This oganization is depicted in Figufe In
Table2 we shav how these parameters cor-
respond to modern prediction schemes. The
default settings for the four parameters are 1,
1024, 8, and 0, respeatiy.

-bpred:comb <size>
set the meta-table size of the combined pre-
dictor to be <size> entries. The dsft is
1024.

attern 2-bit

istory predictors
branch___,, — — branch
address prediction
= N
@0, (<]
N N
(¢} D
<+——>
hist_size

Figure 6. 2-level adaptive predictor structure

predictor || I1_size | hist_size | 12_size | xor
GAg 1 W oW 0
GAp 1 w >oW 0
PAg N w oW 0
PAp N W oN+W 0
gshare 1 w W 1

Table 2: Branch predictor parameters

-bpred:ras <size>
set the return stack size to <size> (0 entries
means to return stack). The dett is 8.
entries.

-bpred:btb <sets> <assoc>

configure the BTB to hee <sets> sets and an
associatiity of <assoc>. The datflilts are
512 sets and an assoordti of 4.

-bpred:spec_update <stage>
allow speculatie updates of the branch pre-
dictor in the decode or writeback stages
(<stage> = [ID|WB]). The dafilt is non-
speculatie updates in the commit stage.
Visualization
-pcstat <stat>

record statistic <stat> byxeaddress;
described in Sectiofh.3.

-ptrace <file> <range>
pipeline tracing, described in Sectidn

4.5 Simulator code file descriptions

The following list describes the functionality of the C code
files in thesi npl esi m 2. 0/ directory which are used by all
of the simulators.

e bitmap. h: Contains support macros for performing bit-
map manipulation.

e bpred.[c, h]: Handles the creation, functionalitand
updates of the branch predictorspr ed_create(),
bpred_I| ookup(), andbpr ed_updat e() are the ky
interface functions.

e cache.[c, h]: Contains general functions to support

10

multiple cache types (e.g., TLBs, instruction and data
caches). Uses a liekl-list for tag comparisons in caches of
low associatiity (less than or equal to four), and a hash
table for tag comparisons in high&ssociatiity caches.

The important integfces areache_create(),
cache_access(), cache_probe(),
cache_flush(),andcache_f | ush_addr ().

dlite.[c, h]: Contains the code for DLite!, the source-
level taiget program dalgger

endi an. [¢, h] : Defines a f& simple functions to deter-
mine byte- and wrd-order on the host and gat platforms.

eval . [¢, h] : Contains code tovaluate &pressions, used

in DLitel.

event q. [¢, h] : Defines functions and macros to handle
ordered ®gent queues (used for ordering writebacks). The
important interce functions arevent g_queue() and
event g_service_events().

| oader. [¢, h] : Loads the tayet program into memoyy
sets up the ggnent sizes and addresses, sets up the initial
call stack, and obtains the gat program entry point. The
interface isl d_| oad_prog().

mai n. ¢: Performs all initialization and launches the main
simulator function. Thedy functions are
simoptions(),simconfig(),simnmain(),

andsi m stats().

menory. [c, h] : Contains functions for reading from,
writing to, initializing, and dumping the contents of the tar-
get main memoryMemory is implemented as a der flat
space, each portion of which is allocated on demand.
mem access() is the important inteaice function.

m sc. [¢, h] : Contains numerous useful support func-
tions, such agat al (), pani c(),warn(),info(),
debug(),getcore(), andel apsed_time().
options.[c, h]: Contains the SimpleScalar options
package code, used to process command-ligansnts
and/or option specifications from config files. Options are
registered with an option database (see the functions called
opt _reg_*()). opt _print_hel p() generates a help
listing, andopt _pri nt_options() prints the current
options’ state.

ptrace.[c, h]: Contains code to collect and produce
pipeline traces frorsim-outorder.

range. [¢, h] : Holds code that interprets program range
commands used in DLitel.

regs. [c, h] : Contains functions to initialize thegister
files and dump their contents.

resource. [c, h]: Contains code to manage functional
unit resources, dided up into classes. The three defined
functions create the resource pools andsyb tables
(res_creat e_pool ()), return a resource from the spec-
ified pool if available ¢ eg_get ()), and dump the con-
tents of a poolr(es_dunp()).

si m h: Contains a f@ extern \ariable declarations and
function prototypes.

stats. [c, h] : Contains routines to handle statistics mea-
suring taget program beh@or. As with the options pack-

age, counters are ‘giestered” by type with an internal
database. Thet at _reg_*() routines rgister counters
of various types, andt at _r eg_f or nul a() allows you

to reyister e&pressions constructed of other statistics.

stat_print_stats() prints all rgistered statistics.
The statistics package also hasilities to measure disttib
tions; st at _reg_di st () creates an array distution,
stat_reg_sdi st () creates a sparse array digitibn,
andst at _add_sanpl e() updates a distrildion.

e ss.[c, h]: Defines macros toxpedite the processing of

instructions, numerous constants needed across simulators,

and a function to print out indidual instructions in a read-
able format.

The traces may be vieed with thepi pevi ew. pl Perl script,
which is praided in the simplesim-2.0 directorfYou will have
to update the first line qfi pevi ew. pl to hase the correct path
to your local Perl binaryand you must h& Perl installed on
your system).

pi peview. pl <ptrace_file>

We depict sample output from the pipetracer in Figure

5.2 TheDLite! debugger

Release 2.0 of SimpleScalar includes a lightweight symbolic
dehugger called DLite!, which runs with all simulatosscept for
sim-fast. DLite! allows you to step through theendmark taget

« ss. def: Holds a list of macro calls (the macros are defined €0de not the simulator code. The dejger can be incorporated

in the simulators ands. h andss. c), each of which
defines an instruction. The macro calls accept @snaents

into a simulator by adding only four function calls (whiclvéna
already been added to all simulators in the distiom). The

the opcode, name of the instruction, sources, destinations Needed four function prototypes aredini t e. h.

actions to eecute, and other information. This file ses\as
the definition of the instruction set.

e synbol . [c, h]: Holds routines to handle program sym-
bol and line information (used in DLite!).

e syscall.[c, h]: Contains code that acts as the irateef

between the SimpleScalar system calls (which are POSIX-

compliant) and the system calls on the host machine.

e sysprobe. c: Determines byte andokd order on the host
platform, and generates appropriate compiler flags.

e« version. h: Defines the @rsion number and release date
of the distrilution.

5 Utilities
In this section we describe the utilities that accompie

SimpleScalar tool set; pipeline tracing and a souree-ehug-
ger.

5.1 Out-of-order pipelinetracing
The tool set praides the ability toract and viev traces of

the out-of-order pipeline. Using the “-ptrace” option, a detailed

history of all instructions»®ecuted in a range may beved to a

file. The information ssed includes instruction fetch, retirement,

and stage transitions. The syntax of this command is as/follo

-ptrace <file> <start>:<end>

<file> is the file to which the trace will be
saved. <start> and <end> are the instruction
numbers at which the trace will be started
and stopped. If theare left blank, the trace
will start at the bginning and/or stop at the
end of the program, respealy.

For example:
-ptrace FOO.trc 100:500

trace from instructions 100 to 500, store the
trace in file FOO.src.

-ptrace FOO.trc :10000

trace from program lggnning to instruction
10000.

-ptrace FOO.trc :
trace the entire progranxecution.

11

To use the dalgger in a simulation, add the “-i” option
(which stands for interaeg) to the simulator command line.
Below we list the set of commands that DLite! accepts.
Getting help and getting out:

help [string] print command reference.

version print DLite! version information.
quit exit simulator
terminate generate statistics angiesimulator

Running and setting breakpoints:
step execute ngt instruction and break.

cont [addr] continue &ecution (optionally continuing
starting at <addr>).

set breakpoint at <addr>, returns <id> of
breakpoint.

dbreak <addr>[r,w,x]

set data breakpoint at <addr> for (r)ead,
(w)rite, and/or e(x)ecute, returns <id> of
breakpoint.

rbreak <range> [r,w,X]
set breakpoint at <range> for (r)ead, (w)rite,
and/or e(x)ecute, returns <id> of breakpoint.

break <addr>

breaks list actve code and data breakpoints.
delete <id> delete breakpoint <id>.
clear clear all breakpoints (code and data).

Printing information:
print [modifiers] <expr>
print the \alue of <e&pr> using optional
modifiers.
display [modifies] <expr>
display the alue of <gpr> using optional
modifiers.
option <string>print the \alue of option <string>.
options print the \alues of all options.
stat <string> print the \alue of a statisticalariable.
stats print the \alues of all statisticalariables.
whatis <expr> print the type of <epr>.
regs print all register contents.
iregs print all instruction rgister contents.

new cycle > @610

indicator pipeline event:
(misprediction
new instruction gf = ‘0x0040d098: addiu r2, r4, -1’ detected), see output
definitions gg = ‘0x0040d0a0: beq r3, 15, 0x30’ header for event defs
[IF] [DA] [EX] [wB] [CT]
current pipeline —» gf gb fy n fa
state gg gc fz fs
gd\ ga+ ft
ge fu
inst. being inst. being inst. inst. writing inst. retiring
fetched, orin decoded, or executing results into results to
fetch queue awaiting issue RUU, or register file

awaiting retire

Figure 7. Example of sim-outorder pipetrace

fpregs print all floating point rgister contents. w print a word (defwult)
mstate [string] print machine-specific state. t printin decimal format (defult)
dump <addr> [count] o printin octal format
dump memory at <addr> (optionally for X printin he format
<count> vords). 1 printin binary format
dis <addr> [count] f print float
disassemble instructions at <addr> (option- d print double
ally for <count> instructions). ¢ print character
symbols print the \alue of all program symbols. s print string
tsymbols print the \alue of all program t& symbols.
dsymbols print the \alue of all program data symbols. Examples of legal commands:
symbol <string> break mai n+8

break 0x400148

i <string>
print the \alue of symbol <string>. dbreak stdin w

Legal arguments: dbreak sys_count w
Arguments <addr>, <cnt>, xpr>, and <id> are anlegal rbreak @min:+279
expression: rbreak 2000: 3500
<expr> <factor> +|- <gpr> rbreak #:100 cycle 0 to cycle 100
rbreak : entire execution
<factor> ~ <term> *|/ <hctor>
<term> ~ (<expr>)
| - <term> | <const> | <symbol> | <file:loc> 6 Summary
<symbol> ~ <literal> | <function name> | <gister> The SimpleScalar tool setas written by ddd Austin @er
<literal> ~ [0-9]+ | 0x[0-9,a-f]+ | O[0-7]+ about one and a half years, between 1994 and 1996. He continues
<register> — $r[0-31] | $f[0-31] | $pc | $fcc | $hi | $lo to add impreements and updates. The ancestors of the tool set

date back to the mid to late 1980s, to tools written by Manoj

Legal ranges: Franklin. At the time the tools werewadoped, both indiduals

<range> . <address> | <instruction> |yate> were research assistants at theversity of Wsconsin-Madison
<address>- @<function name>:{+<literal>} Computer Sciences Department, supervised by Professor Guri
<instruction>- {<literal>}{<literal>} Sohi. Scott Breach pvided \aluable assistance with the imple-
<cycle> ~ #{<literal>}{<literal>} mentation of the proxy system calls. The first relecas assem-

Omitting optional ayuments to the left of the colon will defit bled, debigged, and documented by Doug Ger also a
to the smallest alue permitted in that range. Omitting an research assistant aiddonsin, who is the maintainer of the sec-

optional agument at the right of the colon will defit to the ond release as well. edin Skadron, currently at Princeton,
largest \alue permitted in that range. implemented manof the more recent branch prediction mecha-
e nisms.
Legal command modifiers: Many exciting extensions to SimpleScalar are both undgrw
b printa byte and planned. Edrts hare beyun to etend the processor simula-

h print a half (short)

12

tors to simulate multithreaded processors and multiprocessors. A Semantics:

Linux port to SimpleScalar (enabling simulation of the OS on a
kernel with publicly &ailable sources) is planned, usingide-

level emulation and a ustavel file system. Other plans include JR:
extending the tool set to simulate ISAs other than SimpleScalar ~ Opcode:
and MIPS (Alpha and $#RC ISA support will be the first addi- Format.
tions). Semantics:
As they stand nwy, these tools prade researchers with a sim-
ulation infrastructure that i$t, flible, and iicient. Changes jao R
in both the taget hardvare and softare may be made with min- Opcode:
imal efort. We hope that you find these tools useful, and encour- Egrmat:
age you to contact us withays that we can impve the release, Semantics:
documentation, and the tools themsslv
References BEQ:
[1] L.A. Belady A Study of Replacement Algorithms for a Opcode:
Virtual-Storage ComputelBM Systems Journal, 5(2):78— Format:
101, 1966. Semantics:
[2] Doug Buger, ToddM. Austin, and Steen Bennett. Eslu-
ating Future Microprocessors: the SimpleScalaol Set.
Technical Report 1308, Computer Sciences Department,
University of Wsconsin, Madison, WI, July 1996. BNE:
[3] L.P Horwitz, R.M. Karp, R.E. Miller, and A.Winograd. Opcode:
Index Ragister Allocation.Journal of the ACM, 13(1):43— Format:
61, January 1966. Semantics:

[4] Charles PriceMIPSIV Instruction Set, revision 3.1. MIPS
Technologies, Inc., Mountaini&v, CA, January 1995.

[5] GurindarS. Sohi. Instruction Issue Logic for High-Perfor-
mance, Interruptible, Multiple Functional Unit, Pipelined g g7-

ComputerslEEE Transactions on Computers, 39(3):349— Opcode:
359, March 1990. Format:
[6] RabinA. Sugumar and Santog€h Abraham. Hifcient Semantics:
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization. Rroceedings of
the 1993 ACM Sgmetrics Conference on Measurements
and Modeling of Computer Systems, pages 24-35, May BGTZ:
993. i
1 Opcode:
Format:

A Instruction set definition Semantics:
This appendix lists all SimpleScalar instructions with their

opcode, assembler format, and semantics. The semantics are

expressed as a C-stylgmression that uses th&tended opera-

tors and operands described iable3. Operands that are not BLTZ:

listed in Table3 refer to actual instruction fields described in Opcode:

Figure3. For each instruction, the xePC \alue (NPC) defults Format:

to the current PCalue plus eight (CPC+8) unless otherwise ~ Semantics:

specified.

A.1 Control instructions

BGEZ:

J: Jump to absolute address. Opcode:
Opcode: 0x01 Format:
Format: J taget Semantics:
Semantics: SET_NPC((CPC & 0xf0000000) [ARGET<<2)))

JAL: Jump to absolute address and link.

Opcode: 0x02
Format: JAL target BC1F:

13

SET_NPC((CPC\&0xf0000000) | SRGET<<2))
SET_GPR(31, CPC + 8))

Jump to rgister address.
0x03

JRrs

TALIGN(GPR(RS))
SET_NPC(GPR(RS))

Jump to rgister address and link.
0x04

JALR rs

TALIGN(GPR(RS))
SET_GPR(RD, CPC + 8)
SET_NPC(GPR(RS))

Branch if equal.
0x05
BEQ rs,t,ofset
if (GPR(RS) == GPR(R))
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if not equal.
0x06
BEQ rs,rt,ofset
if (GPR(RS) = GPR(R))
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if less than or equal to zero.
0x07
BLEZ rs,ofset
if (GPR(RS) <= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

Branch if greater than zero.
0x08
BGTZ rs,ofset
if (GPR(RS) > 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if less than zero.
0x09
BLTZ rs,ofset
if (GPR(RS) < 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if greater than or equal to zero.
0x0a
BGEZ rs,ofset
if (GPR(RS) >= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

Branch on floating point comparaige.

Operator/operand

Semantics

FS same as field RS

FT same as field RT

FD same as field RD

UIMM IMM field unsigned-extended to word value

IMM IMM field sign-extended to word value

OFFSET IMM field sign-extended to word value

CPC PC value of executing instruction

NPC next PC value

SET_NPC(V) Set next PC to value V

GPR(N) General purpose register N

SET_GPR(N,V) Set general purpose register N to value V
FPR_F(N) Floating point register N single-precision value
SET_FPR_F(N,V) Set floating point register N to single-precision value V
FPR_D(N) Floating point register N double-precision value
SET_FPR_D(N,V) Set floating point register N to double-precision value V
FPR_L(N) Floating point register N literal word value
SET_FPR_L(N,V) Set floating point register N to literal word value V
HI High result register value

SET_HI(V) Set high result register to value V

LO Low result register value

SET_LO(V) Set low result register to value V

READ_SIGNED_BYTE(A)

Read signed byte from address A

READ_UNSIGNED_BYTE(A)

Read unsigned byte from address A

WRITE_BYTE(V.A)

Write byte value V at address A

READ_SIGNED_HALF(A)

Read signed half from address A

READ_UNSIGNED_HALF(A)

Read unsigned half from address A

WRITE_HALF(V,A)

Write half value V at address A

READ_WORD(A)

Read word from address A

WRITE_WORD(VA)

Write word value V at address A

Opcode:
Format:
Semantics:

BCI1T:
Opcode:
Format:
Semantics:

A.2 Load/storeinstructions

LB:

Opcode:
Format:
Semantics:

LB:
Opcode:
Format:

READ_SIGNED_BYTE(GPR(RS)+GPR(RD)))

Load byte unsigned, displaced addressing.

READ_UNSIGNED_BYTE(GPR(RS)+GPR(RD)

TALIGN(T) Check target T is aligned to 8 byte boundary
FPALIGN(N) Check register N is wholly divisible by 2
OVER(X,Y) Check for overflow when adding X to Y
UNDER(X,Y) Check for overflow when subtraction Y from X
DIVO(V) Check for division by zero error with divisor V
Table 3: Operator/operand semantics
0x0b Semantics: SET_GPR(R,
BC1F ofset
if ({FCC)
SET_NPC(CPC + 8 + (OFFSET << 2)) LBU:
else Opcode: 0x22
SET_NPC(CPC +8) Format: LBU rt,offset(rs) inc_dec
. . Semantics: SET_GPR(R,
Branch on floating point compare true. READ_UNSIGNED_BYTE(GPR(RS)+OFF-
0x0c SET))
BC1T offset
if (FCC)) ; : ;
SET NPC(CPC + 8 + (OFFSET << 2)) LBU: . Load byte unsigned, inded addressing.
else Opcode: Oxcl
SET_NPC(CPC + 8) Format: LBU rt,(rs+rd) inc_dec
Semantics: SET_GPR(R,
)
Load byte signed, displaced addressing.
0x20 LH: Load half signed, displaced addressing.
LB rt,offset(rs) inc_dec Opcode: 0x24
SET_GPR(R,READ_SIGNED_BYTE(GPR(RS) Format: LH rt,offset(rs) inc_dec
+ OFFSET)) Semantics: SET_GPR(R,
READ_SIGNED_HALF(GPR(RS)+OFFSET))
Load byte signed, inded addressing.
0xc0 LH: Load half signed, indeed addressing.
LB rt,(rs+rd) inc_dec Opcode: 0xc2

Format:

Semantics:

LHU:

Opcode:
Format:

Semantics:

LHU:

Opcode:
Format:

Semantics:

LW:

Opcode:
Format:

Semantics:

LW:

Opcode:
Format:

Semantics:

DLW:

Opcode:
Format:

Semantics:

DLW:

Opcode:
Format:

Semantics:

L.S

Opcode:
Format:

Semantics:

L.S

Opcode:
Format:

Semantics:

L.D:

Opcode:

LH rt,(rs+rd) inc_dec
SET_GPR(R,
READ_SIGNED_HALF(GPR(RS)+GPR(RD)))

Load half unsigned, displaced addressing.
0x26

LHU rt,offset(rs) inc_dec

SET_GPR(R,
READ_UNSIGNED_HALF(GPR(RS)+OFF-
SET))

Load half unsigned, incted addressing.
0xc3

LHU rt,(rs+rd) inc_dec

SET_GPR(R,
READ_UNSIGNED_HALF(GPR(RS)+GPR(RD)
)

Load word, displaced addressing.

0x28

LW rt,offset(rs) inc_dec

SET_GPR(R, READ_WORD(GPR(RS)+OFF-
SET))

Load word, indexed addressing.
Oxc4

LW rt,(rs+rd) inc_dec
SET_GPR(R,
READ_WORD(GPR(RS)+GPR(RD)))

Double load werd, displaced addressing.
0x29

DLW rt,offset(rs) inc_dec

SET_GPR(R, READ_WORD(GPR(RS)+OFF-
SET))

SET_GPR(R+1,
READ_WORD(GPR(RS)+OFFSET+4))

Double load wrd, indexed addressing.
Oxce

DLW rt,(rs+rd) inc_dec

SET_GPR(R,
READ_WORD(GPR(RS)+GPR(RD)))
SET_GPR(R+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

Load word into floating point rgister file,
displaced addressing.

Ox2a

L.S ft,offset(rs) inc_dec
SET_FPR_L(FTREAD_WORD(GPR(RS)+OFF-
SET))

Load word into floating point rgister file,
indexed addressing.

0xc5

L.S ft,(rs+rd) inc_dec

SET_FPR_L(R,
READ_WORD(GPR(RS)+GPR(RD)))

Load double wrd into floating point rgister
file, displaced addressing.
0x2b

15

Format:

Semantics:

L.D:

Opcode:
Format:

Semantics:

LWL:

Opcode:
Format:

Semantics:

LWR:

Opcode:
Format:

Semantics:

SB:

Opcode:
Format:

Semantics:

SB:

Opcode:
Format:

Semantics:

SH:

Opcode:
Format:

Semantics:

SH:

Opcode:
Format:

Semantics:

SW:
Opcode:
Format:

Semantics:

SW:
Opcode:
Format:

Semantics:

DSW:

Opcode:
Format:

Semantics:

L.D ft,offset(rs) inc_dec
SET_FPR_L(FTREAD_WORD(GPR(RS)+OFF-
SET))

SET_FPR_L(FT+1,
READ_WORD(GPR(RS)+OFFSET+4))

Load double wrd into floating point rgister
file, indexed addressing.

Oxcf

L.D ft,(rs+rd) inc_dec

SET_FPR_L(R,
READ_WORD(GPR(RS)+GPR(RD)))
SET_FPR_L(R+1,
READ_WORD(GPR(RS)+GPR(RD)+4))

Load word left, displaced addressing.

0Ox2c

LWL offset(rs)

Seess. def for a detailed description of this
instructions semantics. NTE: LWL does not
support pre-/post- inc/dec.

Load word right, displaced addressing.
0x2d

LWR offset(rs)

Seess. def foradetailed description of this
instructions semantics. NTE: LWR does not
support pre-/post- inc/dec.

Store byte, displaced addressing.

0x30

SB rt,ofset(rs) inc_dec
WRITE_BYTE(GPR(F), GPR(RS)+OFFSET)

Store byte, indeed addressing.

0xc6

SB rt,(rs+rd) inc_dec
WRITE_BYTE(GPR(R), GPR(RS)+GPR(RD))

Store half, displaced addressing.

0x32

SH rt,ofset(rs) inc_dec
WRITE_HALF(GPR(R'), GPR(RS)+OFFSET)

Store half, indeed addressing.

oxc7

SH rt,(rs+rd) inc_dec
WRITE_HALF(GPR(R'), GPR(RS)+GPR(RD))

Store vord, displaced addressing.

0x34

SW rt,ofset(rs) inc_dec
WRITE_WORD(GPR(R), GPR(RS)+OFFSET)

Store vord, indexed addressing.

0xc8

SW rt,(rs+rd) inc_dec
WRITE_WORD(GPR(R'), GPR(RS)+GPR(RD))

Double store wrd, displaced addressing.
0x35

DSW rt,ofset(rs) inc_dec
WRITE_WORD(GPR(R), GPR(RS)+OFFSET)

DSW:

Opcode:
Format:

Semantics:

DSzZ:

Opcode:
Format:

Semantics:

DSZ.

Opcode:
Format:

Semantics:

S.S

Opcode:
Format:

Semantics:

S.S

Opcode:
Format:

Semantics:

SD:

Opcode:
Format:

Semantics:

SD:

Opcode:
Format:

Semantics:

SWL:

Opcode:
Format:

Semantics:

SWR:
Opcode:

WRITE_WORD(GPR(R'+1), GPR(RS)+OFF-
SET+4)

Double store wrd, indexed addressing.
0xd0

DSW rt,(rs+rd) inc_dec
WRITE_WORD(GPR(R), GPR(RS)+GPR(RD))
WRITE_WORD(GPR(R+1),
GPR(RS)+GPR(RD)+4)

Double store zero, displaced addressing.
0x38

DSW rt,ofset(rs) inc_dec
WRITE_WORD(0, GPR(RS)+OFFSET)
WRITE_WORD(0, GPR(RS)+OFFSET+4)

Double store zero, inded addressing.
Oxd1l

DSW rt,(rs+rd) inc_dec
WRITE_WORD(0, GPR(RS)+GPR(RD))
WRITE_WORD(0, GPR(RS)+GPR(RD)+4)

Store vord from floating point rgister file,
displaced addressing.

0x36

S.S ft,ofset(rs) inc_dec
WRITE_WORD(FPR_L(FT), GPR(RS)+OFF-
SET)

Store vord from floating point rgister file,
indexed addressing.

0xc9

S.S ft,(rs+rd) inc_dec
WRITE_WORD(FPR_L(FT),
GPR(RS)+GPR(RD))

Store double wrd from floating point rgis-
ter file, displaced addressing.

0x37

S.D ft,of'set(rs) inc_dec
WRITE_WORD(FPR_L(FT), GPR(RS)+OFF-
SET)

WRITE_WORD(FPR_L(FT+1), GPR(RS)+OFF-
SET+4)

Store double ward from floating point rgis-
ter file, indexed addressing.

0xd2

S.D ft,(rs+rd) inc_dec
WRITE_WORD(FPR_L(FT),
GPR(RS)+GPR(RD))
WRITE_WORD(FPR_L(FT+1),
GPR(RS)+GPR(RD)+4)

Store vord left, displaced addressing.

0x39

SWL rt,offset(rs)

Seess. def foradetailed description of this
instructions semantics. NCE: SWL does not
support pre-/post- inc/dec.

Store vord right, displaced addressing.
0x3a

16

Format:
Semantics:

SWR rt,ofset(rs)

Seess. def for a detailed description of this
instructions semantics. NCE: SWR does not
support pre-/post- inc/dec.

A.3Integer instructions

ADD:
Opcode:
Format:
Semantics:

ADDI:

check).
Opcode:
Format:
Semantics:

ADDU:
Opcode:
Format:
Semantics:

ADDIU:

check).
Opcode:
Format:
Semantics:

SUB:
Opcode:
Format:
Semantics:

SUBU:

check).
Opcode:
Format:
Semantics:

MULT:
Opcode:
Format:
Semantics:

MULTU:
Opcode:
Format:
Semantics:

DIV:
Opcode:
Format:
Semantics:

Add signed (with werflow check).
0x40

ADD rd,rs,rt
OVER(GPR(R),GPR(R))
SET_GPR(RD, GPR(RS) + GPR{}

Add immediate signed (with verflow

0x41

ADDI rd,rs,rt
OVER(GPR(RS),IMM)
SET_GPR(R, GPR(RS) + IMM)

Add unsigned (noerflow check).
0x42

ADDU rd,rs,rt

SET_GPR(RD, GPR(RS) + GPRI(}}

Add immediate unsigned (noverflow

0x43
ADDIU rd,rs,rt
SET_GPR(R, GPR(RS) + IMM)

Subtract signed (with underflocheck).
0x44

SUB rd,rs,rt

UNDER(GPR(RS),GPR(R)
SET_GPR(RD, GPR(RS) - GPR(}

Subtract unsigned (without underflo

0x45
SUBU rd,rs,rt
SET_GPR(RD, GPR(RS) - GPRIR

Multiply signed.

0x46

MULT rs,rt

SET_HI((RS * R) / (1<<32))
SET_LO((RS * R) % (1<<32))

Multiply unsigned.

0x47

MULTU rs,rt

SET_HI(((unsigned)RS * (unsigned)R(1<<32))
SET_LO(((unsigned)RS*(unsigned)iR%
(1<<32))

Divide signed.

0x48

DIV rs,rt

DIVO(GPR(RT))
SET_LO(GPR(RS) / GPR[R)
SET_HI(GPR(RS) % GPR{B)

DIVU

Opcode:
Format:

Semantics:

MFHI:

Opcode:
Format:

Semantics:

MTHI:

Opcode:
Format:

Semantics:

MFLO:

Opcode:
Format:

Semantics:

MTLO:

Opcode:
Format:

Semantics:

AND:

Opcode:
Format:

Semantics:

ANDI:

Opcode:
Format:

Semantics:

OR:

Opcode:
Format:

Semantics:

ORI:

Opcode:
Format:

Semantics:

XOR:

Opcode:
Format:

Semantics:

XORI:

Opcode:
Format:

Semantics:

NOR:

Opcode:
Format:

Divide unsigned.

0x49

DIVU rs,rt

DIVO(GPR(RT))

SET_LO((unsigned)GPR(RS)/
(unsigned)GPR(R))
SET_HI((unsigned)GPR(RS)%(unsigned)GPR(R
m)

Move from HI rayister
Ox4a

MFHI rd
SET_GPR(RD, HI)

Move to HI reyister
Ox4b

MTHI rs
SET_HI(GPR(RS))

Move from LO r@gister
Ox4c

MFLO rd
SET_GPR(RD, LO)

Move to LO regjister
0x4d

MTLO rs
SET_LO(GPR(RS))

Logical AND.

Ox4e

AND rd,rs,rt

SET_GPR(RD, GPR(RS) & GPR[R

Logical AND immediate.

Ox4f

ANDI rd,rt,imm

SET_GPR(R, GPR(RS) & UIMM)

Logical OR.

0x50

OR rd,rs,rt

SET_GPR(RD, GPR(RS) | GPR(R

Logical OR immediate.

0x51

ORI rd,rt,imm

SET_GPR(R, GPR(RS) | UIMM)

Logical XOR.

0x52

XOR rd,rs,rt

SET_GPR(RD, GPR(RS) * GPRIR

Logical XOR immediate.
0x53

ORI rd,rt,uimm

SET_GPR(R, GPR(RS) * UIMM)

Logical NOR.
0x54
NOR rd,rs,rt

17

Semantics:

SLL:
Opcode:
Format:
Semantics:

SLLV:
Opcode:
Format:
Semantics:

SRL:
Opcode:
Format:
Semantics:

SRLV:
Opcode:
Format:
Semantics:

SRA:
Opcode:
Format:
Semantics:

SRAV:
Opcode:
Format:
Semantics:

SLT:
Opcode:
Format:
Semantics:

SLTI:
Opcode:
Format:
Semantics:

SLTU:
Opcode:
Format:
Semantics:

SLTIU:
Opcode:
Format:
Semantics:

SET_GPR(RD, ~(GPR(RS) | GPRU®

Shift left logical.

0x55

SLL rd,rt,shamt

SET_GPR(RD, GPR(R << SHAMT)

Shift left logical \ariable.

0x56

SLLV rd,rt,rs

SET_GPR(RD, GPR(R << (GPR(RS) & 0x1f))

Shift right logical.

0x57

SRL rd,rt,shamt

SET_GPR(RD, GPR(R >> SHAMT)

Shift right logical ariable.

0x58

SRLV rd,rt,rs

SET_GPR(RD, GPR(R << (GPR(RS) & 0x1f))

Shift right arithmetic.

0x59

SRA rd,rt,shamt

SET_GPR(RD, SEX(GPR{RB >> SHAMT, 31 -
SHAMT))

Shift right arithmetic ariable.

0x59

SRAV rd,rt,rs

SET_GPR(RD, SEX(GPR{R >> SHAMT, 31 -
(GPR(RD) & 0x1f)))

Set r@ister if less than.

0x5b

SLT rd,rs,rt

SET_GPR(RD, (GPR(RS) < GPR{|3 ? 1 : 0)

Set r@ister if less than immediate.
0x5¢

SLTI rd,rs,imm

SET_GPR(RD, (GPR(RS) < IMM) ? 1 : 0)

Set rgister if less than unsigned.

0x5d

SLTU rd,rs,rt

SET_GPR(RD,
((unsigned)GPR(RS)<(unsigned)GPR}R? 1: 0)

Set r@ister if less than unsigned immediate.
0x5d

SLTIU rd,rs,imm

SET_GPR(RD,
((unsigned)GPR(RS)<(unsigned)GPR}R? 1 : 0)

A.4 Floating-point instructions

ADD.S:
Opcode:
Format:
Semantics:

Add floating point, single precision.
0x70

ADD.S fd,fs,ft

FRALIGN(FD)

ADD.D:

Opcode:
Format:

Semantics:

SUB.S:

Opcode:
Format:

Semantics:

SUB.D:

Opcode:
Format:

Semantics:

MUL.S:

Opcode:
Format:

Semantics:

MUL.D:

Opcode:
Format:

Semantics:

DIV.S:
Opcode:
Format:

Semantics:

DIV.D:

Opcode:
Format:

Semantics:

ABS.S:

Opcode:
Format:

FPALIGN(FS)
FPALIGN(FT)
SET_FPR_F(FD, FPR_F(FS) + FPR_F(FT)))

Add floating point, double-precision.
Ox71

ADD.D fd,fs,ft

FPALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_D(FD, FPR_D(FS) + FPR_D(FT)))

Subtract floating point, single precision.
0x72

SUB.S fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_F(FD, FPR_F(FS) - FPR_F(FT)))

Subtract floating point, double precision.
0x73

SUB.D fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_D(FD, FPR_D(FS) - FPR_D(FT)))

Multiply floating point, single precision.
0x74

MUL.S fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)
SET_FPR_F(FD,FPR_F(FS)*FPR_F(FT)))

Multiply floating point, double precision.
0x75

MUL.D fd,fs,ft

FPALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

SET_FPR_D(FD, FPR_D(FS) * FPR_D(FT)))

Divide floating point, single precision.
0x76

DIV.S fd,fs,ft

FPALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

DIVO(FPR_F(FT))

SET_FPR_F(FD, FPR_F(FS) / FPR_F(FT)))

Divide floating point, double precision.
ox77

DIV.D fd,fs,ft

FRALIGN(FD)

FRALIGN(FS)

FRALIGN(FT)

DIVO(FPR_D(FT))

SET_FPR_D(FD, FPR_D(FS) / FPR_D(FT)))

Absolute alue, single precision.
0x78
ABS.S fd,fs

18

Semantics:

ABS.D:

Opcode:
Format:

Semantics:

MOV.S:
Opcode:
Format:

Semantics:

MOV.D:

Opcode:
Format:

Semantics:

NEG.S:

Opcode:
Format:

Semantics:

NEG.D:

sion.
Opcode:
Format:

Semantics:

CVT.SD:

Opcode:
Format:

Semantics:

CVT.SW:

Opcode:
Format:

Semantics:

CVT.D.S
Opcode:
Format:

Semantics:

CVT.D.W:

Opcode:
Format:

FRALIGN(FD)
FRALIGN(FS)
SET_FPR_F(FD dbs((double)FPR_F(FS))))

Absolute alue, double precision.
0x79

ABS.D fd,fs

FRALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD,dbs(FPR_D(FS))))

Move floating point &lue, single precision.
Ox7a

MOV.S fd,fs

FPALIGN(FD)

FRALIGN(FS)

SET_FPR_F(FD, FPR_F(FS))

Move floating point alue, double precision.
0x7b

MOV.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_D(FD, FPR_D(FS))

Negate floating point alue, single precision.
Ox7c

NEG.S fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_F(FD, -FPR_F(FS))

Negate floating point &lue, double preci-

0x7d

NEG.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_D(FD, -FPR_D(FS))

Corvert double precision to single precision.
0x80

CVT.S.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_D(FD, -FPR_D(FS))

Corvert intgger to single precision.
0x81

CVT.S.W fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_F(FD, (float)FPR_L(FS))

Convert single precision to double precision.
0x82

CVT.D.S fd,fs

FPALIGN(FD)

FRALIGN(FS)
SET_FPR_D(FD,(double)FPR_F(FS))

Corvert integer to double precision.
0x83
CVT.D.W fd,fs

Semantics:

CVT.W.S

Opcode:
Format:

Semantics:

CVT.W.D:
Opcode:
Format:

Semantics:

C.EQ.S
Opcode:
Format:

Semantics:

C.EQ.D:
Opcode:
Format:

Semantics:

CLT.S

Opcode:
Format:

Semantics:

C.LT.D:

Opcode:
Format:

Semantics:

C.LE.S:
Opcode:
Format:

Semantics:

C.LE.D:

Opcode:
Format:

Semantics:

SQRT.S
Opcode:
Format:

Semantics:

FRALIGN(FD)
FRALIGN(FS)
SET_FPR_D(FD,(double)FPR_L(FS))

Corvert single precision to inger
0x84

CVT.W.S fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_L(FD, (long)FPR_F(FS))

Corvert double precision to inger.
0x85

CVT.W.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_L(FD, (long)FPR_D(FS))

Test if equal, single precision.
0x90

C.EQ.Sfs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_F(FS) == FPR_F(FT))

Test if equal, double precision.
0x91

C.EQ.D fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_D(FS) == FPR_D(FT))

Test if less than, single precision.
0x92

C.LT.Sfs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_F(FS) < FPR_F(FT))

Test if less than, double precision.
0x93

C.LT.D fs ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_D(FS) < FPR_D(FT))

Test if less than or equal, single precision.
0x94

C.LE.S fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_F(FS) <= FPR_F(FT))

Test if less than or equal, double precision.
0x95

C.LE.D fs,ft

FRALIGN(FS)

FRALIGN(FT)

SET_FCC(FPR_D(FS) <= FPR_D(FT))

Square root, single precision.
0x96

SQRI.S fd,fs

FRALIGN(FD)

19

SQRT.D:
Opcode:
Format:
Semantics:

FRALIGN(FS)
SET_FPR_F(FD,sqrt((double)FPR_F(FS)))

Square root, double precision.
0x97

SQRTI.D fd,fs

FRALIGN(FD)

FRALIGN(FS)

SET_FPR_D(FD, sqrt(FPR_D(FS)))

A.5 Miscellaneous instructions

NOP:
Opcode:
Format:
Semantics:

SYSCALL:
Opcode:
Format:
Semantics:

BREAK :
Opcode:
Format:
Semantics:

LUI :
Opcode:
Format:
Semantics:

MFC1:

Opcode:
Format:
Semantics:

MTC1:

Opcode:
Format:
Semantics:

No operation.
0x00
NOP
None

System call.

Oxa0

SYSCALL

See AppendiB for details

Declare a program error

Oxal

BREAK uimm

Actions are simulatedependent. yipically,
an error message is printed afwbr t () is
called.

Load upper immediate.
Oxa2

LUI uimm

SET_GPR(R, UIMM << 16)

Move from floating point to intger reister
file.

Oxa3

MFC1 rt,fs

SET_GPR(R, FPR_L(FS))

Move from intger to floating point igister
file.

Oxa5

MTC1 rt,fs

SET_FPR_L(FS, GPR{B)

B System call definitions

This appendix lists all system calls supported by the simula-
tors with their system call code (syscode), irseefspecification,
and appropriate POSIX Unix reference. Systems calls are initi-
ated with the SYSCALL instruction. Prior toxexution of a
SYSCALL instruction, rgister %0 should be loaded with the
system call code. Theguments of the system call intack pro-
totype should be loaded intogisters $0 - $a3 in the order spec-
ified by the system call intex€e prototypee.g., for:

read(int fd,

char *buf, int nbyte),

0x03 is loaded into®, fd is loaded into &), buf into $al1, and

nbyteinto $a2.

EXIT:

Exit process.

Syscode:
Interface:

Semantics:

READ:

Syscode:
Interface:

Semantics:

WRITE:

Syscode:
Interface:

Semantics:

OPEN:
Syscode:
Interface:

Semantics:

CLOSE:

Syscode:
Interface:

Semantics:

CREAT:

Syscode:
Interface:

Semantics:

UNLINK:
Syscode:
Interface:

Semantics:

CHDIR:

Syscode:
Interface:

Semantics:

CHMOD:

Syscode:
Interface:

Semantics:

CHOWN:
Syscode:
Interface:

Semantics:

BRK:

Syscode:
Interface:

Semantics:

LSEEK:

Syscode:
Interface:

Semantics:

GETPID:
Syscode:
Interface:

0x01
void eit(int status);
Seeexi t (2).

Read from file to bffer.

0x03

int read(int fd, char *bf, int nbyte);
Seeread(2).

Write from a luffer to a file.

0x04

int write(int fd, char *lf, int nbyte);
Seewrite(2).

Open afile.

0x05

int open(char *fname, int flags, int mode);
Seeopen(2).

Close afile.
0x06

int close(int fd);
Seecl ose(2).

Create a file.

0x08

int creat(char *fname, int mode);
Seecreat (2) .

Delete a file.

0x0a

int unlink(char *fname);
Seeunl i nk(2).

Change process directory
0x0c

int chdir(char *path);
Seechdir (2).

Change file permissions.

0xOf

int chmod(int *fname, int mode);
Seechnod(2) .

Change file wner and group.

0x10

int chovn(char *fname, intwner, int group);
Seechown(2).

Change process break address.
0x11

int brk(long addr);

Seebrk(2).

Move file pointer

0x13

long Iseek(int fd, long d$et, int whence);
Seel seek(2).

Get process identifier
0x14
int getpid(woid);

20

Semantics:

GETUID:

Syscode:
Interface:
Semantics:

ACCESS:
Syscode:
Interface:
Semantics:

STAT:

Syscode:
Interface:

Semantics:

L STAT:
Syscode:
Interface:
Semantics:

DUP:
Syscode:
Interface:
Semantics:

PIPE:
Syscode:
Interface:
Semantics:

GETGID:
Syscode:
Interface:
Semantics:

IOCTL:
Syscode:
Interface:
Semantics:

Seeget pi d(2) .

Get user identifier
0x18

int getuid(\oid);
Seeget ui d(2).

Determine accessibility of a file.
0x21

int access(char *fname, int mode);
Seeaccess(2).

Get file status.

0x26

struct stat

{
short st_de;
long st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid,;
short st_rde;
int st_size;
int st_atime;
int st_sparel,;
int st_mtime;
int st_spare2;
int st_ctime;
int st_spare3;
long st_blksize;
long st_blocks;
long st_gennum;
long st_spare4;

int stat(char *fname, struct statuf);
Seest at (2) .

Get file status (and dardereference links).
0x28

int Istat(char *fname, struct statdf);

Seel stat (2).

Duplicate a file descriptor
0x29

int dup(int fd);
Seedup(2).

Create an interprocess comm. channel.
Ox2a

int pipe(int fd[2]);

Seepi pe(2) .

Get group identifier
Ox2f

int getgid(\oid);
Seeget gi d(2) .

Device control interdce.

0x36

int ioctl(int fd, int request, char *gJ;
Seei octl (2).

FSTAT:
Syscode:
Interface:
Semantics:

GETPAGESIZE:

Syscode:
Interface:
Semantics:

Get file descriptor status. Syscode:
0Ox3e Interface:
int fstat(int fd, struct stat "if); Semantics:

Seef stat (2).

Get page size.

0x40

int getpagesizeid);
Seeget pagesi ze(2).

GETDTABLESIZE: Get file descriptor table size.

Syscode:
Interface:
Semantics:

DUP2:

Syscode:
Interface:
Semantics:

FCNTL:

Syscode:
Interface:
Semantics:

SELECT:

Syscode:
Interface:

Semantics:

0x59
int getdtablesize@id);
Seeget dt abl esi ze(2).

Duplicate a file descriptor
Ox5a

int dup2(int fd1, int fd2);
Seedup2(2) .

File control.

0x5c¢

int fentl(int fd, int cmd, int ay);
Seefcnt ! (2).

Synchronous I/O multipléng.

0x5d

int select (int width, fd_set *readfds, fd_set
*writefds, fd_set *&ceptfds, struct timel
*timeout);

Seesel ect (2).

GETTIMEOFDAY: Get the date and time.

Syscode:
Interface:

Semantics:

WRITEV:

Syscode:
Interface:
Semantics:

UTIMES:

Syscode:
Interface:
Semantics:

GETRLIMIT:

Syscode:
Interface:
Semantics:

SETRLIMIT:

Ox74
struct timeal {
long tv_sec;
long tv_usec;
I3
struct int {
timezone tz_minuteswest;
int tz_dsttime;
3
int gettimeofday(struct timal *tp,
struct timezone *tzp);
Seeget ti neof day(2).

Write output, ectored.

0x79

int writev(int fd, struct iovec *iov, int cnt);
Seewitev(2).

Set file times.

Ox8a

int utimes(char *file, struct timal *tvp);
Seeut i nes(2).

Get maximum resource consumption.
0x90

int getrlimit(int res, struct rlimit *rlp);
Seegetrlimt(2).

Set maximum resource consumption.

21

0x91
int setrlimit(int res, struct rlimit *rlp);
Seesetrlimt(2).

