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Abstract

High-performance, general-purpose microprocessorg serecompute engines for com-
puters ranging from personal computers to supercomputers. Sequential programs consti-
tute a major portion of realavid software that run on the computers. State-of-the-art
microprocessorsxloit instruction leel parallelism (ILP) to achie high performance on
such applications by searching for independent instructions in a dynamicwwvisfdo
instructions and»ecuting them on a wide-issue pipeline. Increasing the wirgipe and
the issue width toxéract more ILP may hinder achiag high clock speeds, limitingver-

all performance.

The Multiscalar architecture empt® multiple small windees and may narrav-issue
processing units toxeloit ILP at high clock speeds. Sequential programs are partitioned
into code fragments called tasks, which are spevalgtexecuted in parallel. Intelask
register dependences are honored via communication and synchronization atasknter
control flov and memory dependences are handled by speculatiorafichtion in hard-

ware.

Since this thesis is the first attempt atessticating the problem of compiling for the
Multiscalar architecture, | identify the fundamental interactions between applications and
the Multiscalar architecture from the standpoint of performance xgldre a fev com-
piler optimization opportunities instead of proposing the best technique for a specific

problem.

Control flov speculation, mgster communication, memory dependence speculation,
load imbalance, and taskerheads aredy performance issuesoExtract high dgrees of
ILP, compiler heuristics partition programs intagatasks, which comprise multiple basic
blocks. © maintain high prediction accusaand a&oid delays due to intdask reister

communication, the heuristics control the number of successors of tasks while including



i
register dependences within tasks. Iftesk rgister communication is generated and

scheduled towerlap computation and intéask rgister communication.

For the SPEC95 benchmarks, the heuristics increase task sizes significantly while
improving control flav speculation accurgownith respect to basic blocks, enablinggkar
window spans from which toxéract parallelism. Including gester dependences within
tasks imprges performance considerabBophisticated ggster communication genera-
tion and scheduling arefettive in boosting performance. Deadjister analysis reduces
register communication tri€ considerablyAll the optimizations gn in importance for

larger number of PUs.
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Chapter 1

Multiscalar: A Novel Microarchitecture

High-performance, general-purpose microprocessors serve as cost-effective compute
engines for awide spectrum of computers, ranging from the ubiquitous personal computer
to state-of-the-art, esoteric parallel computer. Software that run on microprocessors repre-
sent awide variety of application areas such as business and engineering, science and edu-
cation, home and entertainment, most modern industries and government. These
application areas have continually placed an ever-increasing demand on performance of
microprocessors. |mproving performance of microprocessors not only enhances the utility
of existing application domains by accelerating the computations involved but also
enabl es the emergence of new application domains by enabling computations, which were

considered infeasible in the past.

Sequential programs constitute a major portion of software that run on microprocessors
powering the wide spectrum of computers. Ease of programming and transparent portabil-
ity with high performance have been compelling reasons for the pervasiveness and the
magnitude of sequential programs in application software domains. The rest of the soft-

ware are multithreaded or parallel applications that run on microprocessors used in large-
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scale, parallel computers. &v for parallel applications, single sequential thread perfor-

mance is important tovaid the performance limits stipulated by AmdaHh&w [7]. So,
irrespectve of the application domain and the scale of the comptitecritical to achiee

high performance on sequential programs that run on microprocessors.

Execution of a sequential program on a processor is realized as a single stream of
instructions that manipulates data according to the computation specified by the program.
This stream of instructions is called tiiynamic instruction stream. In order to impraoe
performance of the program, processor architeats bgloited independence among the
instructions in the dynamic instruction stream [8] [31] [91] [100] [101] [102] [94].
Instruction level parallelism (ILP) [35] adwocates the »ecution of such independent
instructions in parallel. ILP is an implicit form of parallelism present in sequential pro-
grams identified by a combination of the compiler and the remlwhereasxlicit par-

allelism of parallel programs is identified and specified by the programmer

To exploit ILP, modern microarchitectures calledperscalar architectures [11] [21]
[29] [44] [46] [47] [53] [58] [77] [97] [109] [113] identify independent instructions and
execute multiple independent instructions simultaneoudpdern microprocessors
extract ILP by establishing window of instructions in the dynamic instruction stream.
The first instruction in the windois called thepoint of search for the windav. The win-
dow is said to be established at the point of search in the dynamic instruction stream.
Within the windav, superscalar architectures search for independent instructions by deter-
mining dependence relationships among the instructions. Multiple independent instruc-
tions are recuted simultaneously by a set of haadevresources. The maximum number
of instructions that may bexecuted in parallel is called theidth of the processoiThe
maximum number of instructions that may be contained in the wingloalled thesize of
the window. Figurel-1 illustrates etraction of ILP by superscalar architecturé$e
degree of parallelismxracted depends on the size of the wimdind the width of the

processarLarger windavs enable more dynamic instructions to karsined, which leads



Dynamic Instruction Stream Time 2 wide processor
Point of Search
T~ Al B1
Bl
Window A2 A2

Figure 1-1: Extraction of ILP in the superscalar architecture. The windav established
at the point of search contains instructions Al, B1, andA2. A2 is dependent on Al. Al and
B1 execute simultaneously on a 2-wide processor and at a later gidek A2 executes.

to the identification of more independent instructions and wider processorgecaree
more independent instructions simultaneouBlyt, lager windavs and wider processors

may be harder to engineer at high clock speeds, limiting performance.

TheMultiscalar architecture [36] [38] [95] is a el microarchitecture to achie high-
performance on general-purpose, sequential programsndineer a lge windav and a
wide processor at high clock speed, the Multiscalar architecture splits one wide processor
into mary narrav processing units and onedarwindav into mary small windavs moni-
tored by each processing unit. Sequential programs are partitioned into code fragments,
which are gecuted on the processing units in parallel. Dependences among the code frag-
ments are honored by a combination of communication and synchronization for depen-
dences that are kmm at compile-time or speculation andriication for dependences

that are ambiguous at compile-time.

The goals of this thesis are: (1) to identify the fundamental interactions between applica-
tions and the architecture from the standpoint of performance, (2) to understand the impli-
cations of the interactions for the compiland (3) to dése, implement, analyze and

experiment with compiler techniques to impeoperformance. Since this thesis is the first
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attempt at imestigating this problem, | identify theelt issues ixolved in the problem of

compiling for the Multiscalar architecture andkore a fev compiler optimization oppor-
tunities instead of proposing the best technique teesalspecific optimization problem.
To male the iwvestigation concrete, | constructed a compiler analeated the impact of

compiler techniques on performance of the SPEC95 benchmark suite [98].
1.1 Performance limitations of superscalar processors

Overall performance is thevarse of the product of the parallelisxtracted and the
cycle time of the processdstate-of-the-art microprocessospit high degree of paral-
lelism by increasing the size of the wimdand the width of the process@ut lager win-
dow and wider processor mayacerbate circuit delays; implying that more parallelism
may be gtracted at the cost of clock speed. Although increasing the wistx® and the
processor width may increase thegee of parallelism>aracted, werall performance
may not impree or may een deteriorate. Thus, this straightfamd approach may be

forced to trade-dfclock speed for parallelism.

Processor clock speed is determined by the timing constraints of the circuits that are in
the critical path of the processor pipeline implementatianings of maw critical paths
such as rename logic ake-up logic, and bypass logic [80] in processor pipeline harelw
are at least lineaif not quadratic, functions of windosize and processor width for the
circuit implementations used by state-of-the-art microprocessors. These circuits cannot

easily be pipelined to be cloett faster without incurring pipeline stajdes.

The continual shrinking of feature size of on-chipides in modern microprocessors
enable aster and smaller transistors, leading to phenomenal vexments in processor
clock speeds. Unfortunatehyires connecting the transistors do not scale in speed as well
as the transistors themse$vbecause quadratic RC delays dominate total signal delay
[16]. The centralized design of the superscalar architectures imposes lengthening of the

wires in critical circuits lie bypass paths andakeup logic, at least by adtor linearly
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proportional to windw size and processor width [80]. Long wires connectingyman

devices for bypassing datales and for performing result update in the superscalar pipe-
line datapath may limit clock speed. If time eakto propagte a signal through a wire is
longer than that for a transistor to switch, a signal mag saleral clock gcles to propa-

gate across such long wires causing significant performance loss.

The Multiscalar architecture proposes to engineerge laindav and a wide processor
at high clock speed by splitting thedarwindav into mary small windavs and the wide
processor into mannarrav processing units. Critical path circuits of the processing units
may be clockd fast because of their small wivdgize and narme processing unit width.
By localizing critical path wires to the compact processing unit, wire delay problems are
mitigated because latgnof wire propagtion is incurred only on communication among
multiple processing units and not on operations within each processing unit. Due to circuit
speed constraints, the DEC Alpha 21264 uses a distdlpganization for the back-end
of the pipeline by grouping functional units intoctwlusters [42]. The Multiscalar archi-
tecture, which predates the DEC Alpha 21264, uses a disttiloganization for the

entire pipeline, from the fetch stage to the commit stage.

1.2 Multiscalar approach

The Multiscalar architecture empgk multiple points of search in the dynamic instruc-
tion stream instead of one point of search used by the superscalar architecture. A process-
ing unit establishes a small wind@at each point of search and searches for independent
instructions within its small winda Together the processing unitsxecute multiple
instructions simultaneouslyploiting ILP. Figurel-2 illustrates rtraction of ILP in the
Multiscalar architecturddentifying the points of search is an important problem because
they determine the dgee of independence among the small wivelalense dependences
among the small windwes result in lage amounts of communication, incurring perfor-

mance loss.



Dynamic Instruction Stream

Point of search1 Three 1-wide processing units

T
81
Window 1¢ AD
Point of search2 —— » Point 1 Point 2 Point 3
T
C1 Al C1
Window 2 A3 Bl A3
indow BA A2 B4
Point of search 3 S -
e - E—
Window 3 ¢

Figure 1-2: Extraction of ILP in the Multiscalar architecture. There are three
windows established at three points of search. nstructions in the dynamic stream are
named by an alphabet folled by a number; instructions whose names start with the same
alphabet form a dependence chaininddvl contains instructions Al, B1l, and A2.
Window2 contains instructions C1, A3, and B4indbw3 contains instructions D1, E1,

and E2. A3 is dependent on A2. T he three points of search are assigned to three 1-wide
processing units for simultaneouseeution. Dependence from A2 to A3 is handled to
maintain program semantics.

To map the instructions of a sequential program on the disgdbprocessing units of
the Multiscalar architecture, the program is partitioned into code fragments teehsd
which are assigned to the processing units kacetion. While threads of parallel or
multi-threaded applications use yaie call stacks, tasks of a program share the global
stack, rgister space, and memory spacaskks correspond to the points of search for the
processing units. Figue3 illustrates har sequential programs are mapped on the pro-
cessing units of the Multiscalar architectufe. maintain sequential program semantics,
inter-task rgister dependences, intask control flav dependences, and intiisk mem-

ory dependences ¥ato be honored. Intéask control flav is handled by speculation and



Dynamic I nstruction Stream Program

Point of search 1

T
Window 1¢

o Three 1-wide processing units

Point of search 2

Window 2

Point of search 3

T

Window 3 ¢

Figure 1-3: Mapping a sequential program on the Multiscalar architecture. the part

of the program corresponding to the portion of the dynamic instruction stream g&ho
partitioned into three tasksa3k A, Task B, and ask C. The three tasks correspond to the
three points of search. The three tasks are assigned to three 1-wide processing units for
simultaneous»ecution. Each processing unit establishes its small wirafonstructions
belonging to the task assigned to it.

verification, similar to branch prediction. Intiask data dependences are dealt with by
two sets of mechanisms:gister dependences are honored by communication and syn-
chronization and memory dependences are honored by speculatiogrifindtion. Intra-

task dependences are handled by the processing units, similar to superscalar processors.

In the Multiscalar architecture implementation thatvesticate, the compiler partitions
sequential programs into tasks. Intask rgister dependences are specified by the com-
piler, intertask control flw dependences are specified by the compiler and-takr
memory dependences are handled entirely by the laaedr register dependences, the

hardware actvates communication of gester \alues as per compiler specificatiorar F
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control flon, the hardwre speculates on which dynamic task feahe tasks inx@cu-

tion so that it may assign the speculated taskXecuion without delay; speculation and

its verification are based on the information\pded by the compileMMemory accesses
from the tasks inxecution proceed in arbitrary order with respect to each other speculat-
ing that loads and stores fromfdifent tasks do not access the same address. bBi&dw
tracks the memory accesses to detegivarlation of memory dependences of the applica-
tion program and performs roll back on misspeculations. In the current implementation,

the compiler does not prale ary memory dependence information to the hadwy

1.3 Thesiscontributions

The plysically distributed oganization of the processing units and the taskllspecu-
lation in hardvare combined with impera®, sequential programming model reatke
Multiscalar architecture sfig¢iently different from aisting microarchitectures. The goals
of this thesis are to understand the impact of the fundamental interactions between sequen-
tial programs and the wel features of the Multiscalar architecture eermall performance
and to identify the &y issues iwolved in the problem of compiling for the Multiscalar

architecture.

To male the iwvestigation more concrete, | i@ devised, implemented,x@erimented
with, and analyzed aviecompiler optimizations. | h& constructed a compiler ta@ore
optimization opportunities in the comteof the Multiscalar architecture, rather than to
propose the best solution for a problem addressed by the conSpukifically | have
studied task selection, inteask control flav and register dependence information specifi-
cation, and intetask rgister communication generation and scheduling.veheple-
mented these optimizations in a widely-used compger) (@nd measured their impact on
the SPEC95 benchmark suite. The compiler techniques apply welhkmorventional
compiler analyses (e.g. datafl@nalysis) in the e contet of the Multiscalar architec-

ture.



1.3.1 Task selection

The Multiscalar architecture requires ordinasgquential programs to be partitioned
into sequential (and not necessarily independent) tasks. From the standpoint of correct-
ness, the architecture does not imposg @mstraints on the composition of tasks, in
terms of control flv or data dependences. At the same time, the choice of tasksta pi
to achieing high performance. Sinceisting microarchitectures do not require partition-
ing of sequential programs into tasks, this problem has not been studiediglkein its
generality Automatic parallelization techniques usually partition loops,not ary other
control flav structure. In the presence of ambiguous memory dependences, traditional par-
allelization techniques, not supported by drardware speculation, are restricted to the
options of either completely parallel or entirely sequentialcetion of loop iterations.
Hardware support for speculation in the Multiscalar architecture createspmortunities

for the compiler

| have identified principaldctors that déct performance to include inte&ask control
flow dependences, int¢aisk data dependences and task sizevé kdavised and imple-
mented compiler heuristics that ¢éakhese dctors into account while partitioning pro-
grams. The heuristics use traditional graplvearsal and datafle analysis techniques.
Although the heuristics handlegister dependences and memory dependences tirk
current implementation of the compiler front-end does notigeomemory dependence

information.

1.3.2 Inter-task dependenceinformation

The Multiscalar architecture uses information about contral iod data dependences
present in applications to impm@ performance. | W@ devised and implemented a simple
compiler scheme to collect intask register dependence and intask control flav infor-
mation and covey the information to the hardwe in a compact form. The compiler anal-

yses iwvolved in collecting the information are traditionait the information is coreyed
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and used diérently than coventional architectures.oF example, rgister allocators for

superscalar architecture perform similagiséer dependence analysig blo not &plicitly

convey the information to the hardwe for communication purposes.

1.3.3 Register communication

Overlapping rgister communication with computation is of paramount importance to
alleviate performance loss. | Yedereloped seeral compiler stratges to study the ffct
of register communication delay owerall performance. These strgites \ary the dgree
of overlap of communication with computation bgrying the aggresstness of the anal-
yses. All of these stragees \ary communication timingui do not transform the computa-
tion that generates thalues inolved in communication. Extending this analysis further
| have devised and implemented a static scheduler thateas@omputation to hide inter
task rgister communication delay furtheklthough the scheduler uses traditional trans-
formations to perform code motion similar to superscalar schedulers, the vahjto#
cost model and the tradef®bf the scheduling process areeliént from those of super-
scalar schedulers. Similar to task selection heuristics, the scheduler may be used to hide
interrtask memory dependence delay the current implementation of the front-end does
not provide suficient information. In addition to these delay reducing techniquessd ha
implemented traditional deadgister analysis to reducegister communication band-

width demand.
1.4 Thesisroadmap

| describe the Multiscalar architecture in more detail, includingsteeution model, the
hardware, the intedce between the hardve and the compileand performance issues in
Chapter2. At the end of the chaptdrpresent anwervien of the compilerl discuss task
selection in Chapte8. | identify key task characteristics that impact performance and
describe compiler heuristics to partition programs into tasks with suitable characteristics

and their implementation. In Chapterl explain the rgister communication model and
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describe compiler strategies for register communication generation. | also describe regis-
ter communication scheduling. In Chapter 5, | present experimental evaluation of the tech-
niques described before. | present measurements of task characteristics, effectiveness of
task selection heuristics on overall performance, impact of register communication strate-
gies and scheduling on overal performance. In Chapter 6, | summarize the thesis and

draw some conclusions.



12

Chapter 2

Role of the Hardware and the Compiler

As discussed in Chapter 1, window size and issue-width of superscalar processors can-
not be scaled up easily to exploit more ILP without adversely affecting processor clock
speed. The need to clock processors fast while exploiting more parallelism has driven
architects to investigate distributed hardware organizations. The Multiscalar architecture
employs distributed hardware to get the combined effect of a large window of dynamic
instructions and a wide-issue processor by splitting the large window into many small
windows and the wide-issue processor into many narrow-issue processing units. In this
chapter, | start with some basic concepts of the architecture (Section 2.1), then | describe
the execution model (Section 2.3), the binary interface between the hardware and the
application software (Section 2.4), the hardware (Section 2.5), performance issues

(Section 2.6), and the problem of compiling for the Multiscalar architecture (Section 2.7).
2.1 Basic conceptsof the Multiscalar architecture

Instead of establishing a large window at a single point of search, the Multiscalar archi-

tecture establishes multiple small windows, each at a different point of search. Each win-
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dow is mapped onto a narrow-issue PU, which executes the instructions in the window.

Figure 2-1 illustrates the abstraction of the Multiscalar architecture. Figure 2-1(a) shows a
static program partitioned into three tasks and the correspondence between the points of

search and the windows in the dynamic stream and the static tasks. The instructions

Point 1

Window 1 ¢ Three 1-wide processing units
Point 2 e

T Task A Task B Task C
Window 2 ¢ (b)

Point 3

T
Window 3 ¢

Dynamic Stream  Program ‘ t
(@ © Memory Disambiguation Unit

Figure 2-1: Abstraction of the Multiscalar architecture.(a) A  static  program
partitioned into three tasks and three points of search in the dynamic stream with three
corresponding windows. The windows at the three points of search in the dynamic stream
correspond to the three static tasks. Instructions in the dynamic stream are named by an
alphabet followed by a number; instructions whose names start with the same al phabet
form a dependence chain. (b) The tasks assigned for execution on processing units. (c) The
organization of the hardware. The PUs are connected for communicating data values and
the memory disambiguation unit detects dependence misspecul ations.
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between search points 1 and 2 and search points 2 and 3 correspond to tasks A and B,

respectrely. Task C corresponds to instructions between search point 3 andxthe ne
search point in the dynamic stream. FigehE(b) shavs tasks A,B, and C assigned for
execution on processing units PU 1, PU 2, and PU 3, regplyctrigure2-1(c) shavs the
organization of the hardare for a three PU configuration. The PUs are connected for
communicating &lues and the memory disambiguation unit detects dependence misspec-

ulations.

If the multiple points of search are chosen so that the instructions in onemameo
mostly independent of the instructions in the other wivgjdhen the PUs caxecute in
parallel, independent of each othersulting in high performance. On the other hand, if
there is an instruction in one wingdavhich is dependent on another instruction in another
window, then the dependence is satisfied by communicatioaloés from the producer
instruction to the consumer instruction. The consumer instructaots or the producer
instruction to gecute and then communicate the requirglde. Alternatrely, an instruc-
tion may speculate that it does not depend gnather computation and use thalue
bound to its rgister or memory location operand at the time ofxecation. If the instruc-
tion is dependent on another instruction (i.e., the instruction shoutdotgained its oper-
and from the other instruction) then a dependence misspeculation is flaggedartie
of the consumer instruction (and dependent instrué'tjdssrolled back and restarted.
Such dependences result in significant performance loss dwestedagcles spent either
waiting for values or squashing misspeculated computation. Continuing witldhgpée,
Task A includes instructions Al, B1 and A2sK B includes instructions C1, D1 and D2,
and sk C includes E1, E2 and D3, aswhan Figure2-1(a). In this gample, A2, D2,
and D3 are dependent on Al, D1 and D2, resgygtiSince Bsk B is not dependent on
Task A, PU 2 proceeds in parallel with PU 1. Due to the dependence from D2 tasdR3, T
C depends onakk B causing PU 3 either to stall until PU 2 sends the requatad for

1. In a real implementation, it may befititilt to isolate dependent instructions; in which case all
instructions folleving the misspeculated instruction are rolled back and restarted.



15
D3 or to misspeculate on the dependence from D2 to D3 dependencesatdky to

squash. Therefore, the choice of the points of search is fundamental to the amount of par-

allelism eploited by the Multiscalar architecture.

2.2 Multiscalar tasks

The compiler identifies the points of search by partitioning application programs into
tasks. Each task consists of an entry point, instructions corresponding to the fragment of
the application code, and sometgoints. Tasks of a program shareyigter space, stack
and memory space, whereas threads of a parallel or multi-threaded applicatiomaise pri
stacks. By choosing the tasks, the compiler determines the points of search xkoinrg e
tion and is responsible for the amount of parallelisplated by the processoA task
corresponds to a contiguougs®ent of the dynamic instruction stream, starting from one
point of search and ending at thexihpoint of search in the dynamic stream andxis-e
cuted entirely on one PU. The wind@stablished by the PU spans the instructions of the
task. The amount of parallelism among dynamic tasks translates to parallelism found in
the distriluted windevs of the Multiscalar architectureoFexample, in Figur-1(b),
instruction D3 in task C is dependent on instruction D2 in task B, causing PUd&tto w
until PU 2 produces and sends the requide: The delay incurred by PU 3 reduces the
amount of parallelismxploited and dgrades werall performance. Thus, dependences
from one task to another result in performance loss. On the other hand, ibttasks are

independent, then the dWPUs &ecute simultaneously and ackeehigh performance.

2.3 execution model for the Multiscalar architecture

Tasks, obtained by partitioning sequential programs, are assigned to PYeciaios.
Each PU gecutes the instructions of its task to completion. Simultanecesugon of
multiple tasks on multiple PUs results in the completion of multiple instructionyger c
The architecture ensures that the walial execution of each task as well as the aggre

execution of all tasks maintain the appearance of sequential program order
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2.3.1 Contol flow

Dynamic prediction unseels the control flw among tasks and each predicted task is
assigned to a PU forxecution. Excution proceeds by assigning tasks to PUs. After
assigning a task foxecution, acontrol flow speculation[37] [38] [55] [81] [95] is made
which predicts one of the mamossible successors of the task, similar to branch predic-
tion emplyed by superscalar processors [56] [90] [114] [115]. Since the tasks asdderi
from a sequential program and are predicted in the original program order (similar to
branch prediction), the total order among the tasks is unambiguously maintained. Upon
completion, tasks are retired in program order to maintain sequential semantics. If control
flow speculation is incorrect, i.e., one of the tasks assignedéougon vas incorrect,
then the incorrect task (and all dependent 3s&squashedsimilar to a branch mispre-
diction in superscalar processors. A combination of harevand softare mechanisms
are used to ensure that control and data dependences are honored as per the original
sequential program specificationgaedless of what transpires in the actual paralete-
tion. Figure2-2 illustrates control f speculation in the Multiscalar architecture.
Figure2-2(a) shavs a part of an application program partitioned into three tasks A, B, and
C. The arrwss represent intetask control flav. Task A branches either to task B or else-
where. Bsk B branches either to itself of to task C. Figt&€b) shovs the tasks»@cute
on a three PU configuration. From the successors of task A, task B is predicted and
assigned to PU 2, and from the successors of task B, anoteation of task B is
assigned to PU 3. Assuming the second prediction is incorrect, tasicBtiag on PU 3

is squashed and task C is started on PU 3.

2. In a real implementation, it may befitifilt to isolate dependent tasks, similar to isolating inde-
pendent instructions, as mentioned before; in which case all tasksifgiithe misspeculated
task are rolled back and restarted.
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Program predict predict
A

PU1 PU 2 PU 3

Reg —» Regg —P Rgy

(b)

Figure 22: Control flow speculation in the Multiscalar architecture.(a) A part of an
application program partitioned into three tasks. Thewarn@present inteiask control
flow. (b) Intertask control flav speculation. The tasksxexute on a three PU
configuration. @sk B is predicted on PU 2 and anothepaation of Bsk B is predicted
on PU 3. The second prediction is incorrect, so taskeBuging on PU 3 is squashed and
task C is started.

2.3.2 Data alues

As instructions in tasksxecute, dataalues are produced and consumed within the same
task and among dérent tasks, corresponding to intra-task and itagk communication,
respectrely. These dataalues are bound to memory andister storage locations, simi-
lar to superscalar processors. Due to thiemdihce in the size and the nature afister
space and memory spacegister \alues and memoryalues are handled tfently
Many ISAs use 32 inger r@isters and 32 floating pointgisters, whereas mariSAs
support 32-bit (or 64-bit) virtual addresses Ieadin@l?‘o2 (or 264) memory locations.
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Reagister space can be specified by simple edters since it is small, whereas thegéar
size of memory space mek compact specification harder the case of ggster storage,
it is straightforvard to identify producers and consumers since gikter storage names
are knovn statically via rgister specifiers. On the other hand, in the case of memory stor-
age, it is dificult to determine precisely the producers and consumers of alats\since
memory storage names are determined dynamically via address calculationsxémthe e

ple shavn in Figure2-3, the loop inde variablei is allocated a gaster by the compiler

for(i=0;i<n;i++) { Loop:

Id rtmp, O[rptrl]
beq rtmp, ri, Not_Eq

if (*ptrl ==1i) { Not_Eq: _
add rtmp,ri, 1
st rtmp, O[rptr2]

} Continue:
*ptr2 = i+1; add ri,ri, 1
} blt r, rn, Loop
(a) Out:

Figure 2-3: Register dependences and memory dependences. (a) Source code of a
simple loop.Variables ptrl andptr2 are pointers to unkmm addresses. (b) Assembly
code for the loop. Rpstersrptrl, rptr2, andri hold the walues ofptrl, ptr2, andi,
respectrely. The dependence between the load and the store instructions is ambiguous
since the addresses that ythare accessing is unkmao at compile-time. All the
dependences through thegister ri are unambiguously kmm since thg are directly
specified.

Since the addresses of the load and the store instructions are wotdrammpile time, it

is not knavn whether the load and the store instructions access the same address or not.
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But all the dependencesroiving the rgisterri, which holds the ariablei, are unambig-
uously kneovn. Consequentlymemory dependences are typically honored via dynamic
speculation anderification by the hardare [37] [38] and rgister dependences are typi-
cally honored via synchronization and communication [18] [39] [95], as specified by the
compiler It is important to note that if a memory dependence isvknat compile-time
then the dependence need not be speculatedibmay be honored via synchronization
and communication, |k register dependences. Similarlif may be adantageous to
emplgy speculation on a gester dependence, instead of synchronization and communica-
tion. Within the spectrum of all data dependences being synchronized and communicated
or all data dependences being speculated anfied, aty combination of synchronization
and communication or speculation andrifrication of data dependences is possible.
Figure2-4 illustrates rgister communication in the Multiscalar architectlfigure2-4(a)
showv a part of an application program partitioned into three tasks A, B, arasiC Alpro-
duces the alue for rgister d, used byakk B. Figure-4(b) shaevs register communica-
tion from task A to task B. PU 1 foexds rgister d, when the corresponding instruction in
task A is @ecuted. Meanwhile, PU ZXecutes task B andaits for rgister d, when the

instruction that uses gester d is encountereda3k C gecutes on PU 3 unhindered.

The predicted task speculaly executes on a PU using its yate resources unless it
needs @lues computed by another tasteeuting on a dierent PU. In the case of inter
task rgister data dependencies, when the producer task computes the regluiegdtv
communicates thealue to the consumer task. In the case of {t@sk memory data
dependenciesnemory dependence speculation [39] [40] [95] is emplged; each task
speculates that it does not depend gnather task for memoryalues and performs loads
from the specified addresses. If the speculation is incorrect, (i.eviaysréask performs
a store to the same address as a load) then a memory dependence violation is detected and
the ofending load instruction (and dependent instructionsjjisshed. To prevent fre-
qguent memory dependence misspeculations, a la@edmechanism to perform memory

dependence prediction and synchronization, which dynamically synchronizes dependent
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Program predict predict

PU1 PU 2 PU 3
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Figure 2-4: Register Communication in the Multiscalar Architecture. (a) A part of an
application program partitioned into three taskasskTA produces thealue for rgister d,
used by ask B. (b) Intetask rgister communication. PU kecutes @sk A and fonards
register d, when the forarding instruction is»@cuted. Meanwhile, PU Xecutes &sk B
and waits for rgister d, when the instruction using thgister is encounteredask C
executes on PU 3 unhindered.

loads and stores [73] is empta. In a real implementation, memory dependence
squashes and controlWesquashes may be handled identically for the purpose of simpli-

fying hardware.

Figure2-5 illustrates memory disambiguation in the Multiscalar architecture.
Figure2-5(a) shavs a part of an application program partitioned into three tasks A, B, and
C. Task A stores into address X from which task B loads. Figib@) shovs detection of
violation of memory dependence from task A to task B. PkeZudes the load inaEk B

at g/cle 1; the load is recorded in the memory disambiguation unit and the cuaienby
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Figure 2-5: Memory disambiguation in the Multiscalar architecture. (a) A part of an
application program partitioned into three tasks. Task A stores into address X from which
Task B loads. (b) Memory disambiguation. PU 2 executes the load in Task B at cycle 1; the
load is recorded in the memory disambiguation unit and the current value of address X is
returned. PU 1 executes the store in Task A at cycle 3; the store is also recorded in the
memory disambiguation unit. Since a later load executed before a previous store, the
memory disambiguation unit detects a memory dependence violation and sguashes PU 2
and PU 3. Task B and Task C are restarted on PU 2 and PU 3.

address X is returned. PU 1 executes the store in Task A at cycle 3; the store is also
recorded in the memory disambiguation unit. The memory disambiguation unit derives the
program order between tasks A and B from the order in which the tasks are predicted and
assigned for execution. Since a later load (from the later task B) executed before a previ-
ous store (from the earlier task A), the memory disambiguation unit detects a memory
dependence violation and squashes PU 2 and PU 3. Task B and Task C are restarted on PU
2and PU 3.
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The amount of computation discarded on a misspeculation (both contvarith data

dependence) is an importarmgtctor in determining the deee of aggreseeness of the
mechanisms (both hardne and compiler) used to perform speculation. Depending upon
the granularity of checkpointed state used for rolling back computation on misspecula-
tions, the amount of computation discarded mayy \significantly If entire tasks are

rolled back on anmisspeculation, then either the accyratspeculation should be high

or speculation should be used infrequentty avoid rolling back gregious amounts of
computation. If only computations that are dependent on misspeculated computation are
rolled back, the opportunities lost due to misspeculations may be significavetly dévi-

ating techniques to impve speculation accuna@nd encouraging frequent speculation.
The implementation that | considered to conduct magstication uses a coarse-grain roll

back of entire tasks on controltanisspeculations and data dependence misspeculations.

2.3.3 Sequential semantics

The original program order among the tasks is maintainee@éyikg track of the order
in which tasks are predicted and assigned Xecetion on the PUs.df the collection of
predicted tasksxecution may occur specubaly, but modification of architectural state
can only occur non-specubatly. Since tasksx@cute speculately, the state (igster and
memory) produced by it isuifered and cannot update architectural state. When a task
completes and all speculations (controifland memory dependence\vbhadeen resokd
to be correct, the taskiistired, i.e., its speculate state is promoted to architectural state.
In a simple implementation, tasks are retired in the original program order to maintain
sequential semantics; a task is retired only after its predecessor task has been retired. In a
more aggresge implementation, if tev tasks are completely independent, which may be
guaranteed by the compiléhey can be retired out of program orda&lthough out of pro-
gram order retiring may increase the comjpjeof hardware wer sequential retiring, per-

formance benefits may be accrued by relaxing the retiring.order
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2.4 Application binary interface

The discussion of thexecution model leads to the question of the information that the
hardware requires toxecute a program. The information passed from the compiler to the
hardware to &ecute a program on a o@mntional superscalar architecture typically
includes instructions and static data. Multiscalar hardwequires additional information

about the tasks of the program.

When a task is assigned to a PU feeaution, the hardare needs the start address of
the net task to assign it to another PU foeeution. The PU»ecuting a task needs to
know when the task ends. The start and end information of tasks are eellectlled as
inter-task control flav information. Apart from task boundaries, if tasks em@pnchro-
nization and communication to enforce iatesk data dependencesgisters and mem-
ory) then the hardare requires specification of yansuch synchronization and
communication between the producer task and the consumer vaskedhin the data
dependence. The PU thakeutes the consumer task needs takwhich \alues are to be
obtained from other tasks and when thkies areailable. The PU thatxecutes the pro-
ducer task needs to kwovhich \alues are to be sent to other tasks and whenalles/
may be sent. The information of when a datlue may be sent from a task and which data
values will be sent by other tasks is colleelly called as intetask data dependence infor-

mation.

The additional information about the tasks may be passed on from the compiler to the
hardware via the program binanjlternatvely, some auxiliary hardare may grner the
information from comentional program binarySince | vanted to gplore compilation
techniques, | opted to use the compiler to obtain andeg@uch information to hardave.

In summary program binaries include: (1) the instructions of the program, (2}taskr
control flov information, and (3) intetask data dependence information. The instructions

of the program remain the same asgular superscalaim the implementation | consider
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2.4.1 Intertask control flow information

When a task is assigned foregution, the hardare predicts one of the successors of the
task to be assigned foxexution. The hardare needs to knothe possible successors of
the task; not predicting the probable successor task until its identitywsiknours per-
formance loss. The compilex@icitly provides a list of successors of the task catiéee
getsand the hardere predicts one of the ¢gats [95]. It is important to note that if the
compiler does not pxide all of the tagets of a task, the hardwe could learn and remem-
ber the unspecified @ets as the are encountered inkxecution. The adantage of not
specifying a taget is smaller binary (and instruction memory resources) and the aisadv
tage is that the first time an unspecifiedyéaris encountered, the xteask cannot be
assigned until the tget is computed, which may lead to performance loss. Apart from the
successors of a task, the PU needs tovkmbere a task ends, so that it may terminaée e
cution. The compiler tags the instructions at the boundaries of tasks witheatfa bits
called theiask-exit bits. When the PU encounters an instruction with the tagksgs set,
it stops &ecution and the task ends. Branch instructions leaddgbssible control flo
paths and the task«¢ bits identify the paths thaki the task.

2.4.2 Intertask data dependence imfrmation

| discuss rgister dependences first and then memory dependences.-taskargister
dependences are to be honored by the comgiken the compiler needs to specikpkcit
synchronization and communication among dependent instructions. In orceeptidhie
discussion simple, let us assume that all itdsk rgister dependences are enforced by
the compiler via synchronization and communication. In a real implementation, some of
the dependences may be honored by the ramiwa speculation anarfication and the

rest may be handled by the compiler

The compiler determines the set ofjister \alues that may be produced by a task and

the set of rgister \alues that may be consumed by the task. If a task consumes aldata v
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produced by another task, then the consumer tasts wntil the alue is sent to it. In
accordance with sequential semantics, the last update gisgeran a task should ler -
warded [38] [95] to succeeding taskdf a register is guaranteed not to be modified by a
task, then it may be propaigd to successor tasks as and when WesriSince the PU
cannot determine a priori which instructions comprise its assigned task (the instructions
may not gen hae been fetched), it cannot km@1l) which registers are guaranteed not to
be modified, and (2) which instruction performs the last update wistaethat needs to
be forwarded. Veiting until all instructions in a task Y& executed so that all gesters are
updated serializes thexexution of tasks, incurring performance loss. The compiler pro-
vides the set of mesters which may be modified as a lketstor called thereate mask.

The compiler determines the last update of eaglster and tags the instruction with a
few extra bits called théorward bits, similar to task-gt bits. When a PU encounters an
instruction with forvard bits set, called forwarding instruction, it forwards the alue
corresponding to the destinatiomister of the instruction. If a géster is forvarded in one
control flov path lut there are no instructions that modify thgister in another path, an
extra instruction called eglease instruction may hae to be inserted to sendyrster \al-

ues. The tayets and the create mask of a task are collected togethetaskitsescriptor.

If memory dependences are handled entirely by the lzaiejwwhe compiler need not
provide ary information. As gplained before, since it is @iiult for the compiler to deter-
mine and compactly specify memory dependences, laaedve emplged to enforce

memory dependences.

3. If speculation anderification is emplged, multiple alues for a rgister may be sent. In that
case, thealue corresponding to the last update of tigéster should be sent last or tagged spe-
cially, to maintain sequential semantics.
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2.4.3 An example of a Multiscalar program

In order to clarify the kind of information required, | presentyangple of a code snip-
pet and illustrate itsxecution. Figur&-6 shavs the source code and the assembly code

with information specific to Multiscalar tasks.

The example code in Figur2-6(a) is a part of a simplified cache simulator; it contains a
loop which scans den the arraytrace. Trace holds the addresses of the simulated mem-
ory accesses and the arcaghe simulates the cach€AG_MASK andIDX _MASK are bit
masks used to select the cache tag bits and cachelitglerespectiely. HEAP_ MAXK is
a bit mask used to identify if an addrealisfinto the heap section of the simulated virtual
memory space. Theaviablestag andidx hold the cache tag bits and cache inbés,
respectirely, of each memory addres$eap access keeps count of the number of memory
addresses thaalt into the heap sectioil€ache_hit keeps count of the memory accesses
that hit in the cache, i.e., those accesses for which thg meps to a alid cache entry
and the tag matches the tag stored in the cache €atraccesses that do not hit in the

cache, the cache entry corresponding to the current indgdated with the current tag.

The corresponding assembly code in Fige#b) shavs variablesi, n, address, idx,
tag, heap_access, andcache hit in registersri, rn, radd, ridx, rtag, rheap, andrhit, respec-
tively. Ragistersrtrace and rcache hold the address of the cells whce and the base

address otache, respectiely.

Let us assume that the loop body is partitioned intotasks, shon by shaded ggons
in Figure2-6(b): one from the labeloop to the add instruction abe the labeNot Heap
and the other from the labEbt Heap to the labelContinue (the jump instruction at end
of the loop body). There are manther task partitions possibl@ththe partition chosen

here sergs to illustrate the kind of information required keeute tasks.
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while (i++ < n) {

address = tracei];

idx = address & IDX_MASK;
tag = address &AG_MASK;
if (address & HEAP_MASK)

heap_access++;

if (VALID(cachelidx]) &&
(tag == AG(cache][idx]))

cache_hit++;
else
TAG(cache[idx]) = tag;
}
(a)
Loop:
add ri,ri, 1
add rtrace, rtrace, 4
bge i, rn, Out
Id radd, O[rtrace]
andi ridx, radd, IDX MASK
andi rtag, radd, AG_MASK
andi rtmp, radd, HEAP_MASK
beq rtmp, rO, Not_Heap
add rheap, rheap, 1
Not_Heap:
add  rblock, rcache, ridx
Id rvalid, VALID[rblock]
beq rvalid, rO, Cache_Miss
Id rtmp, TAG[rblock]
bne rtag, tmp, Cache Miss
add rhit, rhit, 1
jmp  Continue
Cache_Miss:
st rtag, TAG[rblock]
Continue:
jmp  Loop
Out:
(b)

Targets. Task2, Bsk3
Create Mask: ri, rtrace, radd, ridx,
rtag, rtmp, rheap

Task1:

Fadd 1

F add rtrace, rtrace, 4

ST bge ri, rn, Task3

FId radd, O[rtrace]

F andi ridx, radd, IDX_MASK

F andi rtag, radd, AG_MASK

F andi rtmp, radd, HEAP_MASK
ST beq rtmp, rO, Not_Heap

FS add rheap, rheap, 1
Not_Heap:
(©)

Targets: Taskl
Create Mask: rblock, nalid, rtmp, rhit

Task2:
F add rblock, rcache, ridx
F Id rvalid, VALID[rblock]

beq rvalid, rO, Cache_Miss
F Id rtmp, TAG[rblock]

bne rtag, tmp, Cache Miss
F add rhit, rhit, 1

jmp  Continue
Cache_Miss:

release rhit, rtmp

st rtag, TAG[rblock]
Continue:
S jmp Taskl
Task3:

(d)

Figure 2-6: An example of a Multiscalar program. (a) The source code of a loop of a
simplified cache simulator(b) The assembly code for the loop. The loop body is

partitioned into tw tasks. (c) and (d) The twtasks and their descriptofs. ST, andS
denote forvard register exit if taken, and eit always, respectely.




28
In Figure2-6(c), the tvo branch instructions are annotated with tagk-eken bits
(indicated by ST) causing the haraw to terminate the task if either of the branches are
taken. The add instruction at the end also has its taskies set (indicated by S) causing
the task to terminate. In FiguBe6(d), the jump instruction has its taskitebit set (indi-

cated by S) causing the task to terminate at the end of the loop.

In Figure2-6(c), since all the ingger instructions and the load instruction esK1 are
last updates of the respestidestination igsters, thg have the forvard bits set (indicated
by F). Ary register on the create mask thaswnot forvarded during thexecution of the
task is forvarded after the task terminatesr lexample, if the second branch cdiskl is
taken thenrheap is not forvarded by ay instruction and it is automatically foarded at
the end. @sk2 is similar to dskl ecept for the release instruction which famds the
registersrhit andrtmp. If either of the first tw branches ofdsk2 are tadn, then the ggs-
tersrhit and/orrtmp are not forvarded by ay instruction; instead of letting the harawe
forward them at the end (similar theap of Taskl), the release instruction f@mds them

earlier because subsequent tasks mayaieng for them.

To explain hav load and store instructions aveeeuted, let us assume thabtiterations
of the loop in Figur®-6(a) are recuted on a fouPU configuration. dskl and dsk2 of
iteration 1 and dsk1 and ask2 of iteration 2 arexecuted on PU1, PU2, PU3, and PU4,
respectrely. PU1 forwards rgistersri, rtrace, radd, ridx, rtag, andrheap to PU2 when
the corresponding foravding instructions arexecuted. In addition to forarding reisters
rblock, rvalid, andrhit, PU2 also propaues the mgisters receied from PU1 to PU3. PU3
consumes the gesters recered from PU2 and forards n& values and propades old
values for the correspondinggisters. It is possible that iterations 1 and 2 xnid¢o the
same cache entrif iteration 1 simulates a cache miss and iteration 2 simulates a cache
hit, the store instruction of PU2 g3k2, iteration 1) and the load instruction of PU4
(Task2, iteration 2) access the same entry of cache. Depending upon the timiaeguef e

tion, either the store from PU2 reaches the ARB before the load from PU4 orwsee¥
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the store is ahead of the load then the load gets the caateetof the cache entry; other-

wise, when the store ixecuted, the ARB detects a memory dependence violation and
squashes PU3 and PU4sK1 and ask2 of iteration 2 are rneecuted on PU3 and PU4.

2.4.4 Other alternativesto binary interface

There are alternat schemes to pvale task information to the hardwe other than tag-
ging instruction with etra bits. Assuming that the program binary does not contain an
task information, instead of a compiler some auxiliary hardwcould scan the instruc-
tions as the are fetched and demarcate tasks. Once a task is demarcated, the instructions
can be scanned and intask control flav information and intetask data dependence
information may be determined. Urdikhe compiler which stores the task information in
the program binarythe hardwre scheme coulduffer the information in a special cache
or in the instruction cache itself (similar to an instruction cache which contains pre-
decoded instructions). The compiler may be able to produce better tasks than tlaeehardw
because it can include more analyses than the haed8ince | amxploring the com-

piler, I will not elaborate on this approachyanore.
2.5 Hardwareimplementation of the Multiscalar architecture

All the information required by the hardwe is included in the program binafijhe
Multiscalar hardware eecutes a program by fetching andeuting instructions, similar
to a superscalar processbhe task information included in the binary is used by the hard-
ware to coordinate thexecution of tasks in the programhe Multiscalar processor is
organized as a collection of processing units (PUs), each of which hagnitletch and
issue logic, rgister file, pipelined datapath harase, and load-store queues, similar to a
superscalar processor pipeline core. The PUs are connected to avdirshderuction

cache which may be baett up by net level caches. The PUs are connettedjether to

4. Although logically ay interconnect may be used, since data®s and other information can be
communicated from a predecessor task to a successor task only (and not thay)ttesimple
unidirectional ring may be easier to engineer
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Sequencer
Reg Reg Reg

Address Resolution Buffer (ARB)

Instruction and Data Cache Hierarchy

Figure 2-7: Hardwarefor the Multiscalar architecture. The  Sequencer  performs
control flav speculation and assigns tasks to the PUs xecwdion. The PUs include
narrav-issue pipeline datapaths with fetch, decode, and issue logic as well aata pri
register file. All memory accesses from the PUs are sent to the ARB to detect memory
dependence violations. The ARB is badkup by the rest of the data cache hiesarthe

PUs are also connected to the instruction cache higrarch

communicate dataalues and other information from one unit to another [36] [38]. Apart
from the PUs, there is a hardwe predictor which predicts the tasks to keceted. The
sequencer assigns tasks to PUs in the predicted program orderegsdiack of the pro-

gram order among them. The PUs are also connected to the memory disambiguation
mechanism called the address resolutiofieb or ARB [40] to handle loads and stores.

The ARB enforces the original program order among memory operations performed by
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different PUs; ayload and store to the same address performed out of program order is

detected and corrected by the ARB. The ARB algtebs all store alues of a task until
the task is retired, at which time the ARB updates the fist tmche. The ARB is baeH
up by the first leel data cache and the rest of the memory hieyavahich hold only non-

speculatre values.

2.5.1 Contol flow: Sequencer

The sequencer assigns a task fa@ceition on a PU and fetches the task descriptor of the
task, using the starting PC of the task calledtéis& PC. Task descriptors are cached in
thetask cacheto reduce laterycof access. The sequencer then predicts one of tetdar
specified in the descriptor using task prediction tables similar to branch prediction [37]
[38] [55] [90] [95] [114] tables used by superscalar processors. The sequencer probes the
prediction tables with the task PC and the prediction tables generagetantanber based
on past history of the tgets takn by the task. The sequencer uses tlgetarumber to
probe the task descriptor and gets the task PC for thiepredicted task and continues

task assignment if the xtePU is free.

2.5.2 Register data: Unidiectional communication ring

When the sequencer assigns a task to a Péauéon, the PU starts fetching ancte
cuting instructions from the task PC. If all the inpgiséer operands of an instruction is
not available, then the instruction iggt pending until the requireche is recefed from
some predecessor task. Whengister \alue is receied from the prdous PU, the corre-
sponding local rgister is updated with thealue. If the rgister is not in the create mask of
the task (i.e., it is guaranteed not to be modified by the task), thealtleeisypassed on to
the net PU; otherwise, the gister \alue is not passed onyafurther and it will be sent
when the corresponding foanding instruction is encountered. When an instruction with
forward bits set is»@cuted, the destinationgister \alue is sent on the ring to thexhe
PU.



32
2.5.3 Memory data: Addressresolution buffer

Every load and store from any of the PUs access the ARB. The ARB is organized like a
cache and indexed using the memory access address. Every load and store is recorded in
the ARB and stores deposit the valuesin it and do not update the data cache. A storeto an
address from a task checks for loads from the same address that have already been per-
formed by later tasks. If any such load is found (i.e., a memory dependence violation is
said to have occurred) then the task that performed load (and all later tasks) are squashed.
When a task retires, its buffered store values are written back to the data cache and the
ARB entries are cleared. The data cache holds only architectural state and no speculative

state.

2.5.4 Sequential semantics

The hardware maintains the program order among the predicted tasks by assigning them
in the order to the PUs in the direction of the unidirectional communication ring. This
assignment maps the logically ordered tasks on the physically ordered PUs. In order to
continue to maintain this ordering even through squashes, any squash results in the offend-
ing task and all logically succeeding tasks (inferred from the order of the PUs to which
they are assigned) being sgquashed. This squash model maintains the one-to-one corre-
spondence between the logical order of the tasks and the physical order of the PUs. In
order to maintain correctness of data values, atask isretired only after all register values

are sent and all memory values are written back from the ARB to the data cache.
2.6 Performance Aspects
In this section, | add timing information to the functional description of execution of

tasks to account for execution time of tasks and understand important performance issues.

When atask is assigned for execution, two possibilities arise: (1) the task completesand is
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retired, or (2) an incorrect speculation (controiflor memory dependence) occurs and

the task is squashed.

2.6.1 Scenario 1: &sk is retired

When a task is assigned fotegution, it starts out by fetching instructions from the start
PC and filling the pipeline of the PU with instructions. The time associated with filling the
pipeline is classified aask start overhead Each instructionx@cutes as long as its input
operands arevailable, similar to a superscalar proces#faan input operand is novail-
able, then the instructionaits until the alue is &ailable. If the instruction wits for a
value to be produced and communicated by another task, then the assoaiatiedens
classified asnter-task data communication delayIf the instruction waits for a alue to
be produced by a prmus instruction in the same task, then the associasgdtivne is
classified asntra-task data dependence delayAs soon as the require@lue is &ail-
able, &ecution proceeds andentually the task ends. After completion, the tasits\o
retire; the associatedaw time is classified a®ad imbalance because the ait time is
incurred due to the ddrence in the amount of computation performed by the task and its
predecessor tasks. When the task isaadbb to retire, it commits its speculadi state to
architectural storage; the associated time is classifiedkend overhead After the task
retires, the PU is ready taexute another task. Figu2e8(a) illustrates thearious phases

of scenario 1.

2.6.2 Scenario 2: &sk is squashed

When a task is assigned fotegution, it proceeds ag@ained abwe until an incorrect
speculation is detected. Either the task itself or one of its predecessors is detected to ha
misspeculated and the task is squashed andvdask is assigned. The entire time since
the start of the task, irrespeiof whether the taskas waiting for values or recuting
instructions, is classified aontrol flow misspeculation penaltyor memory depen-

dence misspeculation penaltyas the case may be. Since a misspeculation may cause se
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_ Events Execution Phase Events Execution Phase
TIme Tag assigned Task assigned
. Task start
Pipelinefull over head
Useful cycles i i
Usevalue y IF\)/Ielnsgﬁ)tt;culatlon
Inter-task data
8glmmun|cat|on
- ay Squash task
Valuereceived Task restarted
Useful cycles
Usevalue y
Intra-task data
dependence
delay
Value ready
Useful cycles
Task complete
I Load imbalance
Task retire
Task end
v PU free overhead PU free

(@)

(b)

Figure 2-8: Timeline of the execution of atask. Time extends downwards.

Events

occurring during the execution are shown on the left of the timeline. The names for the
various time-phases corresponding to the events are shown on the right of the timeline. (a)
Scenario 1: Task executes to completion. (b) Scenario 2: Task is squashed and restarted.

eral tasks to be squashed (the offending task and all its successors), the misspeculation is

associated with the sum of all the individual penalties of each of the squashed tasks.

Figure 2-8(b) illustrates the various phases of scenario 2.
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2.6.3 Performance improvements through the compiler

The issues listed alee are addressed by specific compiler techniques whichataitige
performance loss associated with each of thegoatss. Complementary hardve tech-
nigues also are empled to alleiate performance problemsadk start eerhead and task
end werhead are amortized by selectingyéatasks. If the startverhead is tw ¢ycles to
fill the pipeline of the PU, then the compiler may be configured to select tasks which are
20 instructions or more tcekep the verhead to less than 10%, assuming the PU may issue
at most 1 instruction perycle. Intertask data communication delay is tackled by tw
techniques: (1) dsk selection heuristics select tasks with as ifdertask data depen-
dences as possible tecad intertask data communication as much as possible and (2) The
intertask data dependences that could notveédad by the task selection heuristics are
handled by scheduling; producers and consumeddvied in the intetask dependences
are mwoed up (early) and aen (late) in their respecte tasks. The required datalwe is
produced early and communicated before it is required by the condotreetask depen-
dence delay is handled by traditional instruction scheduling. Load imbalanceistetle
by controlling the ariation in task sizes. By imposing an upper limit on the number of
instructions included in a task, task selection heuristics may aiskllge \ariations in
task sizes. Performance loss due to misspeculation (both contr@rftbmemory depen-
dence) is mitigted by two techniques: (1)ask selection heuristics partition programs into
tasks with as f& control and memory dependentas possible tovaid intertask depen-
dences that are misspeculated and (2) The-faskr dependences that could not be
avoided by the task selection heuristics are handled by schedwdnifg;ation of the spec-

ulated dependences is scheduled early to reduce misspeculation. penalty

5. Memory dependences are hard to determine at compile-time due to ambiguous pointer accesses
and interprocedural memory accesses. The heuristics described in this thesis (in Ghapéer
simple analysis of memory dependencesliving global scalarariables referenced by name.
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2.7 Theproblem of compiling for the Multiscalar architecture

Compiling for the Multiscalar architecturevisives discwering independent computa-
tions in a sequential program. But uelig VLIW, superscalar or a parallelizing compiler
the Multiscalar compiler need not prde absolute guarantees of independence because of
the extensve hardvare support for speculatiﬁnControI speculation and memory depen-
dence speculation in hardve reli#es the compiler of theubden of guaranteeing com-
plete independence or correct synchronization among Multiscalar tasks. Xibée fle
granularity of tasks alles the compiler to select tasks on the basis of the parallelism
present in the program and does not force the compiler to engineer the code to fit the gran-
ularity of the hardwre. Superscalar and VLIW compilers/bdo engineer (via techniques
like code motion across basic blocks and saivpipelining) the inherent (possibly com-
plex, in terms of control and data dependencies) grain of the program into the rigid n-wide

instruction structure, which the architecturgeaite.

The Multiscalar architecture primles synchronization mechanisms fogister depen-
dences, which the compiler can detectr the cases wolving memory dependences, in
which the compiler may not be able to perform an accurate analysis, the architecture
allows the compiler to aggressiy speculate on ambiguous dependences. Ivechional
architectures, instead, the compiler is forced to generate sequential code. Needless to say
presence of dependencewld preent application programs fromxexuting aister Never-
theless, aggresa solutions astly imprave performance in situations where there is par-

allelism which cannot be established with absolute guarantees by the compiler

In more concrete terms, the Multiscalar compiler identifies computations which are
mostly ut not necessarily independent anohdles them into tasks. The compiler parti-

tions and schedules around tmocontrol flav and data dependencesr Einknavn and

6. VLIW and superscalar architectures yide support for speculation via predicated instructions
[54] (e.g., conditional mee instructions).
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ambiguous dependences, the compiler speculates that there are no dependences and parti-

tions programs ignoring such dependences; the compiler attemgtsptohie misspecula-
tion penalty lav by keeping the size of tasks modest so that misspeculations do not discard

large amounts of computations.

The responsibilities of the compiler include partitioning sequential programs into tasks
with few dependences among each qtlmeaintaining correctness by specifying control
and data dependencies among the tasks to the &ardand imprang performance by
streamlining control and data dependences among the tasks. Corresponding to these
requirements, the problem of compiling for the Multiscalar architecture comprises four
parts: (1) deising heuristics to obtain suitable tasks, (2) specifying -tatek rgister
communication and inteask control flav to maintain correctness, (3) scheduling inter
task data (both memory andjrgter) communication to mitege performance loss, and (4)

evaluating compiler stragges.

Program
Binary

partitioned into tasks

—» Compiler —»  optimized » Multiscalar

Hardware

Sequential
Application

annotated with
task information

Figure 2-9: Role of the compiler for the Multiscalar architecture. The compiler
compiles sequential applicationsvwioto the hardare. The compiler partitions the code
into tasks and performs \sal optimizations and generates a program binary which
includes task information (géster create masks,gister forward bits, task-at bits, and
task tagets).
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Task selection wolves determining control and data dependences among instructions

and collecting instructions into tasks such that most dependent instructions are included in
the same task. Specifying intixsk rgister communication and int&ask control flav
includes determining the last update of gister in a task and identifying the branches
that lead control fl@ from one task to anotheRegister communication scheduling
involves identifying the producer and consumer instructions of-iasr rgister depen-
dences. The scheduler vas the producer instructions up and the consumer instructions
down in their respecte tasks so that the time takto produce thealue and communicate

it is overlapped with some useful computation in the task of the consumer instruction.

Like other compilers, the Multiscalar compilacés both correctness and performance
issues. Correctness issues include itdek rgister dependences and intask control

flow and performance issues include task selection agiste&e communication schedul-

ing.

2.7.1 Correctnessissues

Inter-task r@ister dependences and intask control flav are completely specified by
the compiler to the hardwe. Ary instruction that is the last update of gister irrespec-
tive of the control flv paths within the task, must be tagged to toxhits destination gg
ister’. The compiler cannot guarantee sequential semantics if this rule is violated. Control
flow path that gits a task must lead to the entry point, and not the middle, of another task.
Since rgister forvarding is set up by the compiler assuming taske laasingle entry
point, sequential semantics cannot be guaranteed if this rule is violated. Similar to other
instruction scheduling schemesgister communication scheduling alseatves correct-
ness issues as well. Code motion emgtbby rgister communication scheduling must

conform to sequential semantics.

7. If a register is forvarded multiple times due to hardwe or compiler speculation, the last for-
ward must send to the correctiwe.
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2.7.2 Performanceissues

Task selection is the most important performance issue of the Multiscalar architecture.
Since there is no restriction on the controiMiand data dependences that magtevithin
a task and among tasksyaarbitrary contiguous sequence of static instructions ialal v
task; the choice of tasks is entirely a performance consideratiapdse as much paral-
lelism as is in the program, task selection should result imamfertask dependences as
possible. Ay intertask dependences result in either tas&gimg for values or tasks spec-
ulating that there are no dependences and squashing. If attaskedependence is
unavoidable, then tasks should be selected such that the producer instructionadfi¢he v
involved in the dependence is close to thgifm@ng of its task and the consumer instruc-
tion of the \alue is close to the end of its task. Thus, producer instructicedsited early
and consumer instruction igexuted late resulting inverlap between communication and
computation. If task selection does not succeed inaadgi¢his werlap, then code sched-
uling, which emplgs static code motion to e the producer up to thediening of its

task and the consumerwlo to the end of its task, should be done.

2.7.3 Organization of the compiler

The techniques discussed abare implemented as a series of compiler optimizations
phases. The ganization of the compilerwhich is dewed from gcc, is shevn in
Figure2-10. At the top leel, gcc parses, optimizes, and compilegdo assembly one
input function after anotheAfter a series of traditional phaseselifjump optimizations,
common subJgression elimination, and loop optimizations, the Multiscalar compiler
performs loop optimizations specific to the Multiscalar architecture called loop restructur-
ing. After the program is partitioned into tasks, the compiler schedgisserecommuni-
cation. Reister allocation is performed after that in the usual marktethe final code
generation phase, the compiler annotates the assembly code wHiasktegister com-

munication and control fl@ information.
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Traditional (gcc) M ultiscalar
Parsing

Jump Optimization
Common Sub-Expression

L oop Optimization > Loop Restructuring

Task Selection

L Register Communication Schedulin
Register Allocation << = J

> Task Annotation
Code Generation —

Figure 2-10: Organization of the compiler for the Multiscalar architecture. The

different phases of the compiler and the phase ordering implemented in the cdrhpiler
traditional phases of Gcce are listed on the left and the phases specific to Multiscalar are on
the right.

Task selection and gester communication scheduling e&akdwantage of profile infor-
mation (basic block frequencies), falable. Since mandecisions made by the compiler
during task selection and gister communication scheduling depend on the wvelati
importance of optimization opportunities, frequgounts obtained from dynamic profil-
ing are used to prioritize the opportunities. Profile information is optional in that the com-

piler generates Multiscalar binariegea if the information is notvailable.
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Chapter 3

Task Selection

Task selection is one of the most important problems for the compiler; the amount of
parallelism &ploited by the Multiscalar hardwe while &ecuting a program depends sig-
nificantly on hev the program is partitioned into tasks. While a good task selection may
result in the program partitioned into completely independent tasks leading to perfor-
mance impreements linear with respect to the number of processing units, a poor task
selection may lead to the program partitioned into dependent tasks resulting in perfor-
mance wrse than that of a single processing unit, duevéoheads resulting from distrib-
uting hardvare resources.df example, if rgister dependences through a critical path are
exposed across tasksgrster communication may addtea lateng cycles to the critical
path. Centralized ggster \alue bypassing used in superscalar processors may not incur

this overhead.

The guiding principle used to select tasks is that control and data dependent computation

should be grouped into a task so that synchronization and communication or speculation

1. This xkample does not takclock speed diérences into consideration.
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and \erification are minimized. Anintertask communication or speculation may result

in loss of performance due to communication delays or misspeculation penalties. There
are two issues in applying the principle: (1) it is hard to determine all the data dependences
in a gven application due to ambiguous memory dependences x{@ained in
Section2.3.2) and (2) wen if the dependence information is accurate, data dependences,
control dependences, load imbalance, and taskheads (asxplained in Sectioi2.6)

often impose conflicting requirements. Sarkar [89wsktb that partitioning simple func-
tional programs into tasks txecute on a multiprocessor is NP-Complete. He modeled
program &ecution time as a function of the amount arlwdone by each task and data
communication delay due to inte&xsk dependences. &v without including consider-
ations about speculation in the mdgi¢he problem of partitioning programs into tasks for

optimal performance is intractable.

| handle the first issue by determiningjister dependences and a/fsimple memory
dependences wolving statically named ariable accesses. fnambiguous memory
dependence wolving pointers and heap structures are not analyzed and are ignored. Hard-
ware support for memory dependence speculatiowsltbe compiler to ignore ambigu-
ous memory dependences, aplained in Sectio2.7. To address the second issue,\eha

devised a set of heuristics to select tasks for high performance.

This chapter describes the problemgolued in partitioning a sequential program into
Multiscalar tasks and my solutions to the problems. | define tasks in Sédtiand dis-
cuss the relationship between performance issues and task characteristics in3Sction
In Section3.3, | discuss important criteria used to select tasks waitirdble characteris-
tics. | describe heuristics which incorporate the criteria in Se8tdhnand present some

details of my implementation in Secti8rb.

2. In other vords, the assumption that speculatiomagls succeedsauld keep the simple model
unchanged.
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3.1 Definition

A Multiscalar task is defined to be a connected, single-entry subgraph of the static con-
trol flow graph (CFG) [1] of a sequential program. A task corresponds to a contiguous
fragment of the dynamic instruction stream that may be entered only at the first instruction
of the fragment. There are no other constraints on taslepethat thg cannot comprise
disconnected parts of the dynamic instruction stream. A task may comprise a basic block
[1], multiple basic blocks, loop bodies, entire loops,vaneentire function wocations. If
a task contains a function call thapands to mandynamic instructions, the correspond-
ing function definition is considered to be a part of the task. Note that more than one task
may contain a call to the same function, in which case the tasks share the static code of the
corresponding function definition. Arbitrary controMi@nd data dependences maise
among instructions of a task orféifent tasks; specificallyasks are not necessarily inde-
pendent. The nonrestrieé nature of tasks alis the Multiscalar architecture taxoit
ary grain of parallelism, ranging from instructions within a basic block to instructions of

different function imocations, present in application programs.

Although tasks are defined to be static objects, there is an important relationship
between the sequence of dynamic instructions corresponding to xeasiteel by a PU
and the static task. The PU falle a particular dynamic control flopath through the
static task, depending on the datues iwvolved in the computation performed by the
task. Since the compiler does novéaccess to dynamic controlMigaths, it treats a set
of static control flav paths, some of which\g rise to dynamic control flopaths during
execution, connected together in a subgraph of the CFG as a task. Thus, a static task, as |

have defined it, is ineact in that it contains computation that is a superset of the computa-

3. Since an instruction is the smallest unit éeution that may be assigned to a PU, each instruc-
tion may be defined to be a basic block. But in Chdgterhich presentskperimental results, |
use the term basic block tasks to denote the traditional single-gingle-«it piece of code that
may contain more than one instruction.
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tion performed by each dynamicvotation of the task. Although iract, this definition

allows the compiler to careniently perform arious analyses and optimizations.

Two simple @amples of tasks are: (1) a task that contains the entire program, and (2) a
task that contains just one basic blocktivguch a wide range of options to choose from,
task selection uses heuristics to steewards tasks that dekr high performance.
Figure3-1 illustrates a f&@ examples of Multiscalar taskeadicated by shaded regigns
using asimple loop that performs a string compare. Figii€a) shows the loop body
partitioned into three tasks: the first task comprises the case of A[i] < BJ[i], the second task
comprises the case of A[i] > BJi], and the third task comprises incremeantbthe loop
exit branch. Figur8-1(b) shows the loop body partitioned into two tasks: the first task
comprises the comparison of A[i] and BJi], and the second task comprises increment to i
and loop exit branch. FiguB1(c) shows the entire loop body included in one task and
Figure3-1(d) shows the entire function definition included in one task. These four parti-
tions have different performance characteristics. The partition in F3glf&) exploits the
fine-grain parallelism present within the loop body, the partition in Figtir@) com-
bines two tasks of Figui@l(a) into a larger task, the partition in Fig@(c) demar-
cates each loop iteration into a task, and the partition in F&i(d) includes the entire

function invocation.

| introduce a f& more definitions for the rest of the discussion on Multiscalar tasks. A
basic block is defined to bacluded within a task if the basic block is contained in the
subgraph of the CFG corresponding to the task. A contwl dédge (u,v) of the CFG,
where u and v are basic blocks, is defined tibleided within a task if the basic blocks
u and v are both included within the task. A controlfledge (u,v) is defined to be
exposed if the basic blocks u and v are included irfetignt tasks. Similarly a data depen-
dence edge (p,c) from the producer instruction, p, to the consumer instruction, c, is defined
to beexposed if any of p, ¢, and all basic blocks that are in the contrel f\aths from p to

c are included in diérent tasks.



int match(ch *A, ch *B, int N) {
for i=0;i<N; i++) {

if (A[i] < BJi])
return -1;

else if (A[i] > B[i])

return 1;
}
return O;
}
(@)

int match(ch *A, ch *B, int N) {
for (i=0;i<N;it++) {

if (A[i] < BJi])
return -1;

else if (A[i] > BIi])

return 1;
}
return O;
}
(c)

int match(ch *A, ch *B, int N) {
for(i=0;i<N;i++){

if (A[i] < BJi])
return -1;

else if (A[i] > B[i])

return 1;
}
return O;
}
(b)

int match(ch *A, ch *B, int N) {
for (i=0;i<N;i++){

if (A[i] < BJi])
return -1;

else if (A[i] > BI[i])

return 1;
}
return O;
}
(d)

Figure 3-1: Examples of Multiscalar tasks. Source code of a string matching function.

The strings are stored in arrays A and B and the function returns a -1, 1, or 0 depending
upon whether A is smaller than, dar than or equal to B, respeetlly. Each shaded areas
corresponds to a task. (a) A task selection containing four tasks: the if portion of the loop
body, the else portion of the loop bqdie increment of the loop indend the loop-&t

test, as shen by the for statement, and the return statement. (b) A task selection
containing three tasks: the if and else portion of the loop,ldbdyincrement of the loop

index and the loop-@t test, and the return statement, as before. (c) A task selection
containing tvo tasks: the entire loop body including the increment of the looyx iade

the loop-&it test. (d) A task selection containing one task: the entire function definition,
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3.2 Rerformance issues and task characteristics

From the discussion of the taskeeution time line in Sectio®.6, major reasons for per-
formance dgradation are: control flo misspeculation, intelask data dependence, mem-
ory dependence misspeculation, load imbalance and teskeads. Each performance
issue is related to one or more task characteristiovlaramine each of these cgtwies,
distinguish between the cgtwies and their superscalar counterparts, and relate the cate-

gories to the task characteristics that cause them.

3.2.1 Contol flow misspeculation

Control flov dependences among tasks cause contwl rikisspeculations. Although
control flov misspeculation seems similar to superscalar branch misprediction, the penalty
incurred is diferent. In most superscalar machines, branch prediction is dovergt e
branch one after the other in the predicted pathically branches are resel within a
few pipeline stages (usually less thana fens of gcles) after the are fetched. Conse-
quently branch misprediction penalties are of the order ohacfeles. But in the Multi-
scalar architecture, control o prediction is done well before the actual branch
instruction that transfers control from one task to anothevars &tched. Resolution of
control flov from a task to its successor can be typically done only at the end of the task
because the branch instruction may be encountered only at the end of the task. The result
of this late resolution is that controlWamisspeculation penalties are of the order of the
execution time of tasks, which may be muclgtarthan a f& cycles of lost opportunity
Even if intertask control flav may be resokd before the end of the task, misspeculation

penalties may still remain a significant fraction of tkecaition time of tasks.

Figure3-2 illustrates the impact of control Wospeculation on\eerall performance of
the Multiscalar architecture. Figue2(a) shavs a part of the CFG of a program. If the
program is partitioned so that each of the basic blocks A, B, C, and D is a separate task by

itself, then performance may be lost due to ynaontrol flov misspeculations.
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Execution scenario if each of A, B, C, and D
are separate tasks

PU1 PU2 PU3

Program
g A

Squashed

Restarted

(b)

Execution scenario if A, B, and C ae one task
and D is a separate task

PU1 PU2

(@)

(c)

Figure 32: Impact of control flow. (a) A part of the CFG of a program containing four

basic blocks A, B, C, and D. (b) Arxecution scenario on three processing units,
assuming that each of the basic blocks is a task by itself. Conwaddfleculation assigns

tasks A, B, and D to processing units PU1, PU2, and PU3, resedilisspeculation is
detected and tasks B and D are squashed and tasks C and D are reassigned. (c) An
execution scenario on twprocessing units, assuming basic blocks A, B, and C are
included in one task and D is a task by itself. Since the first task has only one successor
there cannot be grcontrol flov misspeculation.

Figure3-2(b) shavs an @ample of control flar misspeculation duringxecution. Process-
ing units PU1, PU2, and PU3 are assigned tasks A, B, and D, resfyguta control flav

speculation. When control flois resoled, a misspeculation is detected and the incorrect
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tasks B and D are squashed and the correct tasks C and D are assigeedtto €he

main reason for this misspeculation is that task partitionipgsed the branch at the end

of basic block A. If the branch is included within a task, thesald/be no misspeculation.
Figure3-2(c) shaevs another task partition whichva@ds control flev misspeculation.

Basic blocks A, B, and C are included within one task and basic block D is in another task.
Since Bskl has only one successor since it includes the branch in basic block A, control

flow speculation is alays correct.

3.2.2 Inter-task data dependence

Inter-task data dependences cause either-tatl data dependence delay or memory
dependence misspeculation. Let us consider-tatd data dependence delay first. In
superscalar machines, consumer instruction is delayed the most when the corresponding
producer instruction is close to it in the dynamic instruction stream. The dplayenced
by the consumer is typically proportional to the lajeoicthe produceiOn the other hand,
in the Multiscalar architecture, the consumer mgyeeience delays much longer than the
latengy of the producer if the producer and the consumer belongfevatit tasks. If the
producer is ecuted at the end of its task and the consumeesuéed at the lggnning of
its task, then the delay incurred is proportional to ¥ez@tion time of the producer task.

Data dependence that may lead to onlyva dgcles delay in a superscalar machine may

get aggraated to much longer delay if such a dependence is spread out agjesadés.
Figure3-3 illustrates the impact of data dependencesveratl performance of the Multi-

scalar architecturdzigure3-3(a) shows a loop in which the variable Y is defined and then
used. In Figur&-3(a), the loop body is partitioned into two tasks, A and B, resulting in the
data dependence edge from the define of variable Y to the use of variable Y to be exposed.
The tasks are assigned to execute on processing units PU1 and PU2, as shown in
Figure3-3(b). During execution, PU2 waits for the value of Y which is produced at the
end of task A, reducing the overlap of execution on PU1 and PU2. The idling of PU2

results in loss of performance. Fig&(c) shows an execution scenario similar to
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Program Execution Scenario 1 Execution Scenario 2

PU1 PU2 PU1 PU2

Execution Scenario 3

PU1 PU2 PU1 PU2

No cycles
wasted

(e)

(d)

Figure 3-3: Impact of data dependences. (a) A part of the CFG of a program containing

a loop with a definition and a use of thariable Y The loop body contains twparts
shavn by shaded gions A and B. g indicates control fe. —> indicates data
dependence. (b) Arxecution scenario on twprocessing units, assuming thajions A

and B are separate taskasks A and B are assigned to processing units PU1 and PU2,
respectrely. Since task B uses thalue of Y at the bgnning, it is stalled until task A
produces the alue. (c) An ®gecution scenario similar to that in (b)cept instead of
waiting for the value, task B proceeds under data dependence speculation that there is no
data dependence. When task A produces #hgéey a data dependence misspeculation is
detected and task B is squashed and restarted. (Resnteon scenario on mprocessing
units, assuming that the entire loop body., rggions A and B are included in one task.
Two iterations of the loop are assigned fwe@ition on the te processing units. Since the
data dependence is included within the task, tleetasks proceed withoutastalling or
squashing. (e) Anxecution scenario similar to that in (bxcept the alue is produced
early in task A and consumed late in task 8kE A and B proceed withoutyestalling or
squashing and task A produces and sendsalue before task B needs to use it.
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Figure 3-3(b) but instead of waiting for the value of Y, PU2 speculates that thereis no data

dependence between tasks A and B and uses a stale value of Y; when PU1 produces a new
value for Y, a data dependence misspeculation is detected and PU2 is squashed and
restarted. Irrespective of whether PU2 waits or misspeculates, the inter-task data depen-
dence resultsin aloss of performance. Figure 3-3(d) shows the entire loop body included
in one task so that the data dependence edge is included within the task. Since no data
dependence edge is exposed, the two processing units execute simultaneously, achieving
better performance. Figure 3-3(e) illustrates the rel ationship between task partitioning and
scheduling of inter-task data dependence. If the define and the use of Y are scheduled so
that the define appears early in the schedule of the instructions of task A and the use
appears late in the schedule of the instructions of task B, then even if the data dependence
is exposed, it will not cause any loss of performance. Figure 3-3(e) shows tasks A and B
assigned to processing units PU1 and PU2, respectively. Unlike the scenario in
Figure 3-3(a), PU1 produces the value of Y well before PU2 uses the value and the com-
muni cation due to the inter-task dependence is completely overlapped with useful compu-
tation.

If an inter-task data dependence is misspeculated (instead of waiting), then, again simi-
lar performance loss isincurred. Misspeculation is detected when the producer instruction
executes and the required value is sent to the consumer instruction; the consumer signals
the occurrence of a data dependence violation and a squash is triggered. If the producer is
executed at the end of its task and the consumer is executed at the beginning of its task,
then the squash penalty incurred is proportional to the execution time of the producer task.
Here, again, afew cycle delay in a superscalar machine may get aggravated to much larger
squash penalties.
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3.2.3 Load imbalance

When a PU completexecuting a task, the PU may commit thgiseer and memory
state modified by the task only after the predecessor task has been completed and commit-
ted. Committing tasks in program order is a straighttodway to ensure sequential
semantics. If a small task folle a lage task in program ordehen the PUxecuting the
small task idles after completing the small taskjtiwg for the lage task to complete.
This loss of performance arises primarily because of load imbalance, i.e., the amount of
computation performed in the tvtasks are not equaloFexample, let us assume thatotw
tasks &ecuting on adjacent processing unitset@&0 and 10ycles, respeoctely. On the
average, 50% of the time the second processing unit is idle, resultingradlautilization
of 75%.

Load imbalance causes performance loss fgelacale parallel machines [68]. Since
distributed processor ganizations also partition their p$ical resources among tasks
similar to parallel machines, there confronted with load imbalance problems.gear
variations in the amount of computation of adjacent tasks causes load imbalance resulting
in successor tasksaiting for predecessor task to retire. A task assignedkémugion may
only use its wn PU; resources of other PUs can not be used #& they are free. @ the
first order load imbalance results from ¢gr \ariations in the number of dynamic instruc-
tions executed by tasks assigned to adjacent processing units. Since superscalar machines
employ centralized shared resources, an instruction needing a resource can utilize it if it is
free. Load imbalance can be alkted by alleving nev tasks to wecute on PUs that ha
completed their old tasks; the specwatstate of the old tasksveato be bffered sepa-
rately from the n& tasks and committed appropriatelshich may complicate theulfer-
ing scheme. Similar to the pieus catgories, gcles wasted due to load imbalance also

may be proportional to thexecution time of tasks.
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3.2.4 Task overheads

There are tw kinds of @erheads associated with tasks: (1) task stemthead, and (2)
task end verhead. @sk start werhead is similar to the problem of shagttors in a gctor
machine [87]. Small tasks incur task staremneads to be a significant fraction of their
execution time resulting in considerable performance loss. &rlike other cagories,
task start verhead depends on hamahw parameters of PUs (instruction fetch unit laten-
cies, number of pipeline stages for fetch and decode, etc), although it is significant only if
tasks are small. @vlapping the start of another task with thkeaition of a task may

reduce the werhead bt may complicate the design of the PUs.

At the end of a task, all speculatistate of the task is committed to the architectural
storage; if task commits volve actual meement of data (as opposed to just tagging of
data as committed without péical maement) &tra g/cles are spent. Depending upon
the amount of data that is nex, a significant percentage of tlyeles required toxe@cute
the task may be spent in committing its stasgging of data towid physical mavement
may complicate speculaé state management. gartasks typically hee lage amount of

speculatie state to be committed.

If tasks contain a lge number of dynamic instructions, themesal problems arise: (1)
Large tasks increase both the number of misspeculations and the penalty associated with
each misspeculation. Lge tasks typically contain a ggr number of memory instructions
and speculatingwer a lage number of memory operations usually results in an increase in
misspeculations because there is gddikelihood of misspeculating a true data depen-
dence. When a lge task gets squashed, agaamount of wrk gets thravn avay result-
ing in laige squash penalties. (2) bartasks cause theifters that hold the speculedi
state to fill up causing the task to stall until the speculation is exkdiv the case of the

ARB, this filling up is called ARB erflow. (3) Lage tasks result in a loss of opportunity
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to exploit the parallelism within them because tasksceite on narne PUs that may not

be wide enough to put @& amounts of intra-task parallelism to use.

3.2.5 Summary: Task characteristicsthat affect performance

Based on the abe discussion, it can be seen that task characteristics fenett @érfor-

mance are: intetask control flav, intertask data dependences and task size.

Control flav misspeculation is &dcted by the predictability and the position (dynami-
cally encounteredwecuted early or late during thegeeution of the task) of the control
flow dependences that angpesed by task selection. Intissk data dependence delay is
determined by the position (dynamically encounterexbieted early or late during the
execution of the task) of the data dependences thatxpased by task selection. Load
imbalance is primarily due toaviance in dynamic task sizesask werheads are influ-
enced by task size; task stavethead is due to short tasks and task eedead is due to

long tasks with a lge amount of speculag state.

These parameters are used toigate task selection. ldealltask selection should be
guided by a precise timing model of the underlying Multiscalar harelwso that the tasks
that achige the highest performance (as predicted by the model) may be selected. But
there are sseral problems that cause aviddion from this ideal: (1) An accurate timing
model of the hardare is hard to construct if the harake includes mandynamic compo-
nents likle out-of-order issue, marevels of cache hierarghbranch prediction and arbi-
trated queues andibes. (2) E&n if an accurate model igailable, selecting the tasks that
achieve the highest performance as predicted by the timing model is an intractable prob-

lem.

Instead of using a timing model to guide task selection, | use a heuristic for each charac-

teristic. Each heuristic attempts to impeahe task characteristic it is designed for and all
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the heuristics are combined together in one task selection processowfticts among

the heuristics are res@s by prioritizing the heuristics. The reasons for the choice of the
heuristics implemented and the chain ajuements that channel the heuristics in a pro-

gression are gen later in Sectio3.4.

3.3 Task selection criteria

Before describing the actual heuristics thatuenamplemented, | discuss some general
criteria for options ailable to the compiler to control task characteristics and select suit-
able tasks. | group task selection criteria based on the task charactenysiitditience. |

discuss criteria corresponding to task size, contral, #md data dependence.

3.3.1 Task sizecriteria

Tasks can be neither tgr nor small. As discussed before, small tasks may incur high
start-up @erheads and lge tasks may cause memory dependence squashes and ARB
overflow. | discuss some of the optiongdable starting from simple tasks each of which

comprise a single basic block.

Basic blocks are well-kmwen structures used by compilers arious analyses. Unfortu-
nately basic block tasks may not ackeehigh performance for geral reasons.dt mary
application programs, basic blocks may not contain enough instruction$séb tafsk
overheads. Also, most gister dependences usuallytend bgond a single basic block
causing basic block tasks taifor ragister \alues. Although basic block tasks usually
have only two successors, which may not tax the prediction hare\whg may &pose

unpredictable branches to the prediction mechanism.

Multiple basic blocks that comprise a subgraph of the CFG can be assembled into tasks.

Since there no correctness constraints om hmary basic blocks may be included in a
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task, tasks comprising arbitrarily mabasic blocks can be generated. But, generating

tasks comprising marbasic blocks may lead to the problem of&atasks.

Apart from including may basic blocks within tasks, including entire loops and func-
tion invocations within tasks also may lead togattasks. @rminating tasks at function
invocations as well as entry angiteof loops naturally limits task size. Most modular
applications tend to ka function calls, which naturally prent lage tasks. But frequent
function irvocations with little computation between them and loops with small loop bod-
ies may lead to small tasks. Loops can be unrolled so that multiple iterations of short loops
can be included to increase the size of short loop-body tasks; short funetoations
can be included entirely within tasks teoa small tasks. Including or not including a
function invocation permits a limited deee of freedom (all-enothing) to handle func-
tion invocations in task selection poficA better range of options are possible by inlining

function irvocations and selecting tasks out of thegadrcomputation.

The criteria used to control task size may generate tasks aviging sizes (number of
dynamic instructions) leading to load imbalance problernsalleviate load imbalance
problems, wriation in task size may be controlled by bounding the maximum task size to
a predefined thresholda3k selection process can control task4stz)egenerating tasks
whose size does not cross the threshold. In the presence of xaopteol flav within
tasks, estimating task size is morgoilved than counting the number of static instruc-
tions. Dynamic instruction count, based on profiling information, may be used as an esti-

mate for task size.

3.3.2 Contol flow criteria

Since a task is assigned foteeution via control flw speculation, it is important that

tasks are selected with as mauccessors as can be tredlby the hardare prediction

4. if control flov path frequencinformation is &ailable via profiling then the dynamic size may
be monitored; otherwise, the static size is monitored.
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tables. These hardwe tables areuilt to track some figd number (N) of successors. If

tasks are selected toveamore than N successors, dynamic contral 8peculation accu-

raoy may decrease, leading to loss of performance. In most structured applications,
although the CFG of a subroutineelges at the lignning due to conditional statements,
control flov paths recorerge eventually before the end of the subroutine. Therefore, con-
straining the number of successors may seenaltrBut imposing task size criteria may
result in a task being terminated at loops and functiewocations, which ardefault suc-

cessor s of the task; the top of the loop corresponding to a loop back edge andakedin
function corresponding to a functionvotation are xamples of such dafilt successors.

Figure3-4 illustrates defult successord’he task shown in the figure has three default

int func( ) {

if (condl)

f1()
else if (cond2)

a
for ( ) o

} call f2

forloop o ¥ 0V forloop o ¥ fl*

(@) (b) (©)

Figure 3-4: Number of successors. (a) Rarts of the source code of a function. (bythof

the CFG corresponding to the if-else-if statement. The dashessarepresentx@osed
control flov edges and shadedjrens represent tasks. The shadegome shavs a task that
includes all the four basic blocks and has three successors: f1, f2, and the for loop. (c) If
only two successors are aled, then a possible partition withdwasks is shan.
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successors: function f1, function f2, and entry into the for loop. If the number of targets

tracked by the hardware is less than three, then the task may have to be split into two

smaller tasks with two successors each, as shown in Bgl(®.

The number of deiult successors of a task may be more than N, which may lead to con-
trol flow misspeculations. But generating tasks withva $eiccessors may lead to small
tasks. Ier example, if tasks are restricted tovkaonly two successors, then tasks mostly
contain just a single basic block. So, controlling the number of successorsvaile
including multiple basic blocks within tasks is an important constraint for task selection
process. &sk selection process can track the number of successors of tasks generated so
that tasks are formed with at most N successors. If a task has more thaulNsieices-
sors, then the task can be split into smaller tasks such that the smalleraskisrhast N
successors. While controlling the number of successors, task selection procesg can tak
advantage of recarergent control flav paths and branches that are easier to predict than

others.

Recowergent control flav paths (e.g., the if-path and the else-path of a conditional state-
ment) are adantageous in tavways: (1) A branch can be included within a task (i.e., the
task contains both the &k path and the not-tak path of the branch until theecon-
verge). The included branch does ndeaf intertask control flav and cannot cause con-
trol flow misspeculations, and (2) By utilizing resergent paths, the size of a task can be

increased without taxing the prediction haade/with lager number of successors.

One of the adantages of task Vel prediction @er ordinary branch prediction is that not
every branch in the program is predicted; only those branches that form task boundaries
are predicted and branches internal to a task do feat &fie prediction process. Branches
that are internal to a task do nofeat the inteitask prediction process. Branches that are
easier to predict (e.g., thexietest branch of a loop) can bep®sed (defined in

Section3.1) and branches that are harder to predict (e.g., data dependent branches) can be
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included within tasks. The task including the entire loop body in Figure 3-1(c) is an exam-

ple of atask which includes data dependent branches.

3.3.3 Data dependencecriteria

Data dependences from producer instruction contained in one task to consumer instruc-
tion contained in another task manifest as inter-task data dependences from producer task
to consumer task. If adependence isincluded within atask, then no inter-task communica-
tion is required to honor that dependence. Intra-task data dependences, i.e., data depen-
dences among instructions within a task, do not impact performance more than the usual
pipeline stalls. Inter-task data dependences that extend beyond the window established by
the hardware (i.e., the producer task executes and commits before the consumer task is

predicted and assigned for execution), also do not impact performance.

The main cause of performance loss due to communication delay is that instructions that
are involved in data dependences, namely the producer instruction and the consumer
instructions, are not scheduled favorably; producer instructions need to be executed early
and consumer instructions need to be executed late in their respective tasks. With respect
to the time a task starts to execute, the time a producer instruction in the task is executed
depends on (1) whether the instruction depends on values from predecessor tasks and if so,
the time the values get produced and are communicated and (2) how many other instruc-
tions in the task are ahead of the instruction as per program order, since instructionsin a
task are executed on a PU in the usual uniprocessor style of execution. A producer instruc-
tion, therefore, may execute much later than the start of the task if the values it needs are

available later or if the task contains many other instructions that precede the instruction.

There are many ways to handle data dependences during task selection: (1) All data
dependences are included within tasks and tasks sel ected are completely data independent,
(2) the program is partitioned so that all inter-task dependences extend beyond the hard-
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ware windaev, and (3) the program is partitioned so that all wéek dependences are

scheduled perfectyi.e., the producer of the inteask dependencexecutes before the
consumer does and thalve reaches the consumer beforexdgoaites, so that the con-

sumer does not stall.

There are seral impediments to achimg the ideal selection: (1) $&ral memory
dependences are unkmo or ambiguous at compile-time, (2) including a data dependence
within a task (as defined in SectiBrl) may result in a task with more successors than
desired, and (3) partitioning the program so that all-taisk dependencegtend bgond
the dynamic winde may result in tasks that are too smafigure3-5 illustrates task par-
titions that may result when a data dependence edge is considered 3F¢ayshows a
part of the CFG of a program including a data dependence edge from the top basic block
to the bottom basic block. For this example, let us assume that the number of hardware tar-
gets is 4. Figur8-5(b) shows a task that includes the data dependence edge by including
all the basic blocks in the control flow path from the producer basic block to the consumer
basic block. But the task has five successors which exceed the number of hardware targets
(assuming each of the control flow edge that is exposed leads to a different successor).
Figure3-5(c) shows a task partition in which each basic block is a task of its own. If a
hardware configuration contains four processing units, then the data dependence edge

extends beyond its dynamic window of instructions. But the tasks are small.

Exposing a data dependence Yoid exceeding the number of successors may ba-ine
table in certain cases. Onayvof allesziating performance problems due to apa@sed
data dependence is teced including mag preceding instructions in the same task as the
producer instruction, wolved in the dependence. Similagaments may be made for
consumer instructions as wellagk selection, thus, may enab#drable scheduling of

inter-task communication by controlling the choice of basic blocks that are included in a

5. The compiler may hee to be ware of the number of PUs used in the handwconfiguration,
which males transparent performance scaling of the harehificult.
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Figure 3-5: Task selection and data dependence edges. (a) A part of the CFG of a
program.# indicates a control fle edge and— indicates a data dependence edge.
Dashed arnes represent terminal control Woedges and shadedyiens represent tasks.

(b) A task selection resulting in one task that includes the data dependence edge and has
five successors. (c) A task selection resulting ie fi@sks each of which has aw
successors. The data dependence edge is not included within atté#sthe hardvare
contains only four processing units then the data dependence xdgdsebgond the
hardware windev of instructions.

task. Figure8-6 illustrates ha task partitioning may #&ct intertask data dependences.
Figure3-6(a) shows a part of a CFG with a data dependence edge from the top basic block

to the bottom basic block. FiguBet(b) shows a task partition obtained by control flow
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Figure 3-6: Task selection and inter-task data communication scheduling. (a) A part

of the CFG of a program# indicates a control fle edge and—> indicates a data
dependence edge. Dashedagoepresent terminal control Weedges and shadedyrens
represent tasks. (b) A task selection resulting in three tasks. The producer of the data
dependence is at the end @Skl and the consumer is at the top a$kB, which leads to

Task3 vaiting for the alue from Bsk1 during ®ecution. (c) A task selection resulting in
three tasks. The producer of the data dependence is at the agkdfahd the consumer is

at the bottom of d8sk3, causing thealue to be communicated fromadk2 to &sk3 before

Task3 needs it.
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heuristics, assuming the number of hardware successors to be four. Since control flow

heuristics do not take data dependences into consideration, the producer of the data depen-
dence is included at the end of Taskl and the consumer is included at the beginning of
Task3, aggravating data dependence delay. FRy6(e) shows a task partition obtained

by data dependence heuristamnsisting of tw tasks in which although the data depen-
dence edge isxposed, the tasks are such that the resultantte&rcommunication is
scheduled dvorably; the producer instruction is placed early in its task at the first basic
block of the task and the consumer instruction is placed late in its task at the last basic
block of the tasklf the data dependence edge is included within one task then the task
gets five successors exceeding the number of hardware targets of four, as shown in
Figure3-5(c). Data dependence heuristics, instead, partition the CFG such that the pro-
ducer of the data dependence is at the top of Task2, facilitating communication of the
dependence value without significant deldoreover, the tasks ha three successors

each, which are wer than the number of hardve tagets.

Task selection can trackgister and simple memory dependences and include such
dependences within tasks. If a basic block starts a data dependence chain, then the entire
dependence chain can be included within a task; if, for reasons mentioneq tiso
entire dependence chain cannot be included or a data dependence recurrence (e.g., a linear
recurrence through a loop) is detected, then the dependence chain carebertiooge-
eral tasks. Each of the data dependence edge from the chain cgno$edesuch that the

producer instruction is positioned early in its task.

3.3.4 Interaction among thecriteria

Each of the criteria discussed abanay &vor different task selections. It is fidult to
estimate the performance benefits of each of them separately and then select the best. In
practice, ky conflicts occur between controlWdoop criteria and data dependence crite-

ria. Data dependence criteria may partition a loop body imeraktasks because the loop
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body contains seral independent chains of computation. But contreV ftoiteria may

demarcate the entire loop body as one task, causing iterations of the loogrlap.o
Although control flev criteria do not ta adwantage of the parallelism present within the

loop body the single loop body task may perform better than multiple loop body tasks
because its control flospeculation accurggas significantly higher and load imbalance is
considerably less. Data dependence tasks incur control misspeculations because the
expose branches that are hard to predict, as opposed to the loop back kpasell &y

control flav criteria. In addition to control misspeculations, data dependence tasks may
not be load-balanced due to naturatiations in the amount of computatiowvaived in

data dependence chains; loop iterations, on the other hand, may be naturally better load-

balanced.

3.4 Task selection heuristics

In this section, | describe heuristics to select tasks based on the criteria descrileed abo
| start with the basic process of CFGvizesal used by task selection. Then | discusg ho
the heuristics are incorporated to steer theetisal. The heuristics were implemented in a
progression starting with tasks containing single basic block. In an attempviataltbe
performance problems caused by the small size of basic block tasks, multiple basic blocks
were included within tasks. But tasks containing multiple basic block tasks incurred
excessve intertask control flav misspeculations. o mitigate control flav misspecula-
tions, the number of successors of a task were controlled through contrbleflmistic.

Even though control fle speculation &s improed, intertask data dependences were
aggraated, resulting in performance loso €urb this loss, data dependences were
included within tasks through data dependence heuristic. The heuristics grataute

together so that suitable tasks are edrout of programs.
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3.4.1 Basic task selection picess

Task selection proceeds byveasing the CFG of the application starting at the root of
the CFG. Basic blocks are included in a task by progelgsxamining whether succes-
sors of the basic blocks thatveaalready been included in the task may also be added to
the task. The heuristics are incorporated in the selection process via decision-making func-
tions that determine whether a particular basic block should be included in a task or not. If
the heuristics terminate a controlvilgath by not including a basic block, then another
task is gravn starting at the basic block. The basic block at which each task is entered is

called the root of the task.

Demarcating basic blocks as tasks is easy for the compiler because basic blocks are
already identified. dsks so obtained are callbdsic block tasks No special decision-
making functions are required to generate basic block tasks. Each basic block is the root of

its task.

3.4.2 Contol flow heuristic

To overcome some of the performance problems of basic block tasks, programs are par-
titioned into tasks containing multiple basic blockasks so obtained are calledntrol
flow tasks If multiple basic blocks are included within a task, then a decision-making
function that decides whether to include a particular basic block within a task or not is
needed. @ this end, basic blocks and contromfledges are cajerized agerminal or
non-terminal. If a basic block is terminal, then none of its successors (in the CFG) are
included in the task that contains the basic bloekminal edges are those which are not
included within a task (i.e., if (u,v) is a controMl@dge, then u and v are not included in
the same task). Non-terminal edges may or may not be included within a task, depending
upon the heuristics. Loop back edges and edges that lead into a loop, and basic blocks that
end in a function call or a function return are terminat.é&kample, Figure3-4(b) shavs a

subgraph with three terminal controMl@dges leading to three successors.
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During the CFG treersal, if ay terminal edges or terminal basic blocks are encoun-

tered, then the path is notmored a further and the basic blocks that terminate the path
are marlkd as successors. In order to ensure that tasksahaost N successors, the num-
ber of successors is trak when basic blocks are included within tasks; thgekdtrcol-
lection of basic blocks that correspond to at most N successorsttelliedsible task is

also trackd. After a basic block is added to the task, if the resulting number of successors
iIs at most N, then the basic block is added to the feasible task. By takengfaaghy of
recorvergent control flav paths, tasks are madedar without necessarily increasing the
number of successors. But during theeraal, it is not kman a priori which paths recon-
verge and which do not. Control floheuristic uses a greedy approach; theetsal con-
tinues to &plore control flev paths gen if the number of successosceeds the allwed

limit. When all the control fiw paths are terminated, the feasible task so obtained demar-

cates the task.

To determine the importance of controlling the number of successofsetiraented
with tasks containing multiple basic blocks without bounding the number of successors.
Control flov speculation accurgof such tasks is significantlyvip affecting performance
adwersely because most of the taskseha lage number (> 10) successors, whichetax
the prediction mechanism. @nall performance dgades considerahlymaking this

approach inferigrcompared to control fio heuristic.

3.4.3 Data dependence heuristic

The key problem with gposing data dependences is that if the producer is encountered
late and the consumer is encountered g#rgn may cycles may be wasted vaiting for
the value to be communicated. The main goal of data dependerea thsk selection is
that for a gren data dependencgtending across seral basic blocks, either the depen-
dence is included within a task or it spesed so that thexposed dependence does not

cause communication delays.
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In order to allgiate performance loss due to intask rgister dependences, data depen-

dences are identified and programs are partitioned such that data dependgrstes (re
dependences and memory dependences that can be disambiguated using simple schemes)
that span multiple basic blocks are included within tasksk§ so obtained are called
data dependence tasks. Since control flav task heuristics already contain mechanisms to
select tasks that contain multiple basic blocks, data dependence task heuvilstios b
control flov task heuristics. During the selection of a task, data dependence heuristics
steer the xploration of control flav paths to those basic blocks that are dependent on the
basic blocks that wa been included in the task. Controlfldeuristics include basic
blocks in tasks igardless of whether tlgeare dependent on other basic blocks contained

in the task. Data dependence heuristics, instead, include a basic block only if it is depen-
dent on other basic blocks included in the task. Thus, data dependence heupkires e

only those control fl paths that lead to dependent basic blocks and terminate the other

paths.

Data dependences are determined using traditional static analygisseiRependences
and simple memory dependencesdinming named scalaraviables) are established by
standard datafle analyses [1] [3] [12] [13] [19] [20] [24] [25] [50] [57] [59] [60] [69]
[74] [75] [84] [85] [88]. Data dependence information restricted to identifying the pro-
ducer and the consumer instruction is nofisient to include the dependence within a
task. If the producer and the consumer instructions are not in adjacent basic blocks in the
control flov graph, then other basic blocks in the controkffmth from the producer to
the consumer also Y to be included. Therefore, the compiler identifies the set of basic
blocks that hee to be included in a task so that a data dependence may be included within
the task. his set of basic blocks is called tbedependence set. Figure3-7 illustrates
inclusion of a data dependence within a tdsgure3-7(a) shows a task which includes
the data dependence edge with five successors. The task contains only the basic blocks

that are in the codependence set of the data dependence. By including a few more basic
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AN
l (b)

Figure 3-7: Including a data dependence within atask. (a) A part of the CFG of a
program.# indicates a control fle edge and— indicates a data dependence edge.
Shaded rgions represent tasks. The task includes the data dependencaielgs the
successors. (b) By including more basic blocks in the task, the number of successors is
reduced to one. The task includes the data dependence and has only one successor

(a)

blocks which may not be in the codependence set within the task, the number of succes-

sors may be reduced, as shown in Fig7gb).
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The set of datafle equations, gen in Figure3-8, identify the set of basic blocks that

have to be included: the basic blocks that lie in the contral flaths from the producer to

the consumeiThe equations fobefReach compute the basic blocks in which the defini-

Def Reach(r, Producer) = TRUE

DefReach(r, ¢c) = Def Reach(r, p) n BBdef(r, p), ¢ # Producer
p [0 parents(c)

Codependent(r, Consumer) = TRUE

Codependent(r, p) = % Codependent(r, c) n DefReach(r, p)
c O children(p)

Figure 3-8: Data dependence heuristics. BBdef(i,r) is true if rgister r is modified in
basic block i.DefReach(r, b) is true for ag successor b of basic block Producer if the
definition of rejister r reaches b without beingeswritten by ag other definition of .r
Codependent(r, p) is true for ag predecessor p of basic block ConsumérafReach(r,p)

IS true.

tion of the register by the producer is reachddefReach is true at a basic block for a reg-

ister if it is true at one of its parents and the parent does not overwrite the register.
DefReach identifies all those basic blocks in which the definition from the producer is
reached, not necessarily only those that lie in control flow paths between the producer and
the consumer. To get the restricted set of basic blocks for videffReach is true and

which lie in control flow paths between the producer and the consumer, the dataflow prop-

erty Codependent is used. The dataflow prope®@pdependent defined for a registarand
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a basic block is true for those basic blocks for whefReach is true and which lie in

control flow paths between the producer and the consuiadirof the set of basic blocks

is included within the task, then the dependence is included within the task comfiletely

ary of the set of basic blocks are not included in the task then some contrphtio from

the producer to the consumer igesed, resulting in the dependence toxposed. If the

set of basic blocks contrite more than N successors, then the task is furtpanded by
exploring those control flo paths that were terminated because tfid not lie between

the producer and the consumiéthe expansion decreases the number of successors to N
then the dependence is successfully included; otherwise the dependence cannot be
included, and todcilitate fivorable scheduling of the resultant intask communication,

the basic block containing the producer is nedrto be the root of its task.

There is a trade-bbetween control speculation accyraand data dependence delay
illustrated by those dependences that if included result in more than N successors: If the
task is made to include the dependence, then there is naaisitecommunication delay
(since there is no intaask communication) i control speculation accusaenay be
worsened due to the ar number of successors; otherwise, control speculation agcurac

Is not afected lut intertask data communication delay may bersened.

The process described aleoproduces tasks that include or not include one data depen-
dence. If more than one dependence ieridkto consideration, then including one depen-
dence mayxxlude another because inclusion of a certain dependence may result in some
control flav paths to be terminated and inclusion of another dependence may require some
of the preiously terminated paths to be not terminated. A simple solution to thuttif
is to prioritize the dependences aadof including dependences of higher priority before
considering laver priority dependences. A simple prioritizing function is tReceation
frequeng of the dependences. A simple approximation to #ezwion frequenc of a
dependence is the minimum of theeeution frequencies of the producer and the con-

sumer iwvolved in the dependence. All the data dependences are ordered on the basis of
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the approximation. Going from the highest priority dependence to tirestopriority
dependence, tasks are formed to include dependenxpesiding ag previously formed
task that includes a higher priority dependence to includeex lpriority dependence; if a
previously formed task cannot bepmanded to include aveer priority dependence with-

out needing more than N successors, then therlpriority dependence remaingiesed.

3.4.4 Special heuristics

Loop recurrences of grsort are treated as a special case for task selection. If a loop
body with a recurrence is formed into a task, the recurrence causes the iterations of the
loop to stall. The & problem is that the separation among the instructiomdvied in a
recurrence decreases theedap among successi iterations of the loop significantly
leading to a substantial loss of performance. Fi@Beillustrates the impact of loop
recurrences on performance. There are twtions to @oid performance loss due to
recurrences: (1)d'schedule the instructionsvived in recurrences so that the separation
is closed statically or (2) to partition the loop body so that the separation is closed dynam-
ically during eecution. Scheduling techniques (described later in Se¢t#nmay not
succeed in statically closing the separation due to arbitrary contkotiéipendences and
ambiguous data dependenceartifoning the loop body may succeed better than schedul-
ing by eploiting task-leel hardvware speculation support toveaycome arbitrary depen-
dences. Instead of incurring performance loss by selecting the entire loop body as a task,
the recurrence (and hence the loop body) is partitioned into multiple tasks so that all the
basic blocks in the recurrence are roots of their resjgetasks. By partitioning the loop
body, the recurrence, which is the critical path through the loop, iedyecuted without
delay

3.4.5 Short function invocations

As discussed before, basic blocks ending in function calis baen deemed terminal to

avoid lamge tasks. This policforces &ery function call to be partitioned as possibly gnan
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Figure 3-9: Effect of loop recurrences. (a) A loop body with a recurrence through
register rl is selected as a task resulting in the paradéaugion of the iterations of the
loop. F indicates forard of rgister rl. Use rl denotes the instruction r2 := rl1+a and Fwd
rl denotes the instruction rl := r2+bhe arrwvs indicate data dependence. During
execution, the loop iterationsai until the preious iteration produces and sends r1l,
leading to significant performance loss. (b) The loop body is partitioned iottasks so
that rl is produced and sent before the rteration needs it.

tasks. If, havever, a function irocation gecutes only a f& instructions then partitioning
the fav instructions into mantasks usually results in small tasks with mamertask
dependences. As a special case, these functimedtions are included entirely within
tasks. Function wocation that is included entirely within a task is callesujppressed

function call.

Including entire function wocations raises additional concerns. Function definitions are

partitioned into tasks and its instructions are annotated with Multiscalar task information
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(like register forward and task»et bits) under the assumption that the haadswwould

execute these tasks in separate PUs. When a suppressed functiorxeallisds the tasks
corresponding to the called function are@uted in the same PU as the callee task, violat-
ing the assumption. Soxecution of suppressed function calls may result in incoridet v
ues of rgisters being sent, since the PUs are meteting subsequent tasks from the
callee function bt from the caller function. In addition togister forwards, task-dts of

the tasks corresponding to the suppressed function caltbebe ignored if all of those

tasks are to bexecuted in one PU.

There are tw ways of solving the problems with suppressed function calls: (1) Create
two versions of those function definitions that aneoked through a suppressed function
call; one ‘ersion contains the usual Multiscalar annotations and the other is compiled
without ary Multiscalar annotations. The suppressed function calls use the non-Multisca-
lar version and the function calls that are not suppressed use the Multiszalanyv(2)
Alternatively, correct gecution can be achied with a single ersion of function defini-
tions using some harawe support. If a function call is suppressed, then remalignores
ary Multiscalar annotations as long ageution is in suppressed mode. Ignoring task-e
bits produces the desiredeasft of executing all the tasks of the suppressed function in one
PU, and due to ggstersaving corventions used in function calls, ignoringgister for-
wards produces the desiredeet of forwarding r@ister \alues that are visible after the
return of the suppressed function call. The ham@veasily identifies grfunction call as a
suppressed function call if the taskitebits of the call instruction are not set. If more func-
tion calls are made whilexecuting within suppressed function calls, the entire chain of
calls ecutes under suppressed mode.tmack suppressed mode during nested sup-
pressed function calls, the haraw matches function calls with returns by counting and
as long as the count, maintained in shppress register, is non-zero, the haradwe con-
tinues to operate in suppressed mode. The suppmesteraes an implicit operand ofery
instruction and is an architecturayrgter because it needs to beeshand restored during

contet switches and setjumps and longjumps.
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With function call suppressing in place,dperimented with suppressing function calls

that were in loops, so that entire loop bodies with function calls are demarcated as tasks.
This stratgy incurs significant performance loss due to memory dependences because the
tasks contain seral hundreds of instructions that modify global and hemmbies.
Memory dependence prediction and synchronization technique either stalls loads to be
synchronized with stores aaifs to preent misspeculations due to the filling up of hard-
ware tables used by the techniqueef@ll performance dgades considerahlynaking

this approach inferipicompared to suppressing only short functisaations.
3.5 Implementation of task selection

Task selection gres tasks by starting with a single basic block and sussdgsidding
more basic blocks. The CFG isueased visiting children nodes from parent node in the
direction of control fla. As a node is visited, the task g by including the node. At
every edge of the CFG, a decision to include the current edge or not is made. If an edge is
included, then the node it leads to is included in the current task and if the edueside
then the node it leads to starts avrtask. The process of guing a task simplifies to
deciding, one at a time, whether or not to include a contnldldge. At gery edge, the

heuristics are consulted to reach a decision.

3.5.1 Implementing contol flow heuristics

Figure3-10 shavs the pseudo-code implementation of the contreVv theuristics dis-
cussed in SectioB.4.2. Task selection proceeds by maintaining tgueuesTask g and
explore_q. Task_q contains the basic blocks that are the successors of terminal nodes and
terminal edges of the tasks thavddeen eplored. A nev task is gravn with each of the
basic blocks contained task_g as the root nod&xplore_g contains the basic blocks that
are members of the task beingwrobut have not beenxplored. Wheneer a basic block
is added to the task by putting task_q to be @plored furtherthe number of successors

is checled and if it is fever than the number of hardve tagets, then the basic block is
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task_selection() {
add_to_task _q(basic_block _0);
while (root = dequeue(task_q) {
while (explore_q_is_not_empty)
control_task(root, root);
}

}

is_a_terminal_node(blk) {
return (does_not_end_in_call(blk)
&& not_a_loop_end(blk)
&& not_a_loop_head(blk));
}
is_a_terminal_edge(blk, ch) {
return(dfs_num(blk) < dfs_num(ch));

}

control_task(blk, root) {
if (is_a_terminal_node(blk) {
for each child ch of blk {
if ('is_a_terminal_edge(blk, ch)) {
add_eplore_q(ch);
t = adjust_tagets(root, blk, ch);
if (t < TARGET_NUM) {
feasible_task(root, blk, ch);
}else {
add_to_task qg(ch);
}

}

} else {
for each child ch of blk {
add_to_task_q(ch);
}

}
}

Figure 3-10: Control flow heuristics.task _selection() is the top leel driver
control_task() explores one basic block pewvoration and queues the children of the basic
block under consideration for further xpdoration. control_task() invokes

Is a terminal_node() andis_a terminal_edge() which determine whether a node and an
are terminal, respewtly. feasible task() tracks the basic blocks that correspond wefe
than ARGET_NUM successors.

added to feasible task. Fig@ukt®6 shavs the functions

is a terminal_node() andis a terminal_edge(), which determine whether avgn basic

the corresponding

block or a control flv edge are terminal, respeiy.

3.5.2 Implementing data dependence heuristics

Figure3-11 shavs the pseudo-code implementation of the contreV theuristics dis-
cussed in Sectio®.4.3. To add data dependence heuristics to the task selection process
described abee, information about data dependences is obtained first. Producers and con-
sumers corresponding to data dependences are identified by using standard compiler anal-

yses. D include a data dependence edge from a producer basic block to a consumer basic
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task_selection() {
dep_list = sort_datadep by freq();
for each (u,v) indep_list {
for each t = including_task of u {
expand_task(u, t, (u,v));
if (Yinclude_dep_edge(t, (u,v))) {
blk = early_codependent(t, (u,v));
new_datadep_task(blk, (u,v));
}
for each (p,u) in CFG &&
not_in_any_datadep_task(p,u) {
new_datadep task(u, (u,v));
}

}

if (! datadep_task_rooted(blk_0)
add_to_task_q(blk_0);

while (root = dequeue(task_q) {
if (! datadep_task rooted(root)

while (explore_g_not_empty)
datadep_task(root, root, 0);
}
}

expand_task(blk, task, dep_edge) {
explore_q = task->explore_q;
root = task->root;
while (explore_q_not_empty &&
I'include_dep_edge(root, dep_edge))
datadep_task(blk, root, dep_edge);
}

datadep _task(blk, root, dep_edge) {
if (!is_a termina_node(blk) {
for each child ch of blk {
if (!is_a terminal_edge(blk, ch)
& & ! datadep_task_rooted(ch)) {
if (codependent(ch, dep_edge))
add_explore_q_head(ch);
else
add_explore_q tail(ch);
t = adjust_targets(root, blk, ch);
if (t <TARGET_NUM) {
feasible task(root, blk, ch);
} else{
add_to_task_g(ch);
}

}
} else{
for each child ch of blk {
add to task_q(ch);
}

}
}
new_datadep_task(blk, dep_edge) {
root = add_to_task_q(blk);
add_explore_q(blk);
adjust_targets(root, blk);
while (explore_g_not_empty) & &
I'include_dep_edge(root, dep_edge))
datadep_task(blk, root, dep_edge);
}

Figure 3-11: Data dependence heuristics. task _selection()

is the top level driver.

datadep task() explores one basic block per invocation. Similar to control_task(),
datadep task() invokes is_a terminal_node() and is_a terminal_edge() to explore more
basic blocks. codependent() determines whether a basic block is in the codependence set
of a data dependence edge or not. expand task() expands an existing task to include
another data dependence edge. datadep task rooted() determines if a basic block is the

root of atask or not.
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block within a task, the datafloequations gien in Figure3-8 are soled to identify the

codependence set of the data dependence. The codependence set is used to guide the
exploration of control flav paths by the control flo heuristics. If a data dependence edge

starts from a basic block that is already included in a data dependence task, then the task is
grown further to include the data dependencey Basic blocks that are still left after data

dependences are considered aggared using control fle heuristics.

When a data dependence is being included within a task, if a basic block that is not in the
corresponding codependence set is included before all the basic blocks in the codepen-
dence set isxplored and included, thexea basic block may introducetea successors
making the task infeasible; it may be the case that if just the codependence set is included
before ag other basic blocks, a feasible task is obtained. In order to ensure that the code-
pendence set is included in the task befap@ozing other basic blocks during the inclu-
sion of a data dependence in a tad&tadep task() inserts the basic blocks in the
codependence set explore g ahead of other basic blockisiclude dep edge() deter-
mines if the codependence set is included within a feasible task; if so, the task isvnot gro
ary further, so that basic blocks do not get included within the task needlessly causing
other data dependences to Bpased. If a data dependence cannot be included within a
task due to xxeeding the number of hardve tagets, one of the folleing actions is
taken: (1) if the producer is not already in a task, then a taskwngsath the producer
basic block as the root, or (2) if the producer is already in a task, thentagkeis gravn
so that the consumer is placed late in the teesk. The first case is straightf@me kut in
the second case, the compiler has to determine the basic block to be used as the root of the
new task, which is gnen to include the consumeiarly codependent() determines the
basic block with the smallest depth-first-search number that is in the codependence set of
the data dependencetiot included within the task in which the producer is included.
This basic block is used as the root tovgeotask in which the consumer is included. This
stratgyy facilitates @erlap of computation with communication @flwes corresponding to

the data dependences that weqgosed, as discussed in Secti8.3.
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3.5.3 Codereplication

Since Multiscalar tasks can be entered at only one point, basic blocks that are common
between tw tasks hee to be replicated. Figu@12 illustrates code replication in task

selection. This replication is similar to tail-duplication of superblocks [48] and trace

Figure 3-12: Codereplication during task selection. (a) A part of the CFG of a
program. Shaded geons represent tasksadk selection partitions the CFG intoottasks

such that basic blocks C, D, and E. (b) In the actual code layout, the basic blocks C, D, and
E are replicated into C’, D’, and E’, respeety in one of the tw tasks.
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scheduling [33] [34]. If tw control flav edges coverge to a basic block and one of them
is included in one task and the other in another task, then the basic block and successor

basic blocks are replicated in each of the tasks.

3.5.4 Codelayout

After task selection is done, the intermediate representation of the code is laid out lin-
early so that code gment corresponding to each task is contiguoaskg are ordered lin-
early based on the depth-first-search number of the roots of each tdsh. a&ch task,
the basic blocks are ordered linearly based on their depth-first-search niinsbogossi-
ble that for a branch, the &k edge may be included in the task containing the branch and
not the &ll-through edge; when the code for the task is laid out, thes tpdth is laid out
following the branch and the sense of the branch conditiorvessedl so that noxga
jumps are added due to theaneode layout. Figur8-13 illustrates the problem of code

layout after task selection.

3.6 Related work

There has been a myriad of compiler technique®ldped to automatically diseer
parallelism in non-numeric programs written in impematanguages. Asaf as disceery
of parallelism is concerned, the problem remains the samsupport for speculation in
the Multiscalar architecture changes théeat to which the compiler may be aggressi

and therebypresents hitherto urglored opportunities.

Previous work on partitioning functional language programsxeceite on multiproces-
sors difers from this vark in mary ways. Since the programs considered were functional,
considerations of data dependencies were much sineralgorithms considered tasks
at the granularity of entire function definitions and not at the fine granularity wftzafac

blocks, as is the case for Multiscalar tasks. Sarkar [89)ethdhat the problem of opti-
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Figure 3-13: Code layout after task selection. (a) A part of the CFG of a program. The
shaded region represents a task. The taken edge (A,B) isincluded in the task and the not-
taken edge (A,D) is not included in the same task. (b) The original layout of the code. (c)
Code layout for the task. The sense of the branch at the end of basic block A is reversed.

mally partitioning simple functional programs to execute on a Multiprocessor considering

only the amount of work and data communication is NP-Compl ete.

In the past, several compilation structures, for example, trace in Trace Scheduling [33]
[34], superblock [48] and hyperblock [67] in IMPACT [22], region in region scheduling
[2] [45] have been proposed to facilitate the development of many scheduling techniques.
Multiscalar tasks differ from these structures fundamentally in that tasks are execution
structures whereas the others are compilation structures. Since different tasks get executed
on different processing units, inter-task control and data independence is of primary

importance. Inter-structure dependences between different traces, superblocks, hyper-
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blocks and rgions are of little significance. Since all these structures are used in global

scheduling, intra-structure dependencies are the only significant dependences. Since tasks
are ecution structures intimately connected to the prediction mechanigmmmtnenot

have arbitrarily mag number of successors. The other structures do et &3 such
constraints. The criteria used to select the other structures are ugaallyi@n frequenc

of control flov paths, type of control flo (for e.g., traces stop at backmd branches),
presence of function calls, etc. The criteria used to select tasks are number of successors,
data dependences crossing task boundaries, contkoaffiong tasks (entire loop bodies

are better suited to be single tasks rather than multiple tasks because of intra-iteration

dependences) and the number of instructions.

Much of the vork on automatic parallelization [6] [9] [10] [63] [65] [110] [111] [112]
[116] and ectorization [4] [5] [14] of Brtran programs is related to Multiscalar compila-
tion. While automatic parallelization attempts to partition numeric code so that loop itera-
tions in parallel, most of Multiscalar task selection attempts to partition mainly non-
numeric code with compkeand ambiguous control and data dependencies. Most of the
automatic parallelization wolves accurate detection of memory independencies, in
numerical programs with complarray indices and more straightf@md control depen-
dences; where as most of Multiscalar task selectvivas task selection in the presence
of ambiguous dependences. Marep automatic parallelization did notvemuch of the
architectural support l& speculatie eecution, rgister and memory renaming and
dynamic memory disambiguation that the Multiscalar architecturgda®. Hence, man
loops that wuld not be considered for automatic parallelization are speaijagkecuted

in parallel in the Multiscalar scenario.
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Chapter 4

Register Communication

As tasks recute, data alues are produced and consumed within the same task and
among diferent tasks, corresponding to intra-task and {tagk communication, respec-
tively. These dataatues are bound to memory andister storage locations. In the case of
memory storage, it is di€ult to determine precisely the producers and consumers of data
values since memory storage names are determined dynamically (via address calcula-
tions). On the other hand, in the case gigter storage, it is straightfoand to identify
producers and consumers since aister storage names are wnostatically (via rgister

specifiers).

Regardless of the type of storageatved, data alues passed between instructions rep-
resent a criticaldctor impacting tvo key aspects of progranxecution: correctness and
performance. @ ensure maintaining correctness, datfmes must be communicated from
producing to consuming instructions as dictated by program semardicgoid con-
straining performance, datalues must be communicated from producing to consuming
instructions as soon as possible. kgmk communication of datales impacts\erall

performance because critical paths through tasks typicaibyvim computation that con-
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sumes rgister \alues from predecessor tasks and produakges for successor tasks and

performance may sigr if these critical paths are aggaéed unnecessarily

In this chapterl focus on the communication of da&wes bound to gester storage for
two reasons (both related to theyalence of the load-store model of computation). First,
this type of communication is the most common. Second, it is the most amenable to analy-
sis. e investigate a number of alterned register communication stragees for the Mul-
tiscalar architecture. In Sectidnl, | present the Multiscalar gister model and
correctness criteria. In Sectid2, | describe a range of alternatirggister communica-
tion stratgies. | bgin with a simple base stratethat guarantees correctness; | progres-
sively incorporate compiler stragies to achiee higher performance [106]. In Sectiér3,
| discuss the implications of deadyigters and compiler gester assignment. All of the
stratgies \ary the timing of communicatiorubdo not mege the computation that gener-
ates the alues iwolved in the communication. Extending this analysis furthdescribe
scheduling techniques to misitg rgjister communication delay [105], in Sectibd. In
Sectiond.5, | describe the details of the implementation gister communication gener-

ation. In Sectiord.6, | discuss relatedosk.
4.1 Register communication model

The Multiscalar architecture proles a distribted plysical rayister file implementation
of a single logical rgister file [18]. | nav explain the abstract model of communication of
register \alues among the digrent plysical reyister files to maintain the semantics of a

single logical rgister file.

In the set of all architecturalgisters, there are twnutually eclusive and collectiely
exhaustve subsets: (1) The set ofyisters that may be modified in the current task, called
theModSet and (2) the set of gésters that are guaranteed to be not modified in the task,
called theUnModSet. During eecution, gery task gentually receies \alues for all the

architectural rgisters from its predecessor aneetually sendsalues for all the architec-
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tural registers to its successOrslso, assume that each task operates onwits set of
hardware rgisters. The Multiscalar architecture supports this assumption wd®
each PU with its wn physical reyister file. When a ggster \alue arves at a task, the
hardware identifies the ggster either as a ModSetgister or as a UnModsetgister by
consulting the ModSet. The task binds thgister \alue to the hardare register of the
PU, regardless of whether it is a ModSegigter or a UnModSet gister Any register
value generated during the coursexdaiting the instructions of the task is also bound to
its appropriate hardave rgister The distinction between a ModSet and a UnModSgt re
ister is important only when the task sends tlggster \alue to successor tasksorFa
UnModSet rgister the samealue that vas receied, is propagted to successor tasks. But
for a ModSet rgister the \alue that vas recaied, is stopped from propating further; the
value bound to the gester after the last modification of thegiger is done in the task is

sent. Figurel-1 illustrates the Multiscalar gester communication model.

The ModSet may be determined by some hardvwor the compileif tasks are laye and
span seeral basic blocks and include arbitrary controlflthen the compiler can assist
hardware by preiding the ModSet on a per task basis. The create mask described in
Chapter2 is a bit ector representation of the ModSet. (The UnModSet is the complement
of the ModSet and need not be yded separately). In addition to determining the Mod-
Set for each task, the compiler or haadevalso has to identify where in the task each
ModSet rgister may be sent to successor tasks. This is the point in the yaskl lvehich

the r@ister is guaranteed not to be modified by the instructions of the task.

The problem of identifying the ModSet is simple and straighthodyit is the union of
the sets of mgisters that may get modified inyapath through the task. Since tasks may
have comple& control flav within them, the problem of identifying whiclkale of a Mod-

Set rgister to send is morevialved. There are tarcorrectness constraints: (1eey path

1. In an actual implementation, mahardvare optimizations may reduce the bandwidth demands
of register \alues. By doing some bood&ping, in hardare, the UnModSet gisters need not
be propagted repeatedly if tlyehave already been sent to all PUs.
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Figure4-1: Register communication model. (a) Reyister communication abstraction.
All of the registers arning at a task are filtered by the ModSet so that theallees of the
UnModSet rgisters are propaged and the mevalues of the Modset gesters are sent, as
and when generated by the task. (byiRer communication correctness criteria. The task
comprises basic blocks B1, B2, B3 and B4. The task modifgistees r1 and r3.
Depending on the path @k through the taskalue of r1 corresponding to B2 or B3 must
be sent; &lue of r3 corresponding to B3 or propted from the predecessor task must be
sent.

through the task must send all thgisters in the ModSet and (2) for eachister in the

ModSet, the alue corresponding to the basic blockgdral which the rgister remains
unmodified, irrespeate of the path tadn through the task, must be sent. The first con-
straint ensures that successor tasks do not geedtiowa rgister, irrespectre of the path

taken through the task and the second constraint guarantees that each task sends its succes-
sor tasks the last updatedjister \alues, which are the correcilues as per sequential
semantics of the program. It is important to note that the second constraint does not pre-
clude sending of multiple speculaivalues of a rgister but the last @lue sent must be

the correct &lue as per sequential semanticsy fask that recges a rgister \alue that it
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has already receed may squash the computation dependent on gistegeand recompute

with the latter wlue. Such squashes are the result gister data speculationogethey

the two constraints guarantee faavd progress and correctness.

Figure4-1(b) illustrates the ta correctness criteria through axample.The rample
shawvs a task with four basic blocks B1, B2, B3, and B4yi&ers rl1 and r3 are modified
by the task, so the ModSet contains rl and r3. There argdths through the task:
B1B2B4 and B1B3B4. The first criterion states that both r1 and r3 must be sent from
either paths; otherwise, successor tasks will deadlockyifrteed the &lue of either rl or
r3. Applying the second criterion to r3 is simple because it is modified only in B3. If the
path B1B3B4 is ta#n, then the alue of r3 after it is modified in B3 must be sent; other-
wise, the alue of r3 receied from the predecessor task must be prajgajto successor
tasks. Applying the second criterion to rl is more interesting than r3. If the path B1B3B4
is taken, then thealue of r1 after it is modified in B3 must be sent; otherwise,ahe\of
rl after it is modified in B2 must be sent. It is possible to sendale wf r3 receed
from the predecessor task before the branch in Bl is sezbasiveculating that the path
B1B2B4 will be talen by the task,ui if the path B1B3B4 is tan, then the updatede

of r3 must be sent.

The correctness criteria identify theyigter \alues that need to be sent to successor tasks
to maintain sequential semantics. Performance criteria influence when the coistet re
values may be sent. In theaenple of Figurel-1(b), values of rl and r3 may be sent at the
end of the task. If successor tasks use tilaes then the stall until the alues are
receved. In order toid stalling consumer tasks fomgister \alues, it is crucial that ge

ister \alues are sent as soon as possible.
4.2 Strategiesfor orchestrating register communication

In this section, | consider a progression of four sfjiatefor rgister communication to

achieve high performance. The four strgites areend_send, eager_send, last_send, and
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spec_send. The stratgies difer in hav early the ModSet gster \alues are sent to suc-

cessor tasks. Before going into the details of thBous stratgies, | illustrate them
through an xample. Consider the task in Figut& comprising basic blocks B1, B2, B3
and B4 .Let us assume that the edge B1B2 igtakith probability 0.9 and the edge B1B3
is taken with probability 0.1.

The simplest stratgy which ensures correctness, called end_send, is to senalils v
of all the ModSet rgisters at the end of the task. In end_send (Fi¢n2@)), both r1 and

r3 are sent at the end causing subsequent tasks that need rl oait3 to w

A possible imprgement in performancever this simple stragy is to send thealue of
a ModSet rgister eery time it is modified. This stragg called eager_send, sends Mod-
Set r@gister \alues as soon as andeey time thg are modified, causing computation in
successor tasks that use alt the last alue to be squashed and restarted. Sincedloe v
corresponding to the last modification of eadjigter is sent ladt this stratgy preseres
the semantics of the program. Although eager_send may sgatérealues earlier than
end_send, eager_send may send the sagimeremultiple times, resulting in squashing of
subsequent tasks. Eager_send (Figu2€b)) sends rl as soon as it is defined in B1. Since
there is a define of rl in both B2 and B3, rl is seaimagausing a squash. If B3 is ¢éak
then r3 is sent as soon as it is defined, otherwise it is sent at the end. Thus, eager_send
sends r3 earlier than end_send if B3 isetakut incurs &tra squashes due to sending
incorrect \alues of rl. In last_send (Figut€2(c)), both rl and r3 are sent from B2 or B3,
since thg are the last modifications of thegrgters. Since B2 does not define r3, sinae

instruction may be inserted to send r3.

If the last modification of each ModSegister is knavn, havever, multiple sends of the

same rgister (and the resultant squashes) canvoged. D this end, last_send sends

2. The hardvare is responsible for preserving the order among multiple sends cilties of the
same rgister
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Figure4-2: An exampleillustrating the four strategies. The task comprises basic
blocks B1, B2, B3 and B4. The edge B1B2 isetakvith probability 0.9 and the edge
B1B3 is talen with probability 0.1. The ModSet for this task contaimgsters rl and r3.
(a) End_send: Both rl and r3 are sent at the end. (b) Eager_send: rl is senitisiBdeb
there is a define of rl in B2 and B3, rl1 causes a squash and isasenlf& is talen then

r3 is sent at the end otherwise r3 is sent in B3. (c) Last_send: rl1 and r3 are sent from B2
and B3. Sending r3 from B2 may require aira instruction and in the other cases the
existing instructions may be annotated to send their destinatipsters. (d) Spec_send:
Since B2 is more frequent than B3, r3 is speatdftisent from B1 and rl is sent from B2
and B3 lile last_send. If B3 is tek then r3 causes a squash and is sem.a8ending r3
from B1 may require anxéra instruction and in the other cases thistang instructions
annotated lik last_send.
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ModSet rgister \alues as soon as there is a guarantee thatgiséerewill not be modified

again. the compiler identifies the last modification of each Mod®gstee and marks it
explicitly for communication. Although last_senglcéds squashes by sending only after
the last modification of the gesters, in the presence of controlflat is conserative and

may delay sending gester \alues. Last_sendraids the squashes incurred by eager_send
by sending only the correctales of rl and sends r3 earlier than eager_send via an

explicit instruction.

The last stratgy, knovn as spec_send is a more controlletsion of eager_send in that
it sends ModSet gester \alues as soon as there is a high probability that tistee will
not be modified agjn. spec_send speculaly sends rgister \alues corresponding to last
modifications from “high frequen€ paths and resorts to squashes if dow frequeng”
paths modify a preously sent rgister Spec_send attempts teoad both delaying rgister
values due to infrequent paths and alscessve squashing due to incorrect speculation.
Spec_send (Figure-2(d)) speculatiely sends r3 from B1, since B3 is infrequentlyetak
and the frequent path of B1B2B4 does not define r3. If B3 entéhken r3 is sent am,
causing a squash. rl is sent from B2 or B8 l&st_send. Spec_send accelerateseB e
more than last_send by taking adtage of speculation. In the frequent case of B2 being
taken, r3 is sent earlier from B1 via axpécit instruction and in the infrequent case of B3,

r3 causes a squash.

4.2.1 End_send and eager_send

| now describe the issues in the realization of each of these fourgsgat®oth
end_send and eager_send sgia&e may be implemented with relagly simple hardare.
These tw stratgies require no »licit send instructions eitheimplying little I1SA
change. Since the Multiscalar architecture eyglboth memory data speculation and
control speculation, hardwe to squash incorrect speculation in eager_send is already

present. Therefore, squashes due to multiglester sends can be performed without an
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additional hardwre. On one hand, this scheme sends tijstez \alues earlier than the

previous scheme,u on the othera rgister may get sent too early specwigliy and may
result in a squash. There is a tradebetween aoiding communication stalls by sending
a ragister \alue early speculatly and incurring squashing loss due to incorregister

speculation. The compiler is empéa to perform this trade4oh spec_send.

Last_send and spec_send may require compiler analyses to determine the last modifica-

tion of each rgister in the presence of compleontrol flov. Moreover, hardvare or ISA

support as described in Sect@d, may be needed tdiefently corvey information from

the compiler to the hardwe. The analyses required to generaggster communication

may be formulated in terms ofisting dataflav framewvorks. | present the datafloequa-

tions to &plain hav the compiler determines and generates the requigestee commu-
nication. In all the follaing discussion of dataflo equations, it is assumed that if there

are multiple modifications of agester within a basic block, then the last modification is

marked for communication.

422 Last_send

The lkey issue in both last_send and spec_send is to determine the basic blocks after
which each ModSet ggster is guaranteed to be not modified in the presence of comple
control flov in the task and to generate sends for tigester in the earliest such basic
block davn ary path through the tasiomoredef identifies the set of the basic blocks
after which a rgister is guaranteed not to be modifiegt &mther in each task. Send iden-
tifies the earliest basic block o ary path through the task among such basic blocks.

Figure4-3 lists the datafle equations for last_send.

Nomoredef(i,r) is true if bggond basic block i, iggster r is not modified in the current
task.BBdef(i,r) is true if rgister r is modified in basic block i. The equation asserts that for

every child of basic block i, if there is no modification of giséer bgond the child and
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Nomoredef (i, r) = n {Nomoredef (j,r) n BBdef(j, r)}
j Ochildren(i)

Send(i, r) = E Nomoredef (j, r)%n Nomoredef (i, r)
Dj O parents(i) a

INITIAL V ALUES: Nomoredef(i,r) = TRE

Figure 4-3: Dataflow equations br last_send.BBdef(i,r) is true if rgisterr is modified

in basic block. Nomoredef(i,r) is true if there is a guarantee thajisterr is not modified

in ary successor of basic blo¢kn the current taskSend(i,r) is true if Nomoredef(i,r) is

true and rgisterr has not been sent in at least one path from the root of the task to basic
blocki.

the child does not modify thegister then there is no modification of theyigter bgond
basic block i. A ky property ofNomoredef is that ifNomoredef is true for a basic block,

then it is true for all its successors in the task.

The second equation in Figute8 computes theactorSend. Send(i,r) is true if the rg-
ister r is not sent in at least one path from the root of the task to basic bloddaraoit-
def(i,r) is true. The equation asserts that if there is no modification @isteebgond
basic block i and for at least one of the parents of basic bld&kmioredef is false, then
the raister is sent from basic block i. Send identifies the basic blockyipath from the
root of the task, at whicNomoredef changes fromdlse to true. Sincllomoredef is true
for all the successors of the basic block (due to the property statez) abat is the earli-
est basic block in the path at which thgiseer may be sent. Note that in a path from the
root of the task, there may be multiple basic blocks for whiamoredef changes from
false to true; therefor&nd may be true for multiple basic blocks in a path. The hardw

ignores ag sends of a ggster encountered after a send for the sagistex
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4.2.3 Spec_send

With the analysis of last_send, @ister is not sent until it is guaranteed that there are no
more modifications to the gester This guarantee implies that if an infrequent basic block
that modifies a gaster much later in the task, then thgiseer is delayed until much later
in the task. Frequeganformation used by this analysis may be obtained from static or
dynamic profiling. If the rgister is sent earlier in the taskwevyer, and a special “resend”
of the rajister is done in the infrequent basic block, on eerage, the gaster is not
delayed as before. In the infrequent case of the basic block b&iogted, the resend of
the ra@ister causes a squash and restart with the coméat Wt in the frequent case of
the basic block not beingcecuted, the gister is sent much earlier and no squash is suf-
fered. Figuret-4 lists the equations for spec_send. Tagedifference between the analy-
sis for last_send and spec_send is that spec_send ignoresnlfeejoeng” defines of
registers and computé&pnomoredef andSpsend exactly like Nomoredef andSend. Valida-
tesend determines the x¢ra “resends” corresponding to the Wofrequeng” defines

ignored inSpsend.

Sonomoredef(i,r) is true if begond basic block i, gaster r is not modified in gn*high
frequeng” basic block in the current tasKifreqdef(i,r) is true if reister r is modified in
basic block i and thexecution frequenc of the basic block is greater than a fraction
(SpThreshold) of the frequeng of the root of its task. The equation asserts thatverye
child of basic block i, if there is no “high frequetienodification of a rgister bgond the
child and the child does not “high frequghenodify the rayister then there is no “high
frequeng” modification of the rgister bgond basic block Validatesend(i,r) is true if i is
a “low frequeng” basic block which modifies r arf§bnomoredef(i,r) is true.Validatesend
computes etra resends of gesters that were ignored due to theintlfrequeng”. Note
that Validatesend may cause multiple resends of the sanggster resulting in multiple

squashes. Such multiple squashes carvlieed by constraininyalidatesend more.
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Spnomodef (i, r) = rcl { Spnomodef (j, r) n Hifreqdef(j, r)}
j O children(i)

Spsend(i, r) = E Spnomoredef (], r)%n Spnomodef (i, r)
Dj O parents(i) U

Hifreqdef (i, r) = BBdef(i,r) n Hifrnode(i)
Hifrnode(i) = (freq(i))/ (freq(root)) > SpThreshold

Validatesend(i, r) = Spnomoredef (i, r) n BBdef(i, r) n Hifrnode(i)

INITIAL V ALUES: Spnomoredef(i,r) = TRUE

Figure 44: Dataflow equations br spec_sendHifreqdef(i,r) is true if raister r is
modified in basic block and the recution frequengc of the basic block is greater than a
fraction &Threshold) of the frequeng of the root of its taskSonomoredef(i,r) is true if
there is a guarantee thagigterr is not modified in ay “high frequeng” successor of
basic block in the current tasliSpsend(i,r) is true ifSonomoredef(i,r) is true and rgisterr

has not been sent in at least one path from the root of the task to basici.block
Validatedef(i,r) is true ifi is a “lov frequeng” basic block that modifies thegisterr.

The compiler soles the system of dataflcequations to determine the basic blocks for
which Send or Spsend andValidatesend are true. If such a basic block contains an instruc-
tion that modifies the gister then the instruction is annotated to fard the rgister and
otherwise, anxdra release instruction (introduced in Sect?o4.2) is inserted at the top of
the basic block to send thegrster \alue. Since mgster communication isafrly dense,
avoiding etra release instructions through annotationxéteng instructions is impera-
tive. In Figured-5, there are tov examples of tasks with géster communication annota-

tions using last_send.
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rl:= rl:
& r2:

(a) (b)
Figure 4-5: Register communication annotation. Two examples of tasks with gester
communication annotations are sl Forwards of rgisters are indicated by $-beside
the instructions. Inxample (a), in the path B1B2B4, rl is last modified in B2 and is
forwarded from B2 and in the path B1B3B4, rl is not modified past B1 and is released in
B3. r3 is last modified in B2 and B3, in paths B1B3B4 and B1B2B4 regplyctind is
forwarded from them. r2 is modified only in B4 and is farded from there. Inxample
(b), r1 is last modified in B2 in the path B1B2B4 and is todked from B2 since there is a
loop in the path B1B3B4, rl is guaranteed to not change onlyibofehe loop and so is
released in B4.

4.3 Implications of dead registers and register assignment
Irrespectve of the rgister communication stragg used, dead gester information can

be used to impree register communication and gister assignment may unnecessarily

disallov sending of a mggster \alue early in the task.

4.3.1 Dead registers

A register is said to be dead at a basic block if #se is not used lgend the basic

block [1]. If a rayister is dead b®nd a task, then thegister \alue need not be sent to
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successor tasks. Deadjiger information is used to reducgister communication band-

width demand andvaid the werhead of ®tra release instructions as well.g&er com-
munication bandwidth on the gister communication interconnect (SectihB) is an
important resource which ifver-burdened may lead to queuing up ofister \alues
aggraating performance loss due t@igter communication delays. In Figuté(a), if rl
is dead bgond B4, i.e., thealue of r1 is not used by yasuccessor of B4, then rl need not
be sent to successor tasksyisg register communication bandwidth andoaling the

extra release instruction in B3.

Dead rgister information may be cueyed to the hardere by preiding an eplicit
dead rgister mask in the task descriptsimilar to create mask. Bisters in the deadge
ister mask are neither foarded nor released. Since thgiséer is dead, no successor task
waits for the rgister \alue and so, not propating the rgister does not causeyastana-
tion. All four register communication strajes can ta& adwantage of the deadgister

mask.

The dead mgister mask adds to theverhead of static code size increase due to task
descriptors. Alternately, dead rgister information may be pvaed by werloading the
ModSet. Rgisters that are deadymnd a task are included in the ModSet of the task,
regardless of whether tlgaare defined in the task or notitmo forward or release is done.

If the register does get defined in the task, then &laevis used within the task and does

not get propagted to successor tasks. If thgister does not get defined in the task, then

the \alue from a predecessor task is used within the taskides not get propated to
successor tasks. Only last_send and spec_send eaadaktage of ModSetverloaded

with register dead information. end_send and eager_send cannot distinguish between dead
ModSet rgisters and Vie ModSet rgisters since thedo not use anspecification to iden-

tify register \alue sends.
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Another issue with taking adntage of dead gester information is delgging. Dead

register optimization may causegisterallocated ariables to hold aalue that does not
correspond to the last modification of thgister The \alue of a dead gister is not prop-

agated bgond the task b@nd which the rgister is dead; if the gister is inspected dur-

ing delugging at a program point yend the task, the gester may hold a bogusale.

But this problem xists for dead mgister optimization used bygester allocators for super-

scalar processors. The solutions adopted by superscalar architectures may be used, which

is to turn of dead rgister optimizations during dagging.

4.3.2 Register assignment

Anti-dependencies introduced bygrgter assignment may delay fawd of a rgister
value in ay of the stratgies. If rgister assignment uses the sangister name for tow
live ranges that coxest in mutually aclusive® (like the if-path and the else-path of a
branch) control flv paths, then thealue bound to the gister name cannot be foanded
until the control flev is resohed. Figured-6 illustrates the problem through axaenple.
Figure4-6(a) shavs a task with four basic blocks. Pseudgister rl is dead in B4ub is
live out of B3. Pseudo-gester r2 is e out of B4. Pseudo-gesters rl and r2 va non-
overlapping lve ranges and hence, can be assigned the sawyscaihraister
Figure4-6(b) shavs such a mgster assignment. Assuming last_send, this assignment
causes &lue of $1 to be sent only in B3. Round-robin assignmentgidtezs may miti-
gate the problem. Under last_send, a round-robin assignment,vas shbigure4-6(c),
avoids delaying the forard of $1 by assigning anothegigter to r2. Under eager_send
and spec_send, if $lale is sent from Bl and the path B2B4 isetakthen squashes
ensue for the assignment in Figdré(b) kut the round-robin assignment, aswhan

Figure4-6(c), would not incur ay such squashes.

3. Note that the samegister name cannot be used feelranges that caxist on control flav
paths that are not mutuallxausive; such a mgister assignment violates program semantics.
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release $
B3

rl live

Figure4-6: An example of register assignment delaying register forward. (a) A task

with 4 basic blocks before gister allocation. rl and r2 are pseudgisters. rl is dead at

the bginning of B4 lut live at the end of B3. (b) Both r1 and r2 are assigned the same
register $1, resulting in the release of $1 in B3. (c) rl is assigned $1 and r2 is assigned $2.
$1 is forvarded in B1, much earlier than B3.

4.4 Register communication scheduling

In Sectiord.2, | xplained hav register \alue communication is identified and specified
to the hardware. All of these stragges \ary the timing of communicatiorubdo not mge
the computation that generates tladues ivolved in the communication. Extending this
analysis furtherl have devised and implemented a static scheduler thates\@omputa-
tion to hide intettask rgister communication delay furthén this section, | consider o

the compiler can schedule the communication to ingperformance.
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Critical paths through tasks typically involve dependence chains that consume register

values produced by predecessor tasks and produce register values to be consumed by suc-
cessor tasks.  An unnecessary aggravation of these critical paths can result in performance

loss, asillustrated in Figure 4-7. This loss can be mitigated by alleviating the unnecessary

Producer Consumer
Task Task

Use rl
move

move [F \ %7 down

zero
Fwd rl stalls

(@ (b)

Figure 4-7: Register communication dynamics. @) Performance loss due to register
communication. The forward of rlin Task1l causesthe use of rlin Task2 to stall. Fwd r2is
dependent on Use r1, which causes the forward of r2 to be delayed. The delays cascade
causing Task3 to stall for r2. (b) Scheduling register communication. The forward of rlis
moved up to be done early and the use of rl is down to be done late so that stalls are
reduced.

aggravation of the critical path, i.e., by sending the register value early during the execu-
tion of the producer task and consuming the register value late during the execution of the
consumer task. If a register value has to be sent early, the instruction that produces the
value (called the producer instruction) has to be executed early. The instruction may be

executed early, if it is statically scheduled to be as close to the beginning of its task as pos-
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sible®. Similarly, a reyister \alue may be consumed late, if the instruction that consumes

the \alue (called theonsumer instruction) is statically scheduled to be as close to the

end of its task as possible.

Figure4-8 illustrates the alwe concepts using the run time dynamics ofyam®le. In
the exkample, Bskl produces thealue for the ariabletmp late which causesagk?2 to be
stalled because it needs thedue. Mwving the instruction that producésp up in Taskl

causes askl to send thealue earlywhich enablesdsk2 to proceed without stalling.

Moving a producer instruction of a task up in the static code may requiragnibe
instructions (within the task) it depends on (i.e., the bactwlice [52] [108] of the pro-
ducer instruction within the task), up. Similangoving a consumer instruction of a task
down may require mang the instructions (within the task) that are dependent on it (i.e.,
the forward slice [108] of the consumer instruction within the taskyrddypically, criti-
cal paths through tasks constitute dependence chains that start with a consumer instruction
and end with a producer instruction. A complication that arises is that the instructions on
such dependence chains need to beesdoth up and aden because on one hand,the
are on the backard slice of the producer and on the othiggy are on the forard slice of
the consumeiThe decision to m@ such instructions up orwa depends on whether the

instructions cause more stalls due to production or consumption.

4.4.1 Scheduling strategy

The main components of the scheduling algorithm: (1) identification of which instruc-
tions to mee in which direction, (2) transformations to perform code motion of the
instructions in the appropriate direction, and (3) estimation of the stall each instruction

incurs due to gister communication through a cost model.

4. Even for out-of-order issue engines, if instructipis Istatically placed before instructigrir
program orderthen instruction; lis dispatched before instructign |
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Time _ Taskl Time Task2
-+ Tasc1 assigned T Task2assigned T 5
for execution if (A[i] < 0) for execution
Task1 proceeds Task2 talls
+ for tmp
STALLED
negative++
- Taskl sends
tmp ! tmp > max) - ,
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Task2 proceeds +
-
v @y g
Time Task1 Time Task2
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for execution + [ TgrSk eigcsl? %]r?d diff = tmp - A[i]
Task1 proceeds % (Alll <O Task2 proceeds UGS
Task1 sends + without stalls
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threshold =1 ===
e
v if (tmp > max) ) V

Figure 4-8: Run time dynamics of the example. (a) In the example, task?2 is stalled for
the register value tmp because taskl, which is the producer, produces the value late. (b) In
taskl, the instruction that produces tmp is moved up. In task2, the instruction that
consumes tmp cannot be moved down. Nevertheless, taskl sends tmp early and task2
proceeds without stalling.
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4.4.2 |dentifying theinstructionsfor scheduling

The scheduler identifies bacatgories of instructions. In the Multiscalar architecture,
the instructions that producegister \alues for other tasks are called farding instruc-
tions (as defined in Secti@¥.2). The instructions that consumgiséer \alues from the
forwarding instructions of prior tasks are calleteiving instructions. All forwarding
instructions and their baclasd slices are cagerized asourcing instructions. All sourc-
ing instructions are to be med up in the static code. All reggig instructionsand their
forward slices are cagerized assinking instructions. All sinking instructions are to be

moved davn in the static code.

If an instruction is both a sourcing and a sinking instruction, then depending on whether
it causes a lger delay as a source or a sink, (as estimated by the cost model) it is desig-

nated as such.

4.4.3 Code motion

In order to keep the implementation of the code motion simple, the schedulersmo
instructions one basic block at a time. The scheduler performs the required code motion
using the set of upavd and denward transformations illustrated in Figuté® and
Figure4-10, respectiely. Figure4-9(a) shavs an instruction, which modifiesgister ¢
being maed up from a basic block B2 to its parent basic block B1. B1 has another child,
B3, and the mee is \alid only if r is dead at the top of B3. If B2 has more than one parent
then the mee is \alid only if the condition is met for each parent. Figdh®b) shavs
two copies of an instruction in basic blocks B2 and B3 beingechop and meed into
one cop in parent basic block B1. If B1 has more children and each child hay afcop
the instruction then all the copies can begedrinto one copin B1. If ary child of B1
does not hae a cop of the instruction, then the transformation in Figdu®(a) is applied.
Figure4-9(c) shavs an instruction in basic block B3 being wvad up and duplicated in

parent basic blocks B1 and B2. If B1 or BZ&ather children, then the transformation in
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(b) (d)

Figure 4-9: Upward transformations. - indicates control flv. —= indicates code
motion. (a) An instruction is nved from a basic block to its parent if the destination
register is dead den the other siblings of the basic block. (kydrinstructions that are
copies are mged into a single cgpin the parent basic block. (c) An instruction is
duplicated into each of the parents. (d) An instruction igaddrom a basic block to its
only parent.

Figure4-9(a) is applied. Figuré-9(d) shevs an instruction being meed up from a basic

block, B2, to its only parent basic block, B1.

Figure4-10(a) shws an instruction, which modifiesgister 1 being meed davn from
basic block B1 to its child B3. B3 has another parent B2 and tkie imaalid only if r is
dead at the top of B3. FigufielO(b) shavs two copies of an instruction in basic blocks
B1 and B2 being meed davn and meged in child basic block, B3. If grparent of B3
does not hae a cop of the instruction, then the transformation in FigdwE0(a) is
applied. Figuret-10(c) shavs an instruction being med davn from basic block B1 and
duplicated in children basic blocks B2 and B3. If B2 or B&hather parents, then the
transformation in Figuré-10(a) is applied. Figuré-10(d) shavs an instruction being

moved davn from basic block, B1, to its only child basic block, B2.
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Figure 4-10: Downward transformations. = indicates control fl.— indicates

code motion. An instruction can be weal davn from basic block A to basic block B only

if the reaching definitions of the source operands of the instruction are the same in blocks
A and B. (a) An instruction is nved from a basic block to its successor if the destination
register is dead den the other sibling blocks. (bwb instructions that are copies can be
memged into a single instruction in the successor block. (c) An instruction is duplicated
into each of the successor blocks. (d) An instruction igeshdrom a basic block to its

only successor

The actual code motion itself is performed imfhases. First, the sourcing instructions
are maed up and then the sinking instructions arevedodavn. The scheduler mes
the chosen instructions in the chosen direction one basic block at a time. In #re upw
phase, the scheduler starts with the leaf basic blocks of the taslogkslupvard to the
root of the task in merse topological ordetn every basic block, it pushes the sourcing
instructions up and across the top of the basic block into the end of the predecessors of the
current basic block. When all the sourcing instructions in the current basic blkek ha
been considered for uand motion, the né basic block in reerse topological order is
visited. In the second phase, the scheduler starts with the root basic block of the task and
works davnward to the leges of the task in depth-first-search ordierevery basic block,

it pushes the sinking instructionsvdo and across the bottom of the basic block into the
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top of the successors of the current basic block. When all the sinking instructions in the

current basic block wa been considered for waward motion, the nda basic block in

depth-first-search order is visited.

4.4.3.1 Issuesrelated to code motion

Static code motion is hindered by ambiguous memory dependences; loads and stores
cannot be meed past stores unless it is guaranteed that the instructions do not access the
same address. Although the ARB yades support for intetask memory disambiguation,
Multiscalar hardware does not support speculatcode motion of ambiguous loads and
stores within a task; if a load instruction isvad past a store instruction to the same
address as the load, program semantics is violated. Better static memory disambiguation

allows more loads and stores to bevexb past other stores.

One of the important issues of static code motion is safety of transformatiovisgMo
loads and stores past branches may cause spuxiogistiens although the original pro-
gram does notxperience ay exceptions. Bbr example, if a load is meed up past a
branch, then the load may dereference a null poiwtate in unmodified code xecution
branches around the load. Theotkey issues are: (1) ddrentiating between spurious
(caused by “unsafe” global code motion) and reakptions, and (2) regery of the cor-
rect state on a reakeeption. The Multiscalar architecture pites checkpointed state at
the bginning of eery task. When an outstandingception (which are assumed to be
infrequent) is signalled xecution may be rolled back to the start of the task andyaafop
the original code (without gnscheduling transformations) may be xe®uited. During
the rerun of the original code, if thgoeption occurs ain, then it may be ta&k because
re-execution of the original code guarantees that only nez¢mions occurThe address
of the task corresponding to the original code may be included in the task descriptor and

the code itself may be attached at the end of all scheduled tasks.
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In the cont&t of scheduling for superscalar processors,yntachniques ha been pro-

posed to sok this problem. An approach similar to those proposed in boosting [93] and
sentinel scheduling [66] may be adopted. Instructions that hat been meed may be
annotated to signal groutstanding reab&eptions. Book&eping code may be generated

to restore precise state to handle reakgtions.

4.4.4 Cost model

The scheduler emp)s a cost model to determine thdéent to which instructions ke
to be meed. The cost model uses static or dynamic profiling information to determine the
branch takn and branch not-tak probabilities. The cost model estimates the stales
incurred by each forarding (receiing) instruction by estimating the tBfence between
the time of &ecution of the fonarding (receiing) instruction and the time okecution of
the sinking (sourcing) instruction that consumes (produces) tfistere\alue produced
(consumed) by the foravding (receiing) instruction. The time ofxecution of an instruc-
tion contained in a task is estimated as the number of dynamic instructecsesl

before the instruction from the start of the task and is callgaotieon of the instruction.

To the first orderthe number of dynamic instructionseeuted before an instruction is a
reasonable estimate for the time géeution of the instruction with respect to the start of
its task. Instructions that takmultiple gcles (e.g., loads) to complete introduce error in
this estimate, it obtaining accurate profiling information aboytle counts for such
instructions is dficult because the profiler mayvsato perform a detailed timing simula-
tion of the taget hardvare. Using dynamic instruction count is genient because the tar-

get system need not be simulated.

The estimation is based on the equatiomemin Figure4-11. Pathprob of a basic block
I is the probability that the basic block i iseeuted if the task to which the basic block
belongs is xecuted, without including back edges of the CFG of the taykliclen of a
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pathprob(i) = {pathprob(j) % prob(i, j)}
j O parent(i)

acycliclen(i) = {acycliclen(j) X pathrob(j)}
j O parent(i)

looplen(l) = acycliclen(loopend(l))/ (1 —backprob(l))

For the nth static instruction in the task which is not at the top of its basic block, i

position(ln) = position(ln_l) + pathprob(i), postion(lo) =0

For the nth static instruction in the task which is at the top of its basic block, i:
position(ln) = {position(lend(j)) X pathprob(j)} +L(i)
j O parent(i)

For a basic block i that belongs to a possibly nested loop, where | is the outermo:s
L(i) = looplen(l)

Figure 4-11: Cost model. prob(i,j) is the probability that control flo edge (i,)) is takn
during eecution; it is obtained through profilinguathprob of basic blocki is the
probability of reaching from the root of its taskacycliclen of loopi is the aerage
number of instructionsxecuted by a single iteration bflooplen of loopl is the &erage
number of instructionsxecuted by the loop. position of an instruction is therage
number of instructionsxecuted by the task before the instructiend(j) is the static
location of the last instruction in basic blgch.(i) is O if i does not belong to gmested
loops within the task.

basic block i is theveerage dynamic number of instruction®euted before basic block i
is reached in the task, without including back edges of the CFG of th@tals{{,j) is the
probability of the edge (i,j) in the CFG being @akduring gecution. If a task does not
include an loops, then position of the instructions in the task is estimatedyaliclen.
In order to account for loops in tasks, a hierarchical approaches.thkops are consid-
ered from inner most nesting depth to outer nesting depth. Tdrage number of

dynamic instructionsx@cuted by a loop is estimated by using tkgression fortooplen.
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Going from inner to outer loop nesting in the task, loops are replaced with their equivalent

looplen and the acycliclen of the next outer loop nest is computed. The process terminates
when acycliclen of the outermost level is computed. Finally, computing the position of an
instruction depends on its location within its basic block. If an instruction is not at the top
of its basic block, then its position is the sum of the position of the previous instruction in
the basic block and pathprob-weighted count of one instruction. If an instruction is at the
top of its basic block then its position is the pathprob-weighted average of the last instruc-
tion of predecessor basic blocks. All possibly loops included within tasks are replaced by
the equivalent looplen of the outermost loop. For al instructionsin a possibly nested |oop,

looplen of the outermost loop is added to compute their position.

After the position of the instructions is determined, the scheduler moves the forwarding
(and the sourcing) instructions up and the receiving (and the sinking) instructions down
until the position of the forwarding instruction is smaller than that of the receiving instruc-
tion or the instructions cannot be moved any further. When the instructions are moved via
the upward and downward transformations, their position is swapped with the position of
the instruction they move past, so that code motion is stopped as soon as a good schedule
is achieved. Figure 4-6 shows an example of register communication scheduling. Task 1
computes and forwards register r and Task 2 uses the value. The scheduler moves the for-
warding instruction (r := a+ b) up into the predecessor basic block by applying the trans-
formation of Figure 4-9(a). The forwarding instruction and a sourcing instruction (a:= )
are moved up Task 1 by applying the transformation of Figure 4-9(d). Let us assume that
the instructions in Task 1 cannot be moved any more. In Task 2, the scheduler moves the
recelving instruction (c := r + s) down into the successor basic block by applying the
transformation of Figure 4-10(d). The receiving instruction and a sinking instruction (X :=
¢ + d) are moved down into the successor basic blocks by applying the transformation of

Figure 4-10(c).
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Task 1 Task 2 Task 1 Task 2

Figure 4-12: An example of register communication scheduling. Register r is produced
(and forwarded) by &sk 1 and consumed bwndk 2. The fonarding instruction (r := a +
b) along with one other sourcing instruction (a:= ) isvetbup Bsk 1. The receing
instruction (c :=r + s) and a sinking instruction (x := ¢ + d) is@dadavn to the bottom of
Task 2.

The scheduling requirements of multiple instructions may conflict with one anibilser
possible that minimizing the stall due to one dependence may actually increase the stall
caused by another dependence. Similar to task selection, the scheduler also prioritizes
dependences and the corresponding instructions, based on statically or dynamically pro-
filed execution frequencies and performs scheduling in the order of pribrdiyuctions
with lower priority are scheduled before instruction with higher pripsitythat the sched-

ule of the more important instructions are not disrupted by the others.



108
4.4.5 Controlling instruction count increase

After an instruction is identified to be ned, it is meed in the appropriate direction as
long as the estimated stall is non-zero. The cost model tracks the change in the estimated
stall gycles of the instructions through all the transformations. Thus, the cost model deter-
mines which direction an instruction needs to be&edaand hw far it needs to be nved.
Moving an instruction past the point of zero stgtiles is undesirable because duwther
code motion may increase the count of dynamic instructions withgutrganovement in
the number of stall ycles (transformations of Figu#e9(a) and Figurd-10(a) may
increase the instruction count becausg thay mae an instruction into paths that did not

execute the instruction before).

There are manways to control this increase. One of the guiding principles in control-
ling the instruction count increase is that the only goal ofangwnotion is to hoist for-
warding instructions up. If for some reason, the foding instruction does not w® past
a basic block, then it is detrimental to vedhe sourcing instructions in its backa slice
past that basic block because that may increase the instruction count without hastening the
forwarding instruction. A similar gument applies to dmward code motion as well; if
for some reason, a reegig instruction does not e past a basic block, then it is detri-
mental to mee the sinking instructions in its foard slice past that basic block. Before
applying the transformations, a look-ahead is performed within the current basic block to
check if for ery sourcing(sinking) instruction, at least one of the &ding(receaiing)
instructions in its backard(forward) slice will be eentually be able to nve up(devn)
across the top(bottom) of current basic block. If not, then the sourcing(sinking) instruction

is not maed up. The look-ahead needs to be done only within the current basic block.

There is an important interaction between contral fend rgister communication
which may also bexploited to control instruction count. If there is a define ofgster

down one of the paths past a branch and nomadbe other path, then thegister cannot
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be forwarded/released before the branch because only after the branch, there is a guarantee

that the rgister is not modified den the other path. This obsation implies that when
hoisting a forvarding instruction up past a branch from one path, if the other path past the
branch defines thegester then this hoisting will be detrimental. If there is a use ofa re
ister in all the paths reaching a reweg instruction (from the root of its task) that con-
sumes the gister then there is no adutage in pushing the reeiig instruction dan.

Figure4-13 illustrates these twaguments.

r should not
be modified

past the edge there should be
B1B3 in the at least one path
current task from the root of
current task to B1
ﬂ with no use of rl
de fwd before B1
B2

(b)

Figure 4-13: Conditions to prevent unnecessary dynamic instruction incease.—»

indicates control flo.—~ indicates code motion. (a) If a foawding instruction is meed

up from block B2 to block B1, then there should be no other definitions of r past B1 in the
current task. (b) If an instruction consuming rl isvewfrom block B1 to block B2, then
there should be no preus use of the rl in all paths reaching B1 from the root of the
current task.

Apart from these considerations, the cost model is also usetetvively control the
instruction count increase. Associated with all thevesie instructions is the estimated

number of stall ycles that the instructionauld cause and throughout the code motion,
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this number is tradd for each instruction that is ned and as soon as the estimated num-

ber of stall gcles has decreased to a zero, code motion terminates.

4.4.6 Scheduling loop induction variables

Induction \ariables of loops are an important special case for schedugirsgerecom-
munication. Specific control flo pattern of loops can bem@oited to schedule induction
variables more &ctively through a dferent technique. If the entire loop body is selected
as a task, then the tifent iterations of the loop are assigned téedéint PUs to bexe-
cuted in parallel. But inductionaviables are usually produced at the end in one iteration
and used in the meiteration right at the lggnning. This code arrangement causes each
iteration to vait until the pregious iteration sends the inductiorgigers, serializing the
iterations. Since the sequence alues that inductionariables tak is predictable at com-
pile time, a better schedule can be obtained. Inductidables can be foravded early by
restructuring the loop so that the inducti@miables are incremented first and then used by
the loop body; the loop is restructured so that the inducaoiables are incremented at
the top of the loop. Thex#-test branch also gets med to the top of the loop and axtra
jump is added at the bottom of the loop. The first iteration is pediedtbdut the induc-
tion variable increments, to maintain correctness. The restructured loop enables each itera-
tion to forward the induction wgasters in the first f& instructions, supplying the xie
iteration with the alues it needs without wrlelay Figure4-14 shovs the general scheme

of restructuring loops.

4.4.7 Interaction with other optimizations

Register communication scheduling interacts witle Iranges of igisters and pipeline
delay-slot scheduling. Apart from these interactiongister communication scheduling

has phase ordering problems withister allocation and task selection.
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First iteration without
induction increments

i++
branchoni

L oop Body

L oop Body

i++
branch on i
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Figure 4-14: Induction variablesin loops. (&) Increments of inductionaviables at the

end of the loop body serializes the loop iterations. (b) Loops are restructured so that
induction \ariable increments and the braneiit st are meed to the top of the loop and

an «tra jump is added at the bottono fhaintain the same number of iterations, the first
iteration is peeled &f

Any instruction scheduling, in general, fundamentally changes sxtpanse of ke
ranges of rgisters. Ay expansion of Ne ranges increasesgister pressure and may
result in increased spilling. The set of transformations eyepldy rgister communica-
tion scheduling xpand the ke ranges of one set ofgisters and contract thevdi ranges
of another set of gasters. Defines and uses of thgiséers that are communicated from
one task to another are weal up and don control flav, respectiely, leading to gpan-
sion of the We ranges of the gesters. Defines and uses of thgiseers in dependence
chains that start with a ree@ig instruction and end with a foarding instruction are

moved tavard each otheteading to contraction of thesé ranges of the gesters.
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Register communication scheduling may disrupt the pipeline/superscalar schedule of the

code, resulting in pipelineubbles. In the current implementation, gri&ting pipeline/

superscalar scheduling withgister communication scheduling may address the issue.

| implemented the scheduling algorithm before tlggster allocation phase. The aaw
tage of such phase ordering is that there arg fewv anti-dependencies between instruc-
tions with pseudo-gster operands and renaming does netlta consider the problem
of spilling registers. The disa@dntage of such phase ordering is that anti-dependencies
introduced by rgister assignment may delay fawd of a rgister (as described in
Section4.3.2) which is ta&n into account by the schedulBound-robin assignment of
registers may mitigte the problem. As with mgrother compiler optimizations, better

memory disambiguationeuld probably result in better scheduling.

There is a phase ordering problem between task selection gisttre&eommunication
scheduling; tasks should be selected so that a good schedwerikatask register com-
munication is obtainedub intertask rgister communication can be identified only after
tasks are selected. In the current implementation, task selection is done bgikies re
communication scheduling is doneask selection attempts teaad mary intertask data
dependences by including as matata dependences as possible within tasks. After task
selection is done, those data dependences that are not successfully included within tasks
are handled by the scheduler to natigthe detrimental fefcts of intertask rgister com-
munication. Other phase-ordering or an gnéded task selection and scheduler may be

possible.
4.5 Implementation

The most important part of generatingister communication is to s@whe datafi
equations in Figurd-3 and Figuret-4. The equations compute the datafloroperties of
basic blocks and not inddual instructions. Indidual instructions are annotated to

orchestrate gister communication. The datafligropertySend identifies the basic blocks
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which should send gester \alues of the mgisters thg define. Wthin each such basic

block, the instructions are scanned and the instruction that defines the approgistde re
last is annotated to send thgister \alue. Figuret-15 shavs the pseudo-code to generate

register communicatiorAnnotate reg_comm() scans throughvery task and annotates the

annotate_rg@ comm() { solve_equations() {
for each task t { change = TRE;
solve_equations(); while (change) {
for each basic block b{ change = ALSE;
if (send(b,r) && for each basic block i, last to first {
not_write(b,r)) for each child j of i {
insert_release(b,r); if  Nomoredef (i) O Nomoredef(j) n BBdef(j)
for each instruction iin b { {
if (send(b, r) && change = TRE;
last_write(i,r)) tmp = Nomoredef(j) n BBdef(j)
} annotate_forard(i); Nomoredef (i) = Nomoredef (i) n tmp
}
} }
} }
} for each basic block i, first to last {

for each parentj of i {
tmp = Nomoredef(j) O tmp

}

send(i) = Nomoredef(i) n tmp

}
}

Figure 4-15: Pseudo-code for  register  communication  generation.
Annotate reg_comm() is the top leel driver for register communication generation.
solve_equations() solves the datafle equations gien in Figure4-3.

appropriate instruction§olve_equations() computes the dataflopropertyNomoredef, as

per the equations in Figude3. Solve_equations() solves forNomoredef by iterating oer
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Nomoredef until corvergence. Since Nomoredef is a backwrd flov problem,

solve_equations() iterates wer basic blocks in xerse CFG depth-first-search numbering

order to cowmerge quickly

Figure4-16 shavs the pseudo-code for schedulingistéer communicationlhe sinking
and the sourcing instructions that need to be considered for scheduling are identified by
simple dataflev dependence analyseSort_dependences() prioritizes the dependences.
Using the &pressions in Figuré-11, compute_position() determines the position of each
instruction in the task. Then the instructions are scheduled in increasing order of priority
by using the transformations in Figut® and Figuret-10.move_code() moves the sourc-
ing instructions up and the sinking instructionsvdauntil the position of the forarding
instruction is smaller than that of the redeg instruction.move_up() moves instructions
up from one basic block to its predecessaomsve up() performs the transformations
showvn in Figure4-9 and Figuret-10. move_up() moves up all instructions in the basic
block that the forarding instruction is dependent on and thervesothe fonarding
instruction up.move_up() moves each of the sourcing instructions up into predecessor
basic blocks only if all of the sourcing instructions in the basic block can Yaednup into
predecessor basic blocks/ea if one of the sourcing instructions cannot bevexoup,

then none of them is naed.move_down() is similar tomove_up().

4.6 Related work

Dataflav analyses hae been applied to a @ number of problems in compiler optimi-
zations. The basic gester communication problenalfs under the cagpry of simple
dataflav problems [1] [28] [30] [72]. Compilers of data parallel languages Rdetran D
and HPF generate data communication for disteitd memory machines [49] [51]. Some
of the correctness criteria of Multiscalagiger communication and distuted memory
communication are similafhe important dferences are that multiple sends ofue is
disalloved in distritited memory communication. And theserlss do not include an

speculatre communication.
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schedule_comm() { move_up(i) {
sort_dependences(); for each instruction j in basic block {
compute_position(); if (dependent(i, j)) {
for each dependence (u,v) { move_to_top_of basicblock());
move_code(u,v); for each parent basicblock p of i {
} if 1(lega(j, p) && instr_count_ok(j, p))
} return FAIL;
}
compute_position() { }
for eachtask t { }
for each level of nesting L { for each parent basicblock p of i {
compute_acycliclen(); if (dependent(i, j))
} make_copies(j, p);

for eachinstructioniintask t{ }
consume(i) = acycliclen(i); }
produce(i) = looplen(i);

} move_down(i) {
} for each instruction j in basic block {
} if (dependent(i, j)) {
move_to_bottom_of basicblock(j);
move_code(p, ¢) { for each child basicblock of i {
while (consume(c) < produce(p)) { if 1(legal(j, c) && instr_count_ok(j, c))
move_up(p); return FAIL;
move_down(c); }
if (cannot_move(c) & & }
cannot_move(p)) }
break; for each child basicblock c of i {
} if (dependent(i, j))
} make_copies(j, C);
}
}

Figure 4-16: Pseudo-code for scheduling register communication. Schedule_comm() is
the top level driver for the scheduler. compute position() computes the position of the
various instructions. move_code() moves the instructions in the appropriate direction.
move_up() and move_down() perform the actual transformations.

Annotating instructions with register communication information has precursors. Other

approaches like boosting [92] [93] have annotated instructions with extrainformation.
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There are a myriad of compiler scheduling techniques for supersehla and pipe-

lined architectures. In general, most compiler scheduling techniquestla compo-

nents: (i) the set of transformations used for code motion, and (ii) the cost model used to
decide when to apply the transformations. The purpose of most scheduling techneques lik
instruction scheduling [17] [41] [43], global scheduling [15] [71], percolation scheduling
[76], trace scheduling [34], balanced scheduling [61], boosting [9RErblock schedul-

ing [67], and superblock scheduling [22] is to fill @emi empty issue sletith a profitable
instruction. The set of transformations create gelaet of ready instructions, and the cost
model decides the most profitable instruction among the ready instructions to fill the
empty slot. In contrast, gester communication scheduling requirement is toerengven
instruction to a suitable position. The set of transformations usedjisyerecommunica-

tion scheduling can nve the instruction to a number of féifent positions. Rgster com-
munication cost model decides the most profitable position among the possible positions
to move the instruction. Thus, there is aeesal of what is fi®d (or gven) and what is
varied. Morewer, corventional scheduling techniques do notventire slices of compu-
tation. The cost models of omntional techniques compute the probability xéaution

of the ready instructions with respect to the empty slot and choose the most profitable
ready instruction. Rgster communication cost model estimates the delay incurred by for-
warding/recering instructions and decides which direction the instruction has to be
moved. Rgister communication cost model also controls ttierg to which each instruc-

tion gets mued.

Static speculation has been applied in scheduling for supers¢aley and superpipe-
lined machines. @chniques lik global scheduling [15], percolation scheduling [76], trace
scheduling [34], boosting [15] [92],yherblock scheduling [16], superblock scheduling
[17], guarded xecution [82], sentinel scheduling [66], and modulo scheduling [83]
employ varying dgrees of static speculation. Utilizing specwatixecution in instruction
scheduling constitutes twissues: (i) decision of when to perform computation under

speculation, and (ii) resery from incorrect speculation. The first issue applies to compil-
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ing speculatie reggister communication in the Multiscalar architecture as well. The second

issue is addressed by a combination of hardvand compileiThe compiler inserts code
(in the form of “re-sends”) to detectyamcorrect static speculation and the haadsvper-
forms receoery. Unlike most VLIW machines, no boo&&ping code need be inserted in
the program bt recavery may be morexpensve since lager number of instructions may

get squashed.

Loop restructuring is similar to some of the transformations done byagefpipelining

techniques [32] [64] [83] to prepare the unrolled loop for safépipelining.

Work in parallelization and scheduling of Do-across loops [23] [26] [27] generate Syn-
chronizations between iterations of loops thatvalkrbitrary communication between
iterations. The major dérence between our problem and doacross parallelization/sched-
uling is that Multiscalar tasks are arbitrary sub-graphs of the contwobflaph and need
not be loop bodies. Morger, the machine models of the doacrosskwdo not include

control and data speculation, which are thedifin the Multiscalar architecture.

Although, | hae described our scheduling technique in the cordkthe Multiscalar
architecture, it can be applied to other architectur@sdiknamic trace-based processors
[86] [104], multithreaded architectures [103], small scale fine-grain parallel architectures
[78] and agy architecture with multiple fles of control and fine-grain data communica-
tion. In the Multiscalar architecture, the unit obnk executed on each PU is a task,
whereas in multithreaded architectures, it is a thread. The threads in multithreaded archi-
tectures communicatealues that may beairly small in grain size and performance
requirements of streamlining the communication are similar to those in the Multiscalar
architecture. In multithreaded architectures also, produceestbde scheduled early and
consumers heae to be scheduled late. The cost model to estimate the delays caused by
communication fits in the multithreaded paradigm as wetligter communication sched-

uling technique may be applied to these other architectures.
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Chapter 5

Experimental Evaluation

An important goal of this research is to construct a compiler for the Multiscalar architec-
ture so that a&rious hardwre and compiler techniques arperimented with andvalu-
ated on lage benchmarks. dl'that end, the optimizations described in the preceding
chapters hae been implemented in the Gnu C Compitgac. | conducted marexperi-
ments to determine thefe€tiveness of the compiler techniques by performixigresve
simulations on a simulator thanithfully represents the Multiscalar harake. In
Section5.1, | motvate and describe the measurements lenbk Sectiorb.2, | describe
the xperimental framwork and list the parameters of the haadevand the compiler con-
figurations used in thexperiments. In Sectioh.3, | describe thexperiments measuring
various aspects of task selection angister data communication and present results of
the efect of each of the compiler optimizations arerll performance. In addition to per-
formance, | present measurements of selected metrics that isolate the impact of each opti-
mization. | study the interaction between velet hardvare optimizations and compiler
optimizations. | also present analyses of the results to correlate prograviohesfiec-

tiveness of compiler optimizations, angecall performance.



119
5.1 Overview of experiments

In this section, | describe the quantities measured inxperienents with the bench-
marks from the SPEC95 [98] suite to analyze performance issues of the Multiscalar archi-
tecture and demonstrate the impact of the compiler techniquesluate: (1) verall
performance, (2) task characteristics valg to performance, and (3) dynamic windo

established.

In order to understand the reletiimportance of thearious task selection heuristics, |
isolate the performance achél by each heuristic by presenting suceessnprovements
in performance. | generate tasks using the heuristics described in Chdpséart with
tasks made of single basic blocks and progrelsiadd control fler heuristic and then
data dependence heuristic. Basic block tasks are simple aedaseawnatural yardstick to
experiment with &traction of parallelism. Recall that control Mlcheuristic generates
tasks with at most some & number of tgets taking adantage of recarergent control
flow paths and loops and data dependence heuristic generates tasks by including data
dependence chai%entirely within. sk size heuristic includes short function calls within
tasks to @oid terminating tasks at all function calls. Setting the threshuodd te include
entire function imocations, whichjeecute fever than 15 instructions, within taskeo#ls
generating tasks that incur frequent AREdlow, inordinate number of memory depen-

dence squashes, amxtessve load imbalance.

Then, | analyze the performance agk@ by each benchmark in light of its task charac-
teristics and its\aerage windw span. The important task characteristics tifataperfor-
mance of the Multiscalar architecture are: task size,-tagk control fla, and inteitask

data dependence.

1. The current implementation handlegister dependence chains and simple memory depen-
dences.
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For each task characteristic, | measure a metric that closely correlates to performance. |

measure thevarage dynamic task sizeorFintertask control flav, | measure prediction
accuracies to estimate the magnitude of contral flasspeculation. | also present the dis-
tribution of the number of tgets actually taén by the benchmark to determine the kind of
tamgets that the heuristicxgose to the prediction hardve. for intertask data depen-
dence, | report the time spent by an instructiaiting for reister \alues from other tasks.
| also measure the number of dynamic wigesk data dependenciesdister and mem-
ory), i.e., the number of instances wherealug produced by one task is consumed by

another

Due to loop restructuring, whichwalves irverting loop bodies and adding a jump
instruction at the bottom of the loop, andyister communication generation, which
involves adding release instructions in some contral flaths, Multiscalar programs may
execute more instructions than the superscaasions. | present the dynamic instruction

count werhead for the Multiscalareysions.

By studying the nature of the dynamic wimdestablished by Multiscalarganizations,
we can estimate the amount of parallelism that the machinexpoiteFor superscalar
machines, theverage windw size is a good metric of quality of the dynamic wivdo
Since the Multiscalar architecture does not establish a single continuouswiiregtend
window size to another metric.oF the Multiscalar architecture, the total number of
dynamic instructions that belong to all the tasksxecation simultaneously called the
window span is a metric that indicates the amount xppected verlap among thexecu-
tion of the instructions. Wdow span captures the amount of parallelispl@ted by the
machine. | present theerage windw span for the benchmarks and correlate it to perfor-

mance.

Register communication delay andyreter communication trA€ demand significantly

affect overall performance of the Multiscalar architecture. Vehamplemented arious
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compiler techniques to reduce the delay and thedr&fegister communication stragees
and scheduling discussed in Chapgteeduce the delayhe \arious rgister communica-
tion stratgies ofer a spectrum of hardwe and compiler irolvement with arying
degrees of performance. Recall that end_send giratenseratively posts fonards of
register \alues at task end, eager_send gfsaf@sts speculate forwards of rgister \al-
ues as soon as agrster is modified, \&n though it may not be the last modification,
last_send strafyy posts fonards of rgister \alues only after the last modification, and
spec_send strajg posts speculat forwards of rgister \alues after a gaster is modi-
fied, if it is likely to be the last modification. | quantify théeet of register communica-
tion delay by studying impact of theanous rgister communication stragjees on oerall
performance. @ isolate the impact of theakious stratgies, | also present measurements

of the number ofycles spent by PUsaiting for a rgister \alue to be sent.

Reagister communication scheduling further reduces the delaydnjapping communi-
cation with computation. In addition to the communication grase | also measure the
impact of rgister communication scheduling on performanae.sblate the impact of
scheduling, | measure of the number yéles spent by PUsaiting for a rgister \alue to

arrive.

Register communication bandwidth is an important resource that needs to be utilized
judiciously High bandwidth demand could lead to queuing delaygister communica-
tion leading to wrse performance.orlthis end, | present measurements gfster com-
munication trdic of the benchmarks and the impact of deagister optimization on the

traffic.
5.2 Experimental methodology

Before presentingx@erimental results, | describe th&perimental frameork, the
parametersalues used to configure the haeses simulator and the benchmarks used in

the evaluations.
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5.2.1 Framework

| implemented a C compiler deed from the Gnu C Compilggcc. Benchmark source
files are input to the compiler which producgsaitables. @ evaluate compiler stragges
described before, | used an instructiorveini simulator of the Multiscalar architecture.
The binary generated by the compiler xe@uted by the simulator whichithfully cap-
tures the behaor of the Multiscalar architecture on gote per gcle basis and produces
output result files for erification. The simulatorxecutes all instructions of the bench-
marks e&cept for system calls, in order to maintain high acgud@erformance results

obtained.

5.2.2 Simulation parameters

The simulator models details of the processing units, the sequireceontrol flav pre-
diction hardvare, the rgister communication ring, the memory hierarcbnsisting of the
ARB, L1 data and instruction cache, L2 cache and main mempgyt from these hard-
ware components the simulator models the interconnection between the processing units
and the ARB and L1 instruction and data caches, the L1 caches and the L2 caches, as well
as the systemus connecting the L2 caches and the main menBwth access latencies

and bandwidths are modeled at each of these components and interconnects.

5.2.2.1 Processing units

The PUs issue instructions out-of-order or in-order usingjiatez update unit with 16
reorder liffer entries and an issue list of 8 instructions. Each PU can fetch up to 4 instruc-
tions, issue up to 2 instructions, and commit up to 4 instructions, inyahe cespec-
tively. Each PU gecutes instructions on a collection of fully pipelined functional units: 2
simple intger FUs, 1 compleinteger FU, 1 floating point FU, 1 branch FU, and 1 mem-
ory FU. For intra-task branch prediction, the PUs usgstaare branch prediction scheme
[70] with a 16-bit history rgister ind&ing into a 64K-entry table of 2-bit counters. Since
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the main objectie of the Multiscalar architecture research is to design digddbPUs

each of which may be cloel fast, | use narm-issue PUs for myx@eriments.
5.2.2.2 Contol flow prediction

The global sequencer empta 2-vay set associate, 32KB task cache with 64 byte
blocks for task descriptors. On a hit, the task cache returns a task descriptorynlene c
So, tasks are initiated at most one pgrle Misses from the task cache are sent to the
common L2 cache.dlrassign tasks to PUs, the controiMlprediction hardware of the
sequencer uses a dynamic path-based [56] scheme to predict one out of at most four tar-
gets of tasks. The path-based predictor uses 7 path histories XOR-folded into a 16-bit of
path rgister indging into a 64K-entry table of 2-bit counters and 2-bigégamumbers.
The path based-predictor is complemented by a 64 entry return-address stack to handle

function call returns.
5.2.2.3 Register communication

Each PU can send as myarggister \alues as the number of instructions that can be
issued in oneyxle. Outputs of functional units of one Puhadable at the end of aycle
are bypassed to the inputs of functional units of theé R&J in the bginning of the net

cycle through the unidirectional point-to-poingrgter communication ring.
5.2.2.4 Memory subsystem

The PUs fetch instructions from a Z&yassociatie, fully pipelined, lockup-free [62]
[96], shared L1 instruction cache with 32 byte blocks inteddanto as manbanks as
there are PUs. Each cache bank contains 16KB of storagé-FU and 8-PU configura-
tions, the size of the L1 I-cache is 64KB and 128KB, respaygtiThe L1 I-cache banks
are connected to the PUs through a crossbar and contention at the banks is modeled. On
hits, the L1 I-cache returns 4 instructions to the requesting PU inyoles i there is no

contention at the banks. Although crossbardrsal and I-cache access in ogele may
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seem optimistic, another ganization of pwate I-caches with each PU may raathe

assumption feasible.

The PUs access a 2aw associatie, fully pipelined, lockup-free, shared L1 data cache
with 32 byte blocks interlead into as manbanks as there are PUs. Each cache bank
contains 16k of storageoF4-PU and 8-PU configurations, the size of the L1 D-cache is
64KB and 128KB, respewsttly. The L1 D-cache banks are connected to the PUs through a
crossbar and contention at the banks is modeled. On hits, the L1 D-cache retmhet w
data to the requesting PU indwycles, if there is no contention at the banks. | assume a 2-

cycle hit lateng to account for the crossbarvessal and the D-cache access.

Loads and stores from the PUs access the ARB and the L1 D-cache simultarfdwusly
ARB is a fully associate, fully pipelined, lockup-free, sharedffer interleaed into as
mary banks are there are PUs. Each ARB bank contains 32 entries each of whiels ha
mary blocks are there are PUs and the ARB blocks are of the same size as L1 D-cache
blocks. for 4-PU and 8-PU configurations, the size of the ARB is 4KB and 8KB, respec-
tively. On hits, the ARB returns aond of data to the requesting PU inyZles. The ARB
banks are connected to the PUs through a crossbar and contention at the banks is modeled.
On task squashes, the ARB entries avalidated in oneycle and on task commits, dirty
ARB entries are written back to the L1 D-cache in the backg?omdrlapped with the

execution of the nd task assigned to the PU.

Misses from the L1 I-cache, L1 D-cache and the ARB are sent to the unified L2 cache.
The L2 cache is a 2ay associawe, fully pipelined, lockup-free cache intened into 4
banks with 128 byte blocks. Each bank contains 1Mb of storagddth 4-PU and 8-PU
configurations, the size of the L2 cache is 4MB. The L2 cache hits return data to the
requesting PU after 13/cles, if there is no contention. The transfer rate between the L1

caches and the L2 cache is 16 bytes gelec The L1 caches and the L2 cache are con-

2. Task commits do not incur the latgraf writing back dirty ARB entries.
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nected through aus (assumed to be running at the same clock rate as the PU) and conten-
tion at the s and the L2 cache banks are modeled. | assume ycl&2hit lateng to
account for L1 miss, L1-L2uUs protocol, L2 cache access, L1-LUaskransfer and data

return to PU.

Main memory is 4-\ay interleged and is connected to the L2 cache through the system
bus. Main memory is assumed to be infinite sized. Main memory returns data to the
requesting PU after 58/cles, if there is no contention. The transfer rate between the L2
cache and the main memory is 16 bytes per systengy/ble. The systemus is assumed
to be cloclked at half the clock rate of the PU. | assume aybl@ccess lategido account
for the L1 miss, L1-L2 bs acquire, L2 miss, systemsprotocol, main memory access,

system bis transferL1-L2 bus transfer and data return to PU.

Apart from the usual components of the memory hiesartte implementation of the
Multiscalar architecture that | consider includes a hardwnechanism to perform mem-
ory dependence prediction and synchronization [73]. Instead of blindly speculating that
loads and stores from tBfent tasks arewhys independent (and squashing on misspecu-
lations), the mechanism predicts dependences among memory accesses (and resulting
misspeculations) by dynamically tracking the history o¥janesly misspeculated memory
dependences, similar to branch prediction. The mechanism enforces prwmhgener
ordering on those loads and stores that are predicted to misspeculate by dynamically syn-
chronizing them. The hardwe tables used to perform memory dependence prediction

contains 256 entries.

Hardware parameters are summarizechinl€5-1.
5.2.2.5 Compiler optimizations

All of the binaries for thex@eriments are generated with the highegtllef gcc 2.7.2

optimizations. The usual compiler phases of jump optimization, commorxpussion
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Table 5-1: Hardware parameter s used in experimental evaluation.

Component Description

PUs 2-way issue, 16-entry reordeuffer, 8-entry ready list

FUs 2 intgger, 1 comple, 1 floating point, 1 branch, 1 memory
Intra-task gshare with 16-bit historp4K-entry table of 2-bit counters
prediction

Inter-task path-based with 16-bit histqrg4K-entry table of 2-bit counterp
prediction and 2-bit taget numbers

Task cache 32KB, 2-way associatie

Register Ring 2 values perycle, bypass samegde between adjacent PUs
L1 I-cache 64KB (4PU)/128KB (8PU), 2-ay associatie, 32 byte blocks, 1

cycle hit, interlesed as mayibanks as the number of PUs, logk-
up free, fully pipelined

L1 D-cache 64KB (4PU)/128KB (8PU), 2-ay associate, 32 byte blocks, 2
cycle hit, interlesed as maybanks as the number of PUs, logk-
up free, fully pipelined

ARB 32 entries/PU, 32 x #PU bytes/enKB (4PU)/8KB (8PU),
fully associatie, 2 gcle hit, interlesed as maybanks as the
number of PUs, lock-up free, fully pipelined

Memory 256 entries

synchronization

L2 cache 4MB, 2-way associate, 12 gcle hit, 16 bytes perycle transfer
Main memory Infinite, 58 gcle lateny, 8 bytes perycle transfer

elimination, dead code elimination, loop optimizations including strength reduction,
induction \ariable elimination and loop unrolling, basic block pipeline scheduling, global
register allocation, and peephole optimizations are used. Multiscalar optimizations includ-
ing task selection, loop restructuring, deagister analysis for gister communication,

and rgister communication scheduling and generation are also used. The compiler uses
basic block frequeng obtained via dynamic profiling, forgister communication sched-

uling and task selection. Profilinga& done using profile inputs specified by the SPEC95

suite.
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5.2.3 Benchmarks

| use the SPEC95 benchmark suite throughout xpermental ealuation. The
SPEC95 suite consists of both e and floating point programs, drafrom a \ariety
of application areas. The igfer programs (CINT95) are 099.go, 124.m88ksim, 126.gcc,
129.compress, 130.li, 132.ijpe134.perl, and 147ovtex. The floating point programs
(CFP95) are 101.tomcata02.swim, 103.su2cprl04.lydro2d, 107.mgrid, 110.applu,
125.turb3d, 141.apsi, 145.fpppp, and 14&ab. A detailed description of the bench-
marks can be found in the SPEGmsketters [98]. Br each benchmark, | talate the

inputs used for thexperiments and the inputs for profiling ialdle5-2 and T&able5-3.
5.3 Experiments

In one set of periments, | study the fefct of compiler task partitioning heuristics and
task characteristics of Multiscalar programs. In another sexpsrienents, | study the
effectiveness of compiler stragies for rgister communication and compiler scheduling
to streamline @ister communication. | also measure the impact of desistee analysis

on register communication trac.

Since the number of instructionseguted by a program changes due to compiler tech-
niques, all releant quantities hae been scaled appropriateRRegister communication
scheduling was performed in all thexperiments measuring thefeftiveness task selec-
tion heuristics and task characteristics. Data dependence tasks were used ixpdrthe e
ments measuring géster communication strajies and scheduling. This combinatioasv

used so that results are noéskd by unoptimized code.

To isolate the déct of the diferent task selection heuristics, | present measurements
based on four types of tasks: (1) Basic block tasks which are obtained by demarcating
each basic block to a task on itgro(i.e., each task contains a single basic block), (2) con-

trol flow tasks which are obtained by including multiple basic blocks witharéesling
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Table 5-2: Inputsfor CINT benchmarks. The column titled input shes the input used
to run the benchmark for eackperiment. The column titled profile shis the input used

to profile the benchmark. Note that in some cases the SPEC standard test inputs are used

to profile and the SPEC standard train inputs are used to rwegpdlke simulation runs to
fewer than ma billion instructions.

Benchmarks

Input

Profile

Description

099.g0

2stone9

null

Plays the gme of go aginst itself, great deal
of pattern matching and look-ahead logic,
cache actiity is small.

124.m88ksim

dhry

dcrand

A clock-level simulator (includes cache laten
cies) for the Motorola 88100, knm to be not
vectorizable.

126.gcc

ccep

jump

A GNU C compiler ersion 2.5.3, corerts

preprocessed files to optimized Sparc asse-

bly, knowvn to be not gctorizable.

129.compress

train

test

Reduces the size of the named files using &
tive Lempel-2v coding, modified to wrk out
of memory instead of using files, sengtto
data cache size.

Hap-

130.Ii

train

test

A Lisp interpreter written in C, krven to be
not vectorizable.

132.ijpegy

vigo

specmu

Performs image compression/decompressi
on in-memory images based on the JP&EHf
ities, modified to wrk out of memory instead
of using files.

134.perl

jumble

scrabbl

An interpreter for the Perl language, inputs

re
scripts that perform some basic math caIcuL-

tions and verd lookups in associag arrays,
may spend as much as 10% of total time in
library routines like malloc, free, memgpetc.

147 \ortex

train

test

A subset of a full object-oriented database
gram called ORTEX, luilds and manipulates
three separateubinterrelated databases,

ro-

database size restricted to 40MB, has not been

vectorized as of SPEC95 release.

four tagets, as described in Secti®d.2, (3) data dependence tasks which are obtained

by including data dependence chains (mostljyster dependences) combined with con-
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Table 5-3: Inputsfor CFP benchmarks. The column titled input shes the input used to

run the benchmark for eackperiment. The column titled profile shis the input used to

profile the benchmark. Note that in some cases the SPEC standard test inputs are used to
profile and the SPEC standard train inputs are used to ruegpotke simulation runs to

fewer than ma billion instructions.

Benchmarks || Input Profile | Description

101.tomcatv || test train A vectorizable mesh generation program, sg¢n-
sitive to memory subsystem performance, pgr-
allelizable.

102.swim test train A shallov water model with a 1024 x 1024

grid of finite diference approximationsee-
torizable and parallelizable.

103.su2cor test train Computes masses of elementary particles
applying a monte carlo methocatorizable
and parallelizable.

104.tydro2d test train Solwves lydrodynamical Neier Stoles equa-
tions to computeaactical jets, gctorizable
and parallelizable.

107.mgrid test train A multi-grid solver in 3D potential field, para}
lelizable.

110.applu train test A parabolic/elliptic partial dierential equa-
tions soher, parallelizable.

125.turb3d test train Simulates isotropic, homogeneous tlgnce
in a cube, uses a g 1D FFT computation,
parallelizable.

141.apsi train test Solves problems garding temperature, wind

velocity, and distrilntion of pollutants, not ea$-
ily parallelizable.

145.fpppp train test Solwes an intgral dervative that models inter{
actions among a number of atoms, minimal
cache footprint, not easily parallelizable.

146.waveb5 train test Solves Maxwells equations on a cartesian
mesh, considerable indirect addressing use
not easily parallelizable.

=
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trol flow heuristic, as described in Secti®d.3, and (4) task size heuristic tasks which are

obtained by including entire functionviocations (which xecute fever than 15 instruc-

tions) within tasks.

5.3.1 Effectivenessof compiler heuristics

In order to study the fHctiveness of the heuristics, | used basic block tasks as the base
case. Basic block tasks are small and incur performance loss from all quarters. All
branches arexposed to the prediction hardve without taking adantage of recorergent
control flov paths. Data dependenciesgfster) from one basic block to its successor are
dense and cause long communication delays. Memory data misspeculations do not occur
because not mgnmemory dependencies are speculatederf@@ads are significant
because of the small size of basic block tasks. The wirdonstructions established by

basic block tasks is not & enough tox@ose enough parallelism.

The heuristics are able to allate the problems of basic block tasks to a certstieng
by establishing a lger windav. Heuristic tasks are lger and more independent because

they include more control and data dependencies within them insteapaxieg them.

The heuristics capture bothgrdar and irrgular parallelism. & the intger bench-
marks, tasks obtained using the heuristics range fromv bdsic blocks to entire function
invocations. Let us consider each benchmark separately to understand i®rbeha
129.compress and 134.perl contain data dependence recurrences in the fregaently e
cuted parts of the programs causing the heuristics to split loops into multiple tasks. Conse-
quently 129.compress and 134.perl ag@ta control and data dependencies. 130.li
contains a high frequen®f recursve function ivocations. If included within tasks, the
function calls cause load imbalance and otherwise, cause function bodies to be split into
small tasks, xacerbating intetask data dependencies angerheads. 126.gcc contains

dense, irrgular data dependencies which are hard to include within tasks becguaeethe
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numerous. 126.gcc also incurs performance loss duege haimber of function calls kk
130.li. 132.ijpg contains atndant rgular loop-parallelism which the heuristicepéoit
although the loops access memory via pointers. 124.m88ksim andrié/ sontain

irregular parallelism that can be captured by non-loop tasks.

For the floating point benchmarks, the heuristics consistertlioie loop-parallelism.
Most of the tasks are loop bodies ang Bnop-recurrences are synchronized by the hard-
ware [73] &oiding data dependence misspeculations. The fine grain synchronization is
overlapped with intra-iteration parallelism. &vbasic block tasks perform well attesting

to the high lgel of parallelism in floating point programs.

Figure5-1 shavs the impreements in IPC using control floheuristic, data dependence
heuristic, and task size heuristic for out-of-order PU configuratixesuéng the intger
benchmarkswer the base case of basic block tasks. Figt#eshavs the imprgements in
IPC using control flw heuristic, data dependence heuristic, and task size heuristic for out-
of-order PU configurationsxecuting the floating point benchmarkgeothe base case of

basic block tasks.

The compiler heuristics (control ¥lp data dependence and task size together) fae ef
tive in capturing parallelism end basic block tasks. Using out-of-order PUs, thayarte
benchmarks impnreed by 19%-38% and 25%-39% on 4 and 8 PUs, respégctover
basic block tasks (Figui1), while the floating point benchmarks were boosted by 21%-
52% and 25%-53% on 4 and 8 PUs, respelti over basic block tasks (Figuge2). The
floating point benchmarks ¥ more rgular parallelism than the irger benchmarks, as a
result of which the heuristics succeed kiracting more parallelism from the floating

point benchmarks.

For the intger benchmarks, control floheuristic imprees performance 23%-54% and

23%-53% for 4 and 8 out-of-order PU configurations, resgagtiover basic block tasks
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Figure 5-1: Impact of compiler heuristics on CINT benchmarks with out-of-order
PUs. The two experiments markd a and b use 4 and 8 out-of-order PUs, resjeécti

(Figure5-1). It is important to note that the measurementsvehioere for data depen-
dence heuristic arever and abee control flav heuristic, i.e., data dependence heuristic is
applied in conjunction with control floheuristic. Data dependence heuristic adds modest
performance impnements (<1%-6% and <1%-15% for 4 and 8 PUs, respégtiover
control flov heuristic. There are mgarreasons for the impvements being modest: (1)
Out-of-order PUs can tolerate latencies due gester communication delays significantly

and (2) By including adjacent basic blocks within a task, contral fleuristic already
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Figure 5-2: Impact of compiler heuristics on CFP benchmarks with out-of-order
PUs. The two experiments mard a and b use 4 and 8 out-of-order PUs, resjedti

includes data dependence chains within tasks; data dependence heuristi@haper-

tunities to further capture data dependences.

Figure5-3 shavs the impact of control fl@ heuristic, data dependence heuristic, and
task size heuristic on the iger benchmarks for in-order PUs. Put togetties heuristics
improve performance by 23%-70% and 31%-83% for 4 and 8 PU configuratiens o

basic block tasksThese impreements are better than those for out-of-order PUs because
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Figure 5-3: Impact of compiler heuristicson CINT benchmarks with in-order PUs.
The two experiments markd a and b use 4 and 8 in-order PUs, respdyti

in-order PUs do not va as much lategdolerance as out-of-order PUs; the heuristics are
effective in avoiding intertask dependences, which stifle the in-order PUs more than the
out-of-order PUs. Using in-order PUs, data dependence heuristicviespperformance

by 3%-15% and 5%-25% for 4 and 8 PU configurations, respégctover control flav
heuristic. Out-of-order PUs can tolerate more latencies than in-order PUspddies,

data dependence heuristic impee performance more for in-order PU configurations than
for out-of-order configurations.df data dependence tasks, 8 in-order PUs consistently

perform better than 4 out-of-order PUs
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For the floating point benchmarks, controliflbeuristic imprees performance by 24%-

106% and 24%-117% for 4 and 8 out-of-order PU configurations, resggatver basic

block tasks (Figur&-2). Impact of data dependence heuristic is less pronounced because
control flov heuristic generates tasks whickplit loop-level parallelism. This trend is

true for in-order PUs as well. Figuse4 shavs the impact of control fle heuristic, data
dependence heuristic, and task size heuristic on the floating point benchmarks for in-order
PU configurationThe only eception to &ploiting loop-lesel parallelism is 145.fpppp,
where data dependence heuristic invpgo performance significantlyPut togetherthe
heuristics impree performance by 29%-106% and 24%-114% for 4 and 8 PU configura-
tions over basic block tasksFor control flav tasks, 8 in-order PUs consistently perform

better than 4 out-of-order PUs.

Task size heuristic impves performance of 129.compress by including short (5 instruc-
tions) function irvocations in the most frequent loop of the program and 145.fpppp by
splitting lage (~1000 instructions) basic blocks into smaller basic blo@sk Jize heu-

ristic does not impact the other benchmarks due to lack of opportunity

5.3.2 Task characteristics and metrics

| now present measurements okoall performancearious task characteristics for tasks
selected by the ddrent heuristics. First, | measure performance selieby tasks
selected by the ddrent heuristics. | measure (1) task size in terms of dynamic instruc-
tions, (2) intertask control flay, and (3) intetask data communication and speculation.
Task size heuristic t#cts only tvo of the benchmarks: 129.compress and 145.fpppp. So, |
include task size heuristic only for these benchmarks in the analyses of task characteris-

tics.

3. An important point to note is that 8 PUs/Banore bandwidth to the memory subsystem than 4
PUs.
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Figure 5-4: Impact of compiler heuristics on CFP benchmarks with in-order PUs.
The two experiments markd a and b use 4 and 8 in-order PUs, respdyti

5.3.2.1 Task sizemetrics

To characterize tasks furthémeasure the total number of dynamic instructions and the
number of control transfer instructions (i.e., branches, jumps, indirect jumps, function
calls, and function returnsxecuted in a task. While the total is a measure of task size, the
control transfer count measures the number of basic blocks included in comir@dks
and data dependence tasks. | also present the numbyetes spent by an instruction due

to load imbalance.
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In Table5-4 and Bble5-5, | present theve@rage dynamic size of basic block tasks, con-

trol flow tasks and data dependence tasks for thgantend floating point benchmarks.

Table 5-4. Dynamictask sizefor CINT benchmarks. Columns titled Basic Block
Tasks, Control Fi Tasks, and Data Dependencasks shw task sizes in number of
dynamic instructions for the corresponding heuristic. Columns titled total she
number of dynamic instructions and columns titled controlvstin® number of dynamic
control transfer instructions per task. Since 129.compress responds to task size heuristic,
both control flev tasks and data dependence tasks are augmented with task size heuristic
for this benchmark.

Benchmarks Basic Block Control Flav Data Dependence
total control | total control | total
099.go 6.4 2.53 18.2 2.04 12.7
124.m88ksim 4.3 2.97 14.8 2.42 10.3
126.gcc 5.8 2.52 12.4 2.32 11.6
129.compress* 5.7 1.78 10.2 2.77 15.0
130.1i 3.9 1.89 8.1 1.64 7.1
132.ijpey 10.6 2.42 23.3 2.43 23.8
134.perl 6.5 2.26 14.9 2.20 10.6
147 \ortex 6.9 2.41 17.2 2.19 14.0

For the intger benchmarks, basic block tasks contaiwefethan 10 instructions
(Table5-4). Control flav tasks and data dependence tasks contain usually more than twice
as maw instructions as basic block task®rFhe floating point benchmarksjem basic

block tasks contain more than 20 instructiomxsgeet for 107.fidro2d (Tble5-5). Similar

to their int@er counterparts, control floand data dependence tasks of floating point pro-
grams contain usually more than twice as ynastructions as basic block tasks. The main
reason for data dependence tasks to contaiarfdynamic instructions than controlvilo
tasks is that control i heuristic is greedy and includes basic blocks past data depen-

dence chains, whereas data dependence heuristic terminates tasks as soon as a data depen-
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Table 5-5: Dynamic task size for CFP benchmarks. Columns titled Basic Block,
Control Flav, and Data Dependence shdask size for the corresponding heuristic.
Columns titled control shw the number of dynamic instructions and columns titled
control shav the number of dynamic control transfer instructions per task. Since
145.fpppp responds to task size heuristic, both contrel ks and data dependence
tasks are augmented with task size heuristic for this benchmarks.

Benchmarks Basic Block Control Flav Data Dependence
total control | total control | total
101.tomcatv 44.1 4.96 114.9 3.24 84.8
102.swim 42.0 4.13 87.7 4.13 87.7
103.su2cor 49.8 8.03 107.8 8.03 107.8
104.tydro2d 11.9 6.0 44.0 5.24 39.5
107.mgrid 514 2.0 105.5 2.01 107.4
110.applu 21.7 1.71 39.0 1.70 38.5
125.turb3d 21.2 2.46 41.7 2.44 40.8
141.apsi 24.8 2.78 51.0 2.63 46.8
145.fpppp* 957.8 1.45 59.0 2.50 66.5
145 .wave5 24.4 4.20 59.1 4.08 56.1

dence is included. 129.compress, 107.mgrid, 144.fpppp do nowftiie trend because
data dependence tasks steer task selection to patesewiffrom control flv tasks,

resulting in entirely dferent tasks.

A few assembly-leel macro instructionsx@and into a sequence of instructions contain-
ing control transfer instructions.oF example, an intger dvide macro epands into a
sequence of instructions that includes a branch to checkvidediy zero. Seeral float-
ing point programs use library calls foanous computations (e.g., trigonometric func-
tions). So, some basic block tasks may include such control transfer instructions which are
hidden from the compilerAlso, control flov tasks and data dependence tasks include
extra jumps from loop restructuring optimizatiomrEhese reasons, there may seem to be
a discrepancbetween ratio of the size of basic block tasks and that of heuristic tasks and

the number of control transfer instructions in heuristic tasks. Contwobftal data depen-
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dence tasks contain between 2 and 3 basic blocks per task as indicated by the number of

control transfer instructions §ble5-4 and &ble5-5). The number of control transfer
instructions contained in control flotasks and data dependence tasks getahan their

integer counterparts.

While the tasks of the inger programs areairly small, the tasks of the floating point
programs are reasonablydardue to high frequendoops that do not contain yafunc-
tion invocations. In the intger benchmarks, functionviacations often result in small
tasks unless entire function calls are included within tasksk $ize heuristic includes
short function calls within tasks. Including d&r function calls or recurs calls lead to
inordinate number of memory dependence squashesxaadgsee load imbalance. Lge
tasks also fill up the ARB. Setting the thresholetl¢o include entire function wocations
within tasks at f@er than 15 instructionsvaids these problems. 129.compress has tw
function invocations that)ecute 5 dynamic instructions in the most frequent loop of the
program. Among the ingeer benchmarks, only 129.compress responds to task size heuris-
tic. Apart from function imocations, loops with a¥eiterations and short loops with tight

recurrences lead to small tasks in thegatdoenchmarks.

In order to isolate the fefct of each of the performance issues such as load imbalance,
task aerhead, intetask reister dependences and intask memory dependences, |
present theycles spent due to each of these issues in some of theifglsections of
this chapter Since out-of-order PUs carverlap delays, these measurements were
obtained by monitoring the commit point of the PU. If the instruction at the commit point
waits for rgister \alues and no other usefubvrk is done in thatycle, then the ycle is
chaged to rgister communication delayhis method gies only an upper bound on the
number gcles spent and not theaet g/cle count accountable to each performance issue
separately because there could be other instructions, whose delaylapped with the
instruction at the commit pointoF example, if rgister communication delay is measured

to be 20% of wverall execution time, performance may not impecby 12.5% if rgister
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communication is completely rewed because there may be other instructioaging

due to memory dependencesdapped with the instructionsaning for reister \alues.
Since these measurements do not correspondtd, esolated performance components, |

present the “obseed stall” in CPI instead of IPC towaid ary confusion.

In Figure5-5 and Figuré-6, | present theverage number ofycles spent by an instruc-
tion due to load imbalance for the igez and the floating point benchmarks, respelti
Control flov tasks and data dependence tagk#bi less load imbalance for both the inte-
ger and the floating point benchmarks, as compared to basic block tasks. This disparity is
due to the amortization of load imbalance logsrdager number of instructions of con-
trol flow tasks and data dependence ta€kmitrol flov tasks are a little arse than data
dependence tasks due to the greedy nature of contkohéaristic. Control flv heuristic
tends to create small tasks when it encounters terminal basic blocks and terminal control
edges, while greedily creating dgar tasks with non-terminal basic blocks and non-termi-
nal edges; this tendepcauses disparity in task size, whereas data dependence heuristic
terminates tasks as soon as a data dependence chain is includedfidgstodsic blocks
more &enly among control fle paths. Basic block tasks in 129.compress and 13@.ijpe
incur significantly high load imbalance because high-frequémaps contains aried-

sized basic blocks.

In the case of the floating point programs, yndomasic blocks contain substantial
amounts of computation in high-frequgnimops. But basic blocks containing anfe
induction \ariable increments in those loops conitéto the disparity in the amount of
computation performed per basic block. Basic block tasks incur high load imbalance due
to this reason (Figure-6). For control flav tasks and data dependence tasks, load imbal-

ance arises due t@sation in the amount of computation done in loop iterations.

Increasing the number of PUs ispected to increase load imbalance becauggeidar

number of tasks va a greater probability of being imbalancedr Bcample, increasing



141

I | oad imbalance stall
I Rest of CPI

==
o r

©c o o0 o ©
o o N o ©

Observed cycles per instruction

o O
w »

© o ©
o = DN

m88ksim compress ijpeg vortex

Figure 5-5: Observed load imbalance stall for SPEC CINT benchmarks. All the
experiments use out-of-order PUs. Theefexperiments markd a, b, ¢, d, and e are basic
block tasks, control flo tasks on 4 PUs, data dependence tasks on 4 PUs, comntrol flo
tasks on 8 PUs, and data dependence tasks on 8 PUs, vedpeair 129.compress,
control flav tasks and data dependence tasks are augmented with task size heuristic.

the number of PUs from 4 to &moses the ariation in size of tasks that are 4, 5, 6, or 7
dynamic tasks apart. But Figusell and Figuré&-12 shev that the gerage time spent by

an instruction due to load imbalance in a 8-PU configuration is not much less than that in a
4-PU configuration for most benchmarks. The main reason for the similarity in load

imbalance is thatariation in adjacent dynamic tasks conitdto werall load imbalance
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Figure 5-6: Observed load imbalance stall for SPEC CFP benchmarks. All the

experiments use out-of-order PUs. Theefexperiments mankd a, b, ¢, d, and e are basic
block tasks, control flo tasks on 4 PUs, data dependence tasks on 4 PUs, control flo
tasks on 8 PUs, and data dependence tasks on 8 PUs, vebpdar fpppp, control flay
tasks and data dependence tasks are augmented with task size heuristic.

more than ariation in dynamic tasks that aegther apart. Since theerall CPI decreases

on increasing the number of PUs (up to some number of PUs), load imbalance becomes a
more important performanceadtor as a percentage o¥erall CPI, for lager number of

PUs. for control flav tasks load imbalance accounts for 9%-16% and 12%-25% of total

execution time for 4-PU and 8-PU configurations, respelsti For data dependence tasks,
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load imbalance accounts for 9%-16% and 12%-24% of tg&aution time for 4-PU and

8-PU configurations, respeatiy.

In Figure5-7 and Figurés-8, | present the\aerage number ofycles spent by an instruc-
tion due to taskwerhead for the ingger and the floating point benchmarks, respebti
Task werhead decreases significantly for controlfliasks and data dependence tasks
over basic block tasks due to theirgar size, for the ingger benchmarksSince gen basic
block tasks are lge for the floating point benchmarks, the programs incur Ivéehmad.
Increasing the number of PUs decreases taskhead because of/erlap of werhead

time among more PUs.

5.3.2.2 Intertask control flow metrics

To characterize inteiask control flav, | measure control fl@ prediction accuracies for
tasks obtained by the thfent heuristics and the distuifion of dynamic tagets takn. In
Table5-6 and Bble5-7, | present intetask control flav misprediction rates of basic
block tasks, control flo tasks and data dependence taskediction accuracof basic
block tasks is higher than that of superscalar branch prediction acdueaause it
includes branches, jumps, function calls and returns. In general, the predictioarneasdw
able to maintain high task prediction accuracies for contral fesks and data depen-
dence tasks (columragk) in spite of predicting one of four dats, where as basic block

tasks &pose only tw tagets.

Since control flv tasks and data dependence tasks usually contain multiple branches
per task (shwn in Table5-6 and H®ble5-7), comparing prediction accuracies of these
tasks with those of basic block tasks requires normalizing the accuracies with respect to
the average number of dynamic branches per tagskhiE end, | present twkinds of pre-
diction accuracies for control fiotasks and data dependence tasks (colurask @nd

Branch): (1) Misprediction accunacalculated as a ratio of the number of incorrect task
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Figure 5-7: Observed task overhead stall for SPEC CINT benchmarks. All the
experiments use out-of-order PUs. Theefexperiments mankd a, b, ¢, d, and e are basic
block tasks, control fle tasks on 4 PUs, data dependence tasks on 4 PUs, control flo
tasks on 8 PUs, and data dependence tasks on 8 PUs, vedpdair 129.compress,
control flov and data dependence tasks are augmented with task size heuristic.

predictions and the number of all task predictions. (2) Misprediction agccasmulated
as a ratio of the number of incorrect task predictions and the number of dynamic branches.
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Figure 5-8: Observed task overhead stall for SPEC CFP benchmarks. Al the
experiments use out-of-order PUs. Theefexperiments markd a, b, ¢, d, and e are basic
block tasks, control fle tasks on 4 PUs, data dependence tasks on 4 PUs, control flo
tasks on 8 PUs, and data dependence tasks on 8 PUs, vebpdar fpppp, control fla

and data dependence tasks are augmented with task size heuristic.

Comparing basic block tasks with controMiltasks in terms of task prediction accura-
cies (column &sk), there are twkinds of behaor: Task prediction accuracies are higher
for control flov tasks than basic block tasks for those benchmarks which capture loop-
level tasks, namely 132.ijpeg, 101.tomcatv 102.swim, 103.su2cor104.lydro2d,

107.mgrid, and 145.ave5. In these benchmarks, the most frequent tasks are loop bodies



146

Table 5-6: Control Flow Misspeculation Rate for SPEC95 CINT Benchmarks.
Columns titled Basic Blockasks, Control Fi Tasks, and Data Dependen@sis sho
misprediction rates for the corresponding heuristics. Columns tilell Shav the task
prediction accuracies and columns titled Branchastiee efective prediction accurgc
normalized with respect to theeaage number of branches per task. Since 129.compress
responds to task size heuristics, both controlv fland data dependence tasks are
augmented with task size heuristics for this benchmark.

Benchmarks Basic Control Data
Block Tasks Flow Tasks Dependencedsks
Task Branch | Task Branch
099.go 14.4% 14.7% | 5.8% 14.6% | 7.2%
124.m88ksim 3.1% 4.0% 1.4% 4.9% 2.0%
126.gcc 4.4% 5.8% 2.3% 7.4% 3.2%
129.compress* 5.0% 5.7% 3.2% 7.8% 2.8%
130.1i 3.3% 4.0% 2.1% 5.2% 3.2%
132.ijpey 6.0% 3.7% 1.5% 5.1% 2.1%
134.perl 2.1% 3.9% 1.7% 4.1% 1.9%
147 \ortex 0.8% 0.7% 0.3% 0.7% 0.3%

which do not gpose ag of the branches internal to the loop bodies and are easy to pre-
dict. Data dependence taskv@awrse task prediction accuracies than controV tiask
because including data dependence chains within tasks is prefezredanergent con-

trol flow paths or loop bodies.

If task prediction accurgas normalized wer the number of dynamic branches (column
Branch), the déctive prediction accuracies are significantly better for control tasks
and data dependence tasks, demonstrating thegyybetween the heuristics and control
flow speculation hardare. Although the normalized accuracies are hjg@important
caveat is that @erage misspeculation penalties argéarfor heuristic tasks than for basic

block tasks due to their lger sizes.
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Table 5-7: Control flow misspeculation rate br SPEC95 CFP benchmarksColumns

titted Basic Block @asks, Control Fv Tasks, and Data Dependencasks shwo
misprediction rates for the corresponding heuristics. Columns tilell Shav the task
prediction accuracies and columns titled Branchastiee efective prediction accurgc
normalized with respect to thevexage number of branches per task. Since 145.fpppp
responds to task size heuristics, both controlv fland data dependence tasks are
augmented with task size heuristics for this benchmark.

Benchmarks Basic Control Data
Block Tasks Flow Tasks Dependencedsks
Task Branch | Task Branch
101.tomcatv 1.6% 0.4% 0.1% 0.4% 0.1%
102.swim 0.1% 0.2% 0.0% 0.2% 0.0%
103.su2cor 3.4% 0.5% 0.1% 0.5% 0.1%
104.hydro2d 0.1% 0.3% 0.1% 0.2% 0.0%
107.mgrid 1.1% 2.2% 1.1% 2.2% 1.1%
110.applu 3.9% 3.9% 2.3% 4.2% 2.5%
125.turb3d 3.4% 5.8% 2.4% 6.7% 2.7%
141.apsi 2.9% 4.3% 1.5% 4.1% 1.6%
145.fpppp* 5.6% 1.8% 1.2% 2.8% 1.1%
145.vwave5 0.8% 0.8% 0.2% 1.1% 0.3%

In Figure5-9 and Figurés-10, | present the distnthion of dynamic tasks with respect to
number oftargets. The measurements were made on data dependence tasks because they
achieve the highest performance. Almost 60% and 90% of dynamic tasks have two or
fewer targets, for the integer and the floating point benchmarks, respectively. For the inte-
ger benchmarkshe arerage number of dynamic ¢gats is mostly between 2 and 3, indi-
cating that although multiple basic blocks are included in a task, the heuristics are able to
take adwantage of recarergent control flav paths. 132.ijpg has unusually lge number
of two-taiget tasks, due to mgoop body tasks, which ka two tagets, namelythe loop
back and thedll through. Br the floating point benchmarks, theeeage number of

dynamic tagets is mostly close to 2 because of loop body tasks.
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Figure 5-9: Number of targetsfor SPEC95 CINT benchmarks. Distribution of

dynamic data dependence tasks as a function of the number of targets.

5.3.2.3 Inter-task data dependence metrics

To characterize inter-task data dependences, | measure the average number of cycles
spent by an instruction waiting for register values and memory values and the fraction of
inter-task data dependences in the program as a function of the number of dynamic tasks
that the data dependences span. In Figure 5-11 and Figure 5-12, | present the average

number of cycles spent by an instruction waiting for register values for the integer and
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Figure 5-10: Number of targetsfor SPEC95 CFP benchmarks. Distribution of

dynamic data dependence tasks as a function of the numbegeaittar

floating point benchmarks, respeelly. In general, floating point benchmarks incwwéde
cycles waiting for regyister communication than irger benchmarks because floating point
tasks are mostly loop bodies and there anelé®p-carried rgister \alue dependences in
these benchmarks. | analyze thieef of increasing the number of PUs and then contrast

control flav tasks and data dependence tasks.
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Figure 5-11: Observed register dependence stall for SPEC CINT benchmarks. All

the experiments use out-of-order PUs. Thesfexperiments markd a, b, ¢, d, and e are
basic block tasks, control flotasks on 4 PUs, data dependence tasks on 4 PUs, control
flow tasks on 8 PUs, and data dependence tasks on 8 PUs, vebpdeir compress,
control flov and data dependence tasks are augmented with task size heuristics.

Increasing the number of PUs igpected to increase the number of dynamic itask
register dependencesoiFexample, increasing the number of PUs from 4 taxgoses
inter-task rgister dependences that are 4, 5, 6, or 7 dynamic tasks apart. But3-idure
and Figureb-12 shav that the serage time spent by an instructioaiting for a rgister

value in a 8 PU configuration is not much greater than that in a 4 PU configuration for
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Figure 5-12: Observed register dependence stall for SPEC CFP benchmarks. All

the xperiments use out-of-order PUs. Theefxperiments markd a, b, ¢, d, and e are
basic block tasks, control flotasks on 4 PUs, data dependence tasks on 4 PUs, control
flow tasks on 8 PUs, and data dependence tasks on 8 PUs, vespdc fpppp, control

flow and data dependence tasks are augmented with task size heuristics.

most benchmarks. The main reason for the similarity in Hietimes is that most gester
values are shortded and are required only in thexhsuccessor task andifere used by
tasks arther in the future. Since theevall CPI decreases on increasing the number of
PUs (up to some number of PUs), inAtesk rgjister dependences become more important

performancedctors for lager number of PUs.df control flav tasks, rgister wait time is
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10%-24% and 17%-40% of totatexution time for 4 PU and 8 PU configurations, respec-
tively. For data dependence taskgister vait time is 0%-24% and 12%-40% of totake

cution time for 4 PU and 8 PU configurations, respebti

Data dependence tasks incuwvée wait oycles indicating that by including data depen-
dence chains within tasks, the heuristics are able to redgiseerecommunication delay
The reduction is significant for 128.m88ksim, 129.compress, 130.li, 13g.ljpg&.wrtex,
and 145.fpppp. The usually ¢gr reduction for 145.fpppp is because both contral 8od
data dependence heuristics are augmented with task size heuristics; task size heuristics
split the inordinately laye basic blocks of 145.fpppp into smaller blocksskE generated

out of the smaller blocks essentially incur dense intra-basic blgtegedependences.

In Figure5-13 and Figureb-14, | present the \eerage number ofycles spent by an
instruction vaiting for memory alues which are synchronized by the memory depen-
dence prediction and synchronization haadsv Memory dependences usually spageiar
numb er of dynamic instructions than the size of the windstablished by basic block
tasks (as discussed in Sect®B.3). Consequentlypasic block tasks do not incuryasig-
nificant performance loss. There is no significanfeddince in memory ait times
between control flw tasks and data dependence tasks. Although the implementation of
data dependence heuristicsdaikto account only a ¥ memory dependences and alj+e
ister dependences, data dependence tasks do not incur more memdngevin compar-
ison to control flav tasks. In 124.m88ksim and 145.fpppp & f@memory dependences,
which are not identified by simple compiler analyses, apo®d in data dependence

tasks causing an increase in memoaytwme.

In Figure5-15 and Figuré®-16, | present the fraction of allgister dependences as a
function of the number of dynamic tasks that the dependesp@asThis measurement
was made on data dependence tasks.tlie intger benchmarksxeept for 132.ijpg,

almost 50% of all rgister dependences are included within tasks. Mosttasirreister
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Figure 5-13: Observed memory dependence stall for SPEC CINT benchmarks. All

the xperiments use out-of-order PUs. Theefxperiments markd a, b, ¢, d, and e are
basic block tasks, control flotasks on 4 PUs, data dependence tasks on 4 PUs, control
flow tasks on 8 PUs, and data dependence tasks on 8 PUs, ve$pdeair compress,
control flov and data dependence tasks are augmented with task size heuristics.

dependences span between tasks that are either 1 to 3 dynamic tasks or more than 20 tasks
(not shavn) apart. Br the floating point benchmarks and 132gjpaimost 70% of all g

ister dependences are included within tasks. Most-iaghr rg@ister dependences span
between adjacent tasks or tasks that are more than 20 tasks (wo) sipart. These

graphs corroborates measurementsiptesly made by Franklin and Sohi [39].
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Figure 5-14: Observed memory dependence stall for CFP benchmarks. Al the

experiments use out-of-order PUs. Theefexperiments markd a, b, ¢, d, and e are basic
block tasks, control fle tasks on 4 PUs, data dependence tasks on 4 PUs, control flo
tasks on 8 PUs, and data dependence tasks on 8 PUs, vebpdar fpppp, control fla

and data dependence tasks are augmented with task size heuristics.

In Figure5-17 and Figur&-18, | present the fraction of all memory dependences as a
function of the number of dynamic tasks that the dependespas. Unlike register
dependences, memory dependences span between many dynamintesiesk mem-
ory dependencies can either cause memory dependence misspeculation or delay due to

communication. While only a small fraction ofjister \alues are communicated from one



155

1_0 T T T T T T T Hogggo
o—0124.m88ksim
<+—<126.gcc

P +—+129.compress

0.8 > —u130.i

" 132.ijpeg
g v—v134.perl
§ 0.6 A—al147.vortex
2

35

[

> 0.4

o

T

©

S 0.2

S

L.

006—4—2 3 4 5 6 7

Distance in number of dynamic tasks

Figure 5-15: Inter-task register dependencesfor CINT benchmarks. The
experiments use data dependence tasks.

task to anothera lager fraction of memory alues are communicatedor~the intger
benchmarks, about 20%-40% of all memory dependences span up to 10 dynamiattasks b
most of the rest of the dependences span more than 100 dynamicdaskating bench-
marks, there are no sharp knees in the esimdicating that memory dependences for

floating point benchmarks span a wide range of number of dynamic tasks.
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Figure 5-16: Inter-task register dependencesfor CFP benchmarks. The eperiments
use data dependence tasks.

5.3.3 Window span

To study the windw established by a Multiscalar harare configuration, | analyze the
window span for the intger and the floating point benchmarks. Recall that wingjman is
the range of all dynamic tasks in flight in the entire proce3$m aerage size of tasks,
the number of PUs, and the contromflprediction accuracdetermines the size of win-
dow span. Vihdow span is computed using the folimg equation wherdasksize is the

average task sizéred is the &erage intetask control flav prediction accurag andN is
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Figure5-17: Inter-task memory dependencesfor CINT benchmarks. The
experiments use data dependence tasks.

the number of PUs:

Although Pred may change slightly with increasing number of PUs, trezall efect on

the windav span is minimal.

In Figure5-19 and Figureb-20, | plot the windev span measured in number of dynamic

instructions as a function of the number of PUs for thegertend the floating point
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Figure 5-18: Inter-task memory dependences for CFP benchmarks. The
experiments use data dependence tasks.

benchmarks, respeetily, for data dependence tasks. Due to the small size of tasks, win-
dow span of most intger benchmarks are in the modest range of 25-80 instructions and
45-140 instructions for 4 and 8 PUganizations, respeeily. Window spans of 134.perl

and 146.ertex are increase almost linearly with the number of PUs because their predic-
tion accuracies are high.ildow span of most floating point benchmarks is considerably
larger than those of their irger counterparts due to thedarsize of tasks and high predic-
tion accurag. For the floating point benchmarks, wivdspans are in the range of 100-

400 instructions and 250-800 instructions for 4 and 8 PU configurations, resjyecti
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Figure 5-19: Window span of CINT benchmarksfor data dependence tasks.

Figure5-21 and Figur®-22 shev the windav spans of the ingger and the floating point
benchmarks, respeetily, for control flav tasks. Due to better intémsk control flav spec-
ulation accurag control flav tasks hae lager spans than their data dependence task
counterparts. Otherwise, the windspans for data dependence tasks and contwl flo
tasks are similar in that the windaspans of the benchmarks either flatten out owgro

alike.

Figure5-23 and Figur®-24 shev the windav spans of the ingger and the floating point

benchmarks, respeetly, for basic block tasks. Due to the significantly smaller sizes and
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Figure 5-20: Window span of CFP benchmarksfor data dependence tasks.

lower prediction accuracies of basic block tasks, the windpans are considerably
smaller than those for control Wotasks and data dependence tasks. The importance of
predicting at the granularity of tasks, without losing prediction acguimdemonstrated

by this graph.The graph indicates that the amount of parallelism that is exposed through
branch prediction (which is used by most modern superscalar processors) is significantly

less than that exposed by task-level prediction.
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Figure 521: Window span of CINT benchmarks or control flow tasks.

5.3.4 Experiments elated to register communication

| now present measurements of various aspects of register communication. | measure (1)
the impact of the various register communication strategies, (2) the impact of register
communication scheduling on overall performance, (3) the overhead of release instruc-

tions, and (4) the effectiveness of dead register analysis.
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Figure 522: Window span of CFP benchmarksdr control flow tasks.

5.3.4.1 Effectveness of egister communication strategies

The performance achied by the rgister communication strajes depends on the
effectiveness of each scheme womling stalling consumers by sendingjister \alues
early Figure5-25 and Figureb-26 shav the wverall performance achied by the intger
and floating point benchmarks using tlious stratgies. The performance impr@ment
achieved by the most sophisticated stoptelast_send, is significant for all the bench-
marks. r the intger benchmarks other than 129.compress, eager_sendgystrate

improves performance 12%-39%. 129.compress squastessgely under eager_send
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Figure 5-23: Window span of CINT benchmarksfor basic block tasks.

stratgy offsetting aly performance gin achieed by sending gaster \alues early
Last_send stragy improves performance for the benchmarks witlyéataské For small
tasks it is likely that ay modification of a rgister is the last modification, so that
eager_send stragg marks rgister \alues to be sent early without causing aguashes.
126.gcc and 130.li demonstrate this bata whereas all the other benchmarks invero
6%-22% under last_send strgyavhen compared with eager_send sgpi@igure5-25).

Spec_send performsonse than last_send for most casesept 130.li, because the

4. If the squash model used by eager_send giratelectiely squashes only dependent instruc-
tions, then eager_send stgtanay perform better than last _end stgite
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Figure 5-24: Window span of CFP benchmarksfor basic block tasks,

squashes caused by itvea though infrequent, arexmensve. Spec-send essentially
exposes the internal branches of tasks incurring performance loss. Since the floating point
benchmarks hee lage tasks, last_send strgyeis even more dective. Eager_send strat-

egy improves performance 5%-50% and last_send gjyadelds 9%-42%\@r eager_send
stratg)y (Figure5-26). Again, spec_send perform®owse because the squashes caused by

it discard maw instructions because floating point tasks are usualye lar size. Selec-

tively squashing only those instructions that are dependent on misspecujéeteat xal-

ues may impree spec_send performance.
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Figure 5-25: Register communication strategiesfor CINT benchmarks. The
experiment uses data dependence tas&swging on 4 out-of-order PUs. The numbers on
above the bars s the percentage imprement of spec_sender last_send.

5.3.5 Impact of register communication scheduling

In addition to the rgister communication strajes &aluated abee, scheduling mees
computation so that producers axe@uted early and consumers axeauted late, as well
as restructures loops to accelerate communication of inductaorable \alues.
Figure5-27 and Figures-28 shav the orerall performance impk@ments achied by
scheduling rgister communication, via code motion and loop restructuring, for thgeinte

and floating point benchmarks using data dependence taskstiag on out-of-order
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Figure 5-26: Register communication strategiesfor CFP benchmarks. The
experiment uses data dependence tas&swging on 4 out-of-order PUs. The numbers on
above the bars shthe percentage imprement of spec_sender last_send.

PUs, respectely. Using out-of-order PUs, the floating point programs respond more to
compiler scheduling than the iger programs. In the comxteof out-of-order PUs, com-

piler scheduling impacts performance inotways: (1) Instructions that are crucial to
communication are nved so that theare luffered in the reorderdffer in favorable order

with respect to the other instructions (i.e., early for producers and late for consumers) and
(2) the crucial instructions are prioritizea/érably to utilize the resources of the PU by

this ordering (e.g., cache ports).
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Figure 5-27: Register communication scheduling for CINT benchmarks. The  two
experiments mankd a and b use data dependence tasksuéing on 4 and 8 out-of-order
PUs, respectely. The experiments include both code motion and loop restructuring.

Even for out-of-order PUs, which are capable of hiding lateaempiler scheduling
improves performance significantly for 124.m88ksim and 132jijdée intger bench-
marks impree <1%-30% and <1%-45% for 4 and 8 PUs, respelgti(Figure5-27).
099.go, 126.gcc, 130.li, and 134.perlwhmodest impreements, where as 129.compress
and 147.ortex respond less to scheduling. 129.compress has a tight recurrence in its most
frequent loop which cannot brek by scheduling and other dependences are rescheduled
dynamically 147.\ortex has unusually high branch prediction accurge99%) and out-
of-order PUs establish an almost accurate winfflom which thg reschedule instruc-
tions almost perfectlyThere are seral reasons for the modest performance ivgro

ments of the inger benchmarks due to scheduling. Ualiloop restructuring, code
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Figure 5-28: Register communication scheduling for CFP benchmarks. The two
experiments markd a and b use data dependence tasdsuéng on 4 and 8 out-of-order
PUs, respectely. The experiments include both code motion and loop restructuring.

motion is hindered by intra-task controMiaependences and intra-task ambiguous data
dependences. Also, since data dependence tasks already optimize ftasktdata
dependences, scheduling hasde opportunities to optimize furthdfor the benchmarks
that respond to scheduling, the impements grev in both in absolute magnitude and as a

percentage\er the base case on increasing the number of PUs from 4 to 8.

The floating point benchmarks impm 12%-58% and 20%-69% for 4 and 8 PUs,
respectiely (Figure5-28). The floating point benchmarks impeosignificantly mainly
because loop inductioraxiables are meed to the top of the loops and other computation

dependent on the inductiomnables also get accelerated. Out-of-order PUs do et ha
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large enough reordeulfers to capture entire loop bodies, which argdaand accelerate

induction \ariables dynamically

Figure5-29 and Figur®-30 showthe overall performance impx@ments achieed by
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Figure 5-29: Register communication scheduling for CINT benchmarks. The  two
experiments markd a and b use data dependence tasésuéng on 4 and 8 in-order
PUs, respectely. The experiments include both code motion and loop restructuring.

scheduling rgister communication for the irger and floating point benchmarks using
data dependence taskseeuting on in-order PUs, respeetly. The trends in performance
improvement obsered for out-of-order PUs with respect to the number of PUs hold true
for in-order PUs as well. The irger benchmarks impve <1%-33% and <1%-47% for 4
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Figure 5-30: Register communication scheduling for CFP benchmarks. The two
experiments markd a and b use data dependence tasésuéng on 4 and 8 in-order
PUs, respectely. The experiments include both code motion and loop restructuring.

and 8 PUs, respevtly. The floating point benchmarks impe027%-65% and 39%-77%

for 4 and 8 PUs, respeatily. Compared to out-of-order PUs, in-order PUs aehperfor-

mance impreement a little more in absolute magnitude and as a percentage of the base
case. The similarity in impx@ments between in-order and out-of-order PU configurations
indicate that rgister communication delays are not hidden by out-of-order PUs with mod-

est-sized reorderuffers and ready lists.

5.3.5.1 Overhead of release instructions

In Table5-8, | present the number of dynamic release instructixesuted as a fraction

of all dynamic instructionsThese gperiments include deadgister optimization. The
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Table 5-8: Overhead of dynamic release instructions for SPEC95 benchmarks.

Benchmarks fraction Benchmarks fraction
099.g0 2.0% 101.tomcatv 0.0%
124.m88ksim 2.0% 102.swim 0.0%
126.gcc 2.0% 103.su2cor 0.0%
129.compress 1.5% 104.tydro2d 0.0%
130.li 3.7% 107.mgrid 0.0%
132.ijpey 1.0% 110.applu 0.2%
134.perl 3.3% 125.turb3d 0.0%
147 \ortex 1.8% 141.apsi 0.1%
145.fpppp 0.1%
145.waveb 0.0%

overhead due to release instructions depends on the size of the tagks.tdsks encap-
sulate more mgster lve ranges within them, reducing the amount of communication per-
formed in the program. @wvall, aoiding extra instructions by annotatingxisting
instructions to covey register communication information and not sending degidters

are efective in keeping the werhead small. & the intger benchmarks, theverhead is of

the order of 2%-3% and for the floating point benchmarks, there is liththead.

5.3.5.2 Effectiveness of dead register analysis

In Table5-9, | present the reduction ingister communication trA€ by emplying
dead rgister analysisin this experiment, rgister communication triAf is measured as
the number of hops agister \alue maks on the ring per dynamic instruction of the pro-
gram. The reason for using this metric is that degidter optimization reduces tfafin
two ways: (1) By not propading dead &lues and (2) by stopping deaalues from mak-
ing unnecessary hops on thgister communication ring. Deadgister optimization is
aimed at reducing the number ofister \alues sent on the ring and the number of hops

each rgister \alue maks on the ring. This metric is independent of the IPC aetljeso
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Table 5-9: Impact of dead register optimization on SPEC95 benchmarks. The
experiments use 4 PUs. The column titled bas&shbe base case as tiver@ge number

of hops a rgister \alue malks on the ring per dynamic instruction. The column titled
decrease shies the percent reduction in the frafdue to dead mgster analysis.

Benchmarks base decreasq Benchmarks base decreassq
099.go 1.00 33.9% | 101.tomcatv 0.22 75.7%
124.m88ksim 0.77 25.6% | 102.swim 0.22 86.2%
126.gcc 0.94 26.9% | 103.su2cor 0.16 58.2%
129.compress 0.92 5.7% 104.hydro2d 0.32 74.0%
130.li 0.46 19.9% | 107.mgrid 0.30 60.8%
132.ijpey 0.47 42.6% | 110.applu 0.41 67.3%
134.perl 0.80 22.0% | 125.turb3d 0.55 66.8%
147 \ortex 0.77 20.0% | 141.apsi 0.55 58.9%
145.fpppp 0.62 74.3%
145.wave5 0.31 63.5%

that the dectiveness of the compilein terms of the number of deadgigter \alues
stopped from occuypng the ring unnecessatrijlis isolated without confusing with timing
issues. The compiler isfettive in reducing the tr&€ for both the intger and floating
point benchmarks.df the intger benchmarks, the compiler analysis reduces tHe tosf
5%-42% and for the floating point benchmarks, the reduction is in the range of 58%-75%.
Larger tasks lead to more reduction igister communication trA under dead wgster
optimization because Iger tasks include moregister lve ranges resulting in more dead
registers at the»at of the tasks. The reduction indicates that ynaagister \alues are pro-
duced and consumed within the same task owadfgamic tasks apart. The reduction is
the ratio between the number ofjiger \alues local to a task and the number of a@ise

ter \alues created, as disaved by the compilér In the floating point benchmarks,
mostly only induction &riables remain\e across tasks, resulting in substantial reduction

In register communication tra€.

5. Due to control flav, the compiler analysis has to be conative. There may be gésters that are
dead in one control fle path and not another; the compiler cannot mark thagstees as dead.
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Chapter 6

Conclusions

Straightforvard approaches of scaling up the centralized harehstructures of super-
scalar processors tateact more parallelism may hinder the speed at which the processors
may be clockd, limiting overall performance. By empjing a nwel, distrituted hardware
organization, the Multiscalar architecture proposesxivaet more parallelism at high
clock speeds. Multiscalar priales hardwre support for control fle speculation, rgster
value communication and memory dependence speculation tvettigh performance

on sequential applications.

In this thesis, | studied the fundamental interactions between sequential programs and
the nwel features of the Multiscalar architecture, from the standpoint of performance. |
determined andxplored the ky implications of the interactions for the compilér
devised, implemented, analyzed andperimented with compiler techniques to imo
performance. Since this thesis is the first attemptvastitating this problem, | identified
the key issues imolved in the problem of compiling for the Multiscalar architecture and
explored a fev compiler optimization opportunities instead of proposing the best tech-

nique to sole a specific optimization problemo Thale the iwestigation concrete, | con-
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structed a compiler andr&uated the impact of compiler techniques on performance of

the SPEC95 [98] benchmark suite.
6.1 Thesissummary

The compiler partitions sequential programs into code fragments called tasks, which are
not necessarily independent, to map the programs on dtstliprocessing units foke-
cution. To maintain sequential program semantics, the responsibility of honoring inter
task r@ister dependences, intimsk control flav dependences, and intask memory
dependences is shared between the haneland the compileln the Multiscalar architec-
ture implementation that | westicated, the compiler partitions sequential programs into
tasks. Intettask rgister dependences are specified by the compitertask control flav
dependences are specified by the compiler andted&rmemory dependences are han-
dled entirely by the ARB.

Task selection crucially fEcts werall performance achied by the Multiscalar archi-
tecture. Control flv speculation, gister communication, memory dependence specula-
tion, load imbalance, and taskevheads are fundamental performance isswesk 3ize,
inter-task control flav dependences and intiask data dependences are important charac-

teristics of tasks that impact these performance issues.

Important criteria to consider during task selection are:4$k3 should be neither small
not lage; a small task may incuverheads that may not be amortizegrothe &ecution
of the task and high géster communication delays, where as gdaask may incur mem-
ory dependence misspeculations and ARBrftows. (2) The number of successors of a
task should be as maas can be traekl by the control fl@ speculation hardare; recon-
vergent control flav paths can bexploited to generate tasks which include multiple basic
blocks without taxing the prediction hardwe and woid exposing hard-to-predict
branches to the prediction harahe. (3) Data dependences should be included within

tasks to ®oid communication and synchronization delays or misspeculation and roll back
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penalties. If a data dependence cannot be included within a task, then the dependence

should be ®posed such that the producer and consumer instructiont/ed in the
dependence are scheduledofrably (i.e., the producer isecuted early and the consumer

IS executed late in their respeggitasks).

Based on these criteria, I\dged and implemented the faNang heuristics to perform
task selection: (1) @minate tasks at entry angiiteof loops and function wocations to
avoid lamge tasks. (2) Include multiple basic blocksyoid small tasks withoutxeeeding
the number of successors that may be #ddiy the hardare. (3) Expose loop back
edges instead of branches internal to the loop to wmepcontrol flav speculation accu-
ragy and capture loopel parallelism. (4) Include gister and simple memory depen-
dences that span multiple basic blocks within tasks. (5) If a data dependexjpesisde

then generate a task with the producer of the dependence as the root of its task.

Overlapping rgister communication with computation is of paramount importance to
alleviate performance loss. | Yedereloped seeral compiler stratges to study the &fct
of register communication delay owerall performance. These strgites \ary the dgree
of overlap of communication with computation bgrying the aggresseness of the anal-
yses. End_send strgie conseratively posts fonards of rgister \alues at task end,
eager_send strapg posts speculate forwards of rgister \alues as soon as agigter is
modified, @en though it may not be the last modification, last_send gyrgiests for-
wards of rgister \alues only after the last modification, and spec_send gpjragiests
speculatie forwards of rgister \alues after a gaster is modified, if it is likly to be the

last modification.

All of these stratgies \ary the timing of communicatiorubdo not mee the computa-
tion that generates thalues iwvolved in the communication. Extending this analysis fur-
ther, | have devised and implemented a static scheduler thates@omputation to hide

inter-task rgister communication delay furth@he scheduler identifies inteask reister
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dependences and nes the producer instruction up and the consumer instructien iho

their respectie tasks. The scheduler uses traditional code motion transformations and a
profiling-based cost model that computes the delay incurred by araskergister
dependence by estimating the numberyafes after the start of their respeettasks the

producer and the consumer instructiorsceite.

| implemented the task selection heuristicgister communication strages and
scheduling, and deadgister optimization in Gcc érsion 2.7.2) andxperimented with
the SPEC95 benchmark suite using a simulator for the Multiscalar architecture. | summa-

rize the results of myx@eriments and dvasome conclusions.

6.2 Thesisconclusions

The important results of this thesis are: (1) Tagiksues in achieng performance are
increasing the size of tasks to establish gdavindav, improving intertask control flav
speculation accurggc reducing intetask data dependence delays, and decreasing load
imbalance. (2) Wh respect to basic block tasks, the task selection heuristics successfully
increase the size of tasks, impeocontrol flav speculation accurggnormalized to the
number of branches) and reduce inttsk data (mostly ggster) dependence delays. (3)
Register communication stragjees demonstrate the importance wédapping communi-
cation with computation by sendingyister \alues as soon as thare generated. (4) Be
ister communication scheduling, through code motion and loop restructuring, further
decreases intéask rgister dependence delays, byvimg producer instructions up and
consumer instructions dm and restructuring loops so that loop inductianiables are
incremented at the top of loop bodies. (5) Deaibkter optimization significantly reduces
register communication tra€ by taking adentage of theafct that most gster \alues

created in a task either die within the task or withinvadeccessor tasks.

The heuristics increase task sizes significantly with respect to basic blocks, enabling a

larger windav span from which toxdract parallelism. The intger benchmarks ka mod-
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est (tens of instructions) to g (hundreds of instructions) winglepans and the floating

point benchmarks a lage windav spans. The windw spans for heuristic tasks are con-
siderably lager than those for basic block tasks, indicating that the Multiscalar architec-
ture has the potential tateact significantly more ILP through task4# speculation than
superscalar architectures, which rely on branch prediction. In spite of including multiple
basic blocks, the heuristics ardeetive in imprasing the accurac of intertask control

flow speculation, by controlling the number of successors of tasks. By including data
(mostly register) dependences within tasks, whemgossible, and bykposing the rest of

data dependences so that producers and consumers are placed early and late in their

respectre tasks, the heuristics successfully reduce-tatsk rgister dependence delays.

The task selection heuristics aréeefive in partitioning sequential programs into suit-
able tasks. The performance impements achiged by the heuristics range a wide spec-
trum for the intger and floating point benchmarks. The heuristitsaet modest to high
amount of parallelism from the irger benchmarks. The heuristics are uniformly more
successful in ploiting parallelism in the floating point benchmarkar Ehe intger
benchmarks, the heuristics demarcate tasks containivg laafgc blocks, which wa no
particular control flaw structure (e.g., loop body). But for the floating point benchmarks,
tasks containing entire loop bodies are predominant. Increasing the number of PUs
increases the impvements for heuristic tasks, indicating that the heuristics better utilize

extra hardvare.

Performance imprement for control fiev tasks @er basic block tasks is more than that
for data dependence taskegeo control flev tasks. By including adjacent basic blocks
within tasks, control fle heuristics include data dependences within taskeinigdittle
for data dependence heuristics to optimize. In-order PU configurationg rsiooe
improvement for data dependence tasks than out-of-order PUs. Using heuristic tasks, 8 in-

order PUs consistently perform better than 4 out-of-order PUs, indicating that simpler
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more number of PUs may perform better thamele more complicated PUs, if sophisti-

cated compiler techniques are used

In spite of including multiple basic blocks, controMiltasks and data dependence tasks
incur fawver control flev misspeculations (counted per branch) than basic block tasks, indi-
cating that the heuristicxgose more predictable controlvildo the hardwre. The syn-
emgy between the heuristics and the prediction hardws eflective in imprasing the

accurag of control flav speculation.

The data dependence heuristic \aliées intertask rgister communication delays sig-
nificantly for both in-order and out-of-order PUs. Inat@sk rgister communication delay
is a more important performancacfor for lager number of PUs. The magnitude of the
delay does not change with the number of PUs, indicating tkeheeghbor communica-

tion is the most pralent pattern of communication.

Task werheads decrease significantly due to thgelasizes of heuristic tasksask
overheads are less significant as the number of PUs increases. Load imbalance is a more
significant performancecttor for lager number of PUs. The number gtles lost to load
imbalance does not change with the number of PUs, indicating that load imbalance
between dynamically adjacent tasks is more important than for tasks that are dynamically

farther apart.

Performance diérence dected by the mgister communication strajes emphasize the
importance of werlapping rgister communication with computation. Sophisticategisre
ter communication stragg, last_send, out performs simplistioqgiger communication
stratgjies, end_send and eager_send, by sendgigtee \alues as soon as thare cre-
ated. Een for out-of-order PUs, last_send out performs end_send and eager_send, indi-

cating that aggress?, lateng-tolerant hardwre cannot wercome the delay imposed by

1. The 8 PU configuration had more peak memory subsystem bandwidth.
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inter-task rgister communication. Brute force harah® techniques (similar to

eager_send) may need more complicated speculation support to match the performance

achiezed by compile-time techniques (e.qg., last_send).

Register communication scheduling, through code motion and loop restructuring, is suc-
cessful in impreing performance modestly for the igexr benchmarks and significantly
for the floating point benchmarks. Similar impements are seen for both in-order and
out-of-order PUs, indicating that reducing intask data dependence delays is important
even for lateng-tolerant PUs. Since the floating point benchmarks contain mostly loop-
body tasks, theare benefited lgely by loop restructuring, indicating that computation in
loop bodies are dependent on loop inductiariables. But the inger benchmarks con-
tain mostly non-loop-body tasks, leading to less significant cotitiibfrom loop restruc-
turing. While loop restructuringahys maes loop induction ariables to the top of their
loop bodies, code motion is often constrained by intra-task dependences (comtamidio
data) when mang producers up and consumersvdo Since the intger benchmarks use
code motion more than loop restructuring, their ilmproents are modest. gister com-
munication stragies and rgister communication scheduling gran importance for

larger number of PUs.

Lastly, dead rgister analysis significantly reducegister communication tra¢, indi-
cating that most ggster \alues are created and consumed withinnadieccessor tasks, if
not the same task. By includinggister dependences within a task (i.e., thggster \alue
involved in the dependence is deagdired the task), the task selection heuristics create
more opportunity for dead gester analysis. Hence the combination of the heuristics and
the analysis wrk together well. An implication of deadgister optimization for the hard-
ware is that a less aggresshardvare communication ring with modest bandwidth may

suffice, if supplemented with deadyister optimization.
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6.3 Futurework

Based on thexperience gined from &perimenting with compiler techniques, | suggest

the following hardvare and compiler optimizations to be tried in the future:

Larger tasks may be needed to increase the amount of parallepkitesl in the Multi-
scalar architecture. The mainfditilty with large tasks is that the cost of squashes (both
control flov and data dependence) increases with task sizge tasks discard significant
amounts of computation on squashes and lose performance due to both opportunity-costs
and roll-back of useful computation. Harahe support for selegily squashing instruc-
tions dependent on misspeculated computation, instead of entire tasks wmiateasiech
misspeculation penaltyf selectve squashing is supported in the hamdsy the compiler
may be able to empjanore aggresge speculation to select ¢gar tasks. It is important to
note that if selecte squashing aggrates PU critical paths then thaigs obtained by

improved squashes may bds#t by clock speed considerations.

If task selection heuristics select tasks by including data dependence chains within tasks
then load imbalance may occur due to inheramiations in the amount of computation
done by diferent dependence chains. Hagester support for load balancing by either mul-
tiplexing multiple tasks on one PU simultaneously or starting tketask before the pre-
vious task commits byuffering state separatelgnay be important. Impvements gined
by hardvare load balancing may befsdt by the increase in circuit comypiky of PUs,
which may hae to maintain state of multiple tasks simultaneauBhus, load balancing

may result in a trade-bdf parallelism for clock speed.

Static memory disambiguation combined with interprocedural analysis mayvenpro
task selection and int¢éask data communication. Similar tayigter dependences, mem-
ory dependences may be included within taskvtidantertask data communication or

ARB misspeculations. Although memory dependences are dynamically synchronized, it
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may be beneficial to scheduleyatompile-time knavn memory dependences, similar to
register dependences. Dynamic synchronizatiaids only misspeculation squashesy an
delay from producer of memonale to consumer of memonrgalue may result in perfor-
mance loss. Scheduling the dependences may help reduce such delays. Apart from sched-
uling, knovn memory dependences may be synchronized via compiler allocated
synchronization resources, instead of dynamic synchronization resources (e.g., memory

dependence prediction table entries), which may be more scarce.

This thesis has laid @ the foundational infrastructure for studying the problem of
compiling for the Multiscalar architecture. Matechniques empjang varying dgrees of
cooperation between the hamw and the compiler to unleash the full potential of the
Multiscalar architecture are engang. Seeral other projects including the MIT RA
[107], the Stanford Hydra [79], and the CMU/AMPede [99] hae adopted the approach
of the Multiscalar architecture andveaset to gplore the numerous opportunities pre-
sented by the Multiscalar architecture through haréwand compiler techniques. In the
future, | ewision commercial Multiscalar processongedapping &ecution of thousands
of instructions to achie orders of magnitude more performance than current micropro-

Ccessors.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

182
References

A. Aho, R.Sethi, and JUllman. Compilers. Principles, Techniques, and Tools.
Addison-W\eslg/, Reading, MA, 1986.

V. H. Allan, J.Janardhan, RV. Lee, and MSrinivas. Enhanced g&on scheduling
on a program dependence graphCamference Record of the 25th Annual Interna-
tional Symposium on Microarchitecture, pages 72-80, Portland, OR, Dec. 1992.
Association for Computing Machinery

F. Allen and JCocke. A program data fl@ analysis procedurelournal of the
ACM, 19(3):137-147, Man 976.

J.Allen and K.Kennedy Automatic translation of fortran programs &ctor form.
ACM Transactions on Programming Languages and Systems, 9(4):491-542, Oct.
1987.

R. Allen and SJohnson. Compiling c forectorization, parallelization, and inline
expansion. InProceedings of the 1988 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, volume23, pages 241-249, Atlanta,
GA, June 1988.

S.P. Amarasinghe, M. Anderson, CS. Wison, S.-W Liao, B.R. Murphy, R.S.
French, M.S. Lam, and MW. Hall. Multiprocessors from a sofawe perspecte.
|EEE Micro, pages 52—61, June 1996.

G. Amdahl. \alidity of the single processor approach to aghglarge scale com-
puting capabilities. IRAFIPS Soring Joint Computer Conference, pages 483-485,
1967.

G.Amdahl et al. Architecture of the IBM system/368M Journal of Research
and Development, pages 87-101, Api964.

J.Anderson, SAmarasinghe, and M.am. Data and computation transformations
for multiprocessors. lProceedings of the 5th ACM Symposium on Symposium on
Principles and Practice of Parallel Programming, pages 166—-178, 1995.

J.Anderson and MLam. Global optimizations for parallelism and locality on scal-
able parallel machines. Proceedings of the 1993 ACM S GPLAN Conference on
Programming Language Design and Implementation, pages 112-125, 1993.

T. Asprey et al. Performance features of the pa7100 microproce&&tt Micro,
pages 22-35, June 1993.

J.Barth. An interprocedural data Woanalysis algorithm. I'&€onference Record of
the 4th Annual ACM Symposium on Principles of Programming Languages, pages
119-131, Jan. 1977.

J.Barth. A practical interprocedural datawi@nalysis algorithmJournal of the
ACM, 21(9):724-736, Sept. 1978.



183

[14] W. Baxter and HB. Ill. The program dependence graph aadtwerization. InCon-
ference Recat of the 16th Annual@M Symposium on Principles ofdgramming
Languages pages 1-11, Austin, TX, Jan. 1989.

[15] D.Bernstein and MRodeh. Global instruction scheduling for superscalar
machines. IrConfeence Recar of the 1991 M SIGPLAN Conf@nce on Ru-
gramming Languge Design and Implementatiomvolume26, pages 241-255.
Association for Computing Machineryune 1991.

[16] M. T. Bohr Interconnect scaling - the real limiter to high performance U&8lid
State €dinolagy, pages 105-111, Sept. 1996.

[17] D.Bradlee, SEggers, and Rdenry Integrating r@ister allocation and instruction
scheduling for riscs. I€@onfeence Poceedings of thedtrth International Sympo-
sium on Achitectural Support for Pogramming Languges and Opeating Sys-
tems pages 122-131, Santa Clara, CA, A®91.

[18] S.Breach, TVijaykumat and G.Sohi. The anatomy of thegister file in a multi-
scalar processoin Confeence Recal of the 25th Annual International Sympo-
sium on Micoarchitectue, pages 181-190, San Jose, CAyNI®94. Association
for Computing Machinery

[19] M. Burke. An intenal-based approach txlaustve and incremental interproce-
dural data-flar analysisACM Transactions on Rgramming Languges and Sys-
tems 12(3):341-395, July 1990.

[20] D. Callahan. The program summary graph and-8ensitve interprocedural data
flow analysis. InConfeence Reca of the 1988 &M SIGPLAN Conf@nce on
Programming Languge Design and Implementationolume?23, pages 47-56,
Atlanta, GA, June 1988.

[21] B. Case.Intel reveals ntium Implementation DetaildMicroprocessor Report,
Mar. 1993.

[22] P Chang, SMahlke, W Chen, NWarter and WHwu. Impact: An architectural
framework for multiple-instruction-issue processorsdanfeence Poceedings of
the 18th Annual International Symposium on Computehifectue, pages 266—
275. Association for Computing MachineMay 1991.

[23] D.Chen and Prew. Statement re-ordering for doacross lodpeceedings of the
1994 Annual International Confence on Brallel Processing2:24-28, 1994.

[24] A. Chown and A.Rudmik. The design of a datailanalyzerIn Proceedings of the
SIGPLAN '82 Symposium on Compiler Constructiyiumel7, pages 106-113,
June 1982.

[25] K. Cooper and KKennedy Efficient computation of fl insensitve interproce-
dural summary information. IRroceedings of the SIGPLAN '84 Symposium on
Compiler Constructionvolumel9, pages 247-258, June 1984.



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

184

R. Cytron. Doacross: B®nd \ectorization for multiprocessorBreceedings of the
1986 Annual International Conference on Parallel Processing, pages 836-845,
1986.

R. Cytron. Limited processor scheduling for doacross lo®peceedings of the
1986 Annual International Conference on Parallel Processing, pages 226—234,
1987.

D. Dhamdhere. Practical adaptation of the global optimization algorithm of morel
and renoise.ACM Trans. Prog. Lang. Syst., 13(2):291-294, Apr1991.

K. Diefendorf and M.Allen. Ormanization of the motorola 88110 superscalar
RISC microprocessolEEE Micro, 12, Apr 1992.

K.-H. Drechsler and MStadel. A solution to a problem with morel andvase’s
'global optimization by suppression of partial redundanci@€M Trans. Prog.
Lang. Syst., 10(4):635-640, Oct. 1988.

D.W.Anderson, FSparacio, and Rtlomasulo. The IBM system/360 model 91:
Machine philospi and instruction-handlindBM Journal of Research and Devel-
opment, pages 8-24, Jan. 1967.

K. Ebcioglu. A compilation technique for softwe pipelining of loops with condi-
tional jumps. INConference Record of the 20th Annual International Symposium on
Microarchitecture, pages 69-79, Colorado Springs, CO, Dec. 1987. Association for
Computing Machinery

J.R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, ale Unver-
sity, Feb 1985.

J.Fisher Trace scheduling: A technique for global microcode compackiefE
Transactions on Computers, 30:478—-490, July 1981.

J.Fisher and BRau. Instruction-leel parallel processingscience, pages 1233—
1241, Sept. 1991.

M. Franklin. The Multiscalar Architecture. PhD thesis, Unersity of Wsconsin-
Madison, Ne. 1993.

M. Franklin. The Multiscalar Architecture. Ph.D. thesis, Umersity of Wisconsin-
Madison, Madison, WI 53706, N01993.

M. Franklin and GS. Sohi. Thexgandable split winde paradigm for eploiting
fine-grain parallelism. I€onference Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages 58—-67. Association for Computing
Machinery May 1992.

M. Franklin and GS. Sohi. Rgister trafic analysis for streamlining int&pera-
tion communication in fine-grain parallel processorsCanference Record of the



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

185

25th Annual International Symposium on Microarchitecture, pages 236-245, Port-
land, OR, Dec. 1992. Association for Computing Machinery

M. Franklin and GS. Sohi. ARB: A hardare mechanism for dynamic reordering
of memory referencedEEE Transactions on Computers, 45(5):552-571, May
1996.

P. Gibbons and SMuchnick. Eficient instruction scheduling for a pipelined archi-
tecture. InConference Proceedings of the S GPLAN 1986 Symposium on Compiler
Construction, volume?21, July 1986.

B. A. Giesele et al. A 600 mhz superscalar risc microprocessor with out-of-order
execution. InPreceedings of 1997 IEEE International Solid-Sate Circuits Confer-
ence, pages 176-177, 1997.

J.Goodman and WC. Hsu. Code scheduling andjister allocation in laye basic
blocks. InConference Proceedings of the 1988 International Conference on Super-
computing, pages 442-452, St. Malo, France, July 1988.

G. Grohoski. Machine ganization of the ibm risc system/6000 procesH8i
Journal of Research and Development, 34(1):37-58, Jan. 1990.

R. Gupta and ML. Soffa. Regjion scheduling: An approach for detecting and redis-
tributing parallelismlEEE Transactions on Software Engineering, 16(4):421-431,
Apr. 1990.

L. GwennapDigital leads the pack with the 21164. Microprocessor Report, Sept.
1994.

L. Gwennap.PowerPC 604 powers past Pentium. Microprocessor Report, Apr
1994.

R.Hank, S.Mahlke, R.Bringmann, JGyllenhaal, and WM. Hwu. Superblock
formation using static program analysis.Ganference Record of the 25th Annual
International Symposium on Microarchitecture, pages 247-255, Austin, TX, Dec.
1993. Association for Computing Machinery

R.Hanxleden and KKennedy Give-n-tale - a balanced code placement frame-
work. In Conference Record of the 1994 ACM S GPLAN Conference on Program-
ming Language Design and Implementation, pages 107-120. Association for
Computing MachineryJune 1994.

M. Hecht and JUllman. A simple algorithm for global data Woanalysis prob-
lems.SIAM Journal of Computing, 4(4):519-532, Dec. 1975.

S.Hiranandani, KKennedy and C.Tseng. Ewluation of compiler optimizations
for fortran d on mimd distrilted-memory machines. onference Proceedings of
the International Conference on Supercomputing, July 1992.



[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

186

S.Horwitz, T. Reps, and DBinkley. Interprocedural slicing using dependence
graphs ACM Transactions on Programming Languages and Systems, 12(1):26—-60,
Jan. 1990.

P.-T. Hsu. Design of the R8000 microprocess&EE Micro, pages 23-33, Apr
1994.

P-T. Hsu and EDavidson. Highly concurrent scalar processing.Conference
Proceedings of the 13th Annual International Symposium on Computer Architec-
ture, pages 386—395. Association for Computing Machinirge 1986.

Q. Jacobson, Bennett, NSharma, and E. Smith. Control flav speculation in
multiscalar processors. ldonference Proceedings of the Third IEEE Symposium
on High-Performance Computer Architecture, pages 218-229, FeQ97.

Q. Jacobson, ERotenbeg, and JSmith. Rith-based né trace prediction. '€on-
ference Proceedings of the 30th Annual International Symposium on Microarchi-
tecture, pages 14—23. Association for Computing MachinBsc. 1997.

S.Jain and CThompson. An dicient approach to data floanalysis in a multiple
pass global optimizetn Conference Record of the 1988 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, volume23, pages
154-163, Atlanta, GA, June 1988.

M. JohnsonSuperscalar Microprocessor Design. P T R Prentice-Hall, Inc., 1991.

N. Jones and Muchnick. A flible approach to interprocedural datanlanaly-
sis and programs with recwsidata structures. I@onference Record of the Sth
Annual ACM Symposium on Principles of Programming Languages, pages 66—74,
Albuguerque, NM, Jan. 1982.

J.Kam and JUllman. Monotone data fl@ analysis fram&orks. Acta Informatica,
7:305-317, 1977.

D. Kerns and SEggers. Balanced scheduling: Instruction scheduling when mem-
ory lateng is uncertain. IrConference Record of the 1993 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, pages 278-289.
Association for Computing Machinerjune 1993.

D. Kroft. Lockup-free instruction fetch/prefetch cacheaorization. InProceed-
ings of the 8th Annual International Symposium on Computer Architecture, pages
81-87, 1981.

D. Kuck, R.Kuhn, D.Padua, BlLeasure, and MM\olfe. Dependence graphs and
compiler optimizations. Ii€onference Record of the 8th ACM Symposium on Prin-
ciples of Programming Languages, pages 207-218. Association for Computing
Machinery 1981.

M. Lam. Software pipelining: An déctive scheduling technique for VLIW
machines. InConference Record of the 1990 ACM SSGPLAN Conference on Pro-



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

187

gramming Language Design and Implementation, pages 318-328. Association for
Computing MachineryJune 1988.

M. Lam, E.Rothbeg, and M.Wolf. The cache performance and optimizations of
block algorithms. InConference Proceedings of the Fourth International Sympo-
sium on Architectural Support for Programming Languages and Operating Sys-
tems, pages 63—74, Santa Clara, CA, Al#91.

S.Mahlke, W Chen, WHwu, B.Rau, and MSclanslr. Sentinel scheduling for
VLIW and superscalar processors donference Proceedings of the Fifth Interna-
tional Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 238-247. Association for Computing Machin©xt.
1992.

S.Mahlke, D.Lin, W. Chen, RHank, and RBringmann. Effective compiler sup-
port for predicated>@cution using the yperblock. InConference Record of the
25th Annual International Symposium on Microarchitecture, pages 45-54, Port-
land, OR, Dec. 1992. Association for Computing Machinery

E.P. Markatos and 1. LeBlanc. Load balancing vs. locality management in
shared-memory multiprocessorgchnical Report TR 399, Oct. 1991.

T. Marlowe and BRyder An eficient hybrid algorithm for incremental data Wo
analysis. InConference Record of the 17th Annual ACM Symposium on Principles
of Programming Languages, pages 184-196, San Francisco, CA, Jan. 1990.

S.McFarling. Combining branch predictorsedhnical Report TR-36, DEC-WRL,
June 1993.

S.-M. Moon and KEbcioglu. An eficient resource-constrained global scheduling
technique for superscalar and VLIW processor£dnference Record of the 25th
Annual International Symposium on Microarchitecture, pages 55-71, Portland,
OR, Dec. 1992. Association for Computing Machinery

E. Morel and CRervoise. Global optimization by suppression of partial redundan-
cies.Communications of the ACM, 22(2):96-103, Feld979.

A. Moshovos, SE. Breach, TN. Vijaykumar and G.S. Sohi. Dynamic specula-
tion and synchronization of data dependence®rtceedings of the 24th Annual
International Symposium on Computer Architecture, pages 181-193, June 1997.

S.Muchnick and NJones. Prentice-Hall, Eng¥eod Cliffs, NJ, 1981.

E. Myers. A precise inteprocedural data fl@ algorithm. InConference Record of
the 8th Annual ACM Symposium on Principles of Programming Languages, pages
219-230, Jan. 1981.

A. Nicolau. Percolation scheduling: A parallel compilation technigeehiical
Report TR-85-678, Cornell Uversity, 1985.



188

[77] R.Oehler and RD. Groves. IBM RISC system/6000 processor architectiBil
Journal of Research and Development, 34(1):23-36, Jan. 1990.

[78] K. Olukotun, B.A. Nayfeh, L.Hammond, KW. n, and K.-Y Chang. The case for
a single-chip multiprocessom Conference Proceedings of the Seventh Interna-
tional Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 2—-11, Oct. 1996.

[79] J.Oplinger et al. Softare and hardare for &ploiting speculatie parallelism in
multiprocessors. dchnical Report CSL-TR-97-715, Stanford sity, 1997.

[80] S.Palacharla, NP. Jouppi, and E. Smith. Compleity-effective superscalar pro-
cessors. IfProceedings of the 24th Annual International Symposium on Computer
Architecture, pages 206—-218, June 1997.

[81] D.Pnematikatos, MFranklin, and GS. Sohi. Control flew prediction for
dynamic ILP processors. l@onference Record of the 26th Annual International
Symposium on Microarchitecture, pages 153-163, Austin, TX, Dec. 1993. Associa-
tion for Computing Machinery

[82] D.Pnermatikatos and GSohi. Guarded »@cution and branch prediction in
dynamic ilp processors. I8onference Proceedings of the 21st Annual Interna-
tional Symposium on Computer Architecture, pages 120-129. Association for
Computing MachineryApr. 1994.

[83] B.Rau, M.Schlanskr, and PTirumalai. Code generation schema for modulo
scheduled loops. I€onference Record of the 25th Annual International Sympo-
sium on Microarchitecture, pages 158-169, Portland, OR, Dec. 1992. Association
for Computing Machinery

[84] B. Rosen. High-leel data flev analysis Communications of the ACM, 20:712-724,
1977.

[85] B.Rosen. Data fl@ analysis for procedural languagek®urnal of the ACM,
26(2):322-344, Aprl979.

[86] E.Rotenbeg, Q.Jacobson, YSazeides, and 3mith. Trace processors. Gonfer-
ence Proceedings of the 30th Annual International Symposium on Microarchitec-
ture, pages 138-147. Association for Computing Machineec. 1997.

[87] R.M. Russell. The cray-1 computer syste@ommunications of the ACM,
21(1):63-72, Jan. 1978.

[88] B. Ryder Incremental data fi@ analysis. InConference Record of the 10th Annual
ACM Symposium on Principles of Programming Languages, pages 167-176, Aus-
tin, TX, Jan. 1983.

[89] V. Sarkar and HennessyPartitioning parallel programs for macro-datafldn
Conference Proceeedings of the 1986 ACM Conference on Lisp and Functional
Programming, pages 192—-201. Association for Computing MachinE9g6.



189

[90] J.E. Smith. A study of branch prediction stgits. InProc. 8 Annual Symposium
on Computer Athitecture, pages 135-148, May 1981.

[91] J.E. Smith. Dynamic instruction scheduling and the astronauticsIEEE. Com-
puter, pages 21-35, July 1989.

[92] M. Smith, M.Horowitz, and M.Lam. Eficient superscalar performance through
boosting. InConfeence Poceedings of the ifth International Symposium on
Architectural Support for Pogramming Languges and Opeating Systemsages
248-259. Association for Computing Machinegdct. 1992.

[93] M. Smith, M.Lam, and MHorowitz. Boosting bgond static scheduling in a
superscalar processdn Confeence Poceedings of the 17th Annual International
Symposium on Computerdiitectuie, pages 344—-354. Association for Computing
Machinery May 1990.

[94] J.Smith et al. The zs-1 central proces$oiConfeence Poceedings of the Second
International Symposium on duitectual Support for Pogramming Languges
and Opeating Systemgages 199-204, Oct. 1987.

[95] G. Sohi, SBreach, and TVijaykumar Multiscalar processors. Bonfeence Po-
ceedings of the 22nd Annual International Symposium on Computateituie.
Association for Computing Machinerjune 1995.

[96] G.Sohi and MFranklin. High-bandwidth data memory systems for superscalar
processors. lIConfeence Poceedings of theduarth Symposium on éhritectural
Support for Pogramming Languges and Opeating Systemages 53-62, Santa
Clara, CA, Apr1991.

[97] G.S. Sohi. Instruction issue logic for high performance, interruptible, multiple
functional unit, pipelined computei&EE Transactions on Computer39(3):349—
359, Mar 1990.

[98] SPEC nesletter Aug. 1995.

[99] J.G. Stefan and TC. Mowry. The potential for threadiel data speculation in
tightly-coupled multiprocessors. I[fo appear in the Riceedings of thedurth
International Symposium on HigrefPormance Computer ghitecture, Feb 1998.

[100] J.Thornton.Design of a Computer—The Casltbata 6600 Scotts, Bresman and
Co., 1970.

[101] J.E. Thornton. Brallel operation in the control data 66@@ll Joint Computes
Confeence 26:33-40, 1961.

[102] R.Tomasulo. An dicient algorithm for gploiting multiple arithmetic unitsiBM
Journal of Reseah and Deelopment11:25-33, Jan. 1967.

[103] D. M. Tullsen, SJ. Eggers, 5. Emey H. M. Levy, J.L. Lo, and RL. Stamm.
Exploiting choice: Instruction fetch and issue on an implementable simultaneous



[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

190

multithreading processoin Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture, pages 191-202, May 1996.

S.Vajapgam and TMitra. Improving superscalar instruction dispatch and issue by
exploiting dy namic code sequences.Rroceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, pages 1-12, June 1997.

T. Vijaykumar and GS. Sohi. Compiling mgister communication in the multisca-
lar architecture. &chnical Report CS TR-1333, Wersity of Wisconsin, Madison,
Nov. 1996.

T. Vijaykumar and GS. Sohi. Rgister communication stragies for the multisca-
lar architecture. dchnical Report CS TR-1334, Wersity of Wisconsin, Madison,
Dec. 1996.

E. Waingold et al. Baring it all to softave: Rav machinesComputer, 30(9):86-93,
Sept. 1997.

M. Weiser Program slicing. [EEE Transactions on Software Engineering,
10(4):352-357, July 1984.

S.Weiss and JSmith. Power and PowerPC: Principles, Architecture, |mplementa-
tion. Morgan Kaufmann Publishers, 1994.

R.P. Wilson, R.S. French, CS. WIson, S.P  Amarasinghe, M. Anderson,
S.W. K. Tjiang, S.-W Liao, C.-W Tseng, MW. Hall, M. S. Lam, and X.. Hen-
nessy Suif: An infrastructure for research on parallelizing and optimizing compil-
ers. In Conference Record of the 1994 ACM SGPLAN Conference on
Programming Language Design and Implementation, volume?29, pages 31-37.
Association for Computing Machineripec. 1994.

M. Wolf and M.Lam. A data locality optimizing algorithm. l@onference Record
of the 1991 ACM S GPLAN Conference on Programming Language Design and
Implementation, volume26, pages 30—44 pfonto, Ontario, Canada, June 1991.

M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1990.

K. Yeager MIPS R10000 superscalar microprocesHetEE Micro, Apr. 1996.

T.-Y. Yeh and YPatt. Two-level adaptre branch prediction. Ii€onference Pro-
ceedings of the 24th Annual International Symposium on Microarchitecture, pages
51-61. Association for Computing MachingNov. 1991.

T.-Y. Yeh and YPatt. Alternatve implementations of tatlevel adaptve training
branch prediction. Ii€onference Proceedings of the 19 Annual International Sym-
posium on Computer Architecture. Association for Computing Machinerivay
1992.



191

[116] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press, New York, NY, 1991.



