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Abstract

The performance trade-off between hardware complexity and clock speed in the design

of superscalar microarchitectures is first investigated. Using the results of this trade-off

analysis, the thesis proposes and evaluates two new superscalar microarchitectures

designed with the goal of achieving high performance by reducing complexity.

This thesis takes a step towards quantifying the complexity of superscalar microarchitec-

tures. First, a generic superscalar pipeline is defined. Then the specific areas of register

renaming, instruction window wakeup, instruction window selection, register file access,

and operand bypassing are analyzed. Each is modeled and Spice simulated for three differ-

ent feature sizes representing past, present, and future technologies. Performance results

and complexity trends are expressed in terms of issue width and window size. Results

show that instruction window logic and operand bypass logic are likely to be the most crit-

ical in the future.

Following the complexity analysis, we study a family of superscalar microarchitectures

called the dependence-based microarchitectures. These microarchitectures exploit natural

dependences occurring in programs to reduce the complexity of window logic and oper-

and bypass logic. Simulation results show that dependence-based superscalar microarchi-

tectures are capable of extracting similar levels of parallelism as a conventional

microarchitecture while facilitating a faster clock.

Finally, we propose and evaluate the integer-decoupled microarchitecture that improves

the performance of integer programs by minimally adding to a conventional microarchi-

tecture. Floating-point units in the conventional microarchitecture are augmented to per-

form simple integer operations and the resulting floating-point subsystem is used to



ii

support some of the computation in integer programs. Simulation results are presented that

show modest speedups for a 4-way processor. The speedups are attractive, however, con-

sidering that the proposed microarchitecture requires little additional hardware.
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Chapter 1

Introduction

1.1  Motivation

Over the past decade superscalar microprocessors have become a source of tremendous

computing power. They form the core of a wide spectrum of high-performance computer

systems ranging from desktop computers to small-scale parallel servers to massively-par-

allel systems. To satisfy the ever-growing need for higher levels of computing power, com-

puter architects need to investigate techniques that continue improving the performance of

superscalar microprocessors while considering both changing technology and applica-

tions.

Superscalar microarchitectures [Joh91, SS95], on which superscalar microprocessors

are based, deliver high performance by executing multiple instructions in parallel every

cycle. Hardware is used to detect and execute parallel instructions. This technique of

exploiting fine-grain parallelism at the instruction level to improve performance is com-

monly referred to as instruction-level parallelism. The maximum number of instructions

processed in parallel, also known as the width of the microarchitecture, is typically four

for the fastest microprocessors [Gwe96a, Kum96] available today. A typical superscalar
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microarchitecture, illustrated in Figure 1-1, operates as follows. Multiple instructions are

fetched from the instruction cache every cycle. The instructions are then decoded, checked

for dependences, renamed, and deposited in an instruction window. The instructions wait

in the instruction window for their operands and functional units to become available.

Hardware continuously monitors the dependences between instructions in the window and

selects appropriate instructions for parallel execution. The overall hardware apparatus

responsible for creating the window, monitoring dependences between instructions in the

window, selecting instructions for execution from the window, and providing data oper-

ands to the instructions, henceforth collectively referred to simply as issue logic, is one of

the most performance-critical components in a superscalar processor. The issue logic

largely determines the amount of instruction-level parallelism that can be extracted.

Hence, optimizing this logic is of paramount importance.

The net performance of a superscalar microarchitecture is directly proportional to the

product — . Instructions Per Cycle or IPC is the

sustained number of instructions executed in parallel every cycle. IPC depends on a num-

ber of factors including the inherent parallelism in the program, the width of the microar-

chitecture, the size of the instruction window, and other characteristics of the scheme used

for extracting parallelism. Clock Frequency is the speed at which the microarchitecture is

Figure 1-1. A typical superscalar microarchitecture.
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clocked and is determined by the delays associated with the significant critical paths in the

microarchitecture.

For the past decade, the general approach for improving the performance of superscalar

microprocessors has been to build microarchitectures with increasingly complex issue

logic that can boost the IPC factor in the performance equation. The increase in complex-

ity results from a wider microarchitecture, a bigger instruction window, and more complex

issue methods. However, there is a potential problem with continuing this strategy. While

complex issue logic might be able to extract more parallelism, it can easily limit the clock

speed of the microarchitecture. Microarchitectures with more complex issue logic typi-

cally require longer wires and deeper levels of logic to implement, and hence, can require

longer critical paths in the microarchitecture. Thus, there is a danger of squandering the

gains in IPC to a slow clock, resulting in reduced benefits or even no benefit in overall per-

formance. Furthermore, technology trends suggest that wire delays will increasingly dom-

inate total delay as feature sizes are reduced. These factors suggest that straightforward

scaling of current microarchitectures for higher IPCs might not be the most appropriate

approach for delivering higher performance in future. In summary, there is a trade-off

between issue logic complexity, instructions per cycle (IPC), and clock speed that needs to

be carefully examined while designing improved superscalar microarchitectures. This the-

sis examines this trade-off.

The above discussion underscores the need for investigating superscalar microarchitec-

tures that judiciously use hardware complexity for exploiting significant levels of instruc-

tion-level parallelism while permitting a fast clock. We call such microarchitectures

complexity-effective superscalar microarchitectures. These microarchitectures attempt to

maximize the product of IPC and Clock Frequency rather than push the envelope for each

term separately. This thesis proposes and evaluates two such complexity-effective super-

scalar microarchitectures called dependence-based microarchitectures and integer-decou-

pled microarchitectures.
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It must be mentioned that the complexity of a design can have different, sometimes con-

flicting meanings. To a verification engineer, design A is more complex than design B if

the time taken to verify design A is greater than that for design B. On the other hand, a

logic designer typically measures complexity in terms of the number of gates required to

implement a design. In this thesis, complexity is measured as the delay of the critical path

through a piece of logic, and the longest path through any of the pipeline stages deter-

mines the clock speed. Complexity, as we define it, is largely independent of the number

of gates required or the time to verify the design. Instead, complexity is dependent on a

number of factors that could affect the delay of the critical paths in the design such as the

number of logic stages, the length of wires, the degree of fan-out of a particular signal, and

the number of associative compares performed every cycle.

While designing for complexity-effectiveness is a desirable goal, the question that

immediately arises is: how do we quantify the complexity of a microarchitecture? It is

commonplace to measure the IPC of a new microarchitecture, typically by using simula-

tion. Such simulations count clock cycles and provide IPC in a direct manner. However,

the complexity of a microarchitecture is much more difficult to determine — to be very

accurate, it requires a full implementation in a specific technology. What is very much

needed are fairly straightforward measures of complexity that can be used by microarchi-

tects at a fairly early stage of the design process. Such methods would allow the determi-

nation of complexity-effectiveness. This thesis takes a step in the direction of

characterizing complexity and complexity trends.

1.2  Historical Perspective

This section briefly outlines the evolution of ILP processors, especially superscalar pro-

cessors, while highlighting major trends in design trade-offs involving hardware complex-

ity and performance. Figure1-2 illustrates the evolution of ILP processors with a time

line.



5

Pipelining [Kog81] is the most prevalent technique for exploiting instruction-level paral-

lelism. Pipelining enables overlapped execution of multiple instructions by breaking

instruction processing into segments, just like an assembly line. It was first implemented

in the IBM Stretch [Buc62] in 1961. Ever since, pipelining has been adopted by almost all

high-performance designs.

The 1960s saw two pioneering machines that laid the foundation for much of the ILP

techniques in wide use today. These were the CDC 6600 [Tho61,Tho63] and the IBM 360/

91 [AST67] machines delivered in 1964 and 1967 respectively. The CDC 6600 imple-

mented an impressive repertoire of architectural techniques, especially for its time — a

clean load/store instruction set that enabled efficient pipelining, multiple functional units,

and scoreboarding logic for dynamic scheduling. In the IBM 360/91 floating-point sub-

system, the designers implemented a more sophisticated issuing scheme known asToma-

sulo’s algorithm [Tom67] after its inventor. The issuing schemes of most current

superscalar microprocessors can be viewed as variants of Tomasulo’s scheme. Even

though the two designs implemented out-of-order execution, they were both single issue

machines. Out-of-order execution was used to overlap execution of long-latency opera-

tions, tolerate slow memory accesses, and, in the case of the 360/91, mitigate the perfor-

mance drawbacks of having few (8) floating-point registers.

Figure 1-2. Time line showing evolution of superscalar processors.
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Soon after, both IBM and CDC reverted back to simpler in-order issue, pipelined

machines with a fast clock. The follow-on machines, the CDC 7600 and the IBM 360/85,

issued instructions strictly in order. The exact reasons for this reversal are not known, but

issues like the difficulty of debugging complex issue methods and the extra hardware cost

are likely considerations on which the decision was based. Also, the use of a cache in the

IBM 360/85 to tolerate memory latency probably made out-of-order execution less attrac-

tive. Two decades later, mushrooming transistor budgets, advanced CAD tools, and the

market for high-performance, would trigger the resurgence of 6600 and 360/91-like

schemes in the context of superscalar microprocessors.

The 1970s was not an eventful decade for ILP processors. All commercial machines still

had a peak fetch rate of one instruction per cycle. However, during this time, some of the

initial research in the area of multiple-instruction issue [TF70,RF72,Sch71] was carried

out. Schorr describes an exploratory design [Sch71] capable of fetching, decoding, and

executing multiple instructions every cycle. The design, later to be known as the IBM ACS

(Advanced Computer System), was partitioned into theindex unit that performed address-

ing operations and thearithmetic unit that executed arithmetic instructions. The arithmetic

unit had a window of eight instructions out of which three instructions could be issued for

execution every cycle. Unfortunately, the project was cancelled due to the incompatibility

of the ISA with the S/360 ISA and other problems.

The late 1970s saw the emergence of a new paradigm for ILP called VLIW — Very

Long Instruction Word — that grew out of early microcode machines [Wil51] and systems

built by Floating Point Systems [Cha81]. VLIWs rely on the compiler to pack independent

operations into a long instruction word which are then executed on multiple, independent

functional units. The arguments in favor of VLIW are two-fold. First, since the compiler

has a larger scope than the hardware to look for independent operations, VLIWs should be

able to exploit more parallelism than superscalars. Second, since complex issue hardware

is no longer required, VLIW processors can be clocked much faster than superscalar pro-

cessors. However, even though a few commercial VLIW processors were built, the para-



7

digm has not gained widespread acceptance. There are a number of reasons. First, to

match hardware techniques, the paradigm requires sophisticated compiler technology that

implements advanced techniques like software pipelining, global scheduling to move

instructions across branches, trace scheduling [Fis81], and memory disambiguation.

While advanced VLIW compilers [Ell85] that focussed on floating-point codes have been

developed, it is not clear how well they perform on integer code where branches occur fre-

quently and memory disambiguation is hard. Second, exposing hardware details to the

compiler results in binaries that might not be portable across implementations. Third, the

sophisticated transformations tend to result in increases in code size that can potentially

degrade overall performance.

The lack of ILP innovation continued into the early 1980s. This was the period when

most microprocessor designers were busy implementing RISC concepts [PS81] in the

form of simple pipelining, and new ILP techniques did not receive much attention. How-

ever, the second half of the 1980s saw renewed ILP activity both in the superscalar and

VLIW areas. The commercial implementations of the VLIW concept — Trace [CNO+88]

by Multiflow and Cydra 5 [RYYT89] by Cydrome — were delivered during this time.

However, these implementations had limited success in penetrating commercial markets.

At the same time, three experimental superscalar prototype [S+87,GHL+85,Gro90] efforts

were underway. These were the Astronautics ZS-1, the Wisconsin PIPE, and the IBM

America machines. All three of them, implemented a limited form of multiple issue —

integer instructions, including memory access related instructions, were issued in parallel

with floating-point instructions. The ZS-1 and the PIPE used architectural queues to com-

municate values between the two classes of instructions. The America design used register

renaming to achieve the same effect. All the designs still used in-order issue to execute

instructions within each class. This simplified issue logic while allowing a limited form of

out-of-order execution.

The early 1990s saw a number of superscalar implementations [KM89,

D+92,K+93,Hsu94] — Intel i860, DEC 21064, HP 7100, MIPS R8000, and others. All of
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them, with the exception of the Power1, were simple in-order implementations that

achieved multiple-issue by executing instructions of different types (load/store, branch,

floating-point) in parallel. The IBM Power1 [Gro90] based on the earlier America design

implemented register renaming and sophisticated instruction fetch mechanisms. Other

vendors continued on the path of simple in-order implementations with a faster clock. This

gave rise to the “speed demons” (simple implementations with a fast clock) versus “braini-

acs” (complex implementations with a slow clock) controversy [Gwe93].

The mid 1990s saw some convergence between the two camps. Almost all vendors

moved towards designs implementing complex out-of-order microarchitectures based on

the 6600 and 360/91 schemes as well as ideas explored in academia

[SP88,Soh90,HP86,DT92,YP92]. At the time of the writing of this thesis, every major

microprocessor vendor has a product implementing sophisticated dynamic scheduling.

In 1996, Digital Equipment Corporation, long considered to be the bastion of the speed

demons, announced plans for a product (DEC 21264 [Gwe96a]) implementing an out-of-

order microarchitecture with a relatively fast clock (600 MHz). An interesting feature that

stands out in this design is the microarchitectural changes employed to facilitate a fast

clock. The integer subsystem is partitioned into two clusters. Instructions are steered from

a central window to the clusters. Each cluster has its own copy of the register file. In addi-

tion to reducing the number of register file ports, clustering also makes possible fast

bypassing between units in the same cluster. These features are described in more detail in

Chapter 3. The research presented in this thesis has been highly influenced by this design.

In summary, the superscalar approach1 has evolved over the years into the mainstream of

processor implementations and each generation of designers had to deal with the trade-off

between hardware complexity and performance.

1. There have been other ILP paradigms, some very successful in their own niche market, that have
not been touched upon in this section. Some of these paradigms are vectors [Rus78], superpipe-
lining [JW89], autotasking[ABHS89], multiprocessing[FJD80], and dataflow [DM74].
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1.3  The Conventional Microarchitecture

As discussed earlier, current superscalar processors, like the MIPS R1000 [Yea96] and

the DEC 21264 [Gwe96a], are typically based on the microarchitecture shown in

Figure 1-1. The issue and execution resources in the machine are partitioned into integer

and floating-point subsystems. The integer subsystem contains a number of load/store,

branch, and functional units that operate on integer operands. The floating-point sub-

system is similar to the integer subsystem except it does not contain load/store units, and it

operates on floating-point operands. Instruction windows in each subsystem buffer

instructions and implement dynamic scheduling as discussed earlier.

The microarchitecture presented in Figure 1-1 will be referred to as the conventional

microarchitecture throughout the rest of this thesis. It will be used as a baseline for perfor-

mance comparisons.

1.4  Thesis Contributions

1.4.1  Quantifying the Complexity of Superscalar Microarchitectures

The main contribution of this thesis is the development of simple models that both quan-

tify the complexity of superscalar microarchitectures and identify complexity trends. Mea-

surement of implementation complexity of microarchitectural features is going to be

increasingly crucial for computer architects to understand and master. While much work

remains to be done in this area, the work presented in this thesis is an important starting

point.

The structures in a baseline superscalar microarchitecture whose complexity grows with

increasing instruction-level parallelism are identified and analyzed. Each is modeled and

Spice simulated for three different feature sizes representing past, present, and future tech-

nologies. Simple analytical models are developed that quantify the delay of these struc-

tures in terms of microarchitectural parameters of window size and issue width. The
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impact of technology trends towards smaller feature sizes is studied. In particular, the

impact of poor scaling of wire delays in future technologies is analyzed.

In addition to delays, we study the performance effects of pipelining critical structures.

Even if the delay of a structure is relatively large, it may not increase the complexity of the

design because the structure’s operation can be spread over multiple pipestages. Our anal-

ysis identifies structures that are more performance critical. The operation of these struc-

tures should be accommodated within a single cycle to avoid significant degradation in

IPCs achieved, especially for programs with limited parallelism.

Our analysis shows that the issue window logic and data bypass logic are going to be the

most critical structures in future. The delay of the issue window logic increases at least lin-

early with both issue width and window size. The functioning of this logic involves broad-

casting of multiple tags on long wires spanning the window — an operation that does not

scale well in future technologies. Furthermore, the delay of the window logic must fit in a

pipestage to avoid performance degradation. Hence, this logic can be a key limiter of

clock speed as we move towards wider issue widths, large window sizes, and advanced

technologies in which wire delays dominate total delay. Another structure that can poten-

tially limit clock speed especially in future technologies is the data bypass logic. The

result wires that are used to bypass operand values increase in length as the number of

functional units is increased. This results in a quadratic dependence of the bypass delay on

issue width. Utilizing buffers helps mitigate the problem to an extent, but a linear increase

in delay with issue width still persists. Just like the window logic, data bypass logic must

also complete within a single cycle for performance reasons. Hence, bypass delays could

ultimately become significant and force architects to consider more decentralized organi-

zations.

1.4.2  Dependence-based Superscalar Microarchitectures

This thesis studies a new family of complexity-effective microarchitectures called

dependence-based superscalar microarchitectures that address two major sources of com-
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plexity — window logic and data bypass logic — in conventional microarchitectures.

Dependence-based microarchitectures use two main techniques to achieve the dual goals

of high IPC and a fast clock. First, the machine is partitioned into multiple clusters each of

which contains a slice of the instruction window and execution resources of the whole pro-

cessor. This enables high-speed clocking of the clusters since the narrow issue width and

the small instruction window of each cluster keeps critical delays small. The second tech-

nique involves intelligent steering of instructions to the multiple clusters so that the full

width of the machine is utilized while minimizing the performance degradation due to

slow inter-cluster communication.

A number of design alternatives and steering heuristics for dependence-based microar-

chitectures are proposed and evaluated using simulations. Among the designs presented,

one that is particularly attractive is what we call the fifo-basedmicroarchitecture. This

microarchitecture implements the instruction window as a collection of a small number of

fifos and steers dependent chains of instructions to the same fifo. Simulations show little

slowdown as compared with a completely flexible issue window when performance is

measured in clock cycles. Furthermore, because only instructions at fifo heads need to be

awakened and selected, issue logic is simplified and the clock cycle is faster —conse-

quently overall performance is improved. For example, our results show that, due to the

clock speed advantage, the overall performance of a 2X4-way1 fifo-based microarchitec-

ture is 14% higher than that of a typical 8-way superscalar even though the proposed

microarchitecture degrades IPC performance by 8% relative to the typical microarchitec-

ture. By grouping dependent instructions together, the fifo-based microarchitecture also

helps minimize the performance degradation due to slow bypasses in future wide-issue

machines.

1. A 8-way microarchitecture comprising two clusters — each consisting of four fifos feeding four
functional units.
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1.4.3  Integer-decoupled Microarchitecture

This thesis proposes another complexity-effective microarchitecture called the integer-

decoupled microarchitecture that improves the performance of integer programs and can

be integrated into a conventional microarchitecture with little or no increase in complexity.

The integer-decoupled microarchitecture starts with a conventional microarchitecture and

augments the floating-point units to perform simple integer operations. Some integer

instructions, those not used for computing addresses and accessing memory, are then off-

loaded to the augmented floating-point subsystem by the compiler. Consequently, for inte-

ger programs, the integer-decoupled microarchitecture provides a larger window for

dynamic scheduling as well as extra issue and execution bandwidth at no increase in com-

plexity.

We evaluate the potential performance improvements with the integer-decoupled

microarchitecture. Our results show that a modest to significant fraction of the total

dynamic instructions in our benchmark programs can be off-loaded to the augmented

floating-point subsystem. In doing so, the integer-decoupled microarchitecture provides

speedups from 3% to 23% over a 4-wide (2 integer and 2 floating-point units) conven-

tional microarchitecture. Furthermore, the results show that only simple integer operations

need to be supported in the floating-point subsystem. This minimizes the additional hard-

ware cost.

1.5  Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the simple

models that we developed, along with the methodology used, for quantifying the complex-

ity of superscalar microarchitectures. Chapter 3 proposes and evaluates dependence-based

superscalar microarchitectures. Chapter 4 introduces and investigates the integer-decou-

pled microarchitecture. Finally, Chapter 5 gives conclusions and suggests future directions

to explore. The appendices includes detailed experimental results for Chapter 2.
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Chapter 2

Quantifying the Complexity of Superscalar Microarchi-

tectures

The complexity of a microarchitecture is difficult to determine — to be very accurate, it

would require a full implementation in a specific technology. What is very much needed

are fairly straightforward measures, possibly only relative measures, of complexity that

can be used by microarchitects at a fairly early stage of the design process. This chapter

presents work that takes a step in that direction. Simple models that quantify the complex-

ity of superscalar microarchitectures are developed and used to identify long-term com-

plexity trends.

We start by identifying those portions of a microarchitecture whose complexity grows

with increasing instruction-level parallelism. Of these, we focus on register rename logic,

window logic, register file logic, and data bypass logic. We analyze potential critical paths

in these structures and develop models for quantifying their delays. We study the manner

in which these delays vary with microarchitectural parameters like window size (the num-

ber of instructions from which ready instructions are selected for issue) and issue width
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(the number of instructions that can be issued in a cycle). We also study the impact of the

technology trend towards smaller feature sizes. In particular, we analyze how the poor

scaling of wire delays in future affects the overall delay of critical structures.

In addition to delays, we study the performance effects of pipelining critical structures.

Even if the delay of a structure is relatively large, it may not increase the complexity of the

design because the structure’s operation can be spread over multiple pipestages. We ana-

lyze structures to identify those whose operation must be accomplished within a single

cycle to avoid significant degradation in the number of instructions committed every cycle.

The rest of this chapter is organized as follows. Section2.1 describes the sources of

complexity in a baseline microarchitecture. Section2.2 describes the methodology we use

to study the critical structures identified in Section2.1. Section2.3 briefly discusses tech-

nology trends. Section2.4 presents a detailed analysis of each structure and how the delay

of the structure varies with microarchitectural parameters and technology parameters.

Section2.5 discusses pipelining issues for each of the structures and presents overall delay

results. Finally, Section2.6 lists related work, and Section2.7 summarizes the chapter.

2.1  Sources of Complexity

Before delving into specific sources of complexity, we describe the baseline superscalar

model assumed for the study. We then list the basic structures that are the primary sources

of complexity. Finally, we show how these basic structures are present in one form or

another in most current implementations even though these implementations might appear

to be different superficially. On the other hand, we realize that it is impossible to capture

all possible microarchitectures in a single model and any results provided here have some

obvious limitations. We can only provide a fairly straightforward model that is typical of

most current superscalar processors, and suggest that techniques similar to those used here

can be extended for other, more advanced models as they are developed.



15

Figure 2-1 illustrates the baseline model and the associated pipeline. The fetch unit

fetches multiple instructions every cycle from the instruction cache. Branches encountered

by the fetch unit are predicted. Following instruction fetch, instructions are decoded and

their register operands are renamed. Register renaming involves mapping the logical regis-

ter operands of an instruction to the appropriate physical registers. Renamed instructions

are then deposited in the issue window, where they wait for their source operands and the

appropriate functional unit to become available. As soon as these conditions are satisfied,

the instruction is issued and executes on one of the functional units. The operand values of

an instruction are either fetched from the register file or are bypassed from earlier instruc-

tions in the pipeline. The data cache provides low latency access to memory operands via

loads and stores.

The issue window is responsible for monitoring dependences between instructions in the

window and issuing instructions to the functional units. The window logic consists of two

components — the wakeup logic and the select logic. The first component is responsible

for “waking up” instructions waiting in the issue window for their source operands to

become available. Once an instruction is issued for execution, the tag corresponding to its

result is broadcast to all the instructions in the window. Each instruction in the window

compares the tag with its source operand tags. Once all the source operands of an instruc-

tion are available the instruction is flagged ready for execution. The select logic is respon-

sible for selecting instructions for execution from the pool of ready instructions. An

Figure 2-1. Baseline superscalar model.
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instruction is said to be ready if all of its source operands are available. As pointed out ear-

lier, the wakeup logic is responsible for setting the ready flag.

2.1.1  Basic Structures

The most important criterion used for identifying a basic structure for our study is that

the delay of the structure should be a function of either issue window size or issue width or

both. For example, we consider register renaming to be a basic structure because its delay

depends on the number of ports into the mapping table which in turn is determined by the

issue width. On the other hand none of the functional units are included in the study

because their delay is independent of both the issue width and the window size. In addi-

tion, our decision to study a particular structure was based on two observations. First, we

are primarily interested in dispatch and issue-related structures because these structures

form the core of a microarchitecture and largely determine the amount of parallelism that

can be exploited. Second, some of these structures rely on broadcast operations on long

wires and hence, their delays might not scale as well as logic-intensive structures in future

technologies with smaller feature sizes. Hence, we believe that these structures are poten-

tial cycle-time determinants in future wide-issue designs in advanced technologies.

The structures we consider are:

• Register rename logic

• Window wakeup logic

• Window selection logic

• Register file logic

• Data bypass logic

There are other important pieces of logic that are not considered in this thesis, even

though their delay is a function of issue width. These are:

• Caches.

Instruction and data caches provide low latency access to instructions and memory oper-

ands, respectively. In order to provide the necessary load/store bandwidth [SF91] in a
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superscalar processor, the cache has to be banked or duplicated. The access time of a

cache is a function of the size of the cache and the associativity of the cache. Wada et al.

[WRP92] and Wilton and Jouppi [WJ94] have developed detailed models that estimate the

access time of a cache given its size and associativity.

• Instruction fetch logic

Besides the instruction cache, there are other important parts of fetch logic whose com-

plexity varies with dispatch width. First of all, as instruction issue widths grow beyond the

size of a single basic block, it will become necessary to predict multiple branches every

cycle. Then, non-contiguous blocks of instructions will have to be fetched from the

instruction cache and compacted into a contiguous block prior to renaming. Rotenberg et

al. [RBS96] describe the logic required for these operations. However, delay models

remain to be developed. And, although they are important, they are not considered here.

Finally, it must be pointed out once again that in real designs there may be structures not

listed above that influence the overall delay of the critical path. However, our realistic aim

is not to study all of them but to analyze in detail some important ones that have been

reported in the literature. We believe that our basic technique can be applied to others,

however.

2.1.2  Current Implementations

The structures identified above were presented in the context of the baseline superscalar

model shown in Figure 2-1. The MIPS R10000 [Yea96], and the DEC 21264 [Gwe96a]

are two implementations of this model. Hence, the structures identified above apply to

these two processors.

On the other hand, the Intel Pentium Pro [Gwe95b], the PowerPC 604 [SDC95], and the

HAL SPARC64 [Gwe95a] are based on the reservation model shown in Figure 2-2. There

are two main differences between the two models. First, in the baseline model all the reg-

ister values, both speculative and non-speculative, reside in the physical register file. In the

reservation station model, the reorder buffer holds speculative values and the register file
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holds only committed, non-speculative data. Second, operand values are not broadcast to

the window entries in the baseline model - only their tags are broadcast; data values go to

the physical register file. In the reservation station model, completing instructions broad-

cast result values to the reservation stations. Issuing instructions read their operand values

from the reservation station.

The point to be noted is that the basic structures identified earlier are also present in the

reservation station model and are as critical as in the baseline model. The only notable dif-

ference is that the reservation station model has a smaller physical register file (equal to

the number of architected registers) and might not demand as much bandwidth (as many

ports) as the register file in the baseline model, because in this case some of the operands

come from the reorder buffer and the reservation stations.

While the discussion of potential sources of complexity is in the context of a baseline

superscalar model that is out-of-order, it must be pointed out that some of the critical

structures identified apply to in-order processors too. For example, the register file logic,

and the data bypass logic are also present in in-order superscalar processors.

Figure 2-2. Reservation stations-based superscalar model.
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2.2  Methodology

Each structure was studied in two phases. In the first phase, a representative CMOS cir-

cuit was selected for the structure. This was done by studying designs published in the lit-

erature1 and by collaborating with engineers at Digital Equipment Corporation. In cases

where there was more than one possible design, we performed a preliminary study of the

designs to select one that was most promising. In one case, register renaming, we had to

study (simulate) two different schemes.

In the second phase, the circuit was implemented and optimized for speed. Circuits were

designed mostly using static logic. We believe that power and robustness considerations

will make static logic more attractive than dynamic logic in future. However, in situations

where dynamic logic helped boost the performance significantly, dynamic logic was used.

For example, in the window wakeup logic, a dynamic 7-input NOR gate was used for

comparisons instead of a static gate. A number of optimizations were applied to improve

the speed of the circuits. First, all the transistors in the circuit were manually sized so that

overall delay improved. Second, logic optimizations like two-level decomposition were

applied to reduce fan-in requirements. Static gates with a fan-in greater than four were

avoided. Third, in some cases transistor reordering was used to shorten the critical path.

Some of the optimization sites will be pointed out when the individual circuits are

described.

We used the HSPICE circuit simulator [Met87] from MetaSoftware to simulate the cir-

cuits. In order to simulate the effect of wire parasitics, parasitics were added at appropriate

nodes in the Hspice model of the circuit. These parasitics were computed by calculating

the length of the wires based on the layout of the circuit and using the values of Rmetal and

Cmetal — the resistance and parasitic capacitance of metal wires per unit length.

1. Mainly proceedings of the ISSCC — International Solid-State and Circuits Conference.
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To study the effect of reducing the feature size on the delays of the structures, we simu-

lated the circuits for three different feature sizes: 0.8µm, 0.35µm, and 0.18µm respec-

tively. The process parameters for the 0.8µm CMOS process were taken from Johnson and

Jouppi’s synthetic model [JJ90]. These parameters were used by Wilton and Jouppi

[WJ94] to study the access time of caches. Because process parameters are proprietary

information, we had to use extrapolation to come up with process parameters for the

0.35µm and 0.18µm technologies. We used the 0.8µm process parameters from Johnson

and Jouppi’s synthetic model [JJ90], 0.5µm process parameters from MOSIS, and process

parameters used in the literature as inputs. The process parameters assumed for the three

technologies are listed in Appendix A. Layouts for the 0.35µm and 0.18µm technologies

were obtained by appropriately shrinking the layout for the 0.8µm technology.

Finally, basic RC circuit analysis was used to develop simple analytical models that cap-

tured the dependence of the delays on microarchitectural parameters like issue width and

window size. The relationships predicted by the Hspice simulations were compared

against those predicted by our model. In most of the cases, our models were accurate in

identifying the relationships.

2.2.1  Caveats

The above methodology does not address the issue of how well the assumed circuits

reflect real circuits for the structures. However, by basing our circuits on designs published

by microprocessor vendors, we believe that the assumed circuits are close to real circuits.

In practice, many circuit tricks can be employed to optimize critical paths for speed. How-

ever, we believe that the relative delay times between different configurations should be

more accurate than the absolute delay times. Because we are mainly interested in finding

trends in the manner in which delays of the structures vary with microarchitectural param-

eters like window size and issue width, and how the delays scale as the feature size is

reduced, we believe that our results are valid.
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It must also be pointed out that while the absolute delay times presented in this thesis

track the resulting clock speed, they cannot be directly converted into clock speeds. There

are two reasons for this. First, we do not include the delay of inter-stage latches and the

delay resulting from clock skew in our measurements. These two components can be

responsible for a non-trivial fraction of the total delay [NH97], especially for high fre-

quency designs. Second, the delay of a design can show considerable variance with pro-

cess parameters and temperature of operation. Commercial designs are required to operate

over a range of process parameters and physical temperatures. Our designs were simulated

for a single set of process parameters and a single temperature point (25 °C).

2.2.2  Terminology

Table 2.1 defines some of the common terms used in the rest of this chapter. The remain-

ing terms will be defined when they are introduced.

2.3  Technology Trends

Feature sizes of MOS devices have been steadily decreasing. This trend [Ass97] towards

smaller devices is likely to continue at least for the next decade. In this section, we briefly

Symbol Represents

IW Issue width

WINSIZE Window size

NVREG Number of logical registers

NPREG Number of physical registers

NVREGwidth Width of logical register tags

NPREGwidth Width of physical register tags

DATAwidth Width of datapath

Rmetal Resistance of metal wire per unit length

Cmetal Capacitance of metal wire per unit length

Table 2.1: Terminology.
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discuss the effect of shrinking feature sizes on circuit delays. The effect of scaling feature

sizes on circuit performance is an active area of research [D+74, MF95]. We are only inter-

ested in illustrating the trends in this section.

Circuit delays consist of logic delays and wire delays. Logic delays result from gates

that drive other gates. Wire delays are the delays resulting from driving values on wires.

2.3.1  Logic Delays

The delay of a logic gate can be written as

where CL is the load capacitance at the output of the gate, V is the supply voltage, and I is

the average charging/discharging current. I is a function of Idsat — the saturation drain

current of the devices forming the gate. As the feature size is reduced, the supply voltage

has to be scaled down to keep the power consumption at manageable levels. Because volt-

ages cannot be scaled arbitrarily they follow a different scaling curve from feature sizes.

For submicron devices [Rab96], if S is the scaling factor for feature sizes, and U is the

scaling factor for supply voltages, then CL , V, and I scale by factors of , , and

respectively. Hence, the overall gate delay scales by a factor of . Therefore, gate

delays decrease uniformly as the feature size is reduced.

2.3.2  Wire Delays

If L is the length of a wire, then the intrinsic RC delay of the wire is given by

where Rmetal, Cmetal are the resistance and parasitic capacitance of metal wires per unit

length respectively and L is the length of the wire. The factor 0.5 is introduced because we

use the first order approximation that the delay at the end of a distributed RC line is

Delaygate CL V×( ) I⁄=

1 S⁄ 1 U⁄

1 U⁄ 1 S⁄

Delaywire 0.5 Rmetal× Cmetal× L
2×=
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 (we assume the resistance and capacitance are distributed uniformly over the

length of the wire).

In order to study the impact of shrinking feature sizes on wire delays we first have to

analyze how the resistance, Rmetal, and the parasitic capacitance, Cmetal, of metal wires

vary with feature sizes. We use the simple model presented by Bohr [Boh95] to estimate

how Rmetal and Cmetal scale with feature size. Note that both these quantities are per unit

length measures. Using Bohr’s model [Boh95],

where width is the width of the wire, thickness is the thickness of the wire, ρ is the resistiv-

ity of metal, and ε and ε0 are permittivity constants.

The average metal thickness has remained relatively constant for the last few genera-

tions while the width has been decreasing in proportion to the feature size. Hence, if S is

the scaling factor for feature sizes, the scaling factor for Rmetal is S. The metal capacitance

has two components: fringe capacitance and parallel-plate capacitance. Fringe capacitance

is the result of capacitance between the side-walls of adjacent wires and capacitance

between the side-walls of the wires and the substrate. Parallel-plate capacitance is the

result of capacitance between the bottom-wall of the wires and the substrate. Assuming

that the thickness remains constant, it can be seen from the equation for Cmetal that the

fringe capacitance becomes dominant as we move towards smaller feature sizes. Rahmat

et al. [RNOM95] show that as feature sizes are reduced, the fringe capacitance will be

responsible for an increasingly larger fraction of the total capacitance. For example, they

show that for feature sizes less than 0.1µm, the fringe capacitance contributes 90% of the

total capacitance. In order to accentuate the effect of wire delays and to be able to identify

=

=

=

RC( ) 2⁄

Rmetal ρ width thickness×( )⁄

Cmetal C fringe C parallelplate+

2 ε× ε0× thickness( ) width( )⁄× 2 ε× ε0× width( ) thickness( )⁄×+
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their effects, we assume that the metal capacitance is largely determined by the fringe

capacitance and therefore the scaling factor for Cmetal is also S.

Using the above scaling factors in the equation for the wire delay, we can compute the

scaling factor for wire delays as,

Note that the length scales as  for local interconnects. In this study we are only

interested in local interconnects. This might not be true for global interconnects like the

clock because their length also depends on the die size.

Hence, as feature sizes are reduced, wire delays remain constant. This, coupled with the

fact that logic delays decrease uniformly with feature size, implies that wire delays will

dominate total delays in future. In reality, the situation is further aggravated for two rea-

sons. First, not all wires reduce in length perfectly (by a factor of S). Second, some of the

global wires, like the clock, actually increase in length due to bigger dice that are made

possible with each generation.

McFarland and Flynn [MF95] studied various scaling schemes for local interconnect

and conclude that a quasi-ideal scaling scheme closely tracks future deep submicron tech-

nologies. Quasi-ideal scaling performs ideal scaling of the horizontal dimensions but

scales the thickness more slowly. The scaling factor for RC delay per unit length for their

scaling model is . In comparison, for our scaling model, the scal-

ing factor for RC delay per unit length is a more conservative, and simpler, .

2.4  Complexity Analysis

In this section we discuss the critical structures in detail. The presentation of each struc-

ture is organized as follows. First, we describe the logical function implemented by the

=

=

Scaling Factor S S× 1 S⁄( )2×

1

1 S⁄

0.9 S
1.5× 0.1 S

2.5×+( )

S
2



25

structure. Then, we present possible schemes for implementing the structure and describe

one of the schemes in detail. Next, we analyze the overall delay of the structure in terms of

microarchitectural parameters like issue width and window size using simple delay mod-

els. Finally, we present Spice simulation results, identify trends in the results and discuss

how the results conform to the delay analysis performed earlier.

2.4.1  Register Rename Logic

The register rename logic is used to translate logical register designators into physical

register designators. Logically, this is accomplished by accessing a map table with the log-

ical register designator as the index. Because multiple instructions, each with multiple reg-

ister operands, need to be renamed every cycle, the map table has to be multi-ported. For

example, a 4-wide issue machine with two read operands and one write operand per

instruction requires 8 read ports and 4 write ports into the mapping table. The high level

block diagram of the rename logic is shown in Figure 2-3. The map table holds the current

logical to physical mappings. In addition to the map table, dependence check logic is

required to detect cases where the logical register being renamed is written by an earlier

instruction in the current group of instructions being renamed. The dependence check

logic detects such dependences and sets up the output MUXes so that the appropriate

physical register designators are generated. The shadow table is used to checkpoint old

mappings so that the processor can quickly recover to a precise state from branch mispre-

dictions. At the end of every rename operation, the map table is updated to reflect the new

logical to physical mappings created for the result registers of the current rename group.
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2.4.1.1  Structure

The mapping and checkpointing functions of the rename logic can be implemented in at

least two ways. These two schemes, called the RAM scheme and the CAM scheme, are

described next.

RAM scheme

In the RAM scheme, as implemented in the MIPS R10000 [Yea96], the map table is a

RAM where each entry contains the physical register that is mapped to the logical register

whose designator is used to index the table. The number of entries in the map table is

equal to the number of logical registers. A single cell of the table is shown in Figure 2-5. A

shift register, present in every cell, is used for checkpointing old mappings.

The map table works like a register file. The bits of the physical register designators are

stored in the cross-coupled inverters in each cell. A read operation starts with the logical

register designator being applied to the decoder. The decoder decodes the logical register

designator and raises one of the word lines. This triggers bit line changes which are sensed

by a sense amplifier and the appropriate output is generated. Precharged, double-ended bit

lines are used to improve the speed of read operations. Mappings are checkpointed by

DEPENDENCE
CHECK

LOGIC (SLICE)

MAP
TABLE

MUX

LOGICAL SOURCE
REGS

LOGICAL DEST.
REGS

LOGICAL SOURCE
REG R

PHYSICAL SOURCE
REGS

PHYSICAL
DEST.
REGS

PHYSICAL
REG FOR
REG R

Figure 2-3. Register rename logic.
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copying the current contents of each cell into the shift register. Recovery is performed by

writing the bit in the appropriate shift register cell back into the main cell.

CAM scheme

An alternative scheme for register renaming uses a CAM (content-addressable memory)

to store the current mappings. Such a scheme is implemented in the HAL SPARC

[AMG+95] and the DEC 21264 [Kel96]. The number of entries in the CAM is equal to the

number of physical registers. Each entry contains two fields. The first field stores the logi-

cal register designator that is mapped to the physical register represented by the entry. The

second field contains a valid bit that is set if the current mapping is valid. The valid bit is

required because a single logical register designator might map to more than one physical

register. When a mapping is changed, the logical register designator is written into the

entry corresponding to a free physical register and the valid bit of the entry is set. At the

same time, the valid bit used for the previous mapping is located through an associative

search and cleared.

The rename operation in this scheme proceeds as follows. The CAM is associatively

searched with the logical register designator. If there is a match and the valid bit is set, a

read enable wordline corresponding to the CAM entry is activated. An encoder (ROM) is

used to encode the read enable word lines (one per physical register) into a physical regis-

ter designator. Old mappings are checkpointed by storing the valid bits from the CAM into

a checkpoint RAM. To recover from an exception, the valid bits corresponding to the old

mapping are loaded into the CAM from the checkpoint RAM. In the HAL design, up to 16

old mappings can be saved.

The CAM scheme is less scalable than the RAM scheme because the number of CAM

entries, which is equal to the number of physical registers, increases with issue width. In

order to support such a large number of physical registers, the CAM will have to be appro-

priately banked. On the other hand, in the RAM scheme, the number of entries in the map
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table is independent of the number of physical registers. However, the CAM scheme has

an advantage with respect to checkpointing. In order to checkpoint in the CAM scheme,

only the valid bits have to be saved. This is easily implemented by having a RAM adjacent

to the column of valid bits in the CAM. In other words, the dimensions of the individual

CAM cells is independent of the number of checkpoints. On the other hand, in the RAM

scheme, the width of individual cells is a function of the number of checkpoints because

this number determines the length of the shift register in each cell.

The dependence check logic proceeds in parallel with the map table access. Every logi-

cal register designator being renamed is compared against the destination register designa-

tors (logical) of earlier instructions in the current rename group. If there is a match, then

the tag corresponding to the physical register assigned to the earlier instruction is used

instead of the tag read from the map table. For example, in the case shown in Figure 2-4,

the last instruction’s operand register r4 is mapped to p7 and not p2. In the case of more

than one match, the tag corresponding to the latest (in dynamic order) match is used. We

implemented the dependence check logic for issue widths of 2, 4, and 8. We found that for

these issue widths, the delay of the dependence check logic is less than the delay of the

map table, and hence the check can be hidden behind the map table access.

MAPTABLE

FREE REGS

add r1,r2,r3

add r4,r2,r5

add r2,r3,r4

8
3
9
2
6

MAPTABLE

FREE REGS

add p1,p3,p9

add p7,p3,p6

add p4,p9,p7

1
4
9
7
6

RENAMING

1 7 4 11 11

Figure 2-4. Renaming example showing dependency checking. The first entry of the map
table corresponds to logical register r1.
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2.4.1.2  Delay Analysis

We implemented both the RAM scheme and the CAM scheme. We found the perfor-

mance of the two schemes to be comparable for the design space we explored. To keep the

analysis short and since the RAM scheme is more scalable, we will only discuss the RAM

scheme here.

A single cell of the map table is shown in Figure 2-5. The critical path for the rename

logic is the time it takes for the bits of the physical register designator to be output after

the logical register designator is applied to the address decoder. The delay of the critical

path consists of three components: the time taken to decode the logical register designator,

the time taken to drive the wordline, the time taken by an access stack to pull the bitline

low plus the time taken by the sense amplifier to detect this bitline change and produce the

corresponding output. The time taken for the output of the map table to pass through the

MUX in Figure 2-3 is ignored because this is very small compared to the rest of the

rename logic and, more importantly, the control input of the MUX is available in advance
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Figure 2-5. Rename map table. This figure shows the map table of the rename logic on the
left and a single cell of the map table on the right.
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because the dependence check logic is faster than the map table. Hence, the overall delay

is given by,

Each of the components is analyzed next.

Decoder delay

The structure of the decoder is shown in Figure 2-6. We use predecoding to improve the

speed of decoding. The predecode gates are 3-input NAND gates and the row decode gates

are 3-input NOR gates. The output of the NAND gates is connected to the input of the

NOR gates by the predecode lines. The length of these lines is given by,

where cellheight is the height of the a single cell excluding the wordlines, IW is the issue

width, wordlinespacing is the spacing between wordlines, and NVREG is the number of log-

ical registers. The factor 3 in the equation results from the assumption of 3-operand

instructions (2 read operand and 1 write operand). With these assumptions, 3 ports (2 read

ports and 1 write port) are required per cell for each instruction being renamed. Hence, for

a IW-wide issue machine, a total of 3 × IW wordlines are required for each cell

The decoder delay is the time it takes to decode the logical register designator i.e. the

time it takes for the output of the NOR gate to rise after the input to the NAND gate has

been applied. Hence, the decoder delay can be written as

Delay T decode T wordline T bitline+ +=

PredeclineLength cellheight 3 IW× wordlinespacing×+( ) NVREG×=

T decode T nand T nor+=
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where Tnand is the delay of the NAND gate and Tnor is the delay of the NOR gate. From

the equivalent circuit of the NAND gate shown in Figure 2-6.

Req consists of two components: the resistance of the NAND pull-down and the metal

resistance of the predecode line connecting the NAND gate to the NOR gate. Hence,

Note that we have divided the resistance of the predecode line by two; the first order

approximation for the delay at the end of a distributed RC line is RC/2 (we assume that the

resistance and capacitance are distributed evenly over the length of the wire).
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Figure 2-6. Decoder structure and equivalent circuit.
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Ceq consists of three components: the diffusion capacitance of the NAND gate, the gate

capacitance of the NOR gate, and the metal capacitance of the predecode wire. Hence,

Substituting the above equations into the overall decoder delay and simplifying, we get

where c0, c1, and c2 are constants. The quadratic component results from the intrinsic RC

delay of the predecode lines connecting the NAND gates to the NOR gates. We found that,

at least for the design space and technologies we explored, the quadratic component is

very small relative to the other components. Hence, the delay of the decoder is linearly

dependent on the issue width. Typical values for the constants are listed in Table B.1 in

Appendix B.

Wordline delay

The wordline delay is defined as the time taken to turn on all the access transistors

(denoted by N1 in Figure 2.7) connected to the wordline after the logical register designa-

Ceq Cdiffcapnand Cgatecapnor PredeclineLength Cmetal×+ +=

T decode c0 c1 IW× c2 IW
2×+ +=
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Figure 2-7. Wordline structure and equivalent circuit.
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tor has been decoded. The wordline delay is the sum of the delay of the inverter WLINV

and the delay of the wordline driver. Hence,

From the equivalent circuit of the wordline driver shown in the figure, the wordline

driver can be written as

where Rwldriver is the effective resistance of the pull-up (p-transistor) of the driver, Rwlres is

the resistance of the wordline, and Cwlcap is the amount of capacitance on the wordline.

The total capacitance on the wordline consists of two components: the gate capacitance of

the access transistors and the metal capacitance of the wordline wire. The resistance of the

wordline is determined by the length of the wordline. Symbolically,

where PREGwidth is the number of bits in the physical register designator, CgatecapN1 is the

gate capacitance of the access transistor N1 in each cell, cellwidth is the width of a single

RAM cell excluding the bitlines, bitlinespacing is the spacing between bitlines, and sreg-

width is the width of a single bit of the shift register in each cell.

Factoring the above equations into the wordline delay equation and simplifying we get

T wordline T wlinv T wldriver+=

T wldriver c0 Rwldriver Rwlres+( )× Cwlcap×=

WordlineLength cellwidth 6 IW bitlinespacing×× sregwidth+ +( ) PREGwidth×=

Cwlcap PREGwidth CgatecapN1× WordlineLength Cmetal×+=

Rwlres 0.5 WordlineLength× Rmetal×=

T wordline c0 c1 IW× c2 IW
2×+ +=



34

where c0, c1, and c2 are constants. Again, the quadratic component results from the intrin-

sic RC delay of the wordline wire and we found that the quadratic component is very

small relative to the other components. Hence, the overall wordline delay is linearly

dependent on the issue width. Typical values for the constants are listed in Table B.2 in

Appendix B.

Bitline delay

The bitline delay is defined as the time between the wordline going high (turning on the

access transistor N1 shown in Figure 2-8) and the output of the sense amplifier going high/

low. From the figure this is the sum of the time it takes for one access stack to discharge

the bitline and the time it takes for a sense amplifier to detect the discharge. Hence,
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Figure 2-8. Bitline structure and equivalent circuit. We used Wada’s sense amplifier
[WRP92].

T bitline T bitdisch earg T senseamp+=
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From the equivalent circuit shown in the figure, the time taken to discharge the bitlines is

determined by the following equations.

where Rastack is the effective resistance of the access stack (two pass transistors in series),

Rbl is the resistance of the bitline, Cbl is the capacitance on the bitline, NPREG is the num-

ber of physical registers, Cdiffcap is the diffusion capacitance of the access stack that con-

nects to the bitline, cellheight is the height of a single RAM cell excluding the wordlines,

and wordlinespacing is the spacing between wordlines.

Factoring the above equations into the overall delay equation and simplifying we get

where c0, c1, and c2 are constants. Again, we found that the quadratic component is very

small relative to the other components. Hence, the overall bitline delay is linearly depen-

dent on the issue width.

BitlineLength cellheight 3 IW× wordlinespacing×+( ) NVREG×=

Rbl 0.5 BitlineLength× Rmetal×=

Cbl NVREG Cdiffcap× BitlineLength Cmetal×+=

T bitdisch earg c0 Rastack Rbl+( )× Cbl×=

T bitline c0 c1 IW× c2 IW
2×+ +=
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Overall delay

From the above analysis, the overall delay of the register rename logic can be summa-

rized by the following equation

where c0, c1, and c2 are constants. However, the quadratic component is relatively small

and hence, the rename delay is a linear function of the issue width for the design space we

explored. Typical values for the constants are listed in Table B.3 in Appendix B.

2.4.1.3  Spice Results

Figure 2-9 shows how the delay of the rename logic varies with the issue width i.e. the

number of instructions being renamed every cycle for the three technologies. The graph

also shows the breakdown of the delay into the components discussed in the previous sec-

tion. Detailed results for various configurations and technologies are shown in tabular

form in Appendix A.

A number of observations can be made from the graph. The total delay increases linearly

with issue width for the technologies. This is in conformance with the analysis in the pre-

vious section. All the components show a linear increase with issue width. The increase in

the bitline delay is larger than the increase in the wordline delay because the bitlines are

longer than the wordlines in our design. The bitline length is proportional to the number of

logical registers (32 in most cases) whereas the wordline length is proportional to the

width of the physical register designator (less than 8 for the design space we explored)

Delay c0 c1 IW× c2 IW
2×+ +=
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Another important observation that can be made from the graph is that the relative

increase in wordline delay, bitline delay, and hence, total delay with issue width only

worsens as the feature size is reduced. For example, as the issue width is increased from 2

to 8, the percentage increase in bitline delay shoots up from 37% to 53% as the feature

size is reduced from 0.8µm to 0.18µm. This occurs because logic delays in the various

components are reduced in proportion to the feature size while the presence of wire delays

in the wordline and bitline components cause the wordline and bitline components to fall

at a slower rate. In other words, wire delays in the wordline and bitline structures will

become increasingly important as feature sizes are reduced.

Figure 2-9. Rename delay versus issue width. This graph shows the breakup of rename delay
for issue widths of 2, 4, and 8 for the three technologies.
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2.4.1.4  Model Results

Figure 2-10 shows how the delays computed by the model using the constants listed in

Appendix B compare to the Spice results presented earlier. The delays computed by the

analytical models, both for rename logic and for other structures to be presented later, are

not always close to the Spice delays. The differences arise due to a number of reasons.

First, the simple RC analysis makes a number of approximations and simplifications that

cause deviation from the Spice result. Second, the simple delay equations used here do not

take into account the slopes of input signals. Third, we could not find reliable delay mod-

els for quantifying the delay of dynamic gates. Since it is beyond the scope of the thesis,

no attempt was made to develop advanced delay models tailored for this study. However,

the analytical models for the different structures help establish dependence relationships

and identify components that will become increasingly important in future.

2.4.2  Window Wakeup Logic

The wakeup logic is responsible for updating source dependences of instructions in the

issue window waiting for their source operands to become available. Figure 2-11 illus-

trates the wakeup logic. Every time a result is produced, the tag associated with the result

Figure 2-10. Model delay results for rename logic. This graph shows how the model delay
results compare to the Spice results for register rename logic.
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is broadcast to all the instructions in the issue window. Each instruction then compares the

tag with the tags of its source operands. If there is a match, the operand is marked avail-

able by setting the rdyL or rdyR flag. Once all the operands of an instruction become avail-

able (both rdyL and rdyR are set), the instruction is ready to execute and the rdy flag is set

to indicate this. The issue window is a CAM (content-addressable memory [WE93]) array

holding one instruction per entry. Buffers, shown at the top of the figure, are used to drive

the result tags tag1 to tagIW where IW is the issue width. Each entry of the CAM has (2 ×

IW) comparators to compare each of the result tags against the two operand tags of the

entry. The OR logic combines the comparator outputs and sets the rdyL/rdyR flags.

2.4.2.1  Structure

Figure 2-12 shows a single cell of the CAM array. The cell shown in detail compares a

single bit of the operand tag with the corresponding bit of the result tag. The operand tag

bit is stored in the RAM cell. The corresponding bit of the result tag is driven on the tag

lines. The match line is precharged high. If there is a mismatch between the operand tag

bit and the result tag bit, the match line is pulled low by one of the pull-down stacks. For

example, if tag = 0, and data = 1, then the pull-down stack on the left is turned on and it

pulls the match line low. The pull-down stacks constitute the comparators shown in

Figure 2-12. The matchline extends across all the bits of the tag i.e. a mismatch in any of

RDYRRDYL OPD TAGROPD TAGL

= =
==

RDYRRDYL OPD TAGROPD TAGL

OROR

TAG1TAGIW

WINSIZE INSTS

Figure 2-11. Window wakeup logic.
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the bit positions will pull it low. In other words, the matchline remains high only if the

result tag matches the operand tag. The above operation is repeated for each of the result

tags by having multiple tag and matchlines as shown in the figure. Finally, all the match

signals are ORed to produce the ready signal.

There are two observations that can be drawn from the figure. First, there are as many

matchlines as the issue width. Hence, increasing issue width increases the height of each

CAM row. Second, increasing issue width also increases the number of inputs to the OR

block.

2.4.2.2  Delay Analysis

Because the match lines are precharged high, the default value of the ready signal is

high. Hence, the delay of the critical path is the time it takes for a mismatch in a single bit

position to pull the ready signal low. The delay consists of three components: the time

taken by the buffers to drive the tag bits, the time taken for the pull-down stack corre-

sponding to the bit position with the mismatch to pull the match line low, and the time

taken to OR the individual match signals. Symbolically,
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Figure 2-12. CAM cell in wakeup logic.
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Each of the components is analyzed next.

Tag Drive Time

The tag drive circuit is shown in Figure 2-13. The time taken to drive the tags depends

on the length of the tag lines. The length of the tag lines is given by

where camheight is the height of a single CAM cell excluding the matchlines, and

matchlinespacing is the spacing between matchlines1.

From the equivalent circuit shown in the figure, the time taken to drive the tags is given

by

where Rtagdriverpup is the resistance of the pull-up of the tag driver, Rtlres is the metal resis-

tance of the tag line, and Ctlcap is the total capacitance on the tag line. Rtlres is determined

1. To be precise matchlinespacing is the height of a matchline and the associated pull-down stacks.

TaglineLength camheight IW matchlinespacing×+( ) WINSIZE×=

RESULT TAG BIT

TAG DRIVER

COMPARATOR

PD2

A

WINSIZE ENTRIES

TA
G

LI
N

E Ctlcap

Rtagdriverpup

Rtlres

A

Figure 2-13. Tag drive structure.
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T tagdrive c0 Rtagdriverpup Rtlres+( )× Ctlcap×=
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by the length of the tag lines. Ctlcap consists of three components: the metal capacitance

determined by the length of the tag line, the gate capacitances of the comparators, and the

diffusion capacitance of the tag driver. Symbolically,

where Cgatecapcomp is the gate capacitance of the pass transistor PD2 (shown in

Figure 2-13) in the comparator’s pull-down stack and Cdiffcap is the diffusion capacitance

of the tag driver.

Substituting the above equations into the overall delay equation and simplifying we get

The above equation shows that the tag drive time increases with window size and issue

width. For a given issue width, the total delay is a quadratic function of the window size.

The weighting factor for the quadratic term is a function of the issue width. We found that

the weighting factor becomes significant for issue widths beyond 2. For a given window

size, the tag drive time is also a quadratic function of issue width. We found that for cur-

rent technologies (0.35µm and longer) the quadratic component is relatively small and the

tag drive time is largely a linear function of issue width. However, as the feature size is

reduced to 0.18µm the quadratic component also increases in significance. The quadratic

component results from the intrinsic RC delay of the tag lines. The constants in the equa-

tion are listed in Table B.5 in Appendix B.

In reality, both issue width and window size will be simultaneously increased because a

larger window is required for finding more independent instructions. Hence, we believe

that the tag drive time can become significant in future designs with wider issue widths,

bigger windows, and smaller feature sizes.

Rtlres 0.5 TaglineLength× Rmetal×=

Ctlcap TaglineLength Cmetal× Cgatecapcomp WINSIZE× Cdiffcap+ +=

T tagdrive c0 c1 c2 IW×+( ) WINSIZE× c3 c4 IW× c5 IW
2×+ +( ) WINSIZE

2×+ +=
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Tag Match time

The tag match time is the time taken for one of the pull-down stacks to pull the

matchline low. From the equivalent circuit shown in Figure 2-14,

where Rpdstack is the effective resistance of the pull-down stack, Rmlres is the metal resis-

tance of the matchline, and Cmlcap is the total capacitance on the match line. Rmlres can be

computed using

where MatchlineLength is the length of the matchlines, camwidth is the width of the CAM

cell excluding the tag lines, taglinespacing is the spacing between tag lines.

Cmlcap consists of three components: the diffusion capacitance of all the pull-down

stacks connected to the matchline, the metal capacitance of the matchline, and the gate

capacitance of the inverter at the end of the matchline. Hence,

where PREGwidth is the width of the physical register designators, Cdiffcap is the diffusion

capacitance of the pass transistor (marked as PD1 in Figure 2-14) in the pull-down stacks

T tagmatch c0 Rpdstack Rmlres+( )× Cmlcap×=

MatchlineLength camwidth IW taglinespacing×+( ) PREGwidth×=

Rmlres 0.5 MatchlineLength× Rmetal×=

Cmlcap 2 PREGwidth× Cdiffcap× MatchlineLength Cmetal× Cgatecap+ +=
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that is connected to the matchline, and Cgatecap is the gate capacitance of the inverter at the

end of the match line.

Substituting the equations for Rmlres and Cmlcap into the overall delay equation and sim-

plifying we get

Again, we found that the quadratic component is relatively small and hence, the tag

match time is a linear function of issue width. The constants are listed in Table B.6 in

Appendix B.

A drawback of our model for the tag match time is that it does not model the dependence

of the match time on the slope of the tag line signal i.e. the tag drive delay. Our results,

presented in the next section, show that, as a result of this dependence, the tag match time

is also a function of the window size. In other words, a larger window will result in slower

fanning out of the result tags to the comparators in the window entries, thus increasing the

compare time.
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PREGwidth CELLS

PD1

Figure 2-14. Tag match structure.

T tagmatch c0 c1 IW× c2 IW
2×+ +=



45

Match OR time

This is the time taken to OR the individual matchlines to produce the ready signal.

Because the number of matchlines is the same as the issue width, the magnitude of this

delay term is a direct function of issue width. Figure 2-15 shows the OR logic for result

widths of 2, 4, and 8. For an issue width of 8, we use two 4-input NAND stacks followed

by a NOR gate because this is faster than using an 8-input NAND gate. Because the rise

delay of a gate is a linear function of the of the fan-in [WE93,Rab96] we can write the

delay as

where the constants are as shown in Table B.7 in Appendix B.

T matchOR c0 c1 IW×+=

ISSUE WIDTH = 2 ISSUE WIDTH = 4

ISSUE WIDTH = 8

Figure 2-15. Logic for ORing individual match signals.
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Overall delay

The overall delay of the wakeup logic can be summarized by the following equation:

where the constants are as tabulated in Table B.8 in Appendix B.

2.4.2.3  Spice Results

The graph in Figure 2-16 shows how the delay of the wakeup logic varies with window

size and issue width for 0.18µm technology. As expected, the delay increases as window

size and issue width are increased. The quadratic dependence of the total delay on the win-

dow size results from the quadratic increase in tag drive time as discussed in the previous

section. This effect is clearly visible for issue width of 8 and is less significant for smaller

issue widths. We found similar curves for 0.8µm and 0.35µm technologies. The quadratic

dependence of delay on window size was more prominent in the curves for 0.18µm tech-

nology than for the other two technologies
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Figure 2-16. Wakeup logic delay versus window size. This graph shows how the delay of the
window wakeup logic varies with window size and issue width for 0.18µm technology.
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Also, issue width has a greater impact on the delay than window size because increasing

issue width increases all the three components of the delay. On the other hand, increasing

window size only lengthens the tag drive time and to a small extent the tag match time.

Overall, the results show that the delay increases by almost 34% going from 2-way to 4-

way and by 46% going from 4-way to 8-way for a window size of 64 instructions. In real-

ity, the increase in delay is going to be even worse because in order to sustain a wider issue

width, a larger window is required to find independent instructions. We found similar

curves for 0.8µm and 0.35µm technologies. Detailed results for various configurations and

technologies are shown in tabular form in Appendix A.

The bar graph on the left in Figure 2-17 shows the detailed breakdown of the total delay

for various window sizes for a 8-way processor in 0.18µm technology. The tag drive time

increases rapidly with window size. For example, the tag drive time and the tag match time

increase by factors of 4.78 and 1.33 respectively when the window size is increased from 8

to 64. The increase in tag drive time is higher than that of tag match time because the tag

drive time is a quadratic function of the window size. The increase in tag match time with

the window size is not taken into account by our simple model given above because the

model does not take into consideration the slope of the input signals (determined in this

case by the tag drive delay). Also, as shown by the graph, the time taken to OR the match
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Figure 2-17. Wakeup logic delay. The graph on the left shows how wakeup delay varies with
window size for a 8-way machine. The graph on the right shows how wakeup delay varies with
issue width for a 64-entry window. Both graphs are for 0.18µm technology.
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signals depends only on the issue width and is independent of the window size The graph

on the right in Figure 2-17 shows how the delay of a 64-entry window in 0.18µm technol-

ogy varies with issue width. As shown by the delay analysis, all the components increase

with issue width.

Figure 2-18 shows the effect of reducing feature sizes on the various components of the

wakeup delay for an 8-way, 64-entry window processor. The tag drive and tag match

delays do not scale as well as the match OR delay. This is expected because tag drive and

tag match delays include wire delays whereas the match OR delay only consists of logic

delays. Quantitatively, the fraction of the total delay contributed by tag drive and tag

match delay increases from 52% to 65% as the feature size is reduced from 0.8µm to

0.18µm. This shows that the performance of the broadcast operation will become more

critical in future technologies.

In the above simulation results the window size was limited to a maximum of 64 instruc-

tions because we found that for larger windows the intrinsic RC delay of the tag lines

increases significantly. As discussed previously, the intrinsic RC delay is proportional to

the square of the window size. Therefore, for implementing larger windows banking

should be used. Banking helps alleviate the intrinsic RC delay by reducing the length of

the tag lines. For example, two-way banking will improve the intrinsic RC delay by a fac-
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Figure 2-18. Wakeup delay versus feature size. This graph shows how the wakeup delay for a
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0.8µm 0.35µm 0.18µm

W
ak

eu
p 

de
la

y 
(p

s)



49

tor of four. At the same time it must be pointed out that banking will introduce some extra

delay due to extra inverter stages and the parasitics introduced by the extension to the tag

lines.

2.4.2.4  Model Results

Figure 2-19 shows how the model results, computed using the constants in Appendix B,

compare to the Spice results. From the graph we can see that the model is successful in

tracking the dependence on issue width and window size.

2.4.3  Window Selection Logic

Selection logic is responsible for selecting instructions for execution from the pool of

ready instructions in the issue window. Some form of selection logic is required for two

reasons. First, the number of ready instructions in the issue window can be greater than the

number of functional units. For example, for a machine with a 32-entry issue window

there could be as many as 32 ready instructions. Second, some instructions can be exe-

cuted only on a subset of the functional units. For example, if there is only one integer

multiplier, all multiply instructions will have to be steered to that functional unit.

Figure 2-19. Model delay results for wakeup logic. This graph shows how the model delay
results compare to the Spice results for 0.18µm technology.
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The inputs to the selection logic are the request signals, termed REQ, one per instruction

in the issue window. The request signal of an instruction is raised when all the operands of

the instruction become available. As discussed in the previous section, the wakeup logic is

responsible for raising the REQ signals. The outputs of the selection logic are the grant

signals, termed GRANT, one per request signal. On receipt of the GRANT signal, the asso-

ciated instruction is issued to the functional unit and the corresponding window entry is

freed for later use. A selection policy is used to decide which of the requesting instructions

is granted the functional unit. We use a selection policy that is based on the location of the

instruction in the window. The HP PA-8000 [Kum96] uses a similar selection policy. We

chose this policy because it allows a simpler, and hence faster, implementation compared

to other more sophisticated policies like “oldest ready first”.

2.4.3.1  Structure

The assumed structure of the selection logic is shown in Figure 2-20. The selection logic

is used to select a single instruction for execution on a functional unit. The modifications

to this scheme for handling multiple functional units is discussed later. The selection logic

consists of a tree of arbiters. Each arbiter cell functions as follows. If the enable input is

high, then the grant signal corresponding to the highest priority, active input is raised. For

example, if enable = 1, req0 = 0, req1 = 1, req2 = 0, and req3 = 1, then grant1 will be

raised assuming priority reduces as we go from input req0 to input req3. If the enable

input is low, all the grant signals are set to low. In all cases, at most one of the grant sig-

nals is high. The anyreq output signal is raised if any of the input req signals is high

The overall selection logic works in two phases. In the first phase, the request signals are

propagated up the tree. Each cell raises the anyreq signal if any of its input request signals

is high. This in turns raises the input request signal of its parent arbiter cell. Hence, at the

root cell one or more of the input request signals will be high if there are one or more

instructions that are ready. The root cell then grants the functional unit to one of its chil-

dren by raising one of its grant outputs. This initiates the second phase. In this phase, the



51

grant signal is propagated down the tree to the instruction that is selected. At each level,

the grant signal is propagated down the subtree that contains the selected instruction. The

enable signal to the root cell is high whenever the functional unit is ready to execute an

instruction. For example, for single-cycle ALUs, the enable signal will be permanently

tied to high.

.The selection policy implemented by our assumed structure is static and is strictly based

on location of the instruction in the window. The leftmost entries in the window have the

highest priority. The oldest ready first policy can be implemented using our scheme by

compacting the issue window to the left every time instructions are issued and by inserting

new instructions at the right end. This ensures that instructions that occur earlier in pro-

gram order occupy the leftmost entries in the window and hence have higher priority than

later instructions. However, it is possible that the complexity resulting from compaction
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Figure 2-20. Selection logic. This figure shows the arbiter tree of the selection logic and a
single arbiter cell in detail.
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could degrade performance. We did not analyze the complexity of compacting in this

study.

Handling Multiple Functional Units

If there are multiple functional units of the same type, then selection logic (shown in

Figure 2-21) comprises a number of blocks of the type studied in the previous section,

stacked in series. The request signals to each block are derived from the requests to the

previous block by masking the request that was granted the previous resource.

An alternative to the above scheme is to extend the arbiter cells so that the request and

grant signals encode the number of resources being requested and granted respectively.

However, we believe that this could considerably slow down the arbiter cells and hence

could perform worse than the stacked design. The stacked design might not be a feasible

alternative beyond two functional units because the resulting delay can be significant. An

alternative option is to statically partition the window entries among the functional units.

For example, in the MIPS R10000 [Yea96], the window is partitioned into three sets called

the integer queue, floating-point queue, and the address queue. Only instructions in the

integer queue are monitored for execution on the two integer functional units.

2.4.3.2  Delay Analysis

The delay of the selection logic is the time it takes to generate the grant signal after the

request signal has been raised. This is equal to the sum of two terms: the time taken for the

REQ0

GRANT0

REQ0

GRANT0

FU2 ARBITERFU1 ARBITER

Figure 2-21. Handling multiple functional units.
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request signal to propagate to the root of the tree and the time taken for the grant signal to

propagate from the root to the selected instruction. Symbolically,

where L = log4(WINSIZE) is the height of the selection tree, Treqpropd is the time taken for

the request signal to propagate through an arbiter cell, Troot is the delay of the grant output

at the root cell, and Tgrantpropd is the time taken for the grant signal to propagate through

an arbiter cell. Hence, the overall delay can be written as

where c0 and c1 are constants as listed in Table B.9 in Appendix B. The base of the loga-

rithmic term is determined by the number of inputs to the arbiter. We found the optimal

number of arbiter inputs to be four in our case. The associated trade-offs are discussed

later.

From the above equations we can see that the delay of the selection logic is proportional

to the height of the tree and the delay of the arbiter cells. The delay has a logarithmic rela-

tionship with the window size. Increasing issue width can also increase the selection delay

if a stacked scheme is used to handle multiple functional units. For the rest of the discus-

sion, we will assume that a single functional unit is being scheduled and hence no stacking

is used. The delay for a stacked design can be easily computed by multiplying our delay

results by the stacking depth. One way to improve the delay of the selection logic is to

increase the radix of the selection tree. However, as we will see shortly, this increases the

delay of a single arbiter cell and could make the overall delay worse.

Arbiter Logic

The circuit for generating the anyreq signal is shown in Figure 2-22. The anyreq signal

is raised if one or more of the input request signals is active. The circuit, implementing the

OR function, consists of a dynamic NOR gate followed by an inverter. The dynamic gate

Delay L 1–( ) T reqpropd× T root L 1–( ) T grantpropd×+ +=

Delay c0 c1 WINSIZE( )4log×+=
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was chosen instead of a static OR gate for speed reasons. The circuit operates as follows.

The anyreq node is precharged high. When one or more of the input request signals go

high, the corresponding pull-downs pull the anyreq node low. The inverter in turn raises

the anyreq signal high. The value of Treqpropd in the delay equation is the delay of the OR

circuit.

The priority encoder in the arbiter cell is responsible for generating the grant signals.

The logic equations for the grant signals are:

For example, grant2 is high only if the cell is enabled, the input requests req0 and req1

are low, and req2 is high. Because the request signals at each cell, except for the root, are

available well in advance of the enable signal we use a two-level implementation for eval-

uating the grant signals. As an example, the circuit for evaluating grant1 is shown in

Figure 2-22. The first stage evaluates the grant1 signal (node grant1p) assuming the

enable signal is high. In the second stage, the grant1p signal is ANDed with the enable to

produce the grant1 signal. This two-level decomposition was chosen because it removes

grant0 req0 enable∩=

grant1 req0 req1 enable∩ ∩=

grant2 req0 req1 req2 enable∩ ∩ ∩=

grant3 req0 req1 req2 req3 enable∩ ∩ ∩ ∩=
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the logic for grant1p from the critical path. This optimization does not apply at the root

cell because at the root cell the request signals arrive after the enable signal.

The policy used by the selection logic is embedded in the above equations for the grant

outputs of the arbiter cell. For example, the design presented assumes static priority with

req0 having the highest priority. Implementing an alternative policy would require appro-

priate modifications to these equations. Again, the designer has to be careful while select-

ing a policy because a complex policy can increase the delay of the selection logic by

slowing down individual arbiter cells.

Increasing the number of inputs to the arbiter cell slows down both the OR logic and the

priority encoder logic. The OR logic slows down because the load capacitance contributed

by the diffusion capacitance of the pull-downs increases linearly with the number of

inputs. The priority logic slows down because the delay of the logic used to compute pri-

req0 req1 req2 req3

anyreq
anyreq

precharge

precharge

req1

req0

req0

grant1p

enable

enable

grant1

precompute
and with enablepriority

Figure 2-22. Arbiter Logic. The block on top shows the logic for the anyreq signal. The bottom
block shows the logic for generating the grant1 signal.
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ority increases due to higher fan-in. We found the optimal number of inputs to be four in

our case. The selection logic in the MIP R10000, described in [V+96], is also based on

four-input arbiter cells.

2.4.3.3  Spice Results

Figure 2-23 shows the delay of the selection logic for various window sizes in the three

technologies assuming a single functional unit is being scheduled. The delay is broken

down into the three components discussed earlier. From the graph we can see that for all

three technologies, the delay increases logarithmically with window size. Also, the

increase in delay is less than 100% when the window size is increased from 16 instruc-

tions to 32 instructions (or from 64 instructions to 128 instructions) because the middle

term in the delay equation, the delay at the root cell, is independent of the window size.

Detailed results are presented in tabular form in Appendix A.

The various components of the total delay scale well as the feature size is reduced. This

is not surprising because all the delays are logic delays. It must be pointed out that the

selection delays presented here are optimistic because we do not consider the wires in the

circuit, especially if it is the case that the request signals originate from the CAM entries
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Grant propagation delay
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Figure 2-23. Selection delay versus window size. This graph shows how the selection delay
varies with window size for the three different feature sizes. The selection policy used is based on
the location of the instruction in the window.
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in which the instructions reside. On the other hand, it might be possible to minimize the

effect of these wire delays if the ready signals are stored in a smaller, more compact array.

2.4.3.4  Model Results

Figure 2-24 shows how the model delay results, computed using the constants listed in

Appendix B, compare to the Spice results. The significant difference, especially for 0.8µm

technology, results because our delay models are unable to accurately model dynamic

logic.

2.4.4  Register file Logic

The register file provides low latency access to register operands. The access time of the

register file depends on the number of registers in the file and the number of ports into the

file. Assuming two read operands and one write operand per instruction, the number of

read and write ports required for a machine with issue width IW is 2 × IW and IW respec-

tively1. The number of registers required increases with issue width in order to support a

greater degree of speculative execution. A recent study [FJC96] shows that for significant

1. In most machine designs additional write ports are implemented for write-back of load data.

Figure 2-24. Model delay results for selection logic. This graph shows how the model delay
results compare to the Spice results for selection logic.
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performance up to 80 physical registers are required for a 4-wide issue machine and up to

120 physical registers are required for an 8-wide issue machine.

2.4.4.1  Structure

The structure of the register file assumed for this study is similar to that of the map table

shown in Figure 2-5 on page 29. The register file contents are stored in the cross-coupled

inverters in the cells. Each row of cells stores the contents of a single register. Hence, the

number of rows is determined by the number of registers in the file. The number of cells in

each row is determined by the datapath width. We assume a 64-bit datapath for this study.

A read operation starts with the register number (physical) being applied to the decoder.

The decoder decodes the register number and raises one of the wordlines. This triggers bit

line changes which are sensed by a sense amplifier and the appropriate output is gener-

ated. We use precharged, double-ended bitlines to improve the speed of read operations.

Read ports are implemented using NAND stacks (two pass gates in series) instead of a sin-

gle pass gate to prevent flipping of cell contents during a read operation, especially for

configurations with a large number of read ports.

There are a few differences between the map table in the register rename logic and the

register file. The shift register component of the map table is not present in the register file.

In the case of the rename logic, the number of rows is determined by the number of logical

registers in the instruction set architecture. The number of rows in the register file is deter-

mined by the number of physical registers. The width of each row in the map table is

determined by the width of the physical register tags. In case of the register file, the width

of each row is determined by the datapath width — 64 bits in most current designs.

2.4.4.2  Delay Analysis

The critical path for the register file logic is the time it takes for the contents of the regis-

ter to be output after the register number is applied to the address decoder. The delay of the

critical path consists of three components: the time taken to decode the register number,

the time taken to drive the wordline, and the time taken by an access stack to pull the bit-
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line low and for the sense amplifier to detect the change in the bitline and produce the cor-

responding output. Hence, the overall delay is given by,

Each of the components is analyzed next. The analysis presented here is similar to that

presented for the rename logic. Hence, figures are omitted and the discussion is kept brief.

Decoder delay

We use the same predecoding scheme as used in the map table of the rename logic s

shown in Figure 2-6 on page 31. The fan-in of the NAND and NOR gates is determined by

the number of bits in the register number i.e. the number of physical registers. Table 2.2

shows the fan-in of the decoder gates for the various register file sizes simulated.

The output of the NAND gates is connected to the input of the NOR gates by the prede-

code lines. The length of these lines is given by

where cellheight is the height of a single cell excluding the wordlines, IW is the issue

width, wordlinespacing is the spacing between the wordlines, and NPREG is the number of

physical registers. The factor 3 in the equation results from the assumption of 3-operand

Number of
physical registers

Fan-in of
predecode gates

Fan-in of direct
decode gates

32 2 3

64 2 3

128 3 3

256 4 2

512 4 3

Table 2.2: Fan-in of decoder gates.

T delay T decode T wordline T bitline+ +=

PredeclineLength 0.5 cellheight 3 IW× wordlinespacing×+( )× NPREG×=
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instructions (2 read operands and 1 write operand). With these assumptions, 3 ports (1

write port and 2 read ports) are required per cell for each instruction being renamed.

Hence, for a IW-wide issue machine, a total of (3 × IW) wordlines are required for each

cell. The factor 0.5 results from the assumption that the predecode NAND gates drive the

predecode lines from the centre of the array. This optimization was necessary to minimize

the RC effects of long predecode lines for large, highly ported configurations.

The decoder delay is the time it takes to decode the register number i.e. the time it takes

for the output of the NOR gate to rise after the input to the NAND gate has been applied.

Hence, the decoder delay can be written as

where Tnand is the delay of the NAND gate and Tnor is the delay of the NOR gate. Tnand is

given by the following equations,

where Rnandpd is the pull-down resistance of the NAND gate, Cdiffcapnand is the diffusion

capacitance at the output of the NAND gates, Cgatecapnor is the gate capacitance of the

NOR gates.

Substituting the above equations into the overall decoder delay and simplifying, we get

The above equation shows that the decode time increases with the number of physical

registers and the issue width. For a given issue width, the total delay is a quadratic func-

T decode T nand T nor+=

T nand c0 Req× Ceq×=

Req Rnandpd 0.5 PredeclineLength× Rmetal×+=

Ceq Cdiffcapnand Cgatecapnor PredeclineLength Cmetal×+ +=

T decoder c0 c1 c2 IW×+( ) NPREG× c3 c4 IW× c5 IW
2×+ +( ) NPREG

2×+ +=
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tion of register file size. The weighting factor for the quadratic term is a function of the

issue width. For a given register file size, the decode time is also a quadratic function of

issue width. The quadratic components in both cases result from the intrinsic RC delay of

the predecode lines and are small relative to the other components. Typical values of the

constants in the equation are listed in Table B.10 in Appendix B.

Wordline Delay

The wordline delay is defined as the time taken to turn on all the access transistors con-

nected to the wordline after the register number has been decoded. The wordline delay is

the sum of the fall delay of the wlinv inverter and the rise delay of the wordline driver. The

delay of the wordline driver is given by the following equations

where Rwl is the resistance of the wordline wire, Cwl is the capacitance on the wordline,

Rwldriver is the pull-up resistance of the wordline driver, and Cgatecap is the gate capaci-

tance of the access transistor.

Factoring the above equations into the wordline delay equation and simplifying we get

where c0, c1, and c2 are constants listed in Table B.11 in Appendix B. Again, the quadratic

component results from the intrinsic RC delay of the wordline wire and we found that this

component is very small relative to other components. Hence, the overall wordline delay is

linearly dependent on the issue width.

WordlineLength cellwidth 6 IW× bitlinespacing×+( ) DATAwidth×=

Rwl 0.5 WordlineLength× Rmetal×=

Cwl DATAwidth Cgatecap× WordlineLength Cmetal×+=

T wldriver c0 Rwldriver Rwl+( )× Cwl×=

T wordline c0 c1 IW× c2 IW
2×+ +=



62

Bitline delay

The bitline delay is defined as the time between the wordline going high (turning on the

access transistor N1) and the output of the sense amplifier going high/low. This is the sum

of the time it takes for one access stack to discharge the bitline and the time it takes for a

sense amplifier to detect the discharge. Hence,

The time taken to discharge the bitlines is determined by the following equations.

where Rastack is the effective resistance of the access stack (two pass transistors in series),

Rbl is the resistance of the bitline, Cbl is the capacitance on the bitline, NPREG is the num-

ber of physical registers, Cdiffcap is the diffusion capacitance of the access stack that con-

nects to the bitline, cellheight is the height of a single RAM cell excluding the wordlines,

and wordlinespacing is the spacing between wordlines.

Factoring the above equations into the overall delay equation and simplifying we get

The bitline delay shows a similar dependence on issue width and register file size as the

decoder delay. The quadratic components result from the intrinsic RC delay of the bitline

wire. Again, we found that the quadratic component is very small relative to the other

components. Typical values for the constants are listed in Table B.12 in Appendix B.

T bitline T bitdisch earg T senseamp+=

BitlineLength cellheight 3 IW× wordlinespacing×+( ) NPREG×=

Rbl 0.5 BitlineLength× Rmetal×=

Cbl NPREG Cdiffcap× BitlineLength Cmetal×+=

T bitdisch earg c0 Rastack Rbl+( )× Cbl×=

T bitline c0 c1 c2 IW×+( ) NPREG× c3 c4 IW× c5 IW
2×+ +( ) NPREG

2×+ +=
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Overall delay

From the above analysis, the overall delay of the register file can be summarized by the

following equation:

where the constants are as tabulated in Table B.13 in Appendix B.

2.4.4.3  Spice Results

Figure 2-25 shows how the delay of the register file varies with the number of registers

and the issue width for the case of 0.18µm technology. A number of observations can be

made from the graph. First, the delay increases as issue width and the number of registers

are increased. The graph also shows that the total delay is a linear function of the number

of registers. The dependence on issue width is also linear except for larger configurations

(512 registers or more) where the quadratic component start to show. These observations

=

+

+

Delay c0 c1 IW× c2 IW
2×+ +( )

c3 c4 IW×+( ) NPREG×

c5 c6 IW× c7 IW
2×+ +( ) NPREG
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Figure 2-25. Register file logic delay. This graph shows how the delay of the register file
implemented in 0.18µm varies with issue width and the number of registers
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are in agreement with the analysis presented in the previous section. Issue width has a

greater impact on the delay than the number of registers. This is expected because, as

shown in the previous sections, increasing issue width increases all the three components

of the total delay. For example, increasing the issue width from 4 to 8 increases the total

delay by 28.9%, whereas increasing the number of registers from 64 to 128 for a 8-way

machine only increases the delay by 18.1%. In practice, the increase in delay is going to

be even worse because in order to sustain a wider issue width, more registers are required

to support a larger number of speculative operations. We found similar curves for 0.8µm

and 0.35µm technologies.

The graph in Figure 2-26 shows the breakdown of total delay into the components dis-

cussed in the previous section. The graphs are for the case of 0.18µm technology. Con-

sider the graph on the left. As expected, the decoder delay and bitline delay increase with

the number of registers. However, the decoder delay does not increase as smoothly as the

bitline delay because the decoder structure (fan-in of the NAND and NOR gates) changes

discretely with the number of registers as shown in Table 2.2. The wordline delay does not

change with the number of registers because it is a function of the width of the registers

(64 bits in our case) and the number of ports, both being constant for the graph. The bitline

delay increases linearly with the number of registers because the capacitance on the bit-

lines increases linearly with the number of registers. The graph on the right shows how the

breakdown varies with issue width for a 128-entry register file. In this case all three com-

ponents increase with issue width. The decoder delay increases slightly with issue width

even though its structure is determined by the number of registers because the predecode
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lines increase in length with issue width. The wordline and bitline components show a lin-

ear increase with issue width.

While the structure assumed for the above analysis is popular and has been used in most

implementations, microprocessor vendors are beginning to explore alternatives that help

reduce the delay of the register file. For example, the DEC 21264 [G+97] uses two copies

of the register file, each with half the number of read ports as the original file. Writes are

sent to both copies. Each copy therefore has the same number of write ports at the original

file. Reducing the number of read ports helps reduce the delay compared to the delay of a

single register file.

2.4.4.4  Model Results

Figure 2-27 shows how the model delay results, computed using the constants listed in

Appendix B, compare to the Spice results presented earlier. From the graph we can see
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Figure 2-26. Breakup of register file delay. The graph on the left shows how the breakup varies
with the number of registers for a 8-way machine in 0.18µm technology. The graph on the right
shows how the breakup varies with issue width for a 128-entry register file in 0.18µm technology.
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that the model is successful in tracking the dependence on issue width and register file

size.

2.4.5  Data bypass logic

The data bypass logic is responsible for bypassing result values to subsequent instruc-

tions that have completed execution but have not yet written their results to the register

file. The hardware datapaths and control added for this purpose form the bypass logic. The

number of bypasses required is determined by the depth of the pipeline and the issue width

of the microarchitecture. As pointed out by Ahuja et al. [ACR95], if IW is the issue width,

and if there are S pipestages after the first result-producing stage, then a fully bypassed

design would require (2 × IW2 × S) bypass paths assuming 2-input functional units. In

other words, the number of bypass paths grows quadratically with issue width. The current

trend towards deeper pipelines and wider degree of issue only multiplies the number of

bypass paths and makes the bypass logic even more critical.

The bypass logic consists of two components: the datapath and the control. The datapath

comprises buses, called the result buses, that are used to broadcast bypass values from

Number of registers

Figure 2-27. Model delay results for register file logic. This graph shows how the model delay
results compare to the Spice results for 0.18µm technology.
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each source to all possible destinations. The sources of bypass values are the functional

units and the cache ports. Buffers are used to drive the bypass values on the result busses.

In addition to the result busses, the datapath comprises operand MUXes. Operand MUXes

are required to gate in the appropriate results to the operand busses. The fan-in of the oper-

and MUXes is one greater than the number of result busses. The extra input to the MUX is

connected to a read port on the register file. This is for cases in which the operand is read

from the register file.

The control logic is responsible for controlling the operand MUXes. The control logic

compares the tag of the result value to the tag of the source value that is required at each

functional unit. If there is a match, the MUX control is set so that the result value is driven

on the appropriate operand bus.

The key factor that determines the speed of the bypass logic is the delay of the result

wires that are used to transmit bypassed values. The control adds to this delay; however,

for our analysis, we will ignore the control because its delay is a small fraction of the total

delay. Also, as we move towards smaller feature sizes, wire delays resulting from the

result wires will be responsible for a significant fraction of the total delay.

2.4.5.1  Structure

A commonly used structure for the bypass logic is shown in Figure 2-28. The figure

shows a bit-slice of the datapath. There are four functional units marked FU0 to FU3.

Consider the bit slice of FU0. It gets its two operand bits from the opd0-l and opd0-r oper-

and wires. The result bit is driven on the res0 result wire by the result driver. Tristate buff-

ers are used to drive the result bits on the operand wires from the result wires. These

buffers implement the MUXes shown in the figure. For example, in order to bypass the

result of functional unit FU1 to the left input of functional unit FU0, the tristate driver

marked A is switched on. The driver A connects the res1 wire and opd0-l wire. In the case

where bypasses are not activated, the operand bits are placed on the operand wires by the
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register file read ports1. The result bits are written to the register file in addition to being

bypassed.

The delay of the bypass logic is largely determined by the time it takes for the driver at

the output of each functional unit to drive the result value on the corresponding result wire.

This in turn depends on the length of the result wires. From the figure it can be seen that

the length of the result wires is determined by the height of the functional units and the

register file. Alternative layouts are possible and are discussed later.

2.4.5.2  Delay Analysis

As discussed before, the delay of the bypass logic can be approximated by the time

taken to drive the result bits on the result wires. The equivalent circuit for calculating the

delay is shown in Figure 2-29. From the figure it follows,

1. In a reservation-station based microarchitecture the operand bits come from the data field of the
reservation station entry.
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where L is the length of the result wires, Rdriver is the resistance of the pull-up of the

driver, and Cdriver is the diffusion capacitance at the output of the driver. For the layout

assumed, the length of the result wires is determined by the height of the functional units

and the register file. Each of these terms in turn is a linear function of issue width. Increas-

ing issue width increases the number of functional units and thus lengthens the result

wires. Increasing issue width also increases the height of register file because this stretches

individual cells in the register file as seen in Section 2.4.4. The result is that the length of

the result wires increases linearly with issue width. Rewriting the length of the result

wires, L, in terms of issue width, IW, and simplifying we get,

where c0, c1, and c2 are constants. The constants are listed in Table B.14 in Appendix B.

From the above equation we can see that the bypass delay has both a linear component

and a quadratic component determined by the issue width. Unlike in the case of other

structures, we found that the quadratic component can be significant. Hence, the bypass

delay grows quadratically with issue width.

Increasing the depth of the pipeline also increases the delay of the bypass logic as fol-

lows. Increasing the depth increases the fan-in of the operand MUXes connected to a

given result wire. This in turn increases the amount of capacitance to be charged or dis-

T delay c0 c1 IW× c2 IW
2×+ +=

Rdriver
Rwire

CwireCdriver

L

Figure 2-29. Bypass logic equivalent circuit.
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charged on each result wire because the diffusion capacitance at the output of the operand

MUXes adds to the capacitance on the wires. However, this component of the delay is not

captured by our simple model. We expect this component of the delay to become relatively

less significant as the feature size is reduced.

Buffered result wires

The quadratic component in the delay equation can be reduced in magnitude by insert-

ing buffers in the result wires [WE93]. For example, Figure 2-30 shows the equivalent cir-

cuit with a single buffer inserted in each result wire. The resulting delay is given by,

where Rdriver1 and Cdriver1 are the pull-up resistance and diffusion capacitance of the first

driver, Rdriver2 and Cdriver2 are the pull-down resistance and diffusion capacitance of the

second driver, and Cgate2 is the gate capacitance of the second driver. By breaking the

result wires in half and inserting a buffer, the magnitude of the quadratic component is

reduced in half compared to the unbuffered configuration. However, the total delay will

benefit from this reduction only if the delay of the buffer inserted is less than the reduction

=

+

+

L/2 L/2

Figure 2-30. Inserting buffers in the result wires.
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in the quadratic component. Therefore, this approach of inserting buffers will help reduce

delay up to the point where the delay of the inserted buffers equals the delay of each seg-

ment of the result wire. Inserting buffers beyond this point will only increase the total

delay.

From the delay equation we can see that, even with buffers, the total bypass delay is at

least a linear function of issue width. There are two additional factors which augment the

criticality of bypass logic. First, bypass logic is in series with the functional units (ALUs)

i.e. the sum of ALU delay and bypass delay must be less than the clock period in order to

execute dependent instructions in consecutive cycles. As we will see later in Section 2.5,

the ability to execute dependent instructions in consecutive cycles is essential for high per-

formance. Second, the result wires are actually longer because in most implementations

they extend into the data cache array in order for the cache output to be fanned out to the

functional units.

2.4.5.3  Spice Results

We studied the bypass delay for a 2-way, a 4-way and a 8-way machine assuming typical

heights for the functional units and the register file. Both buffered and unbuffered result

wires were studied. The results are shown in Figure 2-31. There are a number of observa-

tions that can be made from the graph. First, the bypass delay increases at least linearly

with issue width for both the buffered and unbuffered configurations. For example, assum-

ing unbuffered result wires, the bypass delay increases by factors of 2.4 and 3.0 going

from 4-wide to 8-wide issue width for 0.8µm and 0.18µm technology respectively. The

increase is higher for 0.18µm technology since the intrinsic wire delay (quadratic) compo-

nent increases in significance as the feature size is reduced. In fact, for the 0.18µm tech-

nology, the intrinsic wire delay is responsible for 68% and 90% of the total delay

respectively for the 4-way and the 8-way machine.
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Introducing buffers helps mitigate bypass delays for the 8-way machine. For example,

now the bypass delay only increases by factors of 1.8 and 2.4 when going from 4-wide to

8-wide issue width for 0.8µm and 0.18µm technology respectively. For the 4-way

machine, the reduction is not as significant because the delay of the extra buffer inserted is

close to the reduction in the intrinsic delay of the result wire. Another important observa-

tion that can be made is that bypass delay does not scale well as the feature size is reduced.

For the 8-way machine with buffered result wires, the bypass delay reduces by 42% going

from 0.8µm to 0.35µm and by only 13% going from 0.35µm to 0.18µm. This shows that

single cycle bypassing between functional units in a wide superscalar machine is going to

be increasingly difficult as the feature size is reduced.

Figure 2-31. Bypass logic delays. For this graph we assume each functional unit has a height of
2500λ, where λ is half the feature size. The length was estimated based on published data
[HF88,S+93,I+95]. The height of the register file in each case was computed using the formula,

, where NPREG is the number of physical
registers, cellheight is the height of an individual RAM cell excluding the wordline, and
wordlinespacing is the spacing between wordlines. We use cellheight = 24λ, NPREG = 48 for 2-
way, NPREG = 80 for 4-way and NPREG = 120 for 8-way, and wordlinespacing = 6λ for computing
the graph.
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2.4.5.4  Model Results

Figure 2-32 shows how the model delay results, computed using the constants listed in

Appendix B, compare to the Spice results presented earlier. The model results closely

match the Spice results because the bypass delay is dominated by wire delays and our

delay models are able to accurately estimate wire delays.

2.4.5.5  Alternative Layouts

The results presented in the previous section assume a particular layout; the functional

units are placed on either side of the register file. However, as mentioned before, the length

of the result wires is a function of the layout. Hence, microarchitects will have to study

alternative layouts in order to reduce bypass delays. Figure 2-33 shows some alternative

layouts.

In the alternative shown on the left, all the functional units are placed on one side of the

register file. In this case the result wires do not have to extend over the register file. How-

ever, the length of the operand wires originating from the register file increases relative to

the configuration in Figure 2-28 thus stretching the register file access time. Also, this

organization has the disadvantage that the sense amplifiers of the register file cannot be

Figure 2-32. Model delay results for bypass logic. This graph shows how the model delay
results compare to the Spice results for bypass logic implemented in 0.18µm technology.
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distributed on both sides. This could stretch the wordlines in the register file and hence,

can also increase the register file access time.

In the long term, microarchitects will have to consider clustered organizations like the

alternative shown on the right. Each cluster has its own copy of the register file. Bypasses

within a cluster complete in a single cycle while inter-cluster bypasses take 2 or more

cycles. Such a scheme is implemented in the DEC 21264 [Gwe96a]. The hardware or the

compiler or both will have to ensure that inter-cluster bypasses occur infrequently. In addi-

tion to mitigating the delay of the bypass logic, this organization also has the advantage of

faster register files because there are fewer ports on each register file. Another technique

[ACR95] that can be used to improve bypass performance is to use an incomplete bypass

network. In an incomplete bypass network only the frequently used bypass paths are pro-

vided while interlocks are used in the remaining situations. For an 8-way machine with

deep pipelines, this would exclude a large number of bypass paths.

2.5  Pipelining Issues and Overall Delay Results

In the preceding sections, the delay of each of the critical structures was analyzed in

detail. However, in addition to the delay, another important consideration is the pipeline-

ability of the structures. Even if the delay of a structure is relatively large it can be elimi-
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Figure 2-33. Alternative layouts for bypassing.
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nated from the critical path defining the clock cycle if it can be pipelined, i.e., its operation

is spread over multiple cycles.

However, while deeper pipelining can improve performance by facilitating a faster

clock, it can result in a number of side-effects that can degrade performance too. First, the

extra stages introduced by deeper pipelining in the front end increase the penalty of

mispredicted branches. Also, the penalty of instruction cache misses will increase as a

result of extra pipestages that have to be re-filled. At the same time, accurate branch pre-

diction can alleviate these problems to a certain extent. Hence, if the performance

improvement achieved as a result of deeper pipelining (faster clock) surpasses the perfor-

mance degradation caused by the extra stages, then pipelining might be an attractive

option. The current trend in the microprocessor industry is towards deeper pipelining. For

example, the pipeline in the Intel Pentium Pro [Gwe95b] has as many as 14 pipestages.

The general subject of the effect of pipelining depth on overall performance has been the

focus of a number of studies [DF90,JW89,KS86]. We took a different approach in our

study. We study the feasibility of pipelining each of the critical structures from the point of

view of performance. We identify structures that are amenable to pipelining, i.e., those

whose operation can be spread over a small number of pipestages without significantly

impacting the IPC factor in the performance equation. Conversely, we identify certain

structures that should not be pipelined, especially for programs with limited parallelism,

since the pipeline bubbles introduced by pipelining can cause significant degradation in

IPCs achieved.

The ability to execute dependent instructions in consecutive cycles is an important

requirement for high performance, especially for programs with limited parallelism. The

inability to execute dependent instructions back-to-back often introduces pipeline bubbles

that can result in significant performance degradation. Experimental results supporting

this will be presented later. A simple example will help illustrate this. Consider the time

taken to execute a dependent chain of single-cycle instructions of length . If the ALUn
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operation is segmented into two pipestages, execution of the chain will take

cycles — much more than the cycles it would take in the non-pipelined case. For this

case, even if the clock frequency doubles as a result of pipelining the ALU, overall perfor-

mance does not improve. In fact, latch overhead could even diminish performance. Even

though this example uses an extreme case of zero parallelism, the ability to execute depen-

dent instructions in consecutive cycles is essential, especially for programs with small

amounts of parallelism.

Using the ability to execute dependent instructions in consecutive cycles as the metric,

we evaluate how pipelining the functions implemented by the individual structures can

affect this requirement.

• Instruction fetching. Pipelining the instruction fetch logic does not prevent back-to-

back execution of dependent instructions. It does, however, increase the penalty of

mispredicted branches and instruction cache misses when the pipeline has to be

refilled. More accurate branch prediction and an out-of-order back-end help reduce the

penalty of mispredicted branches. Our experimental results show that instruction

fetching can be pipelined into a few segments at the cost of a small (4% per pipestage)

degradation in IPC performance for each extra pipestage introduced. Similar results —

3% per pipestage — have been reported by designers [Hin95] in the industry.

• Register renaming. Pipelining register renaming does not prevent back-to-back execu-

tion of dependent instructions. Just like instruction fetch, it increases the penalty of

mispredicted branches and instruction cache misses and results in similar IPC degra-

dations when pipelined.

The register rename logic can be pipelined by spreading the dependence checking and

the map table access over multiple pipestages. While it is easy to see how dependence

checking can be pipelined, it is not so obvious how the map table access can be pipe-

lined. However, there are schemes [Cha91, Now95] for pipelining RAMs that can be

applied to map table accesses. In addition, in order to ensure that each rename group

sees the map table updates performed by previous rename groups, the updates have to

2 n× 1–( )

n
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be bypassed around the map table i.e. the updates should be visible before the writes to

the table actually complete. Hence, we believe that even though the design will be

complicated, register renaming can be pipelined to at least two segments. It must be

pointed out that before attempting to pipeline renaming, there are a number of tricks

that can be applied to reduce its latency. First, the map table can be duplicated to

reduce the number of ports on each copy of the table. Second, because not all instruc-

tions have two operands and because it is likely that instructions in a rename group

have common operands, the port requirements on the map table can be reduced with

little effect on performance.

• Window logic. Wakeup and select together have to be accomplished in a single cycle to

facilitate back-to-back execution of dependent instructions. If they are spread across

multiple pipestages, dependent instructions cannot execute in consecutive cycles as

shown in Figure 2-34. The add and the sub instructions cannot execute back-to-back

because the result of the select stage has to feed the wakeup stage. The resulting pipe-

line bubbles can seriously degrade performance especially in programs with limited

parallelism. Hence, wakeup and select together must be accommodated to fit within a

cycle.

• Data bypassing. Data bypassing is another example of an operation that must be com-

pleted in less than a cycle in order to execute dependent instructions in consecutive

cycles. The bypass values must be made available to the dependent instruction within a

cycle. The delay of the bypass logic is made even more critical by the fact that it is in

series with the ALU operation — the sum of the delays of the ALU and the bypass

WAKEUP SELECT EXEC

WAKEUP SELECT EXEC

WAKEUP SELECT EXEC

Figure 2-34. Pipelining wakeup and select.

ADD R10,R1,R2

SUB R3,R10,1

BUBBLE
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delay should be less than a cycle to facilitate back-to-back execution. As shown ear-

lier, it is going to be increasingly hard to accomplish data bypassing within a single

cycle in wide-issue machines.

• Register file access. Pipelining the register file does not affect back-to-back execution

since the operand values for the consumer instruction are provided by the data bypass

logic. Again, like in the case of instruction fetch and register rename, pipelining the

register file increases branch mispredict and instruction cache miss penalties. It results

in similar IPC degradation as for the case of pipelining front-end stages like instruc-

tion fetch and register rename.

The techniques used to pipeline RAM can be employed to pipeline the register file.

Tullsen et al. [T+96] studied the effect of spreading register read over two pipestages.

They found that single thread performance degraded by only 2% for their design. Once

again, it must be mentioned that instead of pipelining the register file, architects can

reduce its latency by duplicating the register file. Each copy of the register file will

have half the number of read ports as the original register file. This technique has been

used in the DEC 21264 [G+97]. In this case two copies of the integer register file are

used.

• Cache access. Pipelining cache access can prevent back-to-back execution of depen-

dent instructions. For example, breaking the cache access into two pipeline segments

will prevent back-to-back execution of a load instruction and a instruction using the

result of the load. In the absence of parallelism, this can severely affect performance.

However, cache access is not as critical as window logic or data bypass logic because

unlike them, cache access only affects load-use instruction pairs. Pipelining window

logic and data bypass logic injects bubbles for all pairs of dependent instructions.

While most designs attempt to provide single-cycle cache access, there are designs in

which cache access has been pipelined into two stages.

Caches can be pipelined in a number of ways. One scheme, implemented in the DEC

21064, reads the tags and the data in the first cycle and performs the hit/miss detection

operation in the second cycle. A second, more aggressive scheme could pipeline both
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the tag RAM and the data RAM themselves. A related trade-off is to size the L1 data

and instruction caches so that they can be accessed in a single cycle and use a bigger

L2 cache to service the L1 misses.

To summarize, the analysis presented above shows that window logic, data bypass logic,

and cache access logic implement operations that have to accomplished in a single cycle in

order to facilitate execution of dependent instructions in consecutive cycles. Back-to-back

execution is a desirable feature from the point of view of performance, especially for

codes that have limited parallelism. Because operations that prevent execution of depen-

dent instructions in consecutive cycles will not be pipelined for performance reasons, we

believe that the latency of these operations will ultimately limit the degree of pipelining.

Consequently, the delays of these operations are crucial and will determine the complexity

of a microarchitecture.

The qualitative analysis presented above is not new. Similar issues and trade-offs have

been discussed in the context of deep pipelining [KS86] and superpipelining [JW89]. The

trade-offs are analyzed here in the context of out-of-order microarchitectures. The move

towards wide-issue superscalar machines and the technology trend of wire delays domi-

nating total delays increases the importance of these trade-offs and hence, architects need

to reevaluate these trade-offs. There are a few caveats to the analysis. The arguments pre-

sented are tightly hinged on the assumption that there is limited instruction-level parallel-

ism in programs. At least theoretically, in the hypothetical situation of very high-levels of

parallelism, pipelining any of the structures will not significantly impact performance.

Also, pipelining cannot be used as a panacea for reducing complexity. Pipelining, espe-

cially deep pipelining, has its own set of drawbacks. Clock skew and latch overhead can

combine to limit the decrease in clock period obtained by further pipelining. Deep pipelin-

ing also requires sophisticated circuit design.

To quantify the effect of pipelining the above operations on the effectiveness of a

microarchitecture, we studied the performance effect of varying the number of pipeline
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stages. A baseline out-of-order microarchitecture of the kind shown in Figure 2-1 on

page 15 is assumed. The pipeline was divided into three sections: front-end, execute, and

cache access. The front-end section includes instruction fetch, register rename, and regis-

ter file access operations. The execute section includes window wakeup, window selec-

tion, and data bypass operations. The cache access section consists of only the cache

access operation. The pipeline was partitioned in this fashion because the operations in a

given section are identical with respect to pipelining i.e. spreading register rename over

two stages and spreading register file access over two stages have the same effect on per-

formance. We then studied the effect of introducing extra stages in each section. The

results are shown in Figure 2-35.

A number of observations can be made from the graph. First, pipelining the operations

in the front-end does not degrade effectiveness significantly. However, pipelining the oper-

ations in the execute section can result in serious performance degradation and hence,

should be avoided. For example, dividing execute into two pipestages can degrade the per-

Figure 2-35. Effect of pipelining on IPC. This figure shows the effect of pipelining on the
performance of a 8-way out-of-order microarchitecture. Each pair of bars shows the effect of
introducing one (1) and two (2) extra pipestages in that particular section. The leftmost bar for
each benchmark shows the base performance. The simulated processor has a 64-entry window, a
120-entry register file, and a gshare branch predictor with 20 bits of global history.
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formance by as much as 24% in the case of compress. Pipelining cache access can degrade

performance by as much as 8% per additional pipestage1. Hence, it is important to keep

the cache access latency low (less than 3 cycles) for good performance. In summary, the

graph shows that while register file access and register renaming can be pipelined without

taking a significant hit in performance, performing window and data bypass operations in

a single cycle is crucial for high performance.

Overall delay results

The overall delay results for a 2-way, a 4-way, and a 8-way microarchitecture in 0.18µm

technology are shown in Figure 2-36. The corresponding results for 0.8µm and 0.35µm

technologies are shown in Appendix A. The graph shows that the delay of window logic,

register file logic, and data bypass logic increases significantly with issue width. The data

bypass logic shows the largest increase, increasing by factors of 1.95 and 2.37 going from

2-way to 4-way and from 4-way to 8-way respectively. Even though the delay of the

bypass logic is smaller than that of the window logic and the register file logic, the fact

that the bypass logic is in series with the functional units makes its performance critical.

1. Wilson and Olukotun [WO95] report similar numbers.

Figure 2-36. Overall delay results. This figure shows overall delay results for a 2-way, a 4-way,
and a 8-way machine in 0.18µm technology. The 2-way machine has a 48-entry register file and a
16-entry window. The 4-way machine has a 80-entry register file and a 32-entry window. The 8-
way machine has a 120-entry register file and a 64-entry window.
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Another observation is that when the issue width is increased from 4 to 8, the register file

delay degrades more than the window delay. This is explained by the particular configura-

tions assumed for the graph. The size of the register file increases from 80 registers to 120

registers whereas the window size only increases from 32 entries to 64 entries. Also, the

delay of the window selection logic is the same for both the configurations because selec-

tion logic increases logarithmically (base 4) with window size. However, as shown earlier,

the register file logic is not as critical as the window logic because it can be pipelined with

a small reduction in IPC. Hence, window logic and bypass logic are the most crucial struc-

tures among the list of structures studied here.

2.6  Related Work

The access time of caches and register files have been studied in the past. Wada et al.

[WRP92] quantify the access time of a cache as a function of various cache parameters

like cache size, associativity, and line size. Wilton and Jouppi [WJ94] further refined

Wada’s model. The methodology used for this work is similar to the one used by Wilton

and Jouppi [WJ94]. Farkas et al. [FJC96] modified the cache model to study, using Spice

simulations, how the access time of a register file varies with the size of the register file

and the number of ports. In this chapter we develop analytical equations in addition to pre-

senting Spice simulation results for register files. Specific implementations of register files

are described in published literature [AMG+95,Jol91, S+91].

The subject of quantifying the complexity of issue logic in superscalar microarchitec-

tures has received some attention, mostly qualitative, in the past. Horowitz et al. [HPS92]

argue that increasing complexity, both due to worsening wire delays and growing inter-

connection cost, will ultimately limit the performance advantage of wide-issue, dynami-

cally scheduled, superscalar microarchitectures. They measure complexity of a specific

operation in terms of the number of gates, or in some cases the die area, required for

implementing the operation. For example, they show that the complexity of operand

bypassing grows as O(IW2) where IW is the issue width.
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Johnson [Joh91] gives a largely qualitative description of the complexity of a central

window. He points out that the critical path for the window logic comprises two opera-

tions: an instruction being made ready by a result that will be forwarded and the arbitra-

tion for a functional unit by that instruction, i.e. a wakeup followed by a select in our

terminology. Based on some assumptions, he estimates that the critical path can be imple-

mented using 16 logic stages. He does not consider wire delays in his analysis.

Chamdani [Cha95] measures the complexity of superscalar microarchitectures in terms

of hardware costs. He presents a theoretical cost analysis in terms of the costs of a 1-bit

comparator, 1-bit register storage, 1-bit global wire, and other unit parameters. The cost

analysis is used to compare various superscalar designs.

There are a number of studies that discuss how interconnect delays can become a signif-

icant limiter in future technologies. Bohr claims [Boh95] that as clock frequencies

approach 1 GHz and interconnect pitches shrink below 0.5µm, interconnect delay will

become a dominant portion of clock cycle time. Even though increasing metal aspect ratio

helps improve RC delay, he shows that maximum benefits are achieved once aspect ratios

reach close to 2. Furthermore, the study also shows that using more interconnect layers is

not a feasible solution since the practical limits for the number of layers will be reached in

just a few technology generations. Wilhelm [Wil95] presents a lucid explanation, starting

from basic principles, of the poor scaling of wire delays in future. He concludes that the

impending wire delay problem will force architects to consider designs that avoid global

signalling. Matzke [Mat97] introduces the notion of signal drive region and clock locality

matrix to show how multiple clock cycles will be required to propagate signals across a

die in future. He also concludes that only microarchitectures with good locality and corre-

sponding floor planning will survive.

2.7  Chapter Summary

This chapter analyzed the delay of critical structures in a baseline superscalar microar-

chitecture. The structures studied are critical in the sense that their delay is a function of
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issue width, issue window size, wire delays and hence, it is likely that the delay of these

structures will determine the cycle time in future designs in advanced technologies. Sim-

ple analytical models that expressed the delay of each of the structures in terms of

microarchitectural parameters like issue width and instruction window size were devel-

oped. In addition, we studied how the delays scale as feature sizes shrink and wire delays

become more prominent.

The overall results show that the logic associated with managing the issue window of a

superscalar processor is likely to become the most critical structure as we move towards

wider issue, larger windows, and advanced technologies in which wire delays dominate.

One of the functions implemented by the window logic is the broadcast of result tags to all

the waiting instructions in the window. The delay of this operation is determined by the

delay of wires that span the issue window. We found that the delay of this operation

increases at least linearly with window size and issue width. Hence, this operation does

not scale well. Furthermore, in order to be able to execute dependent instructions in con-

secutive cycles, the delay of the window logic should fit within a cycle.

In addition to the window logic, a second structure that needs careful consideration

especially in future technologies is the data bypass logic. The length of the result wires

used to broadcast bypass values increases linearly with issue width and hence, the delay of

the data bypass logic increases at least linearly with issue width. Again, in order to be able

to execute dependent instructions in consecutive cycles, the sum of the delay of a func-

tional unit and the data bypass logic should be less than a cycle.

In summary, straightforward scaling of current microarchitectures will not be sufficient

because the resulting wire delays could significantly impact cycle time thus reducing the

overall performance improvement. As wire delays increasingly dominate total delay,

architects have to design more compact microarchitectures that avoid global signalling.
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Chapter 3

Dependence-based Superscalar Microarchitectures

The analysis presented in Chapter 2 shows that issue window logic is one of the primary

contributors of complexity in a conventional microarchitecture. The delay of the window

logic increases at least linearly with both issue width and window size. Furthermore, the

wakeup and select operations implemented by the window need to be accomplished in a

single cycle for high performance. In addition to window logic, another structure whose

delay scales poorly with issue width, especially in future technologies, is the data bypass

logic. The length of the result wires used to broadcast bypass values increases linearly

with the number of functional units and hence, the delay of data bypass logic grows at

least linearly with issue width. This chapter proposes and evaluates dependence-based

superscalar microarchitectures that address the complexity of the window logic and the

data bypass logic. The proposed microarchitectures are designed to extract similar levels

of parallelism as conventional microarchitectures while enabling a faster clock.

Dependence-based microarchitectures use two main techniques to achieve the dual goals

of wide-issue and fast clock. Partitioning is used to enable a fast clock. The machine is

partitioned into multiple clusters each of which contains a part of the instruction window
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and the execution resources of the whole processor. This enables high-speed clocking of

the clusters since the narrow issue width and the small instruction window of each cluster

keeps the critical delays small. The second technique is applied to sustain a high IPC for

the whole machine. This involves intelligentsteering of instructions to the multiple clus-

ters so that the full width of the machine is utilized while minimizing the performance

degradation due to slow inter-cluster communication. Dependences between instructions,

discovered at run-time, are used as input to perform the steering. Hence, the name depen-

dence-based superscalar microarchitectures. It must be pointed out that the two techniques

must be used in conjunction since both a fast clock and a high IPC are necessary for high

performance.

The rest of this chapter is organized as follows. The next section discusses the concept

behind the dependence-based superscalar microarchitectures. Section 3.2 presents and

analyzes in detail a specific instance of the dependence-based superscalar microarchitec-

tures called the fifo-based microarchitecture. Section 3.3 discusses other interesting mem-

bers of the family of dependence-based microarchitectures. Experimental evaluation

results are presented in Section 3.4. Other related microarchitectures are discussed in

Section 3.5, and finally, the chapter is summarized in Section 3.6.

3.1  Concept

The organization of a generic dependence-based superscalar microarchitecture is illus-

trated in Figure 3-1. The issue and execution resources of the machine are partitioned into

multiple clusters. Renamed instructions are steered to one of the clusters. Steering issues

are discussed later. Each cluster contains a slice of the instruction window and the func-

tional units of the whole machine. A copy of the register file is provided in each cluster.

The multiple copies of the register file are kept identical by broadcasting register writes.

Local bypasses within a cluster (shown using thick lines) are responsible for bypassing

values produced in a given cluster to the inputs of the functional units in the same cluster.

By keeping the issue width of the clusters small, local bypassing is accomplished in a sin-
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gle cycle. Inter-cluster bypasses are responsible for bypassing values between functional

units residing in different clusters. Because inter-cluster bypasses require long wires, it is

likely that these bypasses will be relatively slower and take two or more cycles in future

technologies. The inter-cluster bypass wires are also used to keep the multiple copies of

the register file coherent. Hence, the multiple copies are identical except for the one or

more cycles difference in propagating results from one cluster to the rest of the clusters.

The proposed microarchitecture has a number of advantages over the conventional

microarchitecture with respect to complexity. Since each cluster implements a narrow exe-

cution core with a small window, both the window logic and data bypass logic delays in

each cluster can be kept small. As a result, the proposed microarchitecture can support a

faster clock than a wide conventional microarchitecture with a large issue window. Also,

by using multiple copies of the register file, the dependence-based microarchitecture

reduces the number of ports on the register file and makes the access time of the file faster,

relative to that of a centralized file.

Figure 3-1. Dependence-based superscalar microarchitecture.
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The front-end of the dependence-based superscalar microarchitecture is identical to that

of the conventional microarchitecture except for the addition of steering logic. The steer-

ing logic is responsible for steering instructions to individual clusters based on depen-

dences extracted at run-time. The goal of the steering logic is to make use of the full width

of the machine while minimizing the use of slow inter-cluster communication. Even

though the figure shows the steering logic to be in series with the rename logic, simple

versions of the steering logic can be implemented to operate in parallel with the rename

logic, thus eliminating the need for an extra pipestage. Section 3.3.3 discusses the trade-

offs involved in more detail.

Since the proposed microarchitecture uses the same front-end as a conventional microar-

chitecture, it does not reduce the complexity of instruction fetch and renaming. Extra pip-

estages, at the expense of a reduction in IPC as shown in Section 2.5 in Chapter 2, is one

way to reduce the complexity of the front-end.

Performance factors

The overall performance of a dependence-based microarchitecture is highly dependent

on the amount of ILP that can be extracted relative to the conventional microarchitecture.

If the microarchitecture can sustain comparable IPCs, then its clock speed advantage will

result in higher overall performance. The primary factors that determine the IPCs achieved

by the proposed microarchitecture are:

• Load balancing. It is important that instructions are spread out to use as many clusters

as the amount of program parallelism allows. Otherwise, the program will not be able

to take advantage of the full-width of the machine. For example, if we have a 8-way

dependence-based superscalar microarchitecture organized as 4 clusters each being 2-

wide, and if all instructions are steered to a single cluster, the machine will be effec-

tively reduced to a 2-wide machine.

• Inter-cluster bypass frequency. Since inter-cluster communication is slow, excessively

using the inter-cluster bypass paths can easily stretch the critical path of the program,
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resulting in poor performance. Hence, it is essential that the steering logic minimize

the frequency of inter-cluster bypasses exercised. It must be pointed out that inter-clus-

ter bypass frequency must be judged along with load balancing. For example, it is pos-

sible to completely eliminate inter-cluster communication by steering all instructions

to a single cluster. However, performance can be significantly degraded because of the

reduced effective width of the machine. Hence, the challenge is to be able to balance

the load across multiple clusters while minimizing the frequency of inter-cluster

bypasses.

• Steering logic complexity. Complex steering logic will require multiple pipestages that

can result in IPC degradation due to increase in penalties associated with branch

mispredicts and instruction-cache misses. This can reduce the benefit of achieving

good load balance and minimizing inter-cluster bypass frequency. Hence, the steering

logic must be kept simple.

The results presented in the rest of the chapter will show that it is possible to achieve

good steering with simple steering heuristics.

3.2  Dependence-based Microarchitectures : An Example

This section describes a particular dependence-based microarchitecture called the fifo-

based microarchitecture. The idea behind the fifo-based microarchitecture is to exploit the

natural dependences among instructions. A key point is that dependent instructions cannot

execute in parallel. In a single-cluster version of the proposed microarchitecture, shown in

Figure 3-2, the issue window is replaced by a small number of fifo buffers. The fifo buffers

are constrained to issue in-order, and dependent instructions are steered to the same fifo.

This ensures that instructions in a particular fifo buffer can only execute sequentially.

Hence, unlike the typical issue window where result tags have to be broadcast to all the

entries, the register availability only needs to be fanned out to the heads of the fifo buffers.

The instructions at the fifo heads monitor reservation bits (one per physical register) to
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check for operand availability. This is discussed in detail later. Furthermore, the selection

logic only has to monitor instructions at the heads of the fifo buffers.

The steering of dependent instructions to the fifo buffers is performed at run-time during

the rename stage. Dependence information between instructions is maintained in a table

called the SRC_FIFO table. This table is indexed using logical register designators. For

example, SRC_FIFO[Ra], the entry for logical register Ra, stores the identity of the fifo

buffer containing the instruction that will write register Ra. If that instruction has already

completed i.e. register Ra contains its computed value, then SRC_FIFO[Ra] is invalid.

This table can be accessed in parallel with the rename table. In order to steer an instruction

to a particular fifo, the SRC_FIFO table is accessed with the register identifiers of the

source operands of an instruction. For example, to steer the instruction add r10,r5,1

where r10 is the destination register, the SRC_FIFO table is indexed with 5. The entry is

then used to steer the instruction to the appropriate fifo.

A number of heuristics are possible for steering instructions to the fifos. A simple heu-

ristic that we found to work well for our benchmark programs is described next. Let I be

the instruction under consideration. Depending upon the availability of I’s operands, the

following cases are possible:

1. All operands available. All the operands of I have already been computed and are

residing in the register file. In this case, I is steered to a new (empty) fifo acquired from

Figure 3-2. Fifo-based microarchitecture.
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a pool of free fifos.

2. One outstanding operand. I requires a single outstanding operand to be produced by

instruction Isource residing in fifo Fa. In this case, if there is no instruction behind

Isource in Fa, then I is steered to Fa, else I is steered to a new fifo.

3. Two outstanding operands. I requires two outstanding operands to be produced by

instructions Ileft and Iright residing in fifos Fa and Fb respectively. In this case, apply the

heuristic in the previous bullet to the left operand. If the resulting fifo is not suitable (it

is either full or there is an instruction behind the source instruction), then apply the

same heuristic to the right operand.

If all the fifos are full or if no empty fifo is available then the steering logic stalls. A fifo

is returned to the free pool when the last instruction in the fifo is issued. Initially, all the

fifos are in the free pool. Figure 3-3 illustrates the heuristic on a code segment from the

Figure 3-3. Instruction steering example.
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SPEC benchmark compress for a 4-wide machine. The listing on the left shows the

dynamic stream of instructions. The directed graph in the middle shows the register

dependences between those instructions. On the right side of the figure are the contents of

the fifos in each cycle. Instructions can issue only from the heads of the four fifos. The

steering logic steers four instructions every cycle and a maximum of four instructions can

issue every cycle. Consider the steering performed in cycle 1. Instructions 4, 5, 6, and 7

are steered to the appropriate fifos. Since instructions 4, 5, and 7 form a dependence chain,

they are steered to the same fifo. Because instruction 6 is a ready instruction (which hap-

pens to start a dependence chain) it is steered to a new fifo. In the next cycle, instructions

8, 9, 10, and 11 are steered. Since instructions 8 and 9 form a chain that depends on

instruction 7, they are steered to the fifo containing instruction 7. Similarly, instructions 10

and 11 form a chain and are steered to a new fifo.

3.2.1  Performance of the Fifo-based Microarchitecture

Comparison with window-based superscalar

We compare the performance of the fifo-based microarchitecture against that of a typical

microarchitecture with a single, large issue window. The proposed microarchitecture has 8

fifos, with each fifo having 8 entries. The issue window of the conventional processor has

64 entries. Both microarchitectures can decode, rename, and execute a maximum of 8

Figure 3-4. Performance of single-cluster fifo-based microarchitecture.
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instructions every cycle. The simulation model assumed is detailed in Table 3.2 on

page 105.

The performance results in terms of instructions committed per cycle are shown in

Figure 3-4. The fifo-based microarchitecture extracts similar parallelism as the typical

window-based microarchitecture. The cycle count numbers are within 5% for five of the

seven benchmarks and the maximum performance degradation is 8.7% in the case of perl.

Fifo utilization

The graph on the left in Figure 3-5 shows the time distribution of the number of active

fifos during the execution of m88ksim. A fifo is active if it contains at least one instruction.

While the graph shows that for a majority of the time all the fifos are utilized, there are

periods during which fewer fifos are active. This shows that the distribution of parallelism

in the program is uneven — there are phases in which the average number of parallel

chains is small. Other benchmarks show similar results.

The graph on the right in Figure 3-5 shows the time distribution of the depth of a partic-

ular fifo during the execution of m88ksim. The graph shows that on average the number of

instructions in a fifo is small. This is for two reasons. First, the steering heuristic stalls

whenever a suitable fifo is not found. We found that placing the stalled instruction in a ran-

dom fifo could degrade performance for certain programs. Second, and more importantly,

frequent branch mispredicts cause breaks in the instruction stream presented to the steer-

ing logic, resulting in shallow fifos on the average. We found similar distributions for the

other benchmarks.

Effect of increasing number of fifos

Increasing the number of fifos increased the performance for all the benchmarks. How-

ever, the improvements were in the 2%-3% range for as many as 12 fifos. Eight fifos are

able to support most of the parallel chains found at any instance during the execution of

the programs.
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3.2.2  Complexity Analysis of the Fifo-based Microarchitecture

First, consider the delay of the wakeup and selection logic. Wakeup logic is required to

detect cross-fifo dependences. For example, if the instruction Ia at the head of fifo Fa is

dependent on an instruction Ib waiting in fifo Fb, then Ia cannot issue until Ib completes.

However, the wakeup logic does not involve broadcasting result tags to all the waiting

instructions. Instead, only the instructions at the fifo heads have to determine when all

their operands are available. This is accomplished by interrogating a table called the reser-

vation table. The reservation table contains a single bit per physical register that indicates

whether the register is waiting for its data. When an instruction is dispatched, the reserva-

tion bit corresponding to the physical register is set. The bit is cleared when the instruction

executes and the result value is produced. An instruction at the fifo head waits until the

reservation bits corresponding to its operands are cleared. Hence, the delay of the wakeup

logic is determined by the delay of accessing the reservation table. The reservation table is

relatively small in size compared to the rename table and register file. For example, for a

4-way machine with 80 physical registers, the reservation table can be laid out as a 10-

entry table with each entry storing 8 bits. A column MUX is used to select the appropriate

bit from each entry. Table 3.1 shows the delay of the reservation table for 4-way and 8-

Figure 3-5. Fifo utilization. The graph on the left shows the number of active fifos during the
execution of m88ksim. The graph on the right shows the depth of a particular fifo during the
execution of the program.
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way machines. For both cases, the wakeup delay is much smaller than the wakeup delay

for a 4-way, 32-entry issue window-based microarchitecture. Also, this delay is smaller

than the corresponding register renaming delay. The selection logic in the fifos depen-

dence-based microarchitecture is simple because only the instructions at the fifo heads

need to be considered for selection.

Instruction steering is done in parallel with register renaming. Because the SRC_FIFO

table is smaller than the rename table we expect the delay of steering to be less than the

rename delay. In case a more complex steering heuristic is used, the extra delay can easily

be moved into the wakeup/select stage or a new pipestage can be introduced — at the cost

of an increase in the branch mispredict and instruction-cache miss penalties.

In summary, the complexity analysis presented above shows that by reducing the delay

of the window logic significantly, it is likely that the fifo-based microarchitecture can be

clocked faster than the typical microarchitecture. Combining the potential for a much

faster clock with the results indicate the dependence-based microarchitecture is capable of

superior performance relative to a conventional microarchitecture.

Issue width # physical regs # table entries Bits/entry Delay(ps)

4 80 10 8 192.1

8 128 16 8 251.7

Table 3.1: Delay of reservation table in 0.18µm technology.
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3.2.3  Clustering the Fifo-based Microarchitecture

The real advantage of the fifo-based microarchitecture is for building machines with

issue widths greater than four where, as shown in the previous chapter, the delay of both

the large window and the long bypass busses can be significant and can considerably slow

the clock. Dependence-based microarchitectures based on fifos are ideally suited for such

situations because they simplify both the window logic and the bypass logic as well as nat-

urally facilitate efficient steering. Such a microarchitecture for building an 8-way machine

is described next.

Consider the 2X4-way clustered system shown in Figure 3-6. Two clusters are used,

each of which contains four fifos, one copy of the register file, and four functional units.

Renamed instructions are steered to a fifo in one of the two clusters. Local bypasses

(shown using thick lines) permit same-cycle bypassing inside each cluster. Local bypass-

ing can be accomplished within a cycle. Inter-cluster bypasses, responsible for bypassing

Figure 3-6. Fifo-based microarchitecture with two clusters.
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values between functional units residing in different clusters, take one or more additional

cycles.

This dependence-based microarchitecture using fifos has a number of advantages. First,

wakeup and selection logic are simplified as noted previously. Second, because of the heu-

ristic for assigning dependent instructions to fifos, and, indirectly, to clusters, local

bypasses are used much more frequently than inter-cluster bypasses, reducing overall

bypass delays.

3.2.4  Overall Performance of the Clustered Fifo-based Microarchitecture

The graph on the left in Figure 3-7 compares performance, in terms of instructions com-

mitted per cycle (IPC), for the 2X4-way dependence-based microarchitecture against that

of a conventional 8-way microarchitecture with a single 64-entry issue window. For the

dependence-based microarchitecture, instructions are steered using the heuristic described

in Section 3.2. Local bypasses complete within a cycle while inter-cluster bypasses take 2

cycles. Also, in the conventional 8-way system all bypasses are assumed to complete in a

single cycle. From the graph we can see that for most of the benchmarks, the dependence-

based microarchitecture is nearly as effective as the window-based microarchitecture even

though the dependence-based microarchitecture is handicapped by slow inter-cluster

bypasses that take 2 cycles. However, for two of the benchmarks, m88ksim and ijpeg, the

Figure 3-7. Performance of the clustered fifo-based microarchitecture.
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performance degradation is close to 13%. We found that this degradation is mainly due to

extra latency introduced by the slow inter-cluster bypasses.

Because the dependence-based microarchitecture will facilitate a faster clock, a fair per-

formance comparison must take clock speed into account. The local bypass structure

within a cluster is equivalent to a conventional 4-way superscalar machine, and inter-clus-

ter bypasses are removed from the critical path by taking an extra clock cycle. Conse-

quently, the clock speed of the dependence-based microarchitecture is at least as fast as the

clock speed of a 4-way, 32 entry window-based microarchitecture, and is likely to be sig-

nificantly faster because of the smaller (wakeup + selection) delay compared to a conven-

tional issue window as discussed in Section 3.2.2. Hence, if Cdep is the clock speed of the

dependence-based microarchitecture and Cwin is the clock speed of the window-based

microarchitecture then from Table A.10 in Appendix A for 0.18µm technology,

In other words, the dependence-based microarchitecture is capable of supporting a clock

that is 25% faster than the clock of the window-based microarchitecture. Taking this factor

into account (and ignoring other pipestages that may have to be more deeply pipelined),

we can estimate the potential speedup with a dependence-based microarchitecture. The

speedups for the benchmarks are graphed in Figure 3-8. From the graph we can see that

Figure 3-8. Potential improvements with the fifo-based microarchitecture.
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the dependence-based microarchitecture is capable of providing superior overall perfor-

mance. The performance improvements vary from 9% to 21% with an average improve-

ment of 14%.

Overall, our results show that the dependence-based microarchitecture using fifos is

capable of superior performance due to its ability to support a fast clock while extracting

significant levels of instruction-level parallelism.

3.2.5  Effect of Scaling Instruction and Data Cache Miss Latency

The clock advantage of the fifo-based microarchitecture could potentially increase cache

miss latencies (measured in clock cycles). In order to quantify this effect, we studied the

performance of the fifo-based microarchitecture when the cache miss latency is scaled by

the same amount as the clock speed improvement. For example, a cache miss that took 6

cycles to complete would now take 8 cycles (7.5 cycles to be precise) due to the 25%

improvement in clock speed.

Figure 3-9 graphs the results for base cache miss latencies of 6 cycles and 12 cycles.

These latencies translate to 8 and 15 cycles respectively when the 25% clock speed advan-

tage is taken into account. The “win.Ncycles” bars show the IPC for the window-based

Figure 3-9. Effect of Scaling Instruction and Data Cache Miss Latency.
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superscalar with same-cycle bypassing between functional units assuming a cache miss

latency of N cycles. The “fifos.Ncycles” bars show the IPC for the 2-cluster fifo-based

microarchitecture assuming a cache miss latency of N cycles. From the graph, we can see

that the increase in cache miss latency due to clock speed improvement does not signifi-

cantly impact the performance of the fifo-based microarchitecture. The highest reduction

in IPC occurs for gcc — the performance reduction with respect to window-based super-

scalar went up from 4.5% to 8.0% when the cache miss latency is increased from 6 cycles

to 8 cycles. The performance reductions are slightly higher when the base cache miss

latency is increased to 12 cycles. The primary reason why the IPCs achieved for both the

fifo-based microarchitecture and the window-based microarchitecture are not very sensi-

tive to the cache miss latency for most benchmarks is the low cache miss rates of the

benchmarks. The 32KB, 2-way L1 instruction and data caches are able to satisfy most of

the memory accesses.

3.3  Other Dependence-based Microarchitectures

The microarchitecture presented in the previous section is one point in the design space

of dependence-based microarchitectures. The fifo-based microarchitecture simplifies both

the window logic and naturally reduces the performance degradation due to slow inter-

cluster bypass paths. This section describes some other interesting points in the design

space. In each case there are multiple clusters with inter-cluster bypasses taking multiple

cycles to complete.

3.3.1  Single Window, Multiple Execution Clusters, Execution-driven Steering

In this design, shown in Figure 3-10, instructions reside in a central window while wait-

ing for their operands and functional units to become available. Instructions are assigned

to the clusters at the time they begin execution; this is execution-driven steering. With this

steering, cluster assignment works as follows. The register values in the clusters become

available at slightly different times, that is, the result register value produced by a cluster is

available in that cluster one cycle earlier than in the other cluster. Consequently, an
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instruction waiting for the value may be enabled for execution a few cycles (equal to the

inter-cluster latency) earlier than in the other clusters. The selection logic monitors the

instructions in the window and attempts to assign them to the cluster which provides their

source values first (assuming there is a free functional unit in the cluster). Instructions that

have their source operands available in all clusters are considered for assignment in a

round-robin fashion starting with cluster 0. Static instruction order is used to break ties in

this case.

The execution-driven approach uses a greedy policy to minimize the use of slow inter-

cluster bypasses while maintaining a high utilization of the functional units. It does so by

postponing the assignment of ready instructions to clusters until execution time. While

this greedy approach might gain some IPC advantages, this design suffers from the previ-

ously discussed drawbacks of a central window and complex selection logic.

3.3.2  Multiple windows, Dispatch-driven Steering

This design, shown in Figure 3-10, is identical to the fifo-based microarchitecture pre-

sented in Section 3.2 except that each cluster has a completely flexible window instead of

fifos. Instructions are steered to the windows using a heuristic that takes both dependences

between instructions and the relative load of the clusters into account.

Figure 3-10. Other dependence-based microarchitectures.
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Steering Policies

In the case of dependence-based superscalar microarchitectures based on multiple win-

dows with dispatch steering, we tried a number of steering heuristics. Three of these are

described next.

1. Fifo steering. In this scheme the window is modeled as if it is a collection of fifos with

instructions capable of issuing from any slot within each individual fifo. The fifos are

only a conceptual device used by the instruction assignment heuristic — in reality,

instructions issue from the window with complete flexibility. Instructions are steered

to the “fifos” using the heuristic presented in Section 3.2. For example, a 32-entry win-

dow can be treated as eight fifos with four slots each. An advantage of considering the

windows as a collection of fifos is that it helps to keep majority of the communication

local and to achieve a good load balance at the same time.

2. Round-robin steering. In this scheme instructions in the dynamic stream are steered to

clusters in a round-robin fashion with a particular block size. For example, for a block

size of 16, the first 16 instructions are steered to cluster 0, the next 16 instructions are

steered to cluster 1, and so on. The tacit assumption here is that dependences are local-

ized in the dynamic stream as shown by previous studies on the distribution of ILP in

programs [LW92,AS92]. In other words, instructions are dependent on other instruc-

tions that occur in close proximity (earlier) in the dynamic stream, i.e. independent

instructions are well separated in the dynamic stream. An important parameter in this

scheme is the block size. Using too small a block size can result in significant cross-

cluster communication that can easily degrade performance by stretching the critical

path. On the other hand using too big a block size can also degrade performance

because now the number of functional units executing each block is a fraction of the

total machine resources, i.e. low utilization might hurt performance. A compiler can

assist this scheme by placing dependent instructions together. Studying the impact of

instruction reordering by the compiler on the performance of this scheme is beyond

the scope of this thesis.
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3. Random steering. This steering heuristic is used as a basis for comparisons. Instruc-

tions are steered randomly to one of the clusters. If the window for the selected cluster

is full, then the instruction is inserted into the other clusters in a round-robin fashion.

This design point was evaluated in order to determine the degree to which depen-

dence-based microarchitectures are capable of tolerating the extra latency introduced

by slow inter-cluster bypasses and the importance of dependence-aware scheduling.

3.3.3  Complexity of Steering Policies

In addition to reducing inter-cluster communication and utilizing as many clusters as

possible, a good steering policy must also be fast. Low latency is essential since any extra

stages introduced in the front-end for steering can degrade performance (in terms of IPC)

due to increased branch mispredict and instruction cache miss penalties. This can even

nullify any advantages resulting from a faster clock. This section discusses the complexity

of the steering policies analyzed in this chapter.

• Fifo steering. This steering policy can be implemented as shown in Figure 3-11. The

logic operates in parallel with the register rename logic. The number of entries in the

SRC_FIFO table is equal to the number of logical registers. The number of read ports

and write ports into the SRC_FIFO table is and  respectively, where  is

the issue width. Comparing the block diagram with the one for rename logic, shown in

Figure 2-3 on page 26, shows that the steering logic is functionally similar to the

Figure 3-11. Fifo steering hardware.
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rename logic. There are two differences. First, the SRC_FIFO table is smaller than the

rename map table as the width of each entry (determined by the number of fifos) is

smaller than the width of the rename table. The second difference is that the output

MUX in the case of fifo steering  is slightly more complicated than that for the rename

logic. Overall, the hardware complexity of fifo steering is similar to rename logic com-

plexity. Just as shown for rename logic in Chapter 2, the delay of the steering logic

increases linearly with issue width. Therefore, almost always the fifo steering logic

can be performed in parallel with renaming. In the worst case, it might require an extra

pipestage in addition to the rename stages.

• Round-robin steering. Since this simply requires a counter to count block size number

of instructions before incrementing the “current” cluster pointer, the logic for steering

is straightforward and can be accomplished in less time than the rename logic delay.

Hence, steering in this case can be completely hidden behind renaming. Also, the

delay of the steering logic is independent of issue width.

• Random steering. Just like in the case of round-robin steering, the logic required for

random steering is straightforward and can be accomplished in less time than the

rename logic delay. Hence, once again, steering can be completely hidden behind

renaming. The delay of the steering logic is independent of issue width.

A natural question that arises in connection with instruction steering is: why cannot the

compiler steer instructions? This question is especially pertinent given that the compiler

has complete knowledge of register dependences between instructions and this is the criti-

cal information being used by the hardware to steer instructions. The key factor that makes

the compiler less effective than hardware is the inability of the compiler to look beyond

branches, i.e. detect the dynamic sequence of dependences created at run-time. Also, it is

not obvious how the compiler can pass dependence information to the underlying hard-

ware without compromising binary compatibility.
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3.4  Experimental Evaluation

This section evaluates the performance of various dependence-based superscalar

microarchitectures by measuring the performance of benchmark programs running on a

detailed timing simulator. The timing simulator, a modified version of SimpleScalar

[BAB96], is detailed in Table 3.2. All the configurations studied in this section are 8-wide

— the configurations can fetch, decode, rename, and execute a maximum of eight instruc-

tions every cycle. An aggressive fetch mechanism is used to stress the issue and execution

subsystems. The benchmark programs are from the SPEC’95 suite using their training

input datsets. Each program was run for a maximum of 0.5B instructions

Fetch width any 8 instructions

I-Cache Perfect instruction cache

Branch predictor McFarling’s gshare [McF93]
4K 2-bit counters, 12 bit history
unconditional control instructions pre-
dicted correctly

Issue window size 64

Maximum
in-flight instructions

120

Retire width 16

Functional units 8 symmetrical units

Functional unit latency 1 cycle

Issue mechanism out-of-order issue of up to 8 ops/cycle
loads may execute when all prior store
addresses are known

Physical registers 120int/120fp

D-Cache 32KB, 2-way SA
write-back, write-allocate
32 byte lines, 1 cycle hit, 6 cycle miss
four load/store ports

Table 3.2: Baseline simulation model
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Simulated microarchitectures

Table 3.3 lists the various types of microarchitectures simulated here. The typical win-

dow-based microarchitecture, shown as the “1-cluster.1window” configuration, assumes

uniform bypassing between all functional units within a single cycle, i.e. dependent

instructions can execute back-to-back. All the dependence-based microarchitectures com-

prise two clusters with inter-cluster bypasses taking an extra cycle. The “2-clus-

ter.1window.execsteer” configuration is made up of two execution clusters each containing

half the execution resources of the machine. Renamed instructions are buffered in a central

window and routed to the execution clusters using the execution-driven steering policy

described in Section 3.3.1. In the “2-cluster.windows.randomsteer”, “2-cluster.win-

dows.fifosteer”, and “2-cluster.windows.roundrobinsteer” configurations, both the win-

dow and execution resources are partitioned into two clusters and renamed instructions are

routed to the clusters using random steering, fifo steering, and round-robin steering poli-

cies respectively. The “2-cluster.windows.randomsteer” design point was evaluated to

determine the importance of dependence-aware scheduling. The “2-cluster.fifos.fifosteer”

configuration is identical to the “2-cluster.windows.fifosteer” except that fifos are used in

each cluster instead of a completely flexible window. Table 3.3 summarizes the various

microarchitectures simulated.

Configuration
Window

Organization
Steering
Heuristic

window.execsteer Flexible window Execution steering

fifos.fifosteer Fifos Fifo steering

windows.fifosteer Flexible window Fifo steering

windows.roundrobinsteer Flexible window Round-robin steering

windows.randomsteer Flexible window Random steering

Table 3.3: Various microarchitectures simulated.
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3.4.1  Performance Relative to an Ideal Superscalar

The first set of experimental results, graphed in Figure 3-12, shows the performance of

various dependence-based superscalar microarchitectures relative to a typical window-

based microarchitecture in terms of instructions committed per cycle. A number of obser-

vations can be made from the graph. First, random steering consistently performs worse

than the other schemes. The performance degradation with respect to the ideal case varies

from 17% in the case of vortex to 23% in the case of m88ksim. Hence, it is essential for the

steering logic to consider dependences when routing instructions. Second, the microarchi-

tecture with a central window and execution steering performs nearly as well as the ideal

microarchitecture with a maximum degradation of 3% in the case of m88ksim. However,

as discussed earlier in Section 3.3.1, this microarchitecture requires a centralized window

with complex selection logic. Third, the “2-cluster.fifos.fifosteer”, “2-cluster.win-

dows.fifosteer”, and “2-cluster.windows.roundrobin steer” microarchitectures perform

competitively in comparison to the ideal microarchitecture. As expected, using completely

flexible windows instead of fifos helps improve performance slightly. Another way of

interpreting this result is that it reinforces the earlier finding that windows can be replaced

with the combination of fifos and intelligent steering with little degradation in IPC. An

Figure 3-12. Performance of dependence-based superscalar microarchitectures.
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interesting supplementary result is that round-robin steering, which can be implemented

using simple logic, performs as well as the more complex fifo steering. However, as shown

later, round-robin steering does not scale well as the number of clusters and is increased.

Overall, the above results show that dependence-based superscalar microarchitectures

can deliver performance similar, in terms of instructions committed per cycle, to that of an

ideal microarchitecture with a large window and uniform, single cycle bypasses between

all functional units.

3.4.2  Effect of Increasing Number of Clusters

The graph in Figure 3-13 shows the effect of increasing the number of clusters on the

performance of “fifos.fifosteer”, “windows.fifosteer”, and the “windows.rrsteer” microar-

chitectures. Performance uniformly degrades for the three designs as the number of clus-

ters is increased. This is expected since increasing the number of clusters augments load

imbalance and results in more frequent inter-cluster communication. The performance

degradation going from 2 clusters to 4 clusters for the “fifos.fifosteer” and “windows.fifos-

teer” microarchitectures is in the 5%-10% range. For the “windows.rrsteer” microarchitec-

tures the performance degradation is in the 9%-17% range. For all the benchmarks, the

Figure 3-13. Effect of increasing number of clusters.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

1-cluster.single-window
2-cluster.fifos.fifosteer
2-cluster.windows.fifosteer

4-cluster.fifos.fifosteer
4-cluster.windows.fifosteer

2-cluster.windows.rrsteer 4-cluster.windows.rrsteer

compress gcc m88ksim vortex



109

performance of the round-robin steering policy degrades more than the fifo steering policy.

This is mainly due to two reasons. First, the fifo steering policy does a better job of

exploiting the full width of the machine. For example, it can use all the clusters coopera-

tively to execute a block of instructions. In the case of round-robin steering, the block of

instructions might be steered to a single cluster and hence, only the resources in that clus-

ter can be employed to execute the instructions, resulting in lower throughput. The second

reason for the superior performance of the fifo steering policy is that it requires fewer

inter-cluster bypasses as compared to the round-robin steering heuristic. A simple exam-

ple explains this. Consider the case where there are 4 clusters each 2-wide (2 functional

units) and the dynamic stream is made up of two chains (parallelism is equal to 2). In this

situation, the fifo steering policy will only utilize a single cluster since all instructions will

be routed to the two fifos in the cluster. This eliminates inter-cluster communication com-

pletely in this example. The round-robin steering policy on the other hand, is oblivious of

the parallelism in the instruction stream, and uniformly steers instructions to all available

clusters. Therefore, in this case, inter-cluster communication is more frequent with the

round-robin steering policy than with the fifo steering policy.
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3.4.3  Effect of Increasing Inter-cluster Latency

The graph in Figure 3-14 shows the effect of increasing inter-cluster latency on the per-

formance of 2-cluster and 4-cluster “fifos.fifosteer” microarchitectures. Performance

degrades as the latency of inter-cluster communication is increased. This is expected since

increasing inter-cluster communication latency increases the time taken to perform any

computation that is spread across multiple clusters and hence, could easily stretch the crit-

ical path of the program. For 2-cluster configurations, the average performance degrada-

tion for 2-cluster systems when the inter-cluster latency is increased from 11 to 2 and from

2 to 3 cycles is 8.7% and 9.3% respectively. Similarly, for 4-cluster systems, the corre-

sponding performance degradations are 13.4% and 11.2% respectively. The reduction in

performance is higher for the 4-cluster systems since the number of instruction depen-

dences spread across clusters increases with the number of clusters. This shows that it is

extremely important to provide low latency inter-cluster communication for high perfor-

mance.

1. There is a single bubble between two dependent instructions executing in different clusters.

Figure 3-14. Effect of increasing inter-cluster latency.
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3.4.4  Inter-cluster Bypass Frequency

The graph in Figure 3-15 shows the frequency of inter-cluster communication for vari-

ous steering heuristics and 4-cluster configurations. Inter-cluster communication is mea-

sured in terms of the fraction of total instructions that exercise inter-cluster bypasses. This

does not include cases where an instruction reads its operands from the register file in the

cluster i.e. cases in which the operands arrive from the remote cluster in advance. As

expected, we see that there is a high correlation between the frequency of inter-cluster

communication and performance - configurations that exhibit higher inter-cluster commu-

nication commit fewer instructions per cycle. The inter-cluster communication is particu-

larly high in the case of random steering, reaching as high as 35% in the case of vortex.

Execution steering exhibits the lowest inter-cluster bypass frequency. This is not surpris-

ing because execution steering is based on the greedy policy of postponing selection to

favor execution of dependent instructions in the same cluster. Another observation that can

be made from the graph is that the “fifos.fifosteer” microarchitecture uniformly exercises

fewer inter-cluster bypasses than the “windows.rrsteer” microarchitecture. This is in

agreement with earlier discussion about how the fifo steering policy dynamically adapts to

the number of clusters being used based on the parallelism in the instruction stream, thus

resulting in fewer inter-cluster bypasses.

Figure 3-15. Inter-cluster bypass frequency.
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3.4.5  Comparing against In-order Distributed Reservation Stations

Johnson [Joh91] proposed using in-order distributed reservation stations as a means of

reducing the complexity of the instruction window. Instructions are forced to issue in-

order from the reservation stations. The advantages of such a scheme are similar to those

of the fifo-based microarchitecture; simpler wakeup and selection logic. The fifo-based

microarchitecture differs from Johnson’s scheme in the manner in which instructions are

steered to the fifos. The dependence-based microarchitecture steers instructions based on

dependence information extracted at run-time instead of instruction type as in the case of

the in-order reservation stations scheme.

The graph in Figure 3-16 compares the performance of 2-cluster configurations based on

in-order distributed reservation stations and fifo-based microarchitecture with fifo steering

policy respectively. The dependence-based microarchitecture consistently performs better

than in-order reservation stations. The average performance degradation is as high as 27%.

This is mainly due to two factors. First, in the in-order reservation stations scheme,

instructions at the head of the reservation stations can block other ready instructions

behind them from issuing. Second, the instruction distribution logic in the in-order reser-

vation stations scheme makes no attempt to minimize the use of inter-cluster bypasses.

Figure 3-16. Comparing against in-order distributed reservation stations.
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Butler and Patt [BP92] also report significant performance degradation when the “head-

only” (fifo) scheduling policy is used with distributed reservation stations.

3.5  Related Work

Tomasulo, in his original proposal [Tom67] on dynamic scheduling, proposed distrib-

uted reservation stations as an alternative to centralized reservation stations to reduce com-

plexity. Distributed reservation stations simplify selection logic. The selection logic at a

functional unit only has to monitor the instructions in the reservation stations associated

with that unit. However, the result tags still have to broadcast to all the reservation stations

just as in the case of centralized reservation stations, i.e. the complexity of window

wakeup logic remains the same.

Johnson [Joh91] proposed in-order distributed reservation stations to further reduce

issue-logic complexity. The fifo-based microarchitecture presented in this chapter is simi-

lar to the in-order distributed reservation stations scheme in a number of respects. Both

distribute window entries and force in-order issue out of the distributed window entries to

simplify selection logic. However, there are two key differences. First, the fifo-based

microarchitecture uses a prescheduling (steering) phase to determine a suitable fifo to

place each instruction in. As shown in Section 3.4.5, this intelligent steering helps the

dependence-based microarchitecture extract more parallelism relative to in-order distrib-

uted reservation stations. Second, the dependence-based microarchitectures use clustering

to simplify wakeup logic. A cluster consists of a small number of branch , ALU, and mem-

ory units. Window operations and bypasses within a cluster complete within a single

cycle, thus facilitating back-to-back execution of dependent instructions residing in each

cluster. Tomasulo’s distributed reservation stations on the other hand clusters functional

units based on type. For example, all memory units are clustered together and so on. This

results in more cross-cluster traffic compared to the dependence-based microarchitectures.

An early CRAY-2 design [Unk79,SS90,Smi97] realized the importance of detecting and

exploiting dependences to facilitate a fast clock. The issue logic consisted of four instruc-
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tion queues feeding eight execution units. A dependent chain of instructions were issued

to the same queue. The compiler was responsible for grouping dependent instructions

together. A single accumulator style instruction set helped express the grouping to the

hardware without the need for extra bits to explicitly specify dependences. The hardware

simply starts a new chain whenever it hits a LDA (load accumulator) instruction in the

instruction stream. As a result, the hardware does not have to extract dependence informa-

tion at run-time. The fifo-based microarchitecture investigated in this chapter was partly

inspired by the CRAY-2 design. The primary difference is that hardware steering is used

instead of compiler steering. As explained before, hardware steering is well-suited for

integer codes since the small basic blocks and frequent control instructions in integer

codes can severely handicap compile-time steering of instructions to fifos.

Kemp and Franklin [KF96] studied a microarchitecture called PEWS (Parallel Execu-

tion Windows) for simplifying the logic associated with a central window. PEWs simpli-

fies window logic by splitting the central instruction window among multiple windows

much like the dependence-based microarchitectures described in this chapter. Register val-

ues are communicated between clusters (called pews) via hardware queues and a ring

interconnection network. In contrast, we assume a broadcast mechanism for the same pur-

pose. Instructions are steered to the pews based on instruction dependences with a goal to

minimize inter-pew communication. However, for their experiments Kemp and Franklin

assume that each of the pews has as many functional units as the central window organiza-

tion. This assumption implies that the reduction in complexity achieved is limited because

the wakeup and selection logic of the windows in the individual pews still have the same

porting requirements as the central window.

The DEC 21264 [Gwe96a] is the first commercial microarchitecture implementing out-

of-order scheduling that was forced to use significant microarchitectural changes, relative

to the conventional microarchitecture, to support a fast clock. Like the dependence-based

microarchitectures explored in this chapter, the execution units are partitioned into two

clusters with bypasses between clusters taking an extra cycle to complete. The selection
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logic steers instructions buffered in a central window to the execution cluster based on

dependences. The exact steering algorithm used has not been made public.

Multiscalar processors [Bre,FS92, Fra93,SBV95] pioneered the concept of using decen-

tralized processor resources to reduce complexity. Multiple clusters, each similar in struc-

ture to a narrow superscalar, are used to execute different portions of the serial program.

The different portions of the program are called tasks and can be identified either by the

compiler or by the hardware. The design is highly decentralized. All major structures in

the pipeline, starting from the fetch hardware, are distributed. In addition, the paradigm

naturally supports advanced features like multiple flows of control and out-of-order fetch.

These features are considered essential for exploiting higher levels of parallelism [LW92,

Smi95] in future. While the Multiscalar design is a futuristic microarchitecture designed

with complexity-effectiveness in mind, it will take some time for the design to evolve and

for its implementation to become feasible. The dependence-based superscalar microarchi-

tectures explored in this chapter provide a smooth transition path, from the point of view

of implementation, to Multiscalar-like designs from current superscalar designs.

More recently, processor microarchitectures called Trace processors [VM97, RJSS97]

have been proposed that organize the microarchitecture around traces. Just like in the Mul-

tiscalar and dependence-based microarchitectures, execution resources are partitioned into

clusters. Each cluster is assigned a dynamic instruction trace for execution that is fetched

from a cache of traces called the trace cache. The trace cache in addition to providing a

high-bandwidth fetch mechanism also simplifies rename logic by caching rename infor-

mation along with the trace. The trace processor microarchitecture can be viewed as a

dependence-based microarchitecture that has completely flexible windows in each cluster

and steers instructions to clusters using a round-robin policy.

Farkas et al. [FCJV97] propose the multicluster microarchitecture to reduce the clock

cycle time of typical superscalar microarchitectures. The multicluster microarchitecture is

similar in concept to the dependence-based microarchitectures explored here. There are



116

two primary differences, however. First, the multicluster architecture uses compiler steer-

ing instead of hardware steering. Second, it uses explicit copy instructions to communicate

operand values between the clusters. Steering information is passed to the hardware indi-

rectly without changing the instruction set architecture. Each cluster is assigned a subset

of the architectural registers and instructions are steered based on the registers specified in

the instruction. A static scheduling heuristic chooses a cluster so that the load imbalance

between the two clusters1 is minimized. Farkas et al. found that even this heuristic cannot

be directly addressed by the compiler because the work done by a cluster is a function of

the order in which instructions are issued, and the issue order is not deterministic for

dynamically-scheduled processors.

3.6  Chapter Summary

This chapter presented the design and evaluation of a family of complexity-effective

microarchitectures called dependence-based superscalar microarchitectures. These

microarchitectures facilitate a fast clock while exploiting similar levels of parallelism as

an ideal large-window machine. The proposed microarchitectures use a two-pronged strat-

egy for high performance. First, the issue window and execution resources are partitioned

to facilitate a fast clock. Second, instructions are intelligently steered, taking into account

dependences, to the different partitions in order to extract similar levels of parallelism as

an ideal large-window machine.

One of the dependence-based microarchitectures, called the fifo-based microarchitec-

ture, detects chains of dependent instructions and steers the chains to fifos which are con-

strained to execute in-order. Since only the instructions at the fifo heads have to be

monitored for execution, the proposed microarchitecture simplifies window logic. Further-

more, the microarchitecture naturally lends itself to clustering by grouping dependent

instructions together. This grouping of dependent instructions helps mitigate the bypass

problem to a large extent by using fast local bypasses more frequently than slow inter-

1. They only study 2-cluster systems.
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cluster bypasses. The performance of a 2 X 4-way fifo-based microarchitecture is com-

pared with a typical 8-way superscalar. The results show two things. First, the proposed

microarchitecture has IPC performance close to that of a typical microarchitecture (aver-

age degradation in IPC performance is 7.8%). Second, when taking the clock speed advan-

tage of the fifo-based microarchitecture into account the 8-way proposed

microarchitecture is 14% faster than the typical window-based microarchitecture on aver-

age.

Overall, the experimental results presented show that dependence-based superscalar

microarchitectures are capable of extracting similar levels of parallelism as typical

microarchitectures while enabling a faster clock.
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Chapter 4

Integer-Decoupled Microarchitecture

The integer-decoupled microarchitecture is a complexity-effective microarchitecture

that can improve the performance of integer programs with little or no increase in com-

plexity. It is particularly attractive since it can be implemented on top of current microar-

chitectures with relatively small hardware changes. This chapter proposes and evaluates

the integer-decoupled microarchitecture.

Integer-decoupled microarchitectures execute some of the integer instructions, those not

involved in computing addresses and accessing memory, on idle floating-point resources

that have been augmented to perform simple integers operations. The compiler identifies

computation to off-load to the floating-point subsystem. This results in a number of bene-

fits for integer programs including extra issue width, a bigger effective window, and

decoupling of memory access from the actual computation.

Another way to look at the integer-decoupled microarchitecture, in the context of depen-

dence-based microarchitectures presented in previous chapter, is that the existing floating-

point subsystem provides an extra cluster, for free, that can used for executing integer
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instructions. However, unlike the dependence-based microarchitectures, instruction steer-

ing in this case is performed by the compiler.

The rest of the chapter is organized as follows. Section 4.1 presents the concept behind

the integer-decoupled microarchitecture. Section 4.2 discusses the hardware additions that

have to be made to the conventional microarchitecture. Section 4.3 illustrates, with an

example, the kind of computation that is off-loaded to the augmented FP subsystem.

Section 4.4 discusses the role of the compiler and the basic partitioning scheme used by

the compiler. Section 4.5 shows how the basic partitioning scheme can be improved using

copy instructions and code duplication. Section 4.6 presents the results of an experimental

evaluation of the proposed microarchitecture. Finally, the chapter is summarized in

Section 4.8.

4.1  Concept

To motivate the proposed microarchitecture, consider how the conventional microarchi-

tecture illustrated in Figure 1-1 on page 2 works. The instruction fetch unit reads multiple

instructions from the instruction cache and feeds them to integer and floating-point sub-

systems for execution. The integer subsystem contains a number of load/store, branch, and

functional units that operate on integer operands. The floating-point subsystem is similar

to the integer subsystem except it does not contain load/store units, and it operates on

floating-point operands. Instruction windows, in the form of buffers, are used to decouple

the instruction fetch unit from the integer and floating-point execution subsystems.

Partitioning issue and execution resources into integer and floating-point subsystems has

several advantages. First, as shown in Chapter 2, it eliminates the cycle time penalties

associated with centralized structures. For example, registers are divided into integer and

floating-point files, each with a set of ports. And, the instruction window is similarly

divided with separate issue logic. Second, while executing floating-point programs, the

microarchitecture naturally decouples addressing and floating-point computation: address

computation executes in the integer subsystem while floating-point computation executes
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in the FP subsystem so that dynamic scheduling between the two can be enhanced. Third,

since integer data and floating-point data typically have different widths (32-bit versus 64-

bit), using separate integer and floating-point subsystems helps reduce implementation

complexity and save silicon area. The last benefit will be nullified by the move towards

64-bit instruction set architectures in which both integer and floating-point data are 64 bits

wide. The uniform use of 64-bit data in both integer and floating-point subsystems enables

the optimization being proposed here.

This microarchitecture style leads to idle floating-point resources — registers, functional

units, instruction window logic, and buses — while executing integer programs or integer-

intensive portions of floating-point programs. To address this drawback, we propose a

more general decoupled microarchitecture style based on earlier work

[BRT93,GHL+85,PD83,Smi82,S+87], in which the floating-point subsystem executes

both integer and floating-point operations. In this microarchitecture, which we refer to as

the integer-decoupled microarchitecture, a load/store subsystem (LdSt) that mostly exe-

cutes integer instructions involved in effective address calculation and memory access. A

computation (Comp) subsystem supports all floating-point operations as well as non-

memory related integer computation. The integer decoupled microarchitecture can be built

on top of the conventional microarchitecture with relatively few hardware additions. These

hardware changes are discussed in the next section.

The integer-decoupled microarchitecture has a number of performance advantages over

a conventional microarchitecture for integer programs. First, it provides extra issue and

execution bandwidth for integer programs. For example, by implementing the integer-

decoupled microarchitecture, a superscalar processor with 2 integer and 2 floating-point

functional units can provide an issue and execution width of 4 for most integer codes. Sec-

ond, by using the instruction window in the floating-point subsystem, the integer-decou-

pled microarchitecture provides a larger overall window. This can potentially increase the

amount of parallelism exploited. Third, the compiler now has 64 logical registers (32 int

and 32 fp) for holding integer variables instead of the usual 32. Finally, the integer-decou-
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pled microarchitecture often facilitates early resolution of mispredicted branches. If the

branch computation associated with a mispredicted branch executes in the less heavily

loaded Comp subsystem then it is very likely that the branch will be resolved earlier rela-

tive to the conventional microarchitecture

The integer-decoupled concept can also be used to reduce the complexity of a conven-

tional superscalar microarchitecture. By steering integer instructions to the augmented

floating-point subsystem, the integer-decoupled microarchitecture does not require as

many issue window entries in the integer subsystem as the conventional microarchitecture.

Similarly, it can be used to reduce the size of the physical register file in the integer sub-

system. Ideally, the complexity of a -wide conventional microarchitecture can be

reduced by implementing it as an integer-decoupled microarchitecture with the LdSt and

Comp subsystems each being -wide. This advantage of the integer-decoupled

microarchitecture is not quantified here.

4.2  Changes to the Conventional Microarchitecture

The integer-decoupled microarchitecture remains very similar to a conventional

microarchitecture. The only hardware modification required is augmenting the existing

floating-point functional units to perform simple integer operations. There needs to be no

additional cost for registers and buses if the integer operations are embedded in the exist-

ing floating-point functional units and share the existing register file ports and buses. Sim-

ilarly, instruction fetch and issue resources are unchanged. The only extra costs are the

additional gates required to implement the simple integer operations and the opcodes for

specifying these operations. Results presented later show that the gate-intensive integer

multiply and divide operations need not be duplicated and hence, the extra cost should not

be a factor.

The instruction set architecture (ISA) has to be minimally augmented to include the sim-

ple integer operations that operate on the floating-point registers. The changes required are

similar in spirit to the recent multimedia extensions introduced by most microprocessor

n

n 2⁄
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vendors [Gwe95c, Gwe96b]. The integer opcodes of the SimpleScalar [BAB96] ISA that

are supported in the Comp subsystem are shown in Table 4.1. Because the floating-point

opcode space is usually relatively sparse compared to the integer opcode space, and about

21 extra opcodes are required, the necessary ISA extensions are realistic.

4.3  Partitioning the Program

Given the constraints of the integer-decoupled microarchitecture, let us look at the kind

of integer computation that can be off-loaded to the Comp subsystem and the role of the

compiler in identifying such computation. Because we want to decouple address computa-

tion from the rest of the program computation, all load/store instructions and integer

instructions involved in effective address computation are assigned to the LdSt subsystem.

All other sequences of instructions terminate either in the computation of branch out-

comes or store values. The instruction sequences, called branch computation and store-

value computation, are ideal candidates for execution in the Comp subsystem because they

do not require any special support in the Comp subsystem. The result of a branch compu-

tation, the branch outcome, is sent to the fetch unit where it is used to validate the pre-

dicted outcome. This functionality is present in existing floating-point subsystems for

floating-point branches. The result of a store-value computation, the value being stored, is

deposited in the write buffer where it merges with the corresponding store address gener-

ated by the LdSt subsystem. This mechanism is also implemented in current floating-point

subsystems to store floating-point values. However, some store-value and branch compu-

tations might not be assigned to the Comp subsystem if the instructions in these computa-

Operation type Opcodes

Control bgez bgtz blez bltz bne

Logical andi nor ori xori sllv sll srav sra srlv srl

Arithmetic addi addiu addu lui slti sltiu

Table 4.1: Extra opcodes supported in the Comp subsystem.
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tions are also involved in address computation. The example to be presented next

illustrates this.

Figure 4-1 shows a program fragment in C from invalidate_for_call, a frequently exe-

cuted function in the SPEC benchmark gcc. The for-loop in the program runs through all

the pseudo registers and does some bookkeeping for those that are invalidated by function

calls. The figure shows assembly code compiled for a conventional microarchitecture. The

whole program executes in the integer subsystem leaving the floating-point subsystem

completely idle.

With very little effort, the assembly code shown in Figure 4-1 can be transformed to off-

load some of the integer computation to the Comp subsystem as shown on the left in

Figure 4-1. An example program fragment.

extern unsigned long regs_inv_by_call;

for (regno = 0; regno < FIRST_PSEUDO_REG; regno++)
if (regs_inv_by_call & (1 << regno)) {

delete_equiv_reg(regno);
if (reg_tick[regno] >= 0)

reg_tick[regno]++;
}

lw $2, regs_inv_by_callI2:
sra $2, $2, $16I3:

move $16, $0I1:

andi $2, $2, 0x1I4:
beq $2, $0, $L4I5:
move $4, $16I6:
jal delete_equiv_regI7:
lw $3, reg_tickI8:
sll $2, $16, 2I9:
addu $2, $2, $3I10:
lw $4, 0($2)I11:
bltz $4, $L4I12:
addu $4, $4, 1I13:
sw $4, 0($2)I14:
addu $16, $16, 1I15:
slt $2, $16, 66I16:
bne $2,$0,$L5I17:

$L5:

$L4:

/* regno = 0 */

/* $2=regs_inv_by_call & (1<<regno) */

/* $4 = reg_tick[regno] */

/* reg_tick[regno]++ */
/* regno++ */

/* regno < FIRST_PSEUDO_REG */
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Figure 4-2. Integer instructions that execute in Comp are shown in bold with a ,c suffix.

The load instruction, I11, instead of loading into integer register $4, now loads the value

into floating-point register $f0. Instructions I12 and I13 operate on the loaded value in

floating-point register $f0 and execute in the Comp subsystem. The result of the branch

instruction (I12) is sent from the Comp subsystem to the fetch unit to validate the predic-

tion made. The result of the add instruction (I13) is sent to the store buffer where it is

merged with the address generated by the store instruction (I14) executed in the LdSt sub-

system. The load and store instructions (I11 and I14) are italicized to point out that these

instructions now load and store floating-point registers. These are the same as floating-

point load and store instructions in the conventional microarchitecture. Relating the exam-

ple to the discussion earlier, the branch computation and store-value computation that are

off-loaded in this case are the singleton sets {I12} and {I13} respectively. The branch

computation {I15, I16, and I17} was not assigned to the Comp subsystem because instruc-

tion I15 is also involved in generating the address for the load instruction I11.

Figure 4-2. Code partitioning for example fragment.

lw $2, regs_inv_by_callI2:
sra $2, $2, $16I3:

move $16, $0I1:

andi $2, $2, 0x1I4:
beq $2, $0, $L4I5:
move $4, $16I6:
jal delete_equiv_regI7:
lw $3, reg_tickI8:
sll $2, $16, 2I9:
addu $2, $2, $3I10:
lw $f0, 0($2)I11:
bltz,c $f0, $L4I12:
addu,c $f0, $f0, 1I13:
sw $f0, 0($2)I14:
addu $16, $16, 1I15:
slt $2, $16, 66I16:
bne $2,$0,$L5I17:

$L5:

$L4:

lw $f4, regs_inv_by_callI2:
sra,c $f4, $f4, $f2I3:

move $16, $0I1:

andi,c $f4, $f4, 0x1I4:
beq,c $f4, $0, $L4I5:
move $4, $16I6:
jal delete_equiv_regI7:
lw $3, reg_tickI8:
sll $2, $16, 2I9:
addu $2, $2, $3I10:
lw $f0, 0($2)I11:
bltz,c $f0, $L4I12:
addu,c $f0, $f0, 1I13:
sw $f0, 0($2)I14:
addu $16, $16, 1I15:

slt,c $f4, $f2, 66I16:
bne,c $f4,$0,$L5I17:

$L5:

$L4:

cp_comp $f2, $16I1’:

addu,c $f2, $f2, 1I15’:

Basic partitioning scheme Advanced partitioning scheme
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In the transformation just presented, computation was off-loaded to the Comp subsystem

without introducing new instructions in the program. However, by strategically inserting

copy instructions and duplicating some instructions, additional computation can be off-

loaded to the Comp subsystem. For example, consider the transformation presented on the

right in Figure 4-2. The copy instruction (I1’) and the duplicate instruction (I15’) help off-

load a sizable fraction of the total computation to the Comp subsystem. Now, as many as

seven static instructions of the original program execute in the Comp subsystem.

The compiler for the integer-decoupled microarchitecture is responsible for effecting the

transformations presented above. More abstractly, the compiler is responsible for parti-

tioning the original program into LdSt and Comp partitions. The transformation on the left

in Figure 4-2 is a result of the basic partitioning scheme used by the compiler. In this

scheme, no new instructions are introduced and communication between the two sub-

systems happens via loads and stores that already exist in the original program.

Section 4.4 discusses the basic scheme in detail. The second transformation is a result of

the advanced partitioning scheme used by the compiler. In this scheme, the compiler intel-

ligently introduces a few extra instructions in the form of copy or duplicate instructions to

enable off-loading of more computation to the Comp subsystem. Section 4.5 discusses the

advanced partitioning scheme.

4.4  Basic Partitioning Scheme

As mentioned earlier, the basic partitioning scheme off-loads computation to the Comp

subsystem without introducing new instructions. In this section, some terminology is pre-

sented first to aid subsequent discussion. Then, the necessary conditions that need to be

satisfied for branch and store-value computation to be assigned to the Comp subsystem are

described. Finally, the partitioning algorithm used by the compiler is presented.
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4.4.1  Terminology and Data Structures

A slice [Wei84] of a program P with respect to a value v is defined to be the subset of P

that is involved in the computation of v. We term this the backward slice of P with respect

to v and represent it as Backward-Slice(P,v). The forward slice of P with respect to v is all

computation that is affected by v, and is represented as Forward-Slice(P,v). An example is

shown in Figure 4-3.

To partition a program, the compiler uses a data structure called the static dependence

graph that compactly represents all the register dependences in a program. The static

dependence graph (SDG) is a directed graph which has a node corresponding to each

static instruction in the program. The SDG has an edge from node vi to node vj if instruc-

tion i produces a register value that could be consumed by instruction j. Load and store

instructions are special cased in the SDG to simplify the partitioning algorithm. Each load

instruction is split into two nodes - one representing the load address and the other repre-

senting the loaded value. Similarly, each store instruction is split into two nodes - one rep-

resenting the store address and the other representing the store value. This is done because

a load instruction executes in the LdSt subsystem, but the value can be loaded into either

subsystem. Likewise, the value being stored can come from either the LdSt subsystem or

the Comp subsystem.

Figure 4-4 shows the SDG for the program fragment in Figure 4-1. Nodes 2, 8, and 11

correspond to load instructions and have been split. To show that both nodes correspond to

a single program instruction, the split nodes have been enclosed in a bigger oval node.

a = b + c;
d = a * g;
f = d + 2;

Program P

a = b + c;
d = a * g;

Backward-Slice(P,f)

d = a * g;
f = d + 2;

Forward-Slice(P,a)

Figure 4-3. Program slices.
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Similarly, node 14 corresponds to a store instruction and has been split. The edges corre-

spond to register dependences. For example, instruction I3 produces $2 that is used by

instruction I4 and hence, there is an edge between I3 and I4.

4.4.2 Partitioning Conditions

Given a program P, let

Any partition of G into L(G) and C(G) must satisfy two conditions. First, L(G) and C(G)

must be disjoint. Second, a node v ∈ C(G) should satisfy the following conditions:

1. Backward-Slice(G,v) ∩ L(G) = Ø. For a node v ���∈ C(G), this conditions specifies that v

or any of its ancestors should not receive any value from L(G).

G = SDG for P

LS(G) = Set of load/store address nodes in G

C(G) = Comp partition of G

L(G) = LdSt partition of G

Figure 4-4. Static dependence graph for example program.

lw $2, regs_inv_by_callI2:
sra $2, $2, $16I3:

move $16, $0I1:

andi $2, $2, 0x1I4:
beq $2, $0, $L4I5:
move $4, $16I6:
jal delete_equiv_regI7:
lw $3, reg_tickI8:
sll $2, $16, 2I9:
addu $2, $2, $3I10:
lw $4, 0($2)I11:
bltz $4, $L4I12:
addu $4, $4, 1I13:
sw $4, 0($2)I14:
addu $16, $16, 1I15:
slt $2, $16, 66I16:
bne $2,$0,$L5I17:

$L5:

$L4:
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2. Forward-Slice(G,v) ∩ L(G) = Ø. For a node v ��∈ C(G), this condition specifies that v

or any of its descendants should not supply any value to L(G).

Clearly, nodes in LS(G) must be in L(G) because only the LdSt subsystem can execute

loads and stores. Instructions in the backward slices of these address nodes are involved in

addressing. The union of these backward slices is termed the LdSt slice. It follows from

the backward slice condition that the LdSt slice must also be assigned to L(G).

For our example program repeated in Figure 4-4,

It can be easily verified that all nodes in C(G) satisfy the backward and forward slicing

conditions. The branch computation {16, 17} could not be assigned to the Comp sub-

system because node 16 is supplied a value by node 15 which is in the LdSt slice and

hence in L(G). If this branch computation were assigned to Comp, then the backward slice

condition would be violated for nodes 16 and 17.

4.4.3  Partitioning Algorithm

The goal of the partitioning algorithm is to find the largest set C(G) that satisfies the par-

titioning conditions presented previously. A simple and fast algorithm for identifying the

largest set C(G) based on the observation that the partitioning conditions specified previ-

ously can be restated as reachability conditions on the undirected graph Gu corresponding

to G.

Let Gu be the undirected graph corresponding to G, i.e. Gu consists of the same vertices

and edges as G, but the edges are undirected. Then, the slicing conditions can be inter-

preted as : If v �∈ C(G), then v is not reachable from any node in L(Gu). So, every con-

LS(G) = {2, 8, 11, 14},

C(G) = {11*, 12, 13, 14*}, and

L(G) = G - C(G) = {1, 2, 2*, 3, 4, 5, 6, 7, 8, 8*, 9, 10, 11, 14, 15, 16, 17}
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nected component in Gu either belongs to L(Gu) or C(Gu) but is not shared between the

two partitions. Thus, if a connected component contains a load or a store address node,

then the connected component must be assigned to the LdSt partition because the load/

store instruction is assigned to LdSt. Conversely, if a connected component contains a

branch of store value and does not contain any load/store address node, then the connected

component is assigned to the Comp partition.

The graph in Figure 4-4 has four connected components. One component consists of

nodes {11*,12,13,14*}. Since this component does not contain any load/store address

nodes, it can be assigned to the Comp subsystem. In contrast, all the other components

contain load/store address nodes and hence are assigned to the LdSt subsystem.

The complexity of the algorithm based on reachability is O(|V| + |E|) where |V| is the

number of nodes in the SDG and |E| is the number of edges in the SDG. This directly fol-

lows from the result that the connected components of an undirected graph can be com-

puted in O(|V| + |E|) time [CLL92].

4.5  Advanced Partitioning Schemes

This section discusses advanced partitioning techniques that relax the restrictions on

inserting extra instructions in order to find more computation to off-load to the Comp sub-

system. The restrictions are relaxed in two ways. First, the advanced schemes assume the

availability of copy instructions that can copy values between the LdSt and Comp register

files without accessing memory. Such instructions are present in a number of ISAs (e.g.

MIPS [KH92] and Alpha [Dig96]). Second, the advanced scheme duplicates some instruc-

tions to arrive at better partitions. Copy and duplicate instructions can not only increase

the size of the Comp partition, but can also increase the total number of dynamic instruc-

tions executed and instruction cache miss rates. Hence, care must be taken to minimize the

overheads associated with copy and duplicate instructions. Our heuristics take into

account these overheads. It is shown in Section 4.6 that our heuristics introduce very few

extra instructions.
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4.5.1 Limitations of the Basic Partitioning Scheme

The need for advanced partitioning schemes is first motivated by presenting specific

examples where the basic partitioning algorithm is limited in its ability to move computa-

tion to the Comp subsystem.

Function calls limit the ability of the basic partitioning algorithm in finding Comp com-

putation in the called function and near the call site because calling conventions require all

the integer-value arguments to be passed in integer registers and the return value to be

returned in an integer register. Since the basic scheme is constrained not to introduce extra

(copy) instructions, all instructions at the call site that compute argument values, and all

instructions inside the function that use argument values are assigned to the LdSt sub-

system. The same holds for instructions that compute function return values and instruc-

tions that use function return values. One solution to this problem is to use copy

instructions. Once could let the algorithm partition code ignoring the restrictions imposed

Figure 4-5. Partitioning with copies.

lw $f4, regs_inv_by_callI2:
sra,c $f4, $f4, $f2I3:

move $16, $0I1:

andi,c $f4, $f4, 0x1I4:
beq,c $f4, $0, $L4I5:
move $4, $16I6:
jal delete_equiv_regI7:
lw $3, reg_tickI8:
sll $2, $16, 2I9:
addu $2, $2, $3I10:
lw $f0, 0($2)I11:
bltz,c $f0, $L4I12:
addu,c $f0, $f0, 1I13:
sw $f0, 0($2)I14:
addu $16, $16, 1I15:

slt,c $f4, $f2, 66I16:
bne,c $f2,$0,$L5I17:
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by the calling conventions and later, when necessary, introduce copies to adhere to the

conventions.

If any branch or store-value computation in the program is supplied a value by any

addressing instruction, then the basic partitioning scheme assigns that computation to the

LdSt subsystem. Figure 4-4 shows the SDG and the partitioning generated by the basic

partitioning scheme for our running example. In the example, the branch computations

{I16, I17} and {I2, I3, I4, I5} are supplied by the addressing instructions I1 and I15 and

hence could not be assigned to Comp. By inserting copies for the results of I1 and I15,

these branch computations can execute in Comp. Figure 4-5 shows the code generated and

the associated SDG when this is done. In this example, copies have enabled the off-load-

ing of five more instructions to Comp. Since I1’ is outside the loop, copy overheads are

repeatedly incurred only for node I15’.

For this example code-duplication can be used to achieve the same partitioning as real-

ized by inserting copies. In the C code fragment shown in Figure 4-1, the loop induction

variable regno is used both for address computation as well as for branch computation.

By duplicating the induction variable regno in Comp, the two pieces of code can proceed

independently without any communication. Figure 4-6 shows the assembly code and the

associated SDG when this is done. I1’ and I15’ are duplicated instructions and enable five

more instructions to be off-loaded to the Comp subsystem. Again, since I1’ is outside the

loop, duplication overheads are repeatedly incurred only for node I15’.

Thus, copy instructions and code duplication can achieve better code partitioning. How-

ever, arbitrary use of these techniques can hurt performance because copies and duplicates

may introduce overhead. The advanced partitioning algorithm used by the compiler

employs a cost model to identify profitable sites for copy insertion and code duplication.

The cost model and the algorithm are briefly described here. Subramanya Sastry was a

major contributor in designing the cost model and the advanced partitioning algorithm.

They are discussed in detail by Sastry et al. [SPS98].
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4.5.2 Cost Model

Intuitively, the benefit from a copy instruction or a duplicated instruction is the number

of extra dynamic instructions that will execute in the Comp subsystem as a result of the

copy/duplicate inserted. Symbolically, given a SDG G,

The nodes in Sc execute in Comp yielding a bigger Comp partition. However, execution

of nodes in Scopy and Sdupl introduces overhead in the program. It is beneficial to introduce

these copies and duplicates only if the increase in size of the Comp partition offsets the

overhead. This is quantified by the following equations.

Let Scopy be the set of nodes in G for which copies are inserted.

Let Sdupl be the set of nodes in G which are duplicated

Let Sc be the set of nodes in G that can be moved to from LdSt to Comp as a result of

the copies and duplicates.

Figure 4-6. Partitioning with code duplication.

lw $f4, regs_inv_by_callI2:
sra,c $f4, $f4, $f2I3:

move $16, $0I1:

andi,c $f4, $f4, 0x1I4:
beq,c $f4, $0, $L4I5:
move $4, $16I6:
jal delete_equiv_regI7:
lw $3, reg_tickI8:
sll $2, $16, 2I9:
addu $2, $2, $3I10:
lw $f0, 0($2)I11:
bltz,c $f0, $L4I12:
addu,c $f0, $f0, 1I13:
sw $f0, 0($2)I14:
addu $16, $16, 1I15:

slt,c $f4, $f2, 66I16:
bne,c $f2,$0,$L5I17:
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where:

Hence, it is beneficial to introduce copies and duplicate instructions only if Profit ≥ 0.

4.5.3  Algorithm for Introducing Copies and Duplicating Code

A simple heuristic is used to decide whether a given node v should be copied1or dupli-

cated. The heuristic uses the number of parents of the node as input. The heuristic favors

duplication of the node if it has few parents or if the node has parents outside its enclosing

loop. In our example program, nodes 1 and 15 are candidates for copying/duplication.

Because node 15 is within a loop, both techniques introduce an overhead of one instruc-

tion per loop iteration. Duplication of node 15 requires that node 1 be duplicated/copied.

Because node 1 is outside the loop, duplication is preferable.

The advanced partitioning algorithm starts by initializing the LdSt partition to be the

LdSt slice. Then the algorithm iteratively expands the LdSt partition to include instruc-

tions that are not profitable for execution in the Comp subsystem. It does so by analyzing

the instructions on the boundary between the LdSt and Comp partitions for execution in

1. to be more precise, the result of node v should be copied.

B(I): Basic block containing instruction I

nB: Number of times basic block B executed at run-time

ocopy: Overhead of a copy instruction

odupl: Overhead of a duplicate instructions

Benefi t nB v( )
v Sc∈
∑=

Overhead ocopy nB v( )
v Scopy∈

∑× odupl nB v( )
v Sdupl∈

∑×+=

Profi t Benefi t Overhead–=
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the Comp subsystem. The boundary is made up of LdSt nodes whose children are not in

LdSt. For each child of a boundary instruction, the algorithm essentially checks if the ben-

efit of executing the child instruction in the Comp subsystem is positive, taking into

account the extra copies and duplicate instructions that might be necessary. If not, the

boundary is expanded to include the instruction in the LdSt partition. The algorithm stops

when the boundary can no longer be grown. The advanced partitioning algorithm is

described in further detail by Sastry et al. [SPS98].

4.6  Experimental Evaluation

4.6.1  Evaluation Methodology

We used gcc-2.7.1 as the base compiler for studying the partitioning schemes. The com-

piler was modified by Subramanya Sastry to generate code for the extended SimpleScalar

[BAB96] ISA which is based on the MIPS ISA. The SimpleScalar instruction set was

extended by using new opcodes to encode integer instructions executing in the augmented

floating-point subsystem. For the conventional microarchitecture, the benchmark pro-

grams are compiled by the base compiler (unmodified gcc-2.7.1).

Code partitioning is performed on the intermediate representation of the program. This

is done only after the initial machine-independent optimizations [ASU88] like loop-invari-

ant code motion, constant propagation, common subexpression elimination, etc., are com-

plete. Register allocation is performed only after code partitioning is performed. Operands

of instructions in Comp are allocated floating-point registers.

A timing simulator based on the SimpleScalar tool set [BAB96] was used for perfor-

mance evaluations. The timing simulator models both a conventional and an integer-

decoupled microarchitecture. Both microarchitectures are identical except for execution of

integer operations in the floating-point subsystem. The simulator is cycle-based and the

machine parameters simulated for the 4-way and 8-way issue machines are detailed in

Table 4.2.
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We used programs from the SPECint95 benchmark suite to conduct our evaluation. The

benchmarks and the inputs used are given in Table 4.3. The base optimization level used

for compiling the benchmarks is -O3 which enables common subexpression elimination,

loop invariant removal, and jump optimizations among others. All the benchmarks were

run to completion. Compress had the lowest instruction count at 410 millions instructions

and perl had the highest at 1.2 billion instructions.

Parameter 4-way 8-way

Fetch width any 4 instructions any 8 instructions

I-Cache 32 KB, 2-way set associative 64 byte lines, 1 cycle hit
time 6 cycle miss penalty

Branch predictor McFarling’s gshare[McF93] with 1M 2-bit counters,
20bit global history, unconditional control flow instruc-

tions predicted perfectly

Rename width any 4 instructions any 8 instructions

Issue window size 16 int/16 fp 32 int/ 32 fp

Max. in-flight insts 32 64

Retire width 4 8

Functional units 2 Int + 2 Fp units 4 Int + 4 Fp units

Functional unit
latency

6 cycle mul, 12 cycle div, 1 cycle for rest

Issue mechanism up to 4 ops/cycle up to 8 ops/cycle

out-of-order issue loads may execute when prior store
addresses are known

Physical registers 48 int/48 fp 80 int/80 fp

D-Cache 32 KB, 2-way set-associative, write-back, write-allo-
cate, 32 byte lines, 1 cycle hit time, 6 cycle miss penalty

one load/store port two load/store ports

Table 4.2: Machine parameters.
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4.6.2  Performance Results

In this subsection, results for the performance of the two partitioning schemes and the

net speedups possible with the integer-decoupled microarchitecture are presented. All our

results are based on the assumption that only the simple integer operations shown in

Table 4.1 are supported in the Comp subsystem. We then examine the impact on perfor-

mance of supporting some of the more complex integer operations in the Comp sub-

system.

Percentage of Computation Off-loaded to the Comp subsystem

The graph in Figure 4-7 shows the percentage of total dynamic instructions off-loaded

by the compiler for each of the benchmark programs. The graph shows the size of the

Comp partition for both the basic and the advanced partitioning schemes. Because all the

benchmark programs are integer programs that execute negligible floating-point instruc-

tions, the bars in the graph correspond to the amount of integer computation that the com-

piler is able to identify and off-load to the Comp subsystem. Overall, the compiler is

successful in off-loading a sizable fraction of the total computation to the Comp sub-

system. In the case of ijpeg, m88ksim, and gcc more than 20% of the total computation is

supported in the Comp subsystem.The graph also shows that the advanced partitioning

Benchmark Input

compress test.in

li browse.lsp

gcc stmt.i

m88ksim ctl.raw, dhry.big

go 2stone9.in

ijpeg vigo.ppm

perl srabbl.ppl

Table 4.3: Benchmark programs.
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scheme generates bigger partitions than the basic scheme for all the benchmarks. For perl,

go, and compress, the partitions generated by the advanced partitioning scheme are almost

twice the size of those generated by the basic scheme. Ijpeg benefits the most from the

advanced scheme: the Comp computation increases from 10.7% to 32.1%. However, for li,

the advanced scheme does not perform better than the basic scheme because li is call

intensive and has a number of small functions.

While the advanced partitioning scheme might be able to off-load more computation, the

percentages must be judged in conjunction with the change in the instruction cache perfor-

mance and the total number of instructions executed due to the extra instructions intro-

duced. Hence, we studied the overhead introduced by the advanced partitioning scheme.

For all the benchmarks, we found the change in static code size to be negligible. As a

result there was very little change in I-cache hit rates for all the benchmarks. Only in the

case of perl was there a noticeable increase in I-cache hit rate by 1.8%. The increase in the

number of dynamic instructions executed is also small. The maximum increase is 2% for

compress. Copies account for 0.6% and the rest, 1.4% is due to duplicates. For gcc, there

is a 1.2% increase in instruction count, half of which resulted from an increase in loads

and stores. Copies and duplicates accounted for the rest. Overall, these results show that

the advanced partitioning scheme is successful in increasing the Comp partition sizes

without introducing a lot of overhead.

Figure 4-7. Percentage of instructions assigned to Comp.
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Performance Improvements

The graph in Figure 4-8 shows the performance improvements obtained by the integer-

decoupled microarchitecture over a conventional microarchitecture for the 4-way issue (2

int + 2 fp) machine. Improvements due to both the basic and the advanced partitioning

schemes are presented. For m88ksim, compress, and ijpeg, performance improvements

over 10% are achieved with the advanced partitioning scheme. In the case of m88ksim, an

impressive improvement of 23% is achieved with the advanced partitioning scheme. Over-

all for the 4-way machine, the integer-decoupled microarchitecture coupled with the

advanced partitioning scheme is capable of providing modest to impressive speedups over

the conventional microarchitecture.

As expected, performance improvements increase as more instructions are off-loaded to

the Comp subsystem. However, the improvements do not directly reflect the size of the

Comp partitions, i.e. a bigger Comp partition does not necessarily result in a greater per-

formance improvement, for two reasons. First, the load imbalance between the LdSt and

the Comp partitions results in lower speedups than expected. For example, the Comp par-

tition of ijpeg with advanced partitioning is bigger than that of m88ksim with basic parti-

tioning, but the corresponding improvement of ijpeg is much smaller than that of m88ksim.

We found load imbalance to be the culprit in this case. There are phases in which majority

of the computation is supported in the Comp subsystem leaving the LdSt subsystem rela-

Figure 4-8. Speedups on the 4-way machine.
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tively idle. Quantitatively, simulations of ijpeg show that the LdSt subsystem is idle 13.5%

of the cycles when the Comp subsystem is executing one or more instructions. The equiv-

alent number for m88ksim is only 4.4%. With the advanced partitioning scheme, m88ksim

also suffers from the problem of load imbalance. For m88ksim with the advanced scheme,

the LdSt subsystem is idle 12.4% of the cycles in which the Comp subsystem is executing

one or more instructions. This partly explains why performance only improves by about

2.6% even though the size of the partition increases by 12%.

Another reason performance might not improve with Comp partition size is that in some

cases the critical path of execution is not affected by partitioning. For example, with the

basic partitioning scheme, 15% of the code in mpegplay executes in the Comp subsystem,

but the resulting speedup is only 2.7%. Loads and stores contribute close to 47% of the

total instructions in the benchmarks, and hence performance is largely determined by the

cache bandwidth available. Since the integer-decoupled microarchitecture has the same

cache bandwidth as the conventional microarchitecture, the performance of mpegplay

does not improve significantly. Even with the advanced partitioning scheme and a bigger

Comp partition, the speedup is only 4%.

The graph also shows that for most benchmarks, the advanced partitioning scheme

yields better speedups than the basic partitioning scheme. The two exceptions are li and

Figure 4-9. Speedups on the 8-way machine.
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m88ksim. In the case of li, the increase in the size of the Comp partition is very small. For

m88ksim, load imbalance seems to be the problem as mentioned earlier.

Performance Improvements on the 8-way machine

The graph in Figure 4-9 shows performance improvements on the 8-way issue (4 int + 4

fp) machine. The speedups on the 8-way issue machine are smaller than the speedups

achieved on the 4-way issue machine. This is expected because the number of units in the

LdSt subsystem now gets within the range of average parallelism in the programs. So, the

extra issue bandwidth available in the Comp subsystem is not exploited as much. How-

ever, m88ksim achieves an improvement of 19% because it has enough parallelism and is

able to exploit the presence of a bigger instruction window and the wider issue and execu-

tion bandwidth.

Instruction mix of the Comp partition

The instruction mix of the Comp partition, assuming that integer multiply and divide

operations are also available in the Comp subsystem, is shown in Figure 4-10. The graphs

shows that, except for ijpeg, all the benchmarks execute a negligible number of integer

multiply and divide operations in the Comp subsystem. Ijpeg has the maximum percentage

of multiplies at 2.77%. Ijpeg also has the maximum number of divides at 0.11%. For the

remaining benchmarks, the instruction mix is almost entirely composed of simple control,

logical, and arithmetic instructions. This observation matches with the results of other

studies [HP96].

For ijpeg, we studied the performance effects of supporting integer multiply and divide

operations in the Comp subsystem. This has a dramatic effect on the basic partitioning

scheme. The Comp percentage increased from 11% to 40%. The speedups also increased

from 6% to 16% because in some frequently executed functions of ijpeg, the multiply

instructions are closely related to the rest of the instructions in the function. So, when the

multiply instructions are moved to the LdSt subsystem, all reachable instructions are also
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moved to the LdSt subsystem which effectively moves the whole function to LdSt. How-

ever, the change was not as marked with the advanced partitioning scheme because it was

able to recoup some of the computation that got moved to LdSt using copies. The Comp

partition size increased from 11% to 32%. The performance improvement on the 4-way

issue machine increased from 6% to 11%. This shows that the advanced partitioning

scheme is successful in reducing the impact of the absence of integer multiply and divide

instructions in the Comp subsystem.

4.7  Related Work

The early Control Data Corporation and Cray Research style of architectures [Rus78,

Tho61] were the first to distinguish operand access and computation. One set of functional

units and registers is used for addressing and a second set is used for computation in these

architectures. Smith [Smi82] proposed the decoupled style of machine organization in

which operand access and computation are separated and executed in parallel. The access

subsystem executes memory access related instructions while the execute subsystem sup-

ports compute instructions. The access and execute subsystems communicate through

queues. This organization style permits the access subsystem to slip ahead of the execute

subsystem and hence, helps hide the latency of memory access. Experimental evaluation

showed considerable speedups for the floating-point programs studied. Work along similar

Figure 4-10. Instruction mix of the Comp partition.
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lines is reported by Pleszkun and Davidson [PD83], Goodman et al. [GHL+85], and Bird

et al.[BRT93].

The decoupling concept has since been successfully implemented in a number of com-

mercial machines like the IBM RS/6000 [Gro90] and the MIPS R8000 [Hsu94]. However,

both these implementations only decouple integer and floating-point subsystems. While

this helps to decouple memory access and computation in floating-point programs, integer

programs cannot benefit from decoupling in these implementations.

The work presented in this chapter extends earlier work in the area of decoupled archi-

tectures in two important ways. First, the proposed integer-decoupled microarchitecture

applies the concept of decoupling to integer programs. Second, decoupling is used as a

technique to extract additional performance for integer codes from conventional microar-

chitectures without increasing their complexity.

In the context of the compiler work presented, the most closely related work is reported

by Capitanio et al. [CDN92]. They study code partitioning for a VLIW architecture with

partitioned register files. Their architecture consists of a number of homogeneous clusters

each of which are statically scheduled. In contrast, the integer-decoupled microarchitec-

ture is heterogeneous; only the LdSt subsystem can execute loads and stores. Further, the

earlier study applied code partitioning only to straight-line loop bodies and did not con-

sider code duplication as a means of avoiding inter-partition communication.

4.8  Chapter Summary

Conventional microarchitectures suffer from idle floating-point resources when execut-

ing integer codes. This chapter proposed integer-decoupled microarchitectures that

address this drawback by supporting some of the non-addressing computation in integer

programs in an augmented floating-point subsystem. For integer programs, this provides

extra issue and execution bandwidth as well as provides a larger window for dynamic

scheduling without increasing the complexity of the conventional microarchitecture. Fur-
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thermore, the only change required to the hardware is the implementation of simple inte-

ger operations in the floating-point subsystem.

The performance of the proposed microarchitecture was evaluated relative to a conven-

tional microarchitecture. The results show two things. First, for the benchmarks studied,

the compiler is able to off-load a significant fraction, from 9% to 41%, of the total compu-

tation in integer programs to the augmented floating-point subsystem. Second, as a result

the performance improvements in the 3% to 23% range were achieved on a 4-way issue

processor.

Hence, I believe that the integer-decoupled microarchitecture is an attractive choice for

future processors especially considering that the hardware changes required to adapt the

conventional microarchitecture are small.
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Chapter 5

Conclusions

This thesis examined the trade-off between hardware complexity and clock speed in the

design of superscalar microarchitectures. Using the results of the trade-off analysis, the

thesis proposed and evaluated two new superscalar microarchitectures designed with the

goal of achieving high performance by reducing complexity.

5.1  Thesis Summary

Superscalar microarchitectures provide high performance by using hardware techniques

to execute multiple instructions every cycle. The performance of these microarchitectures

is directly proportional to the product — .

Instructions Per Cycle or IPC measures the amount of parallelism extracted by the

microarchitecture and Clock Frequency is the speed at which the microarchitecture can be

clocked. Complex hardware helps improve the IPC factor by extracting higher levels of

instruction-level parallelism. However, the complex hardware employed to achieve high

IPC can potentially slow the clock and hence, nullify the improvements in IPC. Therefore,

there is a need for developing microarchitectures that judiciously use hardware complexity

Instructions Per Cycle Clock Frequency×
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for extracting higher levels of parallelism while permitting a fast clock; that is, to develop

microarchitectures we refer to as complexity-effective microarchitectures.

To design microarchitectures that are complexity-effective, computer architects need

simple models for measuring complexity that can be used at a fairly early stage of the

design process. In addition to determining complexity-effectiveness, such models help

identify long-term complexity trends.

The first part of this thesis presented simple models that quantifying the complexity of

superscalar microarchitectures. A baseline superscalar pipeline is presented and structures

whose complexity grows with increasing ILP are identified. Of these structures, register

renaming, instruction window wakeup, instruction window selection, register file access,

and operand bypassing are analyzed in detail. Each is modeled and Spice simulated for

three different feature sizes representing past, present, and future technologies. Simple

analytical models are developed that express the delay of each of the structures in terms of

microarchitectural parameters like issue width and instruction window size. The impact of

technology trends is also studied. In particular, the impact of poor scaling of wire delays in

future technologies is analyzed.

Results show that the logic associated with managing the issue window of a superscalar

processor is likely to become the most critical structure as we move towards wider-issue,

larger windows, and advanced technologies in which wire delays dominate. One of the

functions implemented by the logic is the broadcast of results tags over wires that span the

instruction window. This operation does not scale well especially as feature sizes are

reduced. Furthermore, in order to be able to execute dependent instructions in consecutive

cycles — a desirable feature from the point of view of performance — the delay of the

window logic should be less than a cycle.

In addition to window logic, a second structure that needs careful consideration in future

technologies is the data bypass logic. The length of result wires used to broadcast bypass
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values increases linearly with issue width and hence, the delay of the data bypass logic

increases at least linearly with issue width. As a result, the data bypass delay can grow sig-

nificantly for wider microarchitectures in future technologies and force architects to con-

sider clustered microarchitectures.

To address the complexity of window logic and data bypass logic, a family of complex-

ity-effective microarchitectures called the dependence-based superscalar microarchitec-

tures is proposed and studied. The proposed microarchitectures achieve the dual goals of

high IPC and a fast clock using two main techniques. The machine is partitioned into mul-

tiple clusters each of which contains a slice of the instruction window and execution

resources of the whole processor. This enables high-speed clocking of the individual clus-

ters since the narrow issue width and the small instruction window in each cluster keeps

critical delays small. The second technique involves intelligent steering of instructions to

the multiple clusters so that the whole width of the machine is utilized while minimizing

the performance degradation due to slow inter-cluster communication. Experimental

results show that dependence-based superscalar microarchitectures are capable of extract-

ing similar levels of parallelism as conventional microarchitectures while facilitating a

faster clock.

The third contribution of this thesis is the integer-decoupled microarchitecture. The inte-

ger-decoupled microarchitecture improves the performance of integer programs and can

be integrated into a conventional microarchitecture with little or no increase in complexity.

Floating-point units in the conventional microarchitecture are augmented to perform sim-

ple integer operations and the resulting floating-point subsystem is used to support some

of the computation in integer programs. The computation to be off-loaded is identified by

the compiler. Simulation results are presented that show modest speedups for a 4-way pro-

cessor. The speedups diminish with increasing issue width.
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5.2  Future directions

5.2.1  Quantifying the Complexity of Superscalar Microarchitectures

Analysis similar to that presented in this thesis can be applied to other structures in the

pipeline that are not studied here. Two specific examples are the instruction fetch logic and

the load/store queue logic. The complexity of the latter in particular has been problematic

[Yea97] for designers in industry.

5.2.2  Dependence-based Superscalar Microarchitectures

The instruction steering heuristics studied in this thesis are simple in that they do not

require more than one extra pipe stage. One avenue for future research is the feasibility

and applicability of caching steering information. Caching steering information can help

move the steering logic out of the critical path. This would open up the possibility of more

complex steering heuristics. Therefore, it might be worthwhile to study sophisticated

steering heuristics that can further boost the parallelism extracted by the dependence-

based microarchitectures.

The fifo steering heuristic studied in this thesis steers instructions solely based on regis-

ter dependences between instructions. It might be possible to augment the heuristic with

the memory-dependence prediction techniques proposed by Moshovos et al. [MBVS97] to

help create longer chains. For example, a load instruction can be steered to the fifo that

contains an earlier store instruction to the same address as the one referenced by the load.

Note that at the time of steering, the addresses referenced by the load and the store instruc-

tion are not known. Memory-dependence prediction can be used to chain dependent load-

store pairs and steer them to the same fifo.

5.2.3  Integer-decoupled Microarchitecture

There is always scope for more research in developing improved partitioning heuristics

that can off-load more computation to the augmented FP subsystem. Another possibility is
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to study heuristics that not only try to off-load sizable fraction of the total computation,

but also try to balance the load on the two subsystems.

An alternative scheme for utilizing the idle floating-point subsystem in a conventional

microarchitecture, is to use the idle subsystem to execute along both paths of likely

mispredicted branches [HS96] in integer programs. Of course, this would require extra

hardware support.
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Appendix A

A.1  Technology Parameters

The Hspice Level 3 models used to simulate the synthetic 0.8µm, 0.35µm, and 0.18µm

CMOS technologies are given in Table A.1.

Parameter 0.8µm 0.35µm 0.18µm

tox 165 70 35

vto 0.77(-0.87) 0.67(-0.77) 0.55(-0.55)

uo 570(145) 535(122) 450(80)

gamma 0.8(0.73) 0.53(0.42) 0.40(0.32)

vmax 2.7e5(0.0) 1.8e5(0.0) 1.05e5(0.0)

theta 0.404(0.233) 0.404(0.233) 0.404(0.233)

eta 0.04(0.028) 0.024(0.018) 0.008(0.008)

kappa 1.2(0.04) 1.2(0.04) 1.2(0.04)

phi 0.90 0.90 0.90

nsub 8.8e16(9.0e16) 1.38e17(1.38e17) 4.07e17(4.07e17)

nfs 4e11 4e11 4e11

xj 0.2µ 0.2µ 0.2µ
cj 2e-4(5e-4) 5.4e-4(9.3e-4) 10.6e-4(21.3e-4)

mj 0.389(0.420) 0.389(0.420) 0.389(0.420)

cjsw 4e-10 1.5e-10 3.0e-11

mjsw 0.26(0.31) 0.26(0.31) 0.26(0.31)

pb 0.80 0.80 0.80

cgso 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)

cgdo 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)

delta 0.0 0.0 0.0

ld 0.0001µ 0.0001µ 0.0001µ
rsh 0.5 0.5 0.5

Vdd 5.0 2.5 2.0

Table A.1: Spice parameters.
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Table A.2 gives the metal resistance and capacitance values assumed for the three tech-

nologies.

A.2  Delay Results

Technology
Rmetal

(Ω/µm)
Cmetal

(fF/µm)

0.8µm 0.02 0.275

0.35µm 0.046 0.628

0.18µm 0.09 1.22

Table A.2: Metal resistance and capacitance.

Issue
Width

Decoder
Delay (ps)

Wordline Drive
Delay(ps)

Bitline
Delay(ps)

Total
Delay(ps)

0.8µm technology

2 540.3 218.9 498.2 1502.2

4 547.1 227.9 529.6 1566.9

8 562.5 245.8 594.2 1700.9

0.35µm technology

2 220.2 95.6 236.5 649.4

4 225.8 103.9 259.2 698.5

8 243.1 115.8 303.1 800.8

0.18µm technology

2 129.6 70.6 175.7 435.4

4 136.8 78.2 193.4 478.9

8 148.4 92.5 228.5 561.7

Table A.3: Break down of rename delay.
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Window
Size

Tag Drive
Delay(ps)

Tag Match
Delay(ps)

Match OR
Delay(ps)

Total
Delay(ps)

Issue Width = 2

8 73.0 331.3 248.1 652.4

16 82.6 333.1 248.5 664.2

24 92.6 337.3 248.8 678.7

32 103.7 344.0 249.1 696.9

40 114.9 347.7 248.9 711.5

48 126.3 352.4 248.7 727.5

56 137.4 358.7 249.2 745.4

64 149.1 364.6 248.7 762.4

Issue Width = 4

8 74.5 368.2 407.0 849.7

16 86.4 372.4 406.8 865.6

24 98.8 377.6 403.9 880.3

32 112.3 384.8 409.2 906.2

40 126.2 392.3 408.7 927.2

48 140.6 400.1 404.2 944.9

56 156.3 409.0 404.1 969.4

64 172.4 416.9 403.3 992.7

Issue Width = 8

8 77.5 400.2 665.3 1143.0

16 93.3 406.6 665.7 1165.5

24 111.4 415.2 664.8 1191.4

32 130.7 425.2 658.5 1214.4

40 151.5 437.7 660.2 1249.5

48 174.4 451.0 658.3 1283.8

56 199.3 465.0 664.6 1328.9

64 228.2 479.2 664.6 1372.0

Table A.4: Break down of window wakeup delay for 0.8µm technology.
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Window
Size

Tag Drive
Delay(ps)

Tag Match
Delay(ps)

Match OR
Delay(ps)

Total
Delay(ps)

Issue Width = 2

8 28.5 126.1 101.3 255.8

16 33.4 128.7 101.5 263.7

24 38.3 129.1 101.2 268.6

32 43.7 133.2 97.3 274.1

40 49.7 136.3 101.2 287.3

48 53.1 138.8 97.4 289.3

56 58.9 142.7 101.1 302.8

64 64.4 145.0 98.9 308.3

Issue Width = 4

8 29.7 147.1 155.8 332.6

16 36.0 151.2 158.3 345.4

24 42.7 155.0 159.1 356.8

32 50.5 157.7 158.4 366.7

40 56.3 163.2 159.0 378.5

48 63.2 168.1 159.6 390.9

56 72.0 171.9 157.0 400.9

64 80.9 179.0 159.1 419.0

Issue Width = 8

8 32.2 173.4 257.6 463.2

16 41.6 177.5 257.8 476.9

24 51.1 183.7 257.8 492.5

32 61.9 190.6 257.7 510.1

40 74.7 199.1 257.7 531.5

48 88.8 208.9 257.6 555.3

56 102.9 216.4 258.4 577.7

64 121.8 224.8 258.4 605.0

Table A.5: Break down of window wakeup delay for 0.35µm technology.
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Window
Size

Tag Drive
Delay(ps)

Tag Match
Delay(ps)

Match OR
Delay(ps)

Total
Delay(ps)

Issue Width = 2

8 14.6 67.9 60.7 143.1

16 18.8 68.7 60.6 148.1

24 22.4 69.8 60.6 152.7

32 26.1 71.8 60.6 152.7

40 29.9 73.6 60.3 163.8

48 33.7 75.7 59.9 169.3

56 36.6 77.3 61.0 174.8

64 41.4 79.4 59.7 180.5

Issue Width = 4

8 15.8 84.1 84.7 184.7

16 21.1 85.1 84.4 190.6

24 26.1 87.6 84.8 198.5

32 31.2 90.8 84.3 206.3

40 36.6 93.3 84.8 214.7

48 41.7 96.5 84.4 222.5

56 47.5 99.4 84.8 231.8

64 54.1 102.8 84.4 241.3

Issue Width = 8

8 18.8 104.9 123.6 247.3

16 26.1 108.4 123.8 258.3

24 33.8 113.6 123.1 270.5

32 42.0 118.2 125.0 285.1

40 51.5 124.8 123.2 299.5

48 62.6 130.4 123.0 316.0

56 75.1 135.2 123.2 333.4

64 90.0 139.4 122.9 352.3

Table A.6: Break down of window wakeup delay for 0.18µm technology.
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Window
Size

Treqpropd(ps) Troot(ps) Tgrantpropd(ps) Total
Delay(ps)

0.8µm technology

16 233.2 607.2 272.5 1113.0

32 532.5 737.6 727.4 1997.5

64 534.6 742.9 719.8 1997.4

128 802.8 753.4 1118.5 2674.6

0.35µm technology

16 125.0 338.5 135.4 598.9

32 246.6 339.7 295.4 881.7

64 245.5 338.0 296.3 879.8

128 347.9 338.5 460.3 1146.7

0.18µm technology

16 53.6 141.7 55.1 250.4

32 107.0 141.2 123.5 371.7

64 106.9 144.2 121.9 373.0

128 159.9 146.7 195.5 502.1

Table A.7: Break down of selection delay.



167

Issue
Width

Window
Size

Register
File Size

Rename
Delay(ps)

Window
Delay(ps)

Register
File

Delay(ps)

Data
Bypass

Delay(ps)

2 16 48 1374.57 1777.20 1902.05 233.15

4 32 80 1417.25 2903.70 2222.10 411.12

8 64 120 1489.91 3369.4 2715.71 836.79

Table A.8: Overall delay results for 0.8µm technology.

Issue
Width

Window
Size

Register
File Size

Rename
Delay(ps)

Window
Delay(ps)

Register
File

Delay(ps)

Data
Bypass

Delay(ps)

2 16 48 524.76 862.60 724.43 110.45

4 32 80 554.08 1248.40 873.21 223.79

8 64 120 603.59 1484.80 1155.45 486.50

Table A.9: Overall delay results for 0.35µm technology.

Issue
Width

Window
Size

Register
File Size

Rename
Delay(ps)

Window
Delay(ps)

Register
File

Delay(ps)

Data
Bypass

Delay(ps)

2 16 48 285.43 398.50 393.43 91.00

4 32 80 311.55 578.00 498.29 177.58

8 64 120 355.62 725.30 729.40 421.42

Table A.10: Overall delay results for 0.18µm technology.



168



169

Appendix B

The constants in the delay equations presented in Chapter 2 are tabulated below. The

table entries contain both absolute and relative values of the constants. The relative values

are presented to show how each component’s contribution varies with feature size.

B.1  Register Rename Logic

Decoder delay

Wordline delay

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 387.16
(1.00)

8.611
(2.22e-2)

1.07e-2
(2.76e-5)

0.35µm 153.66
(1.00)

5.425
(3.53e-2)

1.07e-2
(6.96e-5)

0.18µm 81.88
(1.00)

3.96
(4.84e-2)

1.07e-2
(1.31e-5)

Table B.1: Constants in decoder delay equation for rename logic.

T decoder c0 c1 IW× c2 IW
2×+ +=

T wordline c0 c1 IW× c2 IW
2×+ +=
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Bitline delay

Total delay

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 98.71
(1.00)

7.17
(7.26e-2)

1.93e-3
(1.96e-5)

0.35µm 39.18
(1.00)

4.52
(1.15e-1)

1.93e-3
(4.92e-5)

0.18µm 20.88
(1.00)

3.30
(1.58e-1)

1.93e-3
(9.24e-5)

Table B.2: Constants in wordline delay equation for rename logic.

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 525.75
(1.00)

22.06
(4.19e-2)

5.84e-3
(1.11e-2)

0.35µm 208.67
(1.00)

13.90
(6.67e-2)

5.84e-3
(2.80e-2)

0.18µm 111.20
(1.00)

10.14
(9.12e-2)

5.84e-3
(5.25e-2)

Table B.3: Constants in bitline delay equation for rename logic.

T bitline c0 c1 IW× c2 IW
2×+ +=

T rename c0 c1 IW× c2 IW
2×+ +=
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B.2  Window Wakeup Logic

Tag drive delay

Tag match delay

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 1011.62
(1.00)

37.84
(3.74e-2)

1.78e-2
(1.76e-5)

0.35µm 401.51
(1.00)

23.84
(5.94e-2)

1.78e-2
(4.43e-5)

0.18µm 213.96
(1.00)

17.40
(8.13e-2)

1.78e-2
(8.32e-5)

Table B.4: Constants in total delay equation for rename logic.

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)
c3

(ps)
c4

(ps)
c5

(ps)

0.8µm 18.14
(1.00)

6.37e-1
(3.51e-2)

9.43e-2
(5.20e-3)

3.05e-3
(1.68e-4)

1.52e-3
(8.38e-5)

1.21e-4
(6.67e-6)

0.35µm 7.20
(1.00)

2.97e-1
(4.12e-2)

5.94e-2
(8.25e-3)

2.10e-3
(2.92e-4)

1.29e-3
(1.79e-4)

1.21e-4
(1.68e-5)

0.18µm 3.84
(1.00)

1.82e-1
(4.74e-2)

4.34e-2
(1.13e-2)

1.66e-3
(4.32e-4)

1.08e-3
(2.81e-4)

1.21e-4
(3.15e-5)

Table B.5: Constants in tag drive delay equation for wakeup logic.

T tagdrive c0 c1 c2 IW×+( ) WINSIZE× c3 c4 IW× c5 IW
2×+ +( ) WINSIZE

2×+ +=

T tagmatch c0 c1 IW× c2 IW
2×+ +=
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Match OR delay

Total delay

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 390.68
(1.00)

6.01
(1.54e-2)

3.35e-3
(8.57e-6)

0.35µm 83.15
(1.00)

3.48
(4.18e-2)

3.35e-3
(4.03e-5)

0.18µm 45.46
(1.00)

2.55
(5.61e-2)

3.35e-3
(7.37e-5)

Table B.6: Constants in tag match delay equation for wakeup logic.

Feature
Size

c0

(ps)
c1

(ps)

0.8µm 60.00 70.00

0.35µm 26.25 30.62

0.18µm 13.63 15.75

Table B.7: Constants in match OR delay equation for wakeup
logic.

=

+

+

T matchOR c0 c1 IW×+=

T wakeup c0 c1 IW× c2 IW
2×+ +( )

c3 c4 IW×+( ) WINSIZE×

c5 c6 IW× c7 IW
2×+ +( ) WINSIZE

2×
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Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)
c3

(ps)
c4

(ps)
c5

(ps)

0.8µm 468.82
(1.00)

76.01
(1.62e-1)

3.35e-3
(7.14e-6)

6.37e-3
(1.36e-5)

9.43e-2
(2.01e-4)

3.05e-3
(6.50e-6)

0.35µm 116.60
(1.00)

34.10
(2.91e-1)

3.35e-3
(2.87e-5)

2.97e-1
(2.55e-3)

5.94e-2
(5.09e-4)

2.10e-3
(1.80e-5)

0.18µm 62.93
(1.00)

18.30
(2.91e-1)

3.35e-3
(5.32e-5)

1.82e-1
(2.89e-3)

4.34e-2
(6.90e-4)

1.66e-3
(2.64e-5)

Feature Size
c6

(ps)
c7

(ps)

0.8µm 1.52e-3
(3.24e-6)

1.21e-4
(2.58e-7)

0.35µm 1.29e-3
(1.11e-5)

1.21e-4
(1.04e-6)

0.18µm 1.07e-3
(1.70e-5)

1.21e-4
(1.92e-6)

Table B.8: Constants in total delay equation for wakeup logic.
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B.3  Window Selection Logic

B.4  Register File Logic

Decoder delay

Wordline delay

Feature
Size

c0

(ps)
c1

(ps)

0.8µm 127.61 322.51

0.35µm 50.65 128.00

0.18µm 26.99 68.21

Table B.9: Constants in total delay equation for selection logic.

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)
c3

(ps)
c4

(ps)
c5

(ps)

0.8µm 414.62
(1.00)

9.63e-2
(2.32e-4)

2.03e-2
(4.89e-5)

1.94e-6
(4.68e-9)

4.37e-6
(1.05e-8)

2.46e-6
(5.93e-9)

0.35µm 164.56
(1.00)

6.06e-2
(3.68e-4)

2.03e-2
(1.23e-4)

1.94e-6
(1.18e-8)

4.37e-6
(2.65e-8)

2.46e-6
(1.49e-8)

0.18µm 87.69
(1.00)

4.43e-2
(5.05e-4)

2.03e-2
(2.31e-4)

1.94e-6
(2.21e-8)

4.37e-6
(4.98e-8)

2.46e-6
(2.80e-8)

Table B.10: Constants in decoder delay equation for register file logic.

T select c0 c1 WINSIZE4log×+=

T decoder c0 c1 c2 IW×+( ) NPREG× c3 c4 IW× c5 IW
2×+ +( ) NPREG

2×+ +=

T wordline c0 c1 IW× c2 IW
2×+ +=
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Bitline delay

Total delay

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 203.92
(1.00)

49.66
(2.43e-1)

1.61e-1
(7.90e-4)

0.35µm 80.94
(1.00)

31.29
(3.86e-1)

1.61e-1
(1.99e-3)

0.18µm 43.13
(1.00)

22.84
(5.30e-1)

1.61e-1
(3.73e-3)

Table B.11: Constants in wordline delay equation for register file logic.

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)
c3

(ps)
c4

(ps)
c5

(ps)

0.8µm 300.00
(1.00)

1.02
(3.40e-3)

2.54e-1
(8.47e-4)

1.02e-5
(3.40e-8)

1.40e-5
(4.67e-8)

2.85e-6
(9.50e-9)

0.35µm 119.07
(1.00)

4.05e-1
(3.40e-3)

1.60e-1
(1.34e-3)

6.40e-6
(5.37e-8)

8.80e-6
(7.39e-8)

2.85e-6
(2.39e-8)

0.18µm 63.45
(1.00)

2.96e-1
(4.66e-3)

1.17e-1
(1.84e-3)

4.68e-6
(7.38e-6)

6.42e-6
(1.01e-7)

2.85e-6
(4.49e-6)

Table B.12: Constants in bitline delay equation for register file logic.

=

+

+

T bitline c0 c1 c2 IW×+( ) NPREG× c3 c4 IW× c5 IW
2×+ +( ) NPREG

2×+ +=

T regfile c0 c1 IW× c2 IW
2×+ +( )

c3 c4 IW×+( ) NPREG×

c5 c6 IW× c7 IW
2×+ +( ) NPREG

2×
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B.5  Data Bypass Logic

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)
c3

(ps)
c4

(ps)
c5

(ps)

0.8µm 918.53
(1.00)

49.66
(5.41e-2)

1.61e-1
(1.75e-4)

1.12
(1.22e-3)

2.74e-1
(2.98e-4)

1.21e-5
(1.32e-8)

0.35µm 364.57
(1.00)

31.29
(8.58e-2)

1.61e-1
(4.42e-4)

4.65e-1
(1.28e-3)

1.80e-1
(4.94e-4)

8.34e-6
(2.29e-8)

0.18µm 194.27
(1.00)

22.84
(1.18e-2)

1.61e-1
(8.29e-4)

3.40e-1
(1.75e-3)

1.37e-1
(7.05e-4)

6.62e-6
(3.41e-8)

Feature Size
c6

(ps)
c7

(ps)

0.8µm 1.84e-5
(2.00e-8)

5.31e-6
(5.78e-9)

0.35µm 1.32e-5
(3.62e-8)

5.31e-6
(1.46e-8)

0.18µm 1.08e-5
(5.56e-8)

5.31e-6
(2.73e-8)

Table B.13: Constants in total delay equation for register file logic.

Feature
Size

c0

(ps)
c1

(ps)
c2

(ps)

0.8µm 18.13
(1.00)

25.50
(1.41)

6.15
(0.34)

0.35µm 7.20
(1.00)

16.06
(2.23)

6.15
(0.85)

0.18µm 3.84
(1.00)

11.72
(3.06)

6.15
(1.60)

Table B.14: Constants in total delay equation for data bypass logic.

T bypass c0 c1 IW× c2 IW
2×+ +=


