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Abstract

The performance tradefdfetween hardare complgity and clock speed in the design
of superscalar microarchitectures is firstesticated. Using the results of this tradé-of
analysis, the thesis proposes anglgates tw nev superscalar microarchitectures

designed with the goal of ackiieg high performance by reducing comyptg.

This thesis tads a step twards quantifying the complity of superscalar microarchitec-
tures. First, a generic superscalar pipeline is defined. Then the specific araastef re
renaming, instruction winde wakeup, instruction windw selection, rgister file access,
and operand bypassing are analyzed. Each is modeled and Spice simulated fofghree dif
ent feature sizes representing past, present, and future technologies. Performance results
and compleity trends are xpressed in terms of issue width and wiwdsize. Results
shaw that instruction windw logic and operand bypass logic arelhkto be the most crit-

ical in the future.

Following the compleity analysis, we study amily of superscalar microarchitectures
called the dependence-based microarchitectures. These microarchiteqiloishatural
dependences occurring in programs to reduce the critypté window logic and oper-
and bypass logic. Simulation results whithat dependence-based superscalar microarchi-
tectures are capable ofxteacting similar lgels of parallelism as a ceentional

microarchitecture whileakilitating a aster clock.

Finally, we propose andvaluate the intgerdecoupled microarchitecture that impes
the performance of inger programs by minimally adding to a gentional microarchi-
tecture. Floating-point units in the a@mtional microarchitecture are augmented to per-

form simple intger operations and the resulting floating-point subsystem is used to



i

support some of the computation in integer programs. Simulation results are presented that
show modest speedups for a 4-way processor. The speedups are attractive, however, con-
sidering that the proposed microarchitecture requires little additional hardware.
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Chapter 1

| ntroduction

1.1 Motivation

Over the past decade superscalar microprocessors have become a source of tremendous
computing power. They form the core of a wide spectrum of high-performance computer
systems ranging from desktop computers to small-scale parallel servers to massively-par-
allel systems. To satisfy the ever-growing need for higher levels of computing power, com-
puter architects need to investigate techniques that continue improving the performance of
superscalar microprocessors while considering both changing technology and applica-

tions.

Superscalar microarchitectures [Joh91, SS95], on which superscalar microprocessors
are based, deliver high performance by executing multiple instructions in parallel every
cycle. Hardware is used to detect and execute paralel instructions. This technique of
exploiting fine-grain parallelism at the instruction level to improve performance is com-
monly referred to as instruction-level parallelism. The maximum number of instructions
processed in parallel, aso known as the width of the microarchitecture, is typically four

for the fastest microprocessors [Gwe96a, Kum96] available today. A typical superscalar
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Figure 1-1. A typical superscalar microarchitecture.

microarchitecture, illustrated in Figure 1-1, operates as follows. Multiple instructions are
fetched from the instruction cache every cycle. The instructions are then decoded, checked
for dependences, renamed, and deposited in an instruction window. The instructions wait
in the instruction window for their operands and functional units to become available.
Hardware continuously monitors the dependences between instructions in the window and
selects appropriate instructions for parallel execution. The overal hardware apparatus
responsible for creating the window, monitoring dependences between instructions in the
window, selecting instructions for execution from the window, and providing data oper-
ands to the instructions, henceforth collectively referred to simply asissue l@ic, is one of
the most performance-critical components in a superscalar processor. The issue logic
largely determines the amount of instruction-level paralelism that can be extracted.

Hence, optimizing thislogic is of paramount importance.

The net performance of a superscalar microarchitecture is directly proportional to the
product —Instructions Per Cycle Clock Frequenc. Instructions Per Cycle or IPC isthe
sustained number of instructions executed in parallel every cycle. IPC depends on a num-
ber of factors including the inherent parallelism in the program, the width of the microar-
chitecture, the size of the instruction window, and other characteristics of the scheme used

for extracting parallelism. Clock Frequency is the speed at which the microarchitecture is
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clocked and is determined by the delays associated with the significant critical pathsin the

microarchitecture.

For the past decade, the general approach for improving the performance of superscalar
microprocessors has been to build microarchitectures with increasingly complex issue
logic that can boost the IPC factor in the performance equation. The increase in complex-
ity results from awider microarchitecture, a bigger instruction window, and more complex
issue methods. However, there is a potential problem with continuing this strategy. While
complex issue logic might be able to extract more parallelism, it can easily limit the clock
speed of the microarchitecture. Microarchitectures with more complex issue logic typi-
cally require longer wires and deeper levels of logic to implement, and hence, can require
longer critical paths in the microarchitecture. Thus, there is a danger of squandering the
gainsin IPC to aslow clock, resulting in reduced benefits or even no benefit in overall per-
formance. Furthermore, technology trends suggest that wire delays will increasingly dom-
inate total delay as feature sizes are reduced. These factors suggest that straightforward
scaling of current microarchitectures for higher IPCs might not be the most appropriate
approach for delivering higher performance in future. In summary, there is a trade-off
between issue logic complexity, instructions per cycle (IPC), and clock speed that needsto
be carefully examined while designing improved superscalar microarchitectures. This the-

Sis examines this trade-off.

The above discussion underscores the need for investigating superscalar microarchitec-
tures that judiciously use hardware complexity for exploiting significant levels of instruc-
tion-level parallelism while permitting a fast clock. We call such microarchitectures
compl exity-effective superscalar microarchitectures. These microarchitectures attempt to
maximize the product of IPC and Clock Frequency rather than push the envelope for each
term separately. This thesis proposes and evaluates two such complexity-effective super-
scalar microarchitectures called dependence-based microarchitectures and integer-decou-

pled microarchitectures.
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It must be mentioned that the comptg of a design can lva different, sometimes con-

flicting meanings. @ a \erification engineerdesign A is more comptethan design B if

the time takn to \erify design A is greater than that for design B. On the other hand, a
logic designer typically measures conxifg in terms of the number ofages required to
implement a design. In this thesis, comxileis measured as the delay of the critical path
through a piece of logic, and the longest path througho&rthe pipeline stages deter-
mines the clock speed. Comxyity, as we define it, is lgely independent of the number

of gates required or the time t@nfy the design. Instead, compity is dependent on a
number of &ctors that could &dct the delay of the critical paths in the design such as the
number of logic stages, the length of wires, thgréle of &in-out of a particular signal, and

the number of associaé compares performedeary o/cle.

While designing for compiety-effectiveness is a desirable goal, the question that
immediately arises is: mdo we quantify the compléy of a microarchitecture? It is
commonplace to measure the IPC of @ maicroarchitecture, typically by using simula-
tion. Such simulations count clockates and prade IPC in a direct manneHowever,
the compleity of a microarchitecture is much morefdi@lt to determine — to beevy
accurate, it requires a full implementation in a specific technoMpat is ery much
needed areairly straightforvard measures of compigy that can be used by microarchi-
tects at adirly early stage of the design process. Such method#vallov the determi-
nation of complgity-effectiveness. This thesis ta& a step in the direction of

characterizing compkity and complgity trends.

1.2 Historical Perspective

This section briefly outlines thev@ution of ILP processors, especially superscalar pro-
cessors, while highlighting major trends in design trade+ofolving hardvare comple-
ity and performance. Figufe? illustrates the wlution of ILP processors with a time

line.
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Figure 1-2. Time line shaving evolution of superscalar processors.

Pipelining [Kog81] is the most prvalent technique fongloiting instruction-leel paral-
lelism. Pipelining enablesverlapped eecution of multiple instructions by breaking
Instruction processing into gaents, just lik an assembly line. Itag first implemented
in the IBM Stretch [Buc62] in 1961. Ev since, pipelining has been adopted by almost all
high-performance designs.

The 1960s sa& two pioneering machines that laid the foundation for much of the ILP
techniques in wide use todayhese were the CDC 6600 [Tho61,Tho63] and the IBM 360/
91 [AST67] machines dekered in 1964 and 1967 respeety. The CDC 6600 imple-
mented an impress repertoire of architectural techniques, especially for its time — a
clean load/store instruction set that enabldidient pipelining, multiple functional units,
and scoreboarding logic for dynamic scheduling. In the IBM 360/91 floating-point sub-
system, the designers implemented a more sophisticated issuing schemeakmoma-
sulo’s algorithm [Tom67] after its imentor The issuing schemes of most current
superscalar microprocessors can bewgi as ariants of ®masulo$ scheme. Ean
though the tw designs implemented out-of-ordeseeution, thg were both single issue
machines. Out-of-orderxecution vas used to \erlap eecution of long-latenc opera-
tions, tolerate slw memory accesses, and, in the case of the 360/91atritige perfor-

mance drabacks of haing few (8) floating-point rgisters.
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Soon after both IBM and CDC neerted back to simpler in-order issue, pipelined

machines with aast clock. The follev-on machines, the CDC 7600 and the IBM 360/85,
issued instructions strictly in ordérhe &act reasons for thisversal are not knven, hut
issues lile the dificulty of delugging complg issue methods and thetea hardvare cost
are likely considerations on which the decisioasnbased. Also, the use of a cache in the
IBM 360/85 to tolerate memory latgnprobably made out-of-ordekecution less attrac-
tive. Two decades latemushrooming transistorubdgets, adanced CAD tools, and the
market for high-performance, ould trigger the resgence of 6600 and 360/91-4ik

schemes in the contieof superscalar microprocessors.

The 1970s ws not anwentful decade for ILP processors. All commercial machines still
had a peak fetch rate of one instruction petec Havever, during this time, some of the
initial research in the area of multiple-instruction issue [TF70,RF72,Sché4 [carried
out. Schorr describes anptoratory design [Sch71] capable of fetching, decoding, and
executing multiple instructionsvery g/cle. The design, later to be kmo as the IBM AS
(Advanced Computer System)asvpartitioned into theadex unit that performed address-
ing operations and the¥ithmetic unit that eecuted arithmetic instructions. The arithmetic
unit had a winde of eight instructions out of which three instructions could be issued for
execution @ery g/cle. Unfortunatelythe project \as cancelled due to the incompatibility
of the ISA with the S/360 ISA and other problems.

The late 1970s sathe emegence of a ng paradigm for ILP called VLIW — &ty
Long Instruction Vdrd — that grev out of early microcode machines i/84] and systems
built by Floating Point Systems [Cha81]. VLIWSs rely on the compiler to pack independent
operations into a long instructiorowd which are thenxecuted on multiple, independent
functional units. The guments indvor of VLIW are two-fold. First, since the compiler
has a lager scope than the hardwre to look for independent operations, VLIWSs should be
able to e&ploit more parallelism than superscalars. Second, since coisplee hardare
is no longer required, VLIW processors can be adckuch éster than superscalar pro-

cessors. Hoever, even though a f& commercial VLIW processors wereil, the para-
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digm has not gained widespread acceptance. There are a number of reasons. First, to

match hardware techniques, the paradigm requires sophisticated compiler technology that
implements advanced techniques like software pipelining, global scheduling to move
instructions across branches, trace scheduling [Fis81], and memory disambiguation.
While advanced VLIW compilers [EII85] that focussed on floating-point codes have been
developed, it is not clear how well they perform on integer code where branches occur fre-
guently and memory disambiguation is hard. Second, exposing hardware details to the
compiler results in binaries that might not be portable across implementations. Third, the
sophisticated transformations tend to result in increases in code size that can potentialy

degrade overall performance.

The lack of ILP innovation continued into the early 1980s. This was the period when
most microprocessor designers were busy implementing RISC concepts [PS81] in the
form of simple pipelining, and new ILP techniques did not receive much attention. How-
ever, the second half of the 1980s saw renewed ILP activity both in the superscalar and
VLIW areas. The commercial implementations of the VLIW concept — Trace [CNO*88]
by Multiflow and Cydra 5 [RYYT89] by Cydrome — were delivered during this time.
However, these implementations had limited success in penetrating commercial markets.
At the same time, three experimental superscalar prototype [S*87,GHL *85,Gro90] efforts
were underway. These were the Astronautics ZS-1, the Wisconsin PIPE, and the IBM
America machines. All three of them, implemented a limited form of multiple issue —
integer instructions, including memory access related instructions, were issued in parallel
with floating-point instructions. The ZS-1 and the PIPE used architectural queues to com-
muni cate val ues between the two classes of instructions. The America design used register
renaming to achieve the same effect. All the designs still used in-order issue to execute
instructions within each class. This simplified issue logic while allowing a limited form of

out-of-order execution.

The early 1990s saw a number of superscalar implementations [KM89,
D*92,K™93,Hsu94] — Intel i860, DEC 21064, HP 7100, MIPS R8000, and others. All of
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them, with the eception of the Pweerl, were simple in-order implementations that

achiered multiple-issue byxecuting instructions of diérent types (load/store, branch,
floating-point) in parallel. The IBM Reerl [Gro90] based on the earlier America design
implemented rgister renaming and sophisticated instruction fetch mechanisms. Other
vendors continued on the path of simple in-order implementations vastex tlock. This

gave rise to the “speed demons” (simple implementations wilstacfock) ersus “braini-

acs” (comple implementations with a soclock) contreersy [Gwe93].

The mid 1990s sa some cowergence between the éwcamps. Almost all endors
moved tavards designs implementing comyleut-of-order microarchitectures based on
the 6600 and 360/91 schemes as well as ideaplored in academia
[SP88,S0h90,HP86,DT92,YP92]. At the time of the writing of this thesexyemajor

microprocessorendor has a product implementing sophisticated dynamic scheduling.

In 1996, Digital Equipment Corporation, long considered to be the bastion of the speed
demons, announced plans for a product (DEC 21264 [Gwe96a]) implementing an out-of-
order microarchitecture with a rehaiy fast clock (600 MHz). An interesting feature that
stands out in this design is the microarchitectural changes yaopto fcilitate a &st
clock. The intger subsystem is partitioned intoawlusters. Instructions are steered from
a central windw to the clusters. Each cluster has isaoyy of the r@gister file. In addi-
tion to reducing the number ofgister file ports, clustering also mek possible st
bypassing between units in the same cluSteese features are described in more detail in

Chapter 3. The research presented in this thesis has been highly influenced by this design.

In summarythe superscalar approadias golved wer the years into the mainstream of
processor implementations and each generation of designers had to deal with thé trade-of

between hardare complgity and performance.

1. There hae been other ILP paradigms, sonegywsuccessful in theimm niche markt, that hae
not been touched upon in this section. Some of these paradignestme yRus78], superpipe-
lining [JW89], autotasking[ABHS89], multiprocessing[FJD80], and datafiaM74].



1.3 The Conventional Microarchitecture

As discussed earlier, current superscalar processors, like the MIPS R1000 [Yea96] and
the DEC 21264 [Gwe96a], are typically based on the microarchitecture shown in
Figure 1-1. The issue and execution resources in the machine are partitioned into integer
and floating-point subsystems. The integer subsystem contains a number of |load/store,
branch, and functional units that operate on integer operands. The floating-point sub-
system issimilar to the integer subsystem except it does not contain load/store units, and it
operates on floating-point operands. Instruction windows in each subsystem buffer

instructions and implement dynamic scheduling as discussed earlier.

The microarchitecture presented in Figure 1-1 will be referred to as the conventional
microarchitecture throughout the rest of thisthesis. It will be used as a baseline for perfor-

mance comparisons.

1.4 Thesis Contributions

1.4.1 Quantifying the Complexity of Superscalar Microar chitectures

The main contribution of thisthesisis the development of simple models that both quan-
tify the complexity of superscalar microarchitectures and identify complexity trends. Mea-
surement of implementation complexity of microarchitectural features is going to be
increasingly crucial for computer architects to understand and master. While much work
remains to be done in this area, the work presented in this thesis is an important starting

point.

The structures in a baseline superscalar microarchitecture whose complexity grows with
increasing instruction-level parallelism are identified and analyzed. Each is modeled and
Spice simulated for three different feature sizes representing past, present, and future tech-
nologies. Simple analytical models are developed that quantify the delay of these struc-

tures in terms of microarchitectural parameters of window size and issue width. The
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impact of technology trendswards smaller feature sizes is studied. In particula

impact of poor scaling of wire delays in future technologies is analyzed.

In addition to delays, we study the performandeat$ of pipelining critical structures.
Even if the delay of a structure is reledly laige, it may not increase the comyptg of the
design because the structgreperation can be spreageo multiple pipestages. Our anal-
ysis identifies structures that are more performance critical. The operation of these struc-
tures should be accommodated within a singlgecto aoid significant dgradation in

IPCs achiged, especially for programs with limited parallelism.

Our analysis shes that the issue win#lologic and data bypass logic are going to be the
most critical structures in future. The delay of the issue wiridgic increases at least lin-
early with both issue width and windaize. The functioning of this logicuolves broad-
casting of multiple tags on long wires spanning the wingle an operation that does not
scale well in future technologies. Furthermore, the delay of the witmipc must fit in a
pipestage to\aid performance dgadation. Hence, this logic can be ey Kimiter of
clock speed as we me tovards wider issue widths, g windav sizes, and adnced
technologies in which wire delays dominate total defaother structure that can poten-
tially limit clock speed especially in future technologies is the data bypass logic. The
result wires that are used to bypass operatdeg increase in length as the number of
functional units is increased. This results in a quadratic dependence of the bypass delay on
issue width. Utilizing bffers helps mitigte the problem to anxint, lut a linear increase
in delay with issue width still persists. Juselithe windav logic, data bypass logic must
also complete within a singleggde for performance reasons. Hence, bypass delays could
ultimately become significant and force architects to consider more decentragjaed or

zations.

1.4.2 Dependence-based Superscalar Microar chitectures

This thesis studies a wefamily of compleity-effective microarchitectures called

dependence-based superscalar microarchitectures that addresajow sources of com-
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plexity — window logic and data bypass logic — in conventional microarchitectures.

Dependence-based microarchitectures use two main techniques to achieve the dual goals
of high IPC and afast clock. First, the machine is partitionedinto multiple clusters each of
which contains adlice of the instruction window and execution resources of the whole pro-
cessor. This enables high-speed clocking of the clusters since the narrow issue width and
the small instruction window of each cluster keeps critical delays small. The second tech-
nique involves intelligent steeringof instructions to the multiple clusters so that the full
width of the machine is utilized while minimizing the performance degradation due to

slow inter-cluster communication.

A number of design aternatives and steering heuristics for dependence-based microar-
chitectures are proposed and evaluated using simulations. Among the designs presented,
one that is particularly attractive is what we call the fifo-basedmicroarchitectue. This
microarchitecture implements the instruction window as a collection of a small number of
fifos and steers dependent chains of instructions to the same fifo. Simulations show little
slowdown as compared with a completely flexible issue window when performance is
measured in clock cycles. Furthermore, because only instructions at fifo heads need to be
awakened and selected, issue logic is simplified and the clock cycle is faster —conse-
quently overall performance is improved. For example, our results show that, due to the
clock speed advantage, the overall performance of a 2X4-way* fifo-based microarchitec-
ture is 14% higher than that of a typical 8-way superscalar even though the proposed
microarchitecture degrades IPC performance by 8% relative to the typical microarchitec-
ture. By grouping dependent instructions together, the fifo-based microarchitecture also
helps minimize the performance degradation due to slow bypasses in future wide-issue

machines.

1. A 8-way microarchitecture comprising two clusters — each consisting of four fifos feeding four
functional units.
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1.4.3 Integer-decoupled Microar chitecture

This thesis proposes another complexity-effective microarchitecture called the integer-
decoupled microarchitecture that improves the performance of integer programs and can
be integrated into a conventional microarchitecture with little or no increase in complexity.
The integer-decoupled microarchitecture starts with a conventional microarchitecture and
augments the floating-point units to perform simple integer operations. Some integer
instructions, those not used for computing addresses and accessing memory, are then off-
loaded to the augmented floating-point subsystem by the compiler. Consequently, for inte-
ger programs, the integer-decoupled microarchitecture provides a larger window for
dynamic scheduling as well as extra issue and execution bandwidth at no increase in com-

plexity.

We evaluate the potential performance improvements with the integer-decoupled
microarchitecture. Our results show that a modest to significant fraction of the total
dynamic instructions in our benchmark programs can be off-loaded to the augmented
floating-point subsystem. In doing so, the integer-decoupled microarchitecture provides
speedups from 3% to 23% over a 4-wide (2 integer and 2 floating-point units) conven-
tional microarchitecture. Furthermore, the results show that only simple integer operations
need to be supported in the floating-point subsystem. This minimizes the additional hard-

ware cost.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the simple
model s that we devel oped, along with the methodology used, for quantifying the complex-
ity of superscalar microarchitectures. Chapter 3 proposes and eval uates dependence-based
superscalar microarchitectures. Chapter 4 introduces and investigates the integer-decou-
pled microarchitecture. Finally, Chapter 5 gives conclusions and suggests future directions

to explore. The appendices includes detailed experimental results for Chapter 2.
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Chapter 2

Quantifying the Complexity of Superscalar Microar chi-

tectures

The complexity of a microarchitecture is difficult to determine — to be very accurate, it
would require a full implementation in a specific technology. What is very much needed
are fairly straightforward measures, possibly only relative measures, of complexity that
can be used by microarchitects at a fairly early stage of the design process. This chapter
presents work that takes a step in that direction. Simple models that quantify the complex-
ity of superscalar microarchitectures are developed and used to identify long-term com-

plexity trends.

We start by identifying those portions of a microarchitecture whose complexity grows
with increasing instruction-level parallelism. Of these, we focus on register rename logic,
window logic, register filelogic, and data bypass logic. We analyze potential critical paths
in these structures and develop models for quantifying their delays. We study the manner
in which these delays vary with microarchitectural parameters like window size (the num-

ber of instructions from which ready instructions are selected for issue) and issue width
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(the number of instructions that can be issued kel We also study the impact of the

technology trend twards smaller feature sizes. In particulae analyze he the poor

scaling of wire delays in futurefatts the werall delay of critical structures.

In addition to delays, we study the performandeat$ of pipelining critical structures.
Even if the delay of a structure is reladlly lage, it may not increase the comytg of the
design because the structgreperation can be spreageo multiple pipestages. \ana-
lyze structures to identify those whose operation must be accomplished within a single

cycle to aoid significant dgradation in the number of instructions committeerg o/cle.

The rest of this chapter isganized as folles. Sectior2.1 describes the sources of
compleity in a baseline microarchitecture. Sectib@ describes the methodology we use
to study the critical structures identified in Sectoh. Sectior.3 briefly discusses tech-
nology trends. SectioR.4 presents a detailed analysis of each structure anthialelay
of the structure aries with microarchitectural parameters and technology parameters.
Section2.5 discusses pipelining issues for each of the structures and presealisdelay

results. FinallySection2.6 lists related wrk, and Sectio2.7 summarizes the chapter

2.1 Sourcesof Complexity

Before delving into specific sources of conxitle we describe the baseline superscalar
model assumed for the studife then list the basic structures that are the primary sources
of compleity. Finally, we shav how these basic structures are present in one form or
another in most current implementationsrethough these implementations might appear
to be diferent superficiallyOn the other hand, we realize that it is impossible to capture
all possible microarchitectures in a single model andrasults preided here heae some
obvious limitations. V@ can only preide a firly straightforvard model that is typical of
most current superscalar processors, and suggest that techniques similar to those used here

can be rtended for othemore adanced models as thare deeloped.
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Figure 2-1. Baseline superscalar model.

Figure 2-1 illustrates the baseline model and the associated pipeline. The fetch unit
fetches multiple instructions every cycle from the instruction cache. Branches encountered
by the fetch unit are predicted. Following instruction fetch, instructions are decoded and
thelir register operands are renamed. Register renaming involves mapping the logical regis-
ter operands of an instruction to the appropriate physical registers. Renamed instructions
are then deposited in the issue window, where they wait for their source operands and the
appropriate functional unit to become available. As soon as these conditions are satisfied,
the instruction isissued and executes on one of the functional units. The operand values of
an instruction are either fetched from the register file or are bypassed from earlier instruc-
tions in the pipeline. The data cache provides low latency access to memory operands via

|oads and stores.

Theissue window is responsible for monitoring dependences between instructionsin the
window and issuing instructions to the functional units. The window logic consists of two
components — the wakeup logic and the select logic. The first component is responsible
for “waking up” instructions waiting in the issue window for their source operands to
become available. Once an instruction is issued for execution, the tag corresponding to its
result is broadcast to al the instructions in the window. Each instruction in the window
compares the tag with its source operand tags. Once al the source operands of an instruc-
tion are available the instruction is flagged ready for execution. The select logic is respon-

sible for selecting instructions for execution from the pool of ready instructions. An
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instruction issaid to beready if all of its source operands are available. As pointed out ear-

lier, the wakeup logic is responsible for setting the ready flag.

2.1.1 Basic Structures

The most important criterion used for identifying a basic structure for our study is that
the delay of the structure should be afunction of either issue window size or issue width or
both. For example, we consider register renaming to be a basic structure because its delay
depends on the number of ports into the mapping table which in turn is determined by the
issue width. On the other hand none of the functional units are included in the study
because their delay is independent of both the issue width and the window size. In addi-
tion, our decision to study a particular structure was based on two observations. First, we
are primarily interested in dispatch and issue-related structures because these structures
form the core of a microarchitecture and largely determine the amount of parallelism that
can be exploited. Second, some of these structures rely on broadcast operations on long
wires and hence, their delays might not scale as well as logic-intensive structures in future
technologies with smaller feature sizes. Hence, we believe that these structures are poten-

tial cycle-time determinants in future wide-issue designs in advanced technologies.

The structures we consider are:
* Raister ename lgic
*  Window waleup laic
* Window selection Igic
* Raister file lgic
» Data bypass Igic

There are other important pieces of logic that are not considered in this thesis, even
though their delay is afunction of issue width. These are:
* Cades.

Instruction and data caches provide low latency access to instructions and memory oper-

ands, respectively. In order to provide the necessary load/store bandwidth [SF91] in a
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superscalar processor, the cache has to be banked or duplicated. The access time of a

cache is afunction of the size of the cache and the associativity of the cache. Wada et al.
[WRP92] and Wilton and Jouppi [WJ94] have devel oped detailed models that estimate the
access time of a cache given its size and associativity.
* Instruction fetch logic

Besides the instruction cache, there are other important parts of fetch logic whose com-
plexity varies with dispatch width. First of all, as instruction issue widths grow beyond the
size of asingle basic block, it will become necessary to predict multiple branches every
cycle. Then, non-contiguous blocks of instructions will have to be fetched from the
instruction cache and compacted into a contiguous block prior to renaming. Rotenberg et
al. [RBS96] describe the logic required for these operations. However, delay models
remain to be developed. And, although they are important, they are not considered here.

Finally, it must be pointed out once again that in real designs there may be structures not
listed above that influence the overall delay of the critical path. However, our redlistic aim
is not to study all of them but to analyze in detail some important ones that have been
reported in the literature. We believe that our basic technique can be applied to others,

however.

2.1.2 Current Implementations

The structures identified above were presented in the context of the baseline superscalar
model shown in Figure 2-1. The MIPS R10000 [Yea96], and the DEC 21264 [Gwe96a]
are two implementations of this model. Hence, the structures identified above apply to

these two processors.

On the other hand, the Intel Pentium Pro [Gwe95b], the PowerPC 604 [SDC95], and the
HAL SPARC64 [Gwe95a] are based on the reservation model shown in Figure 2-2. There
are two main differences between the two models. First, in the baseline model all the reg-
ister values, both speculative and non-speculative, reside in the physical register file. In the

reservation station model, the reorder buffer holds speculative values and the register file
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Figure 2-2. Reservation stations-based superscalar model.

holds only committed, non-speculative data. Second, operand values are not broadcast to
the window entries in the baseline model - only their tags are broadcast; data values go to
the physical register file. In the reservation station model, completing instructions broad-
cast result values to the reservation stations. Issuing instructions read their operand values

from the reservation station.

The point to be noted is that the basic structures identified earlier are also present in the
reservation station model and are as critical asin the baseline model. The only notable dif-
ference is that the reservation station model has a smaller physical register file (equal to
the number of architected registers) and might not demand as much bandwidth (as many
ports) as the register file in the baseline model, because in this case some of the operands

come from the reorder buffer and the reservation stations.

While the discussion of potential sources of complexity is in the context of a baseline
superscalar model that is out-of-order, it must be pointed out that some of the critical
structures identified apply to in-order processors too. For example, the register file logic,

and the data bypass logic are also present in in-order superscalar processors.
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2.2 Methodology

Each structure was studied in two phases. In the first phase, a representative CMOS cir-
cuit was selected for the structure. This was done by studying designs published in the lit-
erature’ and by collaborating with engineers at Digital Equipment Corporation. In cases
where there was more than one possible design, we performed a preliminary study of the
designs to select one that was most promising. In one case, register renaming, we had to

study (simulate) two different schemes.

In the second phase, the circuit was implemented and optimized for speed. Circuits were
designed mostly using static logic. We believe that power and robustness considerations
will make static logic more attractive than dynamic logic in future. However, in situations
where dynamic logic helped boost the performance significantly, dynamic logic was used.
For example, in the window wakeup logic, a dynamic 7-input NOR gate was used for
comparisons instead of a static gate. A number of optimizations were applied to improve
the speed of the circuits. First, all the transistors in the circuit were manually sized so that
overall delay improved. Second, logic optimizations like two-level decomposition were
applied to reduce fan-in requirements. Static gates with a fan-in greater than four were
avoided. Third, in some cases transistor reordering was used to shorten the critical path.
Some of the optimization sites will be pointed out when the individual circuits are

described.

We used the HSPICE circuit simulator [Met87] from MetaSoftware to simulate the cir-
cuits. In order to simulate the effect of wire parasitics, parasitics were added at appropriate
nodes in the Hspice model of the circuit. These parasitics were computed by calculating
the length of the wires based on the layout of the circuit and using the values of R4 and

Chetal — theresistance and parasitic capacitance of metal wires per unit length.

1. Mainly proceedings of the ISSCC — International Solid-State and Circuits Conference.
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To study the déct of reducing the feature size on the delays of the structures, we simu-

lated the circuits for three d&rent feature sizes: (u&, 0.3%um, and 0.18m respec-

tively. The process parameters for thgud8CMOS process were tak from Johnson and
Jouppis synthetic model [JJ90]. These parameters were usedilbynVend Jouppi

[WJ94] to study the access time of caches. Because process parameters are proprietary
information, we had to usextapolation to come up with process parameters for the
0.35um and 0.18m technologies. W used the O8n process parameters from Johnson

and Joupps synthetic model [JJ90], uB process parameters from MOSIS, and process
parameters used in the literature as inputs. The process parameters assumed for the three
technologies are listed in Appendix A. Layouts for the @m3%nd 0.18m technologies

were obtained by appropriately shrinking the layout for thgrd.8chnology

Finally, basic RC circuit analysisas used to delop simple analytical models that cap-
tured the dependence of the delays on microarchitectural parametassilik width and
window size. The relationships predicted by the Hspice simulations were compared
against those predicted by our model. In most of the cases, our models were accurate in

identifying the relationships.

2.2.1 Caveats

The abeoe methodology does not address the issue wf Wwell the assumed circuits
reflect real circuits for the structures.w#wer, by basing our circuits on designs published
by microprocessorandors, we belie that the assumed circuits are close to real circuits.
In practice, may circuit tricks can be empyed to optimize critical paths for speed.wo
ever, we belige that the relate delay times between tifent configurations should be
more accurate than the absolute delay times. Because we are mainly interested in finding
trends in the manner in which delays of the structuaeg with microarchitectural param-
eters lile windav size and issue width, andvdhe delays scale as the feature size is

reduced, we beli@ that our results areahd.
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It must also be pointed out that while the absolute delay times presented in this thesis
track the resulting clock speed, they cannot be directly converted into clock speeds. There
are two reasons for this. First, we do not include the delay of inter-stage latches and the
delay resulting from clock skew in our measurements. These two components can be
responsible for a non-trivial fraction of the total delay [NH97], especialy for high fre-
quency designs. Second, the delay of a design can show considerable variance with pro-
cess parameters and temperature of operation. Commercial designs are required to operate
over arange of process parameters and physical temperatures. Our designs were simulated

for asingle set of process parameters and a single temperature point (25 °C).

2.2.2 Terminology

Table 2.1 defines some of the common terms used in the rest of this chapter. The remain-

ing terms will be defined when they are introduced.

Symboal Represents
W I ssue width
WINS ZE Window size
NVREG Number of logical registers
NPREG Number of physical registers

NVREG,,iqth Width of logical register tags

NPREG,,qth Width of physical register tags

DATA\Nidth Width of datapath
Rietal Resistance of metal wire per unit length
Cretal Capacitance of metal wire per unit length

Table 2.1: Terminology.

2.3 Technology Trends

Feature sizes of MOS devices have been steadily decreasing. Thistrend [Ass97] towards

smaller devicesislikely to continue at least for the next decade. In this section, we briefly
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discuss the effect of shrinking feature sizes on circuit delays. The effect of scaling feature
sizeson circuit performance is an active area of research [D*74, MF95]. We are only inter-

ested in illustrating the trends in this section.

Circuit delays consist of logic delays and wire delays. Logic delays result from gates

that drive other gates. Wire delays are the delays resulting from driving values on wires.

2.3.1 Logic Delays

The delay of alogic gate can be written as
Delaygae = (CL xV)/I

where C_isthe load capacitance at the output of the gate, V isthe supply voltage, and | is
the average charging/discharging current. | isafunction of |4 — the saturation drain
current of the devices forming the gate. Asthe feature size is reduced, the supply voltage
has to be scaled down to keep the power consumption at manageable levels. Because volt-
ages cannot be scaled arbitrarily they follow a different scaling curve from feature sizes.
For submicron devices [Rab96], if Sisthe scaling factor for feature sizes, and U isthe
scaling factor for supply voltages, then C, , V, and | scale by factorsof 1/S, 1/U, and
1/ U respectively. Hence, the overall gate delay scales by afactor of 1/S. Therefore, gate

delays decrease uniformly as the feature size is reduced.

2.3.2 Wire Delays
If L isthelength of awire, then the intrinsic RC delay of the wire is given by

2

Delay,i;. = 0.5%R C L

metal x metal X

where Ryetay Cmetal @€ the resistance and parasitic capacitance of metal wires per unit
length respectively and L is the length of the wire. The factor 0.5 isintroduced because we
use the first order approximation that the delay at the end of a distributed RC line is
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(RC)/2 (we assume the resistance and capacitance are distributed uniformly over the

length of the wire).

In order to study the impact of shrinking feature sizes on wire delays we first have to
analyze how the resistance, Ryeto, and the parasitic capacitance, C,gg, Of metal wires
vary with feature sizes. We use the simple model presented by Bohr [Boh95] to estimate
how Ryeta @nd Crq Scale with feature size. Note that both these quantities are per unit
length measures. Using Bohr’s model [Boh95],

Ruyetar = P/ (width x thickness)

Cmetal = Cfringe+Cparallelplate

2 x g x gy x (thickness)/ (width) + 2 x & x g5 x (width)/ (thickness)

where width isthe width of the wire, thicknessis the thickness of the wire, p istheresistiv-

ity of metal, and € and € are permittivity constants.

The average metal thickness has remained relatively constant for the last few genera-
tions while the width has been decreasing in proportion to the feature size. Hence, if Sis
the scaling factor for feature sizes, the scaling factor for Ry 1SS The metal capacitance
has two components: fringe capacitance and parallel-plate capacitance. Fringe capacitance
is the result of capacitance between the side-walls of adjacent wires and capacitance
between the side-walls of the wires and the substrate. Parallel-plate capacitance is the
result of capacitance between the bottom-wall of the wires and the substrate. Assuming
that the thickness remains constant, it can be seen from the equation for C, 4 that the
fringe capacitance becomes dominant as we move towards smaller feature sizes. Rahmat
et a. [RNOM95] show that as feature sizes are reduced, the fringe capacitance will be
responsible for an increasingly larger fraction of the total capacitance. For example, they
show that for feature sizes less than 0.1um, the fringe capacitance contributes 90% of the

total capacitance. In order to accentuate the effect of wire delays and to be able to identify
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their effects, we assume that the metal capacitance is largely determined by the fringe

capacitance and therefore the scaling factor for Cp gy iSaso S

Using the above scaling factors in the equation for the wire delay, we can compute the

scaling factor for wire delays as,

Scaling Factor = Sx S><(1/S)2

= 1

Note that the length scales as 1/S for local interconnects. In this study we are only
interested in local interconnects. This might not be true for global interconnects like the

clock because their length aso depends on the die size.

Hence, as feature sizes are reduced, wire delays remain constant. This, coupled with the
fact that logic delays decrease uniformly with feature size, implies that wire delays will
dominate total delays in future. In redlity, the situation is further aggravated for two rea-
sons. First, not all wires reduce in length perfectly (by afactor of S). Second, some of the
global wires, like the clock, actually increase in length due to bigger dice that are made

possible with each generation.

McFarland and Flynn [MF95] studied various scaling schemes for local interconnect
and conclude that a quasi-ideal scaling scheme closely tracks future deep submicron tech-
nologies. Quasi-ideal scaling performs ideal scaling of the horizontal dimensions but
scales the thickness more slowly. The scaling factor for RC delay per unit length for their
scaling model is (0.9 x S™+0.1 x 82'5) . In comparison, for our scaling model, the scal-

ing factor for RC delay per unit length is a more conservative, and simpler, g,

2.4 Complexity Analysis

In this section we discuss the critical structuresin detail. The presentation of each struc-

ture is organized as follows. First, we describe the logical function implemented by the
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structure. Then, we present possible schemes for implementing the structure and describe

one of the schemesin detail. Next, we analyze the overall delay of the structure in terms of
microarchitectural parameters like issue width and window size using simple delay mod-
els. Finally, we present Spice simulation results, identify trends in the results and discuss

how the results conform to the delay analysis performed earlier.

2.4.1 Register Rename L ogic

The register rename logic is used to translate logical register designators into physical
register designators. Logically, thisis accomplished by accessing a map table with the log-
ical register designator as the index. Because multiple instructions, each with multiple reg-
ister operands, need to be renamed every cycle, the map table has to be multi-ported. For
example, a 4-wide issue machine with two read operands and one write operand per
instruction requires 8 read ports and 4 write ports into the mapping table. The high level
block diagram of the rename logic is shown in Figure 2-3. The map table holds the current
logical to physica mappings. In addition to the map table, dependence check logic is
required to detect cases where the logical register being renamed is written by an earlier
instruction in the current group of instructions being renamed. The dependence check
logic detects such dependences and sets up the output MUXes so that the appropriate
physical register designators are generated. The shadow table is used to checkpoint old
mappings so that the processor can quickly recover to a precise state from branch mispre-
dictions. At the end of every rename operation, the map table is updated to reflect the new

logical to physical mappings created for the result registers of the current rename group.
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Figure 2-3. Register rename logic.

2.4.1.1 Structure

The mapping and checkpointing functions of the rename logic can be implemented in at
least two ways. These two schemes, called the RAM scheme and the CAM scheme, are

described next.

RAM scheme

In the RAM scheme, as implemented in the MIPS R10000 [Yea96], the map table is a
RAM where each entry contains the physical register that is mapped to the logical register
whose designator is used to index the table. The number of entries in the map table is
equal to the number of logical registers. A single cell of the tableis shown in Figure 2-5. A
shift register, present in every cell, is used for checkpointing old mappings.

The map table works like aregister file. The bits of the physical register designators are
stored in the cross-coupled inverters in each cell. A read operation starts with the logical
register designator being applied to the decoder. The decoder decodes the logical register
designator and raises one of the word lines. Thistriggers bit line changes which are sensed
by a sense amplifier and the appropriate output is generated. Precharged, double-ended bit
lines are used to improve the speed of read operations. Mappings are checkpointed by
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copying the current contents of each cell into the shift register. Recovery is performed by

writing the bit in the appropriate shift register cell back into the main cell.

CAM scheme

An aternative scheme for register renaming uses a CAM (content-addressable memory)
to store the current mappings. Such a scheme is implemented in the HAL SPARC
[AMG*95] and the DEC 21264 [K€el96]. The number of entriesin the CAM is equal to the
number of physical registers. Each entry contains two fields. The first field stores the logi-
cal register designator that is mapped to the physical register represented by the entry. The
second field contains a valid bit that is set if the current mapping is valid. The valid bit is
required because a single logical register designator might map to more than one physical
register. When a mapping is changed, the logical register designator is written into the
entry corresponding to a free physical register and the valid bit of the entry is set. At the
same time, the valid bit used for the previous mapping is located through an associative

search and cleared.

The rename operation in this scheme proceeds as follows. The CAM is associatively
searched with the logical register designator. If there is a match and the valid bit is set, a
read enable wordline corresponding to the CAM entry is activated. An encoder (ROM) is
used to encode the read enable word lines (one per physical register) into a physical regis-
ter designator. Old mappings are checkpointed by storing the valid bits from the CAM into
a checkpoint RAM. To recover from an exception, the valid bits corresponding to the old
mapping are loaded into the CAM from the checkpoint RAM. In the HAL design, up to 16

old mappings can be saved.

The CAM scheme is less scalable than the RAM scheme because the number of CAM
entries, which is equal to the number of physical registers, increases with issue width. In
order to support such alarge number of physical registers, the CAM will have to be appro-
priately banked. On the other hand, in the RAM scheme, the number of entriesin the map
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table is independent of the number of physical registers. However, the CAM scheme has
an advantage with respect to checkpointing. In order to checkpoint in the CAM scheme,
only the valid bits have to be saved. Thisis easily implemented by having aRAM adjacent
to the column of valid bits in the CAM. In other words, the dimensions of the individual
CAM cellsis independent of the number of checkpoints. On the other hand, in the RAM
scheme, the width of individual cells is a function of the number of checkpoints because

this number determines the length of the shift register in each cell.

The dependence check logic proceeds in parallel with the map table access. Every logi-
cal register designator being renamed is compared against the destination register designa-
tors (logical) of earlier instructions in the current rename group. If there is a match, then
the tag corresponding to the physical register assigned to the earlier instruction is used
instead of the tag read from the map table. For example, in the case shown in Figure 2-4,
the last instruction’s operand register r4 is mapped to p7 and not p2. In the case of more
than one match, the tag corresponding to the latest (in dynamic order) match is used. We
implemented the dependence check logic for issue widths of 2, 4, and 8. We found that for
these issue widths, the delay of the dependence check logic is less than the delay of the
map table, and hence the check can be hidden behind the map table access.
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2.4.1.2 Delay Analysis

We implemented both the RAM scheme and the CAM scheme. We found the perfor-
mance of the two schemes to be comparable for the design space we explored. To keep the
analysis short and since the RAM scheme is more scalable, we will only discussthe RAM

scheme here.

A single cell of the map table is shown in Figure 2-5. The critical path for the rename
logic is the time it takes for the bits of the physical register designator to be output after
the logical register designator is applied to the address decoder. The delay of the critical
path consists of three components: the time taken to decode the logical register designator,
the time taken to drive the wordline, the time taken by an access stack to pull the bitline
low plus the time taken by the sense amplifier to detect this bitline change and produce the
corresponding output. The time taken for the output of the map table to pass through the
MUX in Figure 2-3 is ignored because this is very small compared to the rest of the

rename logic and, more importantly, the control input of the MUX is available in advance
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because the dependence check logic is faster than the map table. Hence, the overall delay

is given by,

Del ay = Tdecode + Twordline + Tbitline

Each of the componentsis analyzed next.

Decoder delay

The structure of the decoder is shown in Figure 2-6. We use predecoding to improve the
speed of decoding. The predecode gates are 3-input NAND gates and the row decode gates
are 3-input NOR gates. The output of the NAND gates is connected to the input of the
NOR gates by the predecode lines. The length of these linesis given by,

PredeclineLength = (cellheight + 3 x IW x wordlineg,,¢inq

) x NVREG

where cellheight is the height of the a single cell excluding the wordlines, IW is the issue
width, wordlineg,acing i the spacing between wordlines, and NVREG is the number of log-
ical registers. The factor 3 in the equation results from the assumption of 3-operand
instructions (2 read operand and 1 write operand). With these assumptions, 3 ports (2 read
ports and 1 write port) are required per cell for each instruction being renamed. Hence, for

alW-wide issue machine, atotal of 3 x IW wordlines are required for each cell

The decoder delay is the time it takes to decode the logical register designator i.e. the
time it takes for the output of the NOR gate to rise after the input to the NAND gate has

been applied. Hence, the decoder delay can be written as

Tdecode = Tnand + Tnor
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Figure 2-6. Decoder structure and equivalent circuit.

where T anq 1S the delay of the NAND gate and T, is the delay of the NOR gate. From
the equivalent circuit of the NAND gate shown in Figure 2-6.

Tnand = CpX Req X Ceq

Req consists of two components: the resistance of the NAND pull-down and the metal

resistance of the predecode line connecting the NAND gate to the NOR gate. Hence,

Reqg = R + 0.5 x PredeclineLength x R

nandpd metal

Note that we have divided the resistance of the predecode line by two; the first order
approximation for the delay at the end of adistributed RC lineis RC/2 (we assume that the

resistance and capacitance are distributed evenly over the length of the wire).
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Ceq Consists of three components: the diffusion capacitance of the NAND gate, the gate
capacitance of the NOR gate, and the metal capacitance of the predecode wire. Hence,

+ PredeclineLength x C

Ceq = Cdiffcapnand + Cgatecapnor metal

Substituting the above equationsinto the overall decoder delay and simplifying, we get

- 2
Tdecode - CO"'Cl>< |W+CZX W

where ¢, ¢4, and ¢, are constants. The quadratic component results from the intrinsic RC
delay of the predecode lines connecting the NAND gates to the NOR gates. We found that,
at least for the design space and technologies we explored, the quadratic component is
very small relative to the other components. Hence, the delay of the decoder is linearly
dependent on the issue width. Typical values for the constants are listed in Table B.1 in
Appendix B.

Wordline delay
The wordline delay is defined as the time taken to turn on al the access transistors

(denoted by N1 in Figure 2.7) connected to the wordline after the logical register designa-
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tor has been decoded. The wordline delay is the sum of the delay of the inverter WLINV

and the delay of the wordline driver. Hence,

T =T T

wordline wlinv T Twidriver
From the equivalent circuit of the wordline driver shown in the figure, the wordline

driver can be written as

Twldriver = Cp X (Rwldriver + Rwlres) . Cchap

where R, 4river 1S the effective resistance of the pull-up (p-transistor) of the driver, Ryjres IS
the resistance of the wordline, and Cycap is the amount of capacitance on the wordline.
The total capacitance on the wordline consists of two components: the gate capacitance of
the access transistors and the metal capacitance of the wordline wire. The resistance of the

wordline is determined by the length of the wordline. Symbolically,

WordlineLength = (cellwidth + 6 x IW x bitlineg + Sregyigin) X PREGi4th

pacing

C = PREG,i4p xC + WordlineLengthx C

wlcap gatecapN1 metal

Ruires = 0.5 xWordlineLength x R,
where PREG,,; g, is the number of bitsin the physical register designator, Cyatecapny iSthe
gate capacitance of the access transistor N1 in each cell, cellwidth is the width of asingle
RAM cell excluding the bitlines, bitlineg,cing is the spacing between bitlines, and sreg-
width 1S the width of asingle bit of the shift register in each cell.

Factoring the above equations into the wordline delay equation and simplifying we get

_ 2
T = CytCy  xIW+c,xIW

wordline
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where ¢, ¢4, and ¢, are constants. Again, the quadratic component results from the intrin-
sic RC delay of the wordline wire and we found that the quadratic component is very
small relative to the other components. Hence, the overall wordline delay is linearly
dependent on the issue width. Typical values for the constants are listed in Table B.2 in
Appendix B.

Bitline delay

The bitline delay is defined as the time between the wordline going high (turning on the
access transistor N1 shown in Figure 2-8) and the output of the sense amplifier going high/
low. From the figure this is the sum of the time it takes for one access stack to discharge

the bitline and the time it takes for a sense amplifier to detect the discharge. Hence,

Tbitline = Tbitdischarge+ Tsenseamp
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From the equivalent circuit shown in the figure, the time taken to discharge the bitlinesis

determined by the following equations.
BitlineLength = (cellheight + 3 x IW x wordlineg,,,) * NVREG
R, = 0.5 x BitlineLength x R

metal

CbI

NVREG x C;ftcqp * BitlineLength x C

metal

Thitdischarge = C0 % (Rastack * Roi) X Cy

where Rogac 1S the effective resistance of the access stack (two pass transistors in series),
Ry, istheresistance of the bitline, C, isthe capacitance on the bitline, NPREG is the num-
ber of physical registers, Cyitrcqp IS the diffusion capacitance of the access stack that con-
nects to the bitline, cellheight is the height of a single RAM cell excluding the wordlines,

and wordlinegyacing is the spacing between wordlines.

Factoring the above equations into the overall delay equation and simplifying we get
Thitline = Co+ €y X IW+c, X Wa

where ¢, ¢4, and ¢, are constants. Again, we found that the quadratic component is very
small relative to the other components. Hence, the overall bitline delay is linearly depen-

dent on the issue width.
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Overall delay

From the above analysis, the overall delay of the register rename logic can be summa-

rized by the following equation

- 2
Delay = cy+cy xIW+c, xIW

where ¢, ¢4, and ¢, are constants. However, the quadratic component is relatively small
and hence, the rename delay is alinear function of the issue width for the design space we

explored. Typical values for the constants are listed in Table B.3 in Appendix B.

2.4.1.3 Spice Results

Figure 2-9 shows how the delay of the rename logic varies with the issue width i.e. the
number of instructions being renamed every cycle for the three technologies. The graph
also shows the breakdown of the delay into the components discussed in the previous sec-
tion. Detailed results for various configurations and technologies are shown in tabular

formin Appendix A.

A number of observations can be made from the graph. The total delay increases linearly
with issue width for the technologies. Thisisin conformance with the analysisin the pre-
vious section. All the components show alinear increase with issue width. Theincreasein
the bitline delay is larger than the increase in the wordline delay because the bitlines are
longer than the wordlinesin our design. The bitline length is proportional to the number of
logical registers (32 in most cases) whereas the wordline length is proportional to the

width of the physical register designator (Iess than 8 for the design space we explored)
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Figure 2-9. Rename delay versus issue width. This graph shows the breakup of rename delay
for issue widths of 2, 4, and 8 for the three technol ogies.

Another important observation that can be made from the graph is that the relative
increase in wordline delay, bitline delay, and hence, total delay with issue width only
worsens as the feature size is reduced. For example, as the issue width isincreased from 2
to 8, the percentage increase in bitline delay shoots up from 37% to 53% as the feature
size is reduced from 0.8um to 0.18um. This occurs because logic delays in the various
components are reduced in proportion to the feature size while the presence of wire delays
in the wordline and bitline components cause the wordline and bitline components to fall
at a sower rate. In other words, wire delays in the wordline and bitline structures will

become increasingly important as feature sizes are reduced.
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2.4.1.4 Mode Results

Figure 2-10 shows how the delays computed by the model using the constants listed in
Appendix B compare to the Spice results presented earlier. The delays computed by the
analytical models, both for rename logic and for other structures to be presented later, are
not always close to the Spice delays. The differences arise due to a number of reasons.
First, the simple RC analysis makes a number of approximations and simplifications that
cause deviation from the Spice result. Second, the simple delay equations used here do not
take into account the slopes of input signals. Third, we could not find reliable delay mod-
els for quantifying the delay of dynamic gates. Since it is beyond the scope of the thesis,
no attempt was made to develop advanced delay models tailored for this study. However,
the analytical models for the different structures help establish dependence relationships

and identify components that will become increasingly important in future.

2.4.2 Window Wakeup L ogic

The wakeup logic is responsible for updating source dependences of instructions in the
issue window waiting for their source operands to become available. Figure 2-11 illus-

trates the wakeup logic. Every time aresult is produced, the tag associated with the result
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Figure2-11. Window wakeup logic.

is broadcast to all the instructions in the issue window. Each instruction then compares the
tag with the tags of its source operands. If there is a match, the operand is marked avail-
able by setting the rdyL or rdyR flag. Once all the operands of an instruction become avail-
able (both rdyL and rdyR are set), the instruction is ready to execute and the rdy flag is set
to indicate this. The issue window isa CAM (content-addressable memory [WE93]) array
holding one instruction per entry. Buffers, shown at the top of the figure, are used to drive
the result tags tag; to tag,,y where IW is the issue width. Each entry of the CAM has (2 x
IW) comparators to compare each of the result tags against the two operand tags of the

entry. The OR logic combines the comparator outputs and sets the rdyL/rdyR flags.

2.4.2.1 Structure

Figure 2-12 shows a single cell of the CAM array. The cell shown in detail compares a
single bit of the operand tag with the corresponding bit of the result tag. The operand tag
bit is stored in the RAM cell. The corresponding bit of the result tag is driven on the tag
lines. The match line is precharged high. If there is a mismatch between the operand tag
bit and the result tag bit, the match line is pulled low by one of the pull-down stacks. For
example, if tag = 0, and data = 1, then the pull-down stack on the left is turned on and it
pulls the match line low. The pull-down stacks constitute the comparators shown in

Figure 2-12. The matchline extends across all the bits of the tag i.e. amismatch in any of



40

< <
PRECHARGE OE & ";: 2 ‘6' OE
2 =l 18 T

RAM CELL

o . . .
Za - PULL-DOWN STACK
A/

T | e AR -
Tﬁ A tme o mlm, T

MATCHIW
Figure2-12. CAM cell in wakeup logic.

the bit positions will pull it low. In other words, the matchline remains high only if the
result tag matches the operand tag. The above operation is repeated for each of the result
tags by having multiple tag and matchlines as shown in the figure. Finaly, all the match
signals are ORed to produce the ready signal.

There are two observations that can be drawn from the figure. First, there are as many
matchlines as the issue width. Hence, increasing issue width increases the height of each
CAM row. Second, increasing issue width also increases the number of inputs to the OR
block.

2.4.2.2 Delay Analysis

Because the match lines are precharged high, the default value of the ready signal is
high. Hence, the delay of the critical path isthe time it takes for a mismatch in asingle bit
position to pull the ready signal low. The delay consists of three components: the time
taken by the buffers to drive the tag bits, the time taken for the pull-down stack corre-
sponding to the bit position with the mismatch to pull the match line low, and the time
taken to OR the individual match signals. Symbolically,

Del ay = Ttagdrive + Ttagmatch + TmatchOR
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Each of the componentsis analyzed next.

Tag Drive Time

The tag drive circuit is shown in Figure 2-13. The time taken to drive the tags depends
on the length of the tag lines. The length of the tag linesis given by

TaglineLength = (camheight + IW x matchline

spacing) X WINSIZE

where camheight is the height of a single CAM cell excluding the matchlines, and

matchlineg,acing IS the spacing between matchlines'.

From the equivalent circuit shown in the figure, the time taken to drive the tagsis given

by

Ttagdrive = CpX (Rtagdriverpup + Rtlres) x CtI(:ap

where Riagariverpup 1S the resistance of the pull-up of the tag driver, Ryes isthe metal resis-

tance of the tag line, and Cyc,p, is the total capacitance on the tag line. Ry is determined

1. To be precise matchlinegycing is the height of a matchline and the associated pull-down stacks.
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by the length of the tag lines. Cy 4, consists of three components: the metal capacitance
determined by the length of the tag line, the gate capacitances of the comparators, and the
diffusion capacitance of the tag driver. Symbolically,

Ryres = 0.5x TaglineLength x R

metal

C = TaglineLength x C +C x WINSIZE + Cdiffcap

tlcap metal gatecapcomp

where Cgatecapcomp 1S the gate capacitance of the pass transistor PD2 (shown in
Figure 2-13) in the comparator’s pull-down stack and Cyjfrcap IS the diffusion capacitance

of the tag driver.

Substituting the above equationsinto the overall delay equation and simplifying we get

T =Cy+ (Cy + Cy X IW) X WINSIZE + (Cg + G, X IW + ¢ X IW?) x WINSIZE”

tagdrive

The above equation shows that the tag drive time increases with window size and issue
width. For a given issue width, the total delay is a quadratic function of the window size.
The weighting factor for the quadratic term is a function of the issue width. We found that
the weighting factor becomes significant for issue widths beyond 2. For a given window
size, the tag drive time is also a quadratic function of issue width. We found that for cur-
rent technologies (0.35um and longer) the quadratic component is relatively small and the
tag drive time is largely a linear function of issue width. However, as the feature size is
reduced to 0.18um the quadratic component also increases in significance. The quadratic
component results from the intrinsic RC delay of the tag lines. The constants in the equa-
tion arelisted in Table B.5 in Appendix B.

In reality, both issue width and window size will be simultaneously increased because a
larger window is required for finding more independent instructions. Hence, we believe
that the tag drive time can become significant in future designs with wider issue widths,

bigger windows, and smaller feature sizes.



Tag Match time
The tag match time is the time taken for one of the pull-down stacks to pull the

matchline low. From the equivalent circuit shown in Figure 2-14,

T x (R +R

tagmatch = Cp pdstack mlres) . lecap

where Rygstack 1S the effective resistance of the pull-down stack, Ryyres IS the metal resis-
tance of the matchline, and Cyyycqp is the total capacitance on the match line. Ry can be

computed using

MatchlineLength = (camwidth + W x taglinespacing

) X PREG,igth

R = 0.5 x MatchlineLength x R

mires metal

where MatchlineLength is the length of the matchlines, camwidth is the width of the CAM
cell excluding the tag lines, taglinegy,cing is the spacing between tag lines.

Cinicap COnsists of three components: the diffusion capacitance of all the pull-down
stacks connected to the matchline, the metal capacitance of the matchline, and the gate

capacitance of the inverter at the end of the matchline. Hence,

Cricap = 2% PREGjigin X Cyifrcap * MatchlineLength x C +C

metal gatecap

where PREG,iqth is the width of the physical register designators, Cytrcqp IS the diffusion

capacitance of the pass transistor (marked as PD1 in Figure 2-14) in the pull-down stacks
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that is connected to the matchline, and Cyarecap IS the gate capacitance of the inverter at the

end of the match line.

Substituting the equations for Ryjres and Cpyycqp iNto the overall delay equation and sim-
plifying we get

Ttagmatch = Co + Cy X W+ Gy X |W2
Again, we found that the quadratic component is relatively small and hence, the tag
match time is a linear function of issue width. The constants are listed in Table B.6 in

Appendix B.

A drawback of our model for the tag match time isthat it does not model the dependence
of the match time on the slope of the tag line signa i.e. the tag drive delay. Our results,
presented in the next section, show that, as aresult of this dependence, the tag match time
isaso afunction of the window size. In other words, alarger window will result in slower
fanning out of the result tags to the comparators in the window entries, thus increasing the

compare time.
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Figure2-15. Logic for ORing individual match signals.

Match OR time

This is the time taken to OR the individual matchlines to produce the ready signal.
Because the number of matchlines is the same as the issue width, the magnitude of this
delay term is a direct function of issue width. Figure 2-15 shows the OR logic for result
widths of 2, 4, and 8. For an issue width of 8, we use two 4-input NAND stacks followed
by a NOR gate because this is faster than using an 8-input NAND gate. Because the rise
delay of a gate is a linear function of the of the fan-in [WE93,Rab96] we can write the
delay as

TmatchOR = C0 + Cl x W

where the constants are as shown in Table B.7 in Appendix B.
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Overall delay
The overall delay of the wakeup logic can be summarized by the following equation:

(Co+ Cy X IW + ¢, x IW?)

Delay

+  (Cg+Cyx W) x WINSIZE

+ (Cg+C X IW+c, x IW?) x WINSIZE®

where the constants are as tabulated in Table B.8 in Appendix B.

2.4.2.3 Spice Results

The graph in Figure 2-16 shows how the delay of the wakeup logic varies with window
size and issue width for 0.18um technology. As expected, the delay increases as window
size and issue width are increased. The quadratic dependence of the total delay on the win-
dow size results from the quadratic increase in tag drive time as discussed in the previous
section. This effect is clearly visible for issue width of 8 and is less significant for smaller
issue widths. We found similar curves for 0.8um and 0.35um technologies. The quadratic

dependence of delay on window size was more prominent in the curves for 0.18um tech-

nology than for the other two technologies
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Figure2-17. Wakeup logic delay. The graph on the left shows how wakeup delay varies with
window size for a 8-way machine. The graph on the right shows how wakeup delay varies with
issue width for a 64-entry window. Both graphs are for 0.18um technology.

Also, issue width has a greater impact on the delay than window size because increasing
Issue width increases all the three components of the delay. On the other hand, increasing
window size only lengthens the tag drive time and to a small extent the tag match time.
Overal, the results show that the delay increases by almost 34% going from 2-way to 4-
way and by 46% going from 4-way to 8-way for a window size of 64 instructions. In real-
ity, theincreasein delay is going to be even worse because in order to sustain awider issue
width, a larger window is required to find independent instructions. We found similar
curvesfor 0.8um and 0.35um technologies. Detailed results for various configurations and

technologies are shown in tabular form in Appendix A.

The bar graph on the left in Figure 2-17 shows the detailed breakdown of the total delay
for various window sizes for a 8-way processor in 0.18um technology. The tag drive time
increases rapidly with window size. For example, the tag drive time and the tag match time
increase by factors of 4.78 and 1.33 respectively when the window sizeisincreased from 8
to 64. The increase in tag drive time is higher than that of tag match time because the tag
drive timeis a quadratic function of the window size. The increase in tag match time with
the window size is not taken into account by our ssmple model given above because the
model does not take into consideration the slope of the input signals (determined in this
case by the tag drive delay). Also, as shown by the graph, the time taken to OR the match
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Figure2-18. Wakeup delay versus feature size. This graph shows how the wakeup delay for a
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signals depends only on the issue width and is independent of the window size The graph
on the right in Figure 2-17 shows how the delay of a 64-entry window in 0.18um technol-
ogy varies with issue width. As shown by the delay analysis, al the components increase

with issue width.

Figure 2-18 shows the effect of reducing feature sizes on the various components of the
wakeup delay for an 8-way, 64-entry window processor. The tag drive and tag match
delays do not scale as well as the match OR delay. Thisis expected because tag drive and
tag match delays include wire delays whereas the match OR delay only consists of logic
delays. Quantitatively, the fraction of the total delay contributed by tag drive and tag
match delay increases from 52% to 65% as the feature size is reduced from 0.8um to
0.18um. This shows that the performance of the broadcast operation will become more

critical in future technologies.

In the above simulation results the window size was limited to a maximum of 64 instruc-
tions because we found that for larger windows the intrinsic RC delay of the tag lines
increases significantly. As discussed previously, the intrinsic RC delay is proportional to
the square of the window size. Therefore, for implementing larger windows banking
should be used. Banking helps alleviate the intrinsic RC delay by reducing the length of

the tag lines. For example, two-way banking will improve the intrinsic RC delay by afac-
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Figure2-19. Model delay results for wakeup logic. This graph shows how the model delay
results compare to the Spice results for 0.18um technology.

tor of four. At the same time it must be pointed out that banking will introduce some extra
delay due to extrainverter stages and the parasitics introduced by the extension to the tag

lines.

2.4.2.4 Model Results

Figure 2-19 shows how the model results, computed using the constantsin Appendix B,
compare to the Spice results. From the graph we can see that the model is successful in

tracking the dependence on issue width and window size.

2.4.3 Window Selection Logic

Selection logic is responsible for selecting instructions for execution from the pool of
ready instructions in the issue window. Some form of selection logic is required for two
reasons. First, the number of ready instructionsin the issue window can be greater than the
number of functional units. For example, for a machine with a 32-entry issue window
there could be as many as 32 ready instructions. Second, some instructions can be exe-
cuted only on a subset of the functional units. For example, if there is only one integer

multiplier, all multiply instructions will have to be steered to that functional unit.
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The inputs to the selection logic are the request signals, termed REQ, one per instruction

in the issue window. The request signal of an instruction israised when al the operands of
the instruction become available. As discussed in the previous section, the wakeup logic is
responsible for raising the REQ signals. The outputs of the selection logic are the grant
signals, termed GRANT, one per request signal. On receipt of the GRANT signal, the asso-
ciated instruction is issued to the functional unit and the corresponding window entry is
freed for later use. A selection policy isused to decide which of the requesting instructions
is granted the functional unit. We use a selection policy that is based on the location of the
instruction in the window. The HP PA-8000 [Kum96] uses a similar selection policy. We
chose this policy because it alows a simpler, and hence faster, implementation compared

to other more sophisticated policies like “oldest ready first”.

2.4.3.1 Structure

The assumed structure of the selection logic is shown in Figure 2-20. The selection logic
is used to select a single instruction for execution on a functional unit. The modifications
to this scheme for handling multiple functional unitsis discussed later. The selection logic
consists of atree of arbiters. Each arbiter cell functions as follows. If the enable input is
high, then the grant signal corresponding to the highest priority, active input is raised. For
example, if enable =1, req0 = 0, reql = 1, reg2 = 0, and req3 = 1, then grantl will be
raised assuming priority reduces as we go from input regq0 to input req3. If the enable
input is low, all the grant signals are set to low. In all cases, at most one of the grant sig-

nalsis high. The anyreq output signal israised if any of the input req signalsis high

The overall selection logic worksin two phases. In the first phase, the request signals are
propagated up the tree. Each cell raises the anyreq signal if any of itsinput request signals
ishigh. Thisin turns raises the input request signal of its parent arbiter cell. Hence, at the
root cell one or more of the input request signals will be high if there are one or more
instructions that are ready. The root cell then grants the functional unit to one of its chil-

dren by raising one of its grant outputs. This initiates the second phase. In this phase, the
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Figure2-20. Selection logic. Thisfigure shows the arbiter tree of the selection logic and a
single arbiter cell in detail.

grant signal is propagated down the tree to the instruction that is selected. At each level,
the grant signal is propagated down the subtree that contains the selected instruction. The
enable signal to the root cell is high whenever the functional unit is ready to execute an

instruction. For example, for single-cycle ALUs, the enable signal will be permanently
tied to high.

.The selection policy implemented by our assumed structure is static and is strictly based
on location of the instruction in the window. The leftmost entries in the window have the
highest priority. The oldest ready first policy can be implemented using our scheme by
compacting the issue window to the left every time instructions are issued and by inserting
new instructions at the right end. This ensures that instructions that occur earlier in pro-
gram order occupy the leftmost entries in the window and hence have higher priority than

later instructions. However, it is possible that the complexity resulting from compaction
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Figure2-21. Handling multiple functional units.

could degrade performance. We did not analyze the complexity of compacting in this
study.

Handling Multiple Functional Units

If there are multiple functional units of the same type, then selection logic (shown in
Figure 2-21) comprises a number of blocks of the type studied in the previous section,
stacked in series. The request signals to each block are derived from the requests to the

previous block by masking the request that was granted the previous resource.

An aternative to the above scheme is to extend the arbiter cells so that the request and
grant signals encode the number of resources being requested and granted respectively.
However, we believe that this could considerably slow down the arbiter cells and hence
could perform worse than the stacked design. The stacked design might not be a feasible
alternative beyond two functional units because the resulting delay can be significant. An
alternative option is to statically partition the window entries among the functional units.
For example, in the MIPS R10000 [ Yea96], the window is partitioned into three sets called
the integer queue, floating-point queue, and the address queue. Only instructions in the

integer queue are monitored for execution on the two integer functional units.

2.4.3.2 Delay Analysis

The delay of the selection logic is the time it takes to generate the grant signal after the
request signal has been raised. Thisis equal to the sum of two terms: the time taken for the
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request signal to propagate to the root of the tree and the time taken for the grant signal to

propagate from the root to the selected instruction. Symbolically,

Delay = (L—1)xT Troot(L=1)xT

reqpropd + grantpropd

where L = 10og4(WINSZE) is the height of the selection tree, Tyeqpropg IS the time taken for
the request signal to propagate through an arbiter cell, T, iSthe delay of the grant output
at the root cell, and Ty antpropd 1S the time taken for the grant signal to propagate through

an arbiter cell. Hence, the overall delay can be written as

Delay = ¢, + ¢, x log,(WINSIZE)

where ¢ and ¢, are constants as listed in Table B.9 in Appendix B. The base of the loga-
rithmic term is determined by the number of inputs to the arbiter. We found the optimal
number of arbiter inputs to be four in our case. The associated trade-offs are discussed
later.

From the above equations we can see that the delay of the selection logic is proportional
to the height of the tree and the delay of the arbiter cells. The delay has alogarithmic rela-
tionship with the window size. Increasing issue width can also increase the selection delay
if a stacked scheme is used to handle multiple functional units. For the rest of the discus-
sion, we will assume that a single functional unit is being scheduled and hence no stacking
is used. The delay for a stacked design can be easily computed by multiplying our delay
results by the stacking depth. One way to improve the delay of the selection logic is to
increase the radix of the selection tree. However, as we will see shortly, this increases the

delay of asingle arbiter cell and could make the overall delay worse.

Arbiter Logic
The circuit for generating the anyreq signal is shown in Figure 2-22. The anyreq signal
israised if one or more of the input request signalsis active. The circuit, implementing the

OR function, consists of a dynamic NOR gate followed by an inverter. The dynamic gate
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was chosen instead of a static OR gate for speed reasons. The circuit operates as follows.
The anyreq node is precharged high. When one or more of the input request signals go
high, the corresponding pull-downs pull the anyreq node low. The inverter in turn raises
the anyreq signal high. The value of T,gqpropg iN the delay equation is the delay of the OR

circuit.

The priority encoder in the arbiter cell is responsible for generating the grant signals.

Thelogic eguations for the grant signals are:

grant0O = req0 n enable
grantl = req0 n reql n enable
grant2 = req0n reqln reg2n enable

grant3 = req0n reqlnreq2n reg3 n enable

For example, grant2 is high only if the cell is enabled, the input requests req0 and reql
are low, and reg2 is high. Because the request signals at each cell, except for the root, are
available well in advance of the enable signal we use atwo-level implementation for eval-
uating the grant signals. As an example, the circuit for evaluating grantl is shown in
Figure 2-22. The first stage evaluates the grantl signal (node grantlp) assuming the
enable signal is high. In the second stage, the grantlp signal is ANDed with the enable to

produce the grantl signal. This two-level decomposition was chosen because it removes
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Figure2-22.  Arbiter Logic. The block on top shows the logic for the anyreq signal. The bottom
block shows the logic for generating the grantl signal.

the logic for grantlp from the critical path. This optimization does not apply at the root
cell because at the root cell the request signals arrive after the enable signal.

The policy used by the selection logic is embedded in the above equations for the grant
outputs of the arbiter cell. For example, the design presented assumes static priority with
req0 having the highest priority. Implementing an alternative policy would require appro-
priate modifications to these equations. Again, the designer has to be careful while select-
ing a policy because a complex policy can increase the delay of the selection logic by

slowing down individual arbiter cells.

Increasing the number of inputsto the arbiter cell slows down both the OR logic and the
priority encoder logic. The OR logic slows down because the |oad capacitance contributed
by the diffusion capacitance of the pull-downs increases linearly with the number of

inputs. The priority logic slows down because the delay of the logic used to compute pri-
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Figure2-23.  Selection delay versus window size. This graph shows how the selection delay
varies with window size for the three different feature sizes. The selection policy used is based on
the location of the instruction in the window.

ority increases due to higher fan-in. We found the optimal number of inputs to be four in
our case. The selection logic in the MIP R10000, described in [V*96], is also based on

four-input arbiter cells.

2.4.3.3 Spice Results

Figure 2-23 shows the delay of the selection logic for various window sizes in the three
technologies assuming a single functional unit is being scheduled. The delay is broken
down into the three components discussed earlier. From the graph we can see that for all
three technologies, the delay increases logarithmically with window size. Also, the
increase in delay is less than 100% when the window size is increased from 16 instruc-
tions to 32 instructions (or from 64 instructions to 128 instructions) because the middie
term in the delay equation, the delay at the root cell, is independent of the window size.
Detailed results are presented in tabular form in Appendix A.

The various components of the total delay scale well as the feature size is reduced. This
is not surprising because all the delays are logic delays. It must be pointed out that the
selection delays presented here are optimistic because we do not consider the wires in the

circuit, especially if it is the case that the request signals originate from the CAM entries
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Figure 224. Model delay results for selection logic. This graph shows how the model delay
results compare to the Spice results for selection logic.

in which the instructions reside. On the other hand, it might be possible to minimize the

effect of these wire delaysiif the ready signals are stored in a smaller, more compact array.

2.4.3.4 Model Results

Figure 2-24 shows how the model delay results, computed using the constants listed in
Appendix B, compare to the Spice results. The significant difference, especially for 0.8um
technology, results because our delay models are unable to accurately model dynamic

logic.

2.4.4 Register file Logic

The register file provides low latency access to register operands. The access time of the
register file depends on the number of registersin the file and the number of portsinto the
file. Assuming two read operands and one write operand per instruction, the number of
read and write ports required for a machine with issue width IWis 2 x W and IW respec-
tivelyl. The number of registers required increases with issue width in order to support a

greater degree of speculative execution. A recent study [FIC96] shows that for significant

1. In most machine designs additional write ports are implemented for write-back of load data.
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performance up to 80 physical registers are required for a 4-wide issue machine and up to

120 physical registers are required for an 8-wide issue machine.

2.4.4.1 Structure

The structure of the register file assumed for this study is similar to that of the map table
shown in Figure 2-5 on page 29. The register file contents are stored in the cross-coupled
invertersin the cells. Each row of cells stores the contents of a single register. Hence, the
number of rowsis determined by the number of registersin thefile. The number of cellsin
each row is determined by the datapath width. We assume a 64-bit datapath for this study.
A read operation starts with the register number (physical) being applied to the decoder.
The decoder decodes the register number and raises one of the wordlines. Thistriggers bit
line changes which are sensed by a sense amplifier and the appropriate output is gener-
ated. We use precharged, double-ended bitlines to improve the speed of read operations.
Read ports are implemented using NAND stacks (two pass gatesin series) instead of asin-
gle pass gate to prevent flipping of cell contents during a read operation, especially for

configurations with a large number of read ports.

There are a few differences between the map table in the register rename logic and the
register file. The shift register component of the map table is not present in the register file.
In the case of the rename logic, the number of rows is determined by the number of logical
registersin the instruction set architecture. The number of rows in the register fileis deter-
mined by the number of physical registers. The width of each row in the map table is
determined by the width of the physical register tags. In case of the register file, the width
of each row is determined by the datapath width — 64 bitsin most current designs.

2.4.4.2 Delay Analysis

The critical path for the register filelogic isthe time it takes for the contents of the regis-
ter to be output after the register number is applied to the address decoder. The delay of the
critical path consists of three components: the time taken to decode the register number,

the time taken to drive the wordline, and the time taken by an access stack to pull the bit-
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line low and for the sense amplifier to detect the change in the bitline and produce the cor-

responding output. Hence, the overall delay is given by,

Tdelay = Tdecode + Twordline + Tbitline

Each of the components is analyzed next. The analysis presented here is similar to that

presented for the rename logic. Hence, figures are omitted and the discussion is kept brief.
Decoder delay

We use the same predecoding scheme as used in the map table of the rename logic s
shown in Figure 2-6 on page 31. The fan-in of the NAND and NOR gates is determined by
the number of bits in the register number i.e. the number of physical registers. Table 2.2

shows the fan-in of the decoder gates for the various register file sizes simulated.

Number of Fan-in of Fan-in of direct
physical registers | predecode gates decode gates
32 2 3
64 2 3
128 3 3
256 4 2
512 4 3

Table 2.2: Fan-in of decoder gates.

The output of the NAND gates is connected to the input of the NOR gates by the prede-

code lines. The length of these linesis given by
PredeclinelLength = 0.5 x (cellheight + 3 x IW x wordlinegy,ng) X NPREG
where cellheight is the height of a single cell excluding the wordlines, IW is the issue

width, wordlineg,acing is the spacing between the wordlines, and NPREG is the number of

physical registers. The factor 3 in the equation results from the assumption of 3-operand
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instructions (2 read operands and 1 write operand). With these assumptions, 3 ports (1

write port and 2 read ports) are required per cell for each instruction being renamed.
Hence, for a IW-wide issue machine, a total of (3 x IW) wordlines are required for each
cell. The factor 0.5 results from the assumption that the predecode NAND gates drive the
predecode lines from the centre of the array. This optimization was necessary to minimize

the RC effects of long predecode lines for large, highly ported configurations.

The decoder delay isthe time it takes to decode the register number i.e. the time it takes
for the output of the NOR gate to rise after the input to the NAND gate has been applied.

Hence, the decoder delay can be written as

Tdecode = Tnand + Tnor

where T,,gnq IS the delay of the NAND gate and T, iSthe delay of the NOR gate. Tj,gnq IS
given by the following equations,

Tnand = Cpx Req X Ceq
Req = Rnandpa * 0.5 x PredeclinelLength x R
Ceq = Cdiffcapnand + Cgatecapnor + Predecli neLength . Cmetal

where Rangpd 1S the pull-down resistance of the NAND gate, Cyittcapnand IS the diffusion
capacitance at the output of the NAND gates, Cyqecapnor IS the gate capacitance of the
NOR gates.

Substituting the above equationsinto the overall decoder delay and simplifying, we get

Tgecoder = Cot+ (Cp+Cy X IW) x NPREG + (€3 + ¢y X IW + g X |W2) x NPREG?

The above equation shows that the decode time increases with the number of physical

registers and the issue width. For a given issue width, the total delay is a quadratic func-
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tion of register file size. The weighting factor for the quadratic term is a function of the

issue width. For a given register file size, the decode time is also a quadratic function of
issue width. The quadratic components in both cases result from the intrinsic RC delay of
the predecode lines and are small relative to the other components. Typical values of the
constants in the equation are listed in Table B.10 in Appendix B.

Wordline Delay

The wordline delay is defined as the time taken to turn on all the access transistors con-
nected to the wordline after the register number has been decoded. The wordline delay is
the sum of the fall delay of the wlinv inverter and the rise delay of the wordline driver. The

delay of the wordline driver is given by the following equations

WordlineLength = (cellwidth +6 x IW x bitlineg,,ing) X DATA;4th

R, = 0.5xWordlineLength x R

metal

C

wi = DATAgth X Cyatecap + WordlineLength x C

Twldriver = CO X (Rwldriver + Rwl) X CwI

metal

where R, is the resistance of the wordline wire, C,, is the capacitance on the wordline,
Ruwidriver 1S the pull-up resistance of the wordline driver, and Cyatecap i the gate capaci-

tance of the access transistor.

Factoring the above equations into the wordline delay equation and simplifying we get

_ 2
Twordline - C0+C1>< |W+C2X W

where cg, ¢;, and ¢, are constants listed in Table B.11 in Appendix B. Again, the quadratic
component results from the intrinsic RC delay of the wordline wire and we found that this
component isvery small relative to other components. Hence, the overall wordline delay is

linearly dependent on the issue width.
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Bitline delay

The bitline delay is defined as the time between the wordline going high (turning on the
access transistor N1) and the output of the sense amplifier going high/low. Thisis the sum
of the time it takes for one access stack to discharge the bitline and the time it takes for a

sense amplifier to detect the discharge. Hence,

Tbitline = Tbitdischarge+ Tsenseamp

The time taken to discharge the bitlines is determined by the following equations.

BitlineLength = (cellheight + 3 x IW x wordli nespacing) x NPREG
Ry = 0.5x BitlineLength x R

metal

CbI

NPREG x Cyjftcqp *+ BitlineLength x C

metal

Thitdischage = C0 % (Rastack T Roi) % Cp

where Ryq 40k 1S the effective resistance of the access stack (two pass transistors in series),
Ry istheresistance of the bitline, Cy, isthe capacitance on the bitline, NPREG is the num-
ber of physical registers, Cyitrcqp IS the diffusion capacitance of the access stack that con-
nects to the bitline, cellheight is the height of a single RAM cell excluding the wordlines,

and wordlinegyacing IS the spacing between wordlines.

Factoring the above equations into the overall delay equation and simplifying we get

Thitline = Co+(Cy+Cy X IW) x NPREG + (C3+ ¢y X W + Cg X IW?) x NPREG?

The bitline delay shows a similar dependence on issue width and register file size as the
decoder delay. The quadratic components result from the intrinsic RC delay of the bitline
wire. Again, we found that the quadratic component is very small relative to the other

components. Typical values for the constants are listed in Table B.12 in Appendix B.
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Overall delay
From the above analysis, the overal delay of the register file can be summarized by the

following equation:

Delay = (cy+cyxIW+c,x IW2)

+ (cg+c,xIW)x NPREG

+  (Cg+Cg X IW+c, x IW?) x NPREG”

where the constants are as tabulated in Table B.13 in Appendix B.

2.4.4.3 Spice Results

Figure 2-25 shows how the delay of the register file varies with the number of registers
and the issue width for the case of 0.18um technology. A number of observations can be
made from the graph. First, the delay increases as issue width and the number of registers
are increased. The graph also shows that the total delay is a linear function of the number
of registers. The dependence on issue width is also linear except for larger configurations

(512 registers or more) where the quadratic component start to show. These observations
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are in agreement with the analysis presented in the previous section. Issue width has a

greater impact on the delay than the number of registers. This is expected because, as
shown in the previous sections, increasing issue width increases all the three components
of the total delay. For example, increasing the issue width from 4 to 8 increases the total
delay by 28.9%, whereas increasing the number of registers from 64 to 128 for a 8-way
machine only increases the delay by 18.1%. In practice, the increase in delay is going to
be even worse because in order to sustain awider issue width, more registers are required
to support a larger number of speculative operations. We found similar curves for 0.8um

and 0.35um technologies.

The graph in Figure 2-26 shows the breakdown of total delay into the components dis-
cussed in the previous section. The graphs are for the case of 0.18um technology. Con-
sider the graph on the left. As expected, the decoder delay and bitline delay increase with
the number of registers. However, the decoder delay does not increase as smoothly as the
bitline delay because the decoder structure (fan-in of the NAND and NOR gates) changes
discretely with the number of registers as shown in Table 2.2. The wordline delay does not
change with the number of registers because it is a function of the width of the registers
(64 bitsin our case) and the number of ports, both being constant for the graph. The bitline
delay increases linearly with the number of registers because the capacitance on the bit-
lines increases linearly with the number of registers. The graph on the right shows how the
breakdown varies with issue width for a 128-entry register file. In this case al three com-
ponents increase with issue width. The decoder delay increases slightly with issue width

even though its structure is determined by the number of registers because the predecode
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Figure2-26.  Breakup of register file delay. The graph on the left shows how the breakup varies
with the number of registers for a 8-way machine in 0.18um technology. The graph on the right
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lines increase in length with issue width. The wordline and bitline components show alin-

ear increase with issue width.

While the structure assumed for the above analysisis popular and has been used in most
implementations, microprocessor vendors are beginning to explore alternatives that help
reduce the delay of the register file. For example, the DEC 21264 [G*97] uses two copies
of the register file, each with half the number of read ports as the original file. Writes are
sent to both copies. Each copy therefore has the same number of write ports at the original
file. Reducing the number of read ports helps reduce the delay compared to the delay of a
single register file.

2.4.4.4 Mode Results

Figure 2-27 shows how the model delay results, computed using the constants listed in

Appendix B, compare to the Spice results presented earlier. From the graph we can see
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Figure2-27. Model delay resultsfor register file logic. This graph shows how the model delay
results compare to the Spice results for 0.18um technology.

that the model is successful in tracking the dependence on issue width and register file

size.

2.4.5 Data bypasslogic

The data bypass logic is responsible for bypassing result values to subsequent instruc-
tions that have completed execution but have not yet written their results to the register
file. The hardware datapaths and control added for this purpose form the bypass logic. The
number of bypasses required is determined by the depth of the pipeline and the issue width
of the microarchitecture. As pointed out by Ahujaet a. [ACR95], if IWisthe issue width,
and if there are S pipestages after the first result-producing stage, then a fully bypassed
design would require (2 x IW2 x S) bypass paths assuming 2-input functional units. In
other words, the number of bypass paths grows quadratically with issue width. The current
trend towards deeper pipelines and wider degree of issue only multiplies the number of

bypass paths and makes the bypass logic even more critical.

The bypass|ogic consists of two components: the datapath and the control. The datapath
comprises buses, called the result buses, that are used to broadcast bypass values from
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each source to all possible destinations. The sources of bypass values are the functional

units and the cache ports. Buffers are used to drive the bypass values on the result busses.
In addition to the result busses, the datapath comprises operand MUXes. Operand MUXes
arerequired to gate in the appropriate results to the operand busses. The fan-in of the oper-
and MUXes is one greater than the number of result busses. The extrainput to the MUX is
connected to aread port on the register file. Thisis for casesin which the operand is read

from the register file.

The control logic is responsible for controlling the operand MUXes. The control logic
compares the tag of the result value to the tag of the source value that is required at each
functional unit. If thereisamatch, the MUX control is set so that the result value is driven

on the appropriate operand bus.

The key factor that determines the speed of the bypass logic is the delay of the result
wires that are used to transmit bypassed values. The control adds to this delay; however,
for our analysis, we will ignore the control because its delay is asmall fraction of the total
delay. Also, as we move towards smaller feature sizes, wire delays resulting from the

result wires will be responsible for a significant fraction of the total delay.

2.45.1 Structure

A commonly used structure for the bypass logic is shown in Figure 2-28. The figure
shows a bit-dlice of the datapath. There are four functional units marked FUO to FU3.
Consider the bit dlice of FUO. It gets its two operand bits from the opdO-1 and opdO-r oper-
and wires. The result bit is driven on the resO result wire by the result driver. Tristate buff-
ers are used to drive the result bits on the operand wires from the result wires. These
buffers implement the MUXes shown in the figure. For example, in order to bypass the
result of functional unit FU1 to the left input of functional unit FUO, the tristate driver
marked A is switched on. The driver A connects the resl wire and opdO-I wire. In the case

where bypasses are not activated, the operand bits are placed on the operand wires by the
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Figure2-28. Bypasslogic.

register file read portst. The result bits are written to the register file in addition to being
bypassed.

The delay of the bypass logic is largely determined by the time it takes for the driver at
the output of each functional unit to drive the result value on the corresponding result wire.
This in turn depends on the length of the result wires. From the figure it can be seen that
the length of the result wires is determined by the height of the functional units and the

register file. Alternative layouts are possible and are discussed | ater.

2.4.5.2 Delay Analysis

As discussed before, the delay of the bypass logic can be approximated by the time
taken to drive the result bits on the result wires. The equivalent circuit for calculating the

delay is shown in Figure 2-29. From the figure it follows,

Tdelay = CpX (Rdriver x Cdriver + (Rdriver + Rwire) x Cwire)

= CO X (Rdriver x Cdriver + (Rdriver +0.5 % Rmetal X L) X Cmetal X L)

1. In areservation-station based microarchitecture the operand bits come from the data field of the
reservation station entry.
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where L is the length of the result wires, Ryer 1S the resistance of the pull-up of the
driver, and Cgiver IS the diffusion capacitance at the output of the driver. For the layout
assumed, the length of the result wires is determined by the height of the functional units
and the register file. Each of these termsin turnisalinear function of issue width. Increas-
ing issue width increases the number of functional units and thus lengthens the result
wires. Increasing issue width also increases the height of register file because this stretches
individual cellsin the register file as seen in Section 2.4.4. The result is that the length of
the result wires increases linearly with issue width. Rewriting the length of the result

wires, L, in terms of issue width, IW, and simplifying we get,

2
Taelay = Co+Cy X IW+c,x IW

where ¢, ¢4, and ¢, are constants. The constants are listed in Table B.14 in Appendix B.

From the above equation we can see that the bypass delay has both a linear component
and a quadratic component determined by the issue width. Unlike in the case of other
structures, we found that the quadratic component can be significant. Hence, the bypass

delay grows quadratically with issue width.

Increasing the depth of the pipeline also increases the delay of the bypass logic as fol-
lows. Increasing the depth increases the fan-in of the operand MUXes connected to a

given result wire. This in turn increases the amount of capacitance to be charged or dis-



70

“— L2 —> “— L2 ——r

Rdrivt-:'rl Rwire
Rwire ~AMAN—
Cwiret Cyate2 Rdriver2 __Cwire
Cdriver1 — — .
| | Cdriver2

Figure2-30. Inserting buffersin the result wires.

charged on each result wire because the diffusion capacitance at the output of the operand
MU Xes adds to the capacitance on the wires. However, this component of the delay is not
captured by our simple model. We expect this component of the delay to become relatively

less significant as the feature size is reduced.

Buffered result wires

The quadratic component in the delay equation can be reduced in magnitude by insert-
ing buffersin the result wires [WE93]. For example, Figure 2-30 shows the equivalent cir-

cuit with a single buffer inserted in each result wire. The resulting delay is given by,

Tdelay = Co % (Rdriverl X Cdriverl + (Rdriverl +0.5x Rmetal X L/2) X Cgatez
+ (Rdriverl +0.5 % Rmetal x L/Z) x Cmetal xL/2+ Rdriver2 x Cdriver2
+ (Rdriverz +0.5 % Rmetal x L/Z) x Cmetal x L/Z)

where Ryiver1 @nd Cyrivery are the pull-up resistance and diffusion capacitance of the first
driver, Rgriver2 @d Cgiverz @e the pull-down resistance and diffusion capacitance of the
second driver, and Cyge is the gate capacitance of the second driver. By breaking the
result wires in half and inserting a buffer, the magnitude of the quadratic component is
reduced in half compared to the unbuffered configuration. However, the total delay will
benefit from this reduction only if the delay of the buffer inserted isless than the reduction
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in the quadratic component. Therefore, this approach of inserting buffers will help reduce

delay up to the point where the delay of the inserted buffers equals the delay of each seg-
ment of the result wire. Inserting buffers beyond this point will only increase the total
delay.

From the delay equation we can see that, even with buffers, the total bypass delay is at
least alinear function of issue width. There are two additional factors which augment the
criticality of bypass logic. First, bypass logic isin series with the functional units (ALUS)
i.e. the sum of ALU delay and bypass delay must be less than the clock period in order to
execute dependent instructions in consecutive cycles. As we will see later in Section 2.5,
the ability to execute dependent instructions in consecutive cyclesis essential for high per-
formance. Second, the result wires are actually longer because in most implementations
they extend into the data cache array in order for the cache output to be fanned out to the

functional units.

2.4.5.3 Spice Results

We studied the bypass delay for a 2-way, a4-way and a 8-way machine assuming typical
heights for the functional units and the register file. Both buffered and unbuffered result
wires were studied. The results are shown in Figure 2-31. There are a number of observa-
tions that can be made from the graph. First, the bypass delay increases at least linearly
with issue width for both the buffered and unbuffered configurations. For example, assum-
ing unbuffered result wires, the bypass delay increases by factors of 2.4 and 3.0 going
from 4-wide to 8-wide issue width for 0.8um and 0.18um technology respectively. The
increase is higher for 0.18um technology since the intrinsic wire delay (quadratic) compo-
nent increases in significance as the feature size is reduced. In fact, for the 0.18um tech-
nology, the intrinsic wire delay is responsible for 68% and 90% of the total delay
respectively for the 4-way and the 8-way machine.



72

1000
[ ] Unbuffered wires

800 - Buffered wires i

600 - -

400 r

Madualll

0.8um 0.35um 0.18um 0.8um 0.35um 0.18um 0.8um 0.35um 0.18um
2-WAY 4-WAY 8-WAY

Bypass delay (ps)

Figure2-31. Bypasslogic delays. For this graph we assume each functional unit has a height of
2500A, where A is half the feature size. The length was estimated based on published data
[HF88,5793,1195]. The height of the register file in each case was computed using the formula,
Height = NPREG x (cellheight + wordlineg,,qing 3 % 1W) , Where NPREG is the number of physical
registers, cellheight is the height of an individual RAM cell excluding the wordline, and
wordlineg,acing i the spacing between wordlines. We use cellheight = 24\, NPREG = 48 for 2-
way, NPREG = 80 for 4-way and NPREG = 120 for 8-way, and wordlineg,cing = 6A for computing
the graph.

Introducing buffers helps mitigate bypass delays for the 8-way machine. For example,
now the bypass delay only increases by factors of 1.8 and 2.4 when going from 4-wide to
8-wide issue width for 0.8um and 0.18um technology respectively. For the 4-way
machine, the reduction is not as significant because the delay of the extra buffer inserted is
close to the reduction in the intrinsic delay of the result wire. Another important observa-
tion that can be made is that bypass delay does not scale well as the feature size is reduced.
For the 8-way machine with buffered result wires, the bypass delay reduces by 42% going
from 0.8um to 0.35um and by only 13% going from 0.35um to 0.18um. This shows that
single cycle bypassing between functiona unitsin awide superscalar machineis going to

be increasingly difficult as the feature size is reduced.
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Figure2-32. Model delay results for bypass logic. This graph shows how the model delay
results compare to the Spice results for bypass logic implemented in 0.18um technology.

2.45.4 Mode Results

Figure 2-32 shows how the model delay results, computed using the constants listed in
Appendix B, compare to the Spice results presented earlier. The model results closely
match the Spice results because the bypass delay is dominated by wire delays and our
delay models are able to accurately estimate wire delays.

2455 Alternative Layouts
The results presented in the previous section assume a particular layout; the functional

units are placed on either side of the register file. However, as mentioned before, the length
of the result wires is a function of the layout. Hence, microarchitects will have to study
aternative layouts in order to reduce bypass delays. Figure 2-33 shows some alternative

layouts.

In the alternative shown on the left, al the functional units are placed on one side of the
register file. In this case the result wires do not have to extend over the register file. How-
ever, the length of the operand wires originating from the register file increases relative to
the configuration in Figure 2-28 thus stretching the register file access time. Also, this

organization has the disadvantage that the sense amplifiers of the register file cannot be
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Figure2-33.  Alternative layouts for bypassing.

distributed on both sides. This could stretch the wordlines in the register file and hence,

can also increase the register file access time.

In the long term, microarchitects will have to consider clustered organizations like the
alternative shown on the right. Each cluster has its own copy of the register file. Bypasses
within a cluster complete in a single cycle while inter-cluster bypasses take 2 or more
cycles. Such a scheme isimplemented in the DEC 21264 [Gwe96a]. The hardware or the
compiler or both will have to ensure that inter-cluster bypasses occur infrequently. In addi-
tion to mitigating the delay of the bypass logic, this organization also has the advantage of
faster register files because there are fewer ports on each register file. Another technique
[ACR95] that can be used to improve bypass performance is to use an incomplete bypass
network. In an incomplete bypass network only the frequently used bypass paths are pro-
vided while interlocks are used in the remaining situations. For an 8-way machine with

deep pipelines, this would exclude alarge number of bypass paths.

2.5 Pipelining Issues and Overall Delay Results

In the preceding sections, the delay of each of the critical structures was analyzed in
detail. However, in addition to the delay, another important consideration is the pipeline-

ability of the structures. Even if the delay of a structure is relatively large it can be elimi-
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nated from the critical path defining the clock cycleif it can be pipelined, i.e., its operation

is spread over multiple cycles.

However, while deeper pipelining can improve performance by facilitating a faster
clock, it can result in a number of side-effects that can degrade performance too. First, the
extra stages introduced by deeper pipelining in the front end increase the penalty of
mispredicted branches. Also, the penalty of instruction cache misses will increase as a
result of extra pipestages that have to be re-filled. At the same time, accurate branch pre-
diction can alleviate these problems to a certain extent. Hence, if the performance
improvement achieved as a result of deeper pipelining (faster clock) surpasses the perfor-
mance degradation caused by the extra stages, then pipelining might be an attractive
option. The current trend in the microprocessor industry is towards deeper pipelining. For

example, the pipeline in the Intel Pentium Pro [Gwe95b] has as many as 14 pipestages.

The general subject of the effect of pipelining depth on overall performance has been the
focus of a number of studies [DF90,JW89,KS86]. We took a different approach in our
study. We study the feasibility of pipelining each of the critical structures from the point of
view of performance. We identify structures that are amenable to pipelining, i.e., those
whose operation can be spread over a small number of pipestages without significantly
impacting the IPC factor in the performance equation. Conversely, we identify certain
structures that should not be pipelined, especialy for programs with limited parallelism,
since the pipeline bubbles introduced by pipelining can cause significant degradation in
IPCs achieved.

The ability to execute dependent instructions in consecutive cycles is an important
requirement for high performance, especially for programs with limited parallelism. The
inability to execute dependent instructions back-to-back often introduces pipeline bubbles
that can result in significant performance degradation. Experimental results supporting
this will be presented later. A ssimple example will help illustrate this. Consider the time

taken to execute a dependent chain of single-cycle instructions of length n. If the ALU
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operation is sgmented into tw pipestages,xecution of the chain will tak(2x n—-1)

cycles — much more than the cycles it would tale in the non-pipelined caseorRthis
case, een if the clock frequerycdoubles as a result of pipelining the ALWgeaall perfor-
mance does not impve. In fact, latch erhead couldwen diminish performance. Ex
though this gample uses arxe#eme case of zero parallelism, the ability xe@ite depen-
dent instructions in consecusi g/cles is essential, especially for programs with small

amounts of parallelism.

Using the ability to xecute dependent instructions in conseeutycles as the metric,
we ev/aluate hwv pipelining the functions implemented by the indual structures can

affect this requirement.

» Instruction fetching. Pipelining the instruction fetch logic does notver® back-to-
back eecution of dependent instructions. It doesywéceer, increase the penalty of
mispredicted branches and instruction cache misses when the pipeline has to be
refilled. More accurate branch prediction and an out-of-order back-end help reduce the
penalty of mispredicted branches. Owperimental results sho that instruction
fetching can be pipelined into afesegments at the cost of a small (4% per pipestage)
degradation in IPC performance for eacttra pipestage introduced. Similar results —

3% per pipestage — @ been reported by designers [Hin95] in the industry

* Register renaming. Pipelining register renaming does not pemt back-to-backx@cu-
tion of dependent instructions. Justeliknstruction fetch, it increases the penalty of
mispredicted branches and instruction cache misses and results in similagiBC de

dations when pipelined.

The reyister rename logic can be pipelined by spreading the dependence checking and
the map table accessay multiple pipestages. While it is easy to se® Hependence
checking can be pipelined, it is not so/ms hav the map table access can be pipe-
lined. Hovever, there are schemes [Cha91 W] for pipelining RAMs that can be
applied to map table accesses. In addition, in order to ensure that each rename group

sees the map table updates performed byiqure rename groups, the updategehto
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Figure2-34. Pipelining wakeup and select.

be bypassed around the map tablei.e. the updates should be visible before the writes to
the table actually complete. Hence, we believe that even though the design will be
complicated, register renaming can be pipelined to at least two segments. It must be
pointed out that before attempting to pipeline renaming, there are a number of tricks
that can be applied to reduce its latency. First, the map table can be duplicated to
reduce the number of ports on each copy of the table. Second, because not all instruc-
tions have two operands and because it is likely that instructions in a rename group
have common operands, the port requirements on the map table can be reduced with

little effect on performance.

« Wndow logic. Wakeup and select together have to be accomplished in asingle cycleto
facilitate back-to-back execution of dependent instructions. If they are spread across
multiple pipestages, dependent instructions cannot execute in consecutive cycles as
shown in Figure 2-34. The add and the sub instructions cannot execute back-to-back
because the result of the select stage has to feed the wakeup stage. The resulting pipe-
line bubbles can seriously degrade performance especialy in programs with limited

parallelism. Hence, wakeup and select together must be accommodated to fit within a
cycle.

» Data bypassing. Data bypassing is another example of an operation that must be com-
pleted in less than a cycle in order to execute dependent instructions in consecutive
cycles. The bypass values must be made avail abl e to the dependent instruction within a
cycle. The delay of the bypass logic is made even more critical by the fact that it isin
series with the ALU operation — the sum of the delays of the ALU and the bypass
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delay should be less than a cycle to facilitate back-to-back execution. As shown ear-
lier, it is going to be increasingly hard to accomplish data bypassing within a single
cycle in wide-issue machines.

Raister file acces<ipelining the register file does not affect back-to-back execution
since the operand values for the consumer instruction are provided by the data bypass
logic. Again, like in the case of instruction fetch and register rename, pipelining the
register file increases branch mispredict and instruction cache miss penalties. It results
in similar IPC degradation as for the case of pipelining front-end stages like instruc-
tion fetch and register rename.

The techniques used to pipeline RAM can be employed to pipeline the register file.

Tullsen et al. [T*96] studied the effect of spreading register read over two pipestages.
They found that single thread performance degraded by only 2% for their design. Once
again, it must be mentioned that instead of pipelining the register file, architects can
reduce its latency by duplicating the register file. Each copy of the register file will
have half the number of read ports asthe original register file. This technique has been

used in the DEC 21264 [G*97]. In this case two copies of the integer register file are
used.

Cade accessPipelining cache access can prevent back-to-back execution of depen-
dent instructions. For example, breaking the cache access into two pipeline segments
will prevent back-to-back execution of a load instruction and a instruction using the
result of the load. In the absence of parallelism, this can severely affect performance.
However, cache access is not as critical as window logic or data bypass logic because
unlike them, cache access only affects load-use instruction pairs. Pipelining window
logic and data bypass logic injects bubbles for all pairs of dependent instructions.
While most designs attempt to provide single-cycle cache access, there are designs in
which cache access has been pipelined into two stages.

Caches can be pipelined in a number of ways. One scheme, implemented in the DEC
21064, reads the tags and the data in the first cycle and performs the hit/miss detection

operation in the second cycle. A second, more aggressive scheme could pipeline both
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thetag RAM and the data RAM themselves. A related trade-off isto size the L1 data

and instruction caches so that they can be accessed in asingle cycle and use a bigger

L2 cacheto service the L1 misses.

To summarize, the analysis presented above shows that window logic, data bypass logic,
and cache access logic implement operations that have to accomplished in asingle cyclein
order to facilitate execution of dependent instructions in consecutive cycles. Back-to-back
execution is a desirable feature from the point of view of performance, especialy for
codes that have limited parallelism. Because operations that prevent execution of depen-
dent instructions in consecutive cycles will not be pipelined for performance reasons, we
believe that the latency of these operations will ultimately limit the degree of pipelining.
Consequently, the delays of these operations are crucial and will determine the complexity

of amicroarchitecture.

The qualitative analysis presented above is not new. Similar issues and trade-offs have
been discussed in the context of deep pipelining [KS86] and superpipelining [JW89]. The
trade-offs are analyzed here in the context of out-of-order microarchitectures. The move
towards wide-issue superscalar machines and the technology trend of wire delays domi-
nating total delays increases the importance of these trade-offs and hence, architects need
to reevaluate these trade-offs. There are afew cavests to the analysis. The arguments pre-
sented are tightly hinged on the assumption that there is limited instruction-level parallel-
ism in programs. At least theoreticaly, in the hypothetical situation of very high-levels of
paralelism, pipelining any of the structures will not significantly impact performance.
Also, pipelining cannot be used as a panacea for reducing complexity. Pipelining, espe-
cially deep pipelining, has its own set of drawbacks. Clock skew and latch overhead can
combine to limit the decrease in clock period obtained by further pipelining. Deep pipelin-
ing also requires sophisticated circuit design.

To quantify the effect of pipelining the above operations on the effectiveness of a

microarchitecture, we studied the performance effect of varying the number of pipeline
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Figure2-35.  Effect of pipelining on IPC. This figure shows the effect of pipelining on the
performance of a8-way out-of-order microarchitecture. Each pair of bars shows the effect of
introducing one (1) and two (2) extra pipestages in that particular section. The leftmost bar for
each benchmark shows the base performance. The simulated processor has a 64-entry window, a
120-entry register file, and a gshare branch predictor with 20 bits of global history.

stages. A baseline out-of-order microarchitecture of the kind shown in Figure2-1 on
page 15 is assumed. The pipeline was divided into three sections: front-end, execute, and
cache access. The front-end section includes instruction fetch, register rename, and regis-
ter file access operations. The execute section includes window wakeup, window selec-
tion, and data bypass operations. The cache access section consists of only the cache
access operation. The pipeline was partitioned in this fashion because the operationsin a
given section are identical with respect to pipelining i.e. spreading register rename over
two stages and spreading register file access over two stages have the same effect on per-
formance. We then studied the effect of introducing extra stages in each section. The

results are shown in Figure 2-35.

A number of observations can be made from the graph. First, pipelining the operations
in the front-end does not degrade eff ectiveness significantly. However, pipelining the oper-
ations in the execute section can result in serious performance degradation and hence,

should be avoided. For example, dividing execute into two pipestages can degrade the per-
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Figure2-36. Overadl delay results. Thisfigure showsoverall delay resultsfor a2-way, a4-way,
and a 8-way machinein 0.18um technology. The 2-way machine has a 48-entry register file and a
16-entry window. The 4-way machine has a 80-entry register file and a 32-entry window. The 8-
way machine has a 120-entry register file and a 64-entry window.

formance by as much as 24% in the case of compress. Pipelining cache access can degrade
performance by as much as 8% per additional pipestagel. Hence, it is important to keep
the cache access latency low (less than 3 cycles) for good performance. In summary, the
graph shows that while register file access and register renaming can be pipelined without
taking a significant hit in performance, performing window and data bypass operationsin

asingle cycleiscrucia for high performance.
Overall delay results

The overall delay results for a 2-way, a 4-way, and a 8-way microarchitecture in 0.18um
technology are shown in Figure 2-36. The corresponding results for 0.8um and 0.35um
technologies are shown in Appendix A. The graph shows that the delay of window logic,
register file logic, and data bypass logic increases significantly with issue width. The data
bypass logic shows the largest increase, increasing by factors of 1.95 and 2.37 going from
2-way to 4-way and from 4-way to 8-way respectively. Even though the delay of the
bypass logic is smaller than that of the window logic and the register file logic, the fact

that the bypass logic is in series with the functional units makes its performance critical.

1. Wilson and Olukotun [WO95] report similar numbers.
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Another observation is that when the issue width is increased from 4 to 8, the register file

delay degrades more than the window delay. Thisis explained by the particular configura-
tions assumed for the graph. The size of the register file increases from 80 registersto 120
registers whereas the window size only increases from 32 entries to 64 entries. Also, the
delay of the window selection logic is the same for both the configurations because selec-
tion logic increases |ogarithmically (base 4) with window size. However, as shown earlier,
theregister filelogic is not as critical as the window logic because it can be pipelined with
asmall reduction in IPC. Hence, window logic and bypass logic are the most crucial struc-

tures among the list of structures studied here.

2.6 Related Work

The access time of caches and register files have been studied in the past. Wada et al.
[WRP92] quantify the access time of a cache as a function of various cache parameters
like cache size, associativity, and line size. Wilton and Jouppi [WJ94] further refined
Wada's model. The methodology used for this work is similar to the one used by Wilton
and Jouppi [WJ94]. Farkas et al. [FIC96] modified the cache model to study, using Spice
simulations, how the access time of a register file varies with the size of the register file
and the number of ports. In this chapter we develop analytical equationsin addition to pre-
senting Spice simulation results for register files. Specific implementations of register files
are described in published literature [AMG*95,J0l91, S"91].

The subject of quantifying the complexity of issue logic in superscalar microarchitec-
tures has received some attention, mostly qualitative, in the past. Horowitz et al. [HPS92]
argue that increasing complexity, both due to worsening wire delays and growing inter-
connection cost, will ultimately limit the performance advantage of wide-issue, dynami-
cally scheduled, superscalar microarchitectures. They measure complexity of a specific
operation in terms of the number of gates, or in some cases the die area, required for
implementing the operation. For example, they show that the complexity of operand

bypassing grows as O(IW?) where IW is the issue width.
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Johnson [Joh9l] gives a largely qualitative description of the complexity of a central

window. He points out that the critical path for the window logic comprises two opera-
tions: an instruction being made ready by a result that will be forwarded and the arbitra-
tion for a functional unit by that instruction, i.e. a wakeup followed by a select in our
terminology. Based on some assumptions, he estimates that the critical path can be imple-

mented using 16 logic stages. He does not consider wire delaysin his analysis.

Chamdani [Cha95] measures the complexity of superscalar microarchitectures in terms
of hardware costs. He presents a theoretical cost analysis in terms of the costs of a 1-bit
comparator, 1-bit register storage, 1-bit global wire, and other unit parameters. The cost

analysisis used to compare various superscalar designs.

There are anumber of studies that discuss how interconnect delays can become a signif-
icant limiter in future technologies. Bohr claims [Boh95] that as clock frequencies
approach 1 GHz and interconnect pitches shrink below 0.5um, interconnect delay will
become a dominant portion of clock cycle time. Even though increasing metal aspect ratio
helps improve RC delay, he shows that maximum benefits are achieved once aspect ratios
reach close to 2. Furthermore, the study also shows that using more interconnect layersis
not a feasible solution since the practical limits for the number of layerswill be reached in
just afew technology generations. Wilhelm [Wil95] presents a lucid explanation, starting
from basic principles, of the poor scaling of wire delays in future. He concludes that the
impending wire delay problem will force architects to consider designs that avoid global
signalling. Matzke [Mat97] introduces the notion of signal drive region and clock locality
matrix to show how multiple clock cycles will be required to propagate signals across a
diein future. He also concludes that only microarchitectures with good locality and corre-

sponding floor planning will survive.

2.7 Chapter Summary

This chapter analyzed the delay of critical structuresin a baseline superscalar microar-
chitecture. The structures studied are critical in the sense that their delay is a function of
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issue width, issue window size, wire delays and hence, it is likely that the delay of these

structures will determine the cycle time in future designs in advanced technologies. Sim-
ple analytical models that expressed the delay of each of the structures in terms of
microarchitectural parameters like issue width and instruction window size were devel-
oped. In addition, we studied how the delays scale as feature sizes shrink and wire delays

become more prominent.

The overall results show that the logic associated with managing the issue window of a
superscalar processor is likely to become the most critical structure as we move towards
wider issue, larger windows, and advanced technologies in which wire delays dominate.
One of the functions implemented by the window logic is the broadcast of result tagsto all
the waiting instructions in the window. The delay of this operation is determined by the
delay of wires that span the issue window. We found that the delay of this operation
increases at least linearly with window size and issue width. Hence, this operation does
not scale well. Furthermore, in order to be able to execute dependent instructions in con-

secutive cycles, the delay of the window logic should fit within acycle.

In addition to the window logic, a second structure that needs careful consideration
especialy in future technologies is the data bypass logic. The length of the result wires
used to broadcast bypass values increases linearly with issue width and hence, the delay of
the data bypass logic increases at least linearly with issue width. Again, in order to be able
to execute dependent instructions in consecutive cycles, the sum of the delay of a func-

tional unit and the data bypass logic should be less than a cycle.

In summary, straightforward scaling of current microarchitectures will not be sufficient
because the resulting wire delays could significantly impact cycle time thus reducing the
overall performance improvement. As wire delays increasingly dominate total delay,

architects have to design more compact microarchitectures that avoid global signalling.
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Chapter 3

Dependence-based Superscalar Microar chitectures

The analysis presented in Chapter 2 shows that issue window logic is one of the primary
contributors of complexity in a conventional microarchitecture. The delay of the window
logic increases at least linearly with both issue width and window size. Furthermore, the
wakeup and select operations implemented by the window need to be accomplished in a
single cycle for high performance. In addition to window logic, another structure whose
delay scales poorly with issue width, especialy in future technologies, is the data bypass
logic. The length of the result wires used to broadcast bypass values increases linearly
with the number of functional units and hence, the delay of data bypass logic grows at
least linearly with issue width. This chapter proposes and evaluates dependence-based
superscalar microarchitectures that address the complexity of the window logic and the
data bypass logic. The proposed microarchitectures are designed to extract similar levels

of parallelism as conventiona microarchitectures while enabling a faster clock.

Dependence-based microarchitectures use two main techniques to achieve the dual goals
of wide-issue and fast clock. Partitioning is used to enable a fast clock. The machine is

partitioned into multiple clusters each of which contains a part of the instruction window
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and the execution resources of the whole processor. This enables high-speed clocking of

the clusters since the narrow issue width and the small instruction window of each cluster

keeps the critical delays small. The second technique is applied to sustain a high IPC for

the whole machine. This involves intelligent steeringof instructions to the multiple clus-

ters so that the full width of the machine is utilized while minimizing the performance

degradation due to slow inter-cluster communication. Dependences between instructions,

discovered at run-time, are used as input to perform the steering. Hence, the name depen-
dence-baseduperscalar microarchitectures. It must be pointed out that the two techniques

must be used in conjunction since both a fast clock and a high IPC are necessary for high

performance.

The rest of this chapter is organized as follows. The next section discusses the concept
behind the dependence-based superscalar microarchitectures. Section 3.2 presents and
analyzes in detail a specific instance of the dependence-based superscalar microarchitec-
tures called the fifo-based miaarchitecture. Section 3.3 discusses other interesting mem-
bers of the family of dependence-based microarchitectures. Experimental evaluation
results are presented in Section 3.4. Other related microarchitectures are discussed in

Section 3.5, and finally, the chapter is summarized in Section 3.6.

3.1 Concept

The organization of a generic dependence-based superscalar microarchitecture is illus-
trated in Figure 3-1. The issue and execution resources of the machine are partitioned into
multiple clusters. Renamed instructions are steered to one of the clusters. Steering issues
are discussed later. Each cluster contains a slice of the instruction window and the func-
tional units of the whole machine. A copy of the register file is provided in each cluster.
The multiple copies of the register file are kept identical by broadcasting register writes.
Local bypasses within a cluster (shown using thick lines) are responsible for bypassing
values produced in a given cluster to the inputs of the functional units in the same cluster.

By keeping the issue width of the clusters small, local bypassing is accomplished in asin-
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Figure 3-1. Dependence-based superscalar microarchitecture.

gle cycle. Inter-cluster bypasses are responsible for bypassing values between functional
units residing in different clusters. Because inter-cluster bypasses require long wires, it is
likely that these bypasses will be relatively slower and take two or more cycles in future
technologies. The inter-cluster bypass wires are also used to keep the multiple copies of
the register file coherent. Hence, the multiple copies are identical except for the one or

more cycles difference in propagating results from one cluster to the rest of the clusters.

The proposed microarchitecture has a number of advantages over the conventional
microarchitecture with respect to complexity. Since each cluster implements anarrow exe-
cution core with a small window, both the window logic and data bypass logic delays in
each cluster can be kept small. As aresult, the proposed microarchitecture can support a
faster clock than a wide conventional microarchitecture with a large issue window. Also,
by using multiple copies of the register file, the dependence-based microarchitecture
reduces the number of ports on the register file and makes the access time of the file faster,

relative to that of acentralized file.
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The front-end of the dependence-based superscalar microarchitecture is identical to that

of the conventiona microarchitecture except for the addition of steering logic. The steer-
ing logic is responsible for steering instructions to individual clusters based on depen-
dences extracted at run-time. The goal of the steering logic isto make use of the full width
of the machine while minimizing the use of slow inter-cluster communication. Even
though the figure shows the steering logic to be in series with the rename logic, smple
versions of the steering logic can be implemented to operate in paralel with the rename
logic, thus eliminating the need for an extra pipestage. Section 3.3.3 discusses the trade-

offsinvolved in more detall.

Since the proposed microarchitecture uses the same front-end as a conventional microar-
chitecture, it does not reduce the complexity of instruction fetch and renaming. Extra pip-
estages, at the expense of areduction in IPC as shown in Section 2.5 in Chapter 2, is one

way to reduce the complexity of the front-end.

Perfor mance factor s

The overall performance of a dependence-based microarchitecture is highly dependent
on the amount of ILP that can be extracted relative to the conventional microarchitecture.
If the microarchitecture can sustain comparable | PCs, then its clock speed advantage will
result in higher overall performance. The primary factors that determine the IPCs achieved

by the proposed microarchitecture are:

» Load balancing. It isimportant that instructions are spread out to use as many clusters
as the amount of program parallelism allows. Otherwise, the program will not be able
to take advantage of the full-width of the machine. For example, if we have a 8-way
dependence-based superscalar microarchitecture organized as 4 clusters each being 2-
wide, and if all instructions are steered to a single cluster, the machine will be effec-

tively reduced to a 2-wide machine.

» Inter-cluster bypass frequency. Since inter-cluster communication is slow, excessively

using the inter-cluster bypass paths can easily stretch the critical path of the program,
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resulting in poor performance. Hence, it is essential that the steering logic minimize

the frequency of inter-cluster bypasses exercised. It must be pointed out that inter-clus-
ter bypass frequency must be judged along with load balancing. For example, it is pos-
sible to completely eliminate inter-cluster communication by steering all instructions
to asingle cluster. However, performance can be significantly degraded because of the
reduced effective width of the machine. Hence, the challenge is to be able to balance
the load across multiple clusters while minimizing the frequency of inter-cluster

bypasses.

« Steering lgic compleity. Complex steering logic will require multiple pipestages that
can result in IPC degradation due to increase in penalties associated with branch
mispredicts and instruction-cache misses. This can reduce the benefit of achieving
good load balance and minimizing inter-cluster bypass frequency. Hence, the steering

logic must be kept ssmple.

The results presented in the rest of the chapter will show that it is possible to achieve

good steering with simple steering heuristics.

3.2 Dependence-based Microar chitectures: An Example

This section describes a particular dependence-based microarchitecture called the fifo-
basedmicroarchitecture. The idea behind the fifo-based microarchitecture isto exploit the
natural dependences among instructions. A key point is that dependent instructions cannot
executein paralel. In asingle-cluster version of the proposed microarchitecture, shown in
Figure 3-2, the issue window is replaced by a small number of fifo buffers. Thefifo buffers
are constrained to issue in-order, and dependent instructions are steered to the same fifo.
This ensures that instructions in a particular fifo buffer can only execute sequentially.
Hence, unlike the typical issue window where result tags have to be broadcast to al the
entries, the register availability only needs to be fanned out to the heads of the fifo buffers.

The ingtructions at the fifo heads monitor reservation bits (one per physical register) to
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check for operand availability. Thisis discussed in detail later. Furthermore, the selection

logic only has to monitor instructions at the heads of the fifo buffers.

The steering of dependent instructionsto the fifo buffersis performed at run-time during
the rename stage. Dependence information between instructions is maintained in a table
called the SRC_FIFO table. This table is indexed using logical register designators. For
example, SRC_FIFO[Ra], the entry for logical register Ra, stores the identity of the fifo
buffer containing the instruction that will write register Ra. If that instruction has already
completed i.e. register Ra contains its computed value, then SRC_FIFO[Ra] is invalid.
Thistable can be accessed in parallel with the rename table. In order to steer an instruction
to a particular fifo, the SRC_FIFO table is accessed with the register identifiers of the
source operands of an instruction. For example, to steer the instruction add r 10, r5, 1
wherer 10 isthe destination register, the SRC_FIFO table isindexed with 5. The entry is
then used to steer the instruction to the appropriate fifo.

A number of heuristics are possible for steering instructions to the fifos. A simple heu-
ristic that we found to work well for our benchmark programs is described next. Let | be
the instruction under consideration. Depending upon the availability of I's operands, the

following cases are possible:

1. All operands available. All the operands of | have aready been computed and are

residing in theregister file. Inthiscase, | is steered to anew (empty) fifo acquired from
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TIME 20
0: addu $18,$0,%$2 j0,1,3 issue
1: addiu $2,$0,-1 3]
2: beq $18,$2,L.2 1
3: lw $4,-32768($28)
4: sllv $2,$18,$20 2
5: xor $16,%$2,$19 75 4 )
6: Iw $3,-32676($28) —g b issue
7: sll $2,$16,0x2 :
8: addu $2,$2,$23
e =
: 518, 9875 .
11: addu $17,$4,$19 :I 5’10 Issue
12: addiu $3,%$3,1 :I
13: sw $3,-32676($28)
14: beq $2,$17,L.3
a 11
14987 7,11,12 issue
1312
Y
Figure 3-3. Instruction steering example.

apool of freefifos.

2. One outstanding operand. | requires a single outstanding operand to be produced by
instruction | g e residing in fifo F,. In this casg, if there is no instruction behind

lsource IN F5, then | is steered to F, else | is steered to anew fifo.

3. Two outstanding operands. | requires two outstanding operands to be produced by
instructions I e and gy residing in fifos F, and F, respectively. Inthis case, apply the
heuristic in the previous bullet to the left operand. If the resulting fifo is not suitable (it
iseither full or there is an instruction behind the source instruction), then apply the

same heuristic to the right operand.

If al the fifos are full or if no empty fifo is available then the steering logic stalls. A fifo
IS returned to the free pool when the last instruction in the fifo is issued. Initialy, all the

fifos are in the free pool. Figure 3-3 illustrates the heuristic on a code segment from the
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Figure 3-4. Performance of single-cluster fifo-based microarchitecture.

SPEC benchmark compress for a 4-wide machine. The listing on the left shows the
dynamic stream of instructions. The directed graph in the middle shows the register
dependences between those instructions. On the right side of the figure are the contents of
the fifos in each cycle. Instructions can issue only from the heads of the four fifos. The
steering logic steers four instructions every cycle and a maximum of four instructions can
issue every cycle. Consider the steering performed in cycle 1. Instructions 4, 5, 6, and 7
are steered to the appropriate fifos. Since instructions 4, 5, and 7 form a dependence chain,
they are steered to the same fifo. Because instruction 6 is a ready instruction (which hap-
pens to start a dependence chain) it is steered to a new fifo. In the next cycle, instructions
8, 9, 10, and 11 are steered. Since instructions 8 and 9 form a chain that depends on
instruction 7, they are steered to the fifo containing instruction 7. Similarly, instructions 10

and 11 form achain and are steered to a new fifo.

3.2.1 Performance of the Fifo-based Microarchitecture

Comparison with window-based super scalar

We compare the performance of the fifo-based microarchitecture against that of atypical
microarchitecture with asingle, large issue window. The proposed microarchitecture has 8
fifos, with each fifo having 8 entries. The issue window of the conventional processor has

64 entries. Both microarchitectures can decode, rename, and execute a maximum of 8
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instructions every cycle. The simulation model assumed is detailed in Table3.2 on

page 105.

The performance results in terms of instructions committed per cycle are shown in
Figure 3-4. The fifo-based microarchitecture extracts similar parallelism as the typical
window-based microarchitecture. The cycle count numbers are within 5% for five of the

seven benchmarks and the maximum performance degradation is 8.7% in the case of perl.

Fifo utilization

The graph on the left in Figure 3-5 shows the time distribution of the number of active
fifos during the execution of m88ksim. A fifo isactiveif it contains at least one instruction.
While the graph shows that for a mgjority of the time all the fifos are utilized, there are
periods during which fewer fifos are active. This shows that the distribution of parallelism
in the program is uneven — there are phases in which the average number of paralel

chainsis small. Other benchmarks show similar results.

The graph on the right in Figure 3-5 shows the time distribution of the depth of a partic-
ular fifo during the execution of m88ksim. The graph shows that on average the number of
instructions in a fifo is small. This is for two reasons. First, the steering heuristic stalls
whenever asuitablefifo is not found. We found that placing the stalled instruction in aran-
dom fifo could degrade performance for certain programs. Second, and more importantly,
frequent branch mispredicts cause breaks in the instruction stream presented to the steer-
ing logic, resulting in shallow fifos on the average. We found similar distributions for the

other benchmarks.

Effect of increasing number of fibs

Increasing the number of fifos increased the performance for all the benchmarks. How-
ever, the improvements were in the 2%-3% range for as many as 12 fifos. Eight fifos are
able to support most of the parallel chains found at any instance during the execution of

the programs.
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Figure 3-5. Fifo utilization. The graph on the left shows the number of active fifos during the
execution of m88ksim. The graph on the right shows the depth of a particular fifo during the
execution of the program.

3.2.2 Complexity Analysisof the Fifo-based Microarchitecture

First, consider the delay of the wakeup and selection logic. Wakeup logic is required to
detect cross-fifo dependences. For example, if the instruction |, at the head of fifo F, is
dependent on an instruction I, waiting in fifo Fy, then I, cannot issue until I, completes.
However, the wakeup logic does not involve broadcasting result tags to all the waiting
instructions. Instead, only the instructions at the fifo heads have to determine when all
their operands are available. Thisis accomplished by interrogating atable called the reser-
vation table. The reservation table contains a single bit per physical register that indicates
whether the register is waiting for its data. When an instruction is dispatched, the reserva-
tion bit corresponding to the physical register is set. The bit is cleared when the instruction
executes and the result value is produced. An instruction at the fifo head waits until the
reservation bits corresponding to its operands are cleared. Hence, the delay of the wakeup
logic is determined by the delay of accessing the reservation table. The reservation tableis
relatively small in size compared to the rename table and register file. For example, for a
4-way machine with 80 physical registers, the reservation table can be laid out as a 10-
entry table with each entry storing 8 bits. A column MUX is used to select the appropriate
bit from each entry. Table 3.1 shows the delay of the reservation table for 4-way and 8-
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Issuewidth | #physical regs | #tableentries | Bitdentry Delay(ps)
4 80 10 8 192.1
8 128 16 8 251.7

Table 3.1: Delay of reservation table in 0.18um technology.

way machines. For both cases, the wakeup delay is much smaller than the wakeup delay
for a 4-way, 32-entry issue window-based microarchitecture. Also, this delay is smaller
than the corresponding register renaming delay. The selection logic in the fifos depen-
dence-based microarchitecture is simple because only the instructions at the fifo heads

need to be considered for selection.

Instruction steering is done in parallel with register renaming. Because the SRC_FIFO
table is smaller than the rename table we expect the delay of steering to be less than the
rename delay. In case a more complex steering heuristic is used, the extra delay can easily
be moved into the wakeup/sel ect stage or a new pipestage can be introduced — at the cost

of an increase in the branch mispredict and instruction-cache miss penalties.

In summary, the complexity analysis presented above shows that by reducing the delay
of the window logic significantly, it is likely that the fifo-based microarchitecture can be
clocked faster than the typical microarchitecture. Combining the potential for a much
faster clock with the results indicate the dependence-based microarchitecture is capable of

superior performance relative to a conventional microarchitecture.
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Figure 3-6. Fifo-based microarchitecture with two clusters.

3.2.3 Clustering the Fifo-based Microarchitecture

The real advantage of the fifo-based microarchitecture is for building machines with
issue widths greater than four where, as shown in the previous chapter, the delay of both
the large window and the long bypass busses can be significant and can considerably slow
the clock. Dependence-based microarchitectures based on fifos are ideally suited for such
situations because they simplify both the window logic and the bypass|ogic aswell as nat-
urally facilitate efficient steering. Such a microarchitecture for building an 8-way machine

is described next.

Consider the 2X4-way clustered system shown in Figure 3-6. Two clusters are used,
each of which contains four fifos, one copy of the register file, and four functional units.
Renamed instructions are steered to a fifo in one of the two clusters. Local bypasses
(shown using thick lines) permit same-cycle bypassing inside each cluster. Local bypass-

ing can be accomplished within a cycle. Inter-cluster bypasses, responsible for bypassing
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Figure 3-7. Performance of the clustered fifo-based microarchitecture.

values between functional units residing in different clusters, take one or more additional

cycles.

This dependence-based microarchitecture using fifos has a number of advantages. First,
wakeup and selection logic are simplified as noted previously. Second, because of the heu-
ristic for assigning dependent instructions to fifos, and, indirectly, to clusters, loca
bypasses are used much more frequently than inter-cluster bypasses, reducing overall

bypass delays.

3.2.4 Overall Performance of the Clustered Fifo-based Microar chitecture

The graph on the left in Figure 3-7 compares performance, in terms of instructions com-
mitted per cycle (IPC), for the 2X4-way dependence-based microarchitecture against that
of a conventional 8-way microarchitecture with a single 64-entry issue window. For the
dependence-based microarchitecture, instructions are steered using the heuristic described
in Section 3.2. Local bypasses complete within a cycle while inter-cluster bypasses take 2
cycles. Also, in the conventional 8-way system all bypasses are assumed to complete in a
single cycle. From the graph we can see that for most of the benchmarks, the dependence-
based microarchitecture is nearly as effective as the window-based microarchitecture even
though the dependence-based microarchitecture is handicapped by slow inter-cluster
bypasses that take 2 cycles. However, for two of the benchmarks, m88ksim and ijpeg, the
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Figure 3-8. Potential improvements with the fifo-based microarchitecture.

performance degradation is close to 13%. We found that this degradation is mainly due to

extralatency introduced by the slow inter-cluster bypasses.

Because the dependence-based microarchitecture will facilitate afaster clock, afair per-
formance comparison must take clock speed into account. The local bypass structure
within a cluster is equivalent to a conventional 4-way superscalar machine, and inter-clus-
ter bypasses are removed from the critical path by taking an extra clock cycle. Conse-
guently, the clock speed of the dependence-based microarchitectureisat least asfast asthe
clock speed of a 4-way, 32 entry window-based microarchitecture, and is likely to be sig-
nificantly faster because of the smaller (wakeup + selection) delay compared to a conven-
tional issue window as discussed in Section 3.2.2. Hence, if Cygy, is the clock speed of the
dependence-based microarchitecture and C,;,, is the clock speed of the window-based
microarchitecture then from Table A.10 in Appendix A for 0.18um technol ogy,

Cep ., delay of 8-way 64-entry window _

> . 1.2
Cuin delay of 4-way 32-entry window >

In other words, the dependence-based microarchitecture is capable of supporting a clock
that is 25% faster than the clock of the window-based microarchitecture. Taking this factor
into account (and ignoring other pipestages that may have to be more deeply pipelined),
we can estimate the potential speedup with a dependence-based microarchitecture. The
speedups for the benchmarks are graphed in Figure 3-8. From the graph we can see that
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Figure 3-9. Effect of Scaling Instruction and Data Cache Miss Latency.

the dependence-based microarchitecture is capable of providing superior overall perfor-
mance. The performance improvements vary from 9% to 21% with an average improve-

ment of 14%.

Overal, our results show that the dependence-based microarchitecture using fifos is
capable of superior performance due to its ability to support a fast clock while extracting

significant levels of instruction-level parallelism.

3.2.5 Effect of Scaling Instruction and Data Cache Miss L atency

The clock advantage of the fifo-based microarchitecture could potentially increase cache
miss latencies (measured in clock cycles). In order to quantify this effect, we studied the
performance of the fifo-based microarchitecture when the cache miss latency is scaled by
the same amount as the clock speed improvement. For example, a cache miss that took 6
cycles to complete would now take 8 cycles (7.5 cycles to be precise) due to the 25%

improvement in clock speed.

Figure 3-9 graphs the results for base cache miss latencies of 6 cycles and 12 cycles.
These latencies trandlate to 8 and 15 cycles respectively when the 25% clock speed advan-
tage is taken into account. The “win.Ncycles’ bars show the IPC for the window-based
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superscalar with same-cycle bypassing between functional units assuming a cache miss

latency of N cycles. The “fifos.Ncycles’ bars show the IPC for the 2-cluster fifo-based
microarchitecture assuming a cache miss latency of N cycles. From the graph, we can see
that the increase in cache miss latency due to clock speed improvement does not signifi-
cantly impact the performance of the fifo-based microarchitecture. The highest reduction
in IPC occurs for gcc — the performance reduction with respect to window-based super-
scalar went up from 4.5% to 8.0% when the cache miss latency is increased from 6 cycles
to 8 cycles. The performance reductions are slightly higher when the base cache miss
latency isincreased to 12 cycles. The primary reason why the |PCs achieved for both the
fifo-based microarchitecture and the window-based microarchitecture are not very sensi-
tive to the cache miss latency for most benchmarks is the low cache miss rates of the
benchmarks. The 32KB, 2-way L1 instruction and data caches are able to satisfy most of

the memory accesses.

3.3 Other Dependence-based Microar chitectures

The microarchitecture presented in the previous section is one point in the design space
of dependence-based microarchitectures. The fifo-based microarchitecture simplifies both
the window logic and naturally reduces the performance degradation due to slow inter-
cluster bypass paths. This section describes some other interesting points in the design
space. In each case there are multiple clusters with inter-cluster bypasses taking multiple

cyclesto complete.

3.3.1 Single Window, Multiple Execution Clusters, Execution-driven Steering

In this design, shown in Figure 3-10, instructions reside in a central window while wait-
ing for their operands and functional units to become available. Instructions are assigned
to the clusters at the time they begin execution; this is execution-driven steering. With this
steering, cluster assignment works as follows. The register values in the clusters become
available at dightly different times, that is, the result register value produced by acluster is

available in that cluster one cycle earlier than in the other cluster. Consequently, an
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Figure3-10.  Other dependence-based microarchitectures.

instruction waiting for the value may be enabled for execution a few cycles (equal to the
inter-cluster latency) earlier than in the other clusters. The selection logic monitors the
instructions in the window and attempts to assign them to the cluster which provides their
source values first (assuming there is afree functional unit in the cluster). Instructions that
have their source operands available in al clusters are considered for assignment in a
round-robin fashion starting with cluster 0. Static instruction order is used to break tiesin

this case.

The execution-driven approach uses a greedy policy to minimize the use of slow inter-
cluster bypasses while maintaining a high utilization of the functional units. It does so by
postponing the assignment of ready instructions to clusters until execution time. While
this greedy approach might gain some I PC advantages, this design suffers from the previ-

ously discussed drawbacks of a central window and complex selection logic.

3.3.2 Multiplewindows, Dispatch-driven Steering

This design, shown in Figure 3-10, is identical to the fifo-based microarchitecture pre-
sented in Section 3.2 except that each cluster has a completely flexible window instead of
fifos. Instructions are steered to the windows using a heuristic that takes both dependences

between instructions and the relative load of the clusters into account.
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Steering Policies

In the case of dependence-based superscalar microarchitectures based on multiple win-
dows with dispatch steering, we tried a number of steering heuristics. Three of these are

described next.

1. Fifo steering. In this scheme the window ismodeled asif it isa collection of fifoswith
instructions capable of issuing from any slot within each individual fifo. Thefifos are
only a conceptual device used by the instruction assignment heuristic — in reality,
instructions issue from the window with complete flexibility. Instructions are steered
to the“fifos’ using the heuristic presented in Section 3.2. For example, a 32-entry win-
dow can be treated as eight fifos with four slots each. An advantage of considering the
windows as a collection of fifosisthat it helps to keep majority of the communication

local and to achieve a good load balance at the same time.

2. Round-robin steering. In this scheme instructions in the dynamic stream are steered to
clustersin around-robin fashion with a particular block size. For example, for ablock
size of 16, the first 16 instructions are steered to cluster O, the next 16 instructions are
steered to cluster 1, and so on. The tacit assumption hereisthat dependences are local-
ized in the dynamic stream as shown by previous studies on the distribution of ILPin
programs [LW92,AS92]. In other words, instructions are dependent on other instruc-
tions that occur in close proximity (earlier) in the dynamic stream, i.e. independent
instructions are well separated in the dynamic stream. An important parameter in this
scheme isthe block size. Using too small ablock size can result in significant cross-
cluster communication that can easily degrade performance by stretching the critical
path. On the other hand using too big a block size can also degrade performance
because now the number of functional units executing each block is afraction of the
total machine resources, i.e. low utilization might hurt performance. A compiler can
assist this scheme by placing dependent instructions together. Studying the impact of
instruction reordering by the compiler on the performance of this schemeis beyond

the scope of thisthesis.
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Figure3-11. Fifo steering hardware.

3. Random steering. This steering heuristic is used as a basis for comparisons. Instruc-
tions are steered randomly to one of the clusters. If the window for the selected cluster
isfull, then the instruction is inserted into the other clustersin around-robin fashion.
This design point was evaluated in order to determine the degree to which depen-
dence-based microarchitectures are capable of tolerating the extra latency introduced

by slow inter-cluster bypasses and the importance of dependence-aware scheduling.

3.3.3 Complexity of Steering Policies

In addition to reducing inter-cluster communication and utilizing as many clusters as
possible, a good steering policy must also be fast. Low latency is essential since any extra
stages introduced in the front-end for steering can degrade performance (in terms of 1PC)
due to increased branch mispredict and instruction cache miss penalties. This can even
nullify any advantages resulting from afaster clock. This section discusses the complexity

of the steering policies analyzed in this chapter.
» Fifo steering. This steering policy can be implemented as shown in Figure 3-11. The

logic operates in parallel with the register rename logic. The number of entries in the
SRC_FIFO tableis equal to the number of logical registers. The number of read ports
and write ports into the SRC_FIFO tableis 2 x IWand IW respectively, where IW is
the issue width. Comparing the block diagram with the one for rename logic, shown in

Figure 2-3 on page 26, shows that the steering logic is functionally similar to the
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rename logic. There are two differences. First, the SRC_FIFO table is smaller than the
rename map table as the width of each entry (determined by the number of fifos) is
smaller than the width of the rename table. The second difference is that the output
MUX in the case of fifo steering is dightly more complicated than that for the rename
logic. Overall, the hardware complexity of fifo steering is similar to rename logic com-
plexity. Just as shown for rename logic in Chapter 2, the delay of the steering logic
increases linearly with issue width. Therefore, aimost always the fifo steering logic
can be performed in parallel with renaming. In the worst case, it might require an extra

pipestage in addition to the rename stages.

Round-robin steering. Since this simply requires a counter to count block size number
of instructions before incrementing the “current” cluster pointer, the logic for steering
is straightforward and can be accomplished in less time than the rename logic delay.
Hence, steering in this case can be completely hidden behind renaming. Also, the

delay of the steering logic is independent of issue width.

Random steering. Just like in the case of round-robin steering, the logic required for
random steering is straightforward and can be accomplished in less time than the
rename logic delay. Hence, once again, steering can be completely hidden behind

renaming. The delay of the steering logic is independent of issue width.

A natural question that arises in connection with instruction steering is: why cannot the

compiler steer instructions? This question is especialy pertinent given that the compiler

has compl ete knowledge of register dependences between instructions and thisis the criti-

ca

information being used by the hardware to steer instructions. The key factor that makes

the compiler less effective than hardware is the inability of the compiler to look beyond

branches, i.e. detect the dynamic sequence of dependences created at run-time. Also, it is

not obvious how the compiler can pass dependence information to the underlying hard-

ware without compromising binary compatibility.
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3.4 Experimental Evaluation

This section evaluates the performance of various dependence-based superscalar
microarchitectures by measuring the performance of benchmark programs running on a
detailed timing simulator. The timing simulator, a modified version of SimpleScalar
[BAB96], is detailed in Table 3.2. All the configurations studied in this section are 8-wide
— the configurations can fetch, decode, rename, and execute a maximum of eight instruc-
tions every cycle. An aggressive fetch mechanism is used to stress the issue and execution
subsystems. The benchmark programs are from the SPEC’' 95 suite using their training

input datsets. Each program was run for a maximum of 0.5B instructions

Fetch width any 8 instructions
|-Cache Perfect instruction cache
Branch predictor McFarling’s gshare [McF93]

4K 2-bit counters, 12 bit history
unconditional control instructions pre-
dicted correctly

Issue window size 64

Maximum 120

in-flight instructions

Retire width 16

Functional units 8 symmetrical units

Functional unit latency | 1cycle

I ssue mechanism out-of-order issue of up to 8 ops/cycle
loads may execute when all prior store
addresses are known

Physical registers 120int/120fp

D-Cache 32K B, 2-way SA

write-back, write-allocate
32 bytelines, 1 cycle hit, 6 cycle miss
four load/store ports

Table 3.2: Basaline simulation model
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Simulated microarchitectures

Table 3.3 lists the various types of microarchitectures simulated here. The typical win-
dow-based microarchitecture, shown as the “1-cluster.lwindow” configuration, assumes
uniform bypassing between all functional units within a single cycle, i.e. dependent
instructions can execute back-to-back. All the dependence-based microarchitectures com-
prise two clusters with inter-cluster bypasses taking an extra cycle. The “2-clus-
ter.Iwindow.execsteer” configuration is made up of two execution clusters each containing
half the execution resources of the machine. Renamed instructions are buffered in a central
window and routed to the execution clusters using the execution-driven steering policy
described in Section3.3.1. In the *“2-cluster.windows.randomsteer”, *“2-cluster.win-
dows.fifosteer”, and “2-cluster.windows.roundrobinsteer” configurations, both the win-
dow and execution resources are partitioned into two clusters and renamed instructions are
routed to the clusters using random steering, fifo steering, and round-robin steering poli-
cies respectively. The “2-cluster.windows.randomsteer” design point was evaluated to
determine the importance of dependence-aware scheduling. The “2-cluster.fifos.fifosteer”
configuration is identical to the “2-cluster.windows.fifosteer” except that fifos are used in
each cluster instead of a completely flexible window. Table 3.3 summarizes the various

mi croarchitectures simulated.

Configuration Or\glgvair?i(icz:twon ﬁeﬁgi
window.execsteer Flexible window Execution steering
fifos.fifosteer Fifos Fifo steering
windows.fifosteer Flexible window Fifo steering
windows.roundrobinsteer Flexible window Round-robin steering
windows.randomsteer Flexible window Random steering

Table 3.3: Various microarchitectures simulated.
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Figure 3-12.  Performance of dependence-based superscalar microarchitectures.

3.4.1 Performance Relative to an Ideal Superscalar

The first set of experimental results, graphed in Figure 3-12, shows the performance of
various dependence-based superscalar microarchitectures relative to a typical window-
based microarchitecture in terms of instructions committed per cycle. A number of obser-
vations can be made from the graph. First, random steering consistently performs worse
than the other schemes. The performance degradation with respect to the ideal case varies
from 17% in the case of vortex to 23% in the case of m88ksim. Hence, it is essential for the
steering logic to consider dependences when routing instructions. Second, the microarchi-
tecture with a central window and execution steering performs nearly as well as the ideal
microarchitecture with a maximum degradation of 3% in the case of m88ksim. However,
as discussed earlier in Section 3.3.1, this microarchitecture requires a centralized window
with complex selection logic. Third, the “2-cluster.fifosfifosteer”, “2-cluster.win-
dows.fifosteer”, and “2-cluster.windows.roundrobin steer” microarchitectures perform
competitively in comparison to the ideal microarchitecture. As expected, using completely
flexible windows instead of fifos helps improve performance dightly. Another way of
interpreting this result isthat it reinforces the earlier finding that windows can be replaced

with the combination of fifos and intelligent steering with little degradation in IPC. An
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Figure3-13.  Effect of increasing number of clusters.

interesting supplementary result is that round-robin steering, which can be implemented
using simplelogic, performs as well asthe more complex fifo steering. However, as shown

later, round-robin steering does not scale well as the number of clusters and isincreased.

Overal, the above results show that dependence-based superscalar microarchitectures
can deliver performance similar, in terms of instructions committed per cycle, to that of an
ideal microarchitecture with a large window and uniform, single cycle bypasses between

al functional units.

3.4.2 Effect of Increasing Number of Clusters

The graph in Figure 3-13 shows the effect of increasing the number of clusters on the
performance of “fifos.fifosteer”, “windows.fifosteer”, and the “windows.rrsteer” microar-
chitectures. Performance uniformly degrades for the three designs as the number of clus-
tersisincreased. This is expected since increasing the number of clusters augments load
imbalance and results in more frequent inter-cluster communication. The performance
degradation going from 2 clustersto 4 clusters for the “fifos.fifosteer” and “windows.fifos-
teer” microarchitecturesisin the 5%-10% range. For the “windows.rrsteer” microarchitec-

tures the performance degradation is in the 9%-17% range. For al the benchmarks, the
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performance of the round-robin steering policy degrades more than thefifo steering policy.

This is mainly due to two reasons. First, the fifo steering policy does a better job of
exploiting the full width of the machine. For example, it can use all the clusters coopera-
tively to execute a block of instructions. In the case of round-robin steering, the block of
instructions might be steered to a single cluster and hence, only the resources in that clus-
ter can be employed to execute the instructions, resulting in lower throughput. The second
reason for the superior performance of the fifo steering policy is that it requires fewer
inter-cluster bypasses as compared to the round-robin steering heuristic. A smple exam-
ple explains this. Consider the case where there are 4 clusters each 2-wide (2 functional
units) and the dynamic stream is made up of two chains (parallelism is equal to 2). In this
situation, the fifo steering policy will only utilize asingle cluster since all instructions will
be routed to the two fifos in the cluster. This eliminates inter-cluster communication com-
pletely in this example. The round-robin steering policy on the other hand, is oblivious of
the parallelism in the instruction stream, and uniformly steers instructions to all available
clusters. Therefore, in this case, inter-cluster communication is more frequent with the

round-robin steering policy than with the fifo steering policy.
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3.4.3 Effect of Increasing Inter-cluster Latency

The graph in Figure 3-14 shows the effect of increasing inter-cluster latency on the per-
formance of 2-cluster and 4-cluster “fifos.fifosteer” microarchitectures. Performance
degrades as the latency of inter-cluster communication isincreased. Thisis expected since
increasing inter-cluster communication latency increases the time taken to perform any
computation that is spread across multiple clusters and hence, could easily stretch the crit-
ical path of the program. For 2-cluster configurations, the average performance degrada-
tion for 2-cluster systems when the inter-cluster latency isincreased from 1% to 2 and from
2 to 3 cyclesis 8.7% and 9.3% respectively. Similarly, for 4-cluster systems, the corre-
sponding performance degradations are 13.4% and 11.2% respectively. The reduction in
performance is higher for the 4-cluster systems since the number of instruction depen-
dences spread across clusters increases with the number of clusters. This shows that it is
extremely important to provide low latency inter-cluster communication for high perfor-

mance.

1. Thereisasingle bubble between two dependent instructions executing in different clusters.
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Figure3-15. Inter-cluster bypass frequency.

3.4.4 Inter-cluster Bypass Frequency

The graph in Figure 3-15 shows the frequency of inter-cluster communication for vari-
ous steering heuristics and 4-cluster configurations. Inter-cluster communication is mea-
sured in terms of the fraction of total instructions that exercise inter-cluster bypasses. This
does not include cases where an instruction reads its operands from the register file in the
cluster i.e. cases in which the operands arrive from the remote cluster in advance. As
expected, we see that there is a high correlation between the frequency of inter-cluster
communication and performance - configurations that exhibit higher inter-cluster commu-
nication commit fewer instructions per cycle. The inter-cluster communication is particu-
larly high in the case of random steering, reaching as high as 35% in the case of vortex.
Execution steering exhibits the lowest inter-cluster bypass frequency. This is not surpris-
ing because execution steering is based on the greedy policy of postponing selection to
favor execution of dependent instructions in the same cluster. Another observation that can
be made from the graph is that the “fifos.fifosteer” microarchitecture uniformly exercises
fewer inter-cluster bypasses than the “windows.rrsteer” microarchitecture. This is in
agreement with earlier discussion about how the fifo steering policy dynamically adapts to
the number of clusters being used based on the parallelism in the instruction stream, thus

resulting in fewer inter-cluster bypasses.
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Figure3-16. Comparing against in-order distributed reservation stations.
3.4.5 Comparing against In-order Distributed Reservation Stations

Johnson [Joh91] proposed using in-order distributed reservation stations as a means of
reducing the complexity of the instruction window. Instructions are forced to issue in-
order from the reservation stations. The advantages of such a scheme are similar to those
of the fifo-based microarchitecture; simpler wakeup and selection logic. The fifo-based
microarchitecture differs from Johnson’s scheme in the manner in which instructions are
steered to the fifos. The dependence-based microarchitecture steers instructions based on
dependence information extracted at run-time instead of instruction type as in the case of

the in-order reservation stations scheme.

The graph in Figure 3-16 compares the performance of 2-cluster configurations based on
in-order distributed reservation stations and fifo-based microarchitecture with fifo steering
policy respectively. The dependence-based microarchitecture consistently performs better
than in-order reservation stations. The average performance degradation is as high as 27%.
This is mainly due to two factors. First, in the in-order reservation stations scheme,
instructions at the head of the reservation stations can block other ready instructions
behind them from issuing. Second, the instruction distribution logic in the in-order reser-

vation stations scheme makes no attempt to minimize the use of inter-cluster bypasses.
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Butler and Patt [BP92] also report significant performance degradation when the “head-

only” (fifo) scheduling policy is used with distributed reservation stations.

3.5 Related Work

Tomasulo, in his origina proposal [Tom67] on dynamic scheduling, proposed distrib-
uted reservation stations as an aternative to centralized reservation stations to reduce com-
plexity. Distributed reservation stations simplify selection logic. The selection logic at a
functional unit only has to monitor the instructions in the reservation stations associated
with that unit. However, the result tags still have to broadcast to all the reservation stations
just as in the case of centralized reservation stations, i.e. the complexity of window

wakeup logic remains the same.

Johnson [Joh91] proposed in-order distributed reservation stations to further reduce
issue-logic complexity. The fifo-based microarchitecture presented in this chapter is simi-
lar to the in-order distributed reservation stations scheme in a number of respects. Both
distribute window entries and force in-order issue out of the distributed window entries to
simplify selection logic. However, there are two key differences. First, the fifo-based
microarchitecture uses a prescheduling (steering) phase to determine a suitable fifo to
place each instruction in. As shown in Section 3.4.5, this intelligent steering helps the
dependence-based microarchitecture extract more parallelism relative to in-order distrib-
uted reservation stations. Second, the dependence-based microarchitectures use clustering
to ssimplify wakeup logic. A cluster consists of asmall number of branch, ALU, and mem-
ory units. Window operations and bypasses within a cluster complete within a single
cycle, thus facilitating back-to-back execution of dependent instructions residing in each
cluster. Tomasulo's distributed reservation stations on the other hand clusters functional
units based on type. For example, all memory units are clustered together and so on. This

resultsin more cross-cluster traffic compared to the dependence-based microarchitectures.

An early CRAY-2 design [Unk79,SS90,Smi97] realized the importance of detecting and

exploiting dependences to facilitate a fast clock. The issue logic consisted of four instruc-
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tion queues feeding eight execution units. A dependent chain of instructions were issued
to the same queue. The compiler was responsible for grouping dependent instructions
together. A single accumulator style instruction set helped express the grouping to the
hardware without the need for extra bits to explicitly specify dependences. The hardware
simply starts a new chain whenever it hits a LDA (load accumulator) instruction in the
instruction stream. As aresult, the hardware does not have to extract dependence informa-
tion at run-time. The fifo-based microarchitecture investigated in this chapter was partly
inspired by the CRAY-2 design. The primary difference is that hardware steering is used
instead of compiler steering. As explained before, hardware steering is well-suited for
integer codes since the small basic blocks and frequent control instructions in integer

codes can severely handicap compile-time steering of instructions to fifos.

Kemp and Franklin [KF96] studied a microarchitecture called PEWS (Parallel Execu-
tion Windows) for ssimplifying the logic associated with a central window. PEWs simpli-
fies window logic by splitting the central instruction window among multiple windows
much like the dependence-based microarchitectures described in this chapter. Register val-
ues are communicated between clusters (called pews) via hardware queues and a ring
interconnection network. In contrast, we assume a broadcast mechanism for the same pur-
pose. Instructions are steered to the pews based on instruction dependences with a goal to
minimize inter-pew communication. However, for their experiments Kemp and Franklin
assume that each of the pews has as many functional units as the central window organiza-
tion. This assumption implies that the reduction in complexity achieved is limited because
the wakeup and selection logic of the windows in the individual pews still have the same

porting requirements as the central window.

The DEC 21264 [Gwe964] is the first commercial microarchitecture implementing out-
of-order scheduling that was forced to use significant microarchitectural changes, relative
to the conventional microarchitecture, to support a fast clock. Like the dependence-based
microarchitectures explored in this chapter, the execution units are partitioned into two

clusters with bypasses between clusters taking an extra cycle to complete. The selection
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logic steers instructions buffered in a central window to the execution cluster based on

dependences. The exact steering algorithm used has not been made public.

Multiscalar processors [Bre,FS92, Fra93,SBV 95] pioneered the concept of using decen-
tralized processor resources to reduce complexity. Multiple clusters, each similar in struc-
ture to a narrow superscalar, are used to execute different portions of the seria program.
The different portions of the program are called tasksand can be identified either by the
compiler or by the hardware. The design is highly decentralized. All mgor structures in
the pipeline, starting from the fetch hardware, are distributed. In addition, the paradigm
naturally supports advanced features like multiple flows of contil and out-of-oder fetd.
These features are considered essential for exploiting higher levels of parallelism [LW92,
Smi95] in future. While the Multiscalar design is a futuristic microarchitecture designed
with complexity-effectiveness in mind, it will take some time for the design to evolve and
for itsimplementation to become feasible. The dependence-based superscalar microarchi-
tectures explored in this chapter provide a smooth transition path, from the point of view

of implementation, to Multiscalar-like designs from current superscalar designs.

More recently, processor microarchitectures called Trace processors [VM97, RISS97]
have been proposed that organi ze the microarchitecture around traces. Just like in the Mul-
tiscalar and dependence-based microarchitectures, execution resources are partitioned into
clusters. Each cluster is assigned a dynamic instruction trace for execution that is fetched
from a cache of traces called the trace cache. The trace cache in addition to providing a
high-bandwidth fetch mechanism also simplifies rename logic by caching rename infor-
mation along with the trace. The trace processor microarchitecture can be viewed as a
dependence-based microarchitecture that has completely flexible windows in each cluster

and steers instructions to clusters using a round-robin policy.

Farkas et al. [FCIV97] propose the multicluster microarchitecture to reduce the clock
cycle time of typical superscalar microarchitectures. The multicluster microarchitectureis

similar in concept to the dependence-based microarchitectures explored here. There are
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two primary differences, however. First, the multicluster architecture uses compiler steer-

ing instead of hardware steering. Second, it uses explicit copy instructions to communicate
operand values between the clusters. Steering information is passed to the hardware indi-
rectly without changing the instruction set architecture. Each cluster is assigned a subset
of the architectural registers and instructions are steered based on the registers specified in
the instruction. A static scheduling heuristic chooses a cluster so that the load imbalance
between the two clusters! is minimized. Farkas et al. found that even this heuristic cannot
be directly addressed by the compiler because the work done by a cluster is a function of
the order in which instructions are issued, and the issue order is not deterministic for

dynamically-scheduled processors.

3.6 Chapter Summary

This chapter presented the design and evaluation of a family of complexity-effective
microarchitectures called dependence-based superscalar microarchitectures. These
microarchitectures facilitate a fast clock while exploiting similar levels of parallelism as
an ideal large-window machine. The proposed microarchitectures use a two-pronged strat-
egy for high performance. First, the issue window and execution resources are partitioned
to facilitate a fast clock. Second, instructions are intelligently steered, taking into account
dependences, to the different partitions in order to extract similar levels of paralelism as

an ideal large-window machine.

One of the dependence-based microarchitectures, called the fifo-based microarchitec-
ture, detects chains of dependent instructions and steers the chains to fifos which are con-
strained to execute in-order. Since only the instructions at the fifo heads have to be
monitored for execution, the proposed microarchitecture simplifies window logic. Further-
more, the microarchitecture naturally lends itself to clustering by grouping dependent
instructions together. This grouping of dependent instructions helps mitigate the bypass

problem to a large extent by using fast local bypasses more frequently than slow inter-

1. They only study 2-cluster systems.
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cluster bypasses. The performance of a 2 X 4-way fifo-based microarchitecture is com-
pared with atypical 8-way superscalar. The results show two things. First, the proposed
microarchitecture has |PC performance close to that of atypical microarchitecture (aver-
age degradation in |PC performanceis 7.8%). Second, when taking the clock speed advan-
tage of the fifo-based microarchitecture into account the 8-way proposed

microarchitecture is 14% faster than the typical window-based microarchitecture on aver-

age.

Overdl, the experimental results presented show that dependence-based superscalar
microarchitectures are capable of extracting similar levels of parallelism as typica

microarchitectures while enabling a faster clock.
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Chapter 4

| nteger-Decoupled Microarchitecture

The integer-decoupled microarchitecture is a complexity-effective microarchitecture
that can improve the performance of integer programs with little or no increase in com-
plexity. It is particularly attractive since it can be implemented on top of current microar-
chitectures with relatively small hardware changes. This chapter proposes and evaluates

the integer-decoupled microarchitecture.

I nteger-decoupled microarchitectures execute some of the integer instructions, those not
involved in computing addresses and accessing memory, on idle floating-point resources
that have been augmented to perform simple integers operations. The compiler identifies
computation to off-load to the floating-point subsystem. This results in a number of bene-
fits for integer programs including extra issue width, a bigger effective window, and

decoupling of memory access from the actual computation.

Another way to look at the integer-decoupled microarchitecture, in the context of depen-
dence-based microarchitectures presented in previous chapter, is that the existing floating-

point subsystem provides an extra cluster, for free, that can used for executing integer
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instructions. However, unlike the dependence-based microarchitectures, instruction steer-

ing in this case is performed by the compiler.

The rest of the chapter is organized as follows. Section 4.1 presents the concept behind
the integer-decoupl ed microarchitecture. Section 4.2 discusses the hardware additions that
have to be made to the conventional microarchitecture. Section 4.3 illustrates, with an
example, the kind of computation that is off-loaded to the augmented FP subsystem.
Section 4.4 discusses the role of the compiler and the basic partitioning scheme used by
the compiler. Section 4.5 shows how the basic partitioning scheme can be improved using
copy instructions and code duplication. Section 4.6 presents the results of an experimental
evaluation of the proposed microarchitecture. Finally, the chapter is summarized in
Section 4.8.

4.1 Concept

To motivate the proposed microarchitecture, consider how the conventional microarchi-
tectureillustrated in Figure 1-1 on page 2 works. The instruction fetch unit reads multiple
instructions from the instruction cache and feeds them to integer and floating-point sub-
systems for execution. The integer subsystem contains a number of load/store, branch, and
functional units that operate on integer operands. The floating-point subsystem is similar
to the integer subsystem except it does not contain load/store units, and it operates on
floating-point operands. Instruction windows, in the form of buffers, are used to decouple

the instruction fetch unit from the integer and floating-point execution subsystems.

Partitioning issue and execution resources into integer and floating-point subsystems has
several advantages. First, as shown in Chapter 2, it eliminates the cycle time penalties
associated with centralized structures. For example, registers are divided into integer and
floating-point files, each with a set of ports. And, the instruction window is similarly
divided with separate issue logic. Second, while executing floating-point programs, the
microarchitecture naturally decouples addressing and floating-point computation: address

computation executes in the integer subsystem while floating-point computation executes
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in the FP subsystem so that dynamic scheduling between the two can be enhanced. Third,
since integer data and floating-point data typically have different widths (32-bit versus 64-
bit), using separate integer and floating-point subsystems helps reduce implementation
complexity and save silicon area. The last benefit will be nullified by the move towards
64-bit instruction set architectures in which both integer and floating-point data are 64 bits
wide. The uniform use of 64-bit datain both integer and floating-point subsystems enables
the optimization being proposed here.

This microarchitecture style leads to idle floating-point resources — registers, functional
units, instruction window logic, and buses — while executing integer programs or integer-
intensive portions of floating-point programs. To address this drawback, we propose a
more general decoupled microarchitecture style based on earlier work
[BRT93,GHL*85,PD83,5mi82,5"87], in which the floating-point subsystem executes
both integer and floating-point operations. In this microarchitecture, which we refer to as
the integer-decoupled microarchitecture, a load/store subsystem (LdSt) that mostly exe-
cutes integer instructions involved in effective address calculation and memory access. A
computation (Comp) subsystem supports all floating-point operations as well as non-
memory related integer computation. The integer decoupled microarchitecture can be built
on top of the conventional microarchitecture with relatively few hardware additions. These

hardware changes are discussed in the next section.

The integer-decoupled microarchitecture has a number of performance advantages over
a conventional microarchitecture for integer programs. First, it provides extra issue and
execution bandwidth for integer programs. For example, by implementing the integer-
decoupled microarchitecture, a superscalar processor with 2 integer and 2 floating-point
functional units can provide an issue and execution width of 4 for most integer codes. Sec-
ond, by using the instruction window in the floating-point subsystem, the integer-decou-
pled microarchitecture provides alarger overal window. This can potentially increase the
amount of parallelism exploited. Third, the compiler now has 64 logical registers (32 int
and 32 fp) for holding integer variables instead of the usual 32. Finally, the integer-decou-
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pled microarchitecture often facilitates early resolution of mispredicted branches. If the
branch computation associated with a mispredicted branch executes in the less heavily
loaded Comp subsystem then it is very likely that the branch will be resolved earlier rela-

tive to the conventional microarchitecture

The integer-decoupled concept can also be used to reduce the complexity of a conven-
tional superscalar microarchitecture. By steering integer instructions to the augmented
floating-point subsystem, the integer-decoupled microarchitecture does not require as
many issue window entriesin the integer subsystem as the conventional microarchitecture.
Similarly, it can be used to reduce the size of the physical register file in the integer sub-
system. ldeally, the complexity of a n-wide conventiona microarchitecture can be
reduced by implementing it as an integer-decoupled microarchitecture with the LdSt and
Comp subsystems each being n/2-wide. This advantage of the integer-decoupled

microarchitecture is not quantified here.

4.2 Changesto the Conventional Microar chitecture

The integer-decoupled microarchitecture remains very similar to a conventional
microarchitecture. The only hardware modification required is augmenting the existing
floating-point functional units to perform simple integer operations. There needs to be no
additional cost for registers and buses if the integer operations are embedded in the exist-
ing floating-point functional units and share the existing register file ports and buses. Sim-
ilarly, instruction fetch and issue resources are unchanged. The only extra costs are the
additional gates required to implement the simple integer operations and the opcodes for
specifying these operations. Results presented later show that the gate-intensive integer
multiply and divide operations need not be duplicated and hence, the extra cost should not
be afactor.

Theinstruction set architecture (ISA) has to be minimally augmented to include the sim-
pleinteger operations that operate on the floating-point registers. The changes required are

similar in spirit to the recent multimedia extensions introduced by most microprocessor
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vendors [Gwed5c¢, Gwed6b]. The integer opcodes of the SimpleScalar [BAB96] ISA that

are supported in the Comp subsystem are shown in Table 4.1. Because the floating-point
opcode space is usually relatively sparse compared to the integer opcode space, and about

21 extraopcodes are required, the necessary | SA extensions are realistic.

Operation type Opcodes

Control bgez bgtz blez bltz bne
Logical andi nor ori xori sllv dl srav srasrlv s
Arithmetic addi addiu addu lui dlti dltiu

Table 4.1: Extra opcodes supported in the Comp subsystem.

4.3 Partitioning the Program

Given the constraints of the integer-decoupled microarchitecture, let us look at the kind
of integer computation that can be off-loaded to the Comp subsystem and the role of the
compiler in identifying such computation. Because we want to decouple address computa-
tion from the rest of the program computation, all load/store instructions and integer
instructions involved in effective address computation are assigned to the LdSt subsystem.
All other sequences of instructions terminate either in the computation of branch out-
comes or store values. The instruction sequences, called branch computation and store-
value computation, are ideal candidates for execution in the Comp subsystem because they
do not require any specia support in the Comp subsystem. The result of a branch compu-
tation, the branch outcome, is sent to the fetch unit where it is used to validate the pre-
dicted outcome. This functionality is present in existing floating-point subsystems for
floating-point branches. The result of a store-value computation, the value being stored, is
deposited in the write buffer where it merges with the corresponding store address gener-
ated by the LdSt subsystem. This mechanism is also implemented in current floating-point
subsystems to store floating-point values. However, some store-value and branch compu-

tations might not be assigned to the Comp subsystem if the instructions in these computa-
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extern unsigned long regs_inv_by call;

for (regno = 0; regno < FIRST_PSEUDO_REG; regno++)
if (regs_inv_by_call & (1 << regno)) {
delete_equiv_reg(regno);
if (reg_tick[regno] >= 0)
reg_tick[regno]++;

}
11: move $16, $0 I* regno =0 */
12: $L5: Iw $2, regs_inv_by call
13: sra $2, $2, $16
14: andi $2, $2, Ox1 I* $2=regs_inv_by_call & (1<<regno) */
15: beq $2, $0, $L4
16: move $4, $16
17: jal delete_equiv_reg
18: lw $3, reg_tick
19: sll $2, $16, 2
110: addu $2, $2, $3
111: Iw $4, 0($2) [* $4 = reg_tick[regno] */
112: bltz $4, $L4
113: addu $4,$4,1
114: sw $4, 0($2) I* reg_tick[regno]++ */
115: $L4: addu $16, $16, 1 [* regno++ */
116: slt $2, $16, 66
117: bne $2,$0,$L5 /* regno < FIRST_PSEUDO_REG */

Figure4-1. An example program fragment.

tions are also involved in address computation. The example to be presented next

illustrates this.

Figure 4-1 shows a program fragment in C from invalidate_for_call, a frequently exe-
cuted function in the SPEC benchmark gcc. The for-loop in the program runs through all
the pseudo registers and does some bookkeeping for those that are invalidated by function
calls. The figure shows assembly code compiled for a conventional microarchitecture. The
whole program executes in the integer subsystem leaving the floating-point subsystem

completely idle.

With very little effort, the assembly code shown in Figure 4-1 can be transformed to off-

load some of the integer computation to the Comp subsystem as shown on the left in
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11; move $16, $0
11 move $16, $0 11: cp_comp $f2, $16
12: $L5: w $2, regs_inv_by _call 12: $L5: Iw $f4, regs_inv_by_call
13: sra $2, $2, $16 13: sra,c $f4, $f4, $f2
14: andi $2, $2, 0x1 14: andi,c $f4, $f4, Ox1
15: beq $2, $0, $L4 15: beq,c $f4, $0, $L4
16: move $4, $16 16: move $4, $16
17 jal delete_equiv_reg 17: jal delete_equiv_reg
18: Iw $3, reg_tick 18: Iw $3, reg_tick
19: sll $2, $16, 2 19: sll $2, $16, 2
110: addu $2, $2, $3 110: addu $2, $2, $3
111: Iw $f0, 0($2) 111: Iw $f0, 0($2)
112: bltz,c $f0, $L4 112: bltz,c $f0, $L4
113: addu,c  $f0, $f0, 1 113: addu,c  $f0, $f0, 1
114: sw $f0, 0($2) 114: sw $f0, 0($2)
115: $L4: addu $16, $16, 1 115: $L4: addu $16, $16, 1
116: slt $2, $16, 66 115: addu,c  $f2, $f2,1
117: bne $2,$0,$L5 116: slt,c $f4, $f2, 66
117: bne,c $f4,$0,$L5
Basic partitioning scheme Advanced partitioning scheme

Figure 4-2. Code partitioning for example fragment.

Figure 4-2. Integer instructions that execute in Comp are shown in bold with a ,c suffix.
The load instruction, 111, instead of loading into integer register $4, now loads the value
into floating-point register $f0. Instructions 112 and 113 operate on the loaded value in
floating-point register $f0 and execute in the Comp subsystem. The result of the branch
instruction (112) is sent from the Comp subsystem to the fetch unit to validate the predic-
tion made. The result of the add instruction (113) is sent to the store buffer where it is
merged with the address generated by the store instruction (114) executed in the LdSt sub-
system. The load and store instructions (111 and 114) are italicized to point out that these
instructions now load and store floating-point registers. These are the same as floating-
point load and store instructions in the conventional microarchitecture. Relating the exam-
ple to the discussion earlier, the branch computation and store-value computation that are
off-loaded in this case are the singleton sets {112} and {113} respectively. The branch
computation {115, 116, and 117} was not assigned to the Comp subsystem because instruc-

tion 115 isalso involved in generating the address for the load instruction 111.



126
In the transformation just presented, computation was off-loaded to the Comp subsystem

without introducing new instructions in the program. However, by strategically inserting
copy instructions and duplicating some instructions, additional computation can be off-
loaded to the Comp subsystem. For example, consider the transformation presented on the
right in Figure 4-2. The copy instruction (I 1’) and the duplicate instruction (I 15’) help off-
load a sizable fraction of the total computation to the Comp subsystem. Now, as many as

seven static instructions of the original program execute in the Comp subsystem.

The compiler for the integer-decoupled microarchitecture is responsible for effecting the
transformations presented above. More abstractly, the compiler is responsible for parti-
tioning the original program into LdSt and Comp partitions. The transformation on the left
in Figure 4-2 is a result of the basic partitioning scheme used by the compiler. In this
scheme, no new instructions are introduced and communication between the two sub-
systems happens via loads and stores that already exist in the origina program.
Section 4.4 discusses the basic scheme in detail. The second transformation is a result of
the advanced partitioning scheme used by the compiler. In this scheme, the compiler intel-
ligently introduces a few extrainstructionsin the form of copy or duplicate instructionsto
enabl e off-loading of more computation to the Comp subsystem. Section 4.5 discusses the

advanced partitioning scheme.

4.4 Basic Partitioning Scheme

As mentioned earlier, the basic partitioning scheme off-loads computation to the Comp
subsystem without introducing new instructions. In this section, some terminology is pre-
sented first to aid subsequent discussion. Then, the necessary conditions that need to be
satisfied for branch and store-value computation to be assigned to the Comp subsystem are

described. Finally, the partitioning algorithm used by the compiler is presented.
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a=b+c; a=b+c;

d=a*g; d=a*g; d=a*g;
f=d+2; f=d+2;

Program P Backward-Slice(P,f) Forward-Slice(P,a)

Figure4-3. Program dlices.
4.4.1 Terminology and Data Structures

A dlice [Wei84] of aprogram P with respect to avalue v is defined to be the subset of P
that isinvolved in the computation of v. We term this the backward slice of P with respect
to v and represent it as Backward-Sice(P,v). The forward slice of P with respect to vis all
computation that is affected by v, and is represented as Forward-Sice(P,v). An example is
shown in Figure 4-3.

To partition a program, the compiler uses a data structure called the static dependence
graph that compactly represents al the register dependences in a program. The static
dependence graph (SDG) is a directed graph which has a node corresponding to each
static instruction in the program. The SDG has an edge from node v; to node v if instruc-
tion i produces a register value that could be consumed by instruction j. Load and store
instructions are special cased in the SDG to simplify the partitioning algorithm. Each load
instruction is split into two nodes - one representing the load address and the other repre-
senting the loaded value. Similarly, each store instruction is split into two nodes - one rep-
resenting the store address and the other representing the store value. Thisis done because
aload instruction executes in the LdSt subsystem, but the value can be loaded into either
subsystem. Likewise, the value being stored can come from either the LdSt subsystem or

the Comp subsystem.

Figure 4-4 shows the SDG for the program fragment in Figure 4-1. Nodes 2, 8, and 11
correspond to load instructions and have been split. To show that both nodes correspond to

a single program instruction, the split nodes have been enclosed in a bigger oval node.
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11: move
12: $L5: lw

13: sra
14: andi
15: beq
16: move
17: jal
18: Iw
19: sl|
110: addu
111: Iw
112: bltz
113: addu
114 SW
115: $L4: addu
116: slt
117: bne

$16, $0

$2, regs_inv_by_call
$2, $2, $16

$2, $2, Ox1

$2, $0, $L4
$4, $16 e
delete_equiv_reg @

$3, reg_tick
$2,$16,2  Loads
$2, $2, $3

$4, 0($2) \
$4, 3L4

$4,%4,1

$4, 0($2)

$16, $16, 1

$2, $16, 66
$2,$0,5L5

Figure 4-4. Static dependence graph for example program.

Similarly, node 14 corresponds to a store instruction and has been split. The edges corre-

spond to register dependences. For example, instruction 13 produces $2 that is used by

instruction 14 and hence, there is an edge between 13 and 14.

4.4.2 Partitioning Conditions

Given aprogram P, let

G=SDGfor P

LS(G) = Set of load/store address nodesin G
C(G) = Comp partition of G
L(G) = LdSt partition of G

Any partition of G into L(G) and C(G) must satisfy two conditions. First, L(G) and C(G)
must be digoint. Second, anode v I C(G) should satisfy the following conditions:

1. Backward-Sice(G,v) n L(G) =@. For anodev [C(G), thisconditions specifiesthat v

or any of its ancestors should not receive any value from L(G).
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2. Forward-Sice(G,v) n L(G) = @. For anodev [C(G), this condition specifies that v

or any of its descendants should not supply any valueto L(G).

Clearly, nodes in LYG) must be in L(G) because only the LdSt subsystem can execute
loads and stores. Instructions in the backward slices of these address nodes are involved in
addressing. The union of these backward dlices is termed the LdSt dlice. It follows from
the backward dlice condition that the LdSt slice must also be assigned to L(G).

For our example program repeated in Figure 4-4,

LS(G) ={2, 8, 11, 14},
C(G) ={11", 12, 13, 14'}, and

L(G)=G-C(G)={1,2,2",3,4,5,6,7,8,8, 9,10, 11, 14, 15, 16, 17}

It can be easily verified that all nodes in C(G) satisfy the backward and forward dlicing
conditions. The branch computation {16, 17} could not be assigned to the Comp sub-
system because node 16 is supplied a value by node 15 which is in the LdSt slice and
hencein L(G). If this branch computation were assigned to Comp, then the backward slice

condition would be violated for nodes 16 and 17.

4.4.3 Partitioning Algorithm

The goal of the partitioning algorithm isto find the largest set C(G) that satisfies the par-
titioning conditions presented previously. A simple and fast algorithm for identifying the
largest set C(G) based on the observation that the partitioning conditions specified previ-
ously can be restated as reachability conditions on the undirected graph G, corresponding
to G.

Let G, be the undirected graph corresponding to G, i.e. G, consists of the same vertices
and edges as G, but the edges are undirected. Then, the slicing conditions can be inter-

preted as : If v OC(G), then v is not reachable from any node in L(G). So, every con-
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nected component in G, either belongs to L(G,) or C(G,) but is not shared between the

two partitions. Thus, if a connected component contains a load or a store address node,
then the connected component must be assigned to the LdSt partition because the load/
store instruction is assigned to LdSt. Conversely, if a connected component contains a
branch of store value and does not contain any |oad/store address node, then the connected

component is assigned to the Comp partition.

The graph in Figure 4-4 has four connected components. One component consists of
nodes {11°,12,13,14°}. Since this component does not contain any load/store address
nodes, it can be assigned to the Comp subsystem. In contrast, al the other components

contain load/store address nodes and hence are assigned to the LdSt subsystem.

The complexity of the algorithm based on reachability is O(|V| + |E|) where |V| is the
number of nodes in the SDG and |E| is the number of edgesin the SDG. This directly fol-
lows from the result that the connected components of an undirected graph can be com-
puted in O(|V] + |E|) time [CLL92].

4.5 Advanced Partitioning Schemes

This section discusses advanced partitioning techniques that relax the restrictions on
inserting extrainstructions in order to find more computation to off-load to the Comp sub-
system. The restrictions are relaxed in two ways. First, the advanced schemes assume the
availability of copy instructions that can copy values between the LdSt and Comp register
files without accessing memory. Such instructions are present in a number of 1SAs (e.g.
MIPS[KH92] and Alpha[Dig96]). Second, the advanced scheme duplicates some instruc-
tions to arrive at better partitions. Copy and duplicate instructions can not only increase
the size of the Comp partition, but can also increase the total number of dynamic instruc-
tions executed and instruction cache miss rates. Hence, care must be taken to minimize the
overheads associated with copy and duplicate instructions. Our heuristics take into
account these overheads. It is shown in Section 4.6 that our heuristics introduce very few

extrainstructions.



11 move $16, $0

11" cp_comp $16,$f2

12: $L5: Iw $f4, regs_inv_by_call

13: sra,c $f4, $f4, $f2

14: andi,c $f4, $f4, Ox1

I5: beq,c $f4, $0, $L4

16: move $4, $16 e
17 jal delete_equiv_reg @
18: Iw $3, reg_tick

19: sll $2,$16,2  Loads

110: addu $2, $2, $3

111: Iw $f0, 0($2) \

112: bltz,c $f0, $L4
113: addu,c  $f0, $f0, 1
114: SwW $f0, 0($2)
I15’:$L4: addu $16, $16, 1
115: cp_comp $16, $f2
116: slt,c $f4, $f2, 66
117: bne,c $f2,$0,$L5

Figure 4-5. Partitioning with copies.

4.5.1 Limitations of the Basic Partitioning Scheme

The need for advanced partitioning schemes is first motivated by presenting specific
examples where the basic partitioning algorithm is limited in its ability to move computa-

tion to the Comp subsystem.

Function calls limit the ability of the basic partitioning algorithm in finding Comp com-
putation in the called function and near the call site because calling conventionsrequire al
the integer-value arguments to be passed in integer registers and the return value to be
returned in an integer register. Since the basic scheme is constrained not to introduce extra
(copy) instructions, al instructions at the call site that compute argument values, and all
instructions inside the function that use argument values are assigned to the LdSt sub-
system. The same holds for instructions that compute function return values and instruc-
tions that use function return values. One solution to this problem is to use copy

instructions. Once could let the algorithm partition code ignoring the restrictions imposed
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by the calling conventions and later, when necessary, introduce copies to adhere to the

conventions.

If any branch or store-value computation in the program is supplied a value by any
addressing instruction, then the basic partitioning scheme assigns that computation to the
LdSt subsystem. Figure 4-4 shows the SDG and the partitioning generated by the basic
partitioning scheme for our running example. In the example, the branch computations
{116, 117} and {12, 13, 14, 15} are supplied by the addressing instructions |1 and 115 and
hence could not be assigned to Comp. By inserting copies for the results of 11 and 115,
these branch computations can execute in Comp. Figure 4-5 shows the code generated and
the associated SDG when this is done. In this example, copies have enabled the off-load-
ing of five more instructions to Comp. Since 11" is outside the loop, copy overheads are

repeatedly incurred only for node 115 .

For this example code-duplication can be used to achieve the same partitioning as real-
ized by inserting copies. In the C code fragment shown in Figure 4-1, the loop induction
variable regno is used both for address computation as well as for branch computation.
By duplicating the induction variable regno in Comp, the two pieces of code can proceed
independently without any communication. Figure 4-6 shows the assembly code and the
associated SDG when thisisdone. 11 and 115 are duplicated instructions and enable five
more instructions to be off-loaded to the Comp subsystem. Again, since 11 is outside the

loop, duplication overheads are repeatedly incurred only for node 115 .

Thus, copy instructions and code duplication can achieve better code partitioning. How-
ever, arbitrary use of these techniques can hurt performance because copies and duplicates
may introduce overhead. The advanced partitioning algorithm used by the compiler
employs a cost model to identify profitable sites for copy insertion and code duplication.
The cost model and the algorithm are briefly described here. Subramanya Sastry was a
major contributor in designing the cost model and the advanced partitioning algorithm.
They are discussed in detail by Sastry et al. [SPS9§].
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11 move $16, $0

11" move,c  $f2, $0

12: $L5: Iw $f4, regs_inv_by_call

13: sra,c $f4, $f4, $f2

14: andi,c $f4, $f4, Ox1

I5: beq,c $f4, $0, $L4

16: move $4, $16 e

17 jal delete_equiv_reg @ e
18: Iw $3, reg_tick

19: sll $2,$16,2  Loads

110: addu $2, $2, $3

111: Iw $f0, 0($2) \ o

112: bltz,c $f0, $L4
113: addu,c  $f0, $f0, 1
114: SwW $f0, 0($2)
I15’:$L4: addu $16, $16, 1
115: addu,c  $f2, $f2, 1
116: slt,c $f4, $f2, 66
117: bne,c $f2,$0,$L5

Figure 4-6. Partitioning with code duplication.

452 Cost Mode

Intuitively, the benefit from a copy instruction or a duplicated instruction is the number
of extra dynamic instructions that will execute in the Comp subsystem as a result of the

copy/duplicate inserted. Symbolically, given aSDG G,

Let Scopy be the set of nodesin G for which copies are inserted.
Let Syyp be the set of nodesin G which are duplicated
Let S, be the set of nodesin G that can be moved to from LdSt to Comp as aresult of

the copies and duplicates.

The nodes in S execute in Comp yielding a bigger Comp partition. However, execution
of nodesin S,y and Sy introduces overhead in the program. It is beneficial to introduce
these copies and duplicates only if the increase in size of the Comp partition offsets the

overhead. Thisis quantified by the following equations.
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Benefit = g& Ngy)
\

Overhead = 0, % ; Ng(y) + Ogypl X ; Ngy)
v O Scopy v O Sdupl

Profit = Benefit — Overhead

where:

B(l): Basic block containing instruction |

ng: Number of times basic block B executed at run-time
Ocopy Overhead of acopy instruction

Ogupi- Overhead of aduplicate instructions

Hence, it is beneficia to introduce copies and duplicate instructions only if Profit> 0.

4.5.3 Algorithm for Introducing Copies and Duplicating Code

A simple heuristic is used to decide whether a given node v should be copiedtor dupli-
cated. The heuristic uses the number of parents of the node as input. The heuristic favors
duplication of the node if it has few parents or if the node has parents outside its enclosing
loop. In our example program, nodes 1 and 15 are candidates for copying/duplication.
Because node 15 is within aloop, both techniques introduce an overhead of one instruc-
tion per loop iteration. Duplication of node 15 requires that node 1 be duplicated/copied.

Because node 1 is outside the loop, duplication is preferable.

The advanced partitioning algorithm starts by initializing the LdSt partition to be the
LdSt slice. Then the algorithm iteratively expands the LdSt partition to include instruc-
tions that are not profitable for execution in the Comp subsystem. It does so by analyzing

the instructions on the boundary between the LdSt and Comp partitions for execution in

1. to be more precise, the result of node v should be copied.
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the Comp subsystem. The boundary is made up of LdSt nodes whose children are not in

LdSt. For each child of aboundary instruction, the algorithm essentially checksif the ben-
efit of executing the child instruction in the Comp subsystem is positive, taking into
account the extra copies and duplicate instructions that might be necessary. If not, the
boundary is expanded to include the instruction in the LdSt partition. The agorithm stops
when the boundary can no longer be grown. The advanced partitioning algorithm is
described in further detail by Sastry et al. [SPS9§].

4.6 Experimental Evaluation

4.6.1 Evaluation M ethodology

We used gce-2.7.1 as the base compiler for studying the partitioning schemes. The com-
piler was modified by Subramanya Sastry to generate code for the extended SimpleScalar
[BAB96] ISA which is based on the MIPS ISA. The SimpleScalar instruction set was
extended by using new opcodes to encode integer instructions executing in the augmented
floating-point subsystem. For the conventional microarchitecture, the benchmark pro-

grams are compiled by the base compiler (unmodified gcc-2.7.1).

Code partitioning is performed on the intermediate representation of the program. This
is done only after the initial machine-independent optimizations [ASU88] like loop-invari-
ant code motion, constant propagation, common subexpression elimination, etc., are com-
plete. Register allocation is performed only after code partitioning is performed. Operands

of instructions in Comp are allocated floating-point registers.

A timing simulator based on the SimpleScalar tool set [BAB96] was used for perfor-
mance evaluations. The timing simulator models both a conventional and an integer-
decoupled microarchitecture. Both microarchitectures are identical except for execution of
integer operations in the floating-point subsystem. The simulator is cycle-based and the
machine parameters simulated for the 4-way and 8-way issue machines are detailed in
Table 4.2.
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Par ameter 4-way 8-way

Fetch width any 4 instructions any 8 instructions

[-Cache 32 KB, 2-way set associative 64 byte lines, 1 cycle hit
time 6 cycle miss penalty

Branch predictor McFarling’s gsharel M cF93] with 1M 2-bit counters,

20bit global history, unconditional control flow instruc-

tions predicted perfectly

Rename width any 4 instructions any 8 instructions

I ssue window size 16 int/16 fp 32int/ 32fp

Max. in-flight insts 32 64

Retire width 4 8

Functional units

2 Int + 2 Fp units

4 Int + 4 Fp units

Functional unit
latency

6 cyclemul, 12 cyclediv, 1 cyclefor rest

| ssue mechanism up to 4 ops/cycle up to 8 ops/cycle
out-of-order issue loads may execute when prior store
addresses are known
Physical registers 48 int/48 fp 80int/80 fp

D-Cache

We used programs from the SPECint95 benchmark suite to conduct our evaluation. The
benchmarks and the inputs used are given in Table 4.3. The base optimization level used
for compiling the benchmarks is -O3 which enables common subexpression elimination,
loop invariant removal, and jump optimizations among others. All the benchmarks were

run to completion. Compress had the lowest instruction count at 410 millions instructions

32 KB, 2-way set-associative, write-back, write-allo-
cate, 32 bytelines, 1 cycle hit time, 6 cycle miss penalty

one |load/store port

two load/store ports

Table 4.2: Machine parameters.

and perl had the highest at 1.2 billion instructions.
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Benchmark Input
compress test.in

li browse.lsp
gcc stmt.i
m88ksim ctl.raw, dhry.big
go 2stone.in
ijpeg vigo.ppm
perl srabbl.ppl

Table 4.3: Benchmark programs.

4.6.2 Performance Results

In this subsection, results for the performance of the two partitioning schemes and the
net speedups possible with the integer-decoupled microarchitecture are presented. All our
results are based on the assumption that only the simple integer operations shown in
Table 4.1 are supported in the Comp subsystem. We then examine the impact on perfor-
mance of supporting some of the more complex integer operations in the Comp sub-

system.

Per centage of Computation Off-loaded to the Comp subsystem

The graph in Figure 4-7 shows the percentage of total dynamic instructions off-loaded
by the compiler for each of the benchmark programs. The graph shows the size of the
Comp partition for both the basic and the advanced partitioning schemes. Because al the
benchmark programs are integer programs that execute negligible floating-point instruc-
tions, the bars in the graph correspond to the amount of integer computation that the com-
piler is able to identify and off-load to the Comp subsystem. Overall, the compiler is
successful in off-loading a sizable fraction of the total computation to the Comp sub-
system. In the case of ijpeg, m88ksim, and gcc more than 20% of the total computation is
supported in the Comp subsystem.The graph also shows that the advanced partitioning



138

~ 45

S 40t [ ] Basic scheme .
o

€ 35 [l Advanced scheme .
S 30t .
£ 251 .
© 20 .
S 15 :
S 10 + .
£ 5t m
- 0

compress gcc go ijpeg li m88ksim perl

Sigure 4-7. Percentage of instructions assigned to Comp.

scheme generates bigger partitions than the basic scheme for all the benchmarks. For perl,
go, and compress, the partitions generated by the advanced partitioning scheme are almost
twice the size of those generated by the basic scheme. 1jpeg benefits the most from the
advanced scheme: the Comp computation increases from 10.7% to 32.1%. However, for li,
the advanced scheme does not perform better than the basic scheme because li is call

intensive and has a number of small functions.

While the advanced partitioning scheme might be able to off-load more computation, the
percentages must be judged in conjunction with the change in the instruction cache perfor-
mance and the total number of instructions executed due to the extra instructions intro-
duced. Hence, we studied the overhead introduced by the advanced partitioning scheme.
For al the benchmarks, we found the change in static code size to be negligible. As a
result there was very little change in I-cache hit rates for all the benchmarks. Only in the
case of perl was there anoticeable increase in I-cache hit rate by 1.8%. Theincreasein the
number of dynamic instructions executed is also small. The maximum increase is 2% for
compress. Copies account for 0.6% and the rest, 1.4% is due to duplicates. For gcc, there
Is a 1.2% increase in instruction count, half of which resulted from an increase in loads
and stores. Copies and duplicates accounted for the rest. Overall, these results show that
the advanced partitioning scheme is successful in increasing the Comp partition sizes

without introducing alot of overhead.
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The graph in Figure 4-8 shows the performance improvements obtained by the integer-
decoupled microarchitecture over a conventional microarchitecture for the 4-way issue (2
int + 2 fp) machine. Improvements due to both the basic and the advanced partitioning
schemes are presented. For m88ksim, compress, and ijpeg, performance improvements
over 10% are achieved with the advanced partitioning scheme. In the case of m88ksim, an
impressive improvement of 23% is achieved with the advanced partitioning scheme. Over-
al for the 4-way machine, the integer-decoupled microarchitecture coupled with the
advanced partitioning scheme is capable of providing modest to impressive speedups over

the conventional microarchitecture.

As expected, performance improvements increase as more instructions are off-loaded to
the Comp subsystem. However, the improvements do not directly reflect the size of the
Comp partitions, i.e. a bigger Comp partition does not necessarily result in a greater per-
formance improvement, for two reasons. First, the load imbalance between the LdSt and
the Comp partitions results in lower speedups than expected. For example, the Comp par-
tition of ijpeg with advanced partitioning is bigger than that of m88ksim with basic parti-
tioning, but the corresponding improvement of ijpeg is much smaller than that of m88ksim.
We found load imbalance to be the culprit in this case. There are phases in which mgjority

of the computation is supported in the Comp subsystem leaving the LdSt subsystem rela-
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Figure 4-9. Speedups on the 8-way machine.

tively idle. Quantitatively, ssmulations of ijpeg show that the LdSt subsystem isidle 13.5%
of the cycles when the Comp subsystem is executing one or more instructions. The equiv-
alent number for m88ksimis only 4.4%. With the advanced partitioning scheme, m88ksim
also suffers from the problem of load imbalance. For m88ksim with the advanced scheme,
the LdSt subsystem isidle 12.4% of the cyclesin which the Comp subsystem is executing
one or more instructions. This partly explains why performance only improves by about

2.6% even though the size of the partition increases by 12%.

Another reason performance might not improve with Comp partition size isthat in some
cases the critical path of execution is not affected by partitioning. For example, with the
basic partitioning scheme, 15% of the code in mpegplay executes in the Comp subsystem,
but the resulting speedup is only 2.7%. Loads and stores contribute close to 47% of the
total instructions in the benchmarks, and hence performance is largely determined by the
cache bandwidth available. Since the integer-decoupled microarchitecture has the same
cache bandwidth as the conventional microarchitecture, the performance of mpegplay
does not improve significantly. Even with the advanced partitioning scheme and a bigger

Comp partition, the speedup is only 4%.

The graph also shows that for most benchmarks, the advanced partitioning scheme

yields better speedups than the basic partitioning scheme. The two exceptions are li and
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mB88ksim. In the case of li, the increase in the size of the Comp partition is very small. For

m88ksim, load imbalance seems to be the problem as mentioned earlier.

Perfor mance | mprovements on the 8-way machine

The graph in Figure 4-9 shows performance improvements on the 8-way issue (4 int + 4
fp) machine. The speedups on the 8-way issue machine are smaller than the speedups
achieved on the 4-way issue machine. Thisis expected because the number of unitsin the
LdSt subsystem now gets within the range of average parallelism in the programs. So, the
extra issue bandwidth available in the Comp subsystem is not exploited as much. How-
ever, m88ksim achieves an improvement of 19% because it has enough parallelism and is
able to exploit the presence of a bigger instruction window and the wider issue and execu-
tion bandwidth.

Instruction mix of the Comp partition

The instruction mix of the Comp partition, assuming that integer multiply and divide
operations are also available in the Comp subsystem, is shown in Figure 4-10. The graphs
shows that, except for ijpeg, all the benchmarks execute a negligible number of integer
multiply and divide operationsin the Comp subsystem. |jpeg has the maximum percentage
of multiplies at 2.77%. |jpeg aso has the maximum number of divides at 0.11%. For the
remaining benchmarks, the instruction mix is almost entirely composed of simple control,
logical, and arithmetic instructions. This observation matches with the results of other
studies [HP96].

For ijpeg, we studied the performance effects of supporting integer multiply and divide
operations in the Comp subsystem. This has a dramatic effect on the basic partitioning
scheme. The Comp percentage increased from 11% to 40%. The speedups also increased
from 6% to 16% because in some frequently executed functions of ijpeg, the multiply
instructions are closely related to the rest of the instructions in the function. So, when the

multiply instructions are moved to the LdSt subsystem, all reachable instructions are also
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moved to the LdSt subsystem which effectively moves the whole function to LdSt. How-
ever, the change was not as marked with the advanced partitioning scheme because it was
able to recoup some of the computation that got moved to LdSt using copies. The Comp
partition size increased from 11% to 32%. The performance improvement on the 4-way
issue machine increased from 6% to 11%. This shows that the advanced partitioning
scheme is successful in reducing the impact of the absence of integer multiply and divide

instructions in the Comp subsystem.

4.7 Related Work

The early Control Data Corporation and Cray Research style of architectures [Rus78,
Tho61] were thefirst to distinguish operand access and computation. One set of functional
units and registersis used for addressing and a second set is used for computation in these
architectures. Smith [Smi82] proposed the decoupled style of machine organization in
which operand access and computation are separated and executed in parallel. The access
subsystem executes memory access related instructions while the execute subsystem sup-
ports compute instructions. The access and execute subsystems communicate through
gueues. This organization style permits the access subsystem to dlip ahead of the execute
subsystem and hence, helps hide the latency of memory access. Experimental evaluation

showed considerable speedups for the floating-point programs studied. Work along similar
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lines is reported by Pleszkun and Davidson [PD83], Goodman et al. [GHL *85], and Bird
et al.[BRT93].

The decoupling concept has since been successfully implemented in a number of com-
mercial machines like the IBM RS/6000 [Gro90] and the MIPS R8000 [Hsu94]. However,
both these implementations only decouple integer and floating-point subsystems. While
this hel ps to decouple memory access and computation in floating-point programs, integer

programs cannot benefit from decoupling in these implementations.

The work presented in this chapter extends earlier work in the area of decoupled archi-
tectures in two important ways. First, the proposed integer-decoupled microarchitecture
applies the concept of decoupling to integer programs. Second, decoupling is used as a
technique to extract additional performance for integer codes from conventional microar-

chitectures without increasing their complexity.

In the context of the compiler work presented, the most closely related work is reported
by Capitanio et al. [CDN92]. They study code partitioning for a VLIW architecture with
partitioned register files. Their architecture consists of a number of homogeneous clusters
each of which are statically scheduled. In contrast, the integer-decoupled microarchitec-
ture is heterogeneous; only the LdSt subsystem can execute loads and stores. Further, the
earlier study applied code partitioning only to straight-line loop bodies and did not con-

sider code duplication as a means of avoiding inter-partition communication.

4.8 Chapter Summary

Conventional microarchitectures suffer from idle floating-point resources when execut-
ing integer codes. This chapter proposed integer-decoupled microarchitectures that
address this drawback by supporting some of the non-addressing computation in integer
programs in an augmented floating-point subsystem. For integer programs, this provides
extra issue and execution bandwidth as well as provides a larger window for dynamic

scheduling without increasing the complexity of the conventional microarchitecture. Fur-
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thermore, the only change required to the hardware is the implementation of simple inte-

ger operationsin the floating-point subsystem.

The performance of the proposed microarchitecture was evaluated relative to a conven-
tional microarchitecture. The results show two things. First, for the benchmarks studied,
the compiler is able to off-load a significant fraction, from 9% to 41%, of the total compu-
tation in integer programs to the augmented floating-point subsystem. Second, as a result
the performance improvements in the 3% to 23% range were achieved on a 4-way issue

processor.

Hence, | believe that the integer-decoupled microarchitecture is an attractive choice for
future processors especially considering that the hardware changes required to adapt the

conventional microarchitecture are small.
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Chapter 5

Conclusions

This thesis examined the trade-off between hardware complexity and clock speed in the
design of superscalar microarchitectures. Using the results of the trade-off analysis, the
thesis proposed and evaluated two new superscalar microarchitectures designed with the

goal of achieving high performance by reducing complexity.

5.1 ThesisSummary

Superscalar microarchitectures provide high performance by using hardware techniques
to execute multiple instructions every cycle. The performance of these microarchitectures
is directly proportional to the product — Instructions Per Cycle x Clock Freguency .
Instructions Per Cycle or IPC measures the amount of parallelism extracted by the
microarchitecture and Clock Frequency is the speed at which the microarchitecture can be
clocked. Complex hardware helps improve the IPC factor by extracting higher levels of
instruction-level paralelism. However, the complex hardware employed to achieve high
IPC can potentially slow the clock and hence, nullify the improvementsin IPC. Therefore,

thereisaneed for devel oping microarchitectures that judiciously use hardware compl exity
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for extracting higher levels of parallelism while permitting afast clock; that is, to develop

microarchitectures we refer to as compl exity-effective microarchitectures.

To design microarchitectures that are complexity-effective, computer architects need
simple models for measuring complexity that can be used at a fairly early stage of the
design process. In addition to determining complexity-effectiveness, such models help

identify long-term complexity trends.

The first part of this thesis presented simple models that quantifying the complexity of
superscalar microarchitectures. A baseline superscalar pipelineis presented and structures
whose complexity grows with increasing ILP are identified. Of these structures, register
renaming, instruction window wakeup, instruction window selection, register file access,
and operand bypassing are analyzed in detail. Each is modeled and Spice simulated for
three different feature sizes representing past, present, and future technologies. Simple
analytical models are devel oped that express the delay of each of the structures in terms of
microarchitectural parameters like issue width and instruction window size. The impact of
technology trendsis also studied. In particular, the impact of poor scaling of wire delaysin

future technologiesis analyzed.

Results show that the logic associated with managing the issue window of a superscalar
processor is likely to become the most critical structure as we move towards wider-issue,
larger windows, and advanced technologies in which wire delays dominate. One of the
functions implemented by the logic is the broadcast of results tags over wires that span the
instruction window. This operation does not scale well especially as feature sizes are
reduced. Furthermore, in order to be able to execute dependent instructions in consecutive
cycles — a desirable feature from the point of view of performance — the delay of the

window logic should be less than a cycle.

In addition to window logic, a second structure that needs careful consideration in future

technologies is the data bypass logic. The length of result wires used to broadcast bypass
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values increases linearly with issue width and hence, the delay of the data bypass logic

increases at least linearly with issue width. Asaresult, the data bypass delay can grow sig-
nificantly for wider microarchitectures in future technologies and force architects to con-

sider clustered microarchitectures.

To address the complexity of window logic and data bypass logic, a family of complex-
ity-effective microarchitectures called the dependence-based superscalar microarchitec-
tures is proposed and studied. The proposed microarchitectures achieve the dual goals of
high IPC and afast clock using two main techniques. The machine is partitioned into mul-
tiple clusters each of which contains a dice of the instruction window and execution
resources of the whole processor. This enables high-speed clocking of the individual clus-
ters since the narrow issue width and the small instruction window in each cluster keeps
critical delays small. The second technique involves intelligent steering of instructions to
the multiple clusters so that the whole width of the machine is utilized while minimizing
the performance degradation due to slow inter-cluster communication. Experimental
results show that dependence-based superscalar microarchitectures are capable of extract-
ing similar levels of parallelism as conventional microarchitectures while facilitating a
faster clock.

The third contribution of thisthesisis the integer-decoupled microarchitecture. The inte-
ger-decoupled microarchitecture improves the performance of integer programs and can
be integrated into a conventional microarchitecture with little or no increase in complexity.
Floating-point units in the conventional microarchitecture are augmented to perform sim-
ple integer operations and the resulting floating-point subsystem is used to support some
of the computation in integer programs. The computation to be off-loaded is identified by
the compiler. Simulation results are presented that show modest speedups for a 4-way pro-

cessor. The speedups diminish with increasing issue width.
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5.2 Futuredirections

5.2.1 Quantifying the Complexity of Superscalar Microarchitectures

Analysis similar to that presented in this thesis can be applied to other structures in the
pipeline that are not studied here. Two specific examples are the instruction fetch logic and
the load/store queue logic. The complexity of the latter in particular has been problematic
[Yea97] for designersin industry.

5.2.2 Dependence-based Superscalar Microar chitectures

The instruction steering heuristics studied in this thesis are smple in that they do not
require more than one extra pipe stage. One avenue for future research is the feasibility
and applicability of caching steering information. Caching steering information can help
move the steering logic out of the critical path. Thiswould open up the possibility of more
complex steering heuristics. Therefore, it might be worthwhile to study sophisticated
steering heuristics that can further boost the parallelism extracted by the dependence-

based microarchitectures.

The fifo steering heuristic studied in this thesis steers instructions solely based on regis-
ter dependences between instructions. It might be possible to augment the heuristic with
the memory-dependence prediction technigues proposed by Moshovos et al. [MBV S97] to
help create longer chains. For example, a load instruction can be steered to the fifo that
contains an earlier store instruction to the same address as the one referenced by the load.
Note that at the time of steering, the addresses referenced by the load and the store instruc-
tion are not known. Memory-dependence prediction can be used to chain dependent load-

store pairs and steer them to the same fifo.

5.2.3 Integer-decoupled Microar chitecture

There is always scope for more research in developing improved partitioning heuristics

that can off-load more computation to the augmented FP subsystem. Another possibility is
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to study heuristics that not only try to off-load sizable fraction of the total computation,

but also try to balance the load on the two subsystems.

An alternative scheme for utilizing the idle floating-point subsystem in a conventional
microarchitecture, is to use the idle subsystem to execute along both paths of likely

mispredicted branches [HS96] in integer programs. Of course, this would require extra
hardware support.
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Appendix A

A.1 Technology Parameters

161

The Hspice Level 3 models used to simulate the synthetic 0.8um, 0.35um, and 0.18um

CMOS technologies are givenin Table A.1.

Parameter 0.8um 0.35um 0.18um

tox 165 70 35
vto 0.77(-0.87) 0.67(-0.77) 0.55(-0.55)
uo 570(145) 535(122) 450(80)
gamma 0.8(0.73) 0.53(0.42) 0.40(0.32)
vimax 2.7e5(0.0) 1.8e5(0.0) 1.05e5(0.0)
theta 0.404(0.233) 0.404(0.233) 0.404(0.233)
eta 0.04(0.028) 0.024(0.018) 0.008(0.008)
kappa 1.2(0.04) 1.2(0.04) 1.2(0.04)
phi 0.90 0.90 0.90
nsub 8.8e16(9.0e16) | 1.38el7(1.38el7) 4.07e17(4.07el7)
nfs 4ell 4ell 4ell
X 0.2u 0.2u 0.2u
Cj 2e-4(5e-4) 5.4e-4(9.3e-4) 10.6e-4(21.3e-4)
mj 0.389(0.420) 0.389(0.420) 0.389(0.420)
Cjsw 4e-10 1.5e-10 3.0e-11
mjsw 0.26(0.31) 0.26(0.31) 0.26(0.31)
pb 0.80 0.80 0.80
Cgso 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)
cgdo 2.1e-10(2.7e-10) 1.8e-10(2.4e-10) 1.8e-10(2.4e-10)
delta 0.0 0.0 0.0
Id 0.0001p 0.0001p 0.0001p
rsh 0.5 0.5 0.5
Vdd 5.0 25 2.0

Table A.1: Spice parameters.
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Table A.2 gives the metal resistance and capacitance values assumed for the three tech-

nologies.
Rietal Cretal
Technology (Q/pm) (FF/um)
0.8um 0.02 0.275
0.35um 0.046 0.628
0.18um 0.09 1.22

Table A.2: Meta resistance and capacitance.

A.2 Delay Resaults

Issue | Decoder | WordlineDrive Bitline Total
Width | Delay (ps) Delay(ps) Delay(ps) | Delay(ps)
0.8um technology

2 540.3 218.9 498.2 1502.2

4 547.1 227.9 529.6 1566.9

8 562.5 245.8 594.2 1700.9
0.35um technology

2 220.2 95.6 236.5 649.4

4 225.8 103.9 259.2 698.5

8 243.1 115.8 303.1 800.8
0.18um technology

2 129.6 70.6 175.7 435.4

4 136.8 78.2 1934 478.9

8 148.4 92.5 228.5 561.7

Table A.3: Break down of rename delay.



Window | TagDrive | TagMatch | Match OR Total
Size | Delay(ps) | Delay(ps) | Delay(ps) | Delay(ps)
Issue Width = 2
8 73.0 331.3 248.1 652.4
16 82.6 333.1 248.5 664.2
24 92.6 337.3 248.8 678.7
32 103.7 344.0 249.1 696.9
40 114.9 347.7 248.9 711.5
48 126.3 352.4 248.7 7275
56 137.4 358.7 249.2 745.4
64 149.1 364.6 248.7 762.4
Issue Width = 4
8 74.5 368.2 407.0 849.7
16 86.4 3724 406.8 865.6
24 98.8 377.6 403.9 880.3
32 112.3 384.8 409.2 906.2
40 126.2 392.3 408.7 927.2
48 140.6 400.1 404.2 944.9
56 156.3 409.0 404.1 969.4
64 172.4 416.9 403.3 992.7
Issue Width = 8
8 775 400.2 665.3 1143.0
16 93.3 406.6 665.7 1165.5
24 1114 415.2 664.8 11914
32 130.7 425.2 658.5 1214.4
40 151.5 437.7 660.2 1249.5
48 174.4 451.0 658.3 1283.8
56 199.3 465.0 664.6 1328.9
64 228.2 479.2 664.6 1372.0

Table A.4: Break down of window wakeup delay for 0.8um technology.
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Window | TagDrive | TagMatch | Match OR Total
Size | Delay(ps) | Delay(ps) | Delay(ps) | Delay(ps)
Issue Width = 2
8 28.5 126.1 101.3 255.8
16 334 128.7 101.5 263.7
24 38.3 129.1 101.2 268.6
32 43.7 133.2 97.3 274.1
40 49.7 136.3 101.2 287.3
48 53.1 138.8 97.4 289.3
56 58.9 142.7 101.1 302.8
64 64.4 145.0 98.9 308.3
Issue Width = 4
8 29.7 147.1 155.8 332.6
16 36.0 151.2 158.3 345.4
24 42.7 155.0 159.1 356.8
32 50.5 157.7 158.4 366.7
40 56.3 163.2 159.0 378.5
48 63.2 168.1 159.6 390.9
56 72.0 171.9 157.0 400.9
64 80.9 179.0 159.1 419.0
Issue Width = 8
8 32.2 1734 257.6 463.2
16 41.6 177.5 257.8 476.9
24 511 183.7 257.8 492.5
32 61.9 190.6 257.7 510.1
40 74.7 199.1 257.7 531.5
48 88.8 208.9 257.6 555.3
56 102.9 216.4 258.4 577.7
64 121.8 224.8 258.4 605.0

Table A.5: Break down of window wakeup delay for 0.35um technology.




Window | TagDrive | TagMatch | Match OR Total
Size | Delay(ps) | Delay(ps) | Delay(ps) | Delay(ps)
Issue Width = 2
8 14.6 67.9 60.7 143.1
16 18.8 68.7 60.6 148.1
24 224 69.8 60.6 152.7
32 26.1 71.8 60.6 152.7
40 29.9 73.6 60.3 163.8
48 33.7 75.7 59.9 169.3
56 36.6 77.3 61.0 174.8
64 41.4 794 59.7 180.5
Issue Width = 4
8 15.8 84.1 84.7 184.7
16 21.1 85.1 84.4 190.6
24 26.1 87.6 84.8 198.5
32 31.2 90.8 84.3 206.3
40 36.6 93.3 84.8 214.7
48 41.7 96.5 84.4 2225
56 47.5 99.4 84.8 231.8
64 54.1 102.8 84.4 241.3
Issue Width = 8
8 18.8 104.9 123.6 247.3
16 26.1 108.4 123.8 258.3
24 33.8 113.6 123.1 270.5
32 42.0 118.2 125.0 285.1
40 51.5 124.8 123.2 299.5
48 62.6 130.4 123.0 316.0
56 75.1 135.2 123.2 3334
64 90.0 139.4 1229 352.3

Table A.6: Break down of window wakeup delay for 0.18um technology.
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WIS? Sgw Tregpropd(PS) Troot(PS) Tgrantpropd(PS) D ; g;/?lps)
0.8um technology
16 233.2 607.2 2725 1113.0
32 532.5 737.6 7274 1997.5
64 534.6 742.9 719.8 1997.4
128 802.8 753.4 1118.5 2674.6
0.35um technology
16 125.0 338.5 1354 598.9
32 246.6 339.7 2954 881.7
64 2455 338.0 296.3 879.8
128 347.9 338.5 460.3 1146.7
0.18um technology
16 53.6 141.7 55.1 2504
32 107.0 141.2 1235 371.7
64 106.9 144.2 1219 373.0
128 159.9 146.7 1955 502.1

Table A.7: Break down of selection delay.
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I ssue Wi r_ldow R_egi ster Rename | Window Relgilseter Bsgtais
Width Size File Size | Delay(ps) | Delay(ps) Delay(ps) | Delay(ps)
2 16 48 137457 | 1777.20 1902.05 233.15
4 32 80 1417.25 | 2903.70 2222.10 411.12
8 64 120 1489.91 3369.4 2715.71 836.79

Table A.8: Overall delay results for 0.8um technol ogy.

I ssue Wi r_1dow Regi ster Rename | Window Relgiiliter B?Stai;s
Width Size File Size | Delay(ps) | Delay(ps) Delay(ps) | Delay(ps)
2 16 48 524.76 862.60 724.43 110.45
4 32 80 554.08 1248.40 873.21 223.79
8 64 120 603.59 | 1484.80 1155.45 486.50

Table A.9: Overall delay results for 0.35um technology.

I ssue Wi r_1dow F\’_egi s_ter Rename | Window Relgiilzter Bsstazs
Width Size File Size | Delay(ps) | Delay(ps) Delay(ps) | Delay(ps)
2 16 48 285.43 398.50 393.43 91.00
4 32 80 311.55 578.00 498.29 177.58
8 64 120 355.62 725.30 729.40 421.42

Table A.10: Overall delay results for 0.18um technol ogy.
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Appendix B

The constants in the delay equations presented in Chapter 2 are tabulated below. The
table entries contain both absolute and relative values of the constants. The relative values

are presented to show how each component’s contribution varies with feature size.

B.1 Register Rename L ogic

Decoder delay
Tdecoder = C0 + Cl x |W + CZ X |W2
Feature Co C1 C
Size (ps) (ps) (ps)
0.8um 387.16 8.611 1.07e-2
(1.00) (2.22e-2) (2.76e-5)
0.35um 153.66 5.425 1.07e-2
(1.00) (3.53e-2) (6.96e-5)
0.18um 81.88 3.96 1.07e-2
(1.00) (4.84e-2) (1.31e5)

Table B.1: Constants in decoder delay equation for rename logic.

Wordline delay

_ 2
Twordline - CO+ Cl xIW + C2 x W
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Bitline delay

Total delay

Feature Co C1 C
Size (ps) (ps) (ps)
0.8um 98.71 7.17 1.93e-3

(1.00) (7.266-2) | (1.96e-5)
0.35um 39.18 452 1.93e-3
(1.00) (1.15e-1) | (4.92e-5)
0.18um 20.88 3.30 1.93e-3
(1.00) (1.58e-1) | (9.24e-5)

Table B.2: Constants in wordline delay equation for rename logic.

B 2
Thitline = Cot Cp X IW+C, X IW

Feature Co C1 C
Size (ps) (ps) (ps)
0.8um 525.75 22.06 5.84e-3

(1.00) (4.19e2) | (1.11e-2)
0.35um 208.67 13.90 5.84e-3
(1.00) (6.67e-2) | (2.80e-2)
0.18um 111.20 10.14 5.84e-3
(1.00) (9.12e-2) | (5.25e-2)

T

rename

Table B.3: Constantsin bitline delay equation for rename logic.

_ 2
= CytCy xIW+c, xIW




Feature Co C1 C
Size (ps) (ps) (ps)
0.8um 1011.62 37.84 1.78e-2

(1.00) (3.74e-2) | (1.76e-5)
0.35um 401.51 23.84 1.78e-2
(1.00) (5.94e-2) | (4.43e-5)
0.18um 213.96 17.40 1.78e-2
(1.00) (8.13e-2) | (8.32e-5)
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Table B.4: Constantsin total delay equation for rename logic.

B.2 Window Wakeup Logic

Tag drive delay

Tiagarive = Co+(C1 + €y X IW) X WINSIZE +(c5+ 4 X IW + €5 X IW?) x WINSIZE

Feature Co Cq Co C3 Cy Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)

0.8um 1814 | 637el | 943e2 | 305e3 | 1523 | 12le4

(100) | (351e-2) | (5.20e-3) | (1.68e-4) | (8.38e:5) | (6.67e-6)

0.35um 7.20 297e1 | 594e2 | 210e3 | 1293 | 12le4

(100) | (4.12e2) | (8.25e-3) | (2.92e-4) | (1.79e-4) | (1.68e:5)

0.18um 3.84 182e1 | 434e2 | 166e3 | 108e3 | 12le4

(100) | (474e2) | (113e2) | (4.32e-4) | (281e-4) | (3.15e5)

Table B.5: Constantsin tag drive delay equation for wakeup logic.

Tag match delay

tagmatc

_ 2
h = CotCy xIW+c, xIW
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Feature

: Co G G
Size (ps) (ps) (ps)
0.8um 300.68 6.01 3.35e-3

(1.00) (154e-2) | (8.57e6)
0.35um 83.15 3.48 3.35e-3
(1.00) (4.18e-2) | (4.03e-5)
0.18um 45.46 2.55 3.35e-3
(1.00) (5.61e-2) | (7.37e5)

Table B.6: Constants in tag match delay equation for wakeup logic.
Match OR delay

TmatchOR = CO + Cl x W

Feature Co C

Size (ps) (ps)
0.8um 60.00 70.00
0.35um 26.25 30.62
0.18um 13.63 15.75

Table B.7: Constants in match OR delay equation for wakeup
logic.

Total delay

T

wakeup (cop+cyxIW+c,x |W2)
+ (cg+c,xIW)xWINSIZE

(Cs + Cg X IW + ¢, x IW?) x WINSIZE®
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Feature Co C1 Co C3 Ca Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)
0.8um 468.82 76.01 3.35e-3 6.37e-3 9.43e-2 3.05e-3
(1.00) (1.62e-1) | (7.14e-6) | (1.36e-5) | (2.01e-4) | (6.50e-6)
0.35um 116.60 34.10 3.35e-3 2.97e-1 5.94e-2 2.10e-3
(1.00) (2.91e-1) | (2.87e-5) | (2.55e-3) | (5.09e-4) | (1.80e-5)
0.18um 62.93 18.30 3.35e-3 1.82e-1 4.34e-2 1.66e-3
(1.00) (2.91e-1) | (5.32e-5) | (2.89e-3) | (6.90e-4) | (2.64e-5)
. C6 C7
Feature Size
(ps) (ps)
0.8um 1.52e-3 121e4
(3.24e-6) (2.58e-7)
0.35um 1.29e-3 121e4
(1.11e5) (1.04e-6)
0.18um 1.07e-3 1.21e-4
(1.70e-5) (1.92e-6)

Table B.8: Constantsin total delay equation for wakeup logic.
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B.3 Window Selection Logic

Tealect = Co+Cq x10g,WINSIZE
Feature Co C1
Size (ps) (ps)
0.8um 127.61 32251
0.35um 50.65 128.00
0.18um 26.99 68.21

Table B.9: Constantsin total delay equation for selection logic.

B.4 Register FileLogic

Decoder delay

T gecoder = Co+ (G + Cy X IW) x NPREG + (G4 + ¢, X IW + ¢ X IW”) x NPREG”

Feature Co C1 Co C3 Ca Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)
0.8um 414.62 0.63e2 | 203e2 | 194e6 | 437e6 | 24606

(1.00) (2.32e-4) | (4.89e-5) | (4.68e-9) | (1.05e-8) | (5.93e-9)
0.35um 164.56 6.06e2 | 2.03e2 | 194e6 | 437e6 | 24666
(1.00) (3.68e-4) | (1.23e-4) | (1.18e-8) | (2.65¢-8) | (1.49¢-8)
0.18um 87.69 443e2 | 2.03e2 | 194e6 | 437e6 | 2.46e6
(1.00) (5.05e-4) | (2.31e-4) | (2.21e-8) | (4.98e-8) | (2.80e-8)

Table B.10: Constantsin decoder delay equation for register file logic.

Wordline delay
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Feature Co C1 G
Size (ps) (ps) (ps)
0.8um 203.92 49.66 1.61e-1
(1.00) (2.43e-1) | (7.90e-4)
0.35um 80.94 31.29 1.61e-1
(1.00) (3.86e-1) | (1.99e-3)
0.18um 43.13 22.84 1.61e-1
(1.00) (5.30e-1) | (3.73e-3)
Table B.11: Constantsin wordline delay equation for register file logic.
Bitline delay
Thittine = Co+ (Cp + Cy X IW) x NPREG + (G4 + ¢, X IW + ¢ X IW”) x NPREG”
Feature Co C1 Co C3 Cy Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)
0.8um 300.00 1.02 2.54e-1 1.02e-5 1.40e-5 2.85e-6
(1.00) (3.40e-3) | (8.47e-4) | (3.40e-8) | (4.67e-8) | (9.50e-9)
0.35um 119.07 4.05e-1 1.60e-1 6.40e-6 8.80e-6 2.85e-6
(1.00) (3.40e-3) | (1.34e-3) | (5.37e-8) | (7.39e-8) | (2.39e-8)
0.18um 63.45 2.96e-1 1.17e-1 4.68e-6 6.42e-6 2.85e-6
(1.00) (4.66e-3) | (1.84e-3) | (7.38e-6) | (1.01e-7) | (4.49e-6)

Table B.12: Constantsin bitline delay equation for register file logic.

Total delay

T

regfile
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(c3+ ¢, X IW) x NPREG

+  (Cs+Cg X IW + ¢, x IW?) x NPREG”
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Feature Co C1 Co C3 Ca Cs
Size (ps) (ps) (ps) (ps) (ps) (ps)
0.8um 918.53 49.66 1l6lel 112 2.74e-1 121e5

(2.00) (5.41e-2) | (1.75e-4) | (1.22e-3) | (2.98e-4) | (1.32e-8)
0.35um 364.57 31.29 1.61e1 | 4.65e-1 | 1.80el | 8.34e6
(1.00) (8.58e-2) | (4.42e-4) | (1.28e-3) | (4.94e-4) | (2.29e-8)
0.18um 194.27 22.84 1l6lel 3.40e-1 1.37e1 6.62e-6
(1.00) (1.18e-2) | (8.29¢-4) | (1.75e-3) | (7.05e-4) | (3.41e-8)
. Ce Cy
Feature Size
(ps) (ps)
0.8um 1.84e-5 5.31e-6
(2.00e-8) (5.78e-9)
0.35um 1.32e-5 5.31e-6
(3.62e-8) (1.46e-8)
0.18um 1.08e-5 5.31e-6
(5.56e-8) (2.73e-8)
Table B.13: Constantsin total delay equation for register file logic.
B.5 Data BypassLogic
Toypass = Co+ Cp X W+ ¢, x IW?
Feature Co C1 C2
Size (ps) (ps) (ps)
0.8um 18.13 25.50 6.15
(1.00) (1.41) (0.34)
0.35um 7.20 16.06 6.15
(1.00) (2.23) (0.85)
0.18um 3.84 11.72 6.15
(1.00) (3.06) (1.60)
Table B.14: Constantsin total delay equation for data bypass logic.




