
ADAPTIVE, EFFICIENT PARALLEL EXECUTION OF PARALLEL PROGRAMS

by

Srinath Sridharan

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2014

Date of final oral examination: 09/23/2014.

The dissertation is approved by the following members of the Final Oral Committee:

Prof. Remzi Arpaci-Dusseau, Professor, Computer Sciences

Prof. Mikko Lipasti, Professor, Electrical and Computer Engineering

Prof. Gurindar S. Sohi (Advisor), Professor, Computer Sciences

Prof. Michael Swift, Associate Professor, Computer Sciences

Prof. David A. Wood, Professor, Computer Sciences

© Copyright by Srinath Sridharan 2014

All Rights Reserved

i

Dedicated to my wife, Uthra, and my parents, Bhavani and Sridharan, for their unconditional

love and support.

ii

ABSTRACT

Future multicore processors will be heterogeneous, be increasingly less reliable, and operate in

dynamically changing operating conditions. Such environments will result in a constantly varying

pool of hardware resources which can complicate the programmer’s task of efficiently exposing

an application’s parallelism onto these resources. Coupled with this complexity is the diverse set

of performance objectives, such as latency, throughout, energy, power and resources, that users

may desire. This dissertation proposes to automate the process of exposing an application’s paral-

lelism, in order to alleviate programmers from the burden of this complexity. It develops Varuna,

a system that dynamically, continuously, rapidly and transparently adapts an application’s paral-

lelism to best match the instantaneous capabilities and availability of the hardware resources and

the characteristics of the application, while optimizing different performance objectives.

To facilitate rapid parallelism adaptation, this dissertation develops a holistic and resource-

agnostic scalability model based on Amdahl’s law. Varuna first employs the model to rapidly

estimates changes in efficiency during an application’s parallel execution. It then uses formulae,

derived from the model, to instantaneously determine the optimum degree of parallelism (DoP) to

employ for different performance objectives and automatically guides the execution to the com-

puted DoP.

In order for Varuna to transparently guide the application’s parallel execution to the computed

DoP, this dissertation proposes to employ a novel primitive called a virtual task (vtask). Vtasks

decouple application-level parallelism from hardware parallelism. They are progress-aware entities

and give Varuna the flexibility needed to transparently control an application’s parallel execution,

without hampering its forward progress.

iii

Varuna is programming model independent. It retains the existing programming abstractions

and can be applied to both task-based and multithreaded shared memory parallel applications.

Further, it requires no changes to the application or the Operating System, and can tackle arbitrary

parallel applications that use standard APIs. This dissertation demonstrates Varuna for three dif-

ferent shared memory parallel programming APIs: Pthreads, Intel Thread Building Blocks (TBB),

and Prometheus.

This dissertation evaluates Varuna in three different execution environments, isolated, multi-

programmed and asymmetric, using unaltered C/C++ Pthreads, TBB and Prometheus applications

from various standard benchmark suites, on three different real hardware platforms with different

microarchitectural resource capabilities. Regardless of the execution environment, Varuna always

outperformed the state-of-the-art approaches for the performance objectives considered.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Uthra, for her unconditional love and sup-

port. Without her, I would not have come this far. She is my sunshine and my rock. I dedicate

this dissertation to her. I also dedicate this dissertation to my mother, Bhavani, and my father,

Sridharan, not only for the love and support they have given me, but also for everthing they have

done for me in my life so far. My brother, Sriram, and my sister, Srinidhi, have always been there

for me, and I will always be there for them.

I am ever indebted to my guru, Prof. Gurindar S. Sohi, who is responsible for etching my

research career. He taught me how to approach a research problem, how to write research papers,

and how to do presentations. He persisted with me even though I disappointed him several times.

His confidence in my abilities has been uplifting and words cannot express my gratitude towards

him.

I would like to thank Prof. Michael Swift for his relentless and detailed feedback on all articles

I wrote, including this dissertation. He is a walking encyclopedia and I thoroughly enjoyed the

conversations I had with him. I also would like to thank Prof. David Wood, who taught me the

fundamentals of computer architecture and parallel programming. He is the best teacher I have

ever seen. I also would like to thank other members of my thesis committee: Prof. Remzi Arpaci-

Dusseau and Prof. Mikko Lipasti.

Most of my technical knowledge and expertise have come from my interactions with my peers

in the computer sciences department. Gagan Gupta has been pretty much involved in all my re-

search projects and has taught me how to organize my thinking, how to write papers, and most

importantly, how to express my ideas to Guri. Matthew Allen mentored me during the early days

of my PhD. He has been a great source of inspiration and taught me the importance of writing

v

readable code. Sankaralingam Panneerselvam is a great friend who could answer every question

related to Operating System internals. Hongil Yoon has challenged me with great questions on

memory consistency models, coherence protocols, and directory structures. Jayaram Bobba is my

go to person whenever I had any questions related to computer architecture. I thank James Wang

for the wonderful discussions on transactional memory.

I have made many great friends during my stint at Wisconsin. Sankaralingam Panneerselvam,

Ramakrishnan Durairajan, Sandeep Viswanathan, Suryanarayanan Panneerselvam, Venkatanathan

Varadharajan, Vijay Chidambaram Velayudham Pillai, Thanumalayan Sankaranarayan Pillai, Sibin

K Philip, Madhav Venkateswaran, Ragothaman Avanasi, and Ragunanth Venkatesh are a few. I

thank all of them from the bottom of my heart. Without them, my life would have been hell in

Madison.

DISCARD THIS PAGE

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

LIST OF TABLES . ix

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Motivation . 3
1.1.1 Emergence of System Diversity . 3
1.1.2 Diversity in Performance Objectives . 5
1.1.3 Dramatic Increase in Programmers and Applications 5

1.2 Thesis Statement . 6
1.3 Shortcomings of Existing Proposals . 6
1.4 Thesis Proposal . 7
1.5 Dissertation Outline . 8

2 Background and Related Work . 10

2.1 Some Factors Impacting Degree of Parallelism and Performance 11
2.2 Quantifying the Impact of Variations in Execution Environment 15
2.3 Related Work . 17

2.3.1 Operating System Techniques for Application-Level Resource Management 17
2.3.2 Hardware Techniques for Contention Management 19
2.3.3 Application-level Parallelism Management 20

3 Working Principles and System Architecture of Varuna 24

3.1 Working Principles . 24
3.1.1 Detect Changes in Execution Environment 27
3.1.2 Determine Optimum Degree of Parallelism 28
3.1.3 Control Parallel Execution . 31

3.2 System Architecture . 36

vii

Page

3.2.1 Analytical Engine . 37
3.2.2 Parallelism Manager . 38

4 Analytical Engine . 40

4.1 Amdahl’s Law . 41
4.2 Modeling Side Effects . 42
4.3 Maximize application throughput, MAX(throughput): 45
4.4 Minimize resource consumption cost, MIN(consumption): 46
4.5 Determining qc(P), dqc(P)

dP
, Pmax and Pmin . 47

4.5.1 Determining qc(P) . 47
4.5.2 Determining dqc(P)

dP
. 48

4.5.3 Determining Pmax and Pmin . 50
4.6 Monitoring and Recalibrating Popt . 50
4.7 Limitations . 51
4.8 Hill climbing Heuristic . 51

4.8.1 Basics of Tabu Search . 52
4.8.2 Iterative Tabu-based Search Heuristic . 53

4.9 Chapter Summary . 56

5 Parallelism Manager . 57

5.1 Vtask Context . 59
5.2 Managing and Scheduling Vtasks . 61
5.3 Ensuring Forward Progress . 63

5.3.1 Handling Blocked Mutexes . 63
5.3.2 Handling Blocked Signals . 66

5.4 Chapter Summary . 70

6 Evaluation . 71

6.1 Methodology . 71
6.1.1 Machines, Benchmarks and Baselines . 72
6.1.2 Compilation Options . 74
6.1.3 Configurations . 75
6.1.4 Results Exposition . 76

6.2 Isolated Execution Environment . 77
6.2.1 Overheads of Varuna . 77
6.2.2 Optimizing MAX(throughput) . 79
6.2.3 Handling Task-based Applications . 89

viii

Appendix
Page

6.2.4 Optimizing MIN(consumption) . 91
6.2.5 Parallelism Determination Accuracy . 94
6.2.6 Selecting Appropriate Monitoring Time Interval 95

6.3 Multiprogrammed Environment . 96
6.3.1 Adapting to Variabilities in Resource Capabilities 96
6.3.2 Adapting to Contention Due to Excessive Threads 102
6.3.3 Benchmarks with Different Resource Demands 103

6.4 Asymmetric Execution Environment . 105

7 Conclusions and Future Work . 109

7.1 Thesis Summary and Contributions . 109
7.2 Limitations and Implications . 111
7.3 Future Directions . 113

LIST OF REFERENCES . 115

DISCARD THIS PAGE

ix

LIST OF TABLES

Table Page

4.1 Performance objectives and their corresponding efficiency metrics considered by the
Analytical Engine for the iterative search heuristic. 55

6.1 Machine configurations used in experimentation . 72

6.2 Multithreaded applications used in experimentation 72

6.3 Different configurations used in experiments. 74

6.4 Thread, task and vtask count used for different benchmarks on the Opteron. * =
PT/TBB/PM . 75

6.5 Thread, task and vtask count used for different benchmarks on the Xeon. * = PT/TB-
B/PM . 76

6.6 Thread, task and vtask count used for different benchmarks on the Core i7. * = PT/TB-
B/PM . 77

6.7 Optimum degree of parallelism (DoP) chosen by Varuna, and resulting execution time
(Sec.) and energy consumption (Joules) on the Xeon. The numbers shown in paran-
theses are the best possible DoP, execution time and energy consumption that could
be obtained for each benchmark (determined by performing a full static thread sweep). 81

6.8 Optimum degree of parallelism (DoP) chosen by Varuna, and resulting execution time
(Sec.) and energy consumption (Joules) on the Opteron. The numbers shown in paran-
theses are the best possible DoP, execution time and energy consumption that could
be obtained for each benchmark (determined by performing a full static thread sweep). 83

6.9 Optimum degree of parallelism (DoP) chosen by Varuna, and resulting execution time
(Sec.) and energy consumption (Joules) on the Core i7. The numbers shown in paran-
theses are the best possible DoP, execution time and energy consumption that could
be obtained for each benchmark (determined by performing a full static thread sweep). 85

x

Table Page

6.10 Execution time comparison of PT CG in isolated and multiprogrammed environment
on the Xeon. 99

6.11 Execution time comparison of Pthreads and Varuna (optimized forMAX(throughput)
objective) on the Xeon when benchmarks with different resource constraints are co-
scheduled. T(B*): B*’s execution time in seconds; DoP: stable parallelism points for
B1 and B2. 103

6.12 Clock modulation levels on Intel machines. 105

6.13 Clock modulation levels used for core i7 with SMT switched off. 106

DISCARD THIS PAGE

xi

LIST OF FIGURES

Figure Page

2.1 Execution time and energy trends of two programs, RE and Stream, in dedicated and
multiprogrammed (multi) environments on a Core i7-2600 workstation. 16

3.1 Working Principles of Varuna. 26

3.2 Assumptions of the scalability model. 30

3.3 Independence-based parallel execution example. 33

3.4 Dependence-aware parallel execution example. 34

3.5 Varuna’s system architecture. 36

3.6 High level operations of the Analytical Engine. 38

4.1 Amdahl’s law example. 41

4.2 Speedup σ(P) and qc(P) trends of ReverseIndex and Barneshut on Opteron. 44

4.3 High level operations of the iterative search heuristic. 54

5.1 Transparent suspension and migration of vtasks. 58

5.2 Vtask context block. 60

5.3 Vtask state transition diagram. 61

5.4 Deadlock example. 65

5.5 Barneshut example. 66

5.6 Comparison of independence-based and dependence-aware execution of Pbzip2 67

6.1 Execution time and energy comparison of PT CG, PT FG, and V base on the Xeon. . 78

xii

Figure Page

6.2 Execution time and energy comparison of PT CG, PT FG, and V base on the Opteron. 78

6.3 Execution time and energy comparison of PT CG, PT FG, and V base on the Core i7. 79

6.4 Execution time and energy comparison of Histogram on the Xeon, the Opteron, and
the Core i7. 80

6.5 Execution time and energy comparison of Stream on the Xeon, the Opteron, and the
Core i7. 82

6.6 Execution time and energy comparison of ReverseIndex on the Xeon, the Opteron,
and the Core i7. 84

6.7 Execution time and energy comparison of Hash Join on the Xeon, the Opteron, and
the Core i7. 86

6.8 Execution time and energy comparison of RE on the Xeon, the Opteron, and the Core
i7. 86

6.9 Execution time and energy comparison of non-contending benchmarks on the Xeon. . 87

6.10 Execution time and energy comparison of non-contending benchmarks on the Opteron. 88

6.11 Execution time and energy comparison of non-contending benchmarks on the Core i7. 88

6.12 Execution time and energy comparison of task-based Varuna, TBB, Prometheus, Par-
cae and FDT on the Xeon. 89

6.13 Execution time and energy comparison of task-based Varuna, TBB, Prometheus, Par-
cae and FDT on the Opteron. 90

6.14 Execution time and energy comparison of task-based Varuna, TBB, Prometheus, Par-
cae and FDT on the Core i7. 90

6.15 Resource consumption cost on the Xeon. 92

6.16 Execution time and energy comparison of V PT T and V PT C on the Xeon. 93

6.17 Execution time and energy comparison of V TBB T, V TBB C, V PM T, and V PM C
on the Xeon. 94

6.18 Time interval versus overheads on the Xeon. 95

xiii

Appendix
Figure Page

6.19 Comparison of search heuristics . 97

6.20 Execution time of threaded applications when scheduled with dynamically varying
instances of mcf on the Xeon, relative to PT CG running in the same environment. . . 98

6.21 Execution time and resource consumption cost of task-based applications when sched-
uled with dynamically varying instances of mcf on the Xeon. 98

6.22 Resource consumption cost of threaded applications when scheduled with dynami-
cally varying instances of mcf on the Xeon. 101

6.23 Execution time when 8 instances of the same thread application are scheduled together
on the Opteron. 101

6.24 Execution time when 12 instances of the same thread application are scheduled to-
gether on the Opteron. 102

6.25 Execution time and resource consumption cost of Varuna and Pthreads on the emu-
lated asymmetric environment. 107

1

Chapter 1

Introduction

For several decades, advances in semiconductor technology have provided computer architects

with new opportunities for innovation. Computer architects have responded with waves of innova-

tion that have resulted in a dramatic transformation of the microarchitecture of computer systems.

These waves of innovation have resulted in more powerful processors and computing systems.

Until recently, improvement in uniprocessor performance has mainly come from improving semi-

conductor technology and innovative architectural and microarchitectural techniques. Through this

combination, uniprocessor performance has improved by several orders of magnitude in the past

few decades. As a result, programmers could write applications in a familiar, sequential manner,

yet have had remarkable performance improvements in a transparent manner. However, several

fundamental limitations, including wire delay, power consumption, and design complexity, have

forced hardware manufacturers to move from the decades-old approach of increasingly fast unipro-

cessors to building multicore processors. Today almost every common multiprocessor chip, even

those used in mobile devices, is a multiprocessor with multiple processing cores on a single die

communicating through shared caches.

The prevalence of multicore processors has had a significant impact on how software appli-

cations are being developed. They no longer automatically benefit from improvements in clock

speeds the way did in the uniprocessor era. Multiprocessor computing is more effective only when

software expects and take advantage of parallelism, i.e., harnessing multiple processing elements

2

to cooperatively solve a single piece of work. Thus, multicore processors have effectively trans-

ferred the burden of improving software performance from computer system designers to software

programmers.

Justifiably, the rapid transition from sequential software development to parallel software de-

velopment has imposed additional burdens on software programmers. Specifically, they must:

1. Extract enough parallelism from the software to keep the processing cores busy,

2. Identify shared data and ensure accesses to them are synchronized to avoid data races, and

3. Manage and optimize the parallelism extracted in the software to maximize its efficiency.

The first aspect, extracting parallelism, is one of the critical aspects of parallel execution. This

involves identifying appropriately-sized computations and compose the computations into inde-

pendent units of work amenable to parallel execution. Since tasking the programmer with this

aspect is regarded as excessively burdensome and error prone, there has been a plethora of work

in parallel programming models to assist the programmers in extracting and reasoning about par-

allelism. Some examples include: Pthreads, which is a POSIX C API thread library that has stan-

dardized functions to create and managing native threads across various platforms, OpenMP [15],

which provides compiler pragmas for expressing loop- and task-based parallelism, Intel’s Thread-

ing Building Blocks (TBB) [109] which provides a palette of building blocks that run on top of

native threads, Cilk Arts’ Cilk++ [23, 49] which provides a rich environment to support fork-join

parallelism, including a provably efficient work-stealing scheduler [24], support for parallel re-

ductions [48] and parallel performance analysis; and Apple’s Grand Central Dispatch [96] which

includes elaborate sets of queues and thread pools to automatically handle the parallel execution

of blocks of code, and analysis and visualization tools to facilitate an understanding of the parallel

execution.

The second aspect of ensuring race free parallel execution is also quite challenging and er-

ror prone, especially if the programmer has little help from automatic tools. When a parallel

computation identified is deemed independent, the programmer is guaranteeing the underlying

3

hardware that it will not interfere with other computations that have also been identified as in-

dependent, in any dynamic run of the software. Since how a software executes dynamically

depends upon a number of factors, including the input data set (of which the programmer typi-

cally has little knowledge), the programmer must ensure that any potential conflicting situation

is handled by inserting appropriate synchronization. This can be quite burdensome for the pro-

grammer and there is a delicate balance: too much synchronization and the program tends to-

wards a sequential program; too little synchronization and the program may have race conditions.

There has been a large body of work in automatic tools to generate a properly synchronized par-

allel software once independent computations have been determined, thereby relieving the pro-

grammer of a task that has the potential to be cumbersome and error prone. Examples include

[13, 34, 45, 60, 79, 91, 97, 98, 100, 111, 125, 126].

Both the above-mentioned aspects are important and we believe that researchers must continue

to innovate in these aspects for the continued adoption of multicore processors. This dissertation,

however, focuses on the third aspect of parallel software development: Manage and optimize the

parallelism extracted in the software to maximize its efficiency. In particular, static and dynamic

diversity among multicore processing chips, diversity in performance objectives, and dramatic in-

crease in non-expert programmers and applications are identified as sources of both opportunities

and challenges for future parallel application software development. Attempting to address these

opportunities and challenges creates uncertainty in terms of how the extracted parallelism must

be dynamically exposed in an application on to the processing cores at a given instant in time in

order to avoid underutilization or oversubscription of resources in the system. Presently, it is the

responsibility of programmers to unravel this uncertainty, which can severely hamper their produc-

tivity. This dissertation proposes and evaluates a run-time system that addresses this problem in

an efficient manner, without the involvement of the application programmer, the OS or any other

entity.

4

1.1 Motivation

1.1.1 Emergence of System Diversity

While the benefit of parallel execution in increasing efficiency of an application is well known,

increased parallelism is not always beneficial. While too little parallelism leaves more room for

efficient execution, too much parallelism can lead to execution inefficiencies, actually decreas-

ing application performance. These inefficiencies may result from a variety of sources includ-

ing, for example, increased contention for shared resources, such as memory capacity, bandwidth

and locks, caused by increased parallelism, increased processing overhead from implementing in-

creased parallelism, for example, in load balancing or scheduling, and changes in the workload

behavior as in the case of web services, such as search and video.

As the computing landscape evolves, at a phenomenal pace, growing system diversity is likely

to pose further challenges to efficient parallel execution. Microarchitectural diversity is growing

since computing devices across the spectrum, from the low end (mobile devices) to the high end

(servers), employ rapidly evolving role-specific microarchitectures. For example, today each new

multiprocessor has a different number of processing cores, cache/memory configurations, and in-

terconnect and I/O technologies. Further, many computing chips have graphics processing cores,

and other accelerators, alongside multiple, homogeneous, general-purpose processing cores. Chips

have been announced that have statically heterogeneous general-purpose processor cores (e.g.,

ARM’s Big-Little [68]) and research has proposed multicore processors with a variety of hetero-

geneity such as static heterogeneity [74, 76, 58, 63, 112, 119], statically-homogeneous but dynam-

ically heterogeneous cores [33, 14], cores that execute different instruction sets [127, 39, 41], and

others. Within a system, dynamic diversity will arise from a variety of sources, including hard-

ware defects, process variability, dynamic voltage and frequency scaling, dynamic techniques to

handle power, etc. Furthermore, the growing popularity of multiprogrammed systems, e.g., mobile

devices and cloud services, will increase the diversity of co-located applications.

The above trends share two distinct traits.

5

• First, application programs will have to run in parallel on a diverse set of hardware whose

microarchitectural (cores, sockets, cache capacity, memory bandwidth, I/O bandwidth, etc)

resource capabilities are not only unknown statically, but may keep changing dynamically,

even as the software executes. Importantly, in such environments, the application must run

efficiently, since the value of the application is likely to be determined by its efficiency:

application vendors will be able to charge more for applications that are more efficient.

• Second, they create a new layer of complexity for programmers in how the application’s

extracted parallelism should be efficiently exposed on to the hardware at any given moment.

Unraveling this complexity requires an understanding of the application’s characteristics, an

intimate knowledge of system, knowledge of the system’s dynamic operating conditions,

and the ability to dynamically and continuously tune the application’s parallel execution.

1.1.2 Diversity in Performance Objectives

Coupled with the uncertainty in the capabilities of resources is the diverse set of performance

objectives that the application user enforces. In the past, performance used to be the primary

objective. Today, objectives typically vary according to the environment the program is running

upon. For example, energy efficiency may be the most important in a mobile environment while

total resource consumption may be more important in a cloud.

1.1.3 Dramatic Increase in Programmers and Applications

In the past, efficiency was a concern for a select few parallel application programmers, but in

the future it will be for many more. Until recently a small set of experts developed parallel ap-

plication for a very small set of machines. They tuned applications using intimate knowledge of

the host, e.g., its microarchitecture. Often, they could assume the host was entirely available to

their applications, and expect little or no interference from other applications. Going forward, we

expect a multitude of programmers to program commodity parallel systems, e.g., the vast array

of cell phones, laptops, desktops, etc. We expect applications to be written without the detailed

6

knowledge of the hardware, software, and dynamic operating conditions. Further, given the possi-

bly large number of diverse target hosts, portability will be highly desired. Therefore, to achieve

efficient parallel execution, it will be daunting for common programmers to account for the often

complex and non-intuitive factors related to application behavior, operating conditions and system

characteristics. They will need solutions that are automatic, yet effective.

1.2 Thesis Statement

The confluence of the above-mentioned factors leads to the following thesis statement:

Optimizing efficiency of a parallel application on future systems will require automatic, dynamic,

continuous and programmer-transparent harmonization of its parallelism with the execution envi-

ronment, due to the emerging challenges and opportunities of static and dynamic diversity among

multicore chips, diversity in performance objectives, and dramatic increase in non-expert pro-

grammers and applications.

1.3 Shortcomings of Existing Proposals

Prevalent approaches take a limited view of the efficiency issues programmers face. The tra-

ditional multithreaded models put the onus of efficient execution largely on programmers. Task-

based programming models, e.g., Intel Thread Building Blocks (TBB) [109], ease some of the

burden. They automate load-balancing of tasks to prevent resource underutilization. However,

they neither address overutilization, nor account for co-scheduled applications.

Current automated approaches to optimize an application’s parallel execution fail to take a

comprehensive view of the prevailing programming methods and the system diversity. Some pro-

posals require applications be rewritten from scratch using their own APIs that are not widely

adopted [106, 107, 101]. Others [113, 116, 37, 38] that work with existing APIs are applicable only

to task-based programming models [109, 15, 49]. Most of the approaches [116, 37, 38] can handle

7

only data parallel applications and the ones that propose to tackle arbitrary applications require

compiler or programmer support [106, 107, 113]. Importantly, none of these techniques are appli-

cable to arbitrary multithreaded applications. Some prevent oversubscription only some resources,

may require compiler support or offline profiling, and may be ineffective in multiprogrammed en-

vironments [116, 80, 37, 38]. Further, these approaches use hill-climbing search heuristics to find

the right operating point, and hence may fail to react swiftly to changing conditions. Moreover,

they optimize only for performance and do not take into account other performance objectives,

such as resource consumption, power or energy.

1.4 Thesis Proposal

This dissertation proposes Varuna, a system that dynamically, continuously, rapidly and trans-

parently adapts an application’s dynamically exposed parallelism to best match the dynamic hard-

ware resource capabilities and its workload characteristics, as well as to optimize diverse perfor-

mance objectives. Specifically, Varuna automatically determines how many parallel computations

to execute in parallel, how to interplay different computations, when to execute these computations

and how to map them on to the underlying processing cores.

The key highlights of Varuna are as follows:

• No programmer involvement. Varuna does not perform automatic parallelization of se-

quential applications. It requires application programmers to identify appropriately-sized

computations and the data shared between them, and compose the computations using algo-

rithms and data structures amenable to parallel execution. However, unlike the traditional

parallel programming models, Varuna separates the concern of expressing parallelism from

the concern of optimizing the parallelism for different execution environments. This relieves

the programmers, users or administrators from worrying about the intricacies and vagaries

of parallel execution and allows them to concentrate on discovering parallelism and writing

functionally correct parallel applications.

8

• Programming model agnostic. Varuna provides a transparent solution to optimize an appli-

cation’s parallel execution. While the optimization strategy employed by existing adaptive

techniques are tightly coupled to a particular parallel programming model, Varuna’s mecha-

nisms and models are programming model agnostic. Programming models are often useful

because of what they forbid, rather than what they allow. Using the wrong programming

model for a particular computation can result in subpar performance, as also noted by Pan,

et. al [101]. For example, Cilk is considered to be high-performance and general purpose.

However, it lacks expressiveness and destroys cache locality for certain linear algebra op-

erations, achieving worse performance than an equivalent pipeline implementation. With

Varuna, application programmers are free to choose a suitable programming model to de-

compose their parallel application and Varuna will automatically optimize the application’s

dynamically exposed parallelism without any additional inputs from the programmer.

• Optimize general-purpose parallel applications. Existing parallelism optimization tech-

niques primarily focus on applications that employ data parallelism. Whereas Varuna’s

methodology can optimize the parallel execution of general purpose parallel applications

with arbitrary dependence patterns.

• No Operating System (OS) involvement. Varuna’s principles may be incorporated into an

operating system, or even the hardware. To broaden its applicability, however, we imple-

mented Varuna as a run-time library agnostic to both the OS and the application.

• Resource agnostic. Varuna takes a principled approach to optimizing parallel execution ef-

ficiency, as opposed to ad-hoc trial and error methods employed by existing techniques. It

employs a novel holistic, resource agnostic scalability model based on Amdahl’s law to esti-

mate changes in efficiency during an application’s execution. It then uses formulae, derived

from the model, to rapidly determine the optimum parallelism to employ and automatically

guides the program’s execution to match the optimum parallelism.

9

• Multiple performance objectives. Varuna can adapt to multiple performance objectives,

rather than just performance. This dissertation demonstrates Varuna’s efficacy for two differ-

ent performance objectives as follows: (i) Improve application throughput, and (ii) Minimize

resource consumption, i.e., the CPU consumption-execution time product.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 contextualizes the need for

dynamic adaptation of parallel execution as enabled by Varuna. Chapter 3 describes Varuna’s

fundamental working principles and system architecture. Chapter 4 describes how Varuna deter-

mines the optimum degree of parallelism for the two different performance objectives considered.

Chapter 5 presents Varuna’s adaptive execution mechanisms. Chapter 6 then presents the detailed

evaluation and results for the three different environments on three disparate platforms, before

Chapter 7 concludes.

10

Chapter 2

Background and Related Work

The key to efficient parallel execution lies in appropriately matching an application’s paral-

lelism to characteristics of its execution environment. An application’s execution environment is

defined by its resource demands and performance objectives, resources provided by the system to

execute it, and the utilization of resources by all co-located applications in the system. Current

parallel programming practices fail to fully consider the above factors and hence do not fully re-

alize the potential of multicore systems in delivering performance for parallel applications. For

example, today, the most common technique for realizing parallel execution is multithreading.

Multithreading requires developers to statically specify the degree of parallelism to be employed

for each parallel portion in the application either at development time or launch time. An unin-

formed developer may select too little or excessive parallelism and thus achieve suboptimal per-

formance. One way to solve this problem is for the application developer to statically produce

multiple versions of code with varying degrees of parallelism and dynamically select a version

that best fits each execution environment. Unfortunately, the number of scenarios resulting from

plethora of platforms and applications is so large that the possibility of incorporating all of them

into statically-compiled codes is not feasible.

Recently proposed dynamic task-based programming models [49, 109, 7, 25, 101] free the de-

velopers from the burden of statically specifying the degree of parallelism in the application. They

probe the platform the application is running on, determine the maximum number of processing

cores available, automatically scale the degree of parallelism in the application to fully utilize all

11

the processing cores, and dynamically assign and balance the user-defined tasks across all the pro-

cessing cores to prevent resource underutilization. However, they cannot prevent resource oversub-

scription. Resource oversubscription may lead to dynamic serialization of what would otherwise

be parallel parts of an application and can lead to negative performance consequences.

2.1 Some Factors Impacting Degree of Parallelism and Performance

In an arbitrary execution environment, contention and the consequent performance degradation

can arise from a variety of different sources. Some of them are listed below:

• Critical Sections. Parallel applications synchronize accesses to critical sections via locks.

Critical sections are regions of code in a parallel application that manipulate shared data. A

lock is a programming construct that allows one hardware thread to take control over the

critical section, while preventing others from entering it. Therefore, all executions of a lock

protected critical section gets dynamically serialized. When a thread acquires a lock, the

total time spent in acquiring the lock increases with the number of threads acquiring the

same lock at the same instant in time. As the number of threads increase, the fraction of the

time spent in the actual parallel parts of the program may reduce compared to the time spent

in the critical section. Consequently, it is possible that the time spent in critical sections

offsets the performance benefits obtained from adding more threads.

Arguably, the above problem should be easy to address with known techniques [89]. How-

ever, if the application is to be portable, the developer may not always have complete control

of the locking primitives and libraries in a particular execution environment. The problem

is exacerbated if the locking happens in the Operating System kernel data structures. For

example, a user-invoked mmap operation results in a global lock acquisition on page table in

Linux kernels 2.6.32 or lower [28].

• Cache coherence delays. Cache coherence protocols can dynamically serialize parallel

execution, when a processor reads/writes data that another processor has already written.

The exact details depend on the mechanics of the coherence protocol. However, the high

12

level operations are as follows. When a processor writes data that other have cached, the

cache coherence protocol forces the write operation to wait while the protocol finds the

cached copies and invalidates them. Similarly, when a processor reads data that another

processor has just written, the cache coherence protocol does not return the data until it finds

the cache that holds the modified data, annotates that cache to indicate there is a copy of the

data, and fetches the data to the reading core. These operations are serial in nature and can

cause the processor waiting on data to idle several hundreds of cycles, leading to dynamic

serialization and disproportionate performance behavior.

• Contention to shared microarchitectural resources. The above two cases describes how

data sharing in parallel programs can lead to dynamic serialization. But it is possible that an

application’s parallel execution can dynamically serialize even if its parallel computations

do not share data. For example, computations may compete for shared hardware resources,

such as, last level cache, memory bandwidth, I/O bandwidth, interconnection bandwidth,

prefetching hardware, etc., and end up spending more of its time waiting for these resources

rather than computing. These resources are not architecturally exposed to software (includ-

ing the OS) and so it is difficult for the programmer to know their exact availability and

capabilities. When the application’s demands exceeds the capabilities of these resources,

contention may result leading to serialization and unexpected performance behavior. Severe

contention for a resource can have significant negative consequences, as this can result in

increased latencies of other operations, perhaps even resulting in a situation where parallel

execution results in a slowdown compared to sequential execution.

• OS virtualization and scheduling. In canonical parallelization methodology, the OS virtu-

alizes processing resources using threads to provide programs with an autonomous and clean

execution environment. An application can create and operate on its own set of OS threads,

and does not need to know about other simultaneously running applications. The OS time-

multiplexes the threads from different parallel programs onto the underlying processing re-

sources. While such a methodology simplifies the process of programming, it may result in

13

significant performance degradation when resources are oversubscribed due to the overheads

associated with scheduling the execution of multiple simultaneously executing applications.

For example, the more threads there are, the more time it takes the OS to cycle through all of

them, causing each thread to run at more infrequent and unpredictable times. Computations

that communicate often with one another may not be able to run simultaneously, causing

serialization. Further, they can cause cache interference, TLB misses and page faults, all

of which can significantly serialize parallel execution impacting the program’s performance

negatively.

• Reliability and power management techniques. As size of individual transistors shrink

and as more of them are crammed in limited space, they begin to suffer from a variety of

problems. First, they become more susceptible to transient, permanent, and intermittent

hardware faults, which can impact a computation’s reliability [26, 64, 27, 114, 35]. Sec-

ond, power budgets and heat dissipation limitations can prevent activating all transistors at

the same time. A number of techniques to tackle these problems have been proposed, such

as dynamically adjusting voltage and/or frequency [30], employing Dual-Modular Redun-

dancy (DMR) [54, 93, 78], or temporarily stopping the use of a processor [32, 56, 123].

Though these solutions are effective in many cases at mitigating transistor issues, they result

in loss of resources which can create contention to available resources leading to dynamic

serialization.

• Performance asymmetric multicores. Performance asymmetry in multicore architectures

arises when individual cores have different performance. Building such multicore processors

is desirable because many simple cores together provide high parallel performance while

a few complex cores ensure high serial performance. However, current parallel systems

typically assume computational cores provide equal performance, and such an assumption

can create a mismatch between the demands of a computation and the capabilities of the

core that it is mapped to. Consider a pipeline style program in which the loop iterations are

split into pipe stages and are executed across processing cores while satisfying dependence

14

relationships between them. The throughput of a pipeline depends on how soon the critical

stages complete execution. Failing to do so can create subsequent pipe stages to stall, causing

serialization.

• False sharing. False sharing occurs where threads use different data objects, but those

objects happen to be close enough in memory that they fall on the same cache line, and

the cache system treats them as a single lump that is effectively protected by a hardware

write lock that only one thread can hold at a time. This causes real but invisible resource

contention; whichever thread currently has exclusive ownership so that it can physically

perform an update to the cache line will silently throttle other threads that are trying to use

different, but nearby, data that sits on the same line. It is easy to see why the problem arises

when multiple threads are writing to different parts of the same cache line, because only

one can hold the exclusive hardware lock at a time. In practice, however, it can be even

more common to encounter a reader thread using what it thinks is read-only data still getting

throttled by a writer thread updating a different but nearby memory location, because the

reading thread has to invalidate its copy of the cache line and wait until after the writer has

finished to reload it.

• Granularity. Currently, it is the responsibility of the developer to identify computations

to execute in parallel. The size of a computation (granularity) greatly affects its parallel

performance. When decomposing an application for parallel execution, one approach is

to logically partition the problem into as many parallel computations as possible. Within

the parallel computations, next determine the necessary communication in terms of shared

data and execution order. Since partitioning computations, assigning them to threads, and

communicating (sharing) data between computations are all potentially serial operations,

failing to mitigate them can negatively impact the application’s performance, as the degree

of parallelism increases.

15

The above-mentioned issue have been known for a while, and the canonical approach to ad-

dressing them is to understand the execution of the application in a given environment and manu-

ally tune its parallelism such that its performance could be improved. Unfortunately, manual tuning

is not a viable approach going forward since it is highly unlikely that developers will have detailed

knowledge about the spectrum of parallel microarchitectures on which their applications might be

running. Even more likely is knowledge about the characteristics of the execution environment,

e.g., which other applications might be running, or how many processing and non-processing re-

sources are likely to be available at any given instant in time, or whether the application has under-

gone a phase change or not.

Therefore, we argue that it is very important to dynamically control the degree of parallelism

that is deployed in an application, even continuously changing it as the resource capabilities (or

their usage) in the system changes.

2.2 Quantifying the Impact of Variations in Execution Environment

To put the prior discussion of performance variabilities arising out of variations in the execution

environment in to perspective, consider the example shown in Figure 2.1. It plots the energy

consumed by, and the execution time of, two of our benchmark applications, Stream and RE, in

two different environments, dedicated, where a benchmark is the only application running, and

multiprogrammed (multi), where other applications run simultaneously with the benchmarks, on a

4-core, 8-context Intel Core i7-2600 workstation.

RE, a networking redundancy elimination application [10], has abundant parallelism, and little

contention for machine resources. As expected, with more number of parallel threads, both the ex-

ecution time and the energy required to execute the application are reduced. However, when other

extrinsic parallel operations exist, as is the case in the multiprogrammed environment, there is a

significant degradation in energy and execution time beyond a thread count of four. This is because

beyond four the total number of software threads in the example multiprogrammed environment

exceed the total number of hardware thread contexts and threads from RE get descheduled by the

OS scheduler, including at times while holding what is otherwise a very low-contention lock. This

16

15

20

25

30

35

40

45

50

55

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 3 4 5 6 7 8

Se
co

n
d

s

Jo
u

le
s

Threads

Multi_energy Dedicated_energy

Multi_time Dedicated_time

(a) RE

35

40

45

50

55

60

2300

2500

2700

2900

3100

3300

3500

3700

2 3 4 5 6 7 8

Se
co

n
d

s

Jo
u

le
s

Threads

Multi_energy Dedicated_energy
Multi_time Dedicated_time

(b) Stream

Figure 2.1 Execution time and energy trends of two programs, RE and Stream, in dedicated and
multiprogrammed (multi) environments on a Core i7-2600 workstation.

is a well know performance degradation scenario in the computer systems and can be viewed as

“contention” for the limited number of hardware thread contexts.

In contrast to RE, Stream exhibits an opposite trend (Figure 2.1(b)). Stream, designed to stress

the memory bandwidth, has ample parallelism and is indicative of numerical vector kernels whose

datasets are larger than the cache capacity [88]. Even a modest attempt at parallel execution in

a dedicated environment results in excessive parallelism, creating memory contention, and thus

degrades execution time and energy. However, in the multiprogrammed environment, when it is

contending with other programs for other resources (e.g., cache capacity or issue slots in the SMT

processor), it naturally slows down, thereby slowing down the creation of parallelism and hence

the memory contention. The naturally slowed rate of creation of parallelism allows more parallel

execution to be beneficial rather than be a detriment.

While it is conceivable for expert programmers to analyse and determine the crossover point

when one parallelism configuration becomes better than the other, and dynamically expose the

application’s parallelism to achieve optimum performance, expecting common programmers to

do so can severely hamper their productivity. The objective of this dissertation is to design a

parallel system that can automatically tune an application’s parallelism without any programmer

involvement.

17

2.3 Related Work

The problem of dynamically exposing an application’s parallelism has been widely studied in

the community, especially recently, as its importance has increased. This related work section is not

intended to be a survey of this foundational research, rather it is intended to present an overview of

similar efforts (with a focus on more recent work). To improve clarity, we have divided the related

work into three subsections. First, we discuss research in Operating Systems that have enabled

applications to create and enforce resource management policies. Second, we discuss architectural

and microarchitectural techniques for detecting and managing contention for shared hardware re-

sources as well as satisfying power/performance budgets. Third, we discuss techniques that share

a similar motivation to this dissertation: dynamically exposing an application’s parallelism on to

the execution environment.

2.3.1 Operating System Techniques for Application-Level Resource Manage-
ment

Determining how to allocate system resources in an environment with many different compu-

tation threads is one of the classic problems in operating systems research. With the mainstream

adoption of multicores, this problem has received renewed interest in the field with the added

complications of asymmetric cores and reducing power consumption as an optimization crite-

ria [75, 36]. Most previous work from the scheduling perspective looked at doing the best job of

ordering the threads using various types of performance prediction. That is, these techniques typ-

ically work with the threads provided and do not consider the possibility of changing the threads

themselves. Nevertheless, the rest of the subsection discusses some of the important proposals in

this space.

Traditional operating systems place too much restrictions on applications. Information of re-

sources are hidden behind high level abstractions where applications have little or no access to.

This structure aggressively denies applications from expanding or modifying the Operating Sys-

tem. Additionally, Operating Systems are usually large and complex which decreases system re-

liability and make them very hard to maintain. The design of Exokernel [43], microkernels [5],

18

extensible operating systems [19], introspective systems, such as Infokernel [12], and split-level

schedulers, such as like Scheduler Activations [11], target these problems presented by a tradi-

tional operating system. Their goal is to give applications efficient control over the management

of hardware and software resources. For example, exokernel places abstractions traditionally im-

plemented by operating systems, such as virtual memory and inter-process communication, in the

user space where user-level libraries abstract exposed resources. This property gives applications

the flexibility to tailor an operating system that best suits their needs. Similarly, Scheduler Ac-

tivations create a feedback loop between the in-kernel CPU scheduler and the user-space thread

scheduler to allow the user-space scheduler to efficiently manage CPU resources during periods of

low and high activity in the system. A classic example is a blocking I/O call or a synchronization

event. Infokernel is similar to scheduler activations except that it enhances commodity schedulers

rather than replacing them. This technique leverages the time and money invested in commodity

schedulers, and may help make them more robust by facilitating in-depth user feedback.

An alternative approach to direct CPU scheduler feedback is to construct implicit feedback

from low-level instrumentation of individual computations. Barham, et. al. [16] and Stewart, et.

al. [115] take this approach to detect or predict resource contention. In this approach, a variety

of performance information is collected online and complex models are calibrated or constructed

offline. This approach is broader than the above-mentioned approaches in that it can detect con-

tention for multiple resources, rather than just CPU resources. However, it requires a learning

phase or recalibration for every new application, range of inputs, and hardware configuration.

Statically partitioning CPU resources through virtualization [17, 31] or hierarchical CPU par-

titioning [121, 55] can be used to ensure a fixed CPU allocation for each individual application.

These techniques ensure that there is CPU isolation between competing applications. However,

they do not prevent CPU contention between concurrent tasks in the same application; without

scheduler feedback, it can be difficult for an application to determine the correct level of paral-

lelism or the severity of CPU slowdown it is suffering.

19

2.3.2 Hardware Techniques for Contention Management

Multicore systems commonly share a large portion of the memory subsystem between different

cores. Main memory and shared caches are two examples of shared resources. Memory requests

from different applications executing on different cores can interfere with and delay each other in

the shared memory subsystem.

To mitigate this problem, several proposals, such as [65, 66, 71, 94, 95, 99, 42, 61], detect

contention in shared memory subsystem and use this information to dynamically adapt the rate

at which the different cores inject requests into the shared memory subsystem such that system-

level fairness objectives are met. Bitirgen, et. al. [22] propose implementing an artificial neural

network that learns each application’s performance response to different resource allocations. This

technique searches the space of different resource allocations among co-executing applications to

find a partitioning in the shared cache and memory controller that improves performance. Herdrich,

et. al. [59] reduce the interference caused by a lower-priority application on a higher-priority

application by modulating the clock signals in modern multicore processors. Zhang, et. al. [128]

propose a technique that uses clock modulation and prefetcher on/off control provided by existing

hardware platforms to improve overall system performance in current multi-core systems. Jahre,

et. al. [67] dynamically adjust the number of available MSHRs to control the total miss bandwidth

available to each thread running on a multicore processor.

All the above mentioned works alleviate the negative impact of a type of contention to a given

resource by changing the impact of the contention, while keeping the degree of parallelism the

same. The work proposed in this dissertation alleviates contention by dynamically altering the

degree of parallelism exposed in the application.

Li and Martinez [83, 82] propose runtime heuristics for parallelism and DVFS control to find

power/performance efficient execution points for specific soft performance/power targets. The

primary difference between these papers and the work proposed in this dissertation is that the latter

can arrive at the optimum operating point without having to extensively search the parallelism

configuration space, whereas these papers do.

20

2.3.3 Application-level Parallelism Management

Several recent papers propose to dynamically vary the degree of parallel execution of an appli-

cation [37, 38, 81, 80, 116, 106, 69]. This subsection describes these proposals in detail.

• Feedback Driven Threading (FDT) [116]. In FDT, the authors used simulations to demon-

strate that many applications can improve performance and/or power consumption by taking

memory bandwidth and synchronization into account. They propose to monitor the execu-

tion of the application and use models to predict the appropriate number of threads for the

application to employ, given the system state. FDT’s approach requires a static compiler

to augment parallelizable loops such that a profiling code can later adjust how the threads

are divided by dynamically setting a small number of variables in the source code. FDT

has three disadvantages as compared to work in this dissertation. First, it is only effective

on data-parallel loops, as it does not take inter-iteration dependencies into consideration.

Second, it cannot tackle contention to resources other than memory bandwidth and lock

synchronization. Third, it cannot perform continuous adaptation, making it ineffective in

multiprogrammed environments. It probes into the environment once either at the beginning

of the program or at the inception of every phase in the program, identifies the optimum

number of threads and fixes that value for the rest of the program or phasal execution. The

techniques proposed in this dissertation does not suffer from these limitations. Additionally,

FDT requires support from a static compiler. However, the system proposed in this disserta-

tion requires no external support and works on legacy applications, provided it is cognizant

of the semantics of the programming model used in the application.

• Curtis-Maury et al. [37, 38]. These papers propose a very fast and effective online pow-

er/performance statistical prediction models to determine optimum parallelism, in which

performance, power and combined metrics are predicted with as few as two snapshots of

hardware event counters, on a phase by phase basis. As compared to the work presented in

this dissertation, these papers have three disadvantages. First, their models employ offline

21

regression analysis and learning that is trained from samples of the power-performance adap-

tation search space collected from standard workloads. It is not clear how it will work if a

new workload is encountered. Second, the models are only effective when their applications

execute in isolation and cannot handle multiprogrammed environments. Third, as with FDT,

their approach is applicable only to data-parallel programs.

• Thread Tailor (TT) [80]. TT is a dynamic compilation system that can automatically stitch

threads together based on the architecture, dynamic system state, and communication and

synchronization relationships between threads. It employs a novel partitioning algorithm

and code generation methodology that quickly and effectively selects the appropriate num-

ber of threads an application should be using and generates new threads without unneces-

sary synchronization or communication overheads. Unlike FDT [116] and Curtis-Maury, et

al. [37, 38], TT does not require any support from the compiler toolchain and is effective on

legacy applications. Further, it can handle applications with arbitrary communication pat-

terns and not just data-parallel applications. However, as compared to this dissertation, TT

cannot handle multiprogrammed environments. Further, TT is not model based. It employs

a search heuristic which can be inefficient as the number of processors employed to execute

the application increases.

• Degree of Parallelism Executive (DoPE) [106]. DoPE separates the concern of developing

parallel applications from that of optimizing them. Using DoPE, the application developer

can specify all of the potential parallelism in loop nests just once; the mechanism developer

can implement mechanisms for parallelism adaptation; and the administrator can select a

suitable mechanism that implements a performance goal of system use. Unlike the previous

proposals, DoPE can handle multiple performance objectives, such as throughput, power

and energy, nested parallelism and multiple parallelism types, such as do-all, do-any and

pipeline-style parallelism. However, it has the following disadvantages. First, similar to

the previous proposals it does not perform continuous adaptation. Second, it is not clear

whether it can handle multiprogrammed environments. Third, it requires intervention from

22

an administrator to statically choose the right set of mechanisms for the given environment.

Fourth, it requires application to be rewritten from scratch using its own set of APIs.

• Parcae [107]. Parcae is a compiler and runtime system that automatically generates flexible

parallel applications and that monitors and optimizes the execution of multiple flexible ap-

plications running on a shared parallel platform. Of all the adaptive approaches mentioned

so far, Parcae is the most general. It can handle arbitrary parallel applications and can handle

multiprogrammed environments. However, it has the following disadvantages. First, it op-

timizes for only one metric, execution time. Second, it employs a finite difference gradient

ascent control approach, a variant of a hill climbing search heuristic, to adapt to search for an

optimal degree of parallelism, which can be very slow to react when the operating conditions

change rapidly and can potentially get stuck in a local optimum.

• Lithe [101]. Lithe describes how to mix multiple heterogeneous parallel runtimes (e.g.,

TBB + OpenMP) in a single application to run efficiently on a given set of processing cores.

While Lithe can handle the problem of resource oversubscription between parallel libraries,

each parallel library can potentially incur degradation due to contention to shared resources

in the system. The work in this dissertation is orthogonal to the philosophy of Lithe and can

be easily deployed with Lithe to avoid shared resource contention.

• Autonomous computing. The system proposed in this dissertation may also be viewed

as an example of autonomic computing, in which systems self-monitor and self-regulate

to achieve desired objectives, without user-intervention [70]. Its periodic monitoring and

control of execution to improve efficiency is analogous to the MAPE cycle of autonomic

systems and observer-controller paradigm of organic computing [110]. Invasive computing

is another proposal whose one goal is to optimize parallel execution of applications [117]. It

requires pervasive changes to all aspects of a system, whereas the proposal in this dissertation

works with existing hardware and prevalent programming methods.

• Auto-tuners. Auto-tuners have been previously investigated in the area of numerical soft-

ware and high-performance computing, primarily for single threaded applications [21, 86,

23

46, 47, 62, 124]. They optimize a set of library kernels by generating many variants of a

given kernel and benchmarking each variant by running on the target platform. Recently,

auto-tuners to efficiently map the parallelism in an already parallelized parallel application

to a multicore processor has gained a lot of attention. Wang, et. al., [122] use machine

learning techniques to determine the optimum degree of parallelism to employ on a given

hardware platform. Ko, et. al., [72] describe a system that uses a simple heuristic to find

the right degree of parallelism for each level in a cluster environment. The ADAPT dynamic

optimizer applies loop optimizations at run-time to create new variants of code [120]. Com-

pared to the work in this dissertation, these proposals have two disadvantages. First, they

require dynamic compilation support which can destructively interfere with the execution of

the application. Second, it is not clear how these approaches can handle multiprogrammed

environments.

24

Chapter 3

Working Principles and System Architecture of Varuna

Chapter 1 introduced the high level motivation of this dissertation and presented the basic idea

of the proposed system, Varuna, that transparently optimizes an application’s parallel efficiency by

dynamically and continuously adapting its parallelism to match the characteristics of the execution

environment. Chapter 2 discussed the difficulties associated with traditional parallel programming

methodology in achieving predictable parallel execution efficiency in dynamically changing oper-

ating conditions and argued that the unpredictability is a direct consequence of statically exposing

an application’s parallelism. This chapter presents an overview of the working principles and sys-

tem architecture of Varuna.

3.1 Working Principles

Before we enlist the fundamental working principles of Varuna, it is critical for us to first

understand impact of parallel execution on an application’s efficiency.

If an application’s workload can be perfectly divided into equal sized parallel computations

that do not interact, and can be executed on a system with unlimited resource capabilities that

do not change, one may expect linear speedups as more processors are employed to execute the

application. In practice, however, an application’s parallel region is not perfectly parallelizable,

computations often interact with each other, and resource capabilities in the system are unknown,

limited and can dynamically change. The confluence of these factors typically leads to two types

of side effects which can impact the application’s efficiency unintuitively.

25

First, they can dynamically increase the latencies of the application’s parallel computations,

causing dynamic serialization. Dynamic serialization can lead to slowdowns, sometimes worse

than sequential execution, and can arise from a plethora of sources as described in Chapter 2,

including contention to software resources (e.g., locks) and shared hardware resources (e.g., last

level cache, memory and disk bandwidth, SMT core, etc.), memory effects (e.g., false sharing and

processor affinity), cache coherence delays, cache interference due to multiprogramming, TLB

misses and page faults, loss of resources due to power and reliability management techniques, load

balancing and scheduling overheads, among others.

Second, they can dynamically decrease the latencies of the application’s parallel computations,

causing dynamic acceleration. Dynamic acceleration can lead to superlinear speedups and can

arise primarily due to caching effects resulting from different memory hierarchies on modern pro-

cessors. For example, as an application uses more processors, the total cache available to it also

increases. With more cache, the processors can collectively accommodate more instructions and

data and reduce the memory access time, causing a computation to finish faster than expected.

In general, one may expect some combination of the two effects, often depending on the appli-

cation characteristics and the amount of resources allotted to execute the application. To achieve

efficient parallel execution, it is critical for programmers to pick the right degree of parallelism

that takes advantage of the dynamic acceleration and mitigates dynamic serialization for a given

performance objective. However, statically determining this point is hard because these effects can

occur at different times and due to different reasons. For example, they can take hold for the entire

application, or only during parts of it when the applications change phases, or when co-located

applications occupy or release resources, or when the resources go offline or come online. Further,

the combination of these effects can be different for different microarchitectures. Within a mi-

croarchitecture, the combination can vary dynamically and differently across runs, impacting the

application’s efficiency unintuitively, especially in multiprogrammed environments. Therefore, to

achieve efficient parallel execution, a dynamic and responsive parallelism optimization strategy is

needed. As depicted in Figure 3.1, implementing such a strategy requires:

26

Determine(optimum(degree(of(parallelism((DoP)(

Detect(changes(in(operating(conditions(

Control(parallel(execution(to(match(DoP((

Figure 3.1 Working Principles of Varuna.

1. Detecting changes in the system’s operating conditions and determining if the change neces-

sitates retuning the application’s parallelism,

2. Determining an optimum degree of parallelism (DoP) such that it mitigates dynamic seri-

alization and takes advantage of dynamic acceleration for a given performance objective,

and

3. Controlling the application’s parallel execution, by suspending, resuming and migrating its

parallel computations, to match the determined optimum DoP.

For overall efficiency, the above process needs to be repeated periodically, as the application

executes, to assess and react to changes. Expecting common programmers to deploy such a com-

plex strategy can severely hamper their productivity.

Canonically, it has been the responsibility of the Operating System to control how many pro-

cessors to assign to an application at a given instant in time. A natural path, therefore, is to expect

the Operating System to be responsible for implementing the above principles. However, there

are multiple reasons why this may not be a preferred approach going forward. First, Operating

Systems are very slow to change, and it is not clear that novel dynamic parallelism adaptation

techniques will be incorporated into them in a timely manner. Second, an application may run on

a diverse set of Operating Systems, some of which may or may not have this capability. Third,

this requires a way of communicating between an application and an Operating System so that

27

the latter can understand the former’s needs, something that is going to be very challenging when

there are millions of different ubiquitous applications, and many different Operating Systems, co-

existing in the overall computing ecosystem. Further, as more applications move to server clouds,

it is not clear how the latter communicates with the former and vice-versa, with several software

layers of complexity between them. In short, we do not believe that creators of ubiquitous parallel

applications will want an approach that requires intervention by other entities.

Varuna implements the above strategy as a runtime system interposed between the application

and the Operating System, with no modifications to either. The rest of the section describes how

Varuna realizes each of the capabilities depicted in Figure 3.1.

3.1.1 Detect Changes in Execution Environment

The most basic requirement for Varuna is the ability to detect changes in the execution envi-

ronment. An application’s execution environment can change due to:

• System events, such as launches of new applications and termination of old concurrently

running applications, context switches, thread migrations, etc.

• Application events, such as variations in size or quality of the workload, and

• Hardware events, such as Dynamic Voltage and Frequency Scaling (DVFS), component

failures, and shutting down cores and parts of cache and memory.

One approach to detect changes in the execution environment is to continuously monitor these

events themselves. However, monitoring these events is not practical as several of them are not

directly exposed to software, including the Operating System. Exposing them to applications

requires changes in both the operating system and the hardware interfaces, and support from

programmers—something that is going to be very challenging when there are plethora of differ-

ent programming models, operating systems, and hardware microarchitectures co-existing in the

computing ecosystem.

Several recent proposals [85, 107, 77, 104, 105] have observed that any change in the execu-

tion environment ultimately manifests as a change in the processor, memory, I/O or energy usage

28

characteristics of the application and have leveraged this observation to detect changes in the ex-

ecution environment in a low overhead fashion, without needing to alter the existing hardware or

software interfaces. Specifically, these proposals use hardware counters to periodically monitor a

gamut of metrics, such as, Instruction fetch rate, last level cache miss rate, CPU utilization, mem-

ory bandwidth utilization, instructions retired per second, number of page faults, processor and

system energy consumption, etc., for changes and reconfigure parallelism when a change in any

of these metrics is detected. Most modern processors, whether embedded, desktop or server-class,

contain performance and energy monitoring units which are capable of counting and supplying

the instantaneous values of the these metrics either directly or indirectly [18, 1]. This dissertation

employs a similar approach.

3.1.2 Determine Optimum Degree of Parallelism

The most important requirement for Varuna to dynamically expose an application’s parallelism

is the ability to determine the optimum degree of parallelism that an application must employ such

that it mitigates dynamic serialization and takes advantage of dynamic acceleration for a given

performance objective.

If the parallel region is large enough that an exhaustive search is feasible, an easy way to de-

termine the optimum degree of parallelism is to try all possible parallelism configurations: starting

with sequential execution, incrementally increase the application’s degree of parallelism, while

recording the efficiency of each parallelism point, until the maximum number of hardware con-

texts is reached and pick the one that yields maximum efficiency. The cost of an exhaustive search

is N ∗ t, with N being the maximum number of hardware contexts and t being the average time

spent in each parallelism configuration. Often times, however, an exhaustive search may not be

possible, or its overhead prove prohibitive, because the parallel region may not be large enough

to amortize the cost of search. Even if the parallel region is sufficiently large, it is possible that

the execution environment may change during the search, rendering the whole search process in-

effective. Therefore, it is important to reduce the amount of time spent in searching and converge

toward the global optimum much faster.

29

Ideally, one would like to have an approach that can instantaneously supply the optimum degree

of parallelism without resorting to any search techniques. However, such an approach requires an

oracle view of how dynamic serialization and dynamic acceleration would vary with parallelism.

This dissertation argues that by modeling the relationship among dynamic serialization, dynamic

acceleration, the application’s instantaneous performance and the application’s instantaneous de-

gree of parallelism, it is possible to gain valuable insights into how dynamic serialization and

dynamic acceleration vary with parallelism, and use these insights to rapidly obtain the optimum

degree of parallelism without performing an exhaustive search.

The question then is, how do we model such a relationship ? While there could be several ways

of modeling it, this dissertation models it as a simple scalability model based on Amdahl’s law. It

first uses the scalability model to rapidly estimate how dynamic serialization and acceleration vary

with respect to parallelism. It then uses formulae, derived from the model, to instantaneously de-

termine the optimum degree of parallelism to employ for different performance objectives. Specif-

ically, using the model, this dissertation determines the optimum degree of parallelism for two

different performance objectives: (i) Maximize application throughput, and (ii) Minimize resource

consumption cost, i.e., the CPU consumption-execution time product. These are two popular pric-

ing models employed in cloud-based services. The former, time-based pricing, used in Amazon’s

EC2 and Microsoft’s Azure, gives a program a fixed number of cores and charges for how long

they are used; thus minimizing execution time is important. In the latter, consumption-based pric-

ing, used by VMware, the pricing depends on the average number of cores and the duration of

their use. We believe other performance objectives, such as power, Perf/J, and Perf/W, can be sim-

ilarly targetted. However, we leave them future work. Chapter 4 presents the model as well as the

heuristic that leverages the model to determine the optimum degree of parallelism in detail.

Although the proposed model can rapidly determine the optimum degree of parallelism, it is

possible that the model may arrive at a non-optimum solution. This is because the model assumes

that both dynamic serialization and dynamic acceleration are monotonic functions with respect

to parallelism, as shown in Figures 3.2(a) and (b). As we will show in Chapter 6, for a variety

of different execution environments and machines, the monotonic assumption is sufficient for the

30

Degree%of%Parallelism%

Si
de

%E
ffe

ct
s%

(a) Monotonically Increasing

Degree%of%Parallelism%

Si
de

%E
ffe

ct
s%

(b) Monotonically decreasing

Degree%of%Parallelism%

Si
de

%E
ffe

ct
s%

(c) Non-monotonic

Figure 3.2 Assumptions of the scalability model.

model to rapidly and accurately estimate the optimum degree of parallelism. However, there may

be scenarios in which these effects could possibly be non-monotonic, as shown in Figure 3.2(c),

especially on multi-socket machines, in which case the model may identify a solution that is dif-

ferent from the optimum one. To tackle such scenarios, in addition to the model, this dissertation

proposes a hill climbing based search heuristic.

Hill climbing can roughly be summarized as an iterative search technique that, starting from

an initial feasible solution, progressively improves it by applying a series of local modifications or

moves to the solution. At each iteration, the search moves to an improving feasible solution that

differs only slightly from the current one. The search terminates when no more improvement is

possible. The proposed heuristic employs a similar approach. It systematically varies the degree

31

the parallelism in the application in the search space to locate the one that minimizes dynamic

serialization and maximizes dynamic acceleration for the desired performance objective.

One of the fundamental limitations of a hill climbing search heuristic is that it can get “stuck”

in a locally optimum solution and fail to reach a globally optimum solution. Clearly, this is an

important limitation of the method: unless one is extremely lucky, this local optimum will often

be a fairly mediocre solution. To overcome this problem, this dissertation proposes to incorporate

Tabu search [52, 50] in the above heuristic. Tabu search is a metaheuristic search method employed

for mathematical optimization problems to escape the trap of local optimality. The basic idea

behind Tabu search is to add a simple notion of “memory” to the hill climbing algorithm that

records the recent set of points previously visited in the search and use this memory to pursue

the search in the unexplored areas of the search space at periodic time intervals, whenever a local

optimum is encountered. Chapter 4 describes this heuristic in detail.

3.1.3 Control Parallel Execution

Another important requirement for Varuna is to dynamically control the execution of parallel

computations in the application such that it best matches the instantaneous degree of parallelism

determined by the scalability model mentioned in Section 3.1.2. Doing so requires a flexible

parallel programming model that possesses the following four capabilities:

• A parallel programming abstraction that enables automatic and dynamic assignment/reas-

signment of computations in the application without the involvement of the programmer or

user or any other entity.

• A mechanism to transparently pause or suspend appropriate computations from being per-

formed when decreasing the parallelism to avoid oversubscription, and migrate or resume

computations when increasing the parallelism to avoid underutilization.

• A mechanism to dynamically (re-)partition the remaining parallel work in the application, if

any, to avoid load imbalance and/or resource idling,

32

• A mechanism to honor dependences between computations in the application, if any, to

ensure that the application’s forward progress is not affected due to deadlocks, livelocks or

starvation issues.

A task-based parallel programming model possesses the necessary foundations to realize the

above four capabilities. Tasks may be viewed as computations that compose a thread in a con-

ventional multithreaded application— the overhead of spawning a task is typically a few times

the overhead of an ordinary function call [49] and far less compared to the overhead of spawn-

ing a thread. A task programming model separates the concern of expressing parallelism in the

application from the concern of managing parallelism, thus relieving programmers of the respon-

sibility of assigning tasks to hardware contexts. Tasks are decoupled from the hardware contexts

(threads) and could potentially to extended to have their own notion of context to support seamless

suspension, resumption and migration of computations without any Operating System or hardware

involvement. The low cost and finer granularity of tasks permits application programmers to create

as many tasks as they want and dynamically partition them across available hardware contexts to

avoid load imbalance and resource idling. These aspects are also exploited by modern task-based

runtime systems [49, 109, 23, 24, 96].

If applications are composed using task programming primitives, we can leverage the efficient

dynamic scheduling already provided by the existing task parallel runtime systems to transparently

control an application’s execution. However, this presents a significant challenge, because these

dynamic scheduling algorithms assume tasks are independent, and requires programmers to ap-

propriately enforce dependences between computations, if any. This assumption is not sufficient

to permit the necessary control to prevent resource overutilization as well as to ensure the appli-

cation’s forward progress. This is because controlling parallelism requires the ability to arbitrarily

block computations from being performed when decreasing parallelism, and resume them when

increasing parallelism. However, this can lead to unintended consequences in applications that

enforce a specific order between computations.

33

P0# P1# P2#

c0#

c1#

c2#

c3#

c4#

c5#

c6#

c7#

c8#

Figure 3.3 Independence-based parallel execution example.

Figure 3.3 shows the the example illustration of the problem. It shows an example dynamic

schedule of tasks c0 to c8 on processing resources P0 to P2, along with their dependence relation-

ships. For example, c1 and c4 are dependent on c6 (represented by edges). Consider the situation

where the application’s degree of parallelism is reconfigured from three to two, in which case, one

of the executing tasks must be suspended. Wrongly suspending a task, say c6, can the hinder the

application’s forward progress and can even result in a deadlock as the dependent tasks (c1 and c4)

can end up holding their respective processing resources (P0 and P1), disallowing other tasks to

proceed.

There are two ways of tackling this problem in a dependence unaware dynamic scheduling sys-

tem. First, the developer can insert (partial) barriers before each dependent task in the application

code so that the underlying scheduler waits for all the currently scheduled (producing) tasks to

complete before scheduling the dependent ones. But doing so can inhibit the utilization of distant

parallelism in the application [44]. Second, the developer can alter the lexical ordering of com-

putations in the program by inserting enough other independent tasks between the producing and

dependent tasks. This approach has three problems:

1. Two tasks that are statically dependent may not be dynamically dependent [7]. That is, by

the time a dependent task is scheduled, the producing task could have already completed.

Hence, separating them lexically with static dependence information can have performance

implications [44].

34

2. If there are not enough independent tasks to insert between the producing and dependent

tasks, the programmer will have to resort to the first approach of inserting barriers.

3. Dynamic scheduling runtime systems do not reveal any internal data structure details (such

as size of the work queues) to programmers and hence it is not straightforward to identify the

number of independent tasks that are to be inserted between the producing and dependent

tasks.

P0# P1# P2#

c0#

c1#
c2#

c3#

c4#c5#

c6#

c7#
c8#

Shelved#

Figure 3.4 Dependence-aware parallel execution example.

Knowledge of dependences between tasks can enable effective scheduling decisions without

programmer involvement that can completely avoid the above-mentioned problems. For example,

computations c6 and c1 can be scheduled together on to P2 or P0. Similarly, computation c4

can be shelved until its input producing tasks c0 and c6 complete execution, and rescheduled

for execution once it receives its input data. Figure 3.4 depicts one possible dynamic schedule

that is dependence aware. Having such a schedule will enable Varuna to randomly pick a victim

task without any complicated dependence tracking algorithms (as there are no cross-dependences),

take advantage of the existing dynamic load balancing algorithms (which require that all tasks be

independent [49]), and always make forward progress. Chapter 5 discusses these aspects in detail.

Recently, there have been several dependence-aware task-based programming systems pro-

posed, albeit for a different purpose, to execute parallel applications. SMPSs [102] and Gupta et

35

al. [57] leverage this philosophy to discover distant parallelism. Prometheus [8] and DPJ [25] ex-

ecute only independent tasks concurrently to achieve determinacy. One could envision extending

one of the above systems for progress aware parallelism adaptation. However, these systems are

not widely adopted. Further, they do not embody a wide variety of computational patterns. For

example, they do not support divide-and-conquer, branch-and-bound, recursive data and parallel-

search idioms.

While it is possible to extend these systems and compose future parallel applications using

them, standard dependence unaware parallel programming models, such as Pthreads [2], TBB [109],

and Cilk [49], will continue to be important. Many incumbent parallel applications are written

using these models, and they will need to run efficiently in evolving dynamic computing environ-

ments. Moreover, many developers would prefer to program in a familiar model rather than start

afresh with a new one. Thus, a challenge is to regulate the execution of a parallel application writ-

ten using a standard dependence unaware programming models without changing or breaking the

application source code.

To address this challenge, this dissertation proposes a novel primitive called virtual task (in

short, vtask). Vtasks abstract hardware contexts into logical cooperative tasks [6, 4] to which

application’s parallel computations are transparently mapped. The vtasks, in turn, are dynami-

cally scheduled onto hardware contexts, similar to tasks in a dynamic task-based runtime system.

Each vtask maintains the state of the current computation mapped on to it using contexts, allow-

ing Varuna to transparently pause, resume, or migrate a computation by saving or restoring its

corresponding vtask’s context. It also includes the state necessary for Varuna to ensure the compu-

tations’ forward progress even as their execution is regulated.

This dissertation demonstrates vtasks’ versatility using three different parallel programming

models: Pthreads [2], Intel Thread Building Blocks (TBB) [109], and Prometheus [9]. The first

two are widely adopted industry standard programming models, whereas the third is a research

prototype developed at Wisconsin’s Multiscalar group. These models capture a wide variety of

computational patterns, level of abstraction, and parallel execution models that programmers of

today employ. For example, (i) Pthreads exposes threads as programming abstraction, whereas

36

Standard'parallel'programming'API'(e.g.'Pthreads,'TBB)'

VARUNA'

ExecuBon'Environment'

AnalyBcal'Engine'(AE)'

Parallelism'Manager'(PM)'

Monitor'

Vtask'Generator'
(VG)'

Resource'
Mapper'(RM)'

C0' C1' C2' C3'

Vtask'Pool'

HeurisBcs'

Cores'

H/W'context'

Threads/tasks'

Vtasks'

Metrics'

OperaBng'System'

Figure 3.5 Varuna’s system architecture.

TBB presents tasks, (ii) Pthreads and TBB are independence-based execution models, whereas

Prometheus is a dataflow-based execution model [113], and (ii) Pthreads supports arbitrary com-

munication patterns, whereas both TBB and Prometheus are restricted to fork-join parallelism.

More details on vtasks are given in Chapter 5.

3.2 System Architecture

As mentioned earlier, the goal of Varuna is to take an unmodified parallel application, running

on a stock OS, and dynamically and continuously adapt its parallel execution so as to avoid un-

derutilization or oversubscription of resources while satisfying a specified performance objective.

It comprises two components, an Analytical Engine, and a Parallelism Manager, as shown in

Figure 3.5. It assumes an underlying system that provides a pool of worker threads, common in

a modern Operating Systems, and a low-overhead means to measure an execution environment’s

37

characteristics, e.g., via hardware performance counters provided by modern processors. The two

components and their operations are summarized next.

3.2.1 Analytical Engine

The Analytical Engine (AE) continuously monitors changes in the operating conditions using

hardware performance monitoring units, models the application’s dynamic execution behavior to

estimate impact of the side effects, and determines the optimum degree of parallelism. The high-

level operations of the AE, as depicted in Figure 3.6, are as follows:

1. Establish the relationship between the application’s instantaneous degree of parallelism, in-

stantaneous performance and the side effects using a scalability model.

2. Using this information, determine the optimum degree of parallelism, Popt, for a given per-

formance objective.

3. Passively monitor the execution environment for changes, as the parallelism manager em-

ploys Popt parallelism for the application.

4. Go to step 1 if the operating conditions change.

5. If the operating conditions have not changed for a threshold period of time, go to step 6.

6. Determine if the side effects monotonically vary with degree of parallelism.

7. If monotonic, go to step 3.

8. If non-monotonic, invoke the Tabu-based iterative search.

The details of the scalability model, the Tabu-based iterative search, how the AE leverages

the model to determine the optimum degree of parallelism as well as to detect if the side effects

monotonically vary with parallelism are described in Chapter 4.

38

Determine(Optimum(DoP(

Establish(relationship(between(DoP,(performance(and(
side(effects(

Yes(Change(in(
Execution(

environment(?(

Invoke(TabuCbased(iterative(search(

Is(Monotonic(?(
Yes(

No(

No(

Figure 3.6 High level operations of the Analytical Engine.

3.2.2 Parallelism Manager

The role of the Parallelism Manager (PM) is to automatically control the execution of parallel

computations in the application in order to match the degree of parallelism determined by the AE.

The high level operations of the PM are as follows:

The programmer first decomposes the application into smaller, independent units of work using

a supported parallel programming model. As the application begins to execute and starts creating

threads or spawning tasks, a Vtask Generator (VG) transparently intercepts these requests, nullifies

them and creates vtasks instead. The VG then reassigns the thread’s/task’s parameters (pointer to

actual computation and its arguments) onto vtasks and enqueues them into a priority queue, called

vtask pool. A Resource Mapper (RM) then assigns the vtasks from the vtask pool, to a dynami-

cally varying pool of worker threads, whose number is determined by the Analytical Engine. The

number of workers executing vtasks directly corresponds to the maximum degree of parallelism

39

exposed by the application. The RM is also responsible for dynamically controlling the execu-

tion of vtasks (suspending, resuming and migrating) as well as ensuring the application’s forward

progress. These details are described in Chapter 5.

40

Chapter 4

Analytical Engine

The role of the Analytical Engine (AE) is to continuously monitor changes in the operating con-

ditions using hardware performance monitoring units, model the application’s dynamic execution

behavior to estimate impact of the side effects, and determine the optimum degree of parallelism.

Chapter 3 presented the high level operations of the AE. This chapter presents the details of those

operations.

The chapter begins with Amdahl’s law in Section 4.1. Next, it develops the proposed scal-

ability model based on Amdahl’s law in Section 4.2 and demonstrates how the model provides

insights into an application’s parallel execution behavior. Next, it derives formulae to determine

optimum degree of parallelism for two different performance objectives: (i) maximize application

throughput, and (ii) minimize resource consumption cost, i.e., the CPU consumption-execution

time product, in Section 4.3 and Section 4.4, using the insights in Section 4.2. Then, the chap-

ter presents how the different quantities in the derived formulae can be empirically determined in

Section 4.5. Next, in Section 4.6, it describes how the AE monitors the execution environment

for changes and recalibrates the optimum degree of parallelism. Then, the chapter describes the

limitations of the proposed scalability model in Section 4.7. To tackle this limitation, the chapter

presents an alternate heuristic that incorporates Tabu search [52], developed using the guidelines

due to Gendreau [50] in Section 4.8. The chapter concludes with a summary in Section 4.9.

41

Execu&on)on)a)single)
processor)(P)=)1))

tr#

ts#

Amdahl’s)law:)
Execu&on)on)P)
processors)

tr#/P)

ts#

Time)

Figure 4.1 Amdahl’s law example.

4.1 Amdahl’s Law

As mentioned in Chapter 3, the AE models the relationship among dynamic serialization, dy-

namic acceleration, an application’s instantaneous efficiency and an application’s instantaneous

degree of parallelism based on Amdahl’s law. To better understand the model, it is first critical to

understand Amdahl’s law.

In 1967, Gene Amdahl argued that there was an inherent limitation to the amount of speedup

that could be obtained by increasing the parallelism in the application. His observation of this

fact has come to be called Amdahl’s Law and has been formalized more mathematically than

he actually presented it. If tr is the time to execute the parallel region of the application on a

single processor, and ts is the time to execute the sequential region of the application on a single

processor, then, according to Amdahl’s law, the speedup of the application, S(P), employing P

degree of parallelism, is given by the following equation:

S(P) =
tr + ts
tr
P
+ ts

[4.1]

42

Figure 4.1 illustrates Amdahl’s law. Amdahls law applies broadly and has important implica-

tions such as:

• If the parallel region time, tr, is too small, any effort to improve its performance will have

little effect on the overall performance of the application.

• As P approaches∞, the upper bound for the speedup approaches tr+ts
ts

. In other words, the

inverse of the sequential fraction is the most speedup one can ever obtain, so the more the

sequential fraction in the application, the less speedup is possible.

4.2 Modeling Side Effects

Amdahl’s law assumes that the parallel region is perfectly parallelizable, i.e., speedup in the

parallel region is P . It also assumes that the parallel region execution time, tr, is independent of

the degree of parallelism, P , employed by the application.

However, in reality, as mentioned in Chapter 3, the parallel region can incur dynamic serial-

ization and dynamic acceleration, the combination of which can either increase or decrease the

parallel region execution time. Further, these effects can vary with respect to P , as discussed ear-

lier in Chapter 3. In order to get an accurate prediction of the realistic scalability of an application,

apart from the parallel and sequential execution times, Amdahl’s law must reflect these two side

effects as well.

To account for dynamic serialization and dynamic acceleration, let tq(P) be the additional time

incurred due to dynamic serialization and tc(P) be the time saved due to dynamic acceleration,

when employing a degree of parallelism of P . Then the new speedup, S ′(P), is:

S ′(P) =
tr + ts + tq(1)− tc(1)
tr
P
+ ts + tq(P)− tc(P)

[4.2]

Since we are concerned with the net impact of the side effects, we combine the two quantities,

tq(P) and tc(P) into tqc(P) as follows:

43

tqc(P) = tq(P)− tc(P) [4.3]

Substituting this in Equation 4.2, we get:

S ′(P) =
tr + ts + tqc(1)
tr
P
+ ts + tqc(P)

[4.4]

Equation 4.4 captures the impact of side effects on an application’s overall performance, which

includes both parallel and serial regions. However, we are only concerned with the impact of these

effects when the application is executing in parallel, i.e., P > 1, since they arise only in the parallel

region. Therefore, tqc(1) is zero. Further, the term ts can be eliminated, since it is applicable only

to the serial region (when P = 1). Accordingly, for the speedup, σ(P), obtained in the parallel

region, Equation 4.4 becomes:

σ(P) =
tr

tr
P
+ tqc(P)

=
1

1
P
+ tqc(P)

tr

, where P > 1 [4.5]

Let qc(P) = tqc(P)
tr

. From Equation 4.5 it follows that:

qc(P) =
1

σ(P)
− 1

P
[4.6]

qc(P) provides insights into how the execution of the application’s parallel region is influenced

by the current operating conditions. A positive qc(P) signifies dynamic serialization, a negative

qc(P) signifies dynamic acceleration, and a zero value indicates perfect speedups. An increase in

qc(P) with an increase in P indicates that dynamic serialization is dominating, whereas a decrease

in qc(P) indicates that dynamic acceleration is dominating. A stable qc(P) indicates that these

factors are not influencing the application’s scalability. Further, when increasing parallelism from

P1 to P2, if qc(P2) > qc(P1) and qc(P2) > 1
P2

, then σ(P2) < σ(P1), i.e., the increase in

dynamic serialization due to the increase parallelism has resulted in performance degradation.

44

0.1$

0.2$

0.3$

0.4$

0.5$

0.6$

1.5$

1.6$

1.7$

1.8$

1.9$

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$

qc
(P
)$

σ(
P)
$

DoP$

σ(P)$ qc(P)$

(a) ReverseIndex

0.02$

0.03$

0.04$

0.05$

0$
2$
4$
6$
8$

10$
12$

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$

qc
(P
)$

σ(
P)
$

DoP$

σ(P)$ qc(P)$

(b) Barneshut

Figure 4.2 Speedup σ(P) and qc(P) trends of ReverseIndex and Barneshut on Opteron.

Figures 4.2(a) and 4.2(b) illustrate these aspects. They plot the measured speedup, σ(P) (pri-

mary vertical axis), and the computed qc(P) (secondary vertical axis) for two of our applications,

ReverseIndex and Barneshut, respectively, with varying degrees of parallelism (P), on one of our

experimental platforms, Opteron (details are provided in Chapter 6). ReverseIndex processes files

and places significant demands on the disk bandwidth. Even modest attempt at parallel execu-

tion results in disk contention, indicated by the higher and increasing values of qc(P). Between

P = 2 and P = 3, the application scales even if qc(P) increases, because qc(P) is less than 1
P

(qc(2) = 0.12 which is less than 1
2

and qc(3) = 0.23 which is less than 1
3
). But, when P exceeds

3, qc(P) not only does it increase with P , but is also greater than 1
P

, resulting in slowdown. For

example, at P = 4, qc(4) = 0.32 is greater that both qc(3) = 0.23 and 1
4
.

Barneshut is highly scalable and has few contention concerns. In contrast to ReverseIndex,

Barneshut exhibits opposite trends in qc(P). When the parallelism increases, not only does the

number of processors change but also the cumulative size of the caches. As the total available

cache size increases, more of Barneshut’s working set fits in it, reducing the memory access time.

This causes qc(P) to reduce, providing additional speedup from P = 2 to P = 8. Even when

qc(P) remains relatively constant, from P = 8 to P = 16, Barneshut continues to speed up. Hence

stable or decreasing qc(P) indicates that additional parallelism is likely to improve performance.

45

By computing qc(P) from measured σ(P) (speedup of the parallel region) and using these

observations, we can determine the optimum degree of parallelism for different performance ob-

jectives. The sections to follow show how we determine the optimum degree of parallelism for two

different performance objectives: (i) maximize application throughput, and (ii) minimize resource

consumption cost. May more performance objectives, such as perf
J

, perf
W

, maximize throughput

under a power budget, etc., are possible. We leave them for future work.

4.3 Maximize application throughput, MAX(throughput):

We can obtain the optimum degree of parallelism, Popt t that maximizes throughput of the

parallel region by simply differentiating Equation 4.5 wrt to P and equating it to zero as follows:

d 1
σ(P)

dP
= − 1

P 2
+
dqc(P)

dP
= 0 [4.7]

Popt t =

√√√√ 1
dqc(P)
dP

[4.8]

where dqc(P)
dP

is the rate of change of qc(P) or the gradient of the qc(P) curve at a given P . For

the purpose of this derivation, we assume that P is a continuous variable, although, in reality, it is

discrete.

Note that Equation 4.8 is applicable only when dqc(P)
dP

is positive, as in the case of ReverseIndex

(Figure 4.2(a)). A negative or zero dqc(P)
dP

, however, as in the case of Barneshut In Figure 4.2(b),

indicates that the application is benefiting from more parallelism. Hence, as many resources as pos-

sible, Pmax, may be allocated to the application. Amending Equation 4.8 with boundary conditions

we get:

Popt t =


√

1
dqc(P)

dP

if dqc(P)
dP

> 0

Pmax if dqc(P)
dP
≤ 0

[4.9]

46

The AE uses Equation 4.9 as an online metric to determine the instantaneous optimum degree

of parallelism for the prevailing operating conditions, without resorting to a time-consuming ex-

haustive search. This permits Varuna to respond more swiftly to changes. The AE dynamically

computes qc(P) and dqc(P)
dP

to determine Popt t and Pmax, as we shall see in §4.5.

4.4 Minimize resource consumption cost, MIN(consumption):

To find the optimum parallelism, Popt c, that minimizes the resource consumption cost, we

want to minimize the product P × 1
σ(P)

. Similar to the first objective, Popt c can be obtained by

simply differentiating P × 1
σ(P)

wrt P , and then equating it to zero as follows:

d P
σ(P)

dP
= P × dqc(P)

dP
+ qc(P) = 0 [4.10]

Popt c = −
qc(P)
dqc(P)
dP

[4.11]

A negative qc(P)
dqc(P)

dP

indicates net dynamic acceleration and hence efficient resource consumption

(Figure 4.2(b)). In this case Popt c is computed using the formula− qc(P)
dqc(P)

dP

. qc(P)
dqc(P)

dP

will yield multiple

values depending on the value of P . The AE picks the one with minimum value of qc(P)
dqc(P)

dP

since

it signifies the least contention and hence most efficient consumption of resources. If both dqc(P)
dP

and qc(P) are positive, the application is not scaling due to dynamic serialization, and hence the

resources are not being consumed efficiently, as shown in Figure 4.2(a). In this case, minimum

resources, Pmin, are allocated to the application. If both dqc(P)
dP

and qc(P) are zero or negative,

the application is scaling linearly or superlinearly and hence, as many resources as possible, Pmax,

may be allocated to it, as in the case of Barneshut in Figure 4.2(b). Amending Equation 4.11 with

boundary conditions we get:

Popt c =


− qc(P)

dqc(P)
dP

if qc(P)
dqc(P)

dP

< 0

Pmin if dqc(P)
dP

> 0 & qc(P) > 0

Pmax if dqc(P)
dP
≤ 0 & qc(P) ≤ 0

[4.12]

47

4.5 Determining qc(P), dqc(P)
dP , Pmax and Pmin

To apply Equation 4.9 and Equation 4.12 as online metrics, the AE needs to compute qc(P),
dqc(P)
dP

, Pmax and Pmin dynamically. Unfortunately, modern processors and systems do not supply

this information directly, and hence, we compute them empirically.

4.5.1 Determining qc(P)

To determine qc(P), the AE computes σ(P) empirically using Equation 4.6, and this requires

computing a baseline performance measure for the parallel region. To do this, whenever the AE

detects a change in the execution environment, it sets the instantaneous parallelism of the applica-

tion to one, i.e., P = 1, for a pre-defined time period in all our experiments, monitors its execution

and establishes a baseline performance, Perf(1).

One of the key considerations to determine the instantaneous performance of the application

is selecting the appropriate monitoring time interval. A very small interval can increase the sys-

tem overheads, whereas large intervals can cause delays in determining the optimum degree of

parallelism. On the Intel Sandy Bridge microarchitecture and its successors, experiments have

shown [103] and the documentation [1] states that performance counters can be accessed as often

as every microsecond with our incurring any significant overheads. However, as Chapter 6 will

demonstrate, monitoring at this granularity can incur high overheads in the application execution

time, especially in multiprogrammed environments. Further, monitoring at this granularity makes

it difficult to capture the Operating System context switching overheads, which typically happens,

on an average, at 50ms granularity. With 100ms and bigger time intervals, we observed that the

impact of monitoring on the application performance is negligible. Therefore, the AE uses 100ms

as the monitoring interval for measuring instantaneous performance of the application.

Another consideration to determine the instantaneous performance is to pick the right metric

to represent performance. Generally, it depends on the type of the application. For example, for

mobile class applications, Instructions per Second (IPS) is a good measure. For server class

applications, Requests Per Second (RPS) is a suitable measure. In this dissertation, we use

48

IPS to represent performance. We make a fair assumption that spin-locks in application code are

rare and that users use standard synchronization interfaces to access their critical sections. Spin-

locks can occur in the Operating System and we avoid this issue by not counting the Operating

System instructions.

Once the baseline performance is measured, AE switches the degree of parallelism to P , allows

the application to run for 100ms and measures its performance, Perf(P). σ(P) can then be

obtained by using the following equation:

σ(P) =
Perf(P)

Perf(1)
[4.13]

The AE substitutes this value in Equation 4.6 to obtain different values of qc(P).

4.5.2 Determining dqc(P)
dP

One possible way of determining dqc(P)
dP

is to identify the shape of the qc(P) curve. However,

this requires sweeping through all the values of qc(P) and may not be a scalable solution, espe-

cially when the operating conditions can change frequently, as the process of sweeping can range

from several hundreds of milliseconds to seconds and can grow with the increase in number of

processors. Hence, we need a much quicker way of computing dqc(P)
dP

.

As we demonstrate below, we always ensure that the parallel region is no slower than its se-

quential execution (by controlling the parallelism), i.e., σ(P) ≥ 1. Further, when dqc(P)
dP

is used

to compute Popt t (Equation 4.9), it can only be positive, implying that dynamic serialization is

increasing with P , i.e., 0 < tqc(P). Thus 0 < tqc(P) < tr , and 1 ≤ σ(P) < P , hence

0 < qc(P) < 1.

Similarly, when computing Popt c (Equation 4.12), dqc(P)
dP

can only be negative, implying dy-

namic acceleration. In this case, −tr ≤ tqc < 0 (dynamic acceleration can only eliminate tr in the

best case, and no more). Thus −1 < qc(P) < 0.

Further, we empirically observed that qc(P) is almost always a monotonic function with

respect to P. A function, f , is monotonic if it is either entirely non-increasing or non-decreasing.

It is monotonically increasing (also increasing or non-decreasing), if for all x and y such that

49

x ≤ y, f(x) ≤ f(y), so f preserves the order. Likewise, a function is monotonically decreasing

(also decreasing, or non-increasing) if, whenever x ≤ y, then f(x) ≥ f(y), so it reverses the

order. Figure 4.2 provides an example illustration of qc(P)’s monotonic behavior. In Reverse

Index, qc(P) strictly increases with P (from P = 2 to P = 16), whereas in Barneshut, qc(P) first

falls with increase in P (from P = 2 to P = 8) and then stays almost a constant (from P = 9 to

P = 16), but never rises with P .

Given the above relatively narrow range of qc(P) (between 0 and 1 or between -1 and 0) as

compared to the range of P (e.g., 2 to 24 in our experiments), and its monotonicity with respect to

P , we approximate the qc(P) curve to a straight line of the form:

y = mx+ c [4.14]

where x and y correspond to P and qc(P), respectively, m is the gradient of the straight line

graph and it corresponds to dqc(P)
dP

, and c is the y − intercept of the straight line graph.

To obtain estimates of dqc(P)
dP

, the AE uses linear regression, based on the ordinary least squares

estimation, on a subset of qc(P) values. Although linear regression may lead to errors, our experi-

ments (Chapter 6) and residual analysis [84] show that it is adequate and leads to better results than

the state-of-the-art adaptive methods, which resort to time-consuming iterative search strategies.

Based on our experiments for 1 ≤ P ≤ 24 (our experimental platforms have a maximum of 24

hardware contexts), linear regression using data for three parallelism configurations (in addition

to P = 1 for which qc(1) = 0) gave sufficiently accurate estimates of dqc(P)
dP

1. Hence, we restrict

our measurement to three points (P1, P2 and P3) in order to make quick decisions. We picked

these points to be 2, N/2, and N , respectively, where N is the maximum number of hardware

contexts available in the machine, to determine the overall scalability behavior of the application.

In Chapter 6, we demonstrate that this approach is sufficient to make informed decisions to arrive

at the optimum parallelism configuration.

1Higher values of P may require more data for accurate estimates.

50

The AE computes performance at the three different degrees of parallelism, P1 = 2, P2 = N
2

and P3 = N , as described in Section 4.5.1. σ(P1), σ(P2), and σ(P3) can then be obtained by divid-

ing the corresponding performance measures by the baseline performance, using Equation 4.13.

The AE verifies that these values are indeed greater than one. Otherwise, it will switch to sequen-

tial execution. These values are substituted in Equation 4.6 to get qc(P1), qc(P2), and qc(P3),

which are then used to obtain dqc(P)
dP

by applying the least square method.

The AE then computes Popt, based on the performance objective considered, by substituting

the above values in the corresponding equation.

4.5.3 Determining Pmax and Pmin

The monotonic behavior of qc(P), and our methodology of obtaining dqc(P)
dP

, makes the deter-

mination of Pmax and Pmin fairly straightforward. When optimizing for Popt t, if dqc(P)
dP

is negative,

it implies that the application scales till the maximum number of hardware contexts, N , and hence,

Pmax is set to N . When optimizing for Popt c, there are two cases. If dqc(P)
dP

> 0 & qc(P) > 0,

it indicates that the application does not consume resources effectively when executing in par-

allel and that sequential execution is the most optimum. Hence, Pmin is simply set to 1. If
dqc(P)
dP

≤ 0 & qc(P) ≤ 0, it implies that the application consumes resources effectively up to

N , and hence, Pmax is set to N .

4.6 Monitoring and Recalibrating Popt

Once Popt is determined for the desired performance objective, the AE conveys this value to the

Parallelism Manager (PM). The PM controls the execution of the parallel computations to match

the Popt determined by the AE. These details are described in Chapter 5. Once conveyed, the AE

then enters into a passive monitoring mode where it periodically monitors the processor, memory,

I/O and energy usage characteristics of the application for changes. To do so, it maintains a usage

vector that comprises a variety of metrics, including Instruction fetch rate, last level cache miss

rate, CPU utilization, memory bandwidth utilization, instructions retired per second, number of

page faults, processor and system energy consumption, among others. If a change in any of these

51

metrics is detected, the AE switches the degree of parallelism to 1 and repeats the process described

in § 4.5 to recalibrate Popt.

To measure processor energy, the AE, in this dissertation, use the RAPL (Running Average

Power Limit) power management interface provided in the modern processors, such as Intel Sandy-

Bridge and IvyBridge [1]. To measure overall system energy, the AE uses Wattsup meter [3]. To

measure metrics related to processor, memory and I/O usage characteristics, the AE uses the PAPI

library APIs [92]. We do not count instructions that may cause potential side effects when deter-

mining the efficiency of the application. For example, we omit instructions used for synchroniza-

tion, and OS mode instructions.

4.7 Limitations

One of the fundamental limitations of the scalability model is that it assumes that qc(P) is a

monotonically varying function with respect to P . Although our experiments demonstrate that this

assumption is sufficient for the AE to rapidly and accurately determine the optimum parallelism,

Popt, to be employed, there are scenarios in which qc(P) could possibly vary non-monotonically

with respect to P . In such scenarios, Equations 4.9 and 4.12 may determine a Popt value that may

not be optimum to the execution environment. To handle such scenarios, the AE, while in passive

monitoring mode, periodically diversifies (at 3s granularity in our experiments) by switching the

degree of parallelism to a randomly chosen value between 1 and N , say Prandom, monitors its

execution and measures its performance, Perf(Prandom). If Perf(Prandom) is less than or equal to

Perf(Popt), then the AE switches the execution back to Popt and enters into the passive monitoring

mode. Otherwise, the AE concludes that the qc(P) curve could possibly be non-monotonic and

invokes a hill climbing based search heuristic, as described next.

4.8 Hill climbing Heuristic

This heuristic is based on the commonly used hill-climbing search algorithm. It locates the

optimum degree of parallelism by systematically exploring the direction in the search space that

52

yields higher efficiency. Generally speaking, the heuristic starts at some mid-point number of

hardware contexts, P , and computes the application’s efficiency. Then, another P between the

current configuration and either of the active endpoints is chosen, and the process is repeated. If

the optimum for that P is better, the other side is disregarded, and the search continues on that

side. Otherwise, the heuristic switches to the other side, disregarding further attempts on the first

side. When neither side is better, or we run out of parallelism configurations, the search ends.

Hill climbing algorithms are known to get “stuck” in a local optimum and fail to reach the

global optimum. Hence this heuristic, developed using the guidelines due to Gendreau [50], incor-

porates Tabu search [52] to escape local optima. The Tabu search maintains a fixed-size tabu list to

log previously searched points along with their efficiencies. The heuristic periodically “diversifies”

the search from the current optimum by exploring points that are not present in the tabu list. Any

time a point is searched, it is logged in the tabu list. The oldest point in the list is evicted to make

room for a new point, if needed.

Section 4.8.1 will first present the basics of tabu search. Subsequently, Section 4.8.2 will

discuss the heuristic itself.

4.8.1 Basics of Tabu Search

The basic concept of tabu search, as described by Glover et al. [52], is “a meta-heuristic super-

imposed on another heuristic”. The overall approach is to avoid entrainment in cycles by forbidding

or penalizing moves which take the solution, in the next iteration, to points in the solution space

previously visited.

The tabu method was partly motivated by the observation that human behavior appears to

operate with a random element that leads to inconsistent behavior given similar circumstances. As

pointed out by Glover et al. [52], the resulting tendency to deviate from a charted course, might be

regretted as a source of error but can also prove to be source of gain. The tabu method operates

in this way with the exception that new courses are not chosen randomly. Instead the tabu search

proceeds according to the supposition that there is no point in accepting a new (poor) solution

unless it is to avoid a path already investigated. This insures new regions of the solution space

53

will be investigated in, with the goal of avoiding local minima and ultimately finding the desired

solution.

The tabu search begins by marching to a local minima. To avoid retracing the steps used, the

method records recent moves in one or more tabu lists. The original intent of the list was not to

prevent a previous move from being repeated, but rather to insure it was not reversed.

The tabu lists are historical in nature and form the tabu search memory. The role of the memory

can change as the algorithm proceeds. At initialization the goal is make a coarse examination of

the solution space, known as “diversification”, but as candidate locations are identified the search

is more focused to produce local optimal solutions in a process of “intensification”. In many cases

the differences between the various implementations of the tabu method have to do with the size,

variability, and adaptability of the tabu list to a particular problem domain.

The tabu search has traditionally been used on combinatorial optimization problems. The

technique is straightforwardly applied to continuous functions by choosing a discrete encoding

of the problem. Many of the applications in the literature involve integer programming problems,

scheduling, routing, traveling salesman and related problems.

4.8.2 Iterative Tabu-based Search Heuristic

The proposed heuristic uses the following schema, as depicted in Figure 4.3, to determine the

optimum degree of parallelism: establish a baseline efficiency measure; determine the region of

the search space to explore; identify an optimal parallelism configuration by repeatedly searching

for a better configuration in the established search direction; control parallel execution to change

parallelism configurations, and measuring the efficiency of the new configuration relative to the

baseline; trigger a new search if the dynamic execution environment changes or a diversification

threshold is reached.

Step 1: Establish Sequential Measure: Before beginning the search, the AE establishes a no-

tion of Sequential efficiency (Effseq) to ensure that the optimum point it finds is indeed profitable.

54

Alter°ree&of¶llelism&and&control&
parallel&execution&

Find&initial&search&direction&

Establish&baseline&measure&

Yes&

No&
Change&in&

environment/
Diversification&
threshold&?&

Is&optimal&
point&?&

No&

Yes&

Figure 4.3 High level operations of the iterative search heuristic.

Hence, whenever the application encounters new conditions, the AE alters the degree of paral-

lelism to one (sequential) and executes the application for a pre-defined duration until it measures

the baseline Effseq2. The metric to determine the efficiency of the application depends on the per-

formance objective that the application user enforces. For the maximize application’s throughput

objective, the AE uses Instructions per second(IPS) as the efficiency metric. For the minimize

the resource consumption cost objective, it uses Degree of parallelism
Instructions per second(IPS)

as the efficiency metric.

Step 2: Establish Initial Search Direction: Next, the AE establishes the search direction for

the optimization process. It gathers Effs corresponding to three different degrees of parallelism,

the mid-point, Pmid, of the pre-determined maximum degree of parallelism (often, total hardware

contexts in the system), and Pmid +/- 1. The application is executed for 100ms duration in each

configuration. The better of the three points, Peff , sets the search direction. The points are added

to the tabu list and the execution is switched to Peff .

2We fixed the pre-defined duration as 100ms for the reasons mentioned in Section 4.5

55

Performance objective Efficiency metric

Maximize throughput :

MAX(throughput)

Instructions per second (IPS)

Minimize resource consumption cost :

MIN(consumption)

Degree of parallelism
Instructions per second (IPS)

Table 4.1 Performance objectives and their corresponding efficiency metrics considered by the
Analytical Engine for the iterative search heuristic.

Step 3: Search for Optimum Parallelism: If Peff is the same as Pmid, the search has already

resulted in a local optimum, else the AE linearly searches in the established direction 3. It picks

new unvisited points (that are not in the tabu list) and executes the application in each of these

points for 100ms duration. Visited points are added to the tabu list until a local optimum, Plopt, is

found. If Efflopt is not significantly better than Effseq, the AE starts over from step 1, otherwise

it fixes the current configuration to Plopt, and enters a “sleep” mode.

Step 4: Sleep Mode: In this mode, the AE performs passive monitoring of the system until it

(i) detects changes in the execution environment using the strategy described in Section 4.6, or (ii)

reaches a diversification threshold. In case of (i), the AE clears the tabu list and begins the search

once again from step 1. In case of (ii), the AE saves the current Efflopt and moves to step 5.

Step 5: Diversification: The diversification threshold is a pre-defined interval (5s in all our

experiments) after which the AE ensures that the execution is not trapped in a local optimum. It

begins the search from the original mid-point in the direction opposite to the original, similar to

step 3 (updating the tabu list and avoiding already visited points), until a local optimum Plopt2 is

reached. IfEfflopt2 is better thanEfflopt, the configuration is switched to Plopt2, else it is switched

back to Plopt. In either case, the AE enters the sleep mode and moves to step 4.

3In our experiments on 8- and 24-context machines, the search space is small enough to perform linear search. For
larger search spaces, binary search may prove to be better.

56

4.9 Chapter Summary

This chapter developed a scalability model based on Amdahl’s law to calculate the realistic

speedup of an application’s parallel region and demonstrated how the model provides insights into

an application’s parallel execution behavior. It then showed how the model could be used to derive

formulae that determine optimum degree of parallelism for two different performance objectives:

(i) maximize application throughput, and (ii) minimize resource consumption cost. It then pre-

sented how the different quantities in the derived formulae can be empirically determined. The

chapter then described how the AE monitors the execution environment for changes and recal-

ibrates the optimum degree of parallelism. Finally, the chapter described the limitations of the

scalability model and presented an alternate hill climbing heuristic, based on Tabu search, to over-

come the limitations.

57

Chapter 5

Parallelism Manager

The role of the Parallelism Manager (PM) is to automatically control the execution of parallel

computations in the applications to match the degree of parallelism determined by the Analytical

Engine (AE). Chapter 3 presented the high level operations of the PM. This chapter presents the

details of those operations.

Once the AE determines the optimum degree of parallelism, Popt, for a given performance ob-

jective, it signals the Parallelism Manager (PM) to control the number of inflight computations to

match the Popt. To be able to continuously and transparently alter the number of parallel compu-

tations without hampering the application’s forward progress, the PM maps units of computation

designated for parallel execution, e.g., a task in task-based parallel applications, or a thread in mul-

tithreaded applications, to vtasks. As mentioned in Chapter 3, vtasks abstract hardware contexts

into logical cooperative tasks [6, 4] to which application’s parallel computations are transparently

mapped. The vtasks, in turn, are dynamically scheduled onto hardware contexts, similar to tasks

in a dynamic task-based runtime system. Each vtask maintains the state of the current computa-

tion mapped on to it using contexts, allowing Varuna to transparently pause, resume, or migrate a

computation by saving or restoring its corresponding vtask’s context.

Vtasks are closest in spirit to fibers [4], an implementation of cooperative tasks in the Windows

Operating System, but with three key differences as follows:

1. Unlike fibers, vtasks are not exported as programming abstractions to developers. They ab-

stract away the details of parallelism management from the application without altering the

existing parallel programming interfaces, similar to how processor virtualization employs

58

vtasks&

H/W&contexts&

Varuna&

P0# P1# P2# P3#

Opera*ng&System&

Parallel&Programming&API&
c0# c1# c2# c3# c4# c5#

Context#

T0# T1# T2# T3#

Cores&

V0# V1# V2# V3# V4# V5#

Figure 5.1 Transparent suspension and migration of vtasks.

VCPUs to abstract away the details of on-chip resource management from the system soft-

ware without changing the existing ISA. Programmers are free to express their parallel com-

putations using any desired parallel programming model. For example, they could express

their parallel computation as software threads using Pthreads or as tasks using Intel’s TBB.

The PM transparently intercepts these constructs, creates vtasks for each of the computation

invoked by the programmer and reassigns the computations encapsulated inside these con-

structs on to vtasks. Such a strategy allows the PM to suspend a computation by blocking its

corresponding vtask context, or remap a computation from one hardware context to another

by migrating its corresponding vtask context, while abstracting its details and complexity

from the application. Figure 5.1 shows transparent migration of computations c0 and c1 to

hardware contexts T1 and T0, respectively, and the suspension of computations c2, c4 and

c5.

2. Vtasks require no additional programming effort to manage their scheduling and context

switches, providing Varuna the flexibility to transparently control their execution, whereas

fibers must be explicitly created and managed by the application developer.

3. Vasks are progress-aware entities. Their contexts include additional state, such as locks

and conditional variables, needed to ensure the computations’ forward progress even as their

59

execution is regulated. Using fibers as is for Varuna’s objectives can hamper the application’s

forward progress.

As the application executes, the PM maintains a pool of vtasks. When the AE increases the

degree of parallelism, the PM assigns more vtasks from the vtask pool to the hardware contexts.

When the AE decreases the degree of parallelism, the PM suspends executing vtasks and returns

them to the vtask pool until they can be resumed later. To perform such control, the PM maintains

the state of each vtask, tracks its status, and schedules its execution. Since concurrent computations

can interact through shared state, care is needed to ensure their forward progress, especially in

multithreaded programs.

The rest of the chapter discusses these aspects and is organized as follows. Section 5.1 presents

the details of the vtask’s context data structure. Section 5.2 describes how vtasks are managed

and scheduled. Finally, Section 5.3 describes the mechanisms employed by the PM to enure an

application’s forward progress.

5.1 Vtask Context

To enable suspension, resumption and migration of a vtask, each vtask contains a vtask context

block (VCB). As depicted in Figure 5.2, the VCB contains the following state:

1. a Program Counter (PC) that specifies the address of the next instruction in the vtask control

flow to be executed,

2. General Purpose Registers (GPRs) that contain data generated by the vtask computation,

3. a Stack Pointer (SP) that points to the next entry in the vtask’s call stack,

4. a Call Stack (CS) that maintains the activation records of active functions invoked by the

computation running on the vtask, and

5. a Mutex Counter (MC) that contains the number of mutex variables currently acquired by

the vtask computation when executing in user mode.

60

1 s t r u c t context

2 {

3 uint64_t PC ; / / Program c o u n t e r

4 uint64_t GPR [MAX_REGISTERS] ; / / G e n e r a l p u r p o s e r e g i s t e r s

5 uint64_t* SP ; / / S t a c k p o i n t e r

6 call_stack_t* CS / / C a l l s t a c k

7 uint64_t MC ; / / Mutex c o u n t e r

8 } ;

Figure 5.2 Vtask context block.

The first four quantities are the standard elements necessary to save an execution’s state. The

Mutex Counter (MC) is needed to ensure forward progress of applications when varying the num-

ber of inflight vtasks (§5.3). VCBs serve two purposes. First, they provide the ability to save and

restore the state of a running computation at arbitrary points in time. Second, they enable interop-

erability between vtasks that may need to block due to: (1) mutual exclusion, locks and barriers,

and (2) when the number of vtasks exceeds the number of available hardware contexts to execute.

To implement the call stack, the PM employs an approach inspired from lazy threads [53],

originally proposed to reduce the overheads of nested parallel function calls. The strategy supplies

each vtask with a stacklet — a linear stack that stores the activation records of functions invoked

by computations mapped on to the vtask. Whenever the application invokes a new parallel com-

putation, the PM creates a new vtask for that computation and associates a stacklet with it. The

lifetime of the stacklet is the same as the lifetime of the vtask using it. Any computation mapped

on to a vtask is free to use its associated stacklet to perform unrestricted allocation and deallocation

of its activation records similar to ordinary subroutine invocations in a sequential program.

There are two advantages for the PM to maintain its own call stack for each vtask in userspace

over using the stack already provided by the Operating System for each hardware context. First, it

allows unrestricted creation and scheduling of a large number of vtasks independent of the number

of hardware contexts. Second, it eliminates kernel mode switching while migrating a vtask from

one hardware context to another or replacing a vtask with another on the hardware context.

61

Blocked(

Inac,ve(

Ac,ve(

DoP$decreased/sa,sfy$barrier/
ensure$progress$

DoP$increased/sa,sfy$barrier/
ensure$progress$

H/W$
thread$
available$ Vtask$

completed$

Destroy(

Execu,ng$

Figure 5.3 Vtask state transition diagram.

To suspend a vtask, the PM saves all user-level registers and the PC on the vtask’s stacklet, so

that the stacklet is a self-contained record of the context state. To resume the vtask, the PM restores

registers from the stacklet.

There are three alternatives to track contexts: (1) using setjmp and longjmp routines, (2)

using the new glibc context routines, or (3) writing custom assembly routines. Obviously the C

library routines provide higher portability. However, using them would require two system calls

on every vtask context switch, making these routines significantly slower than a pure user-space

solution. We chose to employ the third option. That is, we employ own custom user-level context

management assembly routines to enable low-overhead vtask context switching.

5.2 Managing and Scheduling Vtasks

Figure 5.3 depicts the state transition diagram the PM uses to manage vtasks, from their cre-

ation to destruction. A vtask, when created, is always in one of four states: inactive, active, blocked

or destroyed. These states reflect whether or not a hardware context exists for a vtask to execute,

and transitions between these states occur during its creation, suspension and completion. When

a vtask is created by the Vtask Generator (VM) (Figure 3.5), it is in an inactive state. A vtask

62

moves to an active state when the Resource Mapper (RM) assigns it for execution, either when the

degree of parallelism is increased or when a current hardware context becomes free. To decrease

the degree of parallelism, the RM pre-empts excess vtasks when they reach a safe point, transitions

them to a blocked state, and moves them back to the vtask pool. We describe what safe points are

in Section 5.3. Safe point pre-emption is necessary to ensure a vtask’s forward progress. When

decreasing degree of parallelism, the RM moves vtasks to a blocked state in the order in which

they arrive at the safe point. A vtask is also moved to a blocked state when it arrives at a barrier

and the barrier condition is not satisfied. When assigning vtasks for execution, the RM prioritizes

vtasks that have waited the longest, to ensure fairness. Finally, if a vtask finishes its assigned quota

of work, it transitions to a destroy state before its state is destroyed.

To efficiently schedule vtasks, the RM employs a Cilk-style work stealing scheduler [49]. At

the start of the application execution, the RM creates a pool of worker threads, one per hardware

context allocated to it by the Operating System. A double-ended work queue (deque) is then

assigned to each worker in the system. A worker schedules vtasks for execution by queuing them

in its work deque. Each worker seeks vtasks from its own deque, failing which it steals from

someone else’s deque.

To avoid memory explosion when creating vtasks, the RM uses lazy vtask creation, an idea

borrowed from Mohr, et. al., [90]. There are two possible ways to handle the creation of new

vtasks in a work-stealing scheduler: eager and lazy. With eager vtask creation, a master worker

spawns a vtask by pushing it into its work deque and then continues executing the rest of the

application code, i.e., the continuation of the vtask. When the master worker finishes spawning

all the vtasks, it begins drawing vtasks from its own deque and executing them. In the meantime,

other slave workers may steal vtasks from the master worker’s deque and execute them. Eager

vtask creation is straightforward to implement, but it can result in an memory explosion when an

application spawns a large number of vtasks [90]. Creating vtasks lazily can avoid this problem.

Using lazy vtask creation, when a worker creates a vtask, rather than pushing the actual vtask

into its deque, it pushes the continuation of the vtask. The worker then executes the vtask itself.

Once the vtask completes, it attempts to pop the continuation from the deque to resume execution.

63

While a worker is executing a vtask, it is possible that another worker may steal the vtasks con-

tinuation. The stealing worker will execute the continuation until it encounters another creation

call, at which point it will save a new continuation into its deque and commence execution of the

new vtask. This process continues until all the vtasks in the application are created and destroyed.

As it is evident, applying this approach to creating vtasks limits the number of active vtasks to the

number of active workers, and would require only one entry in each deque to hold the continuation.

5.3 Ensuring Forward Progress

Controlling parallelism requires the ability to arbitrarily block vtasks from being performed

when decreasing the degree of parallelism, and resume, migrate or introduce new vtasks when

increasing the degree of parallelism. For example, in Figure 2.1(a), in the multiprogrammed en-

vironment, increasing the parallelism from four to six degrades RE’s execution efficiency. In this

case, it is ideal to execute no more than four workers. Doing so requires preventing additional

vtasks from being assigned to more workers. However, vtasks are cooperative tasks and are not

pre-emptively scheduled, unlike Operating System threads. In general, tasks in task-based applica-

tions are usually independent, and can run to completion without communicating with each other.

This, however, may not be the case with threads in multithreaded applications. Hence, arbitrarily

pausing/resuming a vtask’s execution can potentially affect the forward progress of other vtasks,

especially in applications with arbitrary dependence patterns.

A vtask’s progress can be affected when it is waiting on:

• a mutex lock held by a blocked vtask, or

• a signal from a blocked vtask (e.g., a consumer computation waiting to receive data from a

producer computation, in a producer-consumer style application).

64

5.3.1 Handling Blocked Mutexes

Uhlig, et al., [118] have proposed one technique to avoid Operating System lock-holder pre-

emption, in a overcommitted virtualized environment where a large number of virtual CPUs (VC-

PUs) must be scheduled on a restricted number of available cores. They make the observation that

a VCPU executing in user mode is not holding a kernel lock, and can thus be safely preempted.

These pre-emptible locations are referred to as safe points.

To avoid forward progress issues due to blocked mutexes in vtasks, the RM employs a similar

approach. It pauses a vtask only when it reaches a safe point in its execution. In the context of

vtasks, a safe point is defined as a control point in the vtask execution flow at which the vtask is

currently executing in user mode and does not hold any user mode mutex locks.

Ensuring that a vtask is executing in user mode is necessary to avoid suspending the vtask after

acquiring a kernel-level (spin)lock. Utilizing the fact that the Operating System will release all

kernel locks before returning to user-level, the RM can monitor all switches between user-level

and kernel-level. However, such monitoring is hard as it requires modifying the Operating System

calls or requires prediction mechanisms based on monitoring privileged instructions [118]. Instead,

the RM takes a much simpler approach. It suspends a vtask only if it reaches one of the following

synchronization points in the control flow: before or after a mutex lock or unlock, respectively,

after reaching a barrier, and before or after a conditional wait or signal, respectively. These points

are guaranteed to be free of kernel-level locks. If none of the above points are reached, the RM

simply waits until the vtask completes its execution.

Ensuring that a vtask is not suspended when holding any user-level mutex locks is necessary

to avoid unsafe pre-emptions when in user mode. For example, consider the example shown in

Figure 5.4. Vtasks V1 and V2 are contending for the same user-level lock, L1, and V1 acquires

its first. The RM cannot allow V2 to proceed when the lock is already acquired by V1, and so it

pauses and saves the context of V2, and moves it to a blocked state. Later, V1 acquires a second

user-level lock, L2 (before releasing L1), at which point the RM decides to suspend V1 due to

oversubscription in the system. However, doing so can hamper the forward progress of V2 which

is waiting on L1 to be released by V1.

65

Vtask&V1&

Acquire lock, L1

Acquire lock, L2

Cri$cal(Sec$on(

Suspended V1 due to
oversubscription

Vtask&V2&

 Waiting for V1 to
release L1

Cannot make forward progress as
V1 is suspended while holding L1

Acquire lock, L1 Time(

Figure 5.4 Deadlock example.

To address this problem, each vtask maintains a count of the number of mutexes it has currently

acquired in a Mutex Counter (MC). It increments the counter when acquiring a user-level lock and

decrements it when releasing the same. The RM leverages this information and ensures that a vtask

is never suspended until its counter becomes zero. For example, in Figure 5.4, the RM will not

suspend V1 until it releases both the locks, L1 and L2.

Many multithreaded applications have few safe points since these applications seldom syn-

chronize. Hence they provide few opportunities to control the parallel execution of vtasks. In

such cases, more safe points can be created by spawning more vtasks than the actual number of

hardware contexts. Note that task-based applications already create many more tasks than actual

hardware threads, naturally achieving this. We observe that many multithreaded applications are

generally written to take the number of threads as an argument, which is used to divide the work

into as many independent portions at run-time. Consider the code in Figure 5.5, which lists a

simplified version of the barneshut benchmark from the Lonestar suite [73]. This benchmark gets

the number of threads as an argument from the programmer (line 17) and uses it to the divide up

its input array, body, into independent chunks (lines 6 − 12) and spawns each chunk for parallel

execution. Hence, spawning more threads, similar to tasks, is as simple as altering the command

line argument to the application.

66

1 s t a t i c vo id * Process (vo id * arg)

2 {

3 i n t start , end ;

4 c o n s t i n t slice = (long) arg ;

5 start = slice * nbodies / threads ;

6 end = (slice + 1) * nbodies / threads ;

7 f o r (i n t i = start ; i < end ; i++)

8 {

9 body [i]−>ComputeForce (groot , gdiameter) ;

10 }

11 r e t u r n NULL ;

12 }

13 threads = getNumThreads () ;

14 / / main loop

15 f o r (i n t i = 1 ; i < threads ; i++)

16 {

17 / / l a u n c h t h e p a r a l l e l worker t h r e a d s

18 pthread_create(&worker [i] , NULL , Process , (vo id *)i) ;

19 }

20 Process ((vo id *) 0) ; / / run on main t h r e a d

21 f o r (i n t i = 1 ; i < threads ; i++) {

22 / / w a i t f o r t h e p a r a l l e l worker t h r e a d s t o f i n i s h

23 pthread_join (worker [i] , NULL) ;

24 }

Figure 5.5 Barneshut example.

As we demonstrate in Chapter 6, spawning a high number of vtasks in Varuna does not have

the same overheads as spawning a high number of threads, due to the following reasons:

• Vtasks are userspace objects and hence the cost of switching between them is extremely low,

• the RM employs lazy vtask creation [90], which avoids memory explosion as described in

Section 5.2.

67

R0 . .R1 R2 R3

TH1

TH2

TH3

U0

U1

U2

t0

TH2:

TH1:

TH0:

 t1 time

TH2:

TH1:

TH0:X

C0 . .C2

C1 . .C3

W0 . .W1

R0 R1

C0

C1

R2 R3

C2

C3

R0 C0

R1 C1

R2 C2

R3 C3

U0

U1

U2

 time t0 t4

 X X XR0 R1

C0 C1

R2 R3

C2

Task

Pool

C0

C1

R2

R1

t1 t2 t3 t5

(a) (b)

(c) (d)

TH0

Figure 5.6 Comparison of independence-based and dependence-aware execution of Pbzip2

5.3.2 Handling Blocked Signals

Signaling is another way computations in multithreaded applications communicate with each

other (task-based programming models usually do not support signaling). If a computation’s ex-

ecution is dependent on another, there are two generic approaches to mitigate starvation among

computations which are not executing concurrently:

1. Avoid pre-empting a computation that is responsible for producing the signal/data to other

computations, and

2. Pro-actively pre-empt an executing computation in favor of executing a more productive

computation.

68

To employ the first approach, the PM requires knowledge of dependences between computa-

tions. However, predominant of the parallel programming models that exist today, are independence-

based. That is, these models do not automatically detect data objects accessed by different compu-

tation and enforce dependences between them. Rather, they require programmers to honor depen-

dences between computations by using appropriate synchronization primitives. While the depen-

dence ordering between computations could be arbitrary in certain cases, such as accessing lock

protected critical sections, in certain other instances the enforced order could be specific, e.g., to

execute the producer before a consumer in a produce-consumer style application. In such cases,

controlling the execution, without being aware of the dependence relationships, e.g., blocking the

producer, can hinder forward progress, or worse, deadlock the execution.

Consider the popular Pthreads implementation of Pbzip2 [51]. It reads data blocks serially

from an input file, one at a time, compresses the blocks in parallel, and writes the results to an

output file. The computations are organized into threads, as shown in Figure 5.6(a). Block-read

operations are grouped into one thread, e.g., R0 to R3 in thread TH0. Compress operations are

grouped across multiple compress threads (to achieve concurrency), e.g., C0 to C3 in threads TH1

and TH2. Block-write operations are grouped into one thread, e.g., W0 and W1 in thread TH3.

The threads are expected to be co-scheduled.

When the application executes, say three processors, U0 to U2, are allotted to it. Threads TH0,

TH1 and TH2 execute in epoch t0, (Figure 5.6(b))1. R0 and R1 in TH0 read blocks which are

compressed by C0 and C1, respectively. Now, say, at the start of epoch t1, U0 is taken away from

the application to control the parallelism, and TH0 is blocked. TH1 and TH2 complete C0 and

C1, and advance to execute C2 and C3. C2 and C3, in turn, wait for R2 and R3 in TH0 to read

the blocks from the input file. However, if no more processors are available, TH0, which can make

progress, remains blocked, stalling the program’s progress, or even deadlocking it, while available

resources are occupied by computations that cannot make progress, defeating the very purpose

of controlling the execution. Although the example is from a Pthreads application, a task-based

implementation with a similar structure would be equally vulnerable.

1For brevity, we do not show TH3 operations.

69

One possible solution to address this problem is to rewrite the application such that it does

not enforce a specific order between computations. For example, we rewrote Pbzip2, using TBB,

without resorting to producer-consumer style parallelism. The application is divided into three

non-overlapping phases: read, compress and write. The sequential read phase is executed first,

followed by a full barrier. Then the parallel compress phase is executed which is again followed by

a full barrier. Finally, the sequential write phase is executed. While such an approach may work, it

can potentially impact performance.

Another possible solution to address this problem is for the PM to expose a dependence-aware

programming model, such as SMPSs [102], Gupta et al. [57], Prometheus [8] and DPJ [25]. These

programming models require the programmers to statically identify data objects that a parallel

computation will potentially access, using which they dynamically construct a dataflow graph be-

tween computations to uncovers large amounts of parallelism, akin to dataflow processor architec-

tures. The PM could leverage this dependence construction facility to completely avoid forward

progress issues. For example, the VG, in the PM, after mapping all computations exposed by the

application on to vtasks, may admit only independent vtasks into the vtask pool; while suspend-

ing dependent vtasks, when identified, until their dependences are resolved. Consider the same

Pbzip2 example in Figure 5.6. Figure 5.6(c) shows its computations formulated as vtasks, R1, R2,

C0 − C3, and the dependences between them2. Figure 5.6(d) shows the dependence-aware exe-

cution in finer time steps. At time t0, U0, U1 and U2 are alloted to the application. R0 executes.

Since no other independent computations exist, the vtask pool is empty. When R0 completes in

t1, dependences of R1 and C0 have resolved, and hence they are added to the vtask pool. The

RM assigns them to U0 and U1 in t2. In t2 the vtask pool is once again empty since R2 and C1

are suspended. R2 and C1 are added to the vtask pool once R1 completes in t3. In t3, say U0 is

taken away. The RM assigns R2 and C1 to U1 and U2 in t4. Note that unlike in Figure 5.6(b), C2

does not get scheduled unless R2 completes. Thus, the PM ensures dependent tasks do not occupy

hardware contexts. The application can make forward progress as long as it is allotted at least one

worker.
2Dependences not germane to the discussion are not shown.

70

However, as mentioned in Chapter 3, dependence-aware programming models have two fun-

damental problems. First, they are not widely adopted. And, second, they do not support a wide

variety of computational patterns. Therefore, to avoid starvation issues due to blocked signals, the

PM takes the second approach of pro-actively pre-empting an executing computation in favor of

executing a more productive computation. The approach is as follows. We observe that threads in

producer-consumer style multithreaded applications typically communicate via conditional vari-

ables. Therefore, everytime a vtask invokes a call that corresponds to a conditional variable in the

application, if there are more vtasks in the vtask pool waiting to be scheduled for execution, the

RM suspends the current vtask, enqueues it at the tail of the vtask pool and schedules the oldest

vtask in the vtask pool in the former’s place. In this way, each communicating vtask gets a slice of

the resource to execute, avoiding starvation and potential deadlock situations.

Currently, the PM can automatically ensure forward progress when applications use standard

synchronization APIs exported by programming models such as Pthreads, TBB and Prometheus.

If the application uses spin loops or home-grown synchronization primitives, the PM requires

programmers to identify the call sites to the runtime. Automatically determining these primitives

is a subject of future work.

5.4 Chapter Summary

This chapter presented the design, implementation and management of Vtasks, a primitive that

the Parallelism Manager (PM) uses to regulate the execution of parallel computations in the ap-

plication without any programmer involvement. It first presented the details of the vtask’s context

data structure. It then described how the PM schedules and manages vtasks. The chapter then iden-

tified different scenarios in which an application’s forward progress can be affected and proposed

solutions to tackle each scenario.

71

Chapter 6

Evaluation

This chapter presents an evaluation of the implementation of Varuna. The first part of this chap-

ter will describe the machines, benchmarks, baselines and configurations used in our experiments.

The second part of the chapter will present experimental results for the implementation of Varuna.

6.1 Methodology

To evaluate Varuna’s efficacy we applied it to threaded and task-based applications, optimizing

them for throughput, and resource consumption cost. We tested under three execution environ-

ments, isolated, multiprogrammed and asymmetric, on three stock multiprocessor machines with

different microarchitectures. We report the total execution time, the energy consumed and the re-

source consumption cost for each application, along with the harmonic mean (HM) for the entire

benchmark set, when optimizing for different objectives.

In the experiments, we sought to assess the following:

1. Varuna’s overheads,

2. Benefits of applying vtasks to unmodified threaded and task applications,

3. Further benefits of applying adaptive optimization to them,

4. Effectiveness in highly dynamic operating conditions,

5. Agility in responding to changes, and

6. Effectiveness in asymmetric execution platforms.

72

6.1.1 Machines, Benchmarks and Baselines

Opteron-8350 Xeon E5-2420 Core i7-2600

Sockets 4 2 1

Hardware Contexts 16 24 8

SMT no yes yes

Clock Speed 2 GHz 1.9 GHz 3.4 GHz

Total Cache 16 MB 15 MB 8 MB

Memory 16GB 32 GB 16 GB

Linux Kernel 3.4.4 2.6.32 2.6.32

Memory Controllers/Channels 4/8 2/6 1/2

Table 6.1 Machine configurations used in experimentation

Benchmark Description Characteristics Input

1 2 3 4

Barneshut [73] N-Body simulation Barriers 100000 bodies, 25 steps

Blackscholes [20] Financial analysis Data-parallel 10000000 options

Bzip2 [51] Compression Pipeline-parallel 1.3 GB file

Canneal [20] Simulated annealing Atomics & barriers 2,500,000 netlist elements

Dedup [20] Compression Pipeline-parallel 672 MB

Fluidanimate [20] Interactive animation Locks & barriers 500,000 particles, 500 frames

Hash Join[40] In-memory DB join Cache & memory intensive 28 MB tables

Histogram [108] Image analysis OS locks 1.4 GB bitmap file

RE [10] Packet deduplication Locks 9000000 packets

ReverseIndex [108] HTML Analysis Disk-intensive 1.3 GB directory

Stream[88] Memory Streaming Memory bandwidth intensive 915MB of data

Swaptions [20] Financial analysis Data-parallel 128 swaptions, 1000000 simulations

WordCount [108] Text processing Parallel-reduction 100 MB directory

X264 [20] H.264 video encoding Pipeline-parallel 1920X1080 pixels, 512 frames

Table 6.2 Multithreaded applications used in experimentation

73

Table 6.1 provides the details of the three machines used in the evaluation. To demonstrate

Varuna’s generality, we present results of select applications from different suites that exhibit dif-

ferent characteristics. Table 6.2 shows the list of multithreaded applications (column 1) we used

along their characteristics (column 3). We used large input sizes for each application obtained

from their respective suites (column 4). The baseline multithreaded versions use the fast NPTL

Pthreads library (provided with the Linux kernels). To test Varuna with task-based applications,

we applied Varuna to five TBB and Prometheus applications: Barneshut, Bzip2, Histogram, RE,

and ReverseIndex.

Since TBB application do not always convey dependence information, the Vtask Generator in

the Parallelism Manager simply passes all dynamically discovered tasks into the vtask pool. For

reasons described in Section 5.3, we ensured that the TBB applications did not explicitly enforce

a specific order between their tasks.

Prometheus exploits sequential program order and data objects accessed by tasks to automat-

ically serialize dependent tasks while parallelizing the execution of independent tasks. It handles

WAW dependences between tasks, but relies on the programmer to quiesce the parallel execution

to prevent RAW and WAR hazards; the application may resume parallel execution once the hazards

are avoided. This limits the degree of parallelism that the runtime can expose.

We enhanced the Prometheus execution model to also automatically handle RAW and WAR

dependences, much like out-of-order superscalar processors. As the application executes, tasks

stalled due to any dependence are skipped over in search of other dependence-free tasks, resources

permitting. The Vtask Generator uses the dependence information to only expose independent

tasks to the vtask pool.

We also compared Varuna to two recent adaptive proposals: Feedback Driven Threading (FDT) [116]

and Parcae [107]. FDT and Parcae are adaptive approaches applicable only to dependence-unaware

task-based applications. FDT can adapt to contention for locks and memory bandwidth. Parcae is

more general, but optimizes for only one metric, throughput. It uses a hill climbing search method

to adapt to dynamic changes. We faithfully implemented FDT mechanisms and a Parcae-like

74

search heuristic in the TBB runtime. Note that neither Parcae nor FDT can be applied to threaded

applications. Hence we compare them with Varuna only for task-based applications.

Config. Description

1 2

PT CG Pthreads applications compiled with -lpthread with the default number of threads

PT FG Pthreads applications compiled with -lpthread executing with a higher number of threads

(spawned by changing the command line argument)

TBB TBB applications compiled with -ltbb with default number of tasks and threads

PM Prometheus applications compiled with -lprometheus with default number of tasks and

threads

Parcae [107] State-of-the-art adaptive scheme implemented in TBB and Prometheus

FDT [116] State-of-the-art adaptive scheme implemented in TBB and Prometheus

V base Pthreads applications compiled with -lvaruna with adaptation capability disabled (number of

threads fixed to default value and never varied during runtime)

V PT T Pthreads applications compiled with -lvaruna optimized for MAX(throughput)

V PT C Pthreads applications compiled with -lvaruna optimized for MIN(consumption)

V TBB T TBB applications compiled with -lvaruna optimized for MAX(throughput)

V TBB C TBB applications compiled with -lvaruna optimized for MIN(consumption)

V PM T Prometheus applications compiled with -lvaruna optimized for MAX(throughput)

V PM C Prometheus applications compiled with -lvaruna optimized for MIN(consumption)

Table 6.3 Different configurations used in experiments.

6.1.2 Compilation Options

To operate with Varuna, the Pthreads, TBB and Prometheus baseline applications were simply

re-linked with a -lvaruna flag, instead of -lpthread, -ltbb, and -lprometheus, respectively.

We compiled all the applications (for Pthreads, TBB, Prometheus and Varuna) with GCC 4.4.3

using −O3 optimization and the architecture flag, −march = native. Varuna automatically

detects the number of hardware contexts in a system and uses it as the default number of worker

threads.

75

Benchmark PT CG PT FG TBB PM V PT * V TBB * V PM *

1 2 3 4 5 6 7 8

Barneshut [73] 16 100,000 100,000 100,000 100,000 100,000 100,000

Blackscholes [20] 16 10,000 - - 10,000,000 - -

Bzip2 [51] 18 1566 1566 1566 16 1566 1566

Canneal [20] 16 96 - - 96 - -

Dedup [20] 50 50 - - 16 - -

Fluidanimate [20] 16 384 - - 384 - -

Hash Join[40] 16 1024 - - 1024 - -

Histogram [108] 16 1024 1024 1024 1024 1024 1024

RE [10] 16 100,000 100,000 100,000 100,000 100,000 100,000

ReverseIndex [108] 16 78371 78371 78371 16 78371 78371

Stream[88] 16 1024 - - 1024 - -

Swaptions [20] 16 384 - - 384 - -

WordCount [108] 16 256 - - 256 - -

X264 [20] 18 512 - - 16 - -

Table 6.4 Thread, task and vtask count used for different benchmarks on the Opteron. * =
PT/TBB/PM

6.1.3 Configurations

The results to follow in the next section show data for the configurations listed in Table 6.3.

All data for a given experiment are normalized to PT CG, which serves as the base case for com-

parison, and hence is not shown in the figures. Tables 6.4, 6.5, 6.6 list the thread, task and vtask

count for PT CG, PT FG, TBB, PM and Varuna configurations, for the three platforms, Opteron,

Xeon, and core i7, respectively. The higher thread and vtask values are chosen based on the input

size and are spawned by giving a different parameter to the command line; the source code is left

untouched. The task count for the TBB and Prometheus versions are same as PT FG. For V PT T

and V PT C versions of Dedup, Bzip2, ReverseIndex and X264, we did not spawn a higher number

of vtasks as they are already written with enough periodic safe points and dynamic load balancing

capabilities. To measure the instantaneous IPS needed to compute qc(P) in the scalability model,

76

Benchmark PT CG PT FG TBB PM V PT * V TBB * V PM *

1 2 3 4 5 6 7 8

Barneshut [73] 24 100,000 100,000 100,000 100,000 100,000 100,000

Blackscholes [20] 24 10,000 - - 10,000,000 - -

Bzip2 [51] 26 1566 1566 1566 24 1566 1566

Canneal [20] 24 96 - - 96 - -

Dedup [20] 74 74 - - 24 - -

Fluidanimate [20] 24 384 - - 384 - -

Hash Join[40] 24 1024 - - 1024 - -

Histogram [108] 24 1024 1024 1024 1024 1024 1024

RE [10] 24 100,000 100,000 100,000 100,000 100,000 100,000

ReverseIndex [108] 24 78371 78371 78371 24 78371 78371

Stream[88] 24 1024 - - 1024 - -

Swaptions [20] 24 384 - - 384 - -

WordCount [108] 24 256 - - 256 - -

X264 [20] 26 512 - - 24 - -

Table 6.5 Thread, task and vtask count used for different benchmarks on the Xeon. * =
PT/TBB/PM

we used the PAPI library APIs [92]. Energy was measured using a Wattsup meter to which the

experimental machines were connected.

6.1.4 Results Exposition

The exposition of the results is grouped along the lines of the execution environments, isolated,

multiprogrammed and asymmetric. The first tests Varuna’s basic capabilities (Section 6.2). The

second stress tests Varuna in a range of highly dynamic, multiprogrammed operating conditions

(Section 6.3). The third tests Varuna’s efficacy when executed on cores with different capabilities

(Section 6.4).

77

Benchmark PT CG PT FG TBB PM V PT * V TBB * V PM *

1 2 3 4 5 6 7 8

Barneshut [73] 8 100,000 100,000 100,000 100,000 100,000 100,000

Blackscholes [20] 8 10,000 - - 10,000,000 - -

Bzip2 [51] 10 1566 1566 1566 8 1566 1566

Canneal [20] 8 96 - - 96 - -

Dedup [20] 26 26 - - 8 - -

Fluidanimate [20] 8 384 - - 384 - -

Hash Join[40] 8 1024 - - 1024 - -

Histogram [108] 8 1024 1024 1024 1024 1024 1024

RE [10] 8 100,000 100,000 100,000 100,000 100,000 100,000

ReverseIndex [108] 8 78371 78371 78371 8 78371 78371

Stream[88] 8 1024 - - 1024 - -

Swaptions [20] 8 384 - - 384 - -

WordCount [108] 8 256 - - 256 - -

X264 [20] 10 512 - - 8 - -

Table 6.6 Thread, task and vtask count used for different benchmarks on the Core i7. * =
PT/TBB/PM

6.2 Isolated Execution Environment

An isolated environment is one in which each application is the only benchmark application

running on our experimental platforms.

6.2.1 Overheads of Varuna

Result 1. Varuna’s vtask capability incurs negligible overheads (V base).

Figures 6.1, 6.2, and 6.3 show the results of multithreaded applications on the Xeon, the

Opteron and the Core i7, respectively. V base incurs no noticeable overheads as compared to

PT CG despite creating a large number of vtasks for several applications (Tables 6.4, 6.5, 6.6, col-

umn 6). This is because vtasks are userspace objects and have negligible creation and preemption

overheads. For some of the applications (Barneshut, Dedup, Swaptions and Wordcount), V base

78

4.
00

7.

27

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

PT_FG

V_base

(a) Execution Time

4.
77

7.

03

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

en
er

gy

PT_FG

V_base

(b) Energy

Figure 6.1 Execution time and energy comparison of PT CG, PT FG, and V base on the Xeon.

13
.7

4

3.
87

9.

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

PT_FG

V_base

(a) Execution Time

13
.8

7

3.
24

9.

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

en
er

gy

PT_FG

V_base

(b) Energy

Figure 6.2 Execution time and energy comparison of PT CG, PT FG, and V base on the Opteron.

actually improved performance. This is because these applications exhibit irregular memory ac-

cess patterns and V base is able to improve their efficiency by applying: (i) lazy vtask creation

(which avoids memory explosion), and (ii) fine-grained dynamic load balancing via randomized

79

2.
60

4.

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

PT_FG

V_base

(a) Execution Time

2.
40

4.

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

en
er

gy

PT_FG

V_base

(b) Energy

Figure 6.3 Execution time and energy comparison of PT CG, PT FG, and V base on the Core i7.

work-stealing. V base reduces the execution time (Figure 6.1(a)) and energy consumption (Fig-

ure 6.1(b)) as compared to PT CG on average (HM) by 6% and 3%, respectively, on the Xeon. On

the Opteron, it reduces execution time (Figure 6.2(a)) and energy (Figure 6.2(b)) on average (HM)

by 5% and 2%, respectively. On the Core i7, it reduces execution time (Figure 6.3(a)) and energy

(Figure 6.3(b)) on average (HM) by 6% and 3%, respectively.

Result 2. PT FG does not benefit programs as does V base.

Although PT FG creates fine-grained work like V base, it degrades performance in most cases

as compared to PT CG as shown in Figures 6.1, 6.2, and 6.3. This is due to the high overheads

involved in creating a large number of OS threads. Since each thread seeks OS resources, large

number of threads can create contention, e.g., in Barneshut due to frequent barrier synchronization,

in Histogram due to page table lock contention [28] and in RE due to memory exhaustion.

6.2.2 Optimizing MAX(throughput)

Result 3. Varuna further improves time and energy efficiency of multithreaded applications that

exhibit contention to shared resources (V PT T) .

80

Result 4. Varuna is platform and resource-agnostic and can handle contention to hardware/soft-

ware resources.

Result 5. Varuna does not degrade efficiency of non-contending applications.

Our benchmarks exhibit five different contention cases as follows:

6.2.2.1 Contention in external software components

0

0.2

0.4

0.6

0.8

1

1.2

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Xeon Opteron Core i7

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

V_base V_PT_T

Figure 6.4 Execution time and energy comparison of Histogram on the Xeon, the Opteron, and
the Core i7.

Histogram is a data parallel benchmark that carries out computations on a 1.4GB bitmap file.

The benchmark invokes mmap which allocates memory in a region in the kernel space, marks

the new region as allocated but defers updating the page table entries. Pages are loaded from the

disk only when the application accesses them. When a new page is accessed, a page fault occurs

and the kernel locks the entire region with a read lock. If multiple threads try to access different

pages in parallel, concurrent page faults can occur, potentially creating contention for the lock

[29]. The benchmark scales poorly and incurs degradation in both performance and energy for

even a modest increase in the number of threads. Tables 6.7, 6.8, and 6.9 (column 2) show the

optimum DoP that Varuna reaches for each of our multithreaded benchmarks on the Xeon and the

81

Opteron, respectively, for the MAX(throughput) objective. As it can be seen, Histogram does not

scale beyond one thread on any of the experimental machine.

Histogram is an example of a very likely future scenario: a programmer can work hard to avoid

contention, but has little or no control over external software components (e.g., libraries or the OS).

By dynamically adapting the number of hardware threads, V PT T is able to reduce its execution

time and energy by 26% and 57%, respectively, on the Xeon, 20% and 18%, respectively, on the

Opteron, and 20% and 68%, respectively, on the Core i7, as compared to PT CG (Figure 6.4). The

energy savings are greater on the Xeon, and the Core i7 since with V PT T, some processors are

idle and are put into deep sleep states, a feature that is not available in the Opteron.

MAX(throughput) MIN(consumption)

DoP Sec. Joules DoP Sec. Joules

Barneshut 24 (24) 14.5 (14) 1579 (1560) 20 (20) 15 (14.6) 1704 (1676)

Bzip2 24 (24) 23 (21) 3094 (2854) 19 (19) 34 (34) 4123 (4100)

Canneal 24 (24) 89 (89) 8393 (8400) 5 (5) 100 (100) 9260 (9201)

Dedup 24 (24) 12 (12) 1274 (1267) 16 (16) 16 (16) 1300 (1297)

Fluidanimate 24 (24) 61 (61) 8622 (8602) 16 (16) 84 (84) 12003 (12003)

Histogram 1 (1) 11.2 (11) 740 (734) 1(1) 11.2 (11) 740 (734)

RE 12 (12) 29 (29) 7500 (7454) 1 (1) 50 (50) 13074 (12987)

ReverseIndex 16 (16) 68 (67) 5748 (5700) 1 (1) 117 (117) 9340 (9341)

Swaptions 24 (24) 80 (80) 11409 (11405) 20 (20) 89 (89) 11409 (11356)

WordCount 24 (24) 5 (5) 201 (200) 20 (20) 6.5 (6.5) 303 (301)

X264 24 (24) 90 (90) 11700 (11653) 20 (20) 98 (98) 13564 (13564)

Blackscholes 24 (24) 36 (36) 3592 (3567) 20 (20) 41 (41) 3865 (3865)

Stream 7 (7) 17 (17) 2434 (2400) 1 (1) 23 (23) 2987 (2986)

Hash Join 11 (11) 24 (24) 3454 (3400) 1 (1) 54 (53) 7694 (7611)

Table 6.7 Optimum degree of parallelism (DoP) chosen by Varuna, and resulting execution time
(Sec.) and energy consumption (Joules) on the Xeon. The numbers shown in parantheses are the

best possible DoP, execution time and energy consumption that could be obtained for each
benchmark (determined by performing a full static thread sweep).

82

6.2.2.2 Contention due to memory bandwidth

0

0.2

0.4

0.6

0.8

1

1.2

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Xeon Opteron Core i7

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

V_base V_PT_T

Figure 6.5 Execution time and energy comparison of Stream on the Xeon, the Opteron, and the
Core i7.

Stream mainly moves data from one region of the memory to another. Again, there is ample

application-level parallelism, however, there is a significant demand for the memory (bus) band-

width. Core i7 has a single memory controller with two memory channels, Xeon has two memory

controllers (one in each socket) with three channels each, and Opteron has four memory controller

(one in each socket) with two channels each. Any parallelism beyond the total number of channels

available on these platforms will result in contention leading to performance and energy degrada-

tion.

As it can be seen in Tables 6.7, 6.8 and 6.9 (column 2), the best parallelism point for Stream is

different on different machines. On the Xeon, it scales up to 7 threads, on the Opteron it scales up

to 8 threads, while on the Core i7 it does not scale beyond 2 threads.

Varuna is able to control the parallelism, alleviating the contention, thus preventing increase

in memory latencies. This results in reducing the processor idle time, and thus more time- and

energy-efficient execution. As shown in Figure 6.5, Varuna reduces the execution time and energy

83

consumption by 12% and 64% on the Core i7, respectively, 15% and 23% on the Xeon, respec-

tively, and 15% and 16% on the Opteron, respectively, as compared to PT CG.

MAX(throughput) MIN(consumption)

DoP Sec. Joules DoP Sec. Joules

Barneshut 16 (16) 20.2 (19.3) 8480 (8345) 8 (8) 29 (27.8) 10200 (9997)

Bzip2 16 (16) 28 (27.6) 13723 (13712) 11 (10) 33 (31.6) 13233 (12655)

Canneal 16 (16) 115 (114) 47442 (47434) 10 (10) 123 (122) 50331 (49976)

Dedup 16 (16) 14 (14) 5560 (5545) 8 (8) 16 (15.5) 5945 (5844)

Fluidanimate 16 (16) 88 (88) 44303 (44298) 10 (10) 115 (115) 55664 (55534)

Histogram 1 (1) 25 (25) 9156 (9156) 1 (1) 25 (25) 9156 (9156)

RE 8 (8) 37 (36) 65432 (65334) 1 (1) 55 (55) 97654 (97650)

ReverseIndex 3 (3) 53 (53) 20500 (20475) 1 (1) 100 (100) 38765 (37884)

Swaptions 16 (16) 125 (124) 66555 (66455) 11 (11) 168 (167) 87338 (86534)

WordCount 16 (16) 13 (13) 4303 (4300) 9 (9) 15 (15) 4500 (4467)

X264 16 (16) 95 (94) 49649 (49008) 9 (9) 104 (104) 53218 (53125)

Blackscholes 16 (16) 88 (88) 36337 (36465) 9 (9) 131 (131) 55968 (55874)

Stream 8 (8) 27 (27) 10453 (10356) 1 (1) 41 (40) 16882 (15987)

Hash Join 13 (13) 39 (39) 17655 (17434) 1 (1) 68 (66) 29765 (28994)

Table 6.8 Optimum degree of parallelism (DoP) chosen by Varuna, and resulting execution time
(Sec.) and energy consumption (Joules) on the Opteron. The numbers shown in parantheses are
the best possible DoP, execution time and energy consumption that could be obtained for each

benchmark (determined by performing a full static thread sweep).

6.2.2.3 Contention due to disk bandwidth

Reverse Index is a benchmark whose parallel execution makes excessive demands for another

resource, disk bandwidth. Each parallel computation in Reverse Index does the following: (i)

open an HTML file, (ii) parse the file contents to identify links to other pages, (iii) extract the

links and update a local data structure based upon some computation, and (iv) close the HTML

file. In addition to significant disk activity, the benchmark performs CPU activity. Though there is

84

0

0.2

0.4

0.6

0.8

1

1.2

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Xeon Opteron Core i7

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

V_base V_PT_T

Figure 6.6 Execution time and energy comparison of ReverseIndex on the Xeon, the Opteron,
and the Core i7.

abundant parallelism—each file can be processed independently—parallel accesses to the disk can

be a source of contention.

As in the case of Stream, the best parallelism point for ReverseIndex is different on different

machines. On the Xeon, it scales up to 16 threads (Table 6.7, column 2), on the Opteron it does not

scale beyond 3 (Table 6.8, column 2), and on Core i7 it scales up to 4 threads (Table 6.9, column

2). As shown in Figure 6.6, V PT T reduces ReverseIndex’s execution time and energy by 6%

and 34%, respectively, on the Xeon, and 10% and 8%, respectively, on the Opteron, and 1% and

65%, respectively, on the Core i7, as compared to PT CG. Reductions in execution time are modest

because the performance of this benchmark does not degrade significantly for higher thread counts

wrt the best DoP.

6.2.2.4 Contention due to cache capacity

In Hash Join there is potential for contention in a shared cache. The working set size of each

thread is over 2MB. Core i7 has a shared L3 cache capacity of 8 MB, Xeon has L3 cache capacity

of 15MB, and Opteron has L3 capacity of 16MB, and hence contention is likely if the working set

size exceeds the respective capacities.

85

MAX(throughput) MIN(consumption)

DoP Sec. Joules DoP Sec. Joules

Barneshut 8 (8) 26 (26) 1163 (1162) 8 (8) 26 (26) 1163 (1162)

Bzip2 8 (8) 36 (36) 1608 (1608) 8 (8) 36 (36) 1608 (1608)

Canneal 8 (8) 164(164) 15527 (15527) 4(4) 197 (195) 17432 (17389)

Dedup 8 (8) 22 (22) 2356 (2355) 8 (8) 22 (22) 2356 (2355)

Fluidanimate 8 (8) 112 (112) 15950 (15945) 8 (8) 112 (112) 15950 (15950)

Histogram 1 (1) 12 (12) 810 (810) 1(1) 12(12) 810 (810)

RE 5 (5) 45 (44) 11637 (11630) 1 (1) 68 (68) 16054 (16045)

ReverseIndex 4 (4) 60 (60) 4933 (4931) 1 (1) 106 (106) 9100 (9100)

Swaptions 8 (8) 148 (148) 14567 (14567) 8 (8) 148 (148) 14567 (14567)

WordCount 8 (8) 7 (7) 289 (289) 8 (8) 7 (7) 289 (289)

X264 8 (8) 126 (126) 14567 (14537) 8 (8) 126 (126) 14537 (14537)

Blackscholes 8 (8) 48 (48) 4987 (4987) 8 (8) 48 (48) 4987 (4987)

Stream 2 (2) 32 (32) 3789 (3677) 1 (1) 36 (36) 3899 (3898)

Hash Join 4 (4) 10 (10) 1632 (1627) 1 (1) 27 (27) 3544 (3542)

Table 6.9 Optimum degree of parallelism (DoP) chosen by Varuna, and resulting execution time
(Sec.) and energy consumption (Joules) on the Core i7. The numbers shown in parantheses are
the best possible DoP, execution time and energy consumption that could be obtained for each

benchmark (determined by performing a full static thread sweep).

Varuna controls the parallelism to ensure that the working set does not exceed the available

cache capacity, thereby reducing both energy consumption and execution time. Varuna reduces

the execution time and energy consumption by 25% and 42% on the core i7, 25% and 46% on the

Xeon, and 19% and 18% on the Opteron, respectively, as compared to PT CG (Figure 6.7).

6.2.2.5 Contention due to user-level locks

RE has abundant packet-level parallelism but uses a lock protected shared hash table that each

concurrent packet must access. Only one packet (thread) can update the hash table at a given time.

As the number of concurrent packets increases, updates to the hash table increase, which increases

the contention to the critical section.

86

0

0.2

0.4

0.6

0.8

1

1.2

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Xeon Opteron Core i7

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

V_base V_PT_T

Figure 6.7 Execution time and energy comparison of Hash Join on the Xeon, the Opteron, and
the Core i7.

0

0.2

0.4

0.6

0.8

1

1.2

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Ex
ec

ut
io

n
tim

e

En
er

gy

Xeon Opteron Core i7

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

V_base V_PT_T

Figure 6.8 Execution time and energy comparison of RE on the Xeon, the Opteron, and the Core
i7.

The application incurs degradation both in execution time and energy beyond a thread count of

8 on the Opteron (Table 6.8, column 2), 12 on the Xeon (Table 6.7, column 2), and 5 on Core i7

(Table 6.9, column 2). V PT T reduces the execution time and energy consumption by 22% and

87

27%, respectively, on the Xeon, by 8% and 12%, respectively, on the Opteron, and by 22% and

24%, respectively, on the Core i7, as compared to PT CG (Figure 6.8).

6.2.2.6 No Contention Scenarios

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

Sw
ap

tio
ns

W

or
dC

ou
nt

X2

64

Re
la

tiv
e

ex
ec

. t
im

e

V_base V_PT_T

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

Sw
ap

tio
ns

W

or
dC

ou
nt

X2

64

Re
la

tiv
e

En
er

gy

V_base V_PT_T

(b) Energy

Figure 6.9 Execution time and energy comparison of non-contending benchmarks on the Xeon.

We consider nine benchmarks, Barneshut, Blackscholes, Bzip2, Canneal, Dedup, Fluidani-

mate, Swaptions, Wordcount, and X264, to illustrate no contention scenarios. As shown in Ta-

bles 6.7, 6.8 and 6.9 (column 2), all these benchmarks scaled up to the maximum number of

hardware contexts. This is because these benchmarks have abundant parallelism and few con-

tention concerns in common circumstances. Varuna neither incurs any degradation nor provides

any savings across all the experimental platforms for these benchmarks, as compared to V base

(Figures 6.9, 6.10, 6.11).

6.2.2.7 Summary

V PT T reduces the execution time and energy consumption as compared to PT CG on average

(HM) by 12% and 22%, respectively, across all the applications on the Xeon. On the Opteron, it

88

0

0.2

0.4

0.6

0.8

1

1.2
Ba

rn
es

hu
t

Bl
ac

ks
ch

ol
es

Bz

ip
2

Ca
nn

ea
l

D
ed

up

Fl
ui

da
ni

m
at

e
Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

Re
la

tiv
e

ex
ec

. t
im

e

V_base V_PT_T

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

Sw
ap

tio
ns

W

or
dC

ou
nt

X2

64

Re
la

tiv
e

en
er

gy

V_base V_PT_T

(b) Energy

Figure 6.10 Execution time and energy comparison of non-contending benchmarks on the
Opteron.

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

Sw
ap

tio
ns

W

or
dC

ou
nt

X2

64

Re
la

tiv
e

ex
ec

. t
im

e

V_base V_PT_T

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

Sw
ap

tio
ns

W

or
dC

ou
nt

X2

64

Re
la

tiv
e

en
er

gy

V_base V_PT_T

(b) Energy

Figure 6.11 Execution time and energy comparison of non-contending benchmarks on the Core
i7.

reduces execution time and energy on average (HM) by 10% and 8%, respectively. On the Core

i7, it reduces execution time and energy on average (HM) by 12% and 23%, respectively.

89

6.2.3 Handling Task-based Applications

0

0.2

0.4

0.6

0.8

1

1.2
Ba

rn
es

hu
t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Ba

rn
es

hu
t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Execution time Energy

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

 TBB PM Parcae FDT V_TBB_T V_PM_T

Figure 6.12 Execution time and energy comparison of task-based Varuna, TBB, Prometheus,
Parcae and FDT on the Xeon.

Result 6. Varuna is as effective for task-based applications as it is for threaded applications.

Result 7. Varuna outperforms state-of-the-art approaches that are applicable only for task-based

applications.

Figures 6.12, 6.13, and 6.14 show Varuna’s (V TBB T and V PM T) time and energy effi-

ciency for theMAX(throughput) objective when applied to the unmodified TBB and Prometheus

applications, on the Xeon, the Opteron, and the Core i7, respectively. It also compares the results

with Parcae and FDT, two of the recent adaptive approaches. FDT employs a resource-specific

mechanism to detect and avert contention. It can detect contention to locks (RE), however, it can-

not detect contention to either the disk bandwidth (ReverseIndex) or the page table (Histogram).

While Parcae improves performance and energy consumption of all contending applications (RE,

ReverseIndex, Histogram), its slow hill climbing search-based approach degrades time and energy

efficiency of non-contending applications (Barneshut and Bzip2) over the PT CG baseline. Varuna,

on the other hand, due to its holistic and quick adaptation, improves over PT CG on an average

90

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Ba

rn
es

hu
t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Execution time Energy

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

TBB PM Parcae FDT V_TBB_T V_PM_T

Figure 6.13 Execution time and energy comparison of task-based Varuna, TBB, Prometheus,
Parcae and FDT on the Opteron.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Ba
rn

es
hu

t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Ba

rn
es

hu
t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Execution time Energy

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

TBB PM Parcae FDT V_TBB_T V_PM_T

Figure 6.14 Execution time and energy comparison of task-based Varuna, TBB, Prometheus,
Parcae and FDT on the Core i7.

91

(HM) by 15%, and outperforms FDT by 8% and Parcae by 14%, on the Xeon, for V TBB T. The

average energy savings are even higher, 31% over PT CG, 23% over FDT and 21% over Parcae,

on the Xeon. On the Opteron, V TBB T reduces execution time and energy consumption by 21%

and 25% over PT CG, respectively, by 13% and 11% over FDT, respectively, and by 19% and

20% over Parcae, respectively. On the Core i7, it reduces time and energy by 15% and 31% over

PT CG, respectively, by 8% and 24% over FDT, respectively, and by 14% and 21% over Parcae,

respectively.

For V PM T, the average savings are similar to V TBB T. On the Xeon, it reduces the execu-

tion time and energy consumption by 15% and 28% over PT CG, respectively, by 8% and 21%

over FDT, respectively, and by 14% and 18% over Parcae, respectively. On the Opteron, it reduces

time and energy by 19% and 20% over PT CG, respectively, by 12% and 6% over FDT, respec-

tively, and by 17% and 15% over Parcae, respectively. On the Core i7, it reduces time and energy

by 11% and 38% over PT CG, respectively, by 5% and 31% over FDT, respectively, and by 11%

and 28% over Parcae, respectively.

6.2.4 Optimizing MIN(consumption)

Result 8. Varuna can better optimize for the resource consumption metric than the state-of-the-art

approaches.

Recall that resource consumption is the product of the average number of hardware threads

used by the application and its total execution time. Figure 6.15 shows the resource consumption

cost of both threaded and task-based application on the Xeon. We do not show the cost for other

machines, as the trends are similar. On an average (HM), V PT C reduces the consumption cost by

79% for multithreaded applications over PT CG and outperforms V PT T by 19% (Figure 6.15(a)),

on the Xeon.

For task-based applications, V TBB C (V PM C), on an average, reduces the consumption cost

by 93% (92%), respectively, over PT CG, and outperforms V TBB T (V PM T) by 14% (15%),

respectively (Figure 6.15(b)), on the Xeon.

92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ba
rn

es
hu

t
Bz

ip
2

Ca
nn

ea
l

D
ed

up

Fl
ui

da
ni

m
at

e
H

ist
og

ra
m

RE

Re

ve
rs

eI
nd

ex

Sw
ap

tio
ns

W

or
dC

ou
nt

X2

64

Bl
ac

ks
ch

ol
es

H

as
h

Jo
in

St

re
am

H

M

Re
la

tiv
e

co
ns

um
pt

io
n

co
st

 V_base V_PT_C

V_PT_T

(a) Multithreaded applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ba
rn

es
hu

t

RE

Re
ve

rs
eI

nd
ex

H
ist

og
ra

m

Bz
ip

2

H
M

Re
la

tiv
e

co
ns

um
pt

io
n

co
st

 TBB PM Parcae FDT

V_TBB_C V_TBB_T V_PM_C V_PM_T

(b) Task-based applications

Figure 6.15 Resource consumption cost on the Xeon.

FDT and Parcae are unable to optimize for this objective. Parcae, similar to V TBB T (V PM T),

applies its MAX(throughput) adaptation, which incidentally also improves resource consump-

tion cost, but only to some extent. V TBB C (V PM C) outperforms Parcae by 38% (37%) and

FDT by 68% (69%), on the Xeon (Figure 6.15(b)).

93

Figures 6.16 and 6.17 show the time and energy efficiency when Varuna (V PT C, V TBB C

and V PM C) optimizes for MIN(consumption) metric, on the Xeon. When compared to V PT T

(V TBB T/V PM T), V PT C (V TBB C/V PM C) degrades the execution time and energy con-

sumption of several applications. This is because the MIN(consumption) metrics essentially per-

mits use of a resource only if it is effectively utilized. For example, it picked an optimum degree

of parallelism of 10 for Barneshut on the Opteron because the application speeds up linearly up

to 10 threads, beyond which the gains are only sub-linear (Figure 4.2(b)). Even a trivial increase

in parallelism of Histogram, RE and ReverseIndex increases the contention to resources. When

applied for this metric, Varuna throttles back their DoP to 1 (Table 6.8).

For multithreaded applications, on an average, V PT C degrades the execution time and energy

consumption by 12% and 22%, respectively, as compared to V PT T, on the Xeon. However, the

average degradation is significantly lower than PT CG. For example, on the Xeon, the degradation

is only 0.04% in execution time and 0.05% in energy.

For task-based applications, V TBB C (V PM C) incurs 9% (10%) degradation in execution

time over PT CG, on the Xeon. However, it saves the average energy consumption by 12% (7%).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

V_PT_T

V_PT_C

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

en
er

gy

V_PT_T

V_PT_C

(b) Energy

Figure 6.16 Execution time and energy comparison of V PT T and V PT C on the Xeon.

94

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Ba
rn

es
hu

t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Ba

rn
es

hu
t

RE

Re
ve

rs
eI

nd
ex

H

ist
og

ra
m

Bz

ip
2

H
M

Execution time Energy

Re
la

tiv
e

ex
ec

. t
im

e/
en

er
gy

 V_TBB_T V_TBB_C V_PM_T V_PM_C

Figure 6.17 Execution time and energy comparison of V TBB T, V TBB C, V PM T, and
V PM C on the Xeon.

6.2.5 Parallelism Determination Accuracy

Result 9. Varuna always finds the best DoP regardless of the metric and platform under consider-

ation.

When adaptive optimization is applied, Varuna determines the DoP as per theMAX(throughput)

and MIN(consumption) objectives. Tables 6.7, 6.8 and 6.9 show the optimum DoP that Varuna

reaches for each of our multithreaded benchmarks on the Xeon and the Opteron, respectively, for

the two objectives, MAX(throughput) and MIN(consumption), respectively, along with their exe-

cution time and energy consumed. The numbers shown in parantheses are the best possible DoP,

execution time, and energy consumption that could be achieved for each of our benchmarks on

the given experimental platform. We obtained these numbers by running the PT CG versions of

the benchmarks with varying degrees of parallelism, and statically selecting the configuration that

yielded the best execution time and energy efficiency. As it can be seen, Varuna always arrives

at the best DoP for all the benchmarks across all the machines. Further, it incurs less than 1%

overhead in execution time and energy efficiency, as compared to the best PT CG configuration.

95

6.2.6 Selecting Appropriate Monitoring Time Interval

0"

1"

2"

3"

4"

5"

6"

7"

8"

1" 2" 3" 4" 5" 6" 7" 8"

%
"o
ve
rh
ea
d"

#Applica0ons"

1ms"
10ms"
25ms"
50ms"
100ms"
200ms"

Figure 6.18 Time interval versus overheads on the Xeon.

As mentioned in Chapter 4, Varuna collects processor, memory, I/O and energy usage charac-

teristics of the target applications to respond to changes in the execution environment. However,

using an appropriate time-interval for collecting usage characteristics data is very important as it

has significant impact on the overhead of Varuna. Though a very small time-interval permits the

collection of very fine-grain details of the resource usage data, it increases the total system over-

head. Therefore selecting appropriate time-interval is very important. For this, as shown in Fig-

ure 6.18, we evaluated Varuna with different time-intervals for monitoring several multithreaded

applications simultaneously running on the Xeon. As Figure 6.18 shows, when Varuna is used

with intervals less than 100ms, the total system overhead is considerably high. This is because

the number of registers offered by the hardware to monitor these events is limited [1, 87] and

must be temporally shared across multiple applications. For small time intervals, as the number of

applications increases, the rate at which these registers must be saved and restored to accommo-

date multiple applications also increases, and consequently leads to high system overheads. With

96

100ms and greater time-intervals, the overheads of Varuna are negligible, less than 1%. Therefore,

Varuna uses 100ms as the monitoring interval for detecting changes in the execution environment.

6.3 Multiprogrammed Environment

To evaluate Varuna in multiprogrammed environments, we consider three scenarios: (i) the first

introduces a high degree of variability in resource capabilities, (ii) the second creates a highly mul-

tithreaded, oversubscribed environment with high context switch rates, and (iii) the third creates

an environment with benchmarks with different resource demands. Experiments show that:

Result 10. Varuna continuously assesses and adapts parallelism to dynamically changing condi-

tions.

Result 11. Varuna responds much faster to changing conditions than the state-of-the-art ap-

proaches and consequently performs better for both the objectives.

Result 12. Varuna improves performance in the presence of both adaptive and non-adaptive mix

of co-scheduled applications.

PT FG results for these experiments are not shown since they were poor (as was also the case

in Section 6.2). Prometheus results are also not shown for these experiments as their results are

similar to TBB.

6.3.1 Adapting to Variabilities in Resource Capabilities

In this scenario, we co-scheduled the benchmark applications with variable instances of a

highly cache- and memory-intensive program from the SPEC2006 suite, mcf, on the Xeon. Specif-

ically, we launched one instance of mcf with our application and then added up to seven more mcf

instances, one at a time, at 2s granularity. We then reduced the instances, by killing them one at a

time, also at 2s granularity, until the count reached one, and repeated the above process until our

application completes.

Figure 6.19(a) shows Varuna adapting Barneshut’s DoP to optimize for theMAX(throughput)

objective in response to the demands placed by the varying number of mcf instances. The X-axis

97

shows time incremented in 100ms. There are two vertical axes: the primary shows instantaneous

speedup and the secondary shows instantaneous DoP. From t=8 to t=20, Barneshut executes with

DoP=22. At this point, there is only one co-scheduled instance of mcf. A change in speedup at

t=20 indicates that the resource capability has changed due to the launch of a new mcf instance. At

t=21, Varuna reacts to the change by breaking out of the passive monitoring loop and restarts the

search to assess the new optimum DoP. It computes the speedups at DoP=2, DoP=12, and DoP=24

(Xeon has 24 contexts) to compute dqc(P)
dp

and the new DoP. At t=28, Varuna determines and estab-

lishes the new DoP to 20, and enters the passive monitoring mode until it detects another change,

e.g., at t=40. Thus, Varuna continuously alters the parallelism to best suit the dynamic variations

in the execution environment.

Note that in Figure 6.19(a), there is no single best operating point for Barneshut unlike in the

isolated environment. FDT cannot handle this scenario as it assumes static operating conditions

and does not have the ability to continuously adapt. It identifies the optimum DoP, typically once

at the beginning of the application or at the inception of every user-defined phase, and fixes that

value for the rest of the program/phase.

0"

5"

10"

15"

20"

25"

0"

2"

4"

6"

8"

10"

12"

0" 10" 20" 30" 40"

Do
P"

Sp
ee
du

p"

Time"step"(100ms"granularity)"

Speedup" DoP"

(a) Varuna

0"

5"

10"

15"

20"

25"

0"

2"

4"

6"

8"

10"

0" 10" 20" 30" 40"

Do
P"

Sp
ee
du

p"

Time"step"(100ms"granularity)"

Speedup" DoP"

(b) Iterative search

Figure 6.19 Comparison of search heuristics

98

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

V_base V_PT_T V_PT_C

Figure 6.20 Execution time of threaded applications when scheduled with dynamically varying
instances of mcf on the Xeon, relative to PT CG running in the same environment.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Ba
rn

es
hu

t

Bz
ip

2
H

ist
og

ra
m

RE

Re
ve

rs
eI

nd
ex

H
M

Re
la

tiv
e

ex
ec

. t
im

e

TBB Parcae FDT V_TBB_T V_TBB_C

(a) Execution time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Ba
rn

es
hu

t

Bz
ip

2
H

ist
og

ra
m

RE

Re
ve

rs
eI

nd
ex

H
M

Re
la

tiv
e

co
ns

um
pt

io
n

co
st

TBB Parcae FDT V_TBB_C V_TBB_T

(b) Consumption cost

Figure 6.21 Execution time and resource consumption cost of task-based applications when
scheduled with dynamically varying instances of mcf on the Xeon.

99

Execution time (s)

Isolated Multiprogrammed

Barneshut 14.5 75.4

Bzip2 23 56.2

Canneal 89 165

Dedup 12 55.1

Fluidanimate 61 94.5

Histogram 11 23

RE 29 65

ReverseIndex 68 130.1

Swaptions 80 135

WordCount 5 10

X264 90 127

Blackscholes 36 87

Stream 17 35

Hash Join 24 51

Table 6.10 Execution time comparison of PT CG in isolated and multiprogrammed environment
on the Xeon.

Figure 6.19(b) shows the adaptation using a Parcae-like search for the same scenario. It begins

to determine the optimum DoP at t=5, like Varuna, but since it searches for the optimum by itera-

tively trying different DoPs, it is unable to find the optimum immediately. In this case, at t=20 it is

still searching, when the operating conditions change (due to the new mcf instance), causing it to

restart the search to adapt to the new conditions. As the figure shows, an iterative search strategy

can take longer to adapt to the conditions, and if the conditions change rapidly, they may be far

less effective than Varuna.

Table 6.10 presents the execution times achieved by the PT CG applications in this environment

against the isolated environment, on the Xeon. As it can be seen, all the PT CG applications

in this environment incur significant degradation (average of 1.93x), as compared to the isolated

100

environment. This is because of the additional contention caused by the co-scheduled mcf instances

not only to the shared resources, but also to processing cores and private caches.

Figures 6.20 and 6.21(a) present the execution times achieved for threaded and task-based

applications, respectively, by Varuna relative to PT CG for this multiprogrammed scenario (Ta-

ble 6.10). Energy savings are not presented since their trends looked similar to the corresponding

execution times. V PT T (V TBB T) reduces the execution time of threaded (task) applications on

an average by 26% (33%) as compared to PT CG. As compared to PT CG in the isolated environ-

ment, V PT T limits the average degradation to 1.47x (Table 6.10). V TBB T outperforms FDT

and Parcae by 30% and 20%, respectively. Unlike in the isolated environment, V PT C (V TBB C)

reduces the average execution time by 14% (25%) over PT CG and is only 12% (12%) slower than

V PT T (V TBB T). This is because, in this environment, an application receives fewer resources,

due to sharing of resources with other applications, and hence the optimum DoPs computed by

these metrics are not far apart.

Stream, in this environment, shows particularly interesting results as compared to the results

shown in Figure 6.5 for the same platform, Xeon. Unlike in the isolated environment, in which it

scales poorly due to memory bandwidth contention, Stream scaled up to the maximum number of

hardware contexts in this environment, similar to the one shown in Figure 2.1(b). This is because

the contention created by mcf instances to cores and caches slowed down Stream’s demand for

resources, thus avoiding the memory contention in the first place.

Figures 6.22 and 6.21(b) present the resource consumption cost achieved by Varuna for threaded

and task-based applications, respectively, relative to PT CG. V PT C (V TBB C) reduces the aver-

age (HM) consumption cost for threaded (task) applications by 90% (95%) over PT CG. However,

it outperforms V PT T (V TBB T) only by 6% (5%) since their optimum DoPs are similar. As

in the isolated environment, Parcae’s MAX(throughput) adaptation incidentally improved the

resource consumption cost by 60% over PT CG. However, Varuna (V TBB C) outperforms FDT

and Parcae by 92% and 35%, respectively.

101

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

co
ns

um
pt

io
n

co
st

V_base V_PT_T V_PT_C

Figure 6.22 Resource consumption cost of threaded applications when scheduled with
dynamically varying instances of mcf on the Xeon.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

V_base V_PT_T

Figure 6.23 Execution time when 8 instances of the same thread application are scheduled
together on the Opteron.

102

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e
V_base V_PT_T

Figure 6.24 Execution time when 12 instances of the same thread application are scheduled
together on the Opteron.

6.3.2 Adapting to Contention Due to Excessive Threads

In this scenario, we successively launched 8 instances of our benchmarks, with the same input,

on the Opteron. Each instance creates 16 threads (maximum number of cores on that machine), A

total of 128 threads execute simultaneously in the platform, effectively oversubscribing the system.

An oversubscribed system increases the context switch rate of threads (due to reduction in the

allotted time quanta per thread) which can lead to erratic program behavior. For example, it may

destroy the cache locality of a given thread if the thread cannot be scheduled on the same core on

which it last ran, potentially degrading its performance. It may also increase the contention to lock

variables and create starvation in producer-consumer style applications (Bzip2, Dedup and X264).

Figure 6.23 presents the execution time achieved by Varuna for the threaded applications, when

optimized for MAX(throughput) objective, relative to PT CG. Unlike PT CG, which tries to

allocate resources to all 128 threads at the same time, V PT T reduces the number of threads

employed for each instance individually, thereby avoiding unnecessary context switches and hence

its negative impact. It reduces the execution time on an average by 11% over PT CG.

103

Unlike the previous scenarios, V base degrades the execution time for some of the applications

as compared to PT CG. This is due to the interference caused by excessive context switching to its

runtime data structures.

Figure 6.24 presents the execution time results of V base and V PT T when the simultaneous

instances are increased from 8 to 12. The savings in execution time increases on an average (HM)

by 7% when compared to execution of V PT T with 8 instances.

6.3.3 Benchmarks with Different Resource Demands

Benchmarks PT CG V PT T DoP

B1 B2 T(B1) T(B2) T(B1) T(B2) B1 B2

1 Reverse Index Barneshut 102 63 78 24 9 15

2 Hash Join Barneshut 97 68 38 21 11 13

3 Hash Join Hash Join 101 103 25 28 13 11

4 Hash Join Stream 46 23 37 23 10 14

5 Barneshut Bzip2 25 36 23 38 12 12

Table 6.11 Execution time comparison of Pthreads and Varuna (optimized for
MAX(throughput) objective) on the Xeon when benchmarks with different resource constraints
are co-scheduled. T(B*): B*’s execution time in seconds; DoP: stable parallelism points for B1

and B2.

In the next scenario, we co-schedule selected pairs of our benchmarks on the Xeon. We com-

pare the execution time of Varuna with PT CG. Table 6.11 presents the results. The first main

column shows the pairs of co-scheduled benchmarks. The next two main columns, one for each

runtime, show the execution time of each benchmark. The last main column gives the stable opti-

mum degree of parallelism (DoP) that Varuna reaches for each benchmark.

Pthreads create as many threads as hardware contexts (24) to execute the benchmarks. As

Table 6.7 shows, 24 contexts are already too many for most of them. Depending on their type,

simultaneously executing Pthreads benchmarks can make things worse. Note that Varuna ensures

that only as many threads as the hardware contexts are created (Table 6.11, DoP column). We

describe the other results using three types of benchmark pairs.

104

6.3.3.1 Contention-prone and contention-free

In this case, we co-schedule a benchmark prone to contention in the isolated environment, e.g.,

Reverse Index and Hash Join, with one that is not, e.g., Barneshut. Row #1 and row #2 from

Table 6.11 are examples of this case.

As shown in Table 6.7, Reverse Index and Hash Join do not scale beyond 16 and 11 threads,

respectively, when executed in isolation. When their Pthreads versions are co-scheduled with

Barneshut, the contention created by Barneshut to cores and private caches further degrade their

performance by a factor of 1.5x and 4x, respectively, as compared to the isolated environment

(Table 6.7).

By using only the required number of contexts and returning the rest to the OS, Varuna versions

of Reverse Index and Hash Join reduce contention not only to shared resources (disk and shared

cache), but also to cores and private caches, reducing their execution times by 23% and 60%

as compared to its Pthreads counterpart. When compared to their isolated versions (Table 6.7),

Varuna limits the degradation in execution times of Reverse Index and Hash Join by 1.14x and

1.5x, respectively, as compared to 1.5x and 4x degradation incurred by PT CG.

Varuna is also able to reduce the execution time of Barneshut by a factor of 3 when com-

pared to PT CG. Reducing the number of contexts to execute both Reverse Index and Hash Join

allows Barneshut to take advantage of the free resources available to execute its computations in

an uninterrupted fashion, thereby improving its performance.

6.3.3.2 Contention-prone and contention-prone

In the second case, both co-located benchmarks are prone to contention in the isolated environ-

ment, e.g., Hash Join and Stream (row #3 and row #4 in Table 6.11).

When two instances of Hash Join (Pthreads versions) are co-scheduled (Table 6.11, row #3),

they create more contention to the shared L3 cache, degrading the performance (by a factor of 4

compared to the isolated environment (Table 6.7). Varuna alleviates this problem by dynamically

decreasing the parallelism in each instance close to the best DoP (11). The execution time is almost

comparable to the one in the isolated environment (Table 6.7).

105

Duty Cycle Encoding Performance Reduction

0000B 0%

1001B 12.5%

1010B 25.0%

1011B 37.5%

1100B 50.0%

1101B 63.5%

1110B 75.0%

1111B 87.5%

Table 6.12 Clock modulation levels on Intel machines.

The result for Hash Join co-scheduled with Stream (row #4, Table 6.11) reiterates the inference

made in Section 6.3.1. The interference caused by Hash Join slows down Stream’s demand for

memory bandwidth, thereby reducing the negative impact on performance for both its Pthreads

and Varuna versions. However, the Pthreads versions of Hash Join slowed down by a factor of 2

due to Stream’s interference as compared to isolated environment (Table 6.7). Varuna improves

the performance of Hash Join by 20% against Pthreads by reducing its DoP to 10 (Table 6.11, row

#4, column DoP-B1).

6.3.3.3 Contention-free and contention-free

In the final case, both benchmarks were scalable, e.g., Barneshut and Bzip2 (row #5, Ta-

ble 6.11). Varuna has only marginal impact since neither suffers from contention. It simply divides

the resources evenly amongst the benchmarks. For both the versions, the execution times are worse

than the isolated times since both benchmarks can benefit from higher number of resources which

they are not provided in the multiprogrammed environment.

6.4 Asymmetric Execution Environment

An asymmetric hardware in one in which the individual cores exhibit different power/perfor-

mance characteristics. Since asymmetric processing hardware is not yet available, we evaluate

106

Core Performance

0 100%

1 100%

2 50%

3 50%

Table 6.13 Clock modulation levels used for core i7 with SMT switched off.

Varuna through emulation in this environment. We could not use DVFS to emulate asymmetric

performance, as on our experimental platforms it applies to an entire socket rather than a single

core. Instead, we use Intel’s clock-modulation feature [1]. This mechanism is used for thermal

throttling and controls the processor duty cycle by stopping the clock for short periods (less than

3µs) at regular intervals. There are eight levels available through the IA32 CLOCK MODULATION

model specific register (MSR), as shown in Table 6.12. These levels reduce performance from

100% down to 12.5% of full performance in steps of 12.5%. Unlike real asymmetric processors,

the performance impact of clock modulation is independent of the code execution. Thus, an ap-

plication sees a performance drop of 50% if the duty cycle is cut in half. We performed all our

experiments in this environment on the Core i7 with SMT option switched off. Table 6.13 lists the

performance levels that we used for each core on the Core i7.

We chose this environment to demonstrate the following: (1) how statically partitioning work in

the application assuming that all cores are of equal performance can result in unintended negative

impacts on the application performance, and (2) how Varuna is able to adapt to the underlying

hardware asymmetry and improve performance and resource consumption cost without exposing

this asymmetry to the application.

Since the emulated platform consists of only 4 physical cores there were not many opportunities

to control the parallelism except for the non-scalable applications, Histogram, ReverseIndex, RE,

Stream and Hash Join. Figure 6.25 presents the execution time and resource consumption cost

results for Pthreads and Varuna configurations. We do not present energy numbers as the savings

107

5.
40

2.
30

3.
17

7.
30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

ex
ec

. t
im

e

PT_FG V_base

V_PT_T V_PT_C

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

Ba
rn

es
hu

t
Bl

ac
ks

ch
ol

es

Bz
ip

2
Ca

nn
ea

l
D

ed
up

Fl

ui
da

ni
m

at
e

H
as

h
Jo

in

H
ist

og
ra

m

RE

Re
ve

rs
eI

nd
ex

St

re
am

Sw

ap
tio

ns

W
or

dC
ou

nt

X2
64

H

M

Re
la

tiv
e

co
ns

um
pt

io
n

co
st

 V_base V_PT_T V_PT_C

(b) Resource consumption cost

Figure 6.25 Execution time and resource consumption cost of Varuna and Pthreads on the
emulated asymmetric environment.

108

are similar to their execution time counterparts. As it can be seen, Varuna’s versions on an average

(HM) outperform the pthread versions in this environment.

PT FG does better than PT CG for all the non-contending benchmarks (Barneshut, Blacksc-

holes, Bzip2, Canneal, Dedup, Swaptions, Wordcount, and X264). This is because the Operating

System is able to achieve better load balancing with a higher number of threads. However, for

the benchmarks that contend for resources (Fluidanimate, Hash Join, Histogram, RE and Stream),

PT FG incurs performance degradation. This is because the benefits of fine grained Operating

System scheduling is offset by the overheads caused by the contention in the system.

All Varuna versions are able to do better than both PT CG and PT FG for all the applications,

on an average (HM). This is because of fine-grained vtask creation and low-overhead dynamic load

balancing via work stealing. The execution of V PT T is similar to V base except for Histogram

and Stream. Histogram and Stream do not scale beyond thread count of 1 and 2, respectively

and V PT T controls their parallelism and further improves performance of this application. As

in the isolated environment (Section 6.2), V PT C resorted to sequential execution for Histogram,

ReverseIndex, RE, Stream and Hash Join. Consequently, it increased the execution time of RE,

ReverseIndex and Hash Join. However, it makes up for the lost performance by reducing the total

resource consumption cost on an average by 32%. This reduction is 23% more than V PT T.

109

Chapter 7

Conclusions and Future Work

The industry is rapidly deploying multicore processors in systems ranging from mobile devices

to exascale computers. Parallel programming for these systems and their dynamically changing op-

erating environments pose significant challenges to everyday programmers in the effort to improve

productivity and to achieve efficient parallel execution of their applications. In this thesis, we pre-

sented a solution that achieves efficient execution of parallel applications, without the involvement

of the programmer, the OS or any other entity.

7.1 Thesis Summary and Contributions

This dissertation developed and evaluated a run-time system, Varuna, that automates the pro-

cess of managing and optimizing an application’s parallelism, in order to alleviate programmers

from the burden of this complexity. Varuna dynamically, continuously, rapidly and transparently

adapts an application’s parallelism to best match the instantaneous capabilities and availability of

the hardware resources and the characteristics of the application, while optimizing different per-

formance objectives.

The most important requirement for Varuna to dynamically adapt an application’s parallelism

is the ability to determine the optimum degree of parallelism that an application must employ at a

given instant in time for a given performance objective. To rapidly determine the optimum degree

of parallelism, this dissertation developed a holistic and resource-agnostic scalability model based

on Amdahl’s law. Varuna first employs the model to rapidly estimates changes in efficiency during

110

an application’s parallel execution. It then uses formulae, derived from the model, to instanta-

neously determine the optimum degree of parallelism (DoP) to employ for two different perfor-

mance objectives: (i) Maximize application throughput, and (ii) Minimize resource consumption

cost.

The model makes certain assumptions about the application’s parallel execution behavior in

dynamic operating conditions. However, there are scenarios in which those assumptions could be

violated. To tackle such scenarios, in addition to the model, this dissertation proposed using a

hill climbing based search heuristic. The heuristic locates the optimum degree of parallelism by

iteratively exploring the direction in the search space that yields higher efficiency. Hill climbing al-

gorithms are known to get “stuck” in a local optimum and fail to reach the global optimum. Hence

this heuristic, developed using the guidelines due to Gendreau [50], incorporates Tabu search [52]

to escape local optima.

Another equally important requirement for Varuna is to transparently control the execution of

parallel computations in the application such that it best matches the instantaneous degree of par-

allelism determined by the scalability model or the heuristic mentioned above, without hampering

the application’s forward progress. To realize this capability, this dissertation employed a primitive

called a virtual task (vtask). Vtasks abstract hardware contexts into logical cooperative tasks [6, 4]

to which application’s parallel computations are transparently mapped. The vtasks, in turn, are

dynamically scheduled onto hardware contexts, similar to tasks in a dynamic task-based runtime

system. Each vtask maintains the state of the current computation mapped on to it using contexts,

allowing Varuna to transparently pause, resume, or migrate a computation by saving or restoring

its corresponding vtask’s context. It also includes the state necessary for Varuna to ensure the

computations’ forward progress even as their execution is regulated.

Vtasks retain the existing parallel programming abstractions and can be applied to both task-

based and multithreaded shared memory parallel applications. Further, they require no changes to

the application or the Operating System, and can tackle arbitrary parallel applications that use stan-

dard APIs. This dissertation demonstrated the versatility of vtasks for three different shared mem-

ory parallel programming APIs: Pthreads, Intel Thread Building Blocks (TBB), and Prometheus.

111

Finally, this dissertation evaluated Varuna in three different execution environments, isolated,

multiprogrammed and asymmetric, using unaltered C/C++ Pthreads, TBB and Prometheus appli-

cations from various standard benchmark suites, on three different real hardware platforms with

different microarchitectural resource capabilities. For the MAX(throughput) objective, Varuna

reduced the execution time on an average by 15% in the isolated environment and 33% in the

multiprogrammed environment. The concomitant energy savings are 31% and 32%, respectively.

For the MIN(consumption) metric, Varuna saved resource consumption cost by 84% and 90%

in isolated and multiprogrammed environments, respectively.

7.2 Limitations and Implications

In our experience, Varuna has achieved its original goal of improving performance portability

of parallel programs amongst multiple disparate platforms where the degree of parallelism may

change dynamically without any programmer involvement. However, it is not without limitations.

The efficiency of an application’s parallel execution depends on a variety of parameters includ-

ing, utilization of hardware and software resources, the application’s data layout, data and work

distribution algorithms used, parallel algorithm implemented, scheduling parameters, among oth-

ers. Varuna provides the basic capabilities to dynamically manage and optimize an application’s

parallel execution. In this dissertation, we primarily focused on the first parameter of effectively

utilizing resources in the system such that they are neither underutilized nor oversubscribed. One

could envision leveraging Varuna’s capabilities to optimize for other parameters to further improve

an application’s efficiency.

The current implementation of Varuna is purely in user space. This was a deliberate design de-

cision to enable portability amongst disparate host operating systems. Nonetheless, if Varuna were

to be widely adopted, then it would be reasonable to assume that essentially many applications on

a running system would employ it. Thus, multiple applications running Varuna is an important

problem going forward. So far, Varuna can make only local decisions specific to an application.

This can sometimes lead to oscillation problems, when multiple Varuna applications are trying to

adapt their parallelism at the same. To avoid this problem, a co-ordinated approach is needed.

112

The most obvious place to employ such an approach will be in the Operating System. We expect

the approach to work similarly to Scheduler Activations [11], where the duties are split between

the Operating System and the runtime system. Here is a sketch of one possible implementation.

The Operating System uses the scalability model to determine the optimum degree of parallelism

to employ for each Varuna-compliant concurrent application in the system, and exposes it to the

applications using a Scheduler Activation like interface. The runtime scheduler (attached to each

application) appropriately adapts the execution of computations in the application to match the

parallelism determined by the Operating System. Having support from the Operating System also

enables I/O calls to interoperate seamlessly with Varuna. In contrast, a pure user-level implemen-

tation limits applications to using the asynchronous subset of the Operating System’s I/O interface

or employing special wrappers around blocking I/O calls.

One of the ways that Varuna creates a large number of safe points to quickly and efficiently

control the execution of parallel computations in the application is by creating a large number

of fine-grained vtasks. Currently, this process is performed manually and we carefully chose the

size of each vtask such that they are sufficiently large enough to yield performance improvements

on the target platform, while at the same time multiple of them could finish executing within the

monitoring time-interval. Ideally, one would like to automate this approach to ease the burden on

programmers. However, this is a non-trivial problem and requires further research.

Currently, Varuna monitors changes in the execution environment at 100ms granularity due

to the overheads associated with fine-grained monitoring in multiprogrammed environments. As

a consequence, it may not be possible for Varuna to quickly respond to changes happening at

finer timescales. While support from hardware could potentially address this issue, it requires

appropriately creating new interfaces between the hardware and the software to facilitate seamless

information flow.

Single-ISA asymmetric performance multicore processors are shown to deliver higher perfor-

mance per watt and area for applications with diverse architectural requirements, and so it is likely

that future multicore processors will combine fast cores characterized by complex pipelines, high

113

clock frequency, high area requirements and power consumption and many slow cores character-

ized by simple pipelines, low clock frequency, low area requirements and power consumption [14].

Currently, Varuna assumes that the underlying processing cores are homogeneous, and hence can

fail to leverage the underlying asymmetry in accelerating performance- and energy-critical com-

putation bottlenecks. Some of the bottlenecks include critical sections, Amdahl’s serial portions

and critical stages in a software pipeline. Varuna already possesses the necessary capability to

transparently migrate computations using vtasks. One could envision extending this capability to

accelerate critical computations in the application to further improve the efficiency of an applica-

tion on asymmetric hardware.

7.3 Future Directions

During the development of Varuna and the preparation of this dissertation, we have identified

several directions for future research. One clear immediate direction is the application of Varuna to

a broader range of applications and programming models to demonstrate its applicability as well as

to identify any shortcomings of its capabilities and mechanisms. Another clear immediate direction

is the application of Varuna in large scale environments. Adapting to varying resources dynami-

cally is especially important for large scientific clusters, where the number of nodes available for

computation varies dramatically over time. Varuna can be extended to manage execution in such

environments. More generally, on large-scale datacenters, Varuna can be scaled up to maximize

utilization and minimize power consumption of clusters of multicore processors.

Cloud computing is emerging as a promising field offering a variety of computing services

to end users. These services are offered at different prices using various pricing schemes and

techniques. End users will favor the service provider offering the best Quality-of-Service (QoS)

with the lowest price. Therefore, applying an effective pricing model will attract more customers

and achieve higher revenues for service providers. Although the scalability model proposed in this

dissertation is primarily used as a performance model to optimize an application’s execution, one

could envision using it as a pricing model in cloud environments to charge applications based on

their resource consumption characteristics.

114

Speculation is a key enabler of parallelism in general-purpose programs. Previous studies have

shown that excessive speculation can lead to wasted computation as more transactions are aborted,

resulting in performance and energy loss. Speculation can be throttled dynamically at run-time,

depending on observed misspeculation rates. Varuna can be extended such that it can throttle the

degree of parallelism to reduce misspeculation. This may improve energy efficiency since the

amount of computation that is discarded is reduced.

115

LIST OF REFERENCES

[1] Intel64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes 3A and 3B: System Programming Guide, Parts 1 and 2.
http://www.intel.com/Assets/PDF/manual/325384.pdf.

[2] Posix threads programming. In https://computing.llnl.gov/tutorials/pthreads/, Livermore,
California, USA. IEEE.

[3] WattsUp. http://wattsupmeters.com/.

[4] Windows fiber. In http://msdn.microsoft.com/en-us/library/windows/desktop/ms682661(v=vs.85).aspx.

[5] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis Teva-
nian, and Michael Young. Mach: A new kernel foundation for unix development. pages
93–112, 1986.

[6] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur. Coop-
erative task management without manual stack management. In Proceedings of the General
Track of the annual conference on USENIX Annual Technical Conference, ATEC ’02, pages
289–302, Berkeley, CA, USA, 2002. USENIX Association.

[7] Matthew D. Allen, Srinath Sridharan, and Gurindar S. Sohi. Serialization sets: A dynamic
dependence-based parallel execution model. In Proceedings of the 14th symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), pages 85–96, 2009.

[8] Matthew D. Allen, Srinath Sridharan, and Gurindar S. Sohi. Serialization sets: a dynamic
dependence-based parallel execution model. In PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 85–96,
New York, NY, USA, 2009. ACM.

[9] Matthew D. Allen, Srinath Sridharan, and Gurindar S. Sohi. Serialization sets: a dynamic
dependence-based parallel execution model. SIGPLAN Not., 44:85–96, February 2009.

[10] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ramjee. Redun-
dancy in network traffic: findings and implications. In Proceedings of the eleventh interna-
tional joint conference on Measurement and modeling of computer systems, SIGMETRICS
’09, pages 37–48, New York, NY, USA, 2009. ACM.

116

[11] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Sched-
uler activations: effective kernel support for the user-level management of parallelism. In
Proceedings of the thirteenth ACM symposium on Operating systems principles, SOSP ’91,
pages 95–109, New York, NY, USA, 1991. ACM.

[12] Andrea C. Arpaci-dusseau, Remzi H. Arpaci-dusseau, Nathan C. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James A. Nugent, and Florentina I. Popovici.
Transforming policies into mechanisms with infokernel. In In Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 90–105. ACM Press, 2003.

[13] David F. Bacon and Seth Copen Goldstein. Hardware-assisted replay of multiprocessor
programs. In Proceedings of the Workshop on Parallel and Distributed Debugging (PADD),
pages 194–206, 1991.

[14] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The impact of perfor-
mance asymmetry in emerging multicore architectures. In Proceedings of the 32nd annual
international symposium on Computer Architecture, ISCA ’05, pages 506–517, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[15] Gabriele Jost Barbara Chapman and Ruud van der Pas. Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press, 2007.

[16] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie for
request extraction and workload modelling. In Proceedings of the 6th Conference on Sym-
posium on Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages 18–18,
Berkeley, CA, USA, 2004. USENIX Association.

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper.
Syst. Rev., 37(5):164–177, October 2003.

[18] Frank Bellosa, Andreas Weissel, Martin Waitz, and Simon Kellner. Event-driven energy ac-
counting for dynamic thermal management. In Proceedings of the Workshop on Compilers
and Operating Systems for Low Power (COLP’03), New Orleans, LA, September 27 2003.

[19] Brian N. Bershad, Craig Chambers, Susan Eggers, Chris Maeda, Dylan McNamee, Prze-
mys law Pardyak, Stefan Savage, and Emin Gun Sirer. Spin—an extensible microker-
nel for application-specific operating system services. SIGOPS Oper. Syst. Rev., 29(1):74–
77, January 1995.

[20] Christian Bienia et al. The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference on Parallel Achitectures
and Compilation Techniques (PACT), October 2008.

117

[21] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix mul-
tiply using phipac: A portable, high-performance, ansi c coding methodology. In Proceed-
ings of the 11th International Conference on Supercomputing, ICS ’97, pages 340–347,
New York, NY, USA, 1997. ACM.

[22] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated management of multiple
interacting resources in chip multiprocessors: A machine learning approach. In Proceedings
of the 41st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 41,
pages 318–329, Washington, DC, USA, 2008. IEEE Computer Society.

[23] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In
Proceedings of the 5th symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 207–216, 1995.

[24] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, 1999.

[25] Robert L. Bocchino Jr. and et al. A type and effect system for deterministic parallel java.
In OOPSLA: Object Oriented Programming, Systems, Languages and Applications, USA,
October 2009. ACM.

[26] S. Borkar. Designing reliable systems from unreliable components: the challenges of tran-
sistor variability and degradation. Micro, IEEE, 25(6):10–16, 2005.

[27] Shekhar Borkar, Tanay Karnik, Siva Narendra, James Tschanz, Ali Keshavarzi, and Vivek
De. Parameter variations and impact on circuits and microarchitecture. In DAC ’03: Pro-
ceedings of the Annual Conference on Design Automation, pages 338–342, 2003.

[28] Silas Boyd-Wickizer, Austin Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of linux scalability to many
cores. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’10), Vancouver, Canada, October 2010.

[29] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of linux scalability to many
cores. In Proceedings of the 9th USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[30] David Brooks and Margaret Martonosi. Dynamic thermal management for high-
performance microprocessors. In Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, HPCA ’01, pages 171–, Washington, DC, USA, 2001.
IEEE Computer Society.

118

[31] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running commodity
operating systems on scalable multiprocessors. SIGOPS Oper. Syst. Rev., 31(5):143–156,
October 1997.

[32] K. Chakraborty, P.M. Wells, G.S. Sohi, T. Benson, A. Akella, D. Maltz, Y. Hou, D.P. Moyni-
han, M.D. Hill, D. Hower, et al. A case for an over-provisioned multicore system: Energy
efficient processing of multithreaded programs. Technology, 90(65nm):45nm, 2007.

[33] Koushik Chakraborty. Over-provisioned Multicore Systems. PhD thesis, University of
Wisconsin-Madison, 2008.

[34] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew
Stark. Detecting data races in Cilk programs that use locks. In Proceedings of the 10th
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 298–309, 1998.

[35] C. Constantinescu. Trends and challenges in vlsi circuit reliability. Micro, IEEE, 23(4):14
– 19, july-aug. 2003.

[36] Julita Corbalán, Xavier Martorell, and Jesús Labarta. Performance-driven processor allo-
cation. In Proceedings of the 4th Conference on Symposium on Operating System Design
& Implementation - Volume 4, OSDI’00, pages 5–5, Berkeley, CA, USA, 2000. USENIX
Association.

[37] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S.
Nikolopoulos. Online power-performance adaptation of multithreaded programs using
hardware event-based prediction. In Proceedings of the 20th annual international confer-
ence on Supercomputing, ICS ’06, pages 157–166, New York, NY, USA, 2006. ACM.

[38] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopoulos, Bro-
nis R. de Supinski, and Martin Schulz. Prediction models for multi-dimensional power-
performance optimization on many cores. In Proceedings of the 17th international confer-
ence on Parallel architectures and compilation techniques, PACT ’08, pages 250–259, New
York, NY, USA, 2008. ACM.

[39] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. Execution migration in a
heterogeneous-isa chip multiprocessor. In ASPLOS, pages 261–272, 2012.

[40] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R Stonebraker,
and David A. Wood. Implementation techniques for main memory database systems. In
Proceedings of the 1984 ACM SIGMOD international conference on Management of data,
SIGMOD ’84, pages 1–8, New York, NY, USA, 1984. ACM.

[41] Santanu Dutta, Rune Jensen, and Alf Rieckmann. Viper: A multiprocessor soc for advanced
set-top box and digital tv systems. IEEE Des. Test, 18(5):21–31, September 2001.

119

[42] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via source throt-
tling: a configurable and high-performance fairness substrate for multi-core memory sys-
tems. In Proceedings of the fifteenth edition of ASPLOS on Architectural support for pro-
gramming languages and operating systems, ASPLOS ’10, pages 335–346, New York, NY,
USA, 2010. ACM.

[43] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an operating system archi-
tecture for application-level resource management. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, SOSP ’95, pages 251–266, New York, NY,
USA, 1995. ACM.

[44] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M. Badia, Eduard
Ayguade, Jesus Labarta, and Mateo Valero. Task superscalar: An out-of-order task pipeline.
In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’43, pages 89–100, Washington, DC, USA, 2010. IEEE Computer So-
ciety.

[45] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in cilk
programs. In Proceedings of the 9th Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), pages 1–11, 1997.

[46] M. Frigo and S.G. Johnson. Fftw: an adaptive software architecture for the fft. In Acoustics,
Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Confer-
ence on, volume 3, pages 1381–1384 vol.3, May 1998.

[47] M. Frigo and S.G. Johnson. The design and implementation of fftw3. Proceedings of the
IEEE, 93(2):216–231, Feb 2005.

[48] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In Proceedings of the 21st Symposium on Parallelism in
Algorithms and Architectures, pages 79–90, 2009.

[49] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. In Proceedings of the 1998 conference on Programming Language
Design and Implementation (PLDI), pages 212–223, 1998.

[50] M. Gendreau. An Introduction to Tabu Search. In F. Glover and G. Kochenberger, editors,
Handbook of Metaheuristics, chapter 2, pages 37–54. Kluwer Academic Publishers, 2003.

[51] J. Gilchrist. Parallel data compression with bzip2. In IASTED International Conference on
Parallel and Distributed Computing and Systems, pages 559–564, 2004.

[52] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

120

[53] S.C. Goldstein, K.E. Schauser, and D.E. Culler. Lazy threads: Implementing a fast parallel
call. Journal of Parallel and Distributed Computing, 37(1):5–20, 1996.

[54] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomeranz. Transient-
fault recovery for chip multiprocessors. SIGARCH Comput. Archit. News, 31(2):98–109,
May 2003.

[55] Pawan Goyal, Xingang Guo, and Harrick M. Vin. Readings in multimedia computing and
networking. chapter A Hierarchical CPU Scheduler for Multimedia Operating Systems,
pages 491–505. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[56] S. Gunther, F. Binns, D.M. Carmean, and J.C. Hall. Managing the impact of increasing
microprocessor power consumption. Intel Technology Journal, 1, 2001.

[57] Gagan Gupta and Gurindar S. Sohi. Dataflow execution of sequential imperative programs
on multicore architectures. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-44 ’11, pages 59–70, New York, NY, USA, 2011.
ACM.

[58] Mark Hempstead, Gu-Yeon Wei, and David Brooks. Navigo: An early-stage model to
study power-contrained architectures and specialization. In Proceedings of Workshop on
Modeling, Benchmarking, and Simulations (MoBS), 2009.

[59] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vineet Chadha, and Jaideep
Moses. Rate-based qos techniques for cache/memory in cmp platforms. In Proceedings of
the 23rd International Conference on Supercomputing, ICS ’09, pages 479–488, New York,
NY, USA, 2009. ACM.

[60] Derek R. Hower and Mark D. Hill. Rerun: exploiting episodes for lightweight memory race
recording. In Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 265–276, 2008.

[61] Ramesh Illikkal, Vineet Chadha, Andrew Herdrich, Ravi Iyer, and Donald Newell. Pirate:
Qos and performance management in cmp architectures. SIGMETRICS Perform. Eval. Rev.,
37:3–10, March 2010.

[62] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for
sparse matrix kernels. Int. J. High Perform. Comput. Appl., 18(1):135–158, February 2004.

[63] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. Core fusion: accommo-
dating software diversity in chip multiprocessors. In ISCA ’07, pages 186–197.

[64] Semiconductor Industry Association (SIA), Design, International Roadmap for Semicon-
ductors, 2011 edition. http://public.itrs.net.

121

[65] Ravi Iyer. Cqos: a framework for enabling qos in shared caches of cmp platforms. In
Proceedings of the 18th annual international conference on Supercomputing, ICS ’04, pages
257–266, New York, NY, USA, 2004. ACM.

[66] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan Solihin,
Lisa Hsu, and Steve Reinhardt. Qos policies and architecture for cache/memory in cmp
platforms. In Proceedings of the 2007 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, SIGMETRICS ’07, pages 25–36, New
York, NY, USA, 2007. ACM.

[67] Magnus Jahre and Lasse Natvig. A light-weight fairness mechanism for chip multiprocessor
memory systems. In Proceedings of the 6th ACM Conference on Computing Frontiers, CF
’09, pages 1–10, New York, NY, USA, 2009. ACM.

[68] Brian Jeff. Big.little system architecture from arm: saving power through heterogeneous
multiprocessing and task context migration. In Patrick Groeneveld, Donatella Sciuto, and
Soha Hassoun, editors, DAC, pages 1143–1146. ACM, 2012.

[69] Changhee Jung, Daeseob Lim, Jaejin Lee, and SangYong Han. Adaptive execution tech-
niques for smt multiprocessor architectures. In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming, PPoPP ’05, pages 236–
246, New York, NY, USA, 2005. ACM.

[70] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003.

[71] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip multi-
processor architecture. In Parallel Architecture and Compilation Techniques, 2004. PACT
2004. Proceedings. 13th International Conference on, pages 111 – 122, 2004.

[72] W. Ko, M. Yankelevsky, D.S. Nikolopoulos, and C.D. Polychronopoulos. Effective cross-
platform, multilevel parallelism via dynamic adaptive execution. In Parallel and Distributed
Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM,
April 2002.

[73] Milind Kulkarni, Martin Burtscher, Keshav Pingali, and Calin Cascaval. Lonestar: A suite
of parallel irregular programs. In 2009 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 65–76, April 2009.

[74] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and Dean M.
Tullsen. Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor
Power Reduction. In Proceedings of the 36th Annual International Symposium on Microar-
chitecture, pages 81–92, June 2003.

122

[75] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and Dean M.
Tullsen. Single-isa heterogeneous multi-core architectures: The potential for processor
power reduction. In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003.

[76] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi, and
Keith I. Farkas. Single-isa heterogeneous multi-core architectures for multithreaded work-
load performance. In Proceedings of the 31st annual international symposium on Computer
architecture, ISCA ’04, pages 64–, Washington, DC, USA, 2004. IEEE Computer Society.

[77] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Adapt: A framework for
coscheduling multithreaded programs. ACM Trans. Archit. Code Optim., 9(4):45:1–45:24,
January 2013.

[78] Christopher LaFrieda, Engin Ipek, Jose F. Martinez, and Rajit Manohar. Utilizing dynam-
ically coupled cores to form a resilient chip multiprocessor. In Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
’07, pages 317–326, Washington, DC, USA, 2007. IEEE Computer Society.

[79] T. J. Leblanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay.
IEEE Transactions on Computing, 36:471–482, 1987.

[80] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark. Thread
tailor: dynamically weaving threads together for efficient, adaptive parallel applications.
SIGARCH Comput. Archit. News, 38:270–279, June 2010.

[81] Dong Li, B.R. de Supinski, M. Schulz, K. Cameron, and D.S. Nikolopoulos. Hybrid
mpi/openmp power-aware computing. In Parallel Distributed Processing (IPDPS), 2010
IEEE International Symposium on, pages 1 –12, april 2010.

[82] J. Li and J.F. Martinez. Power-performance implications of thread-level parallelism on chip
multiprocessors. In Performance Analysis of Systems and Software, 2005. ISPASS 2005.
IEEE International Symposium on, pages 124 –134, march 2005.

[83] J. Li and J.F. Martinez. Dynamic power-performance adaptation of parallel computation
on chip multiprocessors. In High-Performance Computer Architecture, 2006. The Twelfth
International Symposium on, pages 77 – 87, feb. 2006.

[84] Robert S Lockhart. Introduction to Statistics and Data Analysis: For the Behavioral Sci-
ences. Macmillan, 1998.

[85] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. Bubble-up:
increasing utilization in modern warehouse scale computers via sensible co-locations. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 ’11, pages 248–259, New York, NY, USA, 2011. ACM.

123

[86] Henry Massalin. Superoptimizer: A look at the smallest program. In Proceedings of the
Second International Conference on Architectual Support for Programming Languages and
Operating Systems, ASPLOS II, pages 122–126, Los Alamitos, CA, USA, 1987. IEEE
Computer Society Press.

[87] John M. May. Mpx: Software for multiplexing hardware performance counters in multi-
threaded programs. In Proceedings of the 15th International Parallel &Amp; Distributed
Processing Symposium, IPDPS ’01, pages 22–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[88] John D. McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25, December 1995.

[89] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9:21–65, February 1991.

[90] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy task creation: A technique for increasing
the granularity of parallel programs. IEEE Trans. Parallel Distrib. Syst., 2(3):264–280, July
1991.

[91] Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and deterministi-
cally replaying shared-memory multiprocessor execution efficiently. In Proceedings of the
35th International Symposium on Computer Architecture (ISCA), pages 289–300, 2008.

[92] P.J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to hardware perfor-
mance counters. In Proc. Dept. of Defense HPCMP Users Group Conference, pages 7–10,
1999.

[93] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed design and
evaluation of redundant multithreading alternatives. SIGARCH Comput. Archit. News,
30(2):99–110, May 2002.

[94] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multipro-
cessors. In Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, pages 146 –160, 2007.

[95] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared dram systems. In Proceedings of the 35th Annual Inter-
national Symposium on Computer Architecture, ISCA ’08, pages 63–74, Washington, DC,
USA, 2008. IEEE Computer Society.

[96] Vandad Nahavandipoor. Concurrent Programming in Mac OS X and iOS: Unleash Multi-
core Performance with Grand Central Dispatch. ” O’Reilly Media, Inc.”, 2011.

124

[97] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory de-
pendencies using strata. In Proceedings of the 12th international conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), pages 229–
240, 2006.

[98] Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Continuously recording
program execution for deterministic replay debugging. In Proceedings of the 32nd Interna-
tional Symposium on Computer Architecture (ISCA), pages 284–295, 2005.

[99] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private caches. In Proceedings
of the 34th annual international symposium on Computer architecture, ISCA ’07, pages
57–68, New York, NY, USA, 2007. ACM.

[100] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient deterministic
multithreading in software. In Proceedings of the 14th international conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS), pages
97–108, 2009.

[101] Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing parallel software effi-
ciently with lithe. In Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages 376–387, New York, NY, USA,
2010. ACM.

[102] J.M. Perez, R.M. Badia, and J. Labarta. A dependency-aware task-based programming
environment for multi-core architectures. In Cluster Computing, 2008 IEEE International
Conference on, pages 142 –151, 29 2008-oct. 1 2008.

[103] Allan Porterfield, Rob Fowler, Sridutt Bhalachandra, and Wei Wang. Openmp and mpi ap-
plication energy measurement variation. In Proceedings of the 1st International Workshop
on Energy Efficient Supercomputing, E2SC ’13, pages 7:1–7:8, New York, NY, USA, 2013.
ACM.

[104] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Thread reinforcer: Dynam-
ically determining number of threads via os level monitoring. In Proceedings of the 2011
IEEE International Symposium on Workload Characterization, IISWC ’11, pages 116–125,
Washington, DC, USA, 2011. IEEE Computer Society.

[105] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Thread tranquilizer: Dynam-
ically reducing performance variation. ACM Trans. Archit. Code Optim., 8(4):46:1–46:21,
January 2012.

[106] Arun Raman, Hanjun Kim, Taewook Oh, Jae W. Lee, and David I. August. Parallelism
orchestration using DoPE: the degree of parallelism executive. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and implementation, PLDI
’11, pages 26–37, New York, NY, USA, 2011. ACM.

125

[107] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae: a system for flexible
parallel execution. In Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, PLDI ’12, pages 133–144, New York, NY, USA,
2012. ACM.

[108] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating MapReduce for multi-core and multiprocessor systems. In Pro-
ceedings of the 13th international symposium on High Performance Computer Architecture
(HPCA), pages 13–24, 2007.

[109] James Reinders. Intel Threading Building Blocks. O’Reilly Media, Inc., 2007.

[110] Urban Richter, Moez Mnif, Jürgen Branke, Christian Müller-Schloer, and Hartmut
Schmeck. Towards a generic observer/controller architecture for organic computing. GI
Jahrestagung (1), 93:112–119, 2006.

[111] Micheil Ronsse and Koen De Bosschere. RecPlay: a fully integrated practical record/replay
system. ACM Transactions on Computer Systems, 17(2):133–152, 1999.

[112] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Gro-
chowski, Toni Juan, and Pat Hanrahan. Larrabee: A many-core x86 architecture for visual
computing. ACM Transactions on Graphics, 27(3):1–15, 2008.

[113] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Holistic run-time parallelism man-
agement for time and energy efficiency. In Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS ’13, pages 337–348, New
York, NY, USA, 2013. ACM.

[114] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The Impact of Tech-
nology Scaling on Lifetime Reliability. In Proceedings of International Conference on De-
pendable Systems and Networks, June 2004.

[115] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstationarity for perfor-
mance prediction. SIGOPS Oper. Syst. Rev., 41(3):31–44, March 2007.

[116] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven threading:
power-efficient and high-performance execution of multithreaded workloads on cmps. In
In Proc. 13th ACM Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 277–286, 2008.

[117] Jrgen Teich, Jrg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel, Wolfgang
Schroder-Preikschat, and Gregor Snelting. Invasive computing: An overview. In Multi-
processor System-on-Chip, pages 241–268. 2011.

126

[118] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski. Towards scalable
multiprocessor virtual machines. In Proceedings of the 3rd conference on Virtual Machine
Research And Technology Symposium - Volume 3, VM’04, pages 4–4, Berkeley, CA, USA,
2004. USENIX Association.

[119] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin,
Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Conservation cores:
reducing the energy of mature computations. In ASPLOS ’10, pages 205–218.

[120] M.J. Voss and R. Eigenmann. Adapt: Automated de-coupled adaptive program transforma-
tion. In Parallel Processing, 2000. Proceedings. 2000 International Conference on, pages
163–170, 2000.

[121] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible proportional-share
resource management. In Proceedings of the 1st USENIX Conference on Operating Systems
Design and Implementation, OSDI ’94, Berkeley, CA, USA, 1994. USENIX Association.

[122] Zheng Wang and Michael F.P. O’Boyle. Mapping parallelism to multi-cores: A machine
learning based approach. SIGPLAN Not., 44(4):75–84, February 2009.

[123] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Adapting to intermittent faults
in multicore systems. SIGOPS Oper. Syst. Rev., 42(2):255–264, March 2008.

[124] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98, pages 1–27,
Washington, DC, USA, 1998. IEEE Computer Society.

[125] Min Xu, Rastislav Bodik, and Mark D. Hill. A ”flight data recorder” for enabling full-
system multiprocessor deterministic replay. In Proceedings of the 30th International Sym-
posium on Computer Architecture (ISCA), pages 122–135, 2003.

[126] Min Xu, Mark D. Hill, and Rastislav Bodik. A regulated transitive reduction (RTR) for
longer memory race recording. In Proceedings of the 12th international conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS), pages
49–60, 2006.

[127] Jun Yan and Wei Zhang. Hybrid multi-core architecture for boosting single-threaded per-
formance. SIGARCH Comput. Archit. News, 35(1):141–148, March 2007.

[128] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Hardware execution throttling for multi-
core resource management. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference, USENIX’09, pages 23–23, Berkeley, CA, USA, 2009. USENIX As-
sociation.

