
Memory Dependence Prediction

by

Andreas Ioannis Moshovos

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN—MADISON

1998

1

Abstract

As the existing techniques that empower the modern high-performance processors are being refined and as
the underlying technology trade-offs change, new bottlenecks are exposed and new challenges are raised.
This thesis introduces a new tool,Memory Dependence Predictionthat can be useful in combating these bot-
tlenecks and meeting the new challenges. Memory dependence prediction is a technique to guess whether a
load or a store will experience a dependence. Memory dependence prediction exploits regularity in the mem-
ory dependence stream of ordinary programs, a phenomenon which is also identified in this thesis. To dem-
onstrate the utility of memory dependence prediction this thesis also presents the following three novel
microarchitectural techniques:

1. Dynamic Speculation/Synchronization of Memory Dependences:this thesis demonstrates that to
exploit parallelism over larger regions of code waiting todeterminethe dependences a load has is
not the best performing option. Higher performance is possible if memory dependence speculation
is used especially if memory dependence prediction is used to guide this speculation.

2. Speculative Memory Cloaking and Bypassing:this thesis approaches memory as either aninter-
operation communicationor as adata-sharingmechanism. In the first case, memory is used to com-
municate values among instructions. In the second case, memory is used to hold values that are read
repeatedly. Memory dependence prediction can be used to explicitly express either action so that
loads can obtain a speculative value long before they can even access memory. Moreover, this thesis
presents a technique to further reduce memory latency by linking directly the actual producer of a
value with the actual consumers, taking loads and stores off the access path.

3. Transient Value Cache (TVC):Supporting highly-parallel execution requires the ability to perform
multiple, simultaneous memory accesses. The TVC uses a small data cache to provide this support
for a large fraction of loads while avoiding an increase in the latency of all other loads. This is
achieved by using memory dependence prediction to selectively place the small data cache either in-
series or in-parallel to the L1 cache.

2

Acknowledgments

Vasiliki has been a constant source of support, advice, devotion and above all optimism for as long as we
have known each other. I am grateful for her patience and willingness to make sacrifices just so that I can
continue working towards my doctorate. I am also grateful to her mother Naysika and her sister Dora for
their love, support and forbearance. My parents, Koula and Yannis, and my brother Nikos have always been
there for me providing encouragement and unconditional support. They made everything in their power to
provide me with the best education, even if that meant we had to be separated. I only wish that my grandpar-
ents, Elpida and Andreas, who in many ways made me who I am, were still with us.

I want to express my appreciation to my advisor, Guri Sohi, for taking me as his student and for his sup-
port throughout my doctorate studies. He heavily influenced my way of thinking about technical issues and
ideas. Above all, I am most grateful for that he forced me to develop my own ideas and learn how to best
defend them. It has been a privilege working with him.

Over the past five and a half years I had the privilege of interacting with Jim Goodman, Mark Hill, Jim
Smith and David Wood. Most if not all I know about Computer Architecture I learned from them and Guri. I
am also grateful to all of them for serving in my committee. Mark Hill and Jim Smith also served in my pre-
lim committee, while David Wood and Jim Smith had the dreadful task of reading this thesis. David’s, Guri’s
and Jim’s efforts made this thesis more readable and accurate. Jim Smith made life occasionally more taste-
ful with his paella. I am also grateful to Manolis Katevenis who introduced me to Computer Architecture
and taught me how to make presentations.

My thanks to the members of the Multiscalar and Kestrel research groups, both past and present. Scott
Breach and T. N. Vijaykumar have been close collaborators in the dependence speculation and synchroniza-
tion work, and sounding boards for new ideas. I am grateful to Scott for writing the first simulation model
for the memory dependence synchronization mechanism and for suggesting the merged MDST/MDPT orga-
nization. Amir Roth has been a collaborator in recent work on prefetching and control flow prediction. It has
been a pleasure working with them. My thanks to Sridhar Gopal, Andy Glew, Avinash Sodani, Craig Zilles,
Todd Austin, Steve Bennett, Harit Modi, Eric Rotenberg, Yannos Sazeides, Quinn Jacobson, Subramanya
Sastry and Timothy Heil for the numerous discussions. My thanks to Doug Burger, Babak Falsafi, Alain
Kagi and Subbarao Palacharla for many discussions about technical and not so technical issues. I most grate-
ful to both Babak and Vijay for they were always willing to talk and offer advice. Babak also taught me how
to say the most important things in Farsi. I am certainly going to miss the basketball games with Babak,
Alain, Tia Newhall and Steve Seitz.

My stay in Madison was made more enjoyable and interesting by new friends: Dionisios Pnevmatikatos
and Natalia Francis, Minos Garofalakis, Yannis Ioannidis, Yannis Schoinas and Leah Parks, Yannis Chris-
tou, Kyriakos and Sarah Kutulakos, Anastasia Ailamaki, Dimitris Komilis, Stefanos Kaxiras, Aggeliki Bal-
toyianni, Isidoros Sarinopoulos, Eirini Xagoraraki, Leonidas Galanis and Alkis Polyzotis.

Many thanks to Lorene Webber and to Debra Diewald. They have been always willing to help no matter
how hectic their day was.

iii

. . . . 2

. . . . 3

. . . . 5

 . .

. . . . 8

 . .

 . 15

. .

 . . . 18

 . . . 20

.

 . . . 21

. . . 23

. . 26
Contents

Abstract . 1

Acknowledgments . 2

Chapter 1. Introduction. 1

1.1 Contributions. 2

1.1.1 Memory Dependence Locality and Prediction .

1.1.2 Dynamic Speculation and Synchronization of Memory Dependences

1.1.3 Speculative Memory Cloaking and Bypassing .

1.1.4 Transient Value Cache . 7

1.2 Thesis Organization . 8

1.3 Experimental Framework . 8

1.3.1 Programs and Compiler Infrastructure .

1.3.2 Simulation Methodology .. 9

Chapter 2. Memory Dependence Behavior Analysis .

2.1 Memory Dependence Types . . . 16

2.2 A Class of History-Based Memory Dependence Predictors .

2.3 Memory Dependence Behavior Analysis .

2.3.1 Metrics and Justification . 21

2.3.2 Memory Dependence Characterization .

2.3.2.1 Address Space Distribution of Memory Dependences

2.3.2.2 Dynamic Instruction Distance Distribution .

iv
 . . . 28

. . . . 29

 . . . 31

. . . 31

 . . 33

. . . 36

. . . 37

 . . . 39

. . . . 40

. . . 44

. . .

. . . . 48

. . . 50

.

 . . 56

 . . 58

. . . 58

. .

 . . . 59
2.3.3 Memory Dependence Shape Characterization .

2.3.3.1 Instance Dependence Set Size .

2.3.3.2 Aggregate Dependence Set Size .

2.3.4 Working Set of Memory Dependences .

2.3.5 Capturing Memory Dependence Activity .

2.3.6 Memory Dependence Status Locality .

2.3.7 Memory Dependence Locality .

2.3.7.1 Read-after-Write Dependences .

2.3.7.2 Read-after-Read Dependences .

2.4 Summary . 42

Chapter 3. Dynamic Memory Dependence

Speculation and Synchronization . 43

3.1 Using Load/Store Parallelism To Improve Performance .

3.2 Memory Dependence Speculation . 45

3.3 Memory Dependence Speculation Policies.

3.4 Mimicking Ideal Memory Dependence Speculation .

3.5 Implementation Aspects . 53

3.5.1 Working Example . 54

3.6 Issues. 56

3.6.1 The Multiscalar Execution Model .

3.6.2 Incorporating Speculation/Synchronization into a Pipeline .

3.6.3 Incomplete Synchronization .

3.6.4 Intelligent Prediction . 58

3.6.5 Control Mispeculations . . 59

3.6.6 Multiple Dependences Per Static Load or Store .

v
. . . 61

 . . 63

. . . 64

 . . . 66

 . . 67

 . . . 70

. . . 71

 . . 75

. . . 76

. . . 77

. . . 78

. . . 80

. . . 81

. . . 84

. 89

 . .

 . . 91

 . . 92

. . . 92

 . . . 96

. . . 97
3.6.7 Centralized Versus Distributed Structures .

3.7 Related Work . 62

3.8 Evaluation - Distributed, Spit-Window Processor Model .

3.8.1 Performance Potential of Load/Store Parallelism .

3.8.2 Naive Memory Dependence Speculation .

3.8.3 Using Store Address Information To Improve Speculation Accuracy

3.8.4 Selective Memory Dependence Speculation .

3.8.5 Speculation/Synchronization - Centralized Mechanism .

3.8.6 Speculation/Synchronization - Distributed Mechanisms .

3.8.7 Comparison of Speculation/Synchronization Mechanism .

3.9 Evaluation - Centralized, Continuous -Window Processor Model .

3.9.1 Performance Potential of Load/Store Parallelism .

3.9.2 Performance with Naive Memory Dependence Speculation .

3.9.3 Using Address-Based Scheduling to Extract Load/Store Parallelism

3.9.4 Speculation/Synchronization .

3.10 Chapter Summary . 87

Chapter 4. Speculative Memory Cloaking and Bypassing .

4.1 Two Common Uses of Memory .. 90

4.1.1 Memory as an Inter-operation Communication Agent .

4.1.2 Memory As A Value Place Holder .

4.1.3 Using Memory Dependence Prediction To Streamline Memory Accesses

4.2 Speculative Memory Cloaking 94

4.2.1 Detection and Prediction of Dependences .

4.2.2 Synonym Generation and Communication .

4.2.3 Verification . 99

vi
 . .

 .

 . . 103

 . 103

 . . 104

. . 105

 . . 107

. . 109

. 113

 . 115

 . . 117

 . . 117

. . 119

 . 120

. 122

 . 123

. . 124

. 124

126

. 126

 .

. . 127

 . 130
4.2.4 Implementation Aspects .. 99

4.3 Speculative Memory Bypassing . 101

4.4 Extending Cloaking and Bypassing to Support Data-Sharing .

4.5 Related Work . 103

4.5.1 Register Allocation Alternatives .

4.5.2 Address Prediction Based Techniques .

4.5.3 Value Prediction . 105

4.5.4 Techniques Similar to Cloaking or Bypassing .

4.6 Evaluation . 106

4.6.1 Memory Dependence Detection .

4.6.2 Cloaking Coverage And Mispeculation Rates .

4.6.3 Using Adaptive Predictors to Improve Cloaking Accuracy .

4.6.4 Characteristics of the Memory Values that are Handled by Cloaking

4.6.4.1 Address Space Breakdown .

4.6.4.2 Base Register Breakdown .

4.6.4.3 Address Locality Measurements .

4.6.4.4 Value Locality and Value Prediction Measurements .

4.6.4.5 Dynamic Instruction Distance Distribution .

4.6.4.6 Input Data Set Sensitivity Analysis .

4.6.5 Effects of Finite Prediction Structures .

4.6.5.1 Sensitivity to the Number of DPNT Entries .

4.6.5.2 Sensitivity to the Associativity of the DPNT .

4.6.5.3 Synonym File Size Sensitivity Analysis .

4.6.6 Performance Impact .. 126

4.6.6.1 Configuration Parameters .

4.6.6.2 Performance with a Cloaking/Bypassing Mechanism .

vii
 . 132

. 133

. . . 137

 . . 144

. 147

. 149

 . . 149

. . 154

. . 155

 . .

 . . 157

 . 157

. 158
4.6.6.3 Comparing Cloaking/Bypassing and Value Prediction .

4.6.6.4 Combining Cloaking/Bypassing and Value Prediction .

4.7 Summary . 134

Chapter 5. Transient Value Cache . 136

5.1 Short-Distance Memory Dependence Measurements.

5.2 The Transient Value Cache. 139

5.3 Related Work . 142

5.4 Evaluation . 143

5.4.1 Load Dependence Status Prediction Accuracy .

5.4.1.1 Effects of Associativity on Prediction Accuracy .

5.4.1.2 Effects of Block Size on Prediction Accuracy .

5.4.2 Store Dependence Status Prediction Accuracy .

5.5 Summary . 152

Chapter 6. Conclusion . 153

6.1 Summary . 153

6.1.1 Dynamic Speculation and Synchronization of Memory Dependences

6.1.2 Speculative Memory Cloaking and Bypassing .

6.1.3 Transient Value Cache .156

6.2 Future Directions. 157

6.2.1 Correlating Memory Dependence Behavior

with Program Elements and Data Structures .

6.2.2 Interaction with the Compiler .

6.2.3 Memory Communication and Sharing in Distributed Environments

viii
 . 159

 .
6.2.4 Support for Selective Invalidation and Data Speculation Resolution

6.2.5 Operation Prediction . 159

Bibliography . 161

1

are to
form a
ion to
imply
rming

Modern
marter
given

serva-
rams,
ords,

ile in
grams
tech-
n

to the
at pro-
access
xploit
torage
nefit-

with)
tream,
renced
iction.
mine
Chapter 1

Introduction

Program execution may initially seem as an inherently sequential process where the following steps
be performed repeatedly, one after the other: (1) fetch an instruction, (2) read a set of input data, per
calculation, if necessary (3) store the results for future reference, and finally, (4) decide which instruct
fetch next. From this perspective, it would seem that our only hope for faster processing would be to s
rely on advances in the underlying semiconductor device technologies; faster circuits may make perfo
each of the steps faster, and as result they reduce the time required to execute a whole program.
high-performance computing systems however, employ techniques that allow them to be quite a bit s
about program execution in effect making better use of what solid-state technology has to offer at any
point of time. A plethora of techniques that empower these computing systems rely on empirical ob
tions about program behavior to be effective. The motivation underlying these techniques is that prog
for the most part, do not behave randomly. Rather, they exhibit several idiosyncrasies, or in other w
they tend to exhibit regularity in how the operate and in what they produce. Which is to say that wh
principle it is possible to design a program that would deem any such technique ineffective, such pro
rarely have any other practical use. All this is best understood if we consider two prevalently used
niques of this kind:cachingandbranch prediction. Both techniques are implemented in virtually all moder
high-performance processing systems.

Caching aims at better approximating the ideally large and fast memory device which corresponds
data storage model typical programming languages present to their users. It has been long known th
grams have a tendency to either access the same memory location repeatedly (temporal locality) or to
neighboring memory locations (spatial locality), both phenomena appearing close in time. Caches e
this empirical observation by placing a set of recently accessed memory locations in a small and fast s
structure, acache. As a result, many if not most of the memory accesses are serviced in the cache, be
ing from its low latency (how fast it responds) and high bandwidth (how much data it can respond
characteristics. Had programs not exhibited temporal and spatial locality in their memory reference s
caching would not have been an effective technique; data placed in the cache would rarely get refe
before evicted. Another example of a technique that exploits programs behavior is branch pred
Branch prediction facilitates fetching and, often, executing instructions without having to wait to deter

2

uction
its the
mal,
ibited
have

to our
op tech-
uctor

nary,
ity to
nd in
tions)
name we
ts
he same
formal

for
pose

depen-
hibited
make
actions

tures.

n-

rate the

pen-
endence
ndence
predic-
depen-
es we

al
when
e con-
whether these instructions should be executed (normally, we would have to wait until the current instr
completes execution to determine which instruction should we execute next). Branch prediction explo
regularity found in the control flow paths programs tend to follow (this is not intended to be a for
exhaustive definition of the underlying phenomena branch prediction exploits). Had programs not exh
regularity in their control flow, branch prediction and the performance benefits it produces, would not
been possible.

As the preceding discussion serves to demonstrate, in our efforts to build even faster or better suited
purposes computing systems, we may seek to understand how ordinary programs behave and devel
niques that exploit this behavior to better utilize the resources offered by the underlying semicond
device technologies. In this context, this thesis introduces a form of regularity exhibited by ordi
sequential programs along with a number of micro-architectural techniques that exploit this regular
improve performance. Specifically, we have identified that high levels of regularity is there to be fou
the relationships formed when loads (memory read instructions) and stores (memory write instruc
access memory. These relationships are commonly referred to as memory dependences, hence the
use for this phenomenon:memory dependence locality. Informally, memory dependence locality sugges
that if at some point a particular load or store experiences a memory dependence, chances are that t
memory dependence will be experienced again the next time the same instruction is encountered (a
definition of memory dependences and of memory dependence locality can be found in chapter 2).

Identifying a particular regularity in program behavior in itself is useful only in indicating a potential
exploiting this regularity. Actual techniques that make use of this opportunity for some practical pur
are required. To this respect, in this thesis we presentmemory dependence prediction,a technique facilitated
by memory dependence locality and three micro-architectural techniques that are based on memory
dence prediction. In memory dependence prediction, information about the memory dependences ex
during program execution is collected on-the-fly (i.e., while the program is running) and is used to
educated guesses on the forthcoming dependence behavior of the program. In our proposal these
take place in a program and programmer transparent way via the use of architecturally invisible struc

The three micro-architectural techniques we introduce are: (1)memory dependence speculation and sy
chronization,(2) memory cloaking and bypassing,and (3)transient value cache.A brief introduction of
each of the aforementioned techniques and of their goals is given in the next section where we enume
contributions of this thesis.

1.1 Contributions

The contributions of this thesis are: (1) we identify that programs exhibit locality in their memory de
dence stream, (2) we present memory dependence prediction, a technique that exploits memory dep
locality to guess whether a instruction will experience a dependence and if necessary which this depe
exactly is, and (3) we present three micro-architectural techniques that utilize memory dependence
tion to improve performance. In Section 1.1.1 we discuss memory dependence locality and memory
dence prediction. In sections 1.1.2 through 1.1.3 we discuss the three micro-architectural techniqu
propose.

1.1.1 Memory Dependence Locality and Prediction

In this thesis we introducememory dependence locality, a characteristic exhibited by ordinary, sequenti
programs. Memory dependence locality refers to the regularity that exists in the relationships formed
loads and stores access memory (a formal definition of memory dependences is given in chapter 2). W

3

s
ndence
rience
d are not
f mem-
cution

ble that
ces). In
these

ding
emory

cy

exactly
nces as

ctions
e edu-
.

dence
dence
depen-
based
epen-
tion for

ce pre-

mory
e. We

en-

igh-
he other
nt pro-
bility is
d by
time
re ILP
sed to
mputa-
sider two forms of memory dependence locality: (1)memory dependence status localityand (2)memory
dependence set localityor, simply, memory dependence locality. Informally, memory dependence statu
locality suggests that, if at some point during execution a load or a store experiences a memory depe
of a particular type, it is highly probable that when encountered again, the same load or store will expe
a memory dependence of the same type. In this case, which are the exact dependences experience
important, only whether such dependences exist is. Memory dependence locality is a specialization o
ory dependence status locality. Memory dependence locality suggests that if at some point during exe
a load or a store experience a particular dependence (or a set of dependences), it is highly proba
when encountered again, the same load or store will experience the same dependence (or dependen
this case, not only whether dependences of a particular type exist is important, but also which exactly
dependences are.

Either form of memory dependence locality facilitates history-based prediction of the correspon
events. Specifically, in this thesis we present two memory dependence prediction techniques: (1) m
dependence status prediction, and (2) memory dependence set prediction, or simply, memory dependence
prediction. Memory dependence status predictionis a technique that allows us to guess with high accura
whether a load or a store has a memory dependence of a given type.Memory dependence predictionis a
technique that allows us guess not only whether a given load or store has dependence but also which
this dependence (or dependences) is. Both techniques operate by (1) observing memory depende
they occur through memory, (2) associating memory dependence information with the static instru
that are involved (e.g., with the PC of stores or loads), and (3) using the recorded information to mak
cated guesses on what dependences instructions will experience the next time they are encountered

To support the efficacy of memory dependence prediction, in chapter 2 we study the memory depen
behavior of programs and demonstrate that: (1) sufficient regularity exist in both the memory depen
status and the memory dependence stream of programs, and (2) the working set of instructions with
dences is relatively small. The first property—as we explain in chapter 2—is a requirement of history-
prediction as it indicates that past dependence behavior is a good indicator of forthcoming memory d
dence behavior. The second property suggests that we can collect and record dependence informa
prediction purposes using finite structures of reasonable size. This is required if memory dependen
diction is to be of practical use.

In itself, memory dependence prediction serves just to provide highly accurate information about me
dependences. Techniques are required to make use of this information for some practical purpos
present three such techniques in this thesis: (1)dynamic speculation and synchronization of memory dep
dences, (2) speculative memory cloaking and bypassing,and (3)transient value cache. A description of the
goals and operation of each technique is given in the following three sections.

1.1.2 Dynamic Speculation and Synchronization of Memory Dependences

Techniques to exploit instruction-level parallelism (ILP) are an integral part of virtually all modern h
performance processors. With these techniques, instructions do not necessarily execute one after t
and in the order they appear in the program. Rather, instructions are executed in any order convenie
vided however, that program semantics are maintained (i.e., the same results are produced). This a
useful in reducing execution time by executing instructions in-parallel (many at the same time) an
avoiding stalling execution while an instruction takes its time to execute (e.g., it performs a relatively
consuming calculation or accesses a relatively slow storage device for its operands). An arena whe
techniques are particularly useful is that of tolerating memory latency where these techniques are u
send loads requests as early as possible, overlapping memory processing time with other useful co
tion.

4

ram
ng to
a
g to
er per-
c-
tore
emory

culation
nalty is

xisting
rior to

existed.

mory
ndence
prove-
erfor-

inuous
uous
ct the

because
lations
e dem-
er pro-

dence
Specifi-
es that

ns are
diction
d will

lar
% for
of our
ences

emory
as it is

(typical
riority

re given
One approach to exploiting ILP is to first make sure that executing an instruction will not violate prog
semanticsbeforethe instruction is allowed to execute. In the case of a load, this action amounts to waiti
determine if a preceding, yet unexecuted store writes to the same memory location, that is whethertrue
dependencewith a preceding store exists. However, and as we explain in detail in chapter 3, waitin
determine whether a preceding store writes to the same memory location is not the best option. High
formance is possible ifmemory dependence speculationis used, that is, if a load is allowed to execute spe
ulatively before a preceding store on which itmaybe data dependent. Later on, and after the preceding s
has calculated its address, we can check whether program semantics were violated. If no true m
dependence is violated in the resulting execution order, speculation was successful. Otherwise, spe
was erroneous and corrective action is necessary to undo the effects of erroneous execution. A pe
typically incurred in the latter case.

In this work we focus on dynamic memory dependence speculation techniques and study how e
methods of applying memory dependence speculation will scale for future generation processors. P
this work, memory dependence speculation was used whenever the opportunity to execute a load
We will refer to this technique asnaive memory dependence speculation. In this work we demonstrate that
as processors attempt to extract higher-levels of ILP by establishing larger instruction windows: (1) me
dependence speculation becomes increasingly important, and (2) the net penalty of memory depe
mispeculation can become significant. The latter observation suggests that further performance im
ments are possible if mispeculations could be avoided. Specifically, we demonstrate that further p
mance improvements are possible under the following two execution models: (1) a centralized, cont
window ILP processor, and (2) in a distributed, split-window ILP processor. In the centralized, contin
window processor, the net penalty of mispeculation becomes significant when loads cannot inspe
addresses of preceding stores either because a mechanism is not provided (to simplify the design) or
of the latency required to inspect store addresses. In the distributed, spit-window processor mispecu
are problematic independently on whether loads can inspect preceding store addresses. Moreover, w
onstrate that the potential benefits increase as the size of the instruction window also increases in eith
cessor environment.

Motivated by the aforementioned observations we study the trade-offs involved in memory depen
speculations and propose techniques to improve the accuracy of memory dependence speculation.
cally, we propose techniques to: (1) identify via memory dependence prediction those loads and stor
would otherwise be mispeculated, and (2) delay load executiononly as long as it is necessaryto avoid a
memory dependence mispeculation. The best performing technique we propose ismemory dependence
speculation and synchronization,or speculation/synchronization. With this technique, initially loads are
speculated whenever the opportunity exists (as it is common today). However, when mispeculatio
encountered, information about the violated dependence is recorded in a memory dependence pre
structure. This information is subsequently used to predict whether the immediate execution of a loa
result in a memory dependence violation, and (2) if so, which is the store this load should wait for.

Timing simulations show that for a distributed, split-window processor (i.e., Multisca
[26,14,82,27,40,92,13]), our technique can improve performance by 28% for integer codes and 15
floating point codes on the average. More importantly, the performance obtained through the use
techniques is very close to that possible with perfect, in advance knowledge of all memory depend
(31% and 17% respectively), suggesting that our method is successful in attaining both goals of m
dependence speculation: (1) avoiding mispeculations, and (2) delaying load execution only as long
necessary.

We also study memory dependence speculation under a centralized, continuous window processor
current superscalar) that utilizes fetch and execution units of equal bandwidth, and a program order p
scheduler (i.e., when there are many instructions ready to execute, the older ones in program order a

5

s-based
whether

ce very
going

ding an
lexity),
loiting

ificant
eful in
ques
se to

ndence
ng the
nique,
ain the
et, mem-
action.
evice,
tep in
use an

have to
mory
dying
signing

later
dly (i.e.,
erface
eration
ate each
ed may
niences

urrent
re and
locate
data-
of this
y loca-

ication
precedence). For this processor model we make two observations. The first is that using an addres
load/store scheduler (i.e., a structure where loads can inspect preceding store addresses to decide
memory dependences exist) coupled with naive memory dependence speculation offers performan
close to that possible with perfect, in advance knowledge of all memory dependences, provided that
through the address-based scheduler does not increase load latency. The second is that if buil
address-based load/store scheduler is not an option (clock cycle) or not a desirable option (comp
naive memory dependence speculation can still offer most of the performance benefits possible by exp
load/store parallelism. However, under this set of constraints the net penalty of mispeculation is sign
suggesting that our memory dependence speculation and synchronization technique might be us
improving performance. Specifically, timing simulations show that an implementation of our techni
results in performance improvements of 19.7% (integer) and 19.1% (floating-point) which are very clo
those ideally possible: 20.9% (integer) and 20.4% (floating-point).

1.1.3 Speculative Memory Cloaking and Bypassing

Faster execution requires faster methods of reading and writing memory values. The memory depe
speculation and synchronization technique we described in the previous section helps in reduci
observed memory latency by allowing loads to access memory earlier. However, even with this tech
the interface used to read and write memory values and the mechanisms implementing memory rem
same: a load or store has to first calculate an address and then use this address to access memory. Y
ory can be viewed as an interface through which programs synthesize a desired, possibly elaborate
Which is to say that while from the perspective of a single instruction memory appears as a storage d
from the perspective of the program as a whole, reading or writing a memory value is really a single s
a series of actions which combined produce a desired effect. Just because we have decided to
address-based memory interface in expressing what the program does, this does not imply that we
implement this action in that way also. This perspective hints to another direction of improving me
performance, that of: (1) first identifying what purpose memory serves at any given point, (2) then, stu
whether the address-based interface introduces any inefficiencies or overheads, and (3) if so, de
mechanisms that can perform the desired action faster.

In this thesis we identify two common uses of memory: (1)inter-operation communication, and (2)data-
sharing.In inter-operation communication a store is used to write a memory value so that loads may
read it. In data-sharing, a memory location is used as a place holder for values that are read repeate
by many loads) in the program. As we explain in detail in chapter 4, the address-based memory int
introduces both overheads and inconveniences in performing these actions. For example, for inter-op
communication to take place, both the store and the load have to calculate their address and then loc
other using that address. These actions take time and more importantly the value being communicat
be available long before these actions complete (a detailed discussion of the overheads and inconve
introduced by the address-based memory interface is delayed until chapter 4).

We also observe that an explicit specification of either action has potential advantages over the c
address-based specification. In an explicit specification of inter-operation communication both the sto
the load that ought to communicate, not only are given knowledge of the desired action but also can
each other directly without having to first calculate an address. Similarly, in an explicit specification of
sharing, a load that will access a previously accessed memory location, is not only given knowledge
fact, but is also provided with a mechanism to identify the earlier load that accessed the same memor
tion without having to first calculate an address.

Motivated by the aforementioned observations we presentspeculative memory cloaking, or cloaking, a
technique that: (1) transparently converts the address-based specification of inter-operation commun

6

btain
mory
those

ulative
partic-
of the

derived

do not
emory

nstruc-
opose
ads
as an

eries of

es to
llowing

d so are
name
r further
ructions
rlier,

ssing
oating
d 8-

bypass-

iting
and of data-sharing into an explicit form, and (2) uses this explicit representation to allow loads to o
their memory value by just naming an earlier store or load that wrote or accessed it. In cloaking, me
dependence prediction is used to identify those loads and stores that communicate and to identify
loads that access a common memory location. This information is used to create direct, albeit spec
links between these instructions so that values can flow directly, as soon as they become available. In
ular, the mechanism we present operate by associating memory dependence information with the PC
static loads and stores. This permits loads and stores to pass values via cloaking using information
using their PCs.

Aiming at further reducing memory value access latency, we observe that loads and stores typically
change the data they write or read. These instructions are really used as agents retrieving or placing m
data that other instructions produce or consume; the value written by a store is produced by another i
tion, while the value read by a load is passed to other instructions. Motivated by this observation we pr
speculative memory bypassing, a straightforward extension to cloaking, that speculatively bypasses lo
and stores, linking producing and consuming instructions directly. Specifically, when memory is used
inter-operation mechanism, speculative memory bypassing convertsDEF-STORE-LOAD-USE chains intoDEF-
USE ones. When memory is used to hold data that is read repeatedly, this technique consolidates a s
LOAD1-USE1...LOADN-USEN chains into a singleLOAD1-USE1...USEN producer-consumer graph.

The effect achieved via cloaking and bypassing is illustrated in Figure 1.1. Cloaking allows valu
flows between loads and stores, while bypassing takes loads and stores off the communication path, a
values to flow directly from the actual producer to the actual consuming instructions.

Since we make use of memory dependence prediction, the proposed techniques are speculative an
the values obtained through their use. Accordingly, value verification through the traditional memory
space is necessary. However, this verification can take place while the speculative values are used fo
processing. Provided that speculation is successful, the observed memory latency is reduced as inst
that would otherwise wait for the traditional memory hierarchy to provide a value may now execute ea
possible even before the memory access is initiated.

Trace driven simulations show that a straightforward implementation of a combined cloaking/bypa
mechanism can supply correct values for about 60% and 50% of all loads for the integer and the fl
point programs respectively. Timing simulations show that for a fairly aggressive and highly optimize
way superscalar with an 128-entry window and that uses memory dependence speculation, cloaking/
ing can improve performance by 4% and 9%.

Figure 1.1: Speculative Memory Cloaking and Bypassing. (a) Inter-operation communication: explo
read-after-write dependences. (b) Data sharing: exploiting read-after-read dependences.

LOAD RY

USE RY

Cloaking
Bypassing

Memory

(a)

LOAD RZ

USE RY

USE RZ

Cloaking
Byp

as
sin

g

DEF RX

STORE RX

LOAD RY

(b)

7

ul-
reduc-
mory
ue that
ughly
ithin

elatively
loads.
sons:
et ser-
ed for
crease
with
small

e loads

-
pproach
-
mory

erarchy.
eady to
TVC,

so, the

ars in
TVC

ing up
TVC

latency
sible
m the

poten-

tus pre-
e aver-
of all

ction. In
he L1,
hile

ioned
eter-
1.1.4 Transient Value Cache

Highly parallel execution can benefit from both low memory latency and from the ability to perform m
tiple memory accesses in parallel. Both speculation/synchronization and cloaking/bypassing aim at
ing memory latency. The final technique we present in this work aims at supporting multiple me
accesses per cycle. This technique is motivated by the relatively large fraction of loads that read a val
was either recently written by a store or recently read by another load. Specifically, we found that ro
70% (integer programs) and 43% (floating-point programs) of all loads read a memory location that is w
the last 128 memory locations accessed by preceding stores or loads. This result suggests that a r
small data cache capable of storing just 128 memory locations could potentially service all these
Such a small data cache could help in supporting multiple memory requests for the following two rea
(1) it could be easier to multiport than a reasonably sized L1 data cache, and (2) loads that would g
viced in this small data cache will not have be exposed to the L1, freeing up L1 port resources to be us
other loads. Unfortunately, placing such a data cache in between the processor and the L1 would in
the latency of all dynamic loads that would not hit in it (30% and 57% respectively). Placing it in series
the L1 data would not be of much use either as all loads will have to be exposed to both the L1 and the
data cache. What is needed is a method to place this small data cache in series with the L1 for thos
that will hit in it and in parallel to the L1 for all other loads. This is exactly what theTransient Value Cache
(TVC) tries to do. TheTransient Value Cache, or TVC is a novel memory hierarchy component that com
bines a memory dependence status predictor and a relatively small, narrow data cache. The basic a
is illustrated in Figure 1.2. The TVC records in its data cache component thenth most recent accessed mem
ory locations as a traditional data cache would. However, contrary to what is done in a traditional me
hierarchy, the data cache component does not always appear in series with the rest of the memory hi
Instead, its placement is decided using a memory dependence prediction as follows: When a load is r
access memory, a prediction is made on whether the memory location it will access is resident in the
or viewed differently whether the load has a dependence with a recent store or load respectively. If
load is send only to the TVC, in which case the TVC appears inserieswith the L1 data cache. Otherwise
the load is send to both the TVC and the rest of the memory hierarchy, in which case the TVC appe
parallel with the L1 data cache. Provided that prediction accuracy is high, the potential benefits of the
approach are: (1) the loads that hit in the TVC are hidden from the rest of the memory hierarchy, free
L1 data cache ports to be used by other loads, (2) the latency of loads that are unlikely to hit in the
remains unchanged. High prediction accuracy is essential as the TVC may result into increased load
when prediction incorrectly indicates that a load will find its data in the TVC. We also present a pos
store-to-store dependence (WAW) status prediction extension, were the TVC is also used to hide fro
rest of the memory hierarchy those store accesses that are likely to be overwritten quickly precluding
tial problems with writeback traffic contention while reducing the L1 port requirements.

Trace driven simulation shows that a TVC comprised of a counter-based memory dependence sta
dictor and a 128-word (512 bytes) cache component can service 66.8% and 40.4% of all loads on th
age and for the integer and floating point codes respectively. More importantly, only 3.3% and 1.1%
loads would observe a latency increase as the result of erroneous memory dependence status predi
contract, a traditional memory organization that would place the 128-word data cache in series with t
would result in 70.1% (integer) and 43.1% (floating-point) reduction of loads at the L1 interface w
increasing the latency of 29.7% (integer) and 43.7% (floating-point) of all loads. While the aforement
results provide an indication of the potential of the TVC approach, further investigation is required to d
mine its performance impact.

8

ework
f mem-
dence
d. This
spective
upport
ulation
culative

ally, we
appen-
ications

hesis.
ed. In

input
, the first

cture
is the

ith a
1.2 Thesis Organization

The remainder of this thesis is organized as follows: in Section 1.3 we detail the experimental fram
used to evaluate the ideas and techniques we propose. In chapter 2, we provide a formal definition o
ory dependences, a short introduction to the principles of operation of history-based memory depen
predictors and also present an analysis of the memory dependence behavior of the programs studie
analysis focuses on those aspects of memory dependence behavior that are interesting from the per
of history-based memory dependence prediction. It is here that we provide experimental evidence in s
of the efficacy of memory dependence prediction. In chapter 3, we study memory dependence spec
and present memory dependence speculation and synchronization. In chapter 4, we present spe
memory cloaking and bypassing. In chapter 5, we present the transient value cache approach. Fin
summarize our findings in chapter 6 and offer suggestions on how this work can be extended. In the
dix we present additional measurements that relate to memory dependence prediction and to its appl
we present in this thesis.

1.3 Experimental Framework

In this section we detail the experimental framework we used for the experiments reported in this t
In Section 1.3.1 we provide details on the programs analyzed and on the compiler infrastructure we us
Section 1.3.2 we discuss our simulation methodology,

1.3.1 Programs and Compiler Infrastructure

In all experiments reported in this thesis we used the SPEC95 benchmark suite [86]. We used two
data sets. The exact parameters used per input data set are given in Table . Unless otherwise noted
input data set is used. All programs were compiled using a modified version of the GNUgcccompiler ver-
sion 2.7.2. The modifications allow the compiler to also generate binaries for the Multiscalar archite
[26, 82] and only affects binaries compiled for that architecture. The base instruction set architecture
MIPS-I [42] but with no architectural delay slots of any kind. The modifications done to gcc along w

Figure 1.2:The Transient Value Cache

OOO Core

TVC

Memory Hierarchy Load/Store Path

no dependence

dependence

De
pe

nd
en

ce
 S

ta
tu

s
Pr

ed
ict

or

9

led in

at such
er dis-
ence
ds and
nchro-
el and

truc-
iven in

tim-
r the
r-
scalar
vel

imu-
ultisca-
rder
imate

nforma-
also

g those

o com-
nts we
/store

used
xperi-
accord-

ech-
al and

been
ratios
t use
description of the additional instructions introduced to support the Multiscalar architecture are detai
[92]. Fortran sources were compiled by first converting them to C using AT&T’sf2c compiler. Unfortu-
nately, we have no way of determining how the use of aFORTRAN-TO-C translator impacts the quality of the
produced code. However, it is to be expected that an actualFORTRANcompiler would improve the quality of
the produced code mainly as the result of better static disambiguation and scheduling. We note th
optimizations may affect the results of the techniques we propose either way. For example, while bett
ambiguation may help in exposing some of the load/store parallelism in floating point programs, h
reducing the potential of a dynamic approach, it will also reduce the distance between dependent loa
stores increasing the probability of mispeculation, hence increasing the potential of the speculation/sy
nization technique presented in chapter 3. All programs were compiled using the -O2 optimization lev
with loop unrolling and function inlining enabled.

Two binaries were generated per program: (1) a MIPS-I binary, and (2) a Multiscalar binary. The ins
tion counts, along with the fraction of loads and stores executed per binary and input data set are g
Table 1.1.

1.3.2 Simulation Methodology

We employ two simulation techniques: (1) trace-driven simulation and (2) detailed, execution-driven
ing simulation. Traces are generated using two functional simulators, one for MIPS-I ISA and one fo
Multiscalar architecture. The functional simulators executeall user-level instructions. System calls are se
viced by the OS of the host machine. The functional simulators we used are derivatives of the Multi
functional simulator [13]. In all experiments that utilize functional simulation we included all user-le
instructions in our measurements.

We also make use of detailed, execution-driven timing simulation. For this purpose we utilized two s
lators, one that simulates a dynamically scheduled superscalar processor and one that simulated a M
lar processor. Both simulators are derivatives of the Multiscalar timing simulator [13]. The out-of-o
core simulator was rewritten to facilitate simulation of the techniques we examine and to better approx
the processor models we study. Moreover, mechanisms to collect advance memory dependence i
tions were incorporated. While these modifications were required for our experimentation that
decreased simulation speed considerably. The simulators execute all user-level instructions includin
on control speculative paths. Systems calls are redirected to the OS of the host machine.

The default superscalar configuration we used is detailed in Table 1.2. We used a 32K data cache t
pensate for the relatively small memory working sets of the SPEC95 programs. For some experime
use a 64-entry reorder buffer model. That model, has 4 copies of all functional units, a 2-port load
queue and memory system, and can fetch up to 4 instructions per cycle.

The default Multiscalar configuration we used is detailed in Table 1.3. For some experiments we
models of processing units with 4 copies of all functional units and all 4 load/store ports. For those e
ments the number of banks and miss handlers for the I-cache, D-cache and the ARB was partitioned
ingly to provide four times the bandwidth of the configuration shown in Table 1.3.

Finally, to attain reasonable simulation times we utilized sampling for the timing simulations. In this t
nique which was also employed, for example, in [96,67,13], the simulator switches between function
timing simulation. The mode of simulation is changed once a predefined number of instructions have
simulated. In all sampling simulations the observation size is 50,000 instructions. We chose sampling
that resulted in rougly 100M instructions being simulated in timing mode (i.e., sample size). We did no
sampling for099.go, 107.mgrid, 132.ijpegand141.apsi. We used a 1:1 timing to functional simulation ratio

10
Program Input Data Set 1 Input Data Set 2

SPECint’95

099.go play level = 9, board size = 9 train input set: play level = 9, board
size = 50

124.m88ksim modified test input: 370 iterations of Dhrystone
Benchmark

train input set

126.gcc reference input file recog.i test input: file cccp.i

129.compress modified train input: maximum file size increased to
50,000

modified train input: maximum file size
increased to 100,000

130.li modified test input: (queens 7) train input set

132.ijpeg test input train input set

134.perl modified train input: jumple.pl with dictionary reduced
by retaining every other 15th word

train input set

147.vortex modified train input: persons.250k database,
PART_COUNT 250, LOOKUPS 20, DELETES 20,
STUFF_PARTS 100, PCT_NEWPARTS 10,
PCT_LOOKUPS 10, PCT_DELETES 10,
PCT_STUFFPARTS 10

train input set

SPECfp’95

101.tomcatv modified train input: N = 41 train input set

102.swim modified train input: X = 256, Y = 256 test input set

103.su2cor modified test input: LSIZE = 4 4 4 8 16 test input set

104.hydro2d modified test input: MPROW = 200 test input set

107.mgrid modified test input: LMI = 4 test input set

110.applu modified train input: itmax = 25, nx = 10, ny = 10, nz =
10

train input set

125.turb3d modified train input: nsteps = 1, itest = 0 test input set

141.apsi modified train input: grid points x = 32, grid points z=
8, time steps = 130

test input set

145.fpppp modified reference input: natoms = 4 train input set

146.wave5 modified train input: particle distribution 1000 20, grid
size 625x20

train input set

Benchmark input parameters.

11

ulate

are
ching
(i.e., once 50000 instructions are simulated in timing mode, we switch to functional mode and sim
50000 instructions before switching back to timing mode, and so on) for:110.applu, 124.m88ksim, 130.li,
134.perland145.fpppp. We used a 1:2 timing to functional simulation ratio (i.e, once 50000 instructions
simulated in timing mode, we switch to functional mode and execute 100000 instructions before swit
back to timing mode, and so on) for: 101.tomcatv, 102.swim, 126.gcc, 129.compress, 146.wave5and
147.vortex. We used a 1:3 timing to functional simulation ratio for103.su2cor. And finally, we used a 1:10
timing to functional simulation ratio for:104.hydro2dand125.turb3d. During the functional portion of the

Non-Multiscalar Multiscalar

Input Data Set 1 Input Data Set 2 Input Data Set 1

Program IC Loads Stores IC Loads Stores IC Loads Stores

SPECint’95

099.go 133.8 20.9% 7.3% 553.7 21.3% 7.9% 141.2 22.7% 7.8%

124.m88ksim 196.3 18.8% 9.6% 141.5 18.5% 13.3% 213.3 17.3% 8.7%

126.gcc 316.9 24.3% 17.5% 1,496.5 23.4% 19.4% 333.9 23.9% 17.3%

129.compress 153.8 21.7% 13.5% 296.4 21.7% 12.9% 153.8 21.7% 13.5%

130.li 206.5 29.6% 17.6% 182.9 25.4% 16.1% 229.7 26.6% 15.7%

132.ijpeg 129.6 17.7% 8.7% 1,478.2 17.6% 8.4% 139.2 18.6% 9.0%

134.perl 176.8 25.6% 16.6% > 2,200.0 25.5% 16.4% 176.8 25.6% 16.6%

147.vortex 376.9 26.3% 27.3% > 2,200.0 28.6% 24.8% 390.7 21.3% 30.6%

SPECfp’95

101.tomcatv 329.1 31.9% 8.8% > 2,200.0 31.5% 8.9% 333.7 30.6% 8.7%

102.swim 188.8 27.0% 6.6% 753.1 27.0% 6.6% 191.8 27.0% 6.5%

103.su2cor 279.9 33.8% 10.1% 1,099.9 34.0% 10.0% 283.7 33.5% 10.0%

104.hydro2d 1,128.9 29.7% 8.2% 1,130.1 29.7% 8.2% 1,162.6 29.4% 8.0%

107.mgrid 95.0 46.6% 3.0% > 2,200.0 49.3% 2.1% 100.6 46.1% 5.2%

110.applu 168.9 31.4% 7.9% 649.3 31.5% 7.9% 171.8 31.9% 8.0%

125.turb3d 1,666.6 21.3% 14.6% > 2,200.0 21.1% 14.1% 1,701.7 20.6% 14.4%

141.apsi 125.9 31.4% 13.4% >2,200.0 30.8% 12.2% 129.5 31.0% 13.5%

145.fpppp 214.2 48.8% 17.5% 469.6 48.9% 17.2% 202.5 49.4% 11.0%

146.wave5 290.8M 30.2% 13.0% >2,200.0 32.0% 12.7% 299.3 30.2% 12.9%

Table 1.1:Benchmark Execution Characteristics. Instruction counts (“IC” columns) are in millions.

12

le 1.4
exper-
ation
simulation the following structures were simulated: I-cache, D-cache, and branch prediction. Tab
presents data that are useful in quantifying the error that is introduced by the use of sampling. In this
iments we report the relative difference in IPC (instructions per cycle) reported with sampling simul
over full timing simulation of the default superscalar configuration.

Fetch
Interface

Up to 8 instructions can be fetched per cycle. Up to 4 fetch requests can be active at any time.
Combining of up to 4 non-continuous blocks.

Branch
Predictor

64K-entry combined predictor [58]. Selector uses 2-bit counters. 1st predictor: 2bit counter
based. 2nd predictor: Gselect with 5-bit global history. 4 branches can be resolved per cycle. 64-
entry call stack. 2K BTB.
Up to 4 predictions per cycle.

Instruction
Cache

64K, 2-way set associative, 8 banks, block interleaved, 256 sets per bank, 32 bytes per block, 2
cycles hit, 10 cycle miss to unified, 50 cycle miss to main memory.
Lockup free, 2 primary misses per bank, 1 secondary miss per primary.
LRU replacement.

OOO
core

128-entry reorder buffer, up to 8 operations per cycle, 128-entry combined load/store queue, with
4 input and 4 output ports.
Loads can execute as soon as their address becomes available.
Stores check for memory dependence violations by comparing addresses and data.
It takes a combined 4 cycles for an instruction to be fetched and placed into the reorder buffer.

Architected
Registers

64 integer, 64 floating point, HI, LO and FSR.

Functional
Units

8 copies of all functional units. All are fully-pipelined. 4 memory ports.

Functional
Unit
Latencies

Integer: 1 cycle latency except for: multiplication 4 cycles, division 12 cycles,.
Floating point: 2 cycles for addition/subtraction and comparison (single and double precision or
SP/DP). 4 cycles SP multiplication, 5 cycles DP multiplication, 12 cycles SP division, 15 cycles
DP division.

Store
Buffer

128-entry. Does not combine store requests to memory. Combines store requests for load for-
warding.

Data
Cache

32K, 2-way set associative, 4 banks, 256 sets per bank, 32 bytes per block, 2 cycle hit, 10 cycle
miss to unified, 50 cycle miss to main memory. Lockup-free, 8 primary miss per bank, 8 second-
ary miss per primary. LRU replacement.

Unified
Cache

4M-byte, 2-way set associative, 4 banks, 128-byte block, 8 cycle + # 4 word transfer * 1 cycle hit,
50 cycles miss to main memory. Lockup-free, 4 primary miss per bank, 3 secondary per primary.

Main
Memory

Infinite, 34 cycle + #4 word transfer * 2 cycles access.

Table 1.2:Default configuration for superscalar timing simulations

13
Processing
Units

4 or 8, single task, 16-entry reorder buffer with 8-entry scheduler.
Functional Units: 2 copies of all functional units, except for load/store units that has 1 port. Laten-
cies same as in TableSection 1.2.
Load/Store unit: 16 entry load/store queue, 16 entry store buffer non-combining to memory, com-
bining for local load requests. Loads may execute after all preceding local stores have calculated
their address.
Fetch interface: 2 instructions per cycle, one branch prediction, 16-entry call-stack, 1K BTB.
Control Predictor: global-pattern based, 16-bit pattern register, 64K-entry, 2-bit counters, 2 tar-
gets.

Inter-Task
Predictor

Path-based DOLC=7,3,6,8 path register 64K-entry, 2-bit counters, 4 targets [13]. 64-entry call-
stack.

Task
Cache

1K-entry, 2-way set associative, 64-byte task descriptor, LRU replacement.
1 cycle hit, 12 cycle miss to unified, 50 cycle miss to main memory.
1 bank, bus, lockup.

Instruction
Cache

64K, 2-way set associative, #PU banks, block interleaved, 32 bytes per block, 1 cycle hit, 10 cycle
miss to unified, 50 cycle miss to main memory.
Lockup free, 8 primary misses per bank, 8 secondary miss per primary.
LRU replacement. Crossbar with one port per PU and per bank.

Register
File

4 registers per cycle, 2 cycle latency between adjacent units

Address
Resolution
Buffer

#PU banks, 32-way set associative, 128 entries per bank, byte disambiguation granularity. 2 cycle
hit.

Data
Cache

32K, 2-way set associative, #PU banks, 32 bytes per block, 2 cycle hit, 10 cycle miss to unified, 50
cycle miss to main memory. Lockup-free, 8 primary miss per bank, 2 secondary miss per primary.
LRU replacement. Crossbar with one port per PU and per bank. Same block access combining for
crossbar.

Unified
Cache

4M-byte, 2-way set associative, 4 banks, 128-byte block, 8 cycle + # 4 word transfer * 1 cycle hit, 50
cycles miss to main memory. Lockup-free, 4 primary miss per bank, 3 secondary per primary.

Main
Memory

Infinite, 34 cycle + #4 word transfer * 2 cycles access.

Table 1.3:Default configuration for Multiscalar timing simulations.

14

e
e in
IPC Full
Relative

Difference
w/ Sampling

IPC Full
Relative

Difference
w/ Sampling

099 1.81 0.0% (N/A) 101 3.06 +0.653%

124 3.54 -1.142% 102 2.39 +3.347%

126 2.56 -1.171% 103 3.51 -0.854%

129 2.32 0.0% 104 3.48 -0.574%

130 2.38 0.0% 107 5.11 0.0% (N/A)

132 4.16 0.0% (N/A) 110 4.29 -0.233%

134 2.77 -1.818% 125 4.63 0.0%

147 4.66 -0.858% 141 3.25 0.0% (N/A)

145 3.89 -0.514%

146 3.85 -0.239%

Table 1.4: Error introduced by the use of sampling in a timing simulation. “IPC Full” columns report th
instructions per cycle execution rate when no sampling is used. Also reported is the relative differenc
IPC introduced by the use of sampling.

15

t if we
ter we

th the
y, this
note

r in this
other

ing an
emory

lude
eed to
ass of
1) most
used to
atively
ssion

for-
depen-
dict its
tion of
, in this
hat seem
Chapter 2

Memory Dependence Behavior Analysis

Before we embark into describing possible applications of memory dependence prediction it is bes
develop an understanding of the memory dependence behavior of programs. Accordingly, in this chap
present a characterization of memory dependence behavior. This information will aid us during bo
motivation and the design process of the applications described in the chapters that follow. Hopefull
information will also help stimulate other applications of memory dependence prediction. We should
that there are certainly many more attributes of memory dependence behavior than those we conside
study. Moreover, there might be types of memory dependence information that might be interesting
than those we consider in this work (a description can be found in Section 2.3). Rather than perform
exhaustive analysis, we focus on those attributes that seem most relevant to a specific class of m
dependence predictors1 (discussed in Section 2.2).

An overview of the specific results presented in this chapter along with a justification of why we inc
them is delayed until Section 2.3.1. This is necessary to motivate the relevance of our metrics we n
first formally define memory dependences and review the principles underlying the operation of the cl
memory dependence predictors we consider. However, in a nutshell, the results of this chapter are: (
of loads and stores experience dependences, (2) relatively small structures (e.g., 4K entries) can be
capture a large fraction of that dependence activity, (3) the working set of memory dependences is rel
small, (4) memory dependences exhibit fairly regular behavior. As will become apparent by the discu

1.There is an inherent difficulty in making generally applicable observations about the “predictability” —which in
mally can be defined as the ability to design automata capable of guessing the relevant information— of memory
dences or other program related information. After all, the program itself is an automaton that may be used to pre
own actions (in Section 6.2.5, we will discuss such a possibility). The interested reader can refer to any descrip
algorithmic information content and of complex adaptive systems, e.g., [29] chapters 2 through 4. For this reason
work we focus on a specific class of predictors and measure those aspects of memory dependence behavior t
relevant for those predictors.

16

le to his-

epen-
esent an

aterial
tion 2.3
mary
es of
er-write

depen-
e also

struction

define
ry loca-
are of
y read
epen-

n to a
s
e pro-
nces,
a new
ogram

eate or
er ver-
ds and
of this chapter, these results constitute strong indications that memory dependences may be amenab
tory-based prediction.

The rest of this chapter is organized as follows. Before we proceed into the details of the memory d
dence behavior analysis, we briefly define memory dependences and their types (Section 2.1) and pr
abstract description of a class of history-based memory dependence predictors (Section 2.2). The m
presented in these two sections allows us to motivate the relevancy of the metrics presented in Sec
and aid in their interpretation. An overview of the metrics presented is given in Section 2.3.1. A sum
of our findings is given in Section 2.4. As we will discuss in Section 2.1, there are four possible typ
memory dependences. Much of the discussion in this chapter focuses on those two types (read-aft
and read-after-read) which we extensively use in the applications we present later on.

2.1 Memory Dependence Types

In this section we review what memory dependences are, present the various types of memory
dences and explain what implications each of these types has on interpreting program semantics. W
define static and dynamic dependences and discuss what possible shape the dependences of an in
may take (i.e., whether they are one-to-one or many-to-one).

A memory dependence is a relationship between two instructions that access memory. We could
memory dependences simply as the relationships formed when instructions access a common memo
tion (address). However, such a definition will encompass many more relationships than those that
interest for our purposes. For example, such a definition will allow a dependence among a memor
(load) and all preceding memory writes (stores) to the same memory location. To define memory d
dences precisely, we first need to define the concept ofmemory location versions. Throughout the course of
execution, a memory location may be used to hold many different values. Every time a value is writte
memory location by a memory write (store), a newversionof that memory location is created. As program
are written with an implied, total order, memory location versions can also be ordered according to th
gram implied order. With this definition in hand we can now proceed to define memory depende
restricting our attention to the relationships formed among instructions starting from one that creates
version of a memory location and ending with the one that creates the immediately succeeding in pr
order version of the same memory location.

A memory dependence is a relationship between two memory accessing instructions that either cr
read the same version of a memory location or that create the immediately succeeding in program ord
sion of the same memory location. Since there are two types of memory accessing instructions, loa

Figure 2.1: Memory dependence examples. “lw” (“sw”) stands for “load word” (“store word”), where a
“word” is four bytes long. “lh” (“sh”) stands for “load half-word” (“store half-word”) where a “half-
word” is two bytes long. Finally, “lb” (“sb”) stands for “load byte” (“store byte”).

1: sw M(100), r1
2: lw M(100), r1
3: lw M(100), r2
4: sw M(100), r3

(a)

1: sb 101, r1
2: sb 100, r1
3: lh 100, r2
4: sh 100, r3

(b)

5: lw M(100), r4

for i = 0 to 99

2: sw a[i], r1
3: lw a[i], r2

(c)

17

dences:

ore. A
epen-
g store
epen-

oad that
ple of
mem-
), (1,3)
Finally,
nd any

hould
tions as
er. (For

rmity
hat is
re must
st not

es dic-
d by the

oint dur-
denote
depen-

. Typ-
rt (b)
whose

ne
ecutes,
p.

e defini-
arately
easure
ed how
y have
me is

e loads
the
are pos-

cation
WAR
lity of
may
stores, that read and write memory data respectively, there are four possible types of memory depen
read-after-write (RAW), read-after-read (RAR), write-after-write (WAW)and write-after-read (WAR). A
RAW dependence is formed when a load reads the memory location version written by a preceding st
RAR dependence is formed when two loads read the same version of a memory location. A WAW d
dence is formed in between a store that creates a new version of a memory location and a precedin
that created the most recent in program order version of the same memory location. Finally, a WAR d
dence is formed between a store that creates a new version of a memory location and any preceding l
reads the immediately preceding in program order version of the same memory location. The exam
Figure 2.1, part (a) is useful in illustrating the various memory dependence types. A sequence of five
ory instructions is shown, numbered and in program order. There are three RAW dependences: (1,2
and (4,5). There is one RAR dependence (2,3). There are two WAR dependences: (2,4) and (3,4).
there is one WAW dependence: (1,4). As per our definition no dependence exists among load 5 a
instruction before store 4 as the latter creates a new version of memory location 100.

Memory dependences contain ordering information as all are of the form X-after-Y. This order is derived
from the order in which the instructions appear in the original sequential program order. However, it s
be noted that to interpret program semantics, RAR dependences do not impose any ordering restric
two loads that are connected via a RAR dependence can execute in any order with respect to each oth
this reason, the term “RAR relationship” might have been a more appropriate term. However, for unifo
we will use the term RAR dependence.) All other dependences however, have implications on w
required to maintain sequential semantics. A load that has a RAW dependence with a preceding sto
read the value written by that store. A store that has a WAR dependence with a preceding load mu
overwrite the data read by the load before the latter had a chance to read it. Finally, WAW dependenc
tate that in the program order, once both stores are encountered the correct memory state is define
value written by the latter store.

At times it is useful to differentiate betweenstatic dependencesand theirdynamic instances. A static
dependence identifies the pair of static instructions that are connected via the dependence at some p
ing execution. For example, a static dependence can be a (store PC, load PC) pair, where by PC we
the program address where the corresponding load or store resides. A dynamic instance of a static
dence, in addition to the dependent static instructions, also identifies their specific dynamic instances
ically, a static dependence will have multiple dynamic instances. The example of Figure 2.1 pa
illustrates the difference between a static dependence and its dynamic instances. A loop is shown,
iterations first write to theith element of arraya[] (store at line 2) and then read the value written (load at li
3). A static dependence exists between the store at line 2 and the load at line 3. When this code ex
multiple dynamic instances of this static dependence will be encountered, one per iteration of the loo

Another interesting characteristic of memory dependences is theirshape, which for the purposes of this
study we define as the number of distinct memory dependences a load or store experiences (a precis
tion is given in Section 2.3.3). We can measure shape on each dynamic load or store instance sep
(e.g., how may loads read the value written by a particular instance of a given static store) or we can m
shape over all dynamic instances of a given static store or load (e.g., after the program has execut
many unique loads accessed values written by instances of a given store). A given load or store ma
multiple static dependences of all possible types (for example, as the result of control flow). The sa
true for each dynamic instance of loads and stores: Since a memory version can be read by multipl
before it is overwritten, multiple RAW (store at line 1 in Figure 2.1, part (a)) and WAR (store at line 4 of
same figure) dependences are possible for stores. For the same reason multiple RAR dependences
sible per load (this would be the case in part (a) of Figure 2.1, if another load was reading memory lo
100 before the store at line 4 and after the store at line 1). A load may also have multiple RAW and
dependences while a store may also have multiple WAW dependences. This is a result of the plura
memory data types supported by a typical ISA (for example, in the MIPS-I ISA [42], a load or store

18

re 2.1.
, since
,4) and

t.
source
order.

ry val-
epen-

(for-
ce of a
which
h which
emory
f a pro-
chap-

always
ersion
). How-

a load

ay opt
ion we
e pre-

ample,
Exam-
mplic-
ope that
emory
ts that a
ow.

e pre-
r is not
epen-
eem to
if, for

s (i.e.,

gram
ion. The
access anywhere from 1 to 4 consecutive bytes in memory). An example is shown in part (b) of Figu
Load 3, that reads two bytes starting from location 100, has two RAW dependences, (1,3) and (2,3)
stores 1 and 2 only write a single byte. It can also be seen that store 4 has two WAW dependences: (1
(2,4).

Finally, for clarity it is useful to use the termssourceandsink to refer to instructions that are dependen
Given a dependence (A, B), where A and B are instances of a load or store, we define the sink and the
based on the order in which instructions A and B appear in the program defined sequential execution
We will refer to the oldest in program order (encountered first) instruction as thesource, while we will refer
to the youngest in program order (encountered last) instruction as thesink. It should be understood that
while for RAW dependences the terms source and sink also appropriately describe the flow of memo
ues, this is not so for the other dependence types. However, we will uniformly use these terms for all d
dence types for clarity.

2.2 A Class of History-Based Memory Dependence Predictors

In this work we are interested in two types of memory dependence information which informally are
mal definitions are given in sections 2.3.6 and 2.3.7): (1) whether a load or a store has a dependen
given type (i.e., the exact dependence is not important in this case, only its existence is), and (2)
exactly are the memory dependences a load or a store instance has (i.e., the exact load or store wit
the dependences exist is important). As the discussion of the previous section serves to imply, the m
dependence information that interests us can be derived by inspecting the memory address stream o
gram. However, and as it will become apparent during the description of the techniques presented in
ters 3 through 5, using address-based information to derive memory dependence information is not
an option or sometimes, it is not a desirable option. For example, we may wish to know whether a v
created by a store will be read by a subsequent load (i.e., whether the store has a RAW dependence
ever, at the time this information is required we may have not even seen a subsequent load, let alone
that accesses the same memory location.

Instead of waiting to derive memory dependence information by address stream inspection, we m
for a method that allows us to guess, preferably with high accuracy, the memory dependence informat
require. This is exactly the function of a memory dependence predictor. A simple memory dependenc
dictor is one that always makes a predefined, hard-wired prediction. In our preceding paragraph ex
such a predictor could for example, always predict that a store will experience a RAW dependence.
ples of such predictors for other types of program related information abound. For example, caches i
itly use such a predictor as all memory addresses accessed are placed into a typical data cache in h
they will be soon referenced again. Static branch predictors are another example. Finally, naive m
dependence speculation (discussed in Section 3.2) implicitly uses such a predictor that always predic
load will not experience a RAW dependence with a preceding store within the current instruction wind

However, in this work we focus on a different class of predictors. There are two reasons: (1) often th
diction accuracy possible with a predictor that always responds with a predefined, hard-wired answe
sufficient (most of the material of Chapter 3 is motivated by this observation about naive memory d
dence speculation), and (2) in some cases we are interested in information for which there does not s
be a reasonable method of providing a predefined prediction. The latter point is best understood
example, we consider applications that require prediction of the exact RAW memory dependence
load-store pairs).

In this work we focus on a class of history-based predictors which attempt to learn how the pro
behaves and use that information to make guesses about the desired memory dependence informat

19

e pre-
e has a
red our
depen-

whether
ction of
s mem-

ruction
nd once
ur pre-
ch load
when
ction 4)
depen-
correct
perience

future
pre-
mem-
e most
ound.
te. If
scover

d predic-

tions.
example of Figure 2.2 is helpful in illustrating how a straightforward history-based memory dependenc
dictor of this kind might operate. Here we assume that we are interested in predicting whether a stor
RAW dependence with a subsequent load and which load that is. The first time a store is encounte
predictor has no information and for this reason cannot make an educated guess on whether a RAW
dence exists. However, what our predictor does in this case is wait to observe via the address space
a dependence is experienced, and if so, which dependence that is. The actions that lead to the dete
the RAW dependence are as follows: first the store is encountered. Later on, when the store accesse
ory, a record is made of the address it wrote to (action 1). This record is associated with the store inst
somehow (e.g., marked by the PC of the store). When later on, after the load has been encountered a
it accesses memory, its address is used to locate the record left by the store (action 2). At this point o
dictor has successfully detected that the store instruction experienced a RAW dependence and whi
this dependence was with. This information is recorded in a prediction structure (action 3). Later on,
another instance of the same store instruction is encountered, the prediction structure is inspected (a
and since a record is found for the particular store, our predictor can now guess that the same RAW
dence will be experienced again. If so desired, our predictor can later validate whether its guess was
and change its prediction for subsequent instances of the same store. Provided that stores tend to ex
the same memory dependence most of the time, the accuracy of our predictor will be high.

Generally, history-based predictors rely on the assumption that past behavior is a strong indicator of
behavior. If this property does not hold then predictors of this kind will fail. However, as the results
sented later in chapter serve to demonstrate typical programs do exhibit this kind of regularity in their
ory dependence stream. The predictor we have presented in the previous paragraph is of th
straightforward type as it simply predicts that what happened last time will happen the next time ar
Provided that events repeat with high probability, even such a simple predictor will be quite accura
higher prediction accuracy is required, we may opt for more sophisticated predictors that attempt to di
repeating patterns of events (e.g., [12, 99]).

Example code sequences whose memory dependences are a good match for a simple history-base
tor are shown in Figure 2.3. Each iteration of the loop of part (a), contains a load that readsa[i - 1] and a store
that writes toa[i]. A RAW dependence exists between the load and the store of two consecutive itera

Figure 2.2:Example illustrating the operation of history-based memory dependence predictors.

TI
M

E

STORE

STORE ACCESS

LOAD

LOAD ACCESS

LOAD

1. DETECTION

(ADDRESS, STORE)

ADDRESS

2. PREDICTIONSTORE PREDICT

(STORE, LOAD)

1

2

3

4

PREDICTOR

(STORE, LOAD)

(STORE, LOAD)
RAW DEP. PREDICTED

RAW DEPENDENCE DETECTED

20

ement
ation.
WAW

e corre-

harac-
(2) we
depen-
dica-
tory-
e most

cts of
impli-
along

n we
lysis we
ctive of
ndence
e first
tributes

ful, in
e: (1)

n has,

ws we
the bulk
WAW

3.7, we

ction.
Similarly, every iteration of the loop of part (b) contains a load and a store which are used to read, incr
and update thecount variable. RAW dependences exist between each store and the load of the next iter
Also WAW dependences exist between stores of successive iterations. The aforementioned RAW and
dependences are amenable to history based prediction as once observed they occur every time th
sponding instructions are encountered.

For history-based memory dependence prediction to be possible and of practical use the following c
teristics are desirable: (1) we should be able to build history, that is detect memory dependences,
should be able to record the collected history using structures of reasonable size, and (3) the memory
dence attribute we wish to predict should exhibit sufficient regularity so that past behavior is a good in
tion of future behavior. A multitude of options exists on how to go about designing the specifics of a his
based memory dependence predictor. Weighting the appropriateness of each option is an exercis
meaningful given a target application. Accordingly, in this chapter, we restrict our attention to aspe
memory dependence behavior that seem relevant for most, if not all predictors of this type or that have
cations on the sophistication required of the prediction mechanism. A description of these attributes
with a justification of why we include them is given at the beginning of the next section.

2.3 Memory Dependence Behavior Analysis

With a high-level understanding of what is involved in predicting memory dependence informatio
now proceed to characterize the memory dependence behavior of the SPEC95 programs. In this ana
focus on those characteristics of memory dependence behavior that are more relevant from the perspe
the class of history-based predictors we described in the previous section and of the memory depe
information that we utilize in the techniques presented in chapters 3 through 5. In this section w
describe the types of memory dependence information that interest us and then proceed to list the at
of memory dependence behavior we studied.

While there are certainly many different types of memory dependence information that might be use
this work we are interested in predicting two types of dependence information. Informally, these ar
whether a particular instruction has a dependence of a particular type or thememory dependence statusof an
instruction (a formal definition is given in Section 2.3.6), and (2) the set of dependences an instructio
or thememory dependence setof an instruction (a formal definition is given in Section 2.3.7).

As we have seen, there are four types of memory dependences. For most of the analysis that follo
focus on RAW and RAR dependences. We do so, as these are the dependence types that we use for
of the techniques we present in chapters 3 to 5. However, we do measure some of the WAR and
dependence characteristics of programs. Before presenting our findings in sections 2.3.2 through 2.
first list the metrics we used along with a justification of why we include them in Section 2.3.1.

Figure 2.3:Example code sequences that are amenable to history-based memory dependence predi

for (i = 1; i < N; i++)

a[i] = a[i - 1]

for (p = parent->children; p; p = p->next)

p->parent->count++

(a) (b)store
load

21

desir-
able to
t past
ory

ic pro-
nique.

s char-
ve to

ces are
entation
d per
ented in

s and
ns for
l have
of

record

etect-
Many
nsider

with
perty

pen-

tion
ctively.
mory
formal

depen-
t are the

R and
ds and
nces at
dences
r RAR
2.3.1 Metrics and Justification

For history-based memory dependence prediction to be possible the following characteristics are
able: (1) we should be able to build history, that is detect memory dependences, (2) we should be
record the collected history, and (3) memory dependences should exhibit sufficient regularity so tha
behavior is a good indication of future behavior. In this context, the following characteristics of mem
dependence behavior are relevant:

1. What fraction of loads and stores experience what memory dependence types? This metr
vides an indication of the potential coverage of any memory dependence prediction based tech
These measurements we present in Section 2.3.2.

2. Do we have to predict a single dependence or multiple dependences per store or load? Thi
acteristic of memory dependences has ramifications on how a prediction mechanism will ha
represent dependences and on the sophistication required of it. For example, if dependen
mostly one-on-one (i.e., each load or store instance has a single dependence), a direct repres
of dependences may be practical. If however, multiple dependences have to be predicte
dynamic instance, other representations may be necessary. These measurements are pres
Section 2.3.3.

3. How large is the working set of loads and stores with dependences? Or, for how many load
stores we have to record dependence history information in order to be able to make predictio
a desired fraction of loads and stores? If high coverage is desired, a prediction mechanism wil
to record information for thoseinstructionsthat experience dependences. The working set size
those instructions provides an indication of the amount of resources that will be necessary to
the relevant information. These measurements we present in Section 2.3.4.

4. What size structures are required to detect a desired level of memory dependence activity? D
ing memory dependences is required to build the history necessary for prediction purposes.
options exist in how to go about detecting dependences. For the purposes of this study we co
a straightforward, yet effective way which amounts to keeping a record of the lastn data addresses
touched by the program. A detailed description of this metric is given in Section 2.3.5 along
the measurements. (Note that item 3 is a property of the instructions, while this metric is a pro
of the memory addresses accessed.)

5. Whether sufficient regularity exists in the dynamic behavior of the attribute of memory de
dences we want to predict. Since we are interested inmemory dependence statusand inmemory
dependence setprediction (definitions are given in sections 2.3.6 and 2.3.7) we restrict our atten
to these two attributes and present locality measurements in sections 2.3.6 and 2.3.7 respe
Informally, locality refers to the likelihood that the same memory dependence status or me
dependences are encountered in two consecutive executions of the same static instruction. A
definition is given at the beginning of each section.

2.3.2 Memory Dependence Characterization

We start our analysis by measuring the frequency of memory dependences. We also characterize
dences by how they are distributed in memory segment terms (data, heap, stack) and by how far apar
dependent instructions in the execution stream.

First, we measure the percentage of executed loads and stores that experience RAW, RAR, WA
RAW, WAR, WAW dependences respectively. These results are shown in Figures 2.4 and 2.5 for loa
stores respectively. For loads we also show the fraction that experience both RAR and RAW depende
the same time as in the methods we present in Chapter 4 preference will be given to the RAW depen
in such cases. Before we comment on these results it is important to note that accounting correctly fo

22

a store
loads

ward
measure
location
efini-
ion of
esses a
nce on

rity of
f loads

in mem-
e also

per-
that are

read a
s hav-

loads
ring the

ice. In
ince we

loads
and WAW dependences requires distinguishing which side of a dependence (sink or source) a load or
appears at. The reason is that a particular load (store) may have a RAR (WAW) dependence with
(stores) the precede or that follow it. Ultimately, we could distinguish between backward and for
dependences by accounting for the corresponding dependences separately. However, we choose to
those loads that have a dependence with a preceding load, and those stores that overwrite a memory
written by a preceding store (i.e., we look only at backward RAR and WAW dependences). It is this d
tion of RAR dependences that is useful for the techniques we present in Chapter 4. With this definit
RAR dependences we do not count a RAR dependence on the first in program order load that acc
memory location that other subsequent loads also access. Similarly, we do not count a WAW depende
the first store that writes to a particular memory location that later gets overwritten.

Focusing on Figure 2.4 and specifically on RAW dependences we can observe that the vast majo
executed loads read a value written by a preceding store through a RAW dependence. The rest o
access a value that was produced outside of the scope of the program. This data was either loaded
ory before the program execution was initiated or was the result of a system call. Many loads hav
WAR dependences (above 70% for all programs, except 124.m88ksim). In conjunction with the high
centage of RAW dependences, this observation suggests that memory is often used to hold values
written, read and later overwritten.

Greater variation is exhibited by RAR dependences. For most programs around half of all loads
value previously read by a preceding load. At the two extremes are 107.mgrid with about 93% of load
ing a RAR dependence and 125.turb3d with 40% of load having a RAR dependence. Most of these
and in some cases all of them, read a value that was also written by a store as it can be seen by compa
RAR and RAW+RAR bars. This observation suggests that some stored values are read at least tw
those cases where that RAR bar is above 50%, some memory values are read more than two times (s
do not include the first load in our RAR measurement).

Figure 2.4: Memory Dependence Breakdown - Loads. Shown is the fraction (Y-axis) of all executed
that experience a memory dependence of the given type.

099 124 126 129 130 132 134 147

 RAW RAR WAR RAW+RAR

101 102 103 104 107 110 125 141 145 146

LO
A

D
S

S
pe

cI
N

T
S

pe
cF

P

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

23

early all
utations
ontain
te in the
causes

e result
a result
d by a

henom-
a load
enting
These
ccessed

f WAW
d that
s our

dly.

through
ap and
darily in

nven-
re typ-

stores
Figure 2.5 shows a breakdown of the dependences experienced by stores. For most programs n
stores experience RAW dependences suggesting that these values might be used for further comp
within the program itself (it might also be that this traffic corresponds to callee-saved registers that c
dead values). However, some stored values are never read by a load. This phenomenon is most acu
case of 126.gcc and 147.vortex where nearly half of all stored values are never used. Three possible
of this phenomenon are: (1) Some of these stored values constitute program output. (2) Others are th
of ambiguous dependences. In these cases, a value resides both in a register and in memory. As
every time the register is updated its copy in memory is also updated, however the memory copy is rea
load only when undetectable statically memory dependences exist. (3) However, in some cases this p
enon is the result of the algorithms used; stored values are simply overwritten by another store before
has had a chance to read them. (For example gcc uses its own dynamic memory allocator, implem
multiple stacks of objects. This allocator uses several global flags that relate to the current stack.
flags are always updated when the current stack changes. However, these flags are not always a
before the next stack change occurs.) The latter observation (point 3) is supported by the frequency o
dependences, which are typically more frequent than RAW dependences. Finally, it should be note
most stores also overwrite a value previously read by a load (WAR dependences). This result confirm
previous observation that a large fraction of memory values are written, read and overwritten repeate

2.3.2.1 Address Space Distribution of Memory Dependences

In this section we present a breakdown of memory dependences in terms of the address space
which they occur. Specifically, we classify dependences into those that occur through the data, the he
the stack segments. These measurements are interesting primarily as reference material and secon
providing indications on: (1) whether much of the dependence activity results from programming co
tions (stack), and (2) whether most of the activity results from the data and the stack segments which a

Figure 2.5: Memory Dependence Breakdown - Stores. Shown is the fraction (Y-axis) of all executed
that experience a memory dependence of the given type.

0%

25%

50%

75%

100%

099 124 126 129 130 132 134 147

 RAW WAR WAW

101 102 103 104 107 110 125 141 145 146

S
TO

R
E

S

S
pe

cI
N

T
S

pe
cF

P

0%

25%

50%

75%

100%

24

s shown
round-

be seen
ion of
activity,
rance of
ically easier to disambiguate at compile time. Table 2.1 reports these measurements. The percentage
are over all loads (or stores) that experience the particular type of dependence. Note that since we use
ing, the sum of all three segments per dependence type does not necessarily add up to 100%. It can
that there is no clear trend in how memory dependences are distributed. While a significant fract
dependences occurs via the stack, much of the dependence activity, and in some case most of the
takes place through either the data or the heap segment. We should note that the occasional appea
heap memory dependences in floating programs is a side-effect of the use of theFORTRANto C translator and
its implementation ofFORTRAN built-in functions.

RAW RAR WAR

DATA HEAP STACK DATA HEAP STACK DATA HEAP STACK

LO
AD

S

099 72.5% 0.0% 27.5% 89.0% 0.0% 11.0% 66.8% 0.0% 33.2%

124 60.6% 13.6% 25.9% 81.0% 18.9% 0.1% 63.7% 1.2% 35.2%

126 11.6% 33.6% 54.8% 28.7% 47.4% 23.9% 9.1% 31.0% 60.0%

129 92.9% 0.0% 7.1% 100.0% 0.0% 0.0% 92.4% 0.0% 7.6%

130 18.8% 45.2% 36.1% 24.5% 70.9% 4.6% 14.3% 43.4% 42.2%

132 1.1% 71.5% 27.4% 6.4% 84.1% 9.5% 0.7% 70.2% 29.1%

134 11.6% 51.1% 37.4% 22.6% 70.6% 6.8% 11.2% 38.7% 50.1%

147 7.1% 31.4% 61.5% 19.8% 45.5% 34.7% 2.9% 18.3% 78.8%

101 0.6% 0.1% 99.2% 6.9% 0.1% 93.0% 0.6% 0.1% 99.2%

102 91.7% 0.0% 8.3% 100.0% 0.0% 0.0% 90.4% 0.0% 9.6%

103 38.3% 1.2% 60.5% 54.8% 0.8% 44.3% 15.9% 1.8% 82.3%

104 90.0% 0.9% 9.1% 93.9% 0.5% 5.6% 88.0% 1.0% 11.0%

107 87.6% 0.0% 12.4% 87.8% 0.0% 12.2% 86.5% 0.0% 13.5%

110 72.3% 0.0% 27.7% 79.1% 0.0% 20.9% 59.9% 0.0% 40.1%

125 21.7% 0.0% 78.3% 46.2% 0.0% 53.8% 16.1% 0.0% 83.9%

141 66.2% 0.1% 33.6% 71.8% 0.0% 28.2% 60.8% 0.2% 39.0%

145 47.5% 0.0% 52.5% 57.7% 0.0% 42.3% 46.9% 0.0% 53.1%

146 88.5% 0.0% 11.5% 93.0% 0.0% 7.0% 87.9% 0.0% 12.1%

Table 2.1:Address space distribution of memory dependences.

25

ss space
over all
experi-

he fre-
en into

the dis-
this sec-

ber of
of the
For reference we also present a breakdown of all load and stores accesses in terms of the addre
being accessed. This data is presented in Table 2.2. Note that in these results we measure fractions
executed loads and stores (in Table 2.1, we measured fractions over all executed load or stores that
enced a dependence of a given type). To correlate the results of Table 2.2 with those of Table 2.1, t
quency of the corresponding memory dependences (as reported in figures 2.4 and 2.5) must be tak
account.

2.3.2.2 Dynamic Instruction Distance Distribution

We have seen that the majority of memory instructions experience memory dependences and that
tribution of these dependences over the stack, heap and data segments exhibits great variation. In
tion we measure how far apart are the instructions connected with dependences. We usedynamic instruction
distanceas our metric. We define the dynamic instruction distance of a dependence to be the num
instructions executed between the two dependent instructions. This metric provides an indication

RAW WAW WAR

DATA HEAP STACK DATA HEAP STACK DATA HEAP STACK

ST
O

RE
S

099 39.2% 0.0% 60.8% 39.3% 0.0% 60.7% 39.1% 0.0% 60.9%

124 55.6% 1.6% 42.7% 56.8% 1.9% 41.3% 55.9% 1.1% 43.0%

126 5.3% 6.0% 88.7% 11.8% 5.2% 83.0% 5.2% 5.1% 89.7%

129 86.8% 0.0% 13.2% 89.0% 0.0% 11.0% 86.6% 0.0% 13.4%

130 15.7% 15.8% 68.5% 14.2% 21.2% 64.6% 15.7% 15.8% 68.5%

132 1.0% 47.8% 51.2% 0.9% 55.1% 44.1% 0.9% 48.1% 50.9%

134 6.7% 32.0% 61.3% 11.0% 34.2% 54.8% 6.8% 30.6% 62.6%

147 0.8% 19.1% 80.1% 9.4% 22.5% 68.0% 0.8% 16.6% 82.6%

101 0.8% 0.5% 98.7% 1.1% 0.5% 98.4% 0.8% 0.5% 98.7%

102 72.0% 0.0% 28.0% 66.5% 0.0% 33.5% 69.6% 0.0% 30.4%

103 6.5% 4.1% 89.5% 6.9% 4.0% 89.1% 6.2% 4.1% 89.6%

104 79.5% 3.2% 17.3% 80.4% 3.0% 16.6% 79.2% 3.3% 17.5%

107 84.6% 0.0% 15.4% 85.2% 0.1% 14.7% 84.5% 0.0% 15.5%

110 58.5% 0.0% 41.5% 57.5% 0.0% 42.5% 58.1% 0.0% 41.9%

125 17.1% 0.0% 82.9% 14.4% 0.0% 85.6% 15.9% 0.0% 84.1%

141 63.7% 0.3% 36.0% 62.4% 0.3% 37.3% 63.7% 0.3% 36.0%

145 23.4% 0.0% 76.6% 38.0% 0.0% 61.9% 23.4% 0.0% 76.6%

146 84.2% 0.0% 15.8% 83.4% 0.0% 16.6% 84.0% 0.0% 16.0%

Table 2.1:Address space distribution of memory dependences.

26

-order
ds of
e frac-

anisms

pen-
easure
erience
experi-
tance

s, a load
gesting
re clus-

t source
of their
possible

that is
rams
ow of
e are

uted
number of dependences that are going to be observed from within the instruction window of an out-of
processor. We will use this information during Chapter 3 where we will be concerned with metho
extracting and exploiting load-store parallelism. These measurements are also useful in estimating th
tion of memory dependence activity that can be detected using existing load/store execution mech
found in most modern, dynamically scheduled ILP processors (i.e., load/store queues).

Figure 2.1 shows the cumulative distribution of dynamic instruction distances for RAW and RAR de
dences. Samples are taken at the following distances: 8, 64, 512, 4K and 32K. In all four cases, we m
distances at the point of the dependent load (sink). The percentages shown are over all loads that exp
dependences of the corresponding type. As we have discussed, a given dynamic load instance may
ence multiple RAW and RAR dependences. We account for multiple dependences by including dis
measurements for the closest and the furthest away source instructions (a store for RAW dependence
for RAR dependences). In the case of RAW dependences, virtually no difference was observed sug
that rarely loads experience multiple RAW dependences or that whenever they do the source stores a
tered very close to each other in the execution stream. For this reason we only account for the closes
store in our measurements. Loads with RAR dependences however, were sensitive to the selection
source load. For this reason we do include measurements for both the closest and the furthest away
source loads.

It can be observed that a noticeable fraction of loads experiences a RAW dependence with a store
more than 32K instructions away. This phenomenon is more pronounced for the floating point prog
where the common case is that very few loads have RAW dependences that are visible within a wind
even 32K instructions. However, floating point programs also exhibit great variation. At one extrem

LOADS STORES

DATA HEAP STACK DATA HEAP STACK

099.go 73.2% 0.0% 26.8% 39.8% 0.0% 60.2%
124.m88ksim 69.3% 10.6% 20.1% 55.5% 4.2% 40.3%

126.gcc 19.3% 20.7% 50.0% 11.70% 5.8% 82.5%
129.compress 93.2% 0.0% 6.7% 89.2% 0.0% 10.8%

130.li 20.2% 44.3% 35.4% 14.2% 21.3% 64.5%
132.ijpeg 4.4% 69.1% 26.5% 0.9% 55.5% 43.6%
134.perl 14.4% 49.6% 36.1% 10.5% 37.0% 52.4%

147.vortex 9.2% 40.0% 59.8% 8.7% 28.2% 63.0%
101.tomcatv 5.2% 0.2% 94.5% 1.1% 0.5% 98.4%

102.swim 93.4% 0.0% 6.6% 69.0% 0.0% 31.0%
103.su2cor 40.9% 1.8% 57.3% 7.2% 3.9% 88.8%

104.hydro2d 90.2% 1.2% 8.6% 80.8% 3.0% 16.2%
107.mgrid 87.6% 0.0% 12.4% 85.4% 0.1% 14.5%
110.applu 74.0% 0.0% 26.0% 57.9% 0.0% 42.1%

125.turb3d 28.5% 0.0% 71.5% 16.7% 1.5% 90.0%
141.apsi 68.5% 0.2% 31.3% 62.3% 0.4% 37.2%

145.fpppp 48.2% 0.0% 51.8% 38.1% 0.0% 61.9%
146.wave5 89.3% 0.0% 10.7% 83.7% 0.0% 86.1%

Table 2.2:Address space distribution of load and store accesses. Fractions are reported over all exec
loads or stores.

27

AW
ograms
nces are
he case
ments.
ing val-
es that
depen-
within

riables
e mea-
differ-
, these
m also
are not
tance
sists of
gregate

they are

ctions
there is

8, 64,
programs like 102.swim and 104.hydro2d were roughly, only 6% and 8% respectively of loads with R
dependences experience a dependence within a 32K instruction window. At the other extreme are pr
like 145.fpppp and 141.apsi that demonstrate a steady increase of RAW dependences as longer dista
considered. We take a closer look at those programs in order to better understand their behavior. In t
of 102.swim the RAW dependences that are not visible in their vast majority are accesses to array ele
102.swim repeats a series of loops. Each of these loops reads values from one set of arrays, produc
ues for a different set of arrays. No recurrences exist in these loops. As a result, the RAW dependenc
are observed are mostly across different loops. Given that these loops iterate many times, these RAW
dences are spread over many instructions. For 102.swim, the few RAW dependences that are visible
the instruction window range shown, are mostly the result of accesses to induction or other global va
that were not register allocated. 104.hydro2d also experiences very few RAW dependences within th
sured range. It is similar to 102.swim in that its computation proceeds in a series of loops that read a
ent set of arrays than they update. This program however has loops with recurrences. However
recurrences are on non-array variables and are mostly register allocated. The loops of this progra
access loop-invariant values that are calculated just before the loop starts. Some of these variables
register allocated or are occasionally spilled to the stack, giving rise to the majority of the shorter dis
RAW dependences. 145.fpppp on the other hand spends most of its time in loop whose iterations con
a series of dependent calculations. These calculations use either stack allocated variables (often of ag
data types) or global data segment allocated ones. Because these values are used quickly after
updated, a significant number of RAW dependences are observed even in short distances.

It is also interesting to observe that in the range of modern instruction windows (less than 64 instru
for most processors) most loads do not experience RAW dependences. However, for most programs

Figure 2.1: Cumulative dependence dynamic instruction distance distribution. Samples are taken at
512, 4K and 32K distances. (a) RAW dependences. (b) RAR dependences.

 Max. Distance Min. Distance

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

R
A

W
(b

)
R

A
R

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

100%

28

s proces-
a pre-
e we

of the
sidered,
re con-
r, even
l, cur-
RAR

ics: (1)
amic

bserved
epen-
to pre-

gregate
resented

ence
). The
RAW
set of 1.

single

one of
ber of
e pro-
ths are

relevant
as. For
ing the
edictor
re are
emory

loads

Section
a rapid increase in RAW dependences as we move to larger distances. These results suggest that a
sors become able to establish larger windows, the probability of having to access a value written by
ceding store within the same window will increase. We will make use of this result in Chapter 3, wher
will be interested in exploiting load/store parallelism.

Focusing on RAR dependences we can observe that great variation is exhibited in the distances
closest and the furthest away possible source loads. When the furthest possible source loads are con
results are very similar to those for RAW dependences. However, when the closest possible loads a
sidered we observe significantly higher levels of RAR dependences even in short distances. Howeve
then there is a large fraction of RAR dependences that are not visible from within the range of a typica
rent generation instruction windows. We will use this result in Chapter 4, to motivate the use of distant
dependences in providing faster access to memory values.

2.3.3 Memory Dependence Shape Characterization

We next consider the shape memory dependences take. For the purposes of this study we defineshapeto
be the number of dependences of a given type experienced by a load or a store. We use two metr
instance dependence set sizewhich is the number of dependences of a given type experienced by a dyn
instance of a load or a store., and (2)aggregate dependence set size, which is the number of distinct static
dependences of a given type that are experienced by a static load or a store when all dependences o
by all dynamic instances of the particular instruction are taken into account. Informally, the instance d
dence set size of a load or a store provides an indication of the number of dependences we will have
dict if in our prediction we care about the exact dependences loads and stores have. The ag
dependence set size measurements do not directly pertain to memory dependence prediction and is p
only to provide additional insight on the memory dependence behavior of programs.

Figure 2.2, part (b) shows an example instruction sequence that is helpful in clarifying the differ
between the two metrics (this sequence can be generated by an execution of the loop of part (a)
instance of storest1 at line 1 has a RAW instance dependence set size of 3 as it experiences three
dependences with the loads of lines 2, 3 and 4. Each of these loads has a RAW instance dependence
The instance of storest1 at line 5 has a RAW instance dependence set size of 1 as it experiences a
RAW dependence with the load of line 6. The RAW aggregate dependence set size ofst1 is 4 as its dynamic
instances (shown at lines 1 and 5) overall experienced 4 distinct static RAW dependences each with
the 4 static loads shown (ld1 to ld4). Note that the aggregate dependence set size represents the num
distinct static dependences experienced dynamically by a given load or store for a particular run of th
gram. It is not the number of all memory dependences that might appear if all possible execution pa
taken into account.

The shape memory dependences take has also implications on their representation. This is most
for memory dependence predictors that attempt to predict the exact dependences an instruction h
example, if a store instance experiences multiple RAW dependences (i.e., multiple loads are read
value written by the store, e.g., store at line 1 of Figure 2.2, part (b)) then a memory dependence pr
will have to somehow predict multiple dependences for that store. In general, we have noted that the
two reasons why a load or a store may experience multiple dependences at any given instance: (1) a m
value may be read multiple times after it has been written or before it is overwritten by a store, and (2)
and stores may be manipulating different data types.

In the sections that follow we first present measurements on the instance dependence set size (
2.3.3.1) and then on the aggregate dependence set size (Section 2.3.3.2).

29

results
nts are
set per
all loads
ce or the
(a) we
s (sink)

single
s that
s with
produc-
RAW
stores

sult sug-
d for the
s explic-
nce of

ly for
source

ther side
, multi-
dences

ds see,
than
re are

all frac-

ndence
2.3.3.1 Instance Dependence Set Size

In this section we present measurements of the instance dependence set of instructions. We show
for both the source and sink instructions of each dependence type. The results of these experime
shown in Figure 2.3 where we report the cumulative distribution of the dynamic instance dependence
dependence type and separately for the source and the sink instructions. Fractions are reported over
or stores (depending on the dependence type and on whether the measurements apply to the sour
sink instructions) that experienced a memory dependence of the given type. For example, in part
report the instance dependence set size distribution as a fraction of all stores (source) and of all load
that experienced a RAW dependence.

Focusing first on RAW dependences (part (a)), it can be seen that virtually all loads (sink) observe a
producing store for most programs. Only 126.gcc, 132.ijpeg, 134.perl and 147.vortex exhibit load
experience multiple producing stores. Even so, these loads represent a very small fraction of all load
RAW dependences (less then 4% in most cases). As expected, loads cannot experience more than 4
ing stores per instance (the largest data type is 4 bytes while the smallest is one byte). Stores with
dependences (source) exhibit slightly different behavior. For the integer codes and for the most part,
see a single load consumer. However, a noticeable fraction sees more than one consuming load, a re
gesting that stored values are often read more than once. This latter phenomenon is more pronounce
floating point programs. These result suggest, that a mechanism that represents RAW dependence
itly (i.e., by enumerating all consuming loads) will have to represent multiple dependences per insta
many stores.

The sink loads of RAR dependences for the most part observe a single source load. On
124.m88ksim, 126.gcc and 132.ijpeg is there a noticeable fraction of loads that see more than one
loads as a result of accessing different data types. The source loads of RAR dependences on the o
see more than one sink loads, suggesting that after a memory value is read once, it is often read again
ple times. As it was the case with RAW dependences, a mechanism that represents RAR depen
explicitly will have to represent multiple RAR dependences per instance of source loads.

The dynamic shape of WAR dependences follows closely that of RAW dependences. Source loa
for the most part, a single sink store that overwrites them, while sink stores typically overwrite more
one load. Finally, WAW dependences are for the most part one-on-one. While in some programs the
either source or sink stores that experience multiple WAW dependences, these represent a very sm
tion of all stores with WAW dependences (less than 2% in all cases).

Figure 2.2: Example illustrating the difference between static dependence set size and instance depe
set size.

1: st1 M(100)

2: ld1 M(100)

3: ld2 M(100)

4: ld3 M(100)

5: st1 M(101)

6: ld4 M(101)

(a) (b)

for i = 100 to 101

st1 M(i)
if (i == 100)

ld1 M(i)
ld2 M(i)
ld3 M(i)

else
ld4 M(i)

30

n.
Figure 2.3:Shape of memory dependences: cumulative dynamic instance dependence set distributio

0%
20%
40%
60%
80%

100%

90%
92%
94%
96%
98%

100%

0%
20%
40%
60%
80%

100%

60%
70%
80%
90%

100%

95%
96%
97%
98%
99%

100%

0%
20%
40%
60%
80%

100%

95%
96%
97%
98%
99%

100%

95%
96%
97%
98%
99%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

R
A

W
(b

)
R

A
R

(c
)

W
A

R
(d

)
W

A
W

 SOURCE SINK

31

easure-
ations

on stati-
d
ce type.
ences.
ynamic
sidered
equal to

wever,
nificant

elatively
nce pre-
ences
mory

n with
re this
is pos-
h esti-
of the

ability

fully-
ation
fol-

raction

ams
ion is
proxi-
ize
s and

de used
each of
the next
2.3.3.2 Aggregate Dependence Set Size

In this section we consider the aggregate dependence set size of loads and stores. While these m
ments are not pertinent to dynamic history-based memory dependence prediction, they provide indic
on what would be necessary had we attempted to represent and convey dependence set informati
cally. For this purpose we measure theaggregate dependence set sizeof loads and stores which we define
earlier. Figure 2.4 shows the cumulative distribution of aggregate dependence set size per dependen
We consider both source and sink instructions in this experiment and focus on RAW and RAR depend
The dependence set size range shown is 1 to 4 dependences. The Y axis reports the fraction of d
instructions that experience the same dependence type that would have been covered if we con
dynamic instances of only those static instructions that have static dependence set sizes less than or
the value of the X-axis.

We can observe that a relatively large fraction of sink loads observe a single static dependence. Ho
in most cases the majority of sink loads have more than one static dependence. In some cases a sig
fraction of loads have more than 4 static dependences. Aggregate memory dependence sets are r
higher for the source loads and stores. These results may seem discouraging for memory depende
diction. However, we note that as we will later demonstrate, the working set of memory depend
observed per static load or store is relatively small. This phenomenon will allows us to predict me
dependences without having to record all static dependences per load or store.

2.3.4 Working Set of Memory Dependences

History-based memory dependence prediction requires associating dependence history informatio
the relevant instructions. In this context, an important consideration is whether we could expect to sto
information using structures of reasonable size. While determining the exact size of these structures
sible only given a specific prediction mechanism, it is desirable to define a metric that provides a roug
mate of the amount of resources that will be required. For this purpose, we provide measurements
working set size of instructions with dependences of a given type. We do so by measuring the prob
that a load or a store that experiences a dependence of a given type is among the lastn loads or stores that
experienced a dependence of the same type (another way of viewing this metric is as the hit rate of a
associative load/store cache with LRU replacement). A relatively high probability provides an indic
that the working set is less thann. The results of these experiments are shown in Figure 2.5 and for the
lowing values ofn: 16, 256, 1K and 4K.

It can be seen that even when we consider just the last 16 instructions, we can capture a significant f
of memory dependence activity. Coverage increases sharply as we consider larger values ofn and
approaches 100% whenn is 4K. This result is especially encouraging as it applies even to those progr
that have relatively large instruction working sets (e.g., 126.gcc and 147.vortex). The only except
145.fpppp whose working set of RAW dependences is large enough to demonstrate a probability of ap
mately 0.7 (70%) even whenn is 4K. 145.fpppp spends most of its time in loop iterations whose static s
is relatively large (several thousands of instructions). Most of these instructions are floating point load
stores which are used to read and modify a rather large number of stack allocated variables. The co
to update these variables consists of a different load-store pair per variable. Since in most cases
these variables is updated once per iteration, a large number of dependences is encountered until
dynamic instance of the same static dependence.

32

entries
epen-

depen-
ssary, the
recorded

ences.
over all
The results of these experiments suggest that prediction structures with a reasonable number of
should be sufficient in covering most of the memory dependence activity (i.e., recording memory d
dence information for the majority of loads and stores with memory dependences).

2.3.5 Capturing Memory Dependence Activity

As we discussed in Section 2.2, a history-based memory dependence predictor requires a memory
dence detection mechanism. Such a mechanism records a number of recent accesses and if nece
identities of the instructions that performed these accesses. The number of accesses that can be

Figure 2.4: Static memory dependence set size cumulative distribution. (a) Read-after-Write depend
(b) Read-after-Read dependences. Range shown is 1 to 4 dependences. Y axis reports fractions
executed instructions that experience the particular dependence type.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

R
A

W
(b

)
R

A
R

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 SOURCE SINK

0%
20%
40%
60%
80%

100%
0%

20%
40%
60%
80%

100%

0%

20%

40%

60%

80%

100%
0%

20%

40%

60%

80%

100%

33

r. We
ction

mory
ture a

d in
sets a rough upper bound on the fraction of memory dependence activity that is visible to the predicto
have seen that relying on mechanisms bound by the number of instruction visible from within the instru
windows of modern ILP processors does not allow us to capture much of the RAW and RAR me
dependence activity (Section 2.3.2.2). To quantify the amount of information that is necessary to cap
desired level of memory dependence activity, in this section we measure theaddress distanceof memory
dependences. We defineaddress distanceas the number of unique addresses (word granularity) accesse

Figure 2.5: Probability that a store or a load instruction that has a dependence has been among then most
recent instructions that experienced a dependence of the same type.n values shown are: 16, 256, 1K and 4K
(left to right).

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a
)

R
A

W

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b
)

R
A

R
(d

)
W

A
W

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(d
)

W
A

R

0.0

0.2

0.4

0.6

0.8

1.0

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0.0

0.2

0.4

0.6

0.8

1.0

34

collect
record
nces we
es per

in the
nction-

keep
emory
nisms.

his mea-
shown
indow

to cap-
and

address
f RAW
e more
float-
In con-

amples
ts all
between two dependent instructions. Recording information about these addresses should allow us to
the desired dependence information. This metric is occasionally pessimistic since we do not need to
all memory accesses to detect certain kinds of dependences. For example, to detect RAW depende
need to record only store accesses. This metric can also be optimistic when multiple dependenc
instance of a source or of a sink instruction have to be detected explicitly. However, we note that
applications of memory dependence prediction we present in latter chapters, we do not require this fu
ality. The address distance distribution is also useful in determining how much storage is required to
the data values touched. This information will be proven useful in chapters 4 and 5 where we use m
dependence prediction to introduce novel memory value accessing and storage management mecha

We present measurements for loads and stores separately, in figures 2.6 and 2.7 respectively. For t
surements we take samples at address distances of 16, 256, 4K and 64K address windows. Also
(right-most sample) is the fraction of loads or stores that have dependences given an infinite address w
(Section 2.3.2).

Focusing first on the loads, we can observe that in most cases a 64K address window is sufficient
ture most of the dynamic memory dependences of a given type. This is not true for 102.swim
104.hydro2d where most of the RAW and WAR dependences escape detection even when a 64K
window is used. We can also observe that the integer programs exhibit a relatively high percentage o
dependences that are detectable even with a 256-entry address window. In fact, it is typical to observ
than 50% of all RAW dependences within this limit. This phenomenon is not observed in most of the
ing point programs where very few RAW dependences are detected even with a 4K address window.

Figure 2.6: Cumulative address-distance distribution of memory dependences as seen by loads. S
are taken at address distances of 16, 256, 4K and 64K. Last value shown (right-most) repor
dependences independently of distance.

 RAW

 RAR

 WAR

 RAW + RAR
0%

20%

40%

60%

80%

100%

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
0%

20%

40%

60%

80%

100%

35

smaller
depen-
hen the

tion. We
obser-

will
oes not
nd pre-

ith few
t was
small
within
c.

sonable
mple,
sed we
ences
g-point
emory

amples
ts all
trast, RAR dependences appear to be more frequent in floating point programs especially when the
address windows are used. We can also observe that in most cases, the majority of loads with RAR
dences detected also have RAW dependences detected for the larger address windows. However, w
smaller address windows are used a considerable fraction of those RAW dependences escape detec
will use this observation to streamline accessing memory values in Chapter 4. All the aforementioned
vations are for the given input data set, result may vary for different inputs. However, in Chapter 4 we
show that as far a memory dependence prediction is concerned, using a different input data set d
affect considerably the fraction of loads and stores that have RAW or RAR dependences detected a
dicted correctly within relatively small address windows.

We can observe similar results for the store instructions that experience memory dependences. W
exceptions, virtually all of memory dependence activity is captured with a 64K address window. As i
the case with load instructions, most of the dependence activity is captured even with a relatively
address window of 256 entries. Interestingly, a large fraction of stores experience WAW dependences
the scope of this address window. We will exploit this phenomenon in Chapter 5 to reduce store traffi

The results of this section suggest that for the programs we studied and for the given data sets a rea
fraction of memory dependence activity can be captured using relatively small structures. For exa
using a structure capable of recording information about the last 256 unique memory locations acces
can detect roughly 56% (integer codes) and 23% (floating point codes) of all RAW memory depend
(measured on loads). With the same structure we can capture 44% (integer codes) and 53% (floatin
codes) of all RAR memory dependences (measured on loads). While a noticeable fraction of m

Figure 2.7: Cumulative Address-Distance Distribution of memory dependences as seen by stores. S
are taken at address distances of 16, 256, 4K and 64K. Last value shown (right-most) repor
dependences independently of distance.

0%

20%

40%

60%

80%

100%

101 102 103 104 107 110 125 141 145 146

0%

20%

40%

60%

80%

100%

099 124 126 129 130 132 134 147

 RAW

 WAW

 WAR

36

at for the
at have

her a
nstruc-

mory
xample,
ther the
RAW
e with a
infor-

depen-
. The
tus of

ry

ad to the
s been
ill

to his-
ng the
ity of

uc-
cality

erved”
status

s addi-
e status
le pro-
dependence escapes detection even when we consider relatively large address distances, we note th
purposes of the applications we present in chapters 3 through 5 the fraction of loads and stores th
dependences detected is sufficient.

2.3.6 Memory Dependence Status Locality

The most primitive piece of memory dependence information that we consider in this work is whet
load or a store instance (1) will experience a dependence of a given type and, if so, (2) whether the i
tion is the source or the sink. We will use the termmemory dependence status (MDS)to refer to this piece of
information (which is a binary value). For this type of memory dependence information, the exact me
dependences a load or a store has are not important, only whether such dependences exist is. For e
in the case of RAW dependences, the memory dependence status of a load instance indicates whe
load has a RAW dependence with a preceding store (which exact store is not important), while the
memory dependence status of a store instance indicates whether the store has a RAW dependenc
subsequent load (which exact load is not important). In the case of RAW and WAR dependences the
mation on whether the store or the load is the sink or the source of the dependence is implied by the
dence type. For RAR and WAW dependences however this information has to be provided explicitly
example code fragments of Figure 2.8 are useful in explaining why the memory dependence sta
instructions may vary over time. Shown in part (a) is a loop that contains a load ofM(i) preceded by a condi-
tional — based on the outcome of the call tofoo(i)— store to the same memory location. The memo
dependence status of the load is one only whenfoo(i) returns true, otherwise it is zero. The source RAW
memory dependence status of the store is always one, because whenever the store is executed a lo
same memory location follows. Part (b) of the figure contains the same code except that the store ha
replaced by another load ofM(i), ld1. In this case the sink RAR MDS of the second load (shown in bold) w
be one only whenfoo(i) returns true. The source RAR MDS ofld1 will be always one as whenever this
instruction is executed, a load to the same memory location follows. Finally, the sink RAR MDS ofld1 is
always 0 as no preceding load to same memory location is ever encountered.

In this section we seek to obtain an indication of whether memory dependence status is amenable
tory-based prediction techniques, that is whether is exhibits sufficient regularity. We do so by measuri
memory dependence status localityof loads and stores. We define the memory dependence status local
a load or a store, as the probability that the memory dependence statusobservedby an instance of the
instruction is the same as the oneobservedby the immediately preceding instance of the same static instr
tion. (Ignoring finite storage effects in the predictor implementation, the memory dependence status lo
is the equal to the prediction accuracy of a simple last-status predictor.) We emphasize the word “obs
in our definition of memory dependence status locality to signify that as defined, memory dependence
locality is also a function of the mechanism used to detect memory dependences. We introduce thi
tional parameter in our treatment of memory dependence status locality since memory dependenc
prediction becomes more interesting from a practical perspective when instead of considering the who

Figure 2.8:Examples illustrating variation in the memory dependence status of a load.

for i = 0 to N

if (foo (i)) st M(i)

ld M(i)

for i = 0 to N

if (foo (i)) ld1 M(i)

ld M(i)

(a) (b)

37

me con-
mory
ediction

ld only
has a

the
execu-
w).

sure-
etection

der the
for all
status

ope of
100%.
depen-
if we

ndence
press

an
become
 window.

type an
his case
nces are.
ly we
mory
depen-
s of this
priate

o locate
ters 3

sure the
ruc-
ecutive

s been
same
ability

ction was
viewed
gram we attempt to predict whether a load or a store has a dependence of a particular type under so
straint. This latter point will become apparent when we consider various applications of me
dependence status prediction. For example, in Chapter 5 we will use memory dependence status pr
to predict whether a load has a RAW or a RAR (sink) dependence within the lastn unique memory addresses
touched. We will do so in order to map such loads onto a small and fast storage structure that can ho
n memory values. Other constraints are both possible and interesting (for example, whether a load
RAW dependence within the lastn instructions, a variant of which we make use in Chapter 3 during
description of selective memory dependence speculation, where this information is used to delay the
tion of loads with RAW memory dependences that are visible from within the active instruction windo

As our goal is to provide an indication that sufficient regularity exists, we present two types of mea
ments of memory dependence status locality, each assuming a different memory dependence status d
mechanism. These two mechanisms are the following: (1) an infinite address window where we consi
whole program, and (2) limited address windows of various sizes. The results are shown in Figure 2.9
four possible types of memory dependences. From left to right, we report the memory dependence
locality for the following address windows: 16, 256, 4K, 64K and infinite.

It can be seen that dependence status locality is extremely strong even within the relatively small sc
an address window of 16 entries. In almost all cases locality is above 90% and often approaches
These results suggest that provided that space is available to record the relevant information, memory
dence status prediction should be fairly accurate. Note that prediction accuracy may exceed locality
make use of some form of hysteresis (e.g., confidence counters). Finally, we can observe that depe
status locality is not directly correlated with the size of the address window. For example, in 129.com
RAR status locality (at the sink loads) drops from approximately 99% to 95% when we move from
address window of 256 to one of 4K. The reason is that in the latter case, many more dependences
visible. These dependences are not necessarily as regular as the ones seen via the smaller address

2.3.7 Memory Dependence Locality

For certain applications it may be necessary to also predict the exact set of dependences of a given
instruction has. In contrast to the memory dependence status of loads and stores (Section 2.3.6) in t
we are interested not only on whether such dependences exist, but also which exactly these depende
In chapters 3 and 4 we will make use of such predictors for RAW and RAR dependences. According
restrict our attention to those two dependence types. It is conceptually convenient to think of me
dependence prediction as a two step process where first we predict the static instructions with which
dences exist and then predict the particular dynamic instances of those instructions. For the purpose
study we focus on the first step as we will make use of different mechanisms to locate the appro
instances depending on the application under consideration. A description of the mechanisms used t
the appropriate instruction instances is given during the description of the specific applications in chap
and 4.

To demonstrate that memory dependences may be amenable to history-based prediction we mea
memory dependence localityof loads and stores. Informally, the memory dependence locality of an inst
tion is a metric of the likelihood that the same dependences (of a given type) are observed in two cons
executions of the same static instruction. Formally, we define memory dependence localityn for a given
type of memory dependences, as the probability that the same dependence of the given type ha
encountered within the lastn dependences of the given type experienced by preceding instances of the
static instruction. When each instance encounters a single dependence, locality is exactly the prob
that the same dependence has been encountered the last time an instance of the same static instru
encountered. When multiple dependences are encountered per dynamic instance, locality should be

38

dows
Figure 2.9: Memory dependence status locality as a function of address window size. Address win
shown are: 16, 256, 4K, 64K and infinite (left to right).

(a
)

R
A

W
(b

)
R

A
R

(c
)

W
A

R
(d

)
W

A
W

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 SOURCE SINK

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%

80%
85%
90%
95%

100%
70%

80%

90%

100%

80%
85%
90%
95%

100%

39

n order
ction
given
.2 we

RAW
s (sink

ts in the
strong.

exact
ndences
go and
last 4
ifferent
and (2)
nt data

Section
rvation
RAW
g on the
pable of
a pre-

oreover,
dence
ection

strong
more

s phe-
RAW
is more
s. To
tic store
depen-
ly for the
ce pre-

r these
RAR
n mem-
he lat-
xists

e load
as a metric of how many dependences of the given type we have to remember per static instruction i
to correctly predictall the dependences of the given type for the next instance of the same static instru
(alternatively, locality in this case is a metric of the working set of the memory dependences of the
type per static instruction). In Section 2.3.7.1 we consider RAW dependences, while in Section 2.3.7
consider RAR dependences.

2.3.7.1 Read-after-Write Dependences

In this section we measure the memory dependence locality of stores and loads that experience
dependences. The results are shown in Figure 2.10 where we report fractions over all executed load
graph) or stores (source graph) that experience a RAW dependence. We report locality measuremen
range of 1 to 4. Focusing first on the sink loads we observe that memory dependence locality is very
In most programs, nearly 80% or more of all loads with RAW dependences experience the same
dependence as the last time they were encountered. When we can remember the last two depe
observed by instances of each static load, locality raises above 80% for all programs except 099.
132.ijpeg. For those two programs locality remains below 80% even when we can remember the
dependences experienced by instances of each load. There are two reasons why locality may be d
than one: (1) loads have more than one RAW dependences which alternate in the execution stream,
each dynamic instance of a load experiences multiple RAW dependences due to the use of differe
types (i.e., the load accesses a larger data type than the stores it depends upon). As we have seen in
2.3.3, with very few exceptions, load instances experience a single RAW dependence. This obse
suggests that the primary reason why locality is not always one is that loads have multiple static
dependences which alternate in the execution stream. For this reason, it may be important (dependin
level of memory dependence accuracy desired) to devise memory dependence predictors that are ca
handling more than a single RAW dependence per load instruction. In Chapter 4 we will present such
dictor that uses a level of indirection to represent the memory dependences loads and stores have. M
in Chapter 3 we will validate this observation by demonstrating that for the purposes of memory depen
speculation and synchronization it is important to track multiple RAW dependences per static load (S
3.8.6).

Focusing on the source stores of RAW dependences, we can observe that locality is generally not as
as it was for the sink loads. The differences are relatively small for the integer programs while they are
pronounced for the floating point programs. Again multiple RAW dependences are the cause of thi
nomenon. As we have seen in Section 2.3.3, a relatively large fraction of stores experiences multiple
dependences as many loads read the value they write. In fact, we have seen that this phenomenon
pronounced for the floating point codes. This explains why locality is not as strong for those program
a lesser extent, another reason why locality is not as strong is that different instances of the same sta
may experience different RAW dependences. The results of this experiment suggest that memory
dence predictors that record and represent multiple dependences per store may be required especial
floating point codes. They also suggest that it might be more practical to design memory dependen
dictors that let loads locate their producing stores rather than the other way around.

2.3.7.2 Read-after-Read Dependences

In this section we measure the memory dependence locality of loads with RAR dependences. Fo
experiments we consider two different address window sizes: infinite and 4K. The reason is that
dependences can be defined arbitrarily. Given a set of dynamic load instances that access a commo
ory location, any of the earlier loads can be identified as the source of a RAR dependence with any of t
ter loads. As our goal is to provide indications that sufficient regularity for history-based prediction e
we limit our attention to the two aforementioned address windows and to marking the earlier possibl

40

anisms
s fairly
t have

s that
s per our
m is
while
source
f sink
ds see a
same
t codes
t most
re than

ddress
with
epen-
ter 4
lose-by

. One
ith var-

s 1 to
as the source of RAR dependences. This is the definition of RAR dependence we utilize in the mech
presented in Chapter 4. In that chapter, we will also demonstrate that RAR dependence prediction i
accurate for other choices of address window sizes and policies (we will not include those loads tha
RAW dependences).

The results of these experiments are shown in Figure 2.11 where we differentiate between load
appear as the sink of RAR dependences and loads that appear as the source of RAR dependences (a
definition of Section 2.1). Part (a) shows results with the infinite address window (the whole progra
considered) and part (b) shows results with the 4K address window. Locality range shown is 1 to 4,
the Y axis reports fractions over all loads that have RAR dependences detected and they are the
(source graph) or the sink (sink graph). Focusing first on the sink loads we observe that the majority o
loads observe the same dependence as they did the last they were executed (more than 50% of loa
locality value of 1). With the exception of 099.go and 126.gcc the fraction of loads that observe the
dependence as last time is above 80%. This phenomenon is more pronounced for the floating poin
were this fraction is above 90% with the 4K address window. Since we have seen (Section 2.3.3) tha
sink loads of RAR dependences see a single source load per dynamic instance, a locality value of mo
1 typically indicates that multiple source loads exist and that these alternate in the execution stream.

We see another interesting phenomenon when we compare the locality results with the infinite a
window with those with the finite address window. Surprisingly, for most programs locality improves
the finite address window. This observation suggests that in choosing the source loads for RAR d
dences, close-by loads typically exhibit better locality. We will observe similar phenomena in Chap
where we will also see that in some cases distant RAR dependences exhibit less regularity than c
RAR dependences.

Focusing on the source loads, locality is again strong though not as strong as it was for sink loads
explanation is that, typically, a particular instance of a source load sees multiple RAR dependences w

Figure 2.10:Memory dependence set locality of read-after-write dependences. Locality range shown i
4 (left to right).

0%
20%
40%
60%
80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%
20%
40%
60%
80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 SOURCE STORES SINK LOADS

41

menon
same

ts on the
an make
rience a
section
obser-

ith many

s. The
nces
RAR

ndences

is 1 to
ious instances of succeeding loads (i.e., many loads read the same location). We identified this pheno
in Section 2.3.3.1. While it might be that every time the source load is executed it experiences the very
dependences, these dependences are more than 4. In conjunction with our previous measuremen
shape of RAR dependences (i.e., how may RAR dependences each load instance experiences) we c
another observation (Section 2.3.3.1). We have seen that in very few cases, RAR source loads expe
single RAR dependence (Figure 2.3, part (b), source loads, on page 30). However, the results of this
show that source loads with memory dependence set locality of 1 are much more frequent. These two
vations suggest that in some cases an instance of a source load experiences dependences w
instances of the same static load.

For the purposes of this analysis we do not consider any other characteristics of RAR dependence
results of Chapter 4 will provide additional indications that highly accurate prediction of RAR depende
is possible. However, we note that the results of this section suggest that there is regularity in the
dependence stream of the programs studied, suggesting that history-based prediction of RAR depe
may be possible.

Figure 2.11:Memory Dependence Set locality of read-after-read dependences. Locality range shown
4. (a) Infinite address window. (b) 4K entry address window.

0%
20%
40%
60%
80%

100%

40%
50%
60%
70%
80%
90%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

In
fin

ite
 W

in
do

w

 SOURCE LOADs SINK LOADs

0%
20%
40%
60%
80%

100%

40%
50%
60%
70%
80%
90%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a
)

4k
 W

in
do

w

42

derlying
ograms
tures

re:
depen-

WAR
rly all

activ-

- Sec-

e store
cant
ity of
bserva-

mes in
way

large

types

dence
capes
Section

dence

ences
W
ostly
namic

ences
2.4 Summary

In this section we reviewed what memory dependences are, and discussed the general concepts un
a class of memory dependence predictors based on history. We were concerned with whether pr
exhibit sufficient regularity in their memory dependence stream and whether relatively small struc
should be sufficient to capture and predict memory dependence information. Briefly, our findings we

1. Most loads and stores experience dependences. 90%-100% of all loads experience RAW
dences. 45%-75% of loads experience RAR dependences. 45%-90% of all loads experience
dependences. 50%-100% of all stores experience RAW and WAR dependences, while nea
stores are overwritten by a latter store (WAW dependences).

2. No single part of the memory address space is responsible for most of memory dependence
ity (Section 2.3.2.1).

3. Most of RAW and RAR dependences are across many dynamic instructions (more than 4K
tion 2.3.3.1).

4. (a) The instances of sink instructions of RAW and RAR dependences observe a single sourc
or load respectively (see Section 2.1 for a definition of sink and source instructions), (b) signifi
fractions of source stores of RAW dependences see multiple sink loads, and (c) the major
source loads of RAR dependences see more than one sink loads (Section 2.3.3.1). These o
tions suggest this in predicting memory dependences it may be convenient to devise sche
which the sink instructions attempt to predict the source instructions instead of the other
around, as source instructions typically see many sink instructions.

5. A significant fraction of loads and stores with RAW and RAR dependences have relatively
static dependence set sizes (i.e., more than 4 — Section 2.3.3.2).

6. The working set of instructions with dependences is relatively small for all four dependence
(i.e., less than 4K instructions in virtually all cases — Section 2.3.4).

7. Relatively small structures can be used to capture reasonable fractions of memory depen
activity. However, in some cases, a relatively large fraction of memory dependence activity es
detection even when we can record the last 64K unique memory addresses accessed (see
2.3.5 for detailed measurements).

8. The memory dependence status locality of both source and sink instructions for all depen
types is relatively high (above 90% for an address window of 4K entries — Section 2.3.6).

9. The memory dependence locality of source and sink instructions for RAW and RAR depend
is high: 60%-100% for RAW sink loads, 58% -100% for RAR sink loads, 20%-95% for RA
source stores and 18%-90% for RAR source loads. Locality is stronger for sink loads m
because source stores and loads experience multiple RAW or RAR dependences per dy
instance (Section 2.3.7).

The results of this study provide a first indication that history-based prediction of memory depend
and of their status may be both practical and accurate.

43

truc-
sig-
may
is the
only

ry data.
rchies

mem-
s that

latency
mory
laten-
ecution
is, it

ut-of-

lved in
f correct
Chapter 3

Dynamic Memory Dependence

Speculation and Synchronization

Given the relatively high frequency of memory reads (loads account for roughly 20%-30% of all ins
tions executed),memory latency, that is the time it takes for memory to respond to requests, can have a
nificant impact on performance. The memory latency problem can be attacked directly. That is we
employ techniques which aim at reducing the time it takes memory to respond to load requests. This
goal of traditional memory hierarchies where a collection of faster but smaller memory devices, comm
referred to as caches, is used to provide faster access to a dynamically changing subset of memo
However, given the limited size of caches and imperfections in the caching policies, memory hiera
provide only a partial solution to the memory latency problem.

An alternative, yet orthogonal direction of attacking the memory latency problem seeks to tolerate
ory latency. The goal here is to send loads to memory earlier, as far in advance from the instruction
need the data that will be read. The net result this method hopes to achieve is overlapping memory
with other useful computation. Of course, the utility of this approach extends beyond tolerating me
latency as performance may benefit by the parallel execution of instructions even when unit memory
cies are observed. Sending loads to memory as early as possible requires moving loads up in the ex
order, placing them in a position that might be different than the one implied by the program. That
requires the ability to extract and exploitload/store parallelismand to execute instructionsout-of-order.
This motion of loads can be performed either statically or dynamically.

In this chapter we review previously proposed dynamic methods of executing memory operations o
order, and demonstrate that higher performance is possible ifmemory dependence speculationis used. In
memory dependence speculation, a load may execute before a preceding store on which itmay bedata
dependent (i.e., the store may be writing the data needed by the load). We discuss the trade-offs invo
using memory dependence speculation and explain that care must be taken to balance the benefits o

44

mically-
loss of

e dem-
uous
sive to
of pre-

is on
hniques
ence,

o
f-order
, split-

res that

load/
emory
s in Sec-
litative
useful.
emory
ims at
oniza-
dress

ection
bser-

model
ruction

te one
ny two

y order,
this
pro-

ping
ctions
elated

ey

f

speculation against the net penalty incurred by erroneous speculation. We demonstrate that as dyna
scheduled ILP processors are able to schedule instructions over larger regions, the net performance
erroneous memory dependence speculation (mispeculation) can become significant. Specifically, w
onstrate the validity of this observation for the following two environments: (1) in a centralized, contin
window processor when preceding store address information is not available or when it is too expen
look at, and (2) in a distributed, split-window processor even when loads can inspect the addresses
ceding stores before accessing memory.

Accordingly, we are concerned with methods of reducing net mispeculation penalty. Our focus
methods to improve the accuracy of memory dependence speculation. We propose and evaluate tec
to: (i) predict those load instructions whose immediate execution would violate a true memory depend
and (ii) delay their executiononly as long as it is necessaryto avoid the mispeculation. When these tw
goals are met, we succeed in avoiding mispeculations while retaining the benefits of aggressive out-o
execution. We consider a number of alternative techniques and demonstrate that for the distributed
window processor, best performance is achieved whenmemory dependence speculation/synchronizationis
used. In this novel technique, memory dependence prediction is used to identify those loads and sto
have to be synchronized to avoid violating true memory dependences.

The rest of this chapter is organized as follows: in Section 3.1 we motivate the need for exploiting
store parallelism and discuss the challenges raised by ambiguous (i.e., temporarily unknown) m
dependences. We use this discussion to motivate memory dependence speculation which we discus
tion 3.2. Here we review how memory dependence speculation is being used today and provide qua
arguments on why, techniques to improve the accuracy of memory dependence speculation might be
In Section 3.3 we discuss a number of memory dependence speculation policies and argue for m
dependence speculation and synchronization (speculation/synchronization for sort), a policy that a
mimicking what is ideally possible. In Section 3.4, we discuss the requirements of speculation/synchr
tion. An implementation framework for our proposed technique we present in Section 3.5. We then ad
a number of important from a practical perspective issues in Section 3.6. We review related work in S
3.7. We provide experimental evidence in support of the utility of our proposed technique and of our o
vations in Sections 3.8 and 3.9. In Section 3.8, we focus on a distributed, split-window processing
while in Section 3.9 we study memory dependence speculation under a centralized, continuous inst
window processing model. Finally, we summarize our findings in Section 3.10.

3.1 Using Load/Store Parallelism To Improve Performance

Sequential programs are written with an implied, total order where instructions are meant to execu
after the other and in the order specified by the program. However, the same results are produced if a
instructions that have no true (RAW) data dependences between them are allowed to execute in an
possibly in parallel1. In this case, instruction-level parallelism exists in the program. We can exploit
property to improve performance by executing instructions in an order different than that implied by the
gram, possibly in parallel. This ability is also useful in tolerating slower memory devices by overlap
the processing of load requests with other useful computation. Moving loads as far ahead of the instru
that read their data, and in general exploiting instruction-level parallelism can be done statically (see r
work section) or dynamically. In this work we focus on dynamic, hardware based techniques.

1. Strictly speaking, program semantics are maintained so long as instructions read the same value as th
would in the original program implied order. This does not necessarily imply that a dependent pair of
instructions executes in the program implied order. We avoid making this distinction in the discussion o
this chapter for clarity.

45

ging
-
The

ced by
nsider-
r’s abil-
emory

is
case of
o as

tion of
immedi-
ne the
dences
in the
e
depen-
at
ge to the

n is that
ist only
order is
ents an
pen-

ctually
of any

cessor
t to calcu-
address).

ould
oreover,
es. To
ndences

emory

a result, a
epen-
made on
ulation
uld had
Typical modern dynamically-scheduled ILP processors, exploit instruction-level parallelism by for
ahead into the execution stream, building aninstruction window,a set of instruction to execute. These pro
cessors, then attempt to convert the total, program implied order within this set into a partial order.
shape of the partial order and for that the performance improvements so obtained are heavily influen
the processor’s ability to uncover the true data dependences among the instructions currently under co
ation. In the case of loads, the performance improvements obtained are determined by the processo
ity to send load requests to memory as early as possible without, however, allowing a load to access m
before a preceding store with which a true data dependence exists. One way of doing so, is tofirst deter-
mine the true dependences a load has andthenuse that information to schedule its execution. With th
approach, we ensure that no true dependences are violated in the resulting execution order. In the
loads and stores the process of determining the data dependences they have is commonly referred tdis-
ambiguation.

Determining the data dependences among the instructions in the instruction window requires inspec
the named locations they access. Unfortunately, these named locations are not necessarily available
ately. This is typical for stores and loads which have to perform an address calculation to determi
memory address they will be accessing. As a result, at any point during execution, memory depen
may beunambiguous(i.e., a load consumes a value that is known to be created by a store preceding it
total order) orambiguous(i.e., a load consumes a value thatmaybe produced by a store preceding it in th
total order). During execution, an ambiguous dependence gets eventually resolved to either a true
dence, or to no dependence. We will use the termfalse dependenceto refer to an ambiguous dependence th
eventually gets resolved to no dependence. As we explain next, false dependences present a challen
out-of-order execution of load instructions.

Ambiguous memory dependences may obscure some of the parallelism that is present. The reaso
to maintain program semantics a load has to wait for a store with which an ambiguous dependence ex
if a dependence really exists. If the ambiguous dependence is a false dependence, any execution
permissible, including ones that allow the load to execute before the store. This latter case, repres
opportunity for parallelism and for higher performance. Unfortunately, the mere classification of a de
dence as ambiguous implies the inability to determine whether a true dependence exists without a
waiting for the addresses accessed by both instructions to be calculated. Worse, in the absence
explicit memory dependence information (the common case today), a dynamically scheduled ILP pro
has to assume that ambiguous dependences exist among a load and any preceding store that has ye
late its address (provided that no intervening store accesses the same address and has calculated its

As we will demonstrate in the evaluation section, significantly higher performance is possible if we c
make loads wait only for those ambiguous dependences that get resolved to true dependences. M
we demonstrate that this performance difference widens as the size of the instruction window increas
expose some of the parallelism that is hindered by ambiguous memory dependences, memory depe
speculation can be used. This technique is the topic of the next section.

3.2 Memory Dependence Speculation

Memory dependence speculation aims at exposing the parallelism that is hindered by ambiguous m
dependences. Undermemory dependence speculation, we do not delay executing a load untilall its ambig-
uous dependences are resolved. Instead, we guess whether the load has any true dependences. As
load may be allowed to obtain memory data speculatively before a store on which it is ambiguously d
dent executes. Eventually, when the ambiguous dependences of the load get resolved, a decision is
whether the resulting execution order was valid or not. If no true dependence has been violated, spec
was successful. In this case, performance may have improved as the load executed earlier than it wo

46

ted, the
ust be

ring cor-
, have
re-

s well
ple of
e fol-
se of
nvali-
ead of

depen-
n is cor-
ndence
tion as
pletely

ver the
always

ther a
out any
ose
roba-
as rel-

ith an
ugh (d)
g two
o cycles
endence
endence
it had to wait for its ambiguous dependences to be resolved. However, if a true dependence was viola
speculation was erroneous (i.e., a mispeculation). In the latter case, the effects of the speculation m
undone. Consequently, some means are required for detecting erroneous speculation and for ensu
rect behavior. Several mechanisms that provide this functionality, in either software and/or hardware
been proposed [39,26,27,28,37,56,65,71]. The hardware techniques used today work by invalidating and
executing all instructions following the mispeculated load. We will use the termsquash invalidationto refer
to this recovery method.

Though memory dependence speculation may improve performance when it is successful, it may a
lead to performance degradation when it is wrong. We demonstrate either possibility with the exam
Figure 3.1. The reason is that a penalty is typically incurred on mispeculation. The penalty includes th
lowing three components: (1) the work thrown away to recover from the mispeculation, which in the ca
squash invalidation, may include unrelated computations, (2) the time, if any, required to perform the i
dation, and finally (3) the opportunity cost associated with not executing some other instructions inst
the mispeculated load and the instructions that used erroneous data. Consequently, in using memory
dence speculation care must be taken to balance the performance benefits obtained when speculatio
rect against the net penalty incurred by erroneous speculation. To gain the most out of memory depe
speculation we would like to use it as aggressively as possible while keeping the net cost of mispecula
low as possible. Ideally, loads would execute as early as possible while mispeculations would be com
avoided.

Prior to this work, memory dependence speculation was either not used at all or was used whene
opportunity to execute a load existed. In the latter case, a load with ambiguous dependences was
allowed to access memory. We will use the termnaive memory dependence speculationto refer to this form
of memory dependence speculation, in order to signify that no explicit attempt is made to guess whe
load should wait. The reasons why memory dependence speculation was either not used or used with
effort to reduce mispeculations include the following: (1) in the relatively small instruction windows of th
ILP processors there was often little to be gained from extracting load/store parallelism, and (2) the p
bility of a true memory dependence being violated when memory dependence speculation was used w

Figure 3.1: Using memory dependence speculation may affect performance either way. (a) Code w
ambiguous memory dependence. Continuous arrows indicate register dependences. Parts (b) thro
show how this code may execute in a dynamically-scheduled ILP processor capable of executin
instructions per cycle. We assume that due to other dependences, the store may execute only after tw
have passed. (b) Execution order when no memory dependence speculation is used. (c) Memory dep
speculation is used and the ambiguous dependence gets resolved to no dependence. (d) Memory dep
speculation is used, and the ambiguous dependence gets resolved to a true dependence.

5
cy

cl
esload

store load

store

Instructions

Time

am
bi

gu
ou

s
de

pe
nd

en
ce

Correct Speculation

load

load

Mispeculation

A
B
C

A
B
C store

A
B
C
A
B
C

load
store

A
B
C

No Speculation

(a) (b)

3
cy

cl
es

6
cy

cl
es

(c) (d)

47

d larger

specula-
d (i.e.,

rease as
er, we
ations.
g two
ndow
comes
m is not

distrib-
ct pre-
e of the

del,
before
oves
with

epen-
under
order
lud-
partic-
cution
d. As
ing

ted its
eceding
3.9.3,

wever,
duling
While
r, future
etween
iffer-
forcing
istrib-
ed to
before
ddresses
mation
n in

mini-
emory
hat is
atively small. In this work we are interested on whether these observations change as we move towar
effective instruction window sizes.

As we demonstrate in Sections 3.8.2, 3.9.2 and 3.9.3, in most cases, naive memory dependence
tion offers superior performance compared to having to wait until ambiguous dependences are resolve
no speculation). Moreover, we demonstrate that the benefits of memory dependence speculation inc
the size of the instruction window also increases (sections 3.8.1 and 3.9.1). More importantly howev
also demonstrate that further performance improvements are possible if we could avoid mispecul
Specifically, we demonstrate that further performance improvements are possible under the followin
execution models: (1) a centralized, continuous window ILP processor, and (2) in a distributed, split-wi
ILP processor. In the centralized, continuous window processor, the net penalty of mispeculation be
significant when loads cannot inspect the addresses of preceding stores either because a mechanis
provided (to simplify the design) or because of the latency required to inspect store addresses. In the
uted, spit-window processor mispeculations are problematic independently of whether loads can inspe
ceding store addresses. Moreover, we demonstrate that the potential benefits increase as the siz
instruction window also increases in either processor environment.

At this point it is interesting to consider why, in the centralized, continuous-window execution mo
mispeculations can typically be avoided if loads are allowed to inspect preceding store addresses
obtaining a memory value, while in the distributed, split-window execution model this technique pr
ineffective. For this purpose, we will use the example of Figure 3.2. Part (a) of the figure shows a loop
a recurrence between the “load a[i - 1]” of iteration i and the “store a[i]” of iteration i - 1. (While this code is
prone to static disambiguation, our goal here is not to demonstrate the power of dynamic memory d
dence speculation/synchronization.) Part (b) shows how two iterations of this loop might get executed
the centralized, continuous window execution model. Under this model, instructions are fetched in
and the window is filled up gradually. How fast the window fills up is determined by several factors inc
ing the fetch bandwidth, the instruction cache characteristics, and branch prediction accuracy. In the
ular processor we study in Section 3.9, the maximum fetch bandwidth is equal to the maximum exe
bandwidth, and moreover, a scheduler that gives priority to older instructions (in program order) is use
a result, by the time the dependent load (load a[i]) is encountered and calculates its address, the preced
store (store a[i]) with which a true dependence exists has also been fetched, and has also calcula
address. Under these conditions and provided that the load is allowed to inspect the addresses of pr
stores, it finds that it should wait and not speculatively access memory. As we demonstrate in Section
memory dependence mispeculations are virtually non-existent in this environment. We do argue ho
our techniques can be used as a potentially lower complexity, shorter clock cycle alternative to sche
load/stores by incorporating the load/store scheduling functionality in the existing register scheduler.
memory dependence mispeculations are not an issue for a centralized, continous window processo
processors may utilize more aggressive front-ends and may have to rely on partitioning to balance b
short clock cycles and larger instruction windows [26, 82, 66, 44, 87, 90, 72, 25, 85, 32]. Under this d
ent set of assumptions, instructions are not necessarily fetched in program order, and moreover, en
program order priority in the scheduler may not be possible. For this reason lets us now consider a d
uted, split-window execution model. Under this model, the two iterations of the loop may get assign
different units, as shown in part (b) of Figure 3.2. As a result, the load may calculate its address long
the store has had a chance to do so. For this reason, even if the load could inspect preceding store a
and even if that check could be done instantaneously, the mispeculation could not be avoided. (Infor
about Multiscalar, the distributed, split-instruction window execution model we use in this work, is give
Section 3.6.1.)

Motivated by the aforementioned observations, in this work we are concerned with techniques to
mize the net penalty of mispeculation, while maintaining the performance benefits of aggressive m
dependence speculation. We identify three possible directions: (1) minimizing the amount of work t

48

nd (3)
ech-

ly, but
instruc-
e only
al mem-
ces.

own in
depen-
ndence

indi-

culation,

e often
ave to
ence,

ization

e sim-
al 3-
nstead,
rmed.
t
pecula-

c) a
lost on mispeculation, (2) reducing the time required to redo the work that is lost on mispeculation, a
reducing the probability of mispeculation. In this work we consider the third alternative. We review t
niques that follow the other two directions in the related work section (Section 3.7).

3.3 Memory Dependence Speculation Policies

The ideal memory dependence speculation mechanism not only avoids mispeculations complete
also allows loads to execute as early as possible. That is, loads with no true dependences (within the
tion window) execute without delay, while loads that have true dependences are allowed to execut
after the store (or the stores) that produces the necessary data has executed. It is implied that the ide
ory dependence speculation mechanism has perfect knowledge of all the relevant memory dependen

An example of how the ideal memory dependence speculation mechanism affects execution is sh
Figure 3.3. In part (b), we show how the code sequence of part (a) may execute under ideal memory
dence speculation and in part (c) we show how the execution may progress under naive memory depe
speculation. The example code sequence includes two store instructions,ST-1 andST-2, that are followed by
two load instructions,LD-1 andLD-2. Ambiguous dependences exist among these four instructions as
cated by the dotted arrows. During execution, however, only the dependence betweenST-1 and LD-1 is
resolved to a true dependence (as indicated by the continuous arrow). Under ideal dependence spe
LD-2 is executed without delay, whileLD-1 is forced to synchronize withST-1.

In contrast to what is ideally possible, in a real implementation, the relevant data dependences ar
unknown. Therefore, if we are to mimic the ideal data dependence speculation mechanism, we h
attempt: (1) to predict whether the immediate execution of a load is likely to violate a true data depend
and if so, (2) to predict the store (or stores) the load depends upon, and, (3) to enforce synchron
between the dependent instructions.

However, since this scheme seems elaborate, it is only natural to attempt to simplify it. One possibl
plification is to useselectivememory dependence speculation, i.e., carry out only the first part of the ide
part operation. In this scheme the loads that are likely to cause mispeculation are not speculated. I
they wait until the all their ambiguous dependences are resolved; explicit synchronization is not perfo
We use the termselective memory dependence speculation(or selective speculation for short) to signify tha
we make a decision on whether a load should be speculated or not. In contrast, in ideal dependence s

Figure 3.2: Executing a loop under: (b) a centralized, continuous-window execution model, and (
distributed, split-window execution model.

for (i = 0; i < N; i++)
a[i] = a[i - 1] + foo ();

(a)

store a[i]

load a[i]

store a[i+1]

load a[i-1]

store a[i]

load a[i]

store a[i+1]

load a[i-1]

Ti
m

e

(b) Centralized, Continuous (c) Distributed, Split

unit 1 unit 2

49

dence
may
ance.

to infe-
iction

ds only

ally get
sted
nating
lead to
dences
rform

g
ctive
pro-

cate
dicate
tion, we make a decision on when is the right time to speculate a load. While selective memory depen
speculation may avoid mispeculations, due to the lack of explicit synchronization, this prediction policy
as well make loads wait longer than they should and for this reason may negatively impact perform
This case we illustrate with the example shown in part (d) of Figure 3.3. In this example,LD-2 is speculated,
whereasLD-1 is not, since prediction correctly indicates thatLD-2 has no true dependences whileLD-1 does.
However, as shownLD-1 is delayed more than necessary as it has to wait not only forST-1 but also forST-2.
In practice, and as we demonstrate in Section 3.8.4, selective data dependence speculation can lead
rior performance when compared to naive speculation (part (c) of Figure 3.3) even when perfect pred
of dependences is assumed, because, while this policy avoids mispeculations it often fails to delay loa
as long as it is necessary.

Another possible simplification that has been proposed (see related work section) is thestore barrierpol-
icy. In this technique a prediction is made on whether a store has a true dependence that would norm
mispeculated. If it does,all loads following the store in question are made to wait until the store has po
its address for disambiguation purposes. While the store barrier policy can be successful in (1) elimi
mispeculations, and (2) delaying loads that should wait only as long as it is necessary, it may as well
inferior performance since it may unnecessarily delay other unrelated loads that have no true depen
that can be mispeculated. While, in the example of Figure 3.3, the store barrier policy is shown to pe
better than selective speculation, the opposite can also be true (for example, if other loads, followinLD-1
existed they would too get delayed under the store barrier policy, while they wouldn’t under the sele
policy). In the evaluation section, we do not consider the store barrier policy for two reasons: (1) as

Figure 3.3: Example illustrating various memory dependence speculation policies. Arrows indi
dependences. Dependences through memory are indicated by thicker lines. Dotted arrows in
ambiguous dependences that are resolved to no-dependence during execution.

I1

ST-1

I3

I4

ST-2

LD-1

I7

LD-2

I9

I1

ST-1

I3

I4

ST-2

LD-1

I7

I1

ST-1

I3

I4

LD-1

I7

LD-1

I7

LD-2

I9

I9

ST-2

I1

ST-1

I3

I4

ST-2
LD-1

I7

LD-2
I9

am
big

uo
us

de
pe

nd
en

ce
s

LD-2

I1

ST-1

I3

I4

ST-2

LD-1

I7

LD-2

I9(a) Instructions

(b) Ideal (c) Naive

(d) Selective (e) Store Barrier

T
im

e

5
cy

cl
es

7
cy

cl
es

8
cy

cl
es

7
cy

cl
es

T
im

e

50

iants
inuous
in the

strict
specula-
n
e syn-

g as it

s of the
e-load
dence
(3) use

depen-
loads.
ces are
iscard-
dence
static
as pre-

hether
in this

r pur-
ught to
-
ory
do not
s that

ections
e even
emory

a syn-
stores
a syn-
gh this

ween
ly two
posed it is not compatible with the distributed, split-window architecture we use in our evaluation (var
may be possible however), and (2) it has been shown [17] (see related work section) that for a cont
instruction window processor the performance so obtained is inferior to the technique we describe
next section.

Even though other simplifications to the 3-part ideal operation may be possible, in this work we re
our attention to dependence speculation schemes that attempt to mimic the ideal data dependence
tion system. In the next section, we presentdynamic memory dependence speculation/synchronizatio, a
technique that utilizes memory dependence prediction to identify those store-load pairs that ought to b
chronized in order to avoid memory dependence violations while delaying load execution only as lon
is necessary.

3.4 Mimicking Ideal Memory Dependence Speculation

To mimic the ideal data dependence speculation system, we need to implement all the 3 component
ideal system as described in the previous section. That is, we must: (1) dynamically identify the stor
pairs that are likely to be data dependent and whose normal execution will result in a memory depen
violation, (2) assign a synchronization mechanism to dynamic instances of these dependences, and
this mechanism to synchronize the store and the load instructions.

To identify the store-load pairs that need to be synchronized we may use history-based memory
dence prediction. With this scheme, naive memory dependence speculation is initially used for all
That is, a load is initially allowed to execute as soon as its address is calculated and memory resour
available. With this policy, as execution progresses mispeculations will be encountered. Instead of d
ing the information available when a mispeculation occurs (as we would under naive memory depen
speculation), we collect information about the instructions involved. For example, we may record the
dependence that was violated, that is a (store PC, load PC) pair. The next time a load or a store that h
viously incurred a mispeculation is encountered, we can use the recorded information to predict w
synchronization has to take place in order to avoid a mispeculation. In the predictors we consider
work, mispeculation history is associated with the static loads and stores using their PC.

As explained in Chapter 2, for history-based memory dependence prediction to be possible for ou
poses, it is imperative that past mispeculation behavior to be indicative of future dependences that o
be synchronized. In Chapter 2 we have provided evidence thatall RAW memory dependences exhibit rela
tively high locality and small working sets, which both constitute strong indications that RAW mem
dependences may be amenable to history-based prediction. While, the two aforementioned results
constitute proof that similar behavior is exhibited when we restrict our attention to those dependence
are mispeculated, they do provide a indication that this may be true. As the results presented in S
3.8.5 through 3.8.7 and in Section 3.9.4 imply, history-based prediction is both possible and accurat
when we restrict our attention to only those dependences that would be mispeculated under naive m
dependence speculation.

With a mechanism to predict whether a load or a store needs to be synchronized we next need: (1)
chronization mechanism, and (2) a method of having the appropriate dynamic instances of loads and
locate each other through the synchronization mechanism. In the rest of this section we first discuss
chronization mechanism. Then, we consider how load and store instances locate each other throu
synchronization mechanism.

An apt method of providing the required synchronization dynamically is to build an association bet
the store-load instruction pair. Suppose this dynamic association is a condition variable on which on

51

era-
ons to

ists to
later in
riable
riable
d store
utes, it
e exe-
cution
of exe-

s a sig-
dition
point).
order

tly indi-
f execu-
asy or
ccessful
s since,

le to a
occur
n point
air as a
to be

assign-

specified
using

ipeline.
itiate
tely,

dence
load
operations are defined:wait andsignal, which test and set the condition variable respectively. These op
tions may be logically incorporated into the dynamic actions of the dependent load and store instructi
achieve the necessary synchronization.

This concept we illustrate with the example of Figure 3.5 where we assume that some method ex
dynamically associate store-load instruction pairs with condition variables (we discuss these means
this section). As shown in part (a), an earlier mispeculation results in the association of a condition va
with a subsequent dynamic instance of the offending store-load instruction pair. With the condition va
in place, consider the sequence of events in the two possible execution sequences of the load an
instructions. In part (b), the load is ready to execute before the store. However, before the load exec
tests the condition variable; since the test of the condition variable fails, the load waits. After the stor
cutes, it sets the condition variable and signals the waiting load, which subsequently continues its exe
as shown. No mispeculation is observed, and the sequential order is preserved. In part (c), the order
cution is a store followed by a load. After the stores executes, it sets the condition variable and record
nal for the load. Before the load executes, it tests the condition variable; since the test of the con
variable succeeds, the load continues its execution as shown (the condition variable is reset at this
One may wonder why synchronization is provided even when the execution order follows the program
(i.e., store followed by load). This scenario represents the case where dependence prediction correc
cates that a dependence exists but fails to detect that the order of execution has changed. The order o
tion may change, for example, either (1) in response to external events whose behavior is not e
desirable to track and predict, such as cache misses or resource conflicts, or (2) because of the su
synchronization of another, unrelated dependence. Synchronization is desirable even in these case
otherwise, the corresponding load will be delayed unnecessarily.

Once condition variables are provided, some means are required to assign a condition variab
dynamic instance of a store-load instruction pair that has to be synchronized. If synchronization is to
as planned, the mapping of condition variables to dynamic dependences has to be unique at any give
of time. One approach is to use just the address of the memory location accessed by the store-load p
handle. This method provides an indirect means of identifying the store and load instructions that are
synchronized. Unless the store location is accessed only by the corresponding store-load pair, the
ment will not be unique.

Alternatively, we can use the dependence edge as a handle. The static dependence edge may be
using the (full or part of) instruction addresses (PCs) of the store-load pair in question. (Compared to
addresses, a potential advantage of this approach is that PC information is available earlier in the p
This property could be exploited to reduce the effective latency of synchronization by having stores in
synchronization in parallel or prior to the completion or initiation of their memory access.) Unfortuna

Figure 3.4: Example code sequence that illustrates that multiple instances of the same static depen
can be active in the current instruction window. In parts (b), (c), and (d), the relevant store and
instructions from four iterations of the loop of part (a) are shown.

for (i = 0; i < n; i++)

 a[i+c] = a[i] + k

(a)

STa[c+0]

LDa[c+1]

STa[c+1]

LDa[c+0]

(b)

0

1

c

c+1

iteration
STa[c+0]

LDa[c+1]

STa[c+1]

LDa[c+0]

(c)

a[c+0]

a[c+1]

STa[c+0]

LDa[c+1]

STa[c+1]

LDa[c+0]

(d)

1

2

c+1

c+2

instance #

c+1

c+2

?

?
? ?

52

ent to

static
ch need

prefera-
e store-
ag must
ource
cessed,
ith the
delay a

e not
roxima-
es are
depen-
nce

e dis-
ed tag-
es (for
sed may

tance is
scheme
d). In

tation
en, in
as exemplified by the code sequence of Figure 3.4 part (b), using this information may not be suffici
capture the actual behavior of the dependence during execution; the pair (PCST, PCLD) matches against all
four edges shown even though the ones marked with dotted arrows should not be synchronized. A
dependence between a given store-load pair may correspond to multiple dynamic dependences, whi
to be tracked simultaneously.

To distinguish between the different dynamic instances of the same static dependence edge, a tag (
bly unique) could be assigned to each instance. This tag, in addition to the instruction addresses of th
load pair, can be used to specify the dynamic dependence edge. In order to be of practical use, the t
be derived from information available during execution of the corresponding instructions. A possible s
of the tag for the dependent store and load instructions is the address of the memory location to be ac
as shown in Figure 3.4 part (c). An alternate way of generating tags is to have a load synchronize w
closest preceding instance of the store identified by the static dependence. While this scheme may
load more than it should (as in our example, where LDa[c+0]will wait for STa[0+1]), the performance impact
of this delay may not be large.

In this work, and as our focus is on a distributed, split-window execution model where instructions ar
fetched in order, we use an alternate way of generating instance tags. The scheme we use is an app
tion of the scheme shown in part (d) of Figure 3.4, where dynamic store and load instruction instanc
numbered based on their PCs. The difference in the instance numbers of the instructions which are
dent, referred to as thedependence distance, may be used to tag dynamic instances of the static depende
edge (as may be seen for the example code, a dependence edge between STi and LDi+distanceis tagged - in
addition to the instruction PCs - with the value i+distance). We approximate this scheme by using th
tance in processing units between the instructions that are mispeculated. Though all the aforemention
ging schemes strive to provide unique tags, each may fall short of this goal under some circumstanc
example, the dependence distance may change in a way that we fail to predict, or the address acces
remain constant across all instances of the same dependence).

In the rest of the discussion we restrict our attention to second scheme where the dependence dis
used to tag dependences. We note from a practical perspective, several inconveniences exist in the
we have just described (For example, how to track and predict multiple dependences per store or loa
the discussion that follows and for clarity, we initially ignore these issues and present an implemen
framework in Section 3.5. With a basic understanding of how the support structures operate, we th
Section 3.6, address a number of important from a practical perspective issues.

Figure 3.5:Synchronization example

Load Store

Misspeculation

(a) (b)
Condition Variable

Store 1

Load Store

Load

2 Test

Set

3 Continue

(c)

Store

1

Load Store

Load

2
 Wait

Test

3 Set

4

Continue

Load

Store
3

2

1

53

ulation,
pair is
be an
ralized
socia-

ool of
truction
en pro-
ate, dis-

er or
ulation
nsists

ress
rking
dress
fields
ance
caused
would

he past
s or
nter or
predict
is bet-
, three

onize
of the
ore
tag

use.
d store
load
en the

fields
lar
instruc-
be
guish
hat fol-
3.5 Implementation Aspects

As we discussed in the previous section, in order to improve the accuracy of data dependence spec
we attempt: (1) to predict dynamically, based on the history of mispeculations, whether a store-load
likely to be mispeculated and if so, (2) to synchronize the two instructions. In this section, we descri
implementation framework for this technique. For the purposes of this section we assume a cent
implementation, ignore the possibility of multiple dependences per load or store, and assume fully-as
tive structures. In Section 3.6, we address these issues.

We partition the support structures into two interdependent tables: amemorydependencepredictiontable
(MDPT) and amemorydependencesynchronizationtable(MDST). The MDPT is used to identify, through
prediction, those instruction pairs that ought to be synchronized. The MDST provides a dynamic p
condition variables and the mechanisms necessary to associate them with dynamic store-load ins
pairs to be synchronized. In the discussion that follows, we first describe the support structures and th
ceed to explain their operation by means of an example. We present the support structures as separ
tinct components of the processor. Other implementations may be possible and desirable.

 MDPT: An entry of the MDPT identifies a static dependence and provides a prediction as to wheth
not subsequent dynamic instances of the corresponding static store-load pair will result in a mispec
(i.e., should the store and load instructions be synchronized). In particular, each entry of the MDPT co
of the following fields: (1) valid flag (V), (2) load instruction address (LDPC), (3) store instruction add
(STPC), (4) dependence distance (DIST), and (5) optional prediction (not shown in any of the wo
examples). The valid flag indicates if the entry is currently in use. The load and store instruction ad
fields hold the program counter values of a pair of load and store instructions. This combination of
uniquely identifies thestatic instruction pair for which it has been allocated. The dependence dist
records the difference of the instance numbers of the store and load instructions whose mispeculation
the allocation of the entry (if we were to use a memory address to tag dependence instances this field
not have been necessary). The purpose of the prediction field is to capture, in a reasonable way, t
behavior of mispeculations for the instruction pair in order to aid in avoiding future mispeculation
unnecessary delays. Many options are possible for the prediction field (for example an up-down cou
dependence history based schemes). The prediction field is optional since, if omitted, we can always
that synchronization should take place. However, we note that in our experimentation we found that it
ter if synchronization is enforced only after a load has been mispeculated a couple of times (e.g.
times).

MDST: An entry of the MDST supplies a condition variable and the mechanism necessary to synchr
a dynamic instance of a static instruction pair (as predicted by the MDPT). In particular, each entry
MDST consists of the following fields: (1) valid flag (V), (2) load instruction address (LDPC), (3) st
instruction address (STPC), (4) load identifier (LDID), (5) store identifier (STID), (6) instance
(INSTANCE), and (7) full/empty flag (F/E). The valid flag indicates whether the entry is, or is not, in
The load and store instruction address fields serve the same purpose as in the MDPT. The load an
identifiers have to uniquely identify, within the current instruction window, the dynamic instance of the
or the store instruction respectively. These identifiers are used to allow proper communication betwe
instruction scheduler and the speculation/synchronization structures. The exact encoding of these
depends on the implementation of the OoO (out-of-order) execution engine (for example, in a supersca
machine that uses reservation stations we can use the index of the reservation station that holds the
tion as its LDID or STID, or if we want to support multiple loads per store, a level of indirection may
used to represent all loads waiting for a particular store). The instance tag field is used to distin
between different dynamic instances of the same static dependence edge (in the working example t

54

ition

mple.
ple,

cle from
ns due
d in the

f load

are
sponding
ndence
lation
he store
ich is
r, we

l to the
d are

At this
ction
mma-
e con-
DPT
icates
store

tion 3,
, the
(c)).

(which
only

ts of all
ts the

ntents
e
dress

e allo-
load

e to
is not
lows we show how to derive the value for this field). The full/empty flag provides the function of a cond
variable.

3.5.1 Working Example

The exact function and use of the fields in the MDPT and the MDST is best understood with an exa
In the discussion that follows we are using the working example of Figure 3.6. For the working exam
assume that execution takes place on a processor which: (1) issues multiple memory accesses per cy
a pool of load and store instructions and (2) provides a mechanism to detect and correct mispeculatio
to memory dependence speculation. For the sake of clarity, we assume that once an entry is allocate
MDPT it will always cause a synchronization to be predicted.

Consider the memory operations for three iterations of the loop, which constitute the active pool o
and store instructions as shown in part (a) of the figure. Further, assume thatchild->parent points to the same
memory location for all valueschild takes. The dynamic instances of the load and store instructions
shown numbered, and the true dependences are indicated as dashed arrows connecting the corre
instructions in part (a). The sequence of events that leads to the synchronization of the ST2-LD3 depe
is shown in parts (b) through (d) of the figure. Initially, both tables are empty. As soon as a mispecu
(ST1-LD2 dependence) is detected, a MDPT entry is allocated, and the addresses of the load and t
instructions are recorded (action 1, part (b)). The DIST field of the newly allocated entry is set to 1, wh
the difference of the instance numbers of ST1 and LD2 (1 and 2 respectively). As we noted earlie
approximate the instance numbers using the distance in processing units (incidentally this is identica
instance distance in our example). As a result of the mispeculation, instructions following the loa
squashed and must be re-issued. We do not show the re-execution of LD2.

As execution continues, assume that the address of LD3 is calculated before the address of ST2.
point, LD3 may speculatively access the memory hierarchy. Before LD3 is allowed to do so, its instru
address, its instance number (which is 3), and its assigned load identifier (the exact value of LDID is i
terial) are sent to the MDPT (action 2, part (c)). The instruction address of LD3 is matched against th
tents of all load instruction address fields of the MDPT (shown in grey). Since a match is found, the M
inspects the entry predictor to determine if a synchronization is warranted. Assuming the predictor ind
a synchronization, the MDPT allocates an entry in the MDST using the load instruction address, the
instruction address, the instance number of LD3, and the LDID assigned to LD3 by the OoO core (ac
part (c)). At the same time, the full/empty flag of the newly allocated entry is set to empty. Finally
MDST returns the load identifier to the load/store pool indicating that the load must wait (action 4, part

When ST2 is ready to access the memory hierarchy, its instruction address and its instance number
is 2) are sent to the MDPT (action 5, part (d)). (We do not show the STID since, as we later explain, it is
needed to support control speculation.) The instruction address of ST2 is matched against the conten
store instruction address fields of the MDPT (shown in grey). Since a match is found, the MDPT inspec
contents of the entry and initiates a synchronization in the MDST. As a result, the MDPT adds the co
of the DIST field to the instance number of the store (that is, 2 + 1) todetermine the instance number of th
load that should be synchronized. It then uses this result, in combination with the load instruction ad
and the store instruction address, to search through the MDST (action 6, part (d)), where it finds th
cated synchronization entry. Consequently, the full/empty field is set to full, and the MDST returns the
identifier to the load/store pool to signal the waiting load (action 7, part (d)). At this point, LD3 is fre
continue execution. Furthermore, since the synchronization is complete, the entry in the MDST
needed and may be freed (action 8, part (d)).

55
Figure 3.6:Synchronization of memory dependences.

O
oO

 C
or

e

LD3

LD2

LD1

ST1

LD2

ST2

LD3

ST3

LDPC STPC 1

0

MDPT

LDPC STPC 2 1 mispeculation

V

1

MDST F/E V
0

0

iteration 1 iteration 2 iteration 3

(a)

a a

DIST
1

INSTANCE

while (child != NULL)
child->parent->count++
child = child->next

LDi

–

STi

LD1
ST1

O
oO

 C
or

e

Instruction

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC LDID 3

LDPC STPC LDID 3 0

 LDID

4 wait

2

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC STPC LDID 3 0

5

+ 6

 LDID

7 signal

8
entry
release

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC STPC invalid 3 1

LDPC LDID 34

5

7
release
entry

 LDID

6 signal

(b)

(d)

(e) (f)

(c)

numbers

O
oO

 C
or

e

LD3
ST2

O
oO

 C
or

e

LD3

STPC 2

LDPC STPC 1

0

MDPT V

MDST F/E V
1

0

DIST
1

LDPC STPC invalid 3 1

2

+ 3

ST2

O
oO

 C
or

e

LD3

STPC 2

instance

56

ingly,
ence of
rarchy,
d, the

tching
/empty
asses
). The
tion
tinue

or the
under

nd in
ction
l pipe-
e dis-
how a
lation/
lation/
r pre-

ss two

ation
calar
ough
imul-
tion of

the
, a task

rogram
sk at a
ollec-
exe-

ns per
ecut-

rogram
If ST2 accesses the memory hierarchy before LD3, it is unnecessary for LD3 to be delayed. Accord
the synchronization scheme allows LD3 to issue and execute without any delays. Consider the sequ
relevant events shown in parts (e) and (f) of Figure 3.6. When ST2 is ready to access the memory hie
it passes through the MDPT as before with a match found (action 2, part (e)). Since a match is foun
MDPT inspects the contents of the entry and initiates a synchronization in the MDST. However, no ma
entry is found there since LD3 has yet to be seen. Consequently, a new entry is allocated, and its full
flag is set to full (action 3, part (e)). Later, when LD3 is ready to access the memory hierarchy, it p
through the MDPT and determines that a synchronization is warranted as before (action 4, part (f)
MDPT searches the MDST, where it now finds an allocated entry with the full/empty flag set to full (ac
5, part (f)). At this point, the MDST returns the load identifier to the load/store pool so the load may con
execution immediately (action 6, part (f)). It also frees the MDST entry (action 7, part (f)).

3.6 Issues

We now discuss a few issues which relate to the implementation framework we have described. F
most part we focus on the implementation of memory dependence speculation and synchronization
the Multiscalar execution model. Detailed information about the Multiscalar architecture can be fou
[26,14,82,27,40,92,13]. A brief description of the Multiscalar execution model is given next, in Se
3.6.1. The rest of this section is organized as follows: In Section 3.6.2 we discuss where in a typica
line it may be possible to incorporate the speculation/synchronization functionality. In Section 3.6.3 w
cuss what needs to be done when synchronization is incomplete. In Section 3.6.4 we discuss
confidence mechanism aimed at improving prediction accuracy can be incorporated into the specu
synchronization structures. In Section 3.6.5 we consider what support might be required when specu
synchronization is used in conjunction with control-speculation. In Section 3.6.6 we discuss support fo
dicting and synchronizing multiple dependences per load or store. Finally, in Section 3.6.7 we discu
distributed implementations of our speculation/synchronization method.

3.6.1 The Multiscalar Execution Model

For the purposes of this work it is sufficient to know that a Multiscalar processor relies on a combin
of hardware and software to extract parallelism from ordinary, sequential programs. The effect Multis
aims to achieve is illustrated in Figure 3.7. Instead of relying on a large instruction window to scan thr
the dynamic instruction trace, Multiscalar relies on a collection of smaller instructions windows that s
taneously scan through different parts of the dynamic execution stream. Multiscalar uses a combina
software and hardware techniques to achieve this effect.

In this model of execution, the control flow graph (CFG) of a sequential program is partitioned by
compiler into portions called tasks. These tasks may be control and data dependent. When executed
corresponds to a continuous portion of the instructions stream that would have been generated if the p
was executed sequentially. A Multiscalar processor sequences through the CFG speculatively, a ta
time, without pausing to inspect any of the instructions within a task. A task is assigned to one of a c
tion of processing units for execution by passing the initial program counter of the task. Multiple tasks
cute in parallel on the processing units, resulting in an aggregate execution rate of multiple instructio
cycle. In this organization, the instruction window is bounded by the first instruction in the earliest ex
ing task (theheadtask) and the last instruction in the latest executing task (thetail task). The head and tail
task also define an order among the tasks currently executing which corresponds to the sequential, p
implied order.

57

s, the
etect-
te that

dware
gister
ad and
ltisca-
hat is a
s from
emory

ming, is

epen-
d the

tion of
emory

cess-
lation”,
cula-

ical
To maintain program semantics while allowing the aggressive out-of-order execution of instruction
model of the Multiscalar we used in this work relies on a combination of software and hardware for d
ing data, that is register or memory dependences. To review these policies it is first important to no
under the Multiscalar execution model, data dependences may be characterized asintra-task(within a task)
or inter-task(between individual tasks). For intra-task register dependences, Multiscalar relies on har
mechanisms similar to those found in a typical, dynamically scheduled ILP processor. For inter-task re
dependences, Multiscalar relies on compiler provided aggregate information about the registers re
written by each task. For memory dependences, no information is provided by the compiler. The Mu
lar model we used, relies on address-based disambiguation of intra-task memory dependences. T
load may access memory only after it is determined that no ambiguous dependences exist with store
the same task. For inter-task memory dependences, as originally proposed, Multiscalar uses naive m
dependence speculation. Support for inter-task memory dependence speculation and memory rena
provided by theAddress Resolution Buffer(ARB) [26, 27] or by theSpeculative Versioning Cache[31]. We
use the ARB in our experimentation. Multiscalar uses squash invalidation to recover from memory d
dence mispeculations. In particular, the execution of all tasks starting from the one that containe
offending load is invalidated. Each of these tasks has to resume execution from the very first instruc
the corresponding task. This implies even work preceding the mispeculated load may be lost on a m
dependence mispeculation.

In the discussion that follows we use the terms “unit” and “stage” interchangeably to refer to the pro
ing elements where individual tasks execute. We also use the terms “memory dependence mispecu
“memory dependence violation” and “mispeculation” interchangeably. Finally, we use the terms “spe
tion” and “memory dependence speculation” interchangeably.

Figure 3.7: The Multiscalar execution model. (a) Continuous, centralized instruction window (e.g., typ
dynamically scheduled superscalar). (b) Multilscalar’s way of building a large instruction window.

Pr
og

ra
m

 O
rd

er

in
st

ru
ct

io
n

wi
nd

ow

(a)

instruction
trace

task A

task B

task C

(b)

58

of a
ce our
known.
is PC
the cor-
with

entu-
ovides
ider-
t will
ll prior

der the
e head

ich no
in this

ocate
ad (see
n can
nsider
ontain

ques-
be syn-
lays in

intelli-
aptive
e pre-
ethod
ns the

confi-
aluation
is incor-

fixed
vari-
ach of
3.6.2 Incorporating Speculation/Synchronization into a Pipeline

In the description of our proposed mechanism, we did not discuss where exactly in the pipeline
dynamically scheduled processor the prediction and synchronization actions should take place. Sin
predictor is PC-based, prediction can be initiated as soon as the PC of a store or a load becomes
Similarly, since the information used to allocate synchronization entries and perform synchronization
based, allocation of synchronization entries can be done as early as desired, provided that the PC of
responding instruction is available. This property may be useful in overlapping synchronization
address calculation in order to avoid increasing load latency when no dependences exist.

3.6.3 Incomplete Synchronization

So far, we have assumed that any load which waits on the full/empty flag of an entry in the MDST, ev
ally sees a matching store that signals to complete the synchronization. Since an MDPT entry only pr
a prediction, this expectation may not always be fulfilled. If this situation arises, the two main cons
ations are: (1) to avoid deadlock and (2) to free the MDST entry allocated for a synchronization tha
never occur. The deadlock problem is solved if we assume that a load is always free to execute once a
stores are known to have executed. De-allocating the MDST entry can also be done at this point. Un
Multiscalar execution model, the aforementioned actions can take place when the unit becomes th
(i.e., the oldest executing task).

Under similar circumstances to those described above, a store may allocate an MDST entry for wh
matching load is ever seen. Since stores never delay their execution, there is no deadlock problem
case. However, it is still desirable to eventually free the MDST entry. Unfortunately, we cannot de-all
this entry when the store retires since this may in turn result in unnecessarily delaying a subsequent lo
discussion of Section 3.4). Under a continuous instruction window execution model, this de-allocatio
take place when the next instance of the same static store is retired. In the implementations we co
under the Multiscalar execution model, we de-allocate store entries when the task that is predicted to c
the appropriate load instance commits.

3.6.4 Intelligent Prediction

Upon matching a MDPT entry, a determination must be made as to whether the instruction pair in
tion warrants synchronization. The simplest approach is to assume that any matching entry ought to
chronized (i.e., the predictor field is optional). However, this approach may lead to unnecessary de
cases where the store-load instruction pairs are mispeculated only some of the time. Instead, a more
gent approach may be effective. Any of the plethora of known methods (counters, voting schemes, ad
predictors, etc.) used to provide the intelligent prediction of control dependences may be applied, to th
diction of memory dependences. Regardless of the actual choice of mechanism, the prediction m
ought to exhibit the quality that it strengthens the prediction when speculation succeeds and weake
prediction when speculation fails. In this work we restrict our attention to either using counter-based
dence mechanisms or to using non-adaptive confidence mechanisms. As we demonstrate in the ev
section (Sections 3.8.5 and 3.8.6), performance is superior when an adaptive confidence mechanism
porated with each MDPT entry.

To allow for adaptive predictors, we merge the MDST and the MDPT into a single structure, with a
number of synchronization variables per MDPT entry. In particular we allow for one synchronization
able per unit in each MDPT entry (the synchronization variables are implemented as a bit vector). E

59

e sync
DPT
maton
PT/
ST
s to the

pre-
infor-
copies
y and
ptive

nization

e any
ider in
con-
e-allo-
zation
can be
ulative
plemen-
lations

f the
static

are
how to
ow to

away
3.8.6,

rovid-

es as
k
ultiple
res we
loads
store
the synchronization variables comprises three bits:wait, signalandsync. The wait bit is set when synchro-
nization is predicted on a load. The signal bit is set when synchronization is predicted on a store. Th
bit is set when synchronization takes place, by either a store or a load. At task commit time, each M
entry inspects the condition variable that corresponds to the specific unit adjusting the confidence auto
accordingly. Merging the MDPT and the MDST permits this operation to be done locally at each MD
MDST entry, thus allowing all MDPT entries to be updated in parallel. Had we used a split MDPT/MD
design, a mechanism would be required to inspect each MDST entry and then propagate the change
corresponding MDPT entry.

Unfortunately, and as we will explain in the Section 3.6.7, in a distributed implementation where the
diction structure is replicated per processing unit, using adaptive predictors is inconvenient. It is so, as
mation about the success of failure of any synchronization attempt may have to be propagated to all
of the prediction structure to keep them coherent. The potential bandwidth, the additional complexit
time required to perform this action may prove prohibitive. For this reason, we will not make use of ada
predictors for the experiments that use a distributed memory dependence speculation and synchro
mechanism.

3.6.5 Control Mispeculations

In the event of control or data mispeculation, it is desirable, although not necessary, to invalidat
MDST entries that were allocated to instructions that are squashed. In the implementations we cons
this work, we do not expose intra-unit control mispeculations to the MDST. In the event of an inter-unit
trol mispeculation however, all synchronization entries allocated for the units being squashed are d
cated. In a continuous, instruction window processor, it may possible to incorporate the synchroni
functionality in the scheduler used for register dependences (see Section 3.9.4). For example, this
done by using the id of the reservation station where the store resides to create an artificial, spec
dependence between the store and the load that should wait. Depending on the register scheduler im
tation, no additional support may be required to cleanup the synchronization tags on control mispecu
(e.g., if the scheduler is implemented using the RUU model [81]).

3.6.6 Multiple Dependences Per Static Load or Store

Although not illustrated in the examples, it is possible for a load or a store to match multiple entries o
MDPT and/or of the MDST. This case represents multiple memory dependences involving the same
load and/or store instructions (for example in the code “if (cond) store1 M else store2 M; load M,” there are two
dependences(store1, load) and(store2, load)) which may alternate in the dynamic execution stream. There
three challenges from a practical perspective: (1) how to predict multiple dependences per load, (2)
allocate multiple MDST entries when multiple dependences are predicted on a single load, and (3) h
wake-up a load forced to wait on multiple MDST entries. One solution would be to define the problem
by tracking only a single dependence per store or load. However, as we will demonstrate in Section
support for multiple dependences per static instruction is very important. We consider two ways of p
ing this support.

In the first, each MDPT and MDST entry is augmented to track a single load and a plurality of stor
shown in Figure 3.8, part (a) (the use of the “TASK PC” fields is explained later on in this section. In this wor
we evaluate designs with 2, 4 and 8 stores per entry. This allows us to predict and synchronize m
dependences per load by consulting a single MDPT entry and by using a single MDST entry. For sto
use the following approach: a separate MDPT entry is allocated per store. No information about the
with which the store has to synchronize with is kept in the store entry. For synchronization purposes, a

60

o load
ed. In
at does
tation
How-

on

sted in
f these
. As
our
ponding

tic load
uctions.

a dif-
tion. If
ssigned
ces, we
r ealier
ction
t do so.
re a load

or for
d that

DPT/
ent
associatively searches through the MDST and synchronizes with any loads that are waiting for it. If n
is waiting, a new entry is created in the MDST, marking that the particular store instance has execut
Section 3.8.6, we demonstrate that this implementation offers performance very close to the one th
not limit the number of dependences per static instruction. An additional advantage of this implemen
is that it does not require associative lookups in the MDPT as a single entry exists per store or load.
ever, associative lookups are still required the MDST.

The second scheme usesa level of indirectionto represent the set of all dependences that have a comm
store or load (for example in the code “if (cond) store1M; else store2M); load M);” both the (store1, load) and the
(store2, load) dependences will be represented using a common tag). This approach was sugge
[62,17]. In this scheme, separate entries for loads and stores are allocated in the MDPT. The format o
entries is shown in part (b) of Figure 3.8. (Note that a split MDPT and MDST is illustrated in the figure
we will explain in the next section, we utilize this split organization for a distributed implementation of
proposed mechanism.) As shown, in these entries, we do not record the dependences the corres
instructions have. Instead we use a tag, to which we will refer to as asynonym. Synonyms are assigned
using a global counter when mispeculations occur. If no synonym has been assigned to either the sta
or the static store, a new synonym is generated using the global counter and is assigned to both instr
If a synonym has been already assigned to only one of the instructions (as the result of mispeculating
ferent static dependence involving that instruction), the same synonym is assigned to the other instruc
both instructions already have synonyms assigned to them which are different, the smallest one is a
to both instructions. In this case, and if we were to be precise about the representation of dependen
would have to replace all instances of the larger synonym with the new synonym (as suggested in ou
work [62] and under the context of the applications we describe in Chapter 4). However, as this a
would probably require an associative search and as suggested by Chrysos and Emer [17], we do no
Because the smallest tag is used to resolve conflicts, sooner or later all active dependences that sha
or a store will be assigned the same synonym.

A final consideration is whether a load that has multiple dependences predicted should wait for all
just one of them. Although we do not report experimental data in support of this observation, we foun

Figure 3.8: Two schemes of supporting multiple static dependences per load or store. (a) Combined M
MDST with multiple stores per load. (b) Split MDPT/MDST using a level of indirection to repres
dependence sets.

LOAD PC STORE PC

TASK PC

Distance

STORE PC

TASK PC

Distance

Stores Per Load

S W O S W O S W O

Stages

Signal Wait Sync

(a)

MDPT/MDST

LD/ST PC Synonym

Distance

MDPT
S W O

Signal Wait Sync

Synonym

Distance

MDST

(b)

61

he num-
rite to
in pro-
ing the
ulation.

is
ften

ultiple
nly for
main-

nted
it dis-
at the
d that

ver, as
cesses
bottle-

n and
rgani-
case,

e static
. Each
ne for
can be
enta-

made
T is
a (syn-
ot exe-
cular
chro-
— is
ed to
In the
a task

t. The
s done
pur-
DPT.
ystem
allowing loads to execute as soon as one of their predicted dependences is synchronized increases t
ber of mispeculations observed. This is possible when in the original program order, multiple stores w
the same memory location before the load reads from it. In this case, the load should wait for the last
gram order store. However, dynamically, these stores may appear in any order. For this reason, allow
load to execute as soon as one of these stores has executed may not help in avoiding the mispec
Accordingly, we evaluate mechanisms in which a load waits forall dependences predicted. However, th
scheme is not without problems. We found that while it is very effective in avoiding mispeculations, it o
fails to allow loads to execute as early as possible. This primarily happens when the load has m
dependences which appear through different control flow paths. In this case, the load should wait o
those dependences that are currently active. We found that an effective solution to this problem is to
tain minimal control flow information with each load-store pair. In the case of Multiscalar we augme
the MDPT entries to record the store’s task PC in addition to the (load PC, store PC) pair and the un
tance as shown in part (a) of Figure 3.8. In this case, synchronization is predicted only when the task
predicted unit distance matches that recorded on the prediction table entry. All experiments reporte
use the Multiscalar execution model make use of this optimization.

3.6.7 Centralized Versus Distributed Structures

So far we have been assuming that the MDPT and the MDST are centralized structures. Howe
greater levels of instruction-level parallelism are exploited, greater numbers of concurrent memory ac
must be sustained. Under such conditions, it is important to assure that neither structure becomes a
neck. In the case of a distributed window processor, it is desirable to also partition both the predictio
the synchronization structures. We do consider such an option in this work. In particular, we use an o
zation where identical copies of the MDPT and the MDST are provided at each processing unit. In this
the speculation/synchronization mechanism operates as follows: When a mispeculation occurs, th
dependence edge (store PC, load PC), along with the unit distance is sent to all copies of the MDPT
copy of the MDPT allocates the appropriate entries (if they do not already exist), one for the load and o
the store, as a centralized organization would do. Since, at any given cycle a single mispeculation
signaled, a relatively low bandwidth mechanism should be sufficient for this purpose. In the implem
tions we evaluate we use a bus for this purpose.

When a load is ready to access memory, the local copy of the MDPT is consulted. If a prediction is
that synchronization should take place, the local copy of the MDST is consulted next. The MDS
searched to determine whether the predicted store — represented by either a (store PC, unit id) or
onym, unit id) — has already executed. If so, the load is allowed to access memory. If the store has n
cuted yet, a new entry is allocated in the MDST to indicate that a load of this unit is waiting for the parti
store instance. When a store is ready to write to memory, it also consults the local MDPT copy. If syn
nization is predicted, the store’s identity — as either a (store PC, unit id) or a (synonym, unit id) pair
send to all copies of the MDST. If loads are found waiting for the particular store, they may now proce
access memory. If no loads are found waiting, an entry for the store is created in every MDST copy.
models we consider in the evaluation section we use a bus to signal store execution. Finally, when
commits it cleans up all local MDST entries.

As we noted in Section 3.6.4, using adaptive predictors in a distributed organization is inconvenien
reason is that if we were to keep all MDPT copies coherent we would have to broadcast all change
locally to every other copy of the MDPT. While support for such an approach might be possible, for the
poses of this work we restrict our attention to non-adaptive confidence mechanisms in the distributed M
In particular, we simply use a 2-bit saturating counter that is updated when mispeculations occur (a s
wide event). If synchronization fails, no attempt is made to adjust the confidence predictor.

62

ssible,
same

ftware

hora of
while

ues dif-
ations

efore a
detect

e and the
ftware
that

one in
re exe-
lative).

s to the
entry in
ntrol is

of the
ese ver-

ort for

sup-
n detec-
cessor

ulation
lel exe-

er naive
Steely,
hich the
esson,

ere also
3.7 Related Work

Ultimately, the goal of the techniques we proposed is to allow loads to access memory as early as po
by scheduling its execution as far in advance from the instructions that need the memory data. The
effect can also be achieved by appropriately scheduling the code at compile time. At the core of all so
based load scheduling techniques are staticdisambiguationor alias analysistechniques. The goal of these
methods is to prove whether a given load and store can be data dependent during run-time. A plet
techniques has been proposed. Initially research focused primarily on array variables [4,22,10],
recently methods have been proposed for dynamically allocated data types [23, 97].

A plethora of memory dependence speculation techniques has also been proposed. These techniq
fer in whether software or hardware is used to: (1) perform load motion, (2) detect dependence viol
and (3) recover from dependence violations. Nicolau proposedrun-time disambiguation[65], a software
only approach to dependence speculation. In his technique, loads can be speculatively scheduled b
preceding store with which an ambiguous dependence exists. Code is inserted after the store to
whether a true dependence is violated (this is done by comparing the addresses accessed by the stor
load), and repair code is also inserted to recover from memory dependence violations. Another so
only approach was proposed by Moudgill and Moreno [64]. Their approach differs from Nicolau’s in
they compare values rather than addresses to detect violation of program semantics.

Gallagher, Chen, Mahlke, Gyllenhaal and Hwu [28, 16] proposed theMemory Conflict Buffer (MCB), a
software-hardware hybrid approach. In their technique, load motion and mispeculation recovery are d
software while mispeculation detection is done in hardware. Two copies of each speculated load a
cuted, one at the original program order (non-speculative) and the other as early as desired (specu
Speculative loads record their addresses in the MCB. Intervening stores also post their addresse
MCB, so that dependence violations are detected. The non-speculative load checks the appropriate
the MCB (the target register of the load is used as a handle), and if any dependence was violated, co
transferred to recovery code. Huang, Slavenburg and Shen proposedspeculative disambiguation[36]
another hybrid approach to memory dependence speculation. In their technique multiple versions
same code are generated, one with speculation enabled and another with speculation disabled. Th
sions are then scheduled together using predication. Hardware similar to that used forboosting[78, 77] is
used to invalidate all but the appropriate path during execution.

Naive memory dependence speculation was proposed for the Multiscalar architecture [26]. Supp
dependence mispeculation detection and recovery was proposed in the form of theAddress Resolution
Buffer (ARB) [27] which also implements memory renaming. Other recently proposed techniques to
port speculation of memory dependences, memory renaming and memory dependence mispeculatio
tion are presented in [31, 32]. Naive memory dependence speculation was used in the PA8000 pro
[38] and in the Power 620 processor [1,50]. Knight also proposed using memory dependence spec
along with a hardware-based mispeculation detection mechanism in the context of speculative, paral
cution of otherwise sequential Lisp programs [47].

Finally, several hardware-based techniques have been proposed that aim at improving accuracy ov
memory dependence speculation. There are two closely related proposals. In the first proposal by
Sager and Fite [84], mispeculated loads and stores are given tags derived from the addresses via w
mispeculation occur. These tags are used by the out-of-order scheduler to restrict load execution. H
LeBlanc and Ciavaglia [33] describe thestore barrier cacheand thestore barrierapproach. An implemen-
tation of the store barrier cache was also presented [3]. The techniques we describe in this chapter w
reported [63,61].

63

evel of

n. They
n takes

non-unit
he same

tech-
ed to
lity of
ue to

of load
ate in
on-exis-
sm. In
ulating

ection
tial to
mory
onstrate
-based
uld be
the net
es to
emory
ossible,
ndence
s all
mecha-
fits of
posed

epen-
e fol-

d. That
. Fur-
epen-
ts, it is
reader
s could
Selective speculation is implemented in the Alpha 21264 processor [45] where anindependence predictor
is used to predict whether a load can execute freely. Finally, Chrysos and Emer proposed using a l
indirection for the purposes of memory dependence speculation/synchronization. In theirstore setapproach
a tag is used to represent the set of all stores that a load has had a memory dependence mispeculatio
proposed the incremental approach we also utilize to build memory dependence sets. Synchronizatio
place through a separate table, and moreover, to preclude ordering problems on dependences with
distances and to attain a simple synchronization table design, stores that have been assigned to t
store set (i.e., synonym) are executed in-order.

As we noted in Section 3.2, to reduce the net penalty of mispeculation we could alternatively utilize
niques to either (1) minimize the amount of work lost on mispeculation or (2) reduce the time requir
redo the work lost on mispeculation. In the second category falls instruction reuse [79]. The applicabi
this technique on distributed, split-window processing models is still under investigation. A techniq
reduce the amount of work lost on mispeculation isselective invalidation. Selective invalidation aims at
invalidating only those instruction that used erroneous data and has been first proposed in the context
value prediction [54] and for a centralized, continuous instruction window processor. As we demonstr
the evaluation section, under these assumptions memory dependence mispeculations are virtually n
tent, hence there is no problem with mispeculations and no need for a selective invalidation mechani
Chapter 4, we describe a selective invalidation mechanism and use it for a different purpose (i.e., spec
on the origin of load values).

3.8 Evaluation - Distributed, Spit-Window Processor Model

In this section we study our proposed methods using a model of the Multiscalar architecture. This s
is organized as follows: we first demonstrate that exploiting load/store parallelism has the poten
improve performance significantly (Section 3.8.1). In Section 3.8.2, we demonstrate that naive me
dependence speculation can be used to extract some of the parallelism that is present, but also dem
that the net mispeculation penalty is high. Then, in Section 3.8.3, we consider using an address
scheduler to extract and exploit load/store parallelism and demonstrate that even if such a device co
incorporated into our processor model, memory dependence mispeculations remain frequent and
penalty of mispeculation though lower, remains high. For this reason, we next consider techniqu
improve the accuracy of memory dependence speculation. In Section 3.8.4, we consider selective m
dependence speculation and demonstrate that even if perfect memory dependence prediction was p
this technique is not robust. We use the aforementioned results to motivate the use of memory depe
speculation/synchronization. Initially, we consider a centralized implementation that explicitly track
memory dependences per static load or store (as detailed in Section 3.5). Having shown that such a
nism is very effective in reducing memory dependence speculations while maintaining the bene
aggressive speculation we then consider the two more practical distributed implementations of our pro
mechanism we discussed in sections 3.6.6 and 3.6.7.

Before we proceed into presenting our findings, it is important to discuss: (1) the exact memory d
dence speculation model and the compiler support used in our experiments, (2) the methodology w
lowed to approximate ideal memory dependence speculation.

In all experiments reported in this section, intra-task memory data dependences are not speculate
is, mispeculations mayonlyoccur for store-load pairs whose dependence edge crosses task boundaries
thermore, the results reflect execution with no compiler supported disambiguation of these memory d
dences. This detail implies that even in cases where an unambiguous memory dependence exis
treated no differently than an ambiguous memory dependence during execution. At first glance, the
may be tempted to conclude that the results of this section are not very useful since many dependence

64

ssarily
uential
OoO
detect

mory
Conse-
means
e syn-
er gen-
duling
c tech-

mech-
dences
ideal

n when
t per-
oracle
ctice,
llowed

appropri-
llowed

perfor-
for

mation
appear
se of

. In our
equest
e num-
xecution
d no
e as
n incor-

exper-
imum

xploit
s wait
ences),
olicy, a
same
d task.
n that
ith 8-
rallel-
be classified as unambiguous, even with a rudimentary compiler. However, this conclusion is not nece
correct. Multiscalar, as other dynamically scheduled ILP processors, dynamically converts the seq
program order into a parallel execution order. In this environment, the only condition that prevents the
execution of two instructions is the existence of a dependence that the OoO execution engine can
without executing the instructions. This implies that even if the compiler knows that a particular me
dependence exists, nothing prevents the dynamic speculation of the corresponding load instruction.
quently, to prevent the speculation of a dependence, the compiler has either: (1) to identify by some
(for example through ISA extensions) that a load should not be speculated immediately and to enforc
chronization between dependent instructions (perhaps by using signal and wait operations on compil
erated synchronization variables or via full/empty bits), or (2) make assumptions about the sche
properties of the target OoO engine and delay load execution somehow (probably via the use of ad-ho
niques).

In the experiments that follow we make extensive use of an oracle memory dependence speculation
anism. The intention is to simulate a mechanism that has perfect, advance knowledge of all depen
and that is capable of utilizing this information to achieve the highest possible performance (i.e., the
memory dependence speculation mechanism of Section 3.3). However, we should point out that eve
perfect dependence information is available deciding exactly which execution order will result in bes
formance is a very challenging task, even theoretically (it amounts to scheduling). For this reason, the
mechanism we simulated should only be viewed as an approximation of its ideal counterpart. In pra
we simulated the oracle mechanism as follows: (1) loads appearing on the correct control path were a
to execute as soon as all their dependences were satisfied (i.e., either no dependence exists, or the
ate store has written its data to memory), and (2) loads on an incorrect control speculated path were a
to access memory freely as we found this has a prefetching effect that can be significant in terms of
mance (control paths tend to re-converge quickly). Even with this policy, we found that primarily
102.swim and 104.hydro2d other speculation mechanisms that used imperfect dependence infor
exhibited better performance. One reason why this is so, is that control speculation and the loads that
on incorrect control speculated paths may be different for different speculation policies Another cau
this anomaly can be traced to the access combining that takes place in the simulated memory system
simulator’s memory model [13], loads to the same cache bank and block are combined into a single r
when they appear simultaneously on the bus. This combining may help performance as it reduces th
ber of data cache requests and hence contention for data cache ports. Sometimes, delaying load e
by a couple of cycles increases the probability that combining will take place. Unfortunately, we foun
straightforward way of predicting which particular execution schedule will (1) allow loads to execut
early as possible, (2) increase combining as much as possible, and (3) send those load requests o
rectly control speculated paths that have a prefetching effect. To compensate for this limitation in our
iments we calculated the performance of the oracle speculation mechanism by taking the max
performance obtained with any of the policies studied.

3.8.1 Performance Potential of Load/Store Parallelism

In this section we demonstrate that significant performance improvements are possible if we can e
load/store parallelism. To do so, we compare the performance of (1) a configuration that makes load
until it is known that all preceding stores have executed (i.e., it does not speculate on memory depend
and (2) the performance possible with an oracle dependence speculation mechanism. With the first p
load is allowed to access memory under the following two conditions: (a) preceding stores from the
task can supply the data needed by the load, and (b) if (a) is not true, when the load’s task is the hea
Figure 3.9 reports the relative performance with oracle disambiguation compared to the configuratio
does not exploit load/store parallelism. Two configurations are studied, one with 4-units and one w
units (these configurations were detailed in Chapter 1). We can observe that exploiting load/store pa

65

ction
higher
s that
fre-
rela-
er in

igure
figura-

ces once
dences
a store
. If no
the load
oads.

that
not
is sig-
nts we
is low
some-

ration
, more
provides
n— as
d most
ads with

with
ism has the potential for significant performance improvements, which are larger for the larger instru
window machine (8 stages). We can also observe that the performance improvements are typically
for the floating-point programs. This behavior can be attributed to the frequency of RAW dependence
are visible from within the instruction window. As we have seen in Chapter 2 (Section 2.3.2.2), the
quency of RAW dependences is typically much lower for the floating-point codes when we consider
tively short instruction distances. The performance potential of exploiting load/store parallelism is high
this case, as more load/store parallelism exists.

The metrics reported in Table 3.1 provide additional insight on the performance behavior shown in F
3.9. In this table we report the IPC and the frequency of false memory dependences for the base con
tion, i.e., the one that does not speculate on memory dependences. We account for false dependen
per committed load and at the time the load has calculated its address, has resolved all local depen
and could otherwise access memory. At this point we check whether a true dependence exists with
from a preceding unit that has yet to write to memory (the store may have not been encountered yet)
such store exists, we count a false dependence as no true dependence would have been violated if
was allowed to execute immediately. We report false dependences as a fraction over all committed l

Comparing the IPC of the 4-unit configuration with that of the 8-unit configuration we can observe
virtually no improvement results from a larger instruction window when load/store parallelism is
exploited. This in part is the reason why the performance potential of oracle dependence speculation
nificantly higher for the 8-unit configuration. Focusing on the false dependence frequency measureme
can observe that they are relatively high, which in part explains why the no-speculation configuration
performing. A phenomenon, which may seem surprising, is that the frequency of false dependences
times drops when we move to the 8-unit configuration. What happens, is that in the 8-unit configu
many more memory dependences become visible from within the instruction window. For this reason
loads do have a true dependence at the time they could otherwise access memory. This observation
a hint on why speculation/synchronization might be more useful —as opposed to selective speculatio
the instruction window increases. With a larger instruction window, more loads have dependences, an
of these dependences are between stores and loads that are quite distant. Simply not speculating lo

Figure 3.9: Comparing no speculation with oracle speculation. Shown are the speedups obtained
oracle memory dependence speculation over no speculation.

0%

100%

200%

300%

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

8-STAGES4-STAGES

int fp all

HM

367%

66

n they

lly, we
ffering
etween
n.

culation
configu-
ecula-
grams,
wever,
Table
(2) the

nce mis-
umber
s that

nificant.
er, the
re is not
dependences (i.e., selective speculation) may result in many loads waiting for significantly longer the
should.

3.8.2 Naive Memory Dependence Speculation

In this section we study how naive memory dependence speculation affects performance. Specifica
demonstrate that: (1) naive speculation can be used to exploit some of the load/store parallelism o
most the performance benefits possible with oracle speculation, and (2) the performance difference b
naive and oracle speculation can be significant especially for a wider instruction window configuratio

Figure 3.1 reports the performance improvements obtained when naive memory dependence spe
is used over the same configuration that does not speculate memory dependences (“no speculation”
ration of the previous section). Also shown are the performance improvements possible with oracle sp
tion. We can observe that naive memory dependence speculation is quite effective. For most pro
naive speculation offers most of the performance improvements possible with oracle speculation. Ho
the difference between naive and oracle is significant. The latter observation is more clearly shown in
3.2 where we report: (1) the speedups possible with oracle speculation over naive speculation, and
memory dependence mispeculation rates with naive speculation. We measure the memory depende
peculation rate by diving the number of all observed memory dependence mispeculations with the n
of all committed loads. In this calculation we do not include mispeculations encountered on load
appear on incorrectly speculated control paths.

We observe that the performance difference between naive and oracle speculation can become sig
Moreover, this performance difference is larger for the 8-stage configuration. As we have noted earli
net penalty of dependence mispeculations is the cause of this phenomenon. As it can be seen the

False Dependences%
Base
IPC

False Dependences%
Base
IPC

4 8 4 8 4 8 4 8

099 33.1% 32.7% 1.00 1.01 101 16.6% 16.6% 1.12 1.12

124 75.8% 77.3% 1.45 1.49 102 21.1% 21.1% 1.09 1.09

126 51.7% 47.3% 1.12 1.15 103 15.9% 15.8% 1.10 1.10

129 45.4% 40.9% 1.13 1.13 104 53.0% 53.2% 1.00 1.01

130 61.0% 58.3% 0.97 0.98 107 3.29% 1.27% 1.27 1.27

132 35.4% 43.0% 1.42 1.43 110 21.7% 21.9% 1.17 1.18

134 54.7% 49.4% 1.21 1.22 125 50.2% 50.7% 1.26 1.26

147 55.8% 45.1% 1.18 1.24 141 35.2% 34.2% 1.10 1.11

145 27.2% 25.6% 1.03 1.03

146 33.22% 32.77% 1.17 1.17

Table 3.1:Characteristics of the no-speculation configurations. Shown are the frequency of false
dependences, and the IPC. Two configurations are shown with 4 and 8 units respectively.

67

en ora-
s hap-
le via
ration.
have
even

harac-
rallel-
nefits

perfor-
d due
emory

rmance,
rove-

. How-
uld be
nism is
design
its with
e or on
consume

preced-
g stores
necessarily a direct correlation between the mispeculation rate and the performance difference betwe
cle and naive. The reason is that the mispeculation frequency only indicates how often mispeculation
pen. It does not however indicate the amount of work lost or the performance improvement possib
exploiting load/store parallelism. For example, consider 099.go and 146.wave5 on the 8-stage configu
While 099.go exhibits a mispeculation rate of 3.6% had we avoided these mispeculations we could
improved performance by 8.11%. In contrast, performance for 146.wave5 would improve by 29.20%
though the mispeculation rate is a mere 0.9%. These two programs exhibit quite different execution c
teristics. 099.go has relatively poor control prediction behavior and moderate levels of load/store pa
ism. 146.wave5 on the other hand, exhibits excellent control prediction behavior and the potential be
from load/store parallelism are much higher (roughly 2 times as much compared to 099.go).

The results of this section suggest that while naive speculation can be used to extract most of the
mance benefits possible by exploiting load/store parallelism, it also suffers from the net penalty incurre
to dependence mispeculations. For this reason, techniques that aim at improving the accuracy of m
dependence speculation, as the ones we have earlier proposed have the potential of improving perfo
often significantly. Moreover, the results of this section suggest that the potential performance imp
ments increase for larger instruction window processors.

3.8.3 Using Store Address Information To Improve Speculation Accuracy

So far, we have been assuming that loads cannot inspect the addresses of stores from other units
ever, if that information was available somehow, some of the memory dependence mispeculations co
avoided. For the purposes of this experiment, we are not concerned whether building such a mecha
possible and if so what implications such a mechanism might have on clock cycle, load latency and
complexity. Rather, we optimistically assume that store addresses can be made visible to all other un
an 1 cycle delay. No limit is imposed on the number of stores that can post their addresses every cycl
the number of loads that can inspect store addresses. Moreover, posting a store’s address does not
any resources. A load is allowed to execute as soon as its address becomes available and there is no
ing store that writes to the same memory address. However, a load may execute if there are precedin

Figure 3.1:Performance with naive memory dependence speculation relative to no-speculation.

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6 int fp all

HM
8-STAGES ORACLE4-STAGES ORACLE 8-STAGES NAIVE4-STAGES NAIVE

0%

100%

200%

300%
337% / 367%

68

ossible
ptimistic
pecula-
s such

over
ort the

ed. The
ssing

y port
con-
s are
and-
rease
ern on
tions
small
d just

ntial of
pared
still a
that have yet to calculate their address. (Note that since tasks are fetched and executed in parallel, it p
to issue a load before a preceding in program store has even been fetched.) We make use of these o
assumptions about store address availability in order to demonstrate that memory dependence mis
tions remain frequent enough to justify the use intelligent memory dependence speculation technique
as those we propose.

The results of this experiment are shown in Table 3.3. The “AV” columns report relative performance
naive speculation when store addresses are available for load inspection. The “oracle” columns rep
speedups possible with the oracle speculation mechanism. Two processor configurations are simulat
first is the default 8-unit configuration we have been using in all preceding experiments. The proce
units in this configuration are equipped each with a 16-entry window, an 8-entry scheduler, 1 memor
and 2 copies of all other functional units. This configuration is marked as “1x8” in the table. The other
figuration, which is marked as “4x8”, has also 8-units, but its units have 32-entry windows (all entrie
visible to the scheduler) and four copies of all functional units (4 memory ports also). Moreover, the b
width of the L1-data cache and the ARB is quadrupled. We include this second configuration to inc
confidence on the observations we make in this section. In particular, we aim to address the conc
whether, the relatively small instruction window sizes used in by our default configuration (16 instruc
and 8 instruction scheduler) impose artificial delays on store address calculation latency. With such
instruction windows, it is possible for a store that could otherwise calculate its address to get delaye
because there isn’t enough space in the local instruction scheduler.

From the results shown in Table 3.3 we can observe that exposing store addresses has the pote
reducing mispeculations and improving performance over naive speculation. However, when com
with the performance potential of oracle speculation, we can observe that for most programs there is

Speedup%
Oracle over Naive

MR%
Speedup%

Oracle over Naive
MR%

Stages 4 8 4 8 Stages 4 8 4 8

099 3.97% 8.11% 2.4% 3.6% 101 12.20% 24.56% 1.6% 2.1%

124 2.44% 10.64% 1.8% 3.1% 102 0.00% 2.67% 0.2% 0.2%

126 4.03% 13.33% 2.8% 4.3% 103 2.60% 4.35% 0.4% 0.5%

129 8.3% 22.90% 5.6% 9.3% 104 0.00% 0.00% 0.4% 0.5%

130 10.07% 69.23% 4.9% 7.0% 107 0.00% 6.80% 0.1% 0.3%

132 12.45% 20.45% 2.8% 3.2% 110 6.90% 62.39% 1.5% 1.6%

134 10.25% 27.56% 4.3% 6.3% 125 0.00 1.91% 0.1% 0.1%

147 34.78% 77.92% 6.8% 7.3% 141 9.83% 27.27% 1.4% 2.0%

HM int 10.05% 31.21% 145 7.59% 29.20% 0.9% 1.2%

146 13.57% 14.68% 0.7% 0.9%

HM fp 4.37% 17.35%

Table 3.2:Comparing naive and oracle speculation. Shown are the speedups possible over naive
speculation with oracle speculation and the frequency of memory dependence mispeculations (MR%
columns).

69

ps pos-
hen
ectively.

2d and
0.3%)
e com-

ed, some
imulta-
ee dis-
nother
tion is

no execu-
rrectly
tore is
culated
ct if it

lation

r
 a
copies
significant performance difference. This is can also be seen by the average (harmonic mean) speedu
sible for the two policies. For example, with the “4x8” configuration the performance improvements w
store addresses are exposed are 16.2% and 4.6% for the integer and the floating-point programs resp
With oracle speculation the performance improvements rise to 24.2% and 10.3% respectively.

Before we proceed to the next section we should explain why an anomaly is observed for 104.hydro
the “1x8” configuration. In this case, performance when store addresses are exposed is slightly (i.e.,
higher compared to oracle speculation. A slight increase in the number of memory accesses that ar
bined in the memory system are the cause of this behavior. Since when store addresses are expos
loads may get delayed, accesses that would otherwise proceed at different times may now proceed s
neously benefiting for the combining that takes places at the bank of the simulated memory system (s
cussion of Section 3.8, last paragraph). Even so, the difference in performance is extremely small. A
anomaly is observed for 102.swim and for the 4x8 configuration, where a small performance degrada
observed when store addresses are exposed. The probable cause of this phenomenon is delayed or
tion of loads as the result of control speculation. A load may get delayed by a store that is on an inco
speculated intra-unit control path. In this case, the load may get unnecessarily delayed until that s
squashed locally at its unit. The same applies when both a store and a load are on an incorrectly spe
control path (inter-unit). In this case, the load which is later squashed could have a prefetching effe

Speedup% over Naive Speedup% over Naive

1x8 4x8 1x8 4x8

AV oracle AV oracle AV oracle AV oracle

099 0.7% 8.1% 4.5% 8.5% 101 8.1% 24.6% 8.9% 25.6%

124 1.8% 10.6% 6.4% 8.1% 102 0.5% 2.7% -0.6% 0.0%

126 3.3% 13.3% 8.7% 12.6% 103 0.3% 4.3% 0.0% 2.9%

129 5.6% 22.9% 13.4% 24.1% 104 0.3% 0.0% 0.9% 0.9%

130 44.6% 69.2% 27.3% 36.8% 107 1.3% 6.8% 0.3% 0.8%

132 13.6% 20.5% 22.2% 27.0% 110 3.4% 62.4% 17.2% 30.4%

134 6.5% 27.6% 12.3% 26.1% 125 0.0% 1.9% 2.1% 2.4%

147 5.2% 77.9% 44.1% 70.3% 141 4.3% 27.3% 13.6% 26.9%

HM int 8.8% 31.2% 16.2% 24.2% 145 6.4% 29.2% 4.8% 22.2%

146 5.9% 14.6% 2.4% 3.6%

HM fp 3.0% 17.3% 4.6% 10.3%

HM all 5.5% 23.5% 9.5% 16.1%

Table 3.3:Impact of exposing store addresses on performance. Relative performance over naive specu
is shown. The “AV” columns report performance when store addresses are visible and the “oracle”
columns report performance with oracle speculation. Two processor configurations are simulated pe
policy. The “1x8” is the configuration we have used in all previous experiments, while the “4x8” uses
memory system that has four times more bandwidth, and uses units that have 32 entry windows and 4
of all functional units including memory ports.

70

rmation

hnique.
der such

ance
depen-
Figure
ve that
r does
en the
ait until
ignifi-
(7.0%
proxi-
ults in
ulation
xecu-

ows

rela-
uler)
pared

emory
was allowed to execute before the corresponding store (as it could be the case when no address info
is available).

3.8.4 Selective Memory Dependence Speculation

In this section we demonstrate that selective memory dependence speculation is not a robust tec
For this purpose we assume perfect memory dependence prediction and demonstrate that even un
optimistic assumptions about prediction accuracy, selective speculation may result in lower perform
compared to naive speculation. As we explained in Section 3.3, under this policy, a load that has a
dence is forced to wait for all preceding stores. As a result, the load may get delayed unnecessarily.
3.1 reports the relative performance of selective speculation over naive speculation. We can obser
while selective speculation improves performance for some of the programs, for most of them it eithe
not affect performance by much or results in performance degradation. For the latter programs it is oft
case that it takes less time to incur a mispeculation and re-execute the code rather than having to w
all previous tasks commit. For 130.li and 147.vortex, selective speculation improves performance s
cantly. As we have seen (Table 3.2) these two programs exhibit relatively high mispeculation rates
and 7.3% respectively for the 8-unit configuration) and also the potential benefits are quite high (ap
mately 69% and 78% respectively). For most floating point programs selective speculation often res
significant performance degradation. As we have seen, these programs exhibit relatively low mispec
rates. Avoiding those few mispeculations by stalling the corresponding loads, often results in stalling e
tion in the corresponding unit. This is mostly the result of: (1) the relatively small instruction wind
employed in each unit, and (2) the relatively larger task sizes for the floating-point programs [92].

Even though we do not report this result here, we have found [61] that in a configuration that used
tively larger local instruction windows (i.e., 64-entry per unit where all entries were visible to the sched
and for the integer programs of SPEC92, performance with selective speculation was often better com

Figure 3.1: Relative performance of selective memory dependence speculation over naive m
dependence speculation.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-50%

-25%

0%

25%

50%

int fp all

HM

8-STAGES SELECTIVE4-STAGES SELECTIVE

71

n per-
rvation
lso be
gura-

entially
e spec-

gnifi-
posed

tion of
ulation.
niza-

tus pre-
next
dicates
ally, we
n per-
y syn-
f-order
ble of
other
Sec-

syn-
th each
oniza-
ndence
nc bits
in units
e viola-
icting
ath (as
inally,

al for
placed

is case
ctions.

binary
reting

possi-
ait
results
to naive. However, even then selective speculation sometimes resulted in inferior to naive speculatio
formance supporting our observation that selective speculation is not a robust technique. This obse
provides an indication that the performance degradation observed with selective speculation might a
the result of stalling execution due to the limited size of the unit instruction schedulers used in our confi
tion.

The results of this section suggest that while selective memory dependence speculation can pot
reduce the number of mispeculations observed, it falls short of the second goal of memory dependenc
ulation which is to delay loads only as long as it is necessary.

3.8.5 Speculation/Synchronization - Centralized Mechanism

Motivated by the observations that (1) the net penalty of mispeculation with naive speculation is si
cant, and (2) selective speculation is not robust, in this section we study performance under our pro
speculation/synchronization technique. In particular, we demonstrate that a centralized implementa
this technique can be used to attain performance that is very close to that possible with oracle spec
The rest of this section is organized as follows: first we provide information on the operation and orga
tion of the mechanism we simulated. Then we present a breakdown of the memory dependence sta
diction on loads. This result indicates whether we correctly identify if a load should wait or not. We
report the mispeculation rates observed with speculation/synchronization mechanism. This result in
whether we successfully avoid mispeculations on those loads that have dependences predicted. Fin
report performance results as ultimately the utility of the proposed technique can only be judged whe
formance is taken into consideration. This result provides an indication on whether we successfull
chronize with the appropriate store (or stores) and attain the performance benefits of aggressive out-o
execution of loads and stores. In the experiments that follow we first study an implementation capa
recording up to 256 load/store pairs. At the end of this section we study how performance varies for
prediction table sizes. All MDPT/MDST structures we consider in this section are fully-associative. In
tion 3.8.6, we consider an implementation that uses a 2-way set-associative structures.

The mechanisms we study in this section employ a combined MDPT and MDST in which a vector of
chronization bits are associated with each static dependence as explained in Section 3.6.4. Along wi
entry, a 3-bit saturating counter with a threshold value of three is used for prediction purposes; synchr
tion is enforced only when the counter is above three. Counter updates occur when memory depe
violations are detected, or when a task commits by inspecting the corresponding wait, signal and sy
and as explained in Section 3.6.4. Along with each static dependence we also record the distance
between the corresponding store and load. This information is recorded when a memory dependenc
tion is serviced. Also, recorded is the task PC of the store instruction which is used to avoiding pred
synchronization on dependences that cannot possibly appear on the currently predicted control p
explained in Section 3.6.6). Moreover, the structure is fully-associative and uses LRU replacement. F
in all experiments that follow we restrict our attention to the 8-unit configuration where both the potenti
performance improvement and the number of mispeculations observed is higher (i.e., more strain is
on the prediction and synchronization mechanisms).

We first report results on the prediction accuracy of the memory dependence predictor used. In th
we are interested on whether the predictor correctly predicts the dependence status of loads instru
This is the first step in speculation/synchronization. While memory dependence status prediction is a
decision problem as is, for example, branch prediction, a single number is not very useful in interp
memory dependence prediction results. The reason is that, when prediction is incorrect there are two
bilities: (1) either we will make a load wait for more than it should, or (2) we will fail to make a load w
and thus incur a memory dependence mispeculation. Accordingly, we present prediction accuracy

72

is pre-
n those
do not

ions are
urther-
hecked
roniza-
form
cor-

lation
on now
nces are
ndence
n be
s than

next is
ccess-
hown in
nchro-
grams
is sec-
sult of
ndence
tly the
r, the
into which predictions are classified into four categories depending on whether: (1) a dependence
dicted, and (2) a dependence really exists. In the results shown we include the predictions made o
loads that were either committed or were invalidated as the result of a dependence mispeculation. We
include the predictions made on those loads that were squashed by control mispeculations. Predict
recorded once per dynamic load and at the time the load is ready to access the memory hierarchy. F
more, for those loads on which a dependence is predicted, the prediction is recorded after we have c
the synchronization entries for the first time (as we discussed in Section 3.4, stores enable the synch
tion bit even when no load is currently waiting). Table 3.4 reports the breakdown of predictions in the
“Predicted/Actual”. Correct predictions fall under the “Y/Y” and “N/N” categories. False dependences
respond to the “Y/N” category. We should explain that when compared to the number of mispecu
observed with naive speculation (Table 3.2) these results may be different. The reason is the executi
progresses in a different manner. Some mispeculations are avoided and as a result more depende
exposed which may or may not get mispeculated. We can observe that the particular memory depe
predictor correctly predicts most of the loads that do have dependences (“Y/Y” vs. “N/Y”). As it ca
seen, the fraction of loads that have dependences and this predictor misses (“N/Y” column) is les
0.26% for all programs. Moreover, false dependences are rather infrequent.

Predicting whether a load has a dependence is the first step in speculation/synchronization. The
avoiding a dependence mispeculation by synchronizing with the appropriate store. A metric of how su
ful our mechanisms is at attaining this goal is the dependence mispeculation rate. These results are s
Table 3.5. Also shown are the mispeculation rates with naive speculation. We can observe that the sy
nization/speculation mechanism reduces mispeculations by at least an order of magnitude for all pro
except 099.go, 126.gcc, 147.vortex, 103.su2cor and 104.hydro2d. As we shall demonstrate later in th
tion, for the first three of these programs, most of the mispeculations that are not avoided are the re
limited space in the prediction/synchronization structure. These three programs have larger depe
working sets. Most of the mispeculations that are not avoided in 103.su2cor and 104.hydro2d are mos
result of incorrectly synchronizing loads with an earlier instance of the corresponding store. Howeve
absolute mispeculation rates for these two programs are extremely small to start with.

Predicted/Actual % Predicted/Actual %

N/N N/Y Y/N Y/Y N/N N/Y Y/N Y/Y

099 93.886 0.126 3.253 2.735 101 95.458 0.009 0.955 3.578

124 95.728 0.144 0.091 4.037 102 97.484 0.000 2.148 0.368

126 91.726 0.028 2.139 6.107 103 98.831 0.001 0.256 0.912

129 89.350 0.017 0.114 10.519 104 96.445 0.000 3.197 0.358

130 89.177 0.026 0.100 10.696 107 97.588 0.002 1.340 1.071

132 94.913 0.112 0.083 4.892 110 96.535 0.047 0.268 3.150

134 91.230 0.058 0.030 8.682 125 99.622 0.000 0.216 0.162

147 81.147 0.019 1.954 16.880 141 96.320 0.068 0.853 2.759

145 95.263 0.001 0.975 3.761

146 97.874 0.260 0.268 1.597

Table 3.4:Breakdown of memory dependence status prediction on loads.

73

d com-
e spec-
most
lation.
pp, our
due to

ber of
ization
DST
serve
e only
099.go,
roniza-
h the
le for
s why
ay fail
forced

anism,
ion and
th ora-
We finally measure the performance improvements obtained through the use of our mechanism an
pare it against the performance potential of oracle speculation. Figure 3.1 reports speedups over naiv
ulation for our mechanism (“synchronization”) and oracle speculation. We can observe that for
programs, our mechanism is capable of extracting most of the performance potential of oracle specu
However, for 099.go, 126.gcc, 147.vortex, and to a lesser extent for 103.su2cor, 141.apsi, and 145.fpp
mechanism is not as close to oracle speculation. As will we observe next most of this potential is lost
limited space in the prediction tables.

Finally, we study how the performance of our proposed mechanism varies as a function of the num
static dependences it can track. Figure 3.2 shows the relative performance of speculation/synchron
with respect to oracle speculation for various predictor sizes. We vary the number of the MDPT/M
entries from 64 to up to 2048 (shown from left to right, grey bar marks the 64-entry table). We can ob
that even with a 64-entry table performance is close to the oracle speculation for most programs. Th
programs that seem to be quite sensitive to the number of static dependences we can track are
126.gcc, 147.vortex, 141.apsi and 145.fpppp. These programs benefit from larger prediction/synch
tion structures. With the exception of 141.apsi performance is within 1.5% of oracle speculation wit
2K-entry table for these programs. Performance for 141.apsi levels off at roughly 2% lower of orac
tables with 1K entries or more. Similar behavior is exhibited by other programs. There are two reason
this is so: (1) sometimes a load is forced to wait although no dependence exists, and (2) prediction m
to properly identify the appropriate store instance a load should wait for. In these two cases, loads are
to wait for more than they should.

The results of this section demonstrate that a centralized implementation of our proposed mech
capable of tracking up to 256 dependences can be used to improve the accuracy of naive speculat
attain some and for the majority of the programs studied, most of the performance benefits possible wi
cle speculation.

MISPECULATION RATE MISPECULATION RATE

SYNCHRONIZATION NAIVE SYNCHRONIZATION NAIVE

099 2.1% 3.6% 101 0.1% 2.1%

124 0.029% 3.1% 102 0.0022% 0.2%

126 1.1% 4.3% 103 0.2% 0.5%

129 0.5% 9.3% 104 0.2% 0.5%

130 0.014% 7.0% 107 0.025% 0.3%

132 0.041% 3.2% 110 0.012% 1.6%

134 0.013% 6.3% 125 0.0059% 0.1%

147 1.0% 7.3% 141 0.3% 2.0%

145 0.3% 1.2%

146 0.008% 0.9%

Table 3.5:Memory dependence mispeculation rates as a percentage over all committed loads with
speculation/synchronization (“Synchronization” column) and naive speculation.

74

ation
.

as a
ht in
Figure 3.1: Performance improvements over naive speculation with our speculation/synchroniz
mechanism capable of tracking 256 dependences (dark bars) and with oracle speculation (grey bars)

Figure 3.2: Relative performance of speculation/synchronization with respect to oracle speculation and
function of the number of entries in the MDPT/MDST. Range shown is 64 to 2K entries, from left to rig
steps that are powers of two. The gray bar (left-most per benchmark) marks the 64-entry table.

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6 int fp all

HM
ORACLESYNCHRONIZATION

0%

20%

40%

60%

80%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-10%

-8%

-6%

-4%

-2%

0%

-14%

75

tion of
that are
of our
one we
ed in
er load,
can be
ce in
imple-
resh-
n to
daptive

tion to

unter-
struc-
or 8
depen-
ber of

ive to the
For the
appear
ram
stance
unroll-
ences

nism
and not

istrib-
ce that
imple-

f indi-
we sim-
le 3.7
entries.
to the

to loads
records

ppears
earlier
nerates

g with
sibil-
3.8.6 Speculation/Synchronization - Distributed Mechanisms

In the previous section we studied the characteristics of a centralized, fully-associative implementa
our proposed technique. As discussed in Section 3.6, this mechanism has a number of features
undesirable from a practical perspective. In this section we study the two distributed organizations
proposed technique we discussed in Sections 3.6.6 and 3.6.7. The first mechanism differs from the
used in the previous section in that: (1) a local copy of the combined MDPT/MDST structure is plac
every unit, (2) separate entries are allocated for loads and stores, (3) multiple stores can be recorded p
(4) system-wide, only one store can signal for synchronization purposes every cycle (so that a bus
used — while do not report this result we note that for the configuration studied no noticeable differen
performance was observed when we limited store signal bandwidth to one per cycle in the centralized
mentation), and (5) a non-adaptive counter (i.e., it only counts up) is utilized for prediction purposes (th
old is 3). The second mechanism has the following characteristics: (1) it utilizes a level of indirectio
identify the set of static dependences each load or store has, (2) it also uses the same 2-bit non-a
counters per prediction table entry, (3) it also limits the number of stores that can signal synchroniza
one per cycle, and (4) uses separate MDPT and MDST structures.

Table 3.6 reports the relative performance of the first distributed mechanism over its centralized co
part. Both the distributed and the centralized mechanisms use 256-entry combined MDPT/MDST
tures. We include results for four different predictors which are capable of recording, 1, 2, 4
dependences per static load respectively. We can observe that the predictor that can record just one
dence per load does not perform very well for most of the programs. However, as we increase the num
dependences that can be recorded per load, performance improves. Some programs are very sensit
number of static dependences that can be tracked per load (for example, 147.vortex and 110.applu).
integer codes, most of this sensitivity can be attributed to loads that have multiple dependences that
on different control paths. For 110.applu the sensitivity is mostly the result of loop unrolling. This prog
spends a significant portion of its time executing a multi-nested loop that exhibits a recurrence. The di
among the iterations that are dependent through this recurrence varies over time. As a result of loop
ing the static load and store involved are copied multiple times, and this in turn results in depend
between every copy of the load and store.

The experiments with the first distributed implementation of our synchronization/speculation mecha
suggest that performance is most sensitive to the number of dependences that can be tracked per load
so much to the distribution of the prediction and synchronization structures. We have shown that a d
uted implementation capable of tracking of up to 4 static dependences per load, resulted in performan
was only 3.17% in the worst case and 0.76% on the average, less than that attained with a centralized
mentation.

We next report performance results with the second distributed implementation that utilizes a level o
rection to represent the set of all possible dependences per store or load. The particular mechanism
ulated includes a 4K 2-way set associative MDPT and a 64-entry 2-way set associative MDST. Tab
reports performance with respect to the centralized mechanism of the previous section that has 256-
It can be seen that for most programs the performance degradation is typically higher when compared
first distributed mechanism that can track two static dependences per load. The cause can be traced
that have multiple dependences that appear at different unit-distances. Since the second mechanism
a single unit distance per static load it fails to synchronize with the appropriate store when the latter a
at unit distances that vary over time. In those cases, the load is either eagerly synchronized with an
store, or the load is forced to wait for a store that never appears (i.e., in this case our mechanism dege
to selective speculation). A potential solution to this problem would be to keep a distance vector alon
each entry to allow for multiple unit distances to be predicted. However, we do not investigate this pos

76

ecula-
of the

rforms
close

e most

ecula-
ST

ol-
irec-
ntralized
n. The
, the
lation.
advan-

 265-
ity as our goal is to demonstrate that a relatively straightforward implementation of synchronization/sp
tion can offer most of the performance benefits of oracle speculation (that this mechanism offers most
potential performance benefits is shown in Section 3.8.7).

The results of the experiments with the second distributed mechanism suggest that while it pe
worse than the other two mechanisms we studied, it still offers performance that is for most programs
to that possible with the centralized mechanism. Provided that this mechanism seems to be th
straightforward and less costly to implement, it may still be a good choice.

3.8.7 Comparison of Speculation/Synchronization Mechanism

Finally, we summarize our performance analysis by reporting, in Table 3.8 the relative over naive sp
tion performance of the following mechanisms: (1) centralized 256-entry combined MDPT/MD
(“CENT” columns), (2) distributed 256-entry combined MDPT/MDST with 2 stores per load (“D1” c
umns), and (4) the last distributed mechanism we studied (“D2” columns) which utilizes a level of ind
tion to represent dependence sets. Focusing on the harmonic means we can observe that the ce
mechanism performs best and offers performance very close to that possible with oracle speculatio
first distributed implementations performs slightly worse, but the difference is relatively small. Finally
second distributed implementation still offers most of the performance improvements of oracle specu
However, the performance difference is rather large. However, this last mechanism seems to have the
tage of being the most simple to implement.

Stores Per Load Stores Per Load

1 2 4 8 1 2 4 8

099 -1.31% -0.65% 0.00% 0.00% 101 -6.55% -1.71% -0.57% -0.57%

124 -3.21% -0.32% 0.00% 0.00% 102 0.00% 0.00% 0.00% 0.00%

126 -2.53% -1.01% -0.51% 0.00% 103 -0.53% -1.33% -0.27% -0.27%

129 -9.63% -2.75% 0.00% 0.00% 104 0.00% 0.00% 0.00% 0.00%

130 -5.91% -3.64% -2.27% 0.00% 107 -5.22% -3.87% -2.02% 0.00%

132 -4.59% -2.43% -0.81% 0.00% 110 -37.89% -18.42% -1.05% -0.26%

134 -9.01% -2.15% -1.72% 0.00% 125 -0.42% -0.21% 0.00% 0.00%

147 -21.43% -16.67% -3.17% -1.19% 141 -8.70% -1.58% -0.79% -0.40%

HM -6.89% -3.48% -1.05% -0.15% 145 -1.63% -1.31% -0.33% -0.33%

146 -6.72% -3.23% -0.25% -0.00%

HM -5.87% -2.93% -.052% -0.18%

HM
all

-6.32% -3.17% -0.76% -0.17%

Table 3.6:Performance of the first distributed mechanism over the centralized mechanism that uses a
entry MDPT/MDST.

77

with
l. Spe-
lelism
3.9.1).

perfor-
nificant
ow that

9.3). In
re allowed
rmance
n going
that an

tead of
fect in-

mean-
store

isters to
iguous

es a
3.9 Evaluation - Centralized, Continuous -Window Processor Model

In this section, we study various methods of extracting load/store parallelism and their interaction
memory dependence speculation under a centralized, continuous instruction window execution mode
cifically: (1) we demonstrate that higher performance is possible if we could extract load/store paral
and that the performance improvements are higher when the instruction window is larger (Section
(2) We demonstrate that naive memory dependence speculation can be used to attain some of the
mance benefits possible. However, we also demonstrate that the net penalty of mispeculation is sig
(Section 3.9.2). (3) We consider using an address-based scheduler to extract this parallelism and sh
higher performance is possible than when naive memory dependence speculation is used (Section 3.
an address-based scheduler, loads and stores post their addresses as soon as possible, and loads a
to inspect the addresses of preceding stores before obtaining a memory value. (4) We show that perfo
drops rapidly when inspecting preceding store addresses increases load execution latency (i.e., whe
through the address-based scheduler increases load latency — Section 3.9.3). (5) We demonstrate
organization where memory dependence prediction is used to schedule load/store execution —ins
using an address-based scheduler— offers performance similar to that possible had we had per
advance knowledge of all memory dependences (Section 3.9.4).

We note that the various load/store execution models we consider in this section are derived from
ingful combinations of the following parameters: (1) whether loads are allowed to inspect preceding
addresses before obtaining a value from memory, (2) whether stores wait for both data and base reg
become available before posting their addresses for loads to inspect, (3) whether loads with amb
dependences can issue (i.e., whether memory dependence speculation is used).

Slowdown Slowdown

099 0.00% 101 -2.85%

124 -1.60% 102 0.00%

126 -1.01% 103 -2.92%

129 -7.80% 104 0.00%

130 -4.09% 107 -5.89%

132 -5.68% 110 -23.95%

134 -7.30% 125 -0.21%

147 -16.67% 141 -5.53%

HM int -5.29% 145 1.31%

146 -6.47%

HM fp -4.53%

HM all -4.87%

Table 3.7:Performance of the second distributed mechanism over the centralized mechanism that us
265-entry MDPT/MDST.

78

can
mory

chanism
d, that is,
endence

her this
ral-
pt to
racle
struc-

es and
pport
s soon
re
-order
cle dis-
into the
epen-
er with

-
oad,
dups
3.9.1 Performance Potential of Load/Store Parallelism

An initial consideration with the techniques we proposed is whether exploiting load-store parallelism
yield significant performance improvements. The reason is that in order to determine or predict me
dependences we need additional functionality: (1) To determine memory dependences we need a me
where loads and stores can post their addresses and execute accordingly to the dependences detecte
we need an address-based scheduler. (2) To predict memory dependences we need a memory dep
predictor and also a synchronization mechanism. For this reason an important consideration is whet
additional functionality is justified. Accordingly, we motivate the importance of exploiting load-store pa
lelism by comparing a model of a typical dynamically-scheduled ILP processor that does not attem
determine and exploit load-store parallelism with one that is identical except in that it includes an o
load-store disambiguation mechanism. Under this model, execution proceeds as follows: After an in
tion is fetched, it is decoded and entered into the instruction window where its register dependenc
availability are determined. If the instruction is a store, an entry is also allocated in a store buffer to su
memory renaming and speculative execution. All instructions except loads can execute (i.e., issue) a
as their register inputs become available. Storeswait for bothdata and address calculation operands befo
issuing. Loads wait in addition for all preceding stores to issue. As a result, loads may execute out-of
only with respect to other loads and non-store instructions. The second configuration includes an ora
ambiguation mechanism that identifies load-store dependences as soon as instructions are entered
instruction window. In this configuration, loads may execute as soon as their register and memory d
dences (RAW) are satisfied. Since an oracle disambiguator is used, a load may execute out-of-ord

Policy/Mechanism Policy/Mechanism

Oracle CENT D1 D2 Oracle CENT D1 D2

099 8.11 3.38 3.37 3.37 101 24.56 23.17 22.45 19.65

124 10.64 10.64 10.64 8.86 102 2.67 2.13 2.13 2.13

126 13.33 10.00 9.44 8.89 103 4.35 2.44 2.17 -0.54

129 22.90 21.78 21.78 12.29 104 0.00 0.00 0.00 0.00

130 69.23 69.23 65.38 62.31 107 6.80 6.80 4.67 0.54

132 20.45 20.13 19.15 13.31 110 62.39 62.39 60.68 23.50

134 27.56 25.94 23.78 16.76 125 1.91 0.63 0.63 0.42

147 77.92 63.63 58.44 36.36 141 27.27 21.05 20.09 14.35

HM int 31.21 28.04 22.49 20.24 145 29.20 22.40 22.00 24.00

146 14.68 13.55% 13.27 6.21

HM fp 17.35 15.43 10.96 9.01

HM all 23.50 21.03 16.08 14.00

Table 3.8:Comparison of four speculation policies/mechanism: (1) oracle, (2) “CENT” centralized 256
entry MDPT/MDST (Section 3.8.5), (3) “D1” first distributed mechanism of Section 3.8.6, 4 stores per l
and (4) “D2” second distributed mechanism of Section 3.8.6 (level of indirection). Reported are spee
(%) over naive speculation.

79

ite their

mation
ith a
per-

(“NO”
n the
bility to
indow

erfor-
ge false
over all
s calcu-

ng store
ed store
nly for

ces to
ads and

is
NO
respect to stores and does not need to wait for all preceding stores to calculate their addresses or wr
data.

Figure 3.1 reports the performance improvements possible when perfect memory dependence infor
is available. We consider two base configurations, one with a 64-entry instruction window and one w
128-entry window. For all programs, exploiting load/store parallelism has the potential for significant
formance improvements. Furthermore, we can observe that when loads wait for all preceding store
bars) increasing the window size from 64 to 128 results in very small improvements. However, whe
oracle disambiguator is used, performance increases sharply. This observation suggests that the a
extract load/store parallelism becomes increasingly important performance wise as the instruction w
increases.

When loads are forced to wait for all preceding stores to execute it is false dependences that limit p
mance. The fraction of loads that are delayed as the result of false dependences along with the avera
dependence resolution latency are given in Table 3.9. We report false dependences as a fraction
committed loads. We account for false dependences once per executed load and the time the load ha
lated its address and could otherwise access memory. If the load is forced to wait because a precedi
has yet to access memory, we check to see if a true dependence with a preceding yet un-execut
exists. If no true dependence exists, we include this load in our false dependence ratio (this is done o
loads on the correct control path). We define,false dependence resolution latencyto be the time, in cycles, a
load that could otherwise access memory is stalled, waiting for all its ambiguous memory dependen
get resolved (i.e., all preceding stores have executed). We can observe that the execution of many lo
in some cases of most loads, is delayed due to false dependences and often for many cycles.

Figure 3.1: Performance (as IPC) with and without exploiting load/store parallelism. Notation used
“instruction window size”/”load/store execution model”. Speedups of ORACLE speculation over
speculation are given on top of each bar.

0

1

2

3

4

5

6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

64/NO 64/ORACLE 128/NO 128/ORACLE

16
.1

 %
22

.1
 %

16
.3

 %
31

.3
 %

28
.7

5
%

43
.5

 %
30

.2
 %

53
.0

 %
20

.2
 %

34
.6

 %
65

.1
 %

12
2.

4
%

39
.3

 %
66

.7
 %

12
8.

6
%

12
8.

0
%

61
.6

 %
11

5.
6

%
11

0.
2

%
15

2.
5

%
11

7.
3

%
22

3.
1

%
68

.4
 %

10
9.

5
%

47
.6

 %
10

5.
3

%
92

.8
 %

18
8.

9
%

78
.6

 %
17

6.
6

%
92

.8
 %

18
8.

9
%

69
.1

 %
19

5.
3

%
87

.7
 %

18
5.

9
%

Harmonic Mean ORACLE over NO SPECULATION:
INT: 36.56% FP: 78.95% ALL : 57.26% INT: 54.93% FP: 154.41% ALL : 97.93%

80

nts. In
e spec-
section
ble. All
er stores
.1, part
lation
lation is
perfor-
depen-
alty of
ncy of
n fre-

h which
g store
large.

be used
we con-
uler to
3.9.2 Performance with Naive Memory Dependence Speculation

As we have seen, extracting load/store parallelism can result in significant performance improveme
this section we measure what fraction of these performance improvements naive memory dependenc
ulation can offer. For this purpose, we assume the same processor model assumed in the previous
but we allow loads to speculatively access memory as soon as their address operands become availa
speculative load accesses are recorded in a separate structure, so that preceding in the program ord
can detect whether a true memory dependence was violated by a speculatively issued load. Figure 3
(a) reports performance (as IPC) for the 128-entry processor model when, from left to right, no specu
is used, when oracle dependence information is available and when naive memory dependence specu
used. We can observe, that for all programs naive memory dependence speculation results in higher
mance compared to no speculation. However, the performance difference between naive memory
dence speculation and the oracle mechanism is significant, supporting our claim that the net pen
mispeculation can become significant. Memory dependence mispeculations are at fault. The freque
memory dependence mispeculations is shown in part (b) of Figure 3.1. We measure mispeculatio
quency as a percentage over all committed loads. A breakdown in terms of the address-space throug
the mispeculation occurs is also shown. We can observe, that though loads cannot inspect precedin
addresses, mispeculations are rare. Nevertheless, the impact mispeculations have on performance is

In this context, the memory dependence speculation/synchronization methods we proposed could
to reduce the net performance penalty due to memory dependence mispeculations. However, before
sider this possibility (which we do in Section 3.9.4) we first investigate using an address-based sched
extract load/store parallelism and its interaction with memory dependence speculation.

False Dependences%
Resolution
Latency

False Dependences%
Resolution
Latency

099 26.4% 13.7 101 61.2% 36.3

124 59.9% 14.8 102 91.0% 5.4

126 39.0% 47.3 103 79.6% 91.2

129 70.3% 18.5 104 85.2% 9.7

130 44.2% 39.1 107 45.4% 26.6

132 70.3% 22.9 110 45.4% 26.6

134 59.8% 39.1 125 77.0% 55.6

147 67.2% 54.5 141 77.5% 78.7

145 88.7% 51.4

146 83.6% 9.7

Table 3.9:Fraction of loads with false dependences and average false dependence resolution latency
(cycles) for the 128-entry instruction window processor.

81

has the
depen-
re an
xecution.
com-

dence
3.9.3 Using Address-Based Scheduling to Extract Load/Store Parallelism

We have seen that using oracle memory dependence information to schedule load/store execution
potential for significant performance improvements. In this section we consider using address-based
dence information to exploit load/store parallelism. In particular we consider an organization whe
address-based scheduler is used to compare the addresses of loads and stores and to guide load e
We confirm that even in this context, memory dependence speculation offers superior performance

Figure 3.1: Naive memory dependence speculation. (a) Performance results (IPC). (b) Memory depen
mispeculation frequency.

0

1

2

3

4

5

6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

128/NO 128/ORACLE 128/NAIVE

(a)

0%

2%

4%

6%

8%

DATA HEAP STACK
09

9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

(b)

Harmonic Mean NAIVE over NO: INT: 29.67% FP: 113% ALL : 65.68%

Harmonic Mean ORACLE over NAIVE: INT: 20.91% FP: 20.38% ALL : 20.61%

82

dresses
endence

mbigua-
s.
If a true
ispecu-

ated to
als the
istent.
e depen-
depen-

ad from
res con-

mpared
ents we
time it
up to 2
, we
PC) of
, naive
ere for
More

ulation
memory
chedul-
degra-
access
propa-
wise be
t asso-

lism, a
that in a
rposes,
ders and
perfect
oth their
lute per-
l that uti-

utilizes
re 3.2,
(1)
depen-

hich we
pared to not speculating loads. However, we also demonstrate that when having to inspect ad
increases load execution latency, performance drops compared to the organization where oracle dep
information is available in advance (which we evaluated in the preceding section).

In the processor models we assume, stores and loads are allowed to post their addresses for disa
tion purposes as soon as possible. That is, storesdo not waitfor their data before calculating an addres
Furthermore, loads are allowed to inspect preceding store addresses before accessing memory.
dependence is found the load always wait. When naive memory dependence speculation is used, a m
lation is signaled only when: (1) a load has read a value from memory, (2) the value has been propag
other instructions, and (3) the value is different than the one written by the preceding store that sign
mispeculation. As we noted earlier, under this processor model mispeculations are virtually non-ex
There are three reasons why this is so: (1) loads get either delayed because they can detect that a tru
dence exists with a preceding store, (2) loads with unresolved dependences that correspond to true
dences are allowed to access memory but before they have a chance of propagating the value re
memory they receive a value from a preceding store, or (3) loads are delayed because preceding sto
sume resources to have their addresses calculated and posted for disambiguation purposes.

Figure 3.2 reports how performance varies when naive memory dependence speculation is used co
to the same configuration that performs no speculation of memory dependences. For these experim
use an 128-entry window processor model. We also measure how performance varies in terms of the
takes for loads and stores to go through the address-based scheduler. We vary this delay from 0 to
cycles. In the calculation of the relative performance with naive speculation of part (a) of the figure
should note that the base configuration is different for each bar. The absolute performance (i.e., the I
the corresponding base configuration is reported in part (b). It can be seen that, for most programs
memory dependence speculation is still a win. Performance differences are not as drastic as they w
the model where loads could not inspect preceding store addresses, yet they are still significant.
importantly the performance difference between no speculation and memory dependence spec
increases as the latency through the load/store scheduler also increases. For some programs, naive
dependence speculation results in performance degradation. These programs are 147.vortex for all s
ing latencies and 145.fpppp when the scheduling latency is 0. It is not mispeculations that cause this
dation. This phenomenon can be attributed to loads with ambiguous dependences that get to
memory speculatively only to receive a new value from a preceding store before they had a chance to
gate the value they read from memory. These loads consume memory resources that could other
used more productively. This phenomenon supports our earlier claim that there is an opportunity cos
ciated with erroneous speculation.

While including an address-based scheduler does help in exploiting some of the load/store paralle
load may still be delayed even when naive memory dependence speculation is used. The reason is
real implementation for preceding stores to calculate their addresses and post them for scheduling pu
they must consume resources. These resources include issue bandwidth, address calculation ad
load/store scheduler ports. The same applies to loads that should wait for preceding stores. If
knowledge of dependences was available in advance, stores would consume resources only when b
data and address calculation operands become available. For this reason, we next compare the abso
formance of the processor models that use an address-based scheduler to that of the processor mode
lizes oracle dependence information to schedule load execution (Section 3.9.1).

Figure 3.3 reports relative performance compared to the configuration that uses no speculation but
an address-based scheduler with 0 cycle latency (the IPC of this configuration was reported in Figu
part (b), 0-CYCLE configuration). From left to right, the four bars per program report performance with:
oracle disambiguation and no address-based scheduler (Section 3.9.1), (2) through (4) naive memory
dence speculation and address-based scheduler with a latency of 0, 1 and 2 cycles respectively (w

83

-based
he ora-
claim
an also

dress-
el that
evaluated earlier in this section). We can observe that, with few exceptions, the 0-cycle address
scheduler that uses naive speculation and the oracle mechanism perform equally well. Interestingly, t
cle configuration performance significantly better for 147.vortex and 145.fpppp supporting our earlier
about resource contention and the opportunity cost associated with erroneous speculation. We c

Figure 3.2: (a) Relative performance of naive memory dependence speculation as a function of the ad
based scheduler latency. Performance variation is reported with respect to the same processor mod
does not use memory dependence speculation. Base performance (IPC) is shown in part (b).

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0 CYCLES 1 CYCLE 2 CYCLES

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

38
 %

41
 %

43
 %

(a)

0

1

2

3

4

5

6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

IP
C

(b)

Harmonic Mean NAIVE over NO SPECULATION:

INT: 4.66% FP: 5.35% ALL : 5.04%

INT: 6.71% FP: 6.74% ALL : 6.72%

INT: 6.10% FP: 6.08% ALL : 6.09%

84

nfigura-
signifi-
e term
s oper-
th store
dition.
s issued.
is avail-
may be
d sched-

ch to
s chap-
h naive
there is

mory
observe that once it takes 1 or more cycles to go through address-based disambiguation the oracle co
tion has a clear advantage. The only exception is 104.hydro2d where the oracle configuration does
cantly worse. This result may come as a surprise, however it is an artifact of our euphemistic use of th
“oracle”. In the oracle model we assume, a store is allowed to issue only after both its data and addres
ands become available. As a result, dependent loads always observe the latency associated wi
address calculation, which in this case is 1 cycle to fetch register operands and 1 cycle to do the ad
Under these conditions, dependent loads can access the store value only after 3 cycles the store ha
When the address-based scheduler is in place, a store may calculate its address long before its data
able and dependent loads can access the store’s value immediately. In an actual implementation, it
possible to overlap store address calculation and store data reception without using an address-base
uler (e.g., [34, 84]).

3.9.4 Speculation/Synchronization

In this section we consider using an implementation of our speculation/synchronization approa
improve accuracy over naive memory dependence speculation. As we have observed in the previou
ter, in a continuous window processor that utilizes an address-based load/store scheduler along wit
memory dependence speculation, mispeculations are virtually non-existent. In such an environment

Figure 3.3: Comparing oracle disambiguation and address-based scheduling plus naive me
dependence speculation.

ORACLE NAIVE 0-CYCLES NAIVE 1-CYCLE NAIVE 2-CYCLES

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-20%

-10%

0%

10%

20%

30%

40%

Harmonic Mean NAIVE over NO SPECULATION 0-CYCLE:

INT: 6.64% FP: 6.51% ALL : 6.57% INT: -2.75% FP: 3.63% ALL : 0.79%

INT: 4.81% FP: 6.26% ALL : 5.61% INT: -9.68% FP: 1.13% ALL : -3.68%

85

, if an
emory
perfor-
often

Accord-
d/store
echa-

ay set
resented
cribed
(units
th the
ted —if

struc-
chroni-
cy of
d into
addi-
nces
register

dences
pplied
re (if
eir syn-
tore it

Section
ance

es (ora-
pecu-
mance
r four
that is
s are

d over
hibited
ispecu-
bser-
are the
ich a

predicts
some
y fail to
it non-

rced to
no need for our speculation/synchronization method. However, as we observed in Section 3.9.2
address-based scheduler is not present then the net penalty of mispeculation resulting from naive m
dependence speculation is significant. Moreover, and as we have seen in the previous section, the
mance potential of a method such a speculation/synchronization (oracle configuration of Figure 3.3) is
close or exceeds the performance possible with an address-based scheduler with 0 cycle latency.
ingly, in this section we restrict our attention to a configuration that does not use an address-based loa
scheduler. In the rest of this section we first provide the details of the speculation/synchronization m
nism we simulated and then proceed to evaluate its performance.

The speculation/synchronization mechanism we used in these experiments comprises a 4K, 2-w
associative MDPT in which separate entries are allocated for stores and loads. Dependences are rep
using synonyms, i.e., a level of indirection. The algorithm used to generate synonyms is the one des
in Section 3.6.6 with the only difference being that no unit distance is associated with each synonym
distances were used in the Multiscalar execution model). It is implied that a load is synchronized wi
last preceding store instance that has been assigned the same synonym. MDPT entries are alloca
they don’t exist already— upon the detection of a memory dependence violation for both offending in
tions. No confidence mechanism is associated with each MDPT entry; once an entry is allocated, syn
zation is always enforced. However, we flush the MDPT every million cycles to reduce the frequen
false dependences (this method was proposed in [17]). The functionality of the MDST is incorporate
the register-scheduler, which we assume to follow the RUU model [81]. This is done as follows: an
tional register identifier is introduced per RUU entry to allow the introduction of speculative depende
for the purposes of speculation/synchronization. Stores that have dependences predicted use that
identifier to mark themselves as producers of the MDPT supplied synonym. Loads that have depen
predicted by the MDPT, use that register identifier to mark themselves as consumers of the MDPT su
synonym. Synchronization is achieved by: (1) making loads wait for the immediately preceding sto
there is any) that is marked as the producer of the same synonym, and (2) having stores broadcast th
onym once they issue, releasing any waiting loads. A waiting load is free to issue one cycle after the s
speculatively depends upon issues.

Figure 3.4, part (a) reports performance results relative to naive memory dependence speculation (
3.9.2). As it can be seen our speculation/synchronization mechanism offers most of the perform
improvements that are possible had we had perfect in advance knowledge of all memory dependenc
cle). This is more clearly shown in part (b) of the same figure, where we report the relative over our s
lation/synchronization mechanism performance of oracle speculation. On the average, the perfor
obtained by the use of our mechanism is within 1.001% of that possible with the oracle mechanism. Fo
programs (126.gcc, 101.tomcatv, 102.swim and 107.mgrid) our mechanism results in performance
virtually identical to that possible with oracle speculation. For the rest of the programs the difference
relatively minor (3% in the worst case) when compared to the performance improvements obtaine
naive speculation. To help in interpreting these differences we also present the mispeculation rates ex
when our mechanism is in place. These results are shown in Table 3.10 (reported is the number of m
lations over all committed loads). As it can be seen, mispeculations are virtually non-existent. This o
vation suggests that for the most part the performance differences compared to oracle speculation
result of either (1) false dependences, or (2) of failing to identify the appropriate store instance with wh
load has to synchronize with. False dependences are experienced when our mechanism incorrectly
that a load should wait although no store is actually going to write to the same memory location. In
cases and even when prediction correctly indicates that a dependence exists, our mechanism ma
properly identify the appropriate store instance. This is the case for memory dependences that exhib
unit instance distances (e.g., a[i] = a[i - 2]). In such cases, a load is delayed unnecessarily as it is fo
wait for the very last preceding store instance that has been assigned the same synonym.

86

ce that
. How-
policy

nce
lation/
The results of this section suggest that our speculation/synchronization method can offer performan
is very close to that possible had we had perfect, in advance knowledge of all memory dependences
ever, further investigation is required to determine how selective speculation and the store barrier
would perform under this processor model.

Figure 3.4: Performance of an implementation of speculation/synchronization.(a) Performa
improvements over naive speculation. (b) Relative performance of oracle speculation over our specu
synchronization.

0%

10%

20%

30%

40%

50%

ORACLE SYNC

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

Harmonic Mean ORACLE over NAIVE: INT: 20.91% FP: 20.38% ALL : 20.61%

Harmonic Mean SYNC over NAIVE: INT: 19.71% FP: 19.09% ALL : 19.37%

0%

1%

2%

3%

(a)

(b)

Harmonic Mean O RACLE over SYNC: INT: 0.928% FP: 1.06% ALL : 1.001%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

87

-win-
always
wn that
nt. We
pecula-
ecula-

memory
culated.

roces-
lar).

spec-
t pro-

17%
n).

could
) and

other-
worse
3.10 Chapter Summary

In this chapter we studied how naive memory dependence speculation will interact with future, wide
dow dynamically scheduled processors. Under naive memory dependence speculation a load is
allowed to access memory when ambiguous dependences with preceding stores exist. We have sho
as instruction windows get larger, the net penalty of dependence mispeculations can become significa
used this result to motivate techniques that aim at improving the accuracy of memory dependence s
tion. Moreover, we argued that the goals of these techniques should not only be (1) to reduce misp
tions, but also (2) to delay loadsonly as long as it is necessaryto avoid mispeculation. Accordingly, we
proposed memory dependence speculation and synchronization, a technique that uses history-based
dependence prediction to enforce synchronization of those load-store pairs that are otherwise mispe

We have studied various memory dependence speculation policies using timing simulation of two p
sor models. The first utilized a distributed, split-window approach to establish a wide window (Multisca
The second used a centralized window (typical, modern superscalar).

For the distributed, split-window processor model our findings were:
1. Naive memory dependence speculation offers significant performance improvements over no

ulation. Speedups of roughly 50% and 180% were observed for the integer and floating poin
grams and for an 8-unit configuration.

2. Perfect knowledge of all memory dependences could potentially lead to a 31% (integer) and
(floating-point) performance improvement over naive speculation (for the 8-stage configuratio

3. Using store address information to detect memory dependences and avoid mispeculations
help if it was made available. The potential performance improvements were 8.8% (integer
3.0%. However, the net penalty of dependence mispeculations was still high.

4. Selective speculation, i.e., using prediction to avoid speculating on those loads that would
wise cause a mispeculation, is not a robust technique. In fact, for most programs it performed

Mispeculation Rate% Mispeculation Rate%

NAIVE SYNC NAIVE SYNC

099 2.5% 0.0301% 101 1.0% 0.0001%

124 1.0% 0.0030% 102 0.9% 0.0017%

126 1.3% 0.0028% 103 2.4% 0.0741%

129 7.8% 0.0034% 104 5.5% 0.0740%

130 3.2% 0.0035% 107 0.1% 0.0019%

132 0.8% 0.0090% 110 1.4% 0.0039%

134 2.9% 0.0029% 125 0.7% 0.0009%

147 3.2% 0.0286% 141 2.1% 0.0148%

145 1.4% 0.0096%

146 2.0% 0.0034%

Table 3.10:Memory dependence mispeculation rate with our speculation/synchronization mechanism
(“SYNC” columns) and with naive speculation (“NAIVE” columns).

88

roniza-
per-

) 28%
echa-

anisms

emory

erfor-
o time
n load

useful
In this

ements
mory

An
as it
ntial
r the

pro-
at the
dows
exists:

epen-
dicate,
f future
ds up
lation/
ng an
than naive speculation.
5. We evaluated three alternative implementations of our dependence speculation and synch

tion technique and found that they could offer most of the performance benefits possible with
fect knowledge of all memory dependences. The speedups over naive speculation were: (1
and 15% (integer and floating-point), (2) 22% and 11% and (3) 20% and 9%, for the three m
nisms respectively.

For the centralized, continuous window processor model that employed fetch and execution mech
of equal bandwidth and a program order priority scheduler, our findings were:

1. Naive memory dependence speculation can improve performance over not speculating m
dependences independently on whether loads can inspect preceding store addresses.

2. Exposing store addresses can eliminate virtually all memory dependence mispeculations. P
mance is close to that possible with perfect knowledge of all memory dependences if it takes n
to inspect store addresses before performing a load. However, performance degrades whe
latency is increased.

3. The memory dependence speculation and synchronization technique we proposed could be
in a design that does not use an address-based scheduler to extract load/store parallelism.
environment, memory dependence mispeculations are frequent and the performance improv
possible over naive speculation are rather large. Had we had perfect knowledge of all me
dependences, performance would improve by 20.9% (integer) and 20.4% (floating-point).
implementation of our speculation/synchronization method offers most of this potential,
resulted in performance improvements of 19.7% (integer) and 19.1% (floating-point). The pote
advantage of this design is that it may incorporate the load/store scheduling functionality ove
existing register dependence scheduler.

While most modern processors utilize a centralized, instruction window it is not unlikely that future
cessors will have to resort to distributed, split-window organizations. As many argue, the reason is th
existing, centralized methods may not scale well for future technologies and larger instruction win
(e.g., [66]). An example were techniques similar to those we presented have been put to use already
the Alpha 21264 processor utilizes both a split-instruction window approach and selective memory d
dence speculation to reduce the net penalty of dependence mispeculations [45]. As our results in
techniques to predict and synchronize memory dependences can greatly improve the performance o
split-window processors, allowing them to tolerate slower memory devices by aggressively moving loa
in time while avoiding the negative effects of memory dependence mispeculations. Moreover, specu
synchronization may be used as a potentially lower complexity/faster clock cycle alternative to usi
address-based load/store scheduler for exploiting load/store parallelism.

89

early as
over-
onal

essing.
ective

single
ogram
e action.
action
action

ddress-
guation

e also
and in

xplicit
sum-

alcula-
s can
eatedly

lier load
ory.

ional,
form.
Chapter 4

Speculative Memory Cloaking and Bypassing

In the previous chapter, we were concerned with techniques to send load requests to memory as
possible. Our goal was to exploit instruction level parallelism, tolerating slower memory devices by
lapping memory latency with other useful work. In this chapter we investigate a different, yet orthog
approach in our attempt to meet the latency and bandwidth requirements of high performance proc
We observe that memory can be treated differently depending on whether it is viewed from the persp
of single instruction or from the perspective of the program as a whole. From the perspective of a
instruction memory appears simply as storage. However, when viewed from the perspective of the pr
as a whole, memory can be treated as an interface used to synthesize a desired, possibly elaborat
This observation suggests another direction of improving performance: identifying what the intended
is (i.e., what is memory being used for), and if possible, developing methods to perform the same
faster.

In this chapter we identify two common uses of memory. The first isinter-operation communication
where a store writes a value to memory so that loads may later read it. The second isdata-sharingwhere
memory is used to hold data which is read repeatedly. In both cases, we argue that the traditional, a
based memory interface introduces both overheads — in the form of address-calculation and disambi
— and inconveniences in managing the storage structures used to implement memory. However, w
observe that the traditional address-based way of expressing both actions is not the only possible way
particular, we argue that an explicit specification of either action has advantages. Specifically, in an e
representation of inter-operation communication the identity of the producing store is known by the con
ing loads and vice versa. As a result, values can flow directly from stores to loads without address c
tion and disambiguation being necessary. Similarly, an explicit representation of data-sharing load
identify an earlier load that accesses the same data. This information can be used to place the rep
read data into a separate name space where it can be accessed directly (i.e., by identifying the ear
that accessed it), without incurring the overheads associated with the traditional address-based mem

Motivated by the aforementioned observations, we focus on methods of converting the tradit
address-based specification of inter-operation communication and of data-sharing into an explicit

90

ndence

e tra-
ifica-
ulative

ads that
e use of
btained
ssary.
ng, the
hier-
d.

do not
ving or
ced by
serva-
n-
uming

ies of
-

mem-
orming
e spec-
ssing.
g and
n be

ork. A
y of the

nstruc-
and
emory
ctive
f mem-
uction
ds the

o be used
alue is

nd as
entioned
r-oper-
Observing that inter-operation communication between a store and a load manifests as a RAW depe
and that repeated read accesses manifest as RAR dependences, we proposespeculative memory cloaking
(cloakingfor short), a technique that dynamically, and in an architecturally transparent way converts th
ditional implicit specification of the two aforementioned actions into an explicit, albeit speculative spec
tion. In this technique, memory dependence prediction is used to transparently create a new, spec
name space free of aliases. Via this new name space, (1) stores may pass values directly to the lo
need it, and (2) loads may access data by identifying a preceding load that also read it. Since we mak
memory dependence prediction, the proposed technique is speculative and so are the values o
through its use. Accordingly, value verification through the traditional memory name space is nece
However, as this verification can take place while the speculative values are used for further processi
observed memory latency is reduced; instructions that would otherwise wait for the traditional memory
archy to provide a value may now execute earlier, possibly even before the memory access is initiate

Aiming at further reducing memory value access latency, we observe that loads and stores typically
change the data they read or write respectively. These instructions are really used as agents retrie
placing memory data that other instructions produce or consume; the value written by a store is produ
another instruction, while the value read by a load is passed to other instructions. Motivated by this ob
tion we proposespeculative memory bypassing(bypassing for clarity), a conceptually straightforward exte
sion to cloaking. This technique speculatively bypasses loads and stores, linking producing and cons
instructions directly. When inter-operation communication takes place, bypassing convertsDEF-STORE-
LOAD-USE chains intoDEF-USE ones, while when data sharing occurs, this technique consolidates a ser
LOAD1-USE1...LOADN-USEN chains into a singleLOAD1-USE1...USEN producer-consumer graph. As with cloak
ing, bypassing requires verification of the speculatively communicated values.

The rest of this chapter is organized as follows. In Section 4.1 we discuss the two common uses of
ory that concern us and review the implications a traditional address-based interface has on perf
either of them. Here we describe the rationale for our proposed approach. In Section 4.2 we describ
ulative memory cloaking and its requirements. In Section 4.3 we introduce speculative memory bypa
In Sections 4.2 and 4.3 we focus on inter-operation communication. Having described how cloakin
bypassing works for inter-operation communication, we briefly explain how these techniques ca
extended to support data sharing. We do so in Section 4.4. In Section 4.5 we comment on related w
quantitative assessment of the proposed techniques is presented in Section 4.6. Finally, a summar
chapter is given in Section 4.7.

4.1 Two Common Uses of Memory

From the perspective of a single instruction, memory can be viewed as a storage mechanism: an i
tion may read data from memory or write data to it. A simple interface is provided for both reading
writing: instructions have to first calculate an address and then use it to access the corresponding m
location. Although this is a simple interface it is also quite powerful and when viewed from the perspe
of the program as a while, memory can be used to synthesize elaborate actions. One common use o
ory is inter-operation communication, where a memory location is used to pass a value from one instr
to another. This inter-operation communication is performed using a store and a load: the store bin
value to an address and the load has to access the value using the same address. Memory may als
to hold data that is read repeatedly by the program (data sharing). In this case, every time the v
needed, a load instruction is used to bring it into a register so that other instructions can access it.

While the traditional memory address-based interface is simple and powerful, it is also general a
such, it may introduce unnecessary overheads or inconveniences when used to express the aforem
actions. In the Sections 4.1.1 and 4.1.2, we discuss how the traditional memory interface impacts inte

91

explicit

ing
nt pass-
ication
here
ort a
ration

. The
unica-
and go
ng pro-
d (2) no
isambig-
mple is
ns of

Initially
e load is
e value

hrough
ndence
estab-
ay get

tion and
emory

nd a
cam
n can
ation communication and data sharing. In Section 4.1.3 we use this discussion to argue when an
specification of these actions has advantages.

4.1.1 Memory as an Inter-operation Communication Agent

As we have seen in Chapter 2 a large fraction of all executed loads read a value written by a preced
store. This observation suggests that memory is often used as an inter-operation communication age
ing values from stores to loads. Faster processing however, requires faster inter-operation commun
(latency). This is especially important for future wide-issue instruction-level-parallel processors, w
even a single cycle will correspond to many instruction issue opportunities. Furthermore, to supp
higher-degree of instruction level parallel execution, the mechanisms used to implement inter-ope
communication need to also support multiple simultaneous operations (bandwidth).

In the traditional, address-based memory interface, memory communication is expressed implicitly
load or the store provide no indication of the communication that has to happen. To detect the comm
tion and establish the communication link both the store and the load have to calculate their address
through disambiguation. The latter action entails comparing the addresses of stores and loads taki
gram order into account; a store and a load communicate if (1) they access the same address, an
intervening store (in the program order) accesses the same address. Both address calculation and d
uation introduce overheads as the value may be available long before either action completes. An exa
shown in Figure 4.1 where communication is to take place between the STORE and LOAD instructio
the code fragment shown in part (a). Part (b) shows a possible sequence events during execution.
the store is fetched, its address is calculated and later the store data becomes available. Later on, th
encountered. At this point both instructions that need to communicate have been encountered and th
is available. Yet, communication is delayed until LOAD has calculated its address and has passed t
disambiguation to establish the dependence with STORE. Depending on whether memory depe
speculation is used (see Chapter 3), accessing the memory value may be further delayed until it is
lished that no other intervening store accesses the same memory location. For example, LOAD m
delayed until STORE1 also calculates its address and goes through disambiguation.

Even when the value becomes available after both the load and the store complete address-calcula
disambiguation, we will still observe the latency associated with accessing the value through the m

Figure 4.1: An example of inter-operation memory communication. (a) Program segment with a store a
load that will communicate. (b) Timeline of execution. With an implicit specification, communication
take place after address-calculation and disambiguation. With an explicit specification communicatio
take place as soon as the two instructions are encountered and the value becomes available.

STORE

STORE1

LOAD

P
ro

gr
am

 O
rd

er

STORE

STORE ADDRESS
STORE DATA

LOAD

LOAD ADDRESS

STORE1 ADDRESS

explicit

implicit

Execution Timeline

(a) (b)

92

y will
might
a larger

s as a
ime.
slower
ths will
ber of
ase in

s after
e later
en two
ssing a

tional
espond-
access-
pplies
disam-
rough

s

muni-
f both
nsum-
unica-
e. Since
. Simi-

have
tifying
ted its

mmu-
explicit
e could
ataflow
ain

create a
tifying

annot be
time).
hierarchy, i.e., through the store buffer or the data cache. It is likely that the memory hierarchy latenc
be higher for future wide-issue long instruction window processors. Here are a few reasons why this
be the case. Store buffers may be slower as these processors will have to establish and scan through
instruction window which will include more stores. Accessing the data cache may require more cycle
result of two trends. The first is the working set of typical programs which traditionally increases with t
If caches have to increase in size to compensate for larger working sets, they may become relatively
[98]. The second is implementation technology. Many argue that as feature sizes decrease, wire leng
dominate [57] and this in turn may result in caches being slower. Finally, unless an increased num
memory ports is provided, the lack of additional cache access bandwidth may manifest as an incre
cache access latency.

4.1.2 Memory As A Value Place Holder

In Chapter 2 we have seen that many memory values are read multiple times. This is no surprise a
all the temporal locality exhibited by programs can give rise to this phenomenon. As we demonstrat
on however, locality is stronger when viewed in terms of the read-after-read dependences formed wh
or more loads access the same memory location. That is, if at some point we observe two loads acce
common memory location, chances are the same loads will soon access a common, but possiblydifferent
memory location. As with inter-operation communication, overheads are introduced by the tradi
memory interface when accessing values repeatedly. Even though the value is not changed, the corr
ing loads have to calculate an address and go through disambiguation. The latency associated with
ing the value from the memory hierarchy is also incurred and the discussion of the previous section a
in this case also. (While the mechanisms introduced in Chapter 3 can be used to avoid incurring the
biguation latency before accessing memory all loads will still have to calculate an address and go th
the memory hierarchy to obtain their value.)

4.1.3 Using Memory Dependence Prediction To Streamline Memory Accesse

The overheads introduced by the traditional memory interface when performing inter-operation com
cation and when data sharing occurs can be eliminated if we opt for an explicit representation o
actions. In an explicit representation of inter-operation communication the producing store and the co
ing load both know that communication will take place and can locate each other. As a result, comm
tion can take place as soon as the two instructions are encountered and the value becomes availabl
both instructions can locate each other, there is no need for address-calculation and disambiguation
larly, in an explicit representation of data sharing, all loads that access a common memory location
knowledge of this fact and can locate each other. As a result, loads may initiate their access by iden
the first load in program order that accessed the common memory location. If that load has comple
access, the value is available immediately without having to first calculate an address to locate it.

Both inter-operation communication and data-sharing give rise to dependences. Inter-operation co
nication gives rise to true (RAW) dependences and data-sharing gives rise to RAR dependences. An
representation of either action requires a representation of the corresponding dependences. W
attempt to determine and specify these memory dependences statically as for example, was done in d
machines [18, 91]. Even though this is an interesting option, we will not consider it further for two m
reasons. First, a static representation would involve changing the program representation and would
legacy issue for future processor generations. Second, a static approach may have difficulty in iden
that inter-operation communication or data-sharing takes place either because the dependences c
determined statically (i.e., they are ambiguous) or because they are transient (i.e., do not occur every

93

ile the

to
muni-
: the
ctions.
and to
depen-

o locate
itional
mapped
forma-
mory
e via an

le long

stores
peration
values
inter-

is actu-
d is not
ssing.
bypass
erva-
ultiple

ossible
th the
oduce

iting
For these reasons, we opt for a dynamic approach in which the conversion is done dynamically wh
program is running using architecturally invisible structures.

In the sections that follow we introducecloaking where we utilize memory dependence prediction
dynamically annotate loads and stores with the information necessary to identify inter-operation com
cation and data-sharing, allowing them to establish direct communication links. We do so as follows
first time a RAW or a RAR dependence is encountered we record the identities of the dependent instru
We use this dynamically collected dependence information to create a new, speculative name space
associate its names with the dependent instructions directly. This allows subsequent instances of the
dent loads and stores to derive the corresponding name based solely on their identity (e.g., PC) and t
each other without having to perform address-calculation and go through disambiguation. As an add
benefit, the name space created via memory dependence prediction, being more compact, can be
onto a relatively small and for that, fast, storage structure. As we rely on speculative dependence in
tion any values obtained through our technique have to be eventually verified via the traditional me
name space. This implies that the proposed technique does not eliminate the need to access a valu
address. Even so, when speculation is successful, the proposed technique may reduce the latencyobserved
by those instructions that use the communicated value. This is possible when the value is availab
before the address-based access completes through the traditional memory hierarchy.

While cloaking may reduce memory access latency, inter-operation communication still occurs via
and loads and every access to shared data requires a separate load. Taking a closer look at inter-o
memory communication we can observe that the store and load instructions used do not change the
communicated (ignoring sign-extension and data-type conversions). They too are part of the memory
face acting as agents that write and read values from memory locations. The value written by a store
ally produced by another instruction and passed to the store via a register. The value read by a loa
consumed by the load itself, rather it is propagated to other instructions that use it for further proce
These observations suggest that further reduction in communication latency may be possible if we
the load and store instructions, linking the producing and consuming instructions directly. Similar obs
tions apply to data-sharing, where multiple loads are used to propagate the same memory value to m
consuming instructions. This observation suggests that further reduction in memory latency may be p
if we bypass all but the first load, linking all the consumers of the accessed memory value directly wi
first load. To link producing and consuming instructions directly, bypassing loads and stores, we intr
speculative memory bypassing.

Figure 4.2: Speculative Memory Cloaking and Bypassing. (a) Inter-operation communication: explo
read-after-write dependences. (b) Data sharing: exploiting read-after-read dependences.

LOAD RY

USE RY

Cloaking

B
yp

as
si

ng

Memory

(a)

LOAD RZ

USE RY

USE RZ

Cloaking
Byp

as
sin

g

DEF RX

STORE RX

LOAD RY

(b)

94

per-
espec-
ducer
sumers

ection
muni-
loak-

Section

d a con-
ay be
emory
els).
environ-

r archi-
stage

plicit
ed to
epen-
ssful. In

ed via a
PC,

muni-
o link to
at use it
e syn-

ore to
o first
f a syn-
mu-

epen-
eferably
instruc-

ciation
on 2).

is yet
ction
ystem
diction

again to
Figure 4.2 illustrates the effect we aim to achieve with cloaking and bypassing. As shown, cloaking
mits loads to obtain a speculative value by locating a preceding store or load that wrote or read it r
tively. In the case of inter-operation memory communication, bypassing links directly the actual pro
and consumer of a value. In the case of data sharing, bypassing links one of the loads with all the con
of shared memory value.

The rest of this chapter is organized as follows. In Section 4.2 we describe cloaking and then in S
4.3 we present bypassing. Initially, we describe both techniques in the context of inter-operation com
cation. With an understanding of what is involved in streamlining inter-operation communication via c
ing and bypassing, we describe how these techniques can be extended to also handle data sharing in
4.4.

It should be noted that the discussion that follows and the mechanisms presented are geared towar
tinuous instruction window instruction-level parallel processor. However, cloaking and bypassing m
applicable in other environments where inter-operation communication and data-sharing through m
occurs (e.g., split-window processing models as Multiscalar or explicitly parallel processing mod
Changes may be required in the schemes producers and consumers use to locate each other in those
ments. For example, in Chapter 3 we saw how a different naming scheme was used in the Multiscala
tecture —non-continuous, split window — to identify instances of loads and stores (we used a PC,
number pair). Nevertheless, the concepts that underline these techniques may still apply.

4.2 Speculative Memory Cloaking

The purpose of cloaking is to streamline memory communication by dynamically converting the im
specification of communication into an explicit form. In cloaking, memory dependence prediction is us
identify loads and stores that are likely dependent. The high-degree of locality found in the dynamic d
dence stream of the programs we studied (Chapter 2) suggests that such an approach may be succe
cloaking, once a dependence is deemed predictable, the dependent load and store are explicitly link
new name, asynonymwhich uniquely identifies the dependence (e.g., the synonym can be the (load
store PC) pair). One may wonder how using a different name may help in streamlining the actual com
cation. After all, data addresses and synonyms are just names that the dependent instructions use t
each other. The answer lies in the nature of the association between the name and the instructions th
and in the information associated with the existence of the name itself. In contrast to an address, th
onym is intended to uniquely identify the dependent instruction pair. This allows the load and the st
derive the synonym based solely on their identity (PC) locating the appropriate value without having t
perform an address calculation and go through disambiguation. Furthermore, the mere association o
onym with a load or a store is intended to indicate that the instruction is involved in inter-operation com
nication.

The process of cloaking is illustrated in Figure 4.3. As shown in part (a), detecting a load-store d
dence results in an association among the load, the store and a function that can be used to derive pr
unique synonyms for future instances of the dependence. When a subsequent instance of the store
tion is brought into the instruction window and a dependence is predicted (part (b), action 1), this asso
results in the generation of a synonym and in the allocation of physical storage for this synonym (acti
Storage for the synonym is preferably provided in theSynonym File (SF)which is a small, low latency/high
bandwidth storage structure. The storage element is initially marked as empty, indicating that no value
available. When the store obtains its value, it also updates the synonym file entry marking it as full (a
3). Finally, when the store computes its address, the value is also written to the traditional memory s
(action 4). When the appropriate instance of the load is encountered, the memory dependence pre
mechanism is probed. Provided that the dependence is predicted correctly, the association is used

95

nonym
ng the
system
ed ear-
further
g data
f events.
ay be

e ben-
ion.

m-
muni-
name
e used
nce the

reat-
unica-

iscuss
2.4.

ence
e store
ulatively.
derive the synonym (part (c), action 5) and consequently, to locate the appropriate element in the sy
file (part (c), action 6). Instructions that use the load value may at this point execute speculatively usi
value found in the synonym file (action 7). When the load’s address becomes available, the memory
is accessed to read the actual value (action 8). The memory value is compared with the value obtain
lier via the cloaking mechanism. If the two values are the same, cloaking was successful and no
action is required. Otherwise, data value mispeculation occurs, and any instructions that used wron
have to be re-executed. It should be noted that the above discussion covers one possible sequence o
In practice, events may occur in a order different than the one just described. For example, the load m
encountered before the store writes a value in the synonym file. In any case, cloaking still provides th
efit of establishing a communication link early without requiring address-calculation and disambiguat

We use the termmemory cloakingto signify that the original address-based specification of memory co
munication and the mechanisms used to implement memory itself are hidden when values are com
cated via cloaking. With this technique, communication takes place through a dynamically created
space andwithoutknowledge of the address used by the program. No association between the storag
by the synonym and the address is ever built. Furthermore, we clarify the technique as speculative si
use of speculative dependence information makes communication via cloaking speculative.

Speculative memory cloaking requires the following functionality: (1) predicting dependences, (2) c
ing synonyms, associating them with the dependent instructions and assigning storage for the comm
tion, and (3) verifying the speculatively communicated values. In Sections 4.2.1 through 4.2.3 we d
each of these requirements in detail. Finally, we present an implementation of cloaking in Section 4.

Figure 4.3: Streamlining memory communication via cloaking: (a) Detecting a read-after-write depend
results in an association between the dependent load and store. (b) A subsequent instance of th
creates a synonym. (c) A subsequent instance of the load locates the synonym and uses its data spec

Traditional Memory
Hierarchy

load

store load
association

 f: synonym

Synonym File

 synonym
address

5

6
8

7

Traditional Memory
Hierarchy

address

store

load

Dependence

Traditional Memory
Hierarchy

store

store load

association

 f: synonym

Synonym File

1

2

synonym
3

4

addressstore load

association

 f: synonym

(c)

(a) (b)

96

e the
ds and
emory
do not
practice.

f Chap-
redict
mech-

depen-
uss a

ed RAW

e first
ndences
m (i.e.,
iate pre-
-based
dent
dicates
load PC)
ds and
ut those
ction of
56), pref-

tain a
s can be
e, if any
re are

at last
nism is
rable.

ndence
ces as
depen-
e depen-
ay have
easons,
predic-
ruc-
s with.

tion sug-
e actual
edictor
Before we proceed with our description we should note that in the discussion that follows we mak
assumption that the value read by a load is always produced by a single store. However, since loa
stores may operate on different data types, this might not be always the case. While support for m
communication among loads and stores that operate on different data types might be possible [62] we
consider such options here because as we have seen in Chapter 2, such dependences rarely occur in

4.2.1 Detection and Prediction of Dependences

For cloaking to be successful, we have to be able to predict memory dependences. As the results o
ter 2 indicate, programs behavior is such that history-based prediction could potentially be used to p
memory dependences with high accuracy. For history-based prediction to be possible we need: (1) a
anism to detect RAW dependences, and (2) a mechanism to record information about detected RAW
dences and to use this information for prediction purposes. In the rest of this section we first disc
mechanism that can be used to detect RAW memory dependences and then discuss a history-bas
memory dependence predictor.

Since history-based predictors rely on information about past behavior to make their predictions, w
need a mechanism to detect store-load dependences. There are two considerations: (1) how depe
should be reported by the detection mechanism, and (2) what is the desired scope of this mechanis
how many loads and stores it should detect dependences for). Given that we have decided to assoc
dictions with the instructions themselves (a property that allows us to access values using instruction
information), the detection mechanism should provide sufficient information to identify the two depen
instructions. For the purposes of this work we require that the dependence detection mechanism in
dependences using the PCs of the dependent instructions by reporting dependences as (store PC,
pairs. Moreover, for the purposes of cloaking it is desirable to predict dependences on as many loa
stores as possible (in contrast to the applications we presented in Chapter 3, where we only cared abo
loads and stores that are mispeculated). As the analysis of Chapter 2 suggests, to capture a large fra
the dynamic dependences we need to be able to detect dependences over several addresses (e.g., 2
erably over regions that most likely exceed the instruction window used. This is possible if we main
record of recent stores (e.g., their PC) along with the memory address each touched. Dependence
detected when loads access memory by inspecting these records to determine which was the last stor
that updated the particular memory location. At this point the identities of both the load and the sto
known. A relatively inexpensive and straightforward implementation is via aDependence Detection Table
(DDT) which is nothing more than a regular but very small cache that records the PC of the store th
touched each recorded address. Note that since the information collected by the detection mecha
used only for prediction purposes, relatively long detection latencies and detection errors may be tole

With a dependence detection mechanism in place, the next step is devising a history-based depe
prediction scheme. The most straightforward prediction scheme is to record and predict dependen
(load PC, store PC) pairs. Unfortunately, such a scheme may have to predict among many possible
dences since, as we have seen in Chapter 2, different instances of the same static store often observ
dences with instances of different static loads and vice versa. Furthermore, with such a scheme we m
to predict multiple dependences per dynamic store when its value is used by many loads. For these r
it is conceptually convenient to treat dependence prediction as a two step process. In the first step, a
tion is made on whether the given load or storehasa dependence (i.e., the dependence status of the inst
tion), and in the second step, a prediction is made to decide with which load or store the dependence i

In Chapter 2 we have seen that the dependence status of instructions rarely changes. This observa
gests that in predicting whether a dependence exists, high-accuracy should be possible. Predicting th
dependence however, requires more effort. Although it is conceivable and desirable to design a pr

97

ork to
ommon
to iden-
is cur-
e for
explain
epen-

n-
oth
with
-
sider for
o store

d,
e third
are

to all
[62].
ld use

nchroni-
g and
com-

se syn-
ate the

has a
le con-
through

used
uire

nces are
parating
ct in the
that attempts to predict the actual dependence directly, we found it sufficient for the purposes of this w
use a level of indirection in representing dependences. To do so we use a scheme which assigns a c
tag to all dependences that have common producers (stores) or consumers (loads) and uses that tag
tify all these dependences collectively. We can then determine which of all the possible dependences
rently observed by a mere inspection of the incoming instruction stream (this is similar to what is don
register dependences). Assignment of these tags can be done using an incremental approach. We
this method using the example code fragment of Figure 4.4 part (a). There are two read-after-write d
dences in this code: (STORE1, LOAD) and (STORE2, LOAD). The first time the loop iterates, one of the depe
dences, for example the (STORE1, LOAD), is detected. A new tag is allocated and associated with b
STORE1 andLOAD. When later the (STORE2, LOAD) dependence is detected, we associate the same tag
STORE2 also (the tag is readily available as it is associated withLOAD). When this method is used it is possi
ble to encounter a case where a dependent store and load have different tags assigned to them. Con
example the code fragment of Figure 4.4, part (b). There are four possible dependences among the tw
and the two load instructions. It is possible to encounter dependences in the following order: first (STORE1,
LOAD1), then (STORE2, LOAD2), and finally, (STORE1, LOAD2). When the first two dependences are detecte
two different tags are assigned to each of them as they share no instructions. As a result, when th
dependence is encountered,STORE1 andLOAD2 already have tags assigned to them which, unfortunately
different. At this point it is desirable to merge all dependences together by assigning one common tag
four instructions. One way of achieving this is by replacing all instances of one tag with the other
Doing so would probably require a broadcast mechanism, an undesired feature. Alternatively, we cou
an incremental approach as the one suggested by Chrysos and Emer in the context of speculation/sy
zation [17] (we have described this approach in Section 3.6.6). Throughout the evaluation of cloakin
bypassing we make use of this incremental approach noting that we observed virtually no difference
pared to a full merge mechanism.

4.2.2 Synonym Generation and Communication

In this section we discuss methods of generating synonyms for predicted dependences and how the
onyms are used by loads and stores to perform speculative communication. In cloaking, stores initi
communication by generating a synonym in reaction to the prediction of a dependence. The synonym
dual role: (i) it identifies the specific instance of the dependence (or dependences in the case of multip
sumers), and (ii) it is used as a handle by the dependent instructions to locate the storage element
which the communication will take place.

The exact encoding of the synonym is not important. However, it is desirable for the naming scheme
to provide different synonyms for unrelated communication at any given point of time. This may req
generating different synonyms for different instances of the same static dependence when these insta
simultaneously active (e.g., the values have not been consumed yet). We approach this issue by se
memory dependences into two categories: (1) those dependences whose instance lifetimes are distin

Figure 4.4:Code fragments that have multiple true dependences.

loop:
if (cond) STORE1 Ma
else STORE2 Ma
LOAD Ma

loop:
if (cond) STORE1 Ma
else STORE2 Ma
if (cond1) LOAD1 Ma
else LOAD2 Ma(a)

(b)

98

ogram
that fall
ry. As
ver, as
istinc-
d, other

ce
global
te syn-

enam-
onym
tag rep-

ponding

to the
priate

ing
g this
in this
ences
we do
pted to
distance
echa-
inguish

 (part
original program order, and (2) those dependences whose instance lifetimes overlap in the original pr
order. Figure 4.5 shows examples illustrating these two cases: parts (a) and (b) show dependences
into the first category, while parts (c) and (d) show dependences that fall under the second catego
shown in part (b) dependence lifetimes do not overlap when the loop of part (a) is executed, howe
shown in part (d), when the loop of part (c) is executed, dependence lifetimes do overlap. The key d
tion between the two categories is that in the second category, in between the dependent store and loa
instances of the store may be encountered (as shown in part (d) of Figure 4.5, the “store a[11]” appears in
between the dependence (store a[10], load a[10])). In either case, assigning a new synonym to every instan
of the store instruction is straightforward and can be done in numerous ways (for example, using a
counter). The challenging part is having the instances of the corresponding loads locate the appropria
onym also. For dependences of the first category the functionality is similar to that used for register r
ing (ignoring the potential size of the synonym name space). All we need to do is record the last syn
associated with each dependence. This can be done when the synonym is created by associating the
resenting the dependence with the synonym. The load can then locate the synonym and the corres
store by using the dependence tag supplied by the memory dependence predictor.

For dependences that fall into the second category just recording the very last synonym assigned
dependence is not sufficient. Instead, loads will have to determine which of all synonyms is the appro
one. For example, in part (d) of Figure 4.5, “load a[10]” will have to locate the synonym assigned to “store
a[10]” and not to “store a[11]”. While support for these kind of dependences may be possible (i.e., provid
a mechanism that allows loads to select among multiple instances of a store), we note that providin
support is not a requirement as it represents only a potential for increased performance. Accordingly,
work we restrict our attention to synonym generation schemes that work correctly only for depend
whose instance lifetimes do not overlap (i.e., exhibit unit instance distances). However, even though
not report these results, we note that we have experimented with a prediction mechanism that attem
guess instance distances greater than one using an incremental approach (i.e., initially a dependence
of 1 is tried and if that fails, a dependence distance of 2 is tried and so on). We found that while this m
nism was successful in handling cases where instance distances remained constant, it couldn’t dist

Figure 4.5:Examples illustrating dependences whose lifetimes do not overlap (part (a)) or do overlap
(b)). Dependences are marked with thick arrows. Dependence lifetimes are marked with thin arrows.

for (i = 1; i < N; i++)

a[i] = a[i - 1]

(a)
store

load

for (i = 1; i < N; i++)

a[i] = a[i - 2]

(c)
store

load

load a[10]

store a[11]

load a[11]

store a[10]

load a[9]

store a[11]

load a[10]

store a[10]

Pr
og

ra
m

 O
rd

er

Pr
og

ra
m

 O
rd

er

(b) (d)

dependence

lifetime

99

ally all

ge ele-
ilable.
apped

alues so
ns also
used
Two

n, all
only

re hard-
n) its
rfor-
valida-
ible is

xplain
nisms
inte-

to eval-

dress
d the
at have
ry of this
), (3)

s entry
ther a
ruction.
ue, (3)
uired
, we can

In the
tion of
tion the
between incorrect instance distance predictions and dependence mispredictions. As a result, for virtu
programs prediction accuracy dropped significantly.

To perform the communication, physical storage has also to be provided for synonyms. The stora
ments should provide space for the data value and an indication on whether the value is currently ava
Finally, mapping synonyms to storage elements can be done in a variety of ways (e.g., using a direct m
or a fully associative organization).

4.2.3 Verification

Because the communication that takes place in cloaking is based on dependence prediction, any v
obtained are speculative and have to be verified. This can be done by letting the dependent instructio
communicate via memory. The support required for invalidating and re-executing instructions that
incorrect data is no different than that required for memory dependence or value speculation [54].
options have been proposed to date: (i) squash or (ii) selective invalidation. In squash invalidatio
instructions after the mispeculation point are invalidated and re-executed. In selective invalidation
those instructions that used incorrect data are re-executed. While squash invalidation requires no mo
ware than what is typically found in modern processors (it is also used to support control speculatio
performance penalty is relatively high. Selective invalidation on the other side offers relatively low pe
mance penalty at the expense of added hardware cost and complexity. In fact, support for selective in
tion is in our opinion still in an experimental phase and whether such mechanisms are practically poss
still unknown.

4.2.4 Implementation Aspects

In this section we describe an implementation of the speculative memory cloaking technique and e
its operation by means of an example. Our goal is to demonstrate the feasibility of the required mecha
and to provide insight about their complexity. A discussion of how the various components can be
grated in a typical pipeline is given in Section 4.6.6, where we discuss the exact mechanism we used
uate the performance impact of cloaking.

We partition the support structures in the following: (a)dependencedetectiontable (DDT), (b) depen-
denceprediction andnamingtable(DPNT), and (c)synonymfile (SF). As we explained earlier, the DDT is
used to detect dependences. An entry of this table consists of the following fields: (1) Data Ad
(ADDR), (2) Store PC (STPC) and (3) a valid bit. This information identifies the store that last update
given word data address. The DPNT is used to identify, through prediction, those loads and stores th
dependences. It also provides the tags that are used to create synonyms for the dependences. An ent
table comprises the following fields: (1) instruction address (PC), (2) dependence predictor (PRED
dependence tag (DTAG), and (4) a valid bit. The instruction address identifies the load or the store thi
corresponds to. The purpose of the dependence predictor field is to provide an indication on whe
dependence exists. Finally, the dependence tag field is used to identify the dependences of this inst
The SF is used to provide storage for synonyms. SF entries have the following fields: (1) name, (2) val
full/empty bit, (4) valid bit. Based on the exact configuration used, some of the fields may not be req
(e.g., we may not use a name field in a direct mapped SF) and some structures can be combined (e.g.
merge the DPNT and the SF, or the register file and the SF).

The exact function and use of the support structures is best understood by means of an example.
discussion that follows we use the working example of Figure 4.6 to demonstrate how an earlier detec
a dependence between a store and a load results in the streamlining of the inter-operation communica

100

ynamic
dences
ces will

he first
). Later
rmines
cated in
dence,
gh 3, it

corded
ers the
next time the same dependence is encountered. In the discussion that follows we assume that the d
dependences result from the execution of the loop shown in part (a). Dynamically, a series of depen
will be observed between instances of the marked load and store. Each of the dynamic dependen
map to a different memory address (we assume that new space is allocated for each token).

In parts (b) and (c) we show the actions that lead to the detection of the dependence. In part (b), t
instance of the store executes and records in the DDT its PC and the data address it updated (action 1
on, in part (c), the first instance of the load using its data address probes the DDT (action 2) and dete
that a dependence exists with the recorded the store. In reaction to this detection, two entries are allo
the DPNT one for the load and one for the store (action 3). In addition, a tag is created for the depen
and it is recorded in both entries. (Since the operation of the DDT has been described in steps 1 throu
is not shown in the remaining parts of the figure.)

In parts (d) through (f) the actions that lead to the cloaking of a later instance of the dependence re
in part (c) are shown. Cloaking is initiated when, as shown in part (d), a later instance of the store ent

Figure 4.6:Speculative Memory Cloaking: working example.

LDPC Pred DTAG 1
STPC Pred DTAG 1
LDPC Pred DTAG 1

DPNT

0
0

SF
DTAG 0 empty

f/e

store

4

5

STPC Pred DTAG 1
LDPC Pred DTAG 1

DPNT

0
0

SF
DTAG 1 value

f/e

store

6

STPC Pred DTAG 1
LDPC Pred DTAG 1

DPNT

0
0

SF
DTAG 1 value

f/e

load

8

9

store

load

loop:

t = AllocateToken()

SetToken(t)
...

ActOnToken(t)
...

SetToken(t):
t->type = ...

ActOnToken(t):

switch (t->type)
...

...

DPNT

0
0

1

ADDR STPC
DDT

STPC Pred DTAG 1
DPNT

0
0

3

ADDR STPC

DDT

0
0

2

Memory
Hierarchy

Memory
Hierarchy

Memory
Hierarchy

7
10

11

valid

(a)

(c)

(e)(f)

(d)

(b)

store

load

101

, and
e pre-
oses of
the SF

able,
ecomes
es the

store,
tion is
viously
ata left
ter on,
tain the
F and

n the
ve to

ures,
me other
res are

eresting
egister
nother
is that

limited
es.

ion to
emory

pro-

uni-
before
sent

o be
ess the
ng the
ta cache

emory
p (1),
instruction window. The PC of the store is used to probe the DPNT for a matching entry (action (4))
since one is found, its predictor is used to determine whether cloaking should occur. Assuming that th
dictor indicates so, a synonym is generated based on the tag recorded in the DPNT entry (for the purp
this discussion the tag of the DPNT and the synonym are the same), and it is used to allocate space in
(action 5). The full/empty bit of the SF entry is set to empty to indicate that the value is not yet avail
whereas, the store also records the location of the SF entry since the actual data value, when it b
available, will have to be written in the SF entry (part (e), action 6). Eventually, the store also access
traditional memory hierarchy (part (e), action 7).

When the next instance of the load enters the window (part (f)), as it was done previously with the
its PC is used to probe the DPNT (action 8). After a match is found and a dependence status predic
made, the tag recorded in the DPNT entry leads to the generation of the same synonym generated pre
for the store. This synonym is used to access the appropriate SF entry (action 9) and to obtain the d
there by the store. At this point the load may use this data to execute speculatively (action 10). La
when the data address becomes available, the load accesses the traditional memory hierarchy to ob
actual data value (action 11). This value is compared against the value read previously from the S
appropriate action is taken if the two values differ. At this point we may also update the predictors i
DPNT entries for both the load and the store (to locate the DPNT entry for the store the SF entry will ha
record the store’s PC).

4.3 Speculative Memory Bypassing

With cloaking, values can flow quickly from stores to loads. However, in typical load/store architect
stores and loads do not compute values. Loads and stores are simply used to pass the values that so
instructions produce to some other instructions that consume them. Which is to say that loads and sto
part of the memory interface acting as agents between the register and memory name spaces. It is int
to consider why memory is used for the communication instead of registers. One reason is that the r
name space is relatively small. When there are more live values than registers, memory is used. A
reason is programming conventions (for example, caller- and callee-saved registers). Another reason
in some cases the compiler is unable to establish the dependence statically. Finally, because of the
addressability of registers, memory has to be used to implement many commonly used data structur

In this section we present speculative memory bypassing, a conceptually straightforward extens
speculative memory cloaking that aims at eliminating the overheads associated with performing m
communication via loads and stores. Speculative memory bypassingconvertsDEF-store-load-USE chains
into DEF–USE chains whenever the load-store dependence is predicted and theDEF andUSE instructions co-
exist in the instruction window. In this case, the value can speculatively flow directly from the actual
ducer (DEF) to the actual consumer (USE). This concept we illustrate in Figure 4.7 using theDEF–store–
load–USEchain shown in part (a). Even though cloaking may allow the value to be speculatively comm
cated between the store and the load, the value will still have to travel through these two instructions
it can reachUSE. However, as shown in part (b) with speculative memory bypassing, the value can be
directly from DEF to USE. As was the case with cloaking, this communication is speculative and has t
verified via the traditional memory name space. This does not necessarily imply that we have to acc
memory system. (For example, we might be able to establish that the value is correct by compari
addresses of loads and stores. In this case, bypassing and cloaking may also help in reducing da
bandwidth. However, we do not investigate this option.)

Speculative memory bypassing can be implemented as a straightforward extension to speculative m
cloaking. We explain the exact process using the working example of Figure 4.7, part (c). At ste
instructionDEF is decoded and register renaming creates a new name,TAG1, for the target registerR1. At

102

e
mu-

At

name
gis-

is

erified.

re than
can opti-
ore-

ces as it
such
ividu-
xam-
agating

mory
) How
RAW
step (2), the store instruction is decoded and as part of register renaming determines the current namTAG1
of its source registerR1. In parallel, via the use of cloaking, a synonym is created for the memory com
nication. To perform bypassing, at this point we associate the synonym with the current nameTAG1of the
store’s source registerR1 (this association can be done by recording the register in the synonym file).
step (3), the load instruction is decoded and register renaming creates a new nameTAG2for the destination
registerR2. In parallel, via the use of cloaking, the load locates the synonym and hence determines the
TAG1of the store’s source registerR1. In doing so, the load has determined the storage (e.g., physical re
ter or reservation station) where the actual producerDEF will place or has placed the value. This name
speculatively associated with the target of the loadR2. This way, when at step (4)USE is decoded, it can
determine that its source registerR2has two names: one actualTAG2and one speculativeTAG1. By using
the speculative nameTAG1, DEF can link directly touseand execute speculatively as soon asDEF produces
its value. Later on, after the load has accessed memory, the integrity of the communication can be v

Note that speculative memory bypassing naturally extends for dependence chains that include mo
one memory dependence; whenever a store detects that its source register has a speculative name, it
mistically pass it via the synonym. However, we do not study such an extension in our evaluation. M
over, speculative memory bypassing becomes more attractive when a store has multiple dependen
may help in further reducing latency compared to cloaking when write-back bandwidth is limited. In
cases and when only cloaking is used, each of the loads that get a value from cloaking will need to ind
ally propagate this value to their dependent instructions. When write-back bandwidth is limited (for e
ple the store had dependences with four loads and there are only two write-back ports available) prop

Figure 4.7: Speculative Memory Bypassing. (a) Communication path followed when the traditional me
interface is used. (b) Communication path followed when speculative memory bypassing is in use. (c
the store and the load are taken off the communication path. (d) Simultaneous bypassing of multiple
dependences.

STORE R1

DEF R1

USE R2

LOAD R2

DEF R1

USE R2

STORE R1

LOAD R2

(1) Bypass

(2) Verify

DEF R1
STORE R1

1 2

R2 TAG1 TAG2

3 4synonym

LOAD R2
USE R2

R1 TAG1

TAG1

(a)

(c)

(b)

Cloaking

STORE R1

DEF R1

USE R2

LOAD R2

Cloaking

LOAD R3

USE R3

Bypassing

(d)

103

spec-

nse of
that are
ciates

ith com-
ethods
emory

re. The
predic-
m (for
ng ago

diction.

All we
. Detect-
henever

ccess the
ress. At

this can
e can
. The
lues in
onvert

es: (1)
atency
hat is

pass
r store
cate a
result,
not be
havior is
n may
jects).
the speculative value will be delayed. When bypassing is used, all dependent instructions will obtain a
ulative value as soon as the actual producer executes.

Finally, bypassing can also be used to eliminate the need for an explicit synonym file at the expe
reduced coverage. In such a design, prediction will have to be restricted to only those dependences
visible from within the instruction window. In this case, no synonym file is required as bypassing asso
synonyms with pre-existing storage elements (i.e., physical registers or reservation stations).

4.4 Extending Cloaking and Bypassing to Support Data-Sharing

Having presented how cloaking and bypassing can be used to reduce the overheads associated w
municating values through the traditional memory name space, in this section we explain how these m
can be extended to also streamline data-sharing through memory. Data-sharing occurs when a m
value is accessed more than once. Data-sharing is possible even when the value was written by a sto
case that interests us here is when no producing store is visible through the dependence detection and
tion mechanisms. This is possible when: (1) the value was produced outside the scope the progra
example via a system call or the value is a constant), (2) the store that wrote the value has executed lo
escaping detection, and (3) when the store-load dependences are not stable enough to facilitate pre

Extending cloaking and bypassing to also support read-after-read dependences is straightforward.
need to do is detect read-after-read dependences and treat some of the loads as producers of values
ing read-after-read dependences can be done by recording loads in the dependence detection table w
no store is found at the same address. When subsequent loads access memory, they can also a
dependence detection table and identify the preceding load that also accessed the same memory add
this point we can mark the preceding load as a candidate for read-after-read cloaking and bypassing (
be done using an additional bit indicator in the DPNT entry). The next time that load is encountered, w
use the existing cloaking and bypassing mechanisms to associate the loaded value with a synonym
only difference is that for bypassing purposes, loads should be treated as the actual producers of va
contrast to stores that write a value that some other instruction is producing. That is, in this case we c
a series ofLOAD1-USE1...LOADN-USEN chains into a singleLOAD1-USE1...USEN producer-consumer graph.

4.5 Related Work

Techniques related to cloaking and bypassing can be broadly classified into the following categori
techniques to eliminate memory communication via register allocation, (2) techniques to reduce load l
via address or value prediction, and (3) techniques that attempt to link loads and stores similarly to w
done in cloaking.

4.5.1 Register Allocation Alternatives

An obvious alternative to cloaking is register allocation where instead of using a memory location to
or hold a value a register may be used. Register allocating a value eliminates the need for load o
instructions and memory communication altogether. However, it is not always possible to register allo
value for the following reasons: The register name space is typically limited in size (e.g., 32) and as a
space may not be available to register allocate a value. Some dependences (RAW or RAR) may
detectable statically either because ambiguous dependences exist or because dependence be
dynamic in nature. Registers also offer limited addressability. Other reasons why memory allocatio
be used include calling and other programming conventions (e.g., dynamically linked libraries and ob

104

. Using
e redi-
onding

larger
f trade-

ISA.
ing the
econd-
proces-

n that
h
ters are

pres-
rent with
e is no

y the
e appli-
a spe-
gainst

pre-
o the
e archi-
eover,

posed to
ugh no
s a side
hniques
rce store
he com-
nown in

ddress
ven in

1) the
e differ-
he data
In this context, a related technique is theC Machine Stack Cacheproposed by Ditzel and McLellan in [19].
In their proposal, a small data cache is introduced on which stack allocated variables can be mapped
a combination of software (ISA extensions) and hardware, memory references to stack variables ar
rected to this the stack cache (provided that the stack pointer value is available before the corresp
instruction is prefetched into the instruction cache).

To reduce the amount of memory communication that results from increased register pressure, a
register name space may be used. While this approach is conceptually straightforward, it is not free o
offs and of implications. Increasing the set of architecturally visible registers requires changes in the
Finding opcode space to accommodate wider register specifiers may not be possible without increas
width of instructions. In the latter case, care must be taken to avoid performance degradation due to s
ary, I-cache effects. Furthermore, an increased register file may lengthen the base cycle time of the
sor and increase the amount of information that has to be check-pointed on context switch.

Better disambiguation methods (see Chapter 3 for pointers) may help in reducing the communicatio
results from ambiguous dependences. Dietz and Chi proposedCregsa hybrid software/hardware approac
to register allocation in the presence of ambiguous memory dependences. In their proposal, regis
augmented with memory address tags. This facilitates the register allocation of memory values in the
ence of ambiguous memory dependences. Hardware is responsible for keeping these registers cohe
memory. The goal of this technique is avoiding accessing memory whenever no aliases exist. Ther
provision to allow re-ordering of instructions that use CReg allocated values.

While inter-procedural register allocation [93, 49] may help in reducing the memory traffic caused b
various programming conventions, such approaches are also not trade-off-free and may not always b
cable. For example, an inter-procedural register allocator may have to rely on cloning (i.e., creating
cialized copy of the called function) and for this reason may have to balance cloning possibilities a
increases in instruction-cache footprint. Inter-procedural register allocation may also be limited by im
cise call-graph information and by the use of dynamically linked objects and libraries. Compared t
aforementioned techniques, a potential advantage of cloaking and bypassing is that they need not b
tecturally visible and do not require any changes to existing codes and architectural interfaces. Mor
both techniques offer the possibility of capturing memory behavior that is not detectable statically.

4.5.2 Address Prediction Based Techniques

Numerous techniques that attempt to predict the data addresses of loads and stores have been pro
reduce the access latency of loads both in hardware and in software [5,7,9,21,30,51,74]. Even tho
attempt is made to establish explicit links between dependent instructions, these techniques may, a
effect, reduce the latency of the communication of load-store or load-load dependences. These tec
may do so, provided that the data address accessed by the load is correctly predicted and that the sou
or load has executed (i.e., both the data address and value are available). Cloaking may streamline t
munication even if the access pattern defies prediction and does not require that the store address is k
the case of store-load dependences.

A closely related technique to the ones mentioned in the previous paragraph issum-addressed memoryor
SAM[55]. While not a prediction technique, SAM can be used to reduce the latency associated with a
calculation. In SAM, address calculation takes place in the decoder array of the data cache itself. E
this case, cloaking and bypassing may offer additional latency reduction for the following reasons: (
synonym file access latency may be shorter compared to the 1st-level data cache latency due to siz
ences, (2) either of the dependent instructions may have not calculated their addresses when t

105

endent

che, the
n of the
age using
eld is

edic-
e may
g load
tual val-
irectly

ocation.
n the
larity is
when-

ation
soci-
a load

ilar to

ep-
ndence
in the
nd (3)
nfused

sup-
e pres-
xhibit
ediction

RAR
ossible

e,
struc-

ound.
becomes available, and (3) the source instruction may have left the instruction window so that the dep
load can obtain its value at the time it enters the instruction window.

Finally, although not an address prediction technique theKnapsack[8] proposed by Austin, Vijaykumar
and Sohi, provides a method of reducing load access latency to 0 cycles. In this approach a data ca
knapsack, is introduced at the decode stage of the pipeline and is mapped onto a continuous portio
memory address space. Zero access latency is achieved by accessing the knapsack in the decode st
just the offset field of the opcode. By utilizing appropriate values for the base register, the offset fi
often sufficient for locating the appropriate storage location in the knapsack.

4.5.3 Value Prediction

A technique closely related to the cloaking isload value prediction[54], a special case of value prediction
[53]. In this technique, a prediction is made on the value that a load will read. As with cloaking, the pr
tion can be done early in the pipeline using, for example, the PC of the load instruction. This techniqu
effectively reduce the latency of memory communication independently of whether the correspondin
has a dependence or not. The success of this approach relies on the ability to track and predict the ac
ues. The fundamental difference between value speculation and cloaking is that cloaking does not d
predict the loaded value, rather it predicts its producer or another load that also accessed the same l
While load value prediction relies on regularity in the load value stream, cloaking relies on regularity i
memory dependence stream. As we will demonstrate in the evaluation section, dependence regu
stronger than value regularity for a significant fraction of executed loads (Section 4.6.4.4). Even so,
ever value regularity is strong, value prediction may be advantageous for two reasons. First, the inform
required to do value prediction is local to the load instruction, while in cloaking we need to somehow as
ate the store and the load. Second, if the value is relatively constant then value prediction may supply
value earlier than cloaking would. Widigen, Sowadksy and McGrath also describe a technique sim
load value prediction in [94].

4.5.4 Techniques Similar to Cloaking or Bypassing

Techniques similar tocloaking are “memory renaming”, proposed by Tyson and Austin [89] andalias pre-
diction proposed by Lipasti [52]. “Memory renaming” is conceptually identical to cloaking with the exc
tion that RAR dependences are not used. Other technical differences exist, for example, (1) depe
detection in “memory renaming” occurs either in the load/store queue or by propagating store PCs up
memory hierarchy, (2) no mention on how to support loads with multiple dependences is discussed, a
communication takes place through the load/store queue. This technique —which should not be co
with the memory renaming [6] that takes place in a typical load/store queue or any other mechanism
porting multiple versions of the same memory address for the purposes of out-of-order execution in th
ence of WAR dependences (e.g., [27])— relies on value prediction for those loads that do not e
detectable RAW dependences. As we demonstrate in the evaluation section, RAR dependence pr
can be used to capture loads that value prediction cannot. However, a significant fraction of loads with
dependences are also amenable to value prediction. Accordingly, in Section 4.6.6.4 we investigate p
combinations of cloaking/bypassing and value prediction.

Alias prediction can be viewed as a restricted form ofcloaking for RAW dependences. In this techniqu
a prediction is made on whether a load will read a value from a preceding store that co-exists in the in
tion window. The value is then located by predicting the store buffer location where the value is to be f

106

to
store has
s been

n-
posal,
esses of
king or

ftware
lowed to
s and
xam-
lied

alder,
piler

nces are
name

sed to
depen-

d a com-
riation
m of
/store
] they
ulated
ded that
imple-

62].

pose.
tions.

duced
g and
ched-
redic-
g.

dence
measure
ble size.
n 4.6.3
Another related technique isInstruction Reuse[79]. In instruction reuse a load may obtain a value prior
address calculation provided that it is established that the same address will be accessed and that no
written to that address since the last time the load was encountered (i.e., no RAW dependence ha
observed). In this case the value so obtained is known to be correct (i.e., it is non-speculative).

A mechanism similar tospeculative memorybypassing for store-to-load communication (RAW depe
dences) was recently studied by Jourdan, Ronen, Bekerman, Shomar and Yoaz [41]. In their pro
bypassed loads do not necessarily have to access memory. This is achieved by comparing the addr
the relevant store and load. If the addresses are the same then the value obtained through cloa
bypassing is known to be correct.

We should note that an effect similar to speculative memory bypassing is possible using a pure so
technique when ambiguous dependences are present. In such an approach, two instructions are al
communicate speculatively via a register while the communication is verified via memory using load
stores. Both verification and mispeculation handling has to be done explicitly in the code itself. For e
ple, a system that may perform this optimization is DAISY [20] where this optimization may be app
dynamically by rewriting part of the code during run-time.

A software guided approach to speculative memory cloaking was investigated by Reinman, C
Tullsen, Tyson and Austin [69]. In their approach, new instructions are introduced that allow the com
to communicate speculative memory dependences to the hardware. Speculative memory depende
communicated using load and store instructions with explicit tags. These tags are allocated in a new
space, separate to memory or registers. Profile information along with a number of heuristics is u
select the most stable memory dependences. Tags are also introduced to allow value prediction and
dence speculation to be used whenever deemed advantageous. Reinman and Calder also performe
parative study of load value prediction, memory dependence speculation/synchronization and of a va
of the “memory renaming” technique of Tyson and Austin [68] (they also used the incremental algorith
Chrysos and Emer [17] to generate synonyms and used a 4K DDT [61] instead of relying on the load
queue or on propagating store PCs up in the memory hierarchy [89]). As per the proposal of [89, 61
used only RAW prediction for the purposes of cloaking. Using a processor model that does not spec
on memory dependences as their base and assuming a selective invalidation mechanism, they conclu
value speculation offers the most benefits and suggested that it should be the first technique to be
mented in future generation processors.

Finally, we should note that we initially reported cloaking and bypassing for RAW dependences in [

4.6 Evaluation

In this section we present experimental evidence in support of the utility of the techniques we pro
We use a two step approach. Initially we investigate cloaking and bypassing ignoring timing considera
This allows us to study cloaking and bypassing without having to be concerned with side-effects intro
by their interaction with other execution techniques. Once we have studied the potential of cloakin
bypassing we then consider how a particular implementation performs in a out-of-order dynamically s
uled processor environment. Finally, we compare this cloaking/bypassing mechanism with a value p
tion mechanism and investigate two possible combinations of value prediction and cloaking/bypassin

The rest of this section is organized as follows: The first step in using cloaking is building the depen
history necessary to predict subsequent dependence behavior. For this reason, in Section 4.6.1 we
the fraction of memory dependences observed as a function of the memory dependence detection ta
In Section 4.6.2 we investigate an aggressive cloaking mechanism and study its accuracy. In Sectio

107

action
onfi-
emory

iption
f that
iction
act of a
f-order
alida-
e pre-
n.

isible
plying
ndence
n hope
ere we
es: a
size
spec-
ntext of
only an
at do
whose

e to han-
pendence
oaking
e static

pen-
e only
these
lts are

ll pro-
e bars.
f loads

e via a
expe-
ess pro-
e same
roach-

imilar
equent
we investigate various confidence predictors in an effort to reduce mispeculations while keeping the fr
of loads that get a correct value from cloaking relatively high. Having shown that a relatively simple c
dence predictor can be used to meet our goal, in Section 4.6.4 we present a characterization of the m
communication that is handled by a cloaking mechanism that offers relatively high accuracy. A descr
of the characteristics we consider along with a justification on why we do so is given at the beginning o
section. We continue the evaluation of cloaking and bypassing by considering what effect finite pred
structures have on its accuracy in Section 4.6.5. In Section 4.6.6, we measure the performance imp
combined cloaking and bypassing mechanism on a fairly aggressive superscalar processor with out-o
characteristics. We initially study how performance is affected by the use of squash and selective inv
tion. We then compare the cloaking/bypassing mechanism with a straight-forward last-value load valu
dictor and conclude by studying two possible combinations of cloaking/bypassing and value predictio

4.6.1 Memory Dependence Detection

In this section we measure the fraction of memory communication and data-sharing activity that is v
with various dependence detection table (DDT) sizes. Dependence detection is the first step in ap
cloaking and bypassing and is used to build the dependence history required to predict future depe
behavior. The measurements presented in this section allow us to estimate the fraction of loads we ca
to handle with cloaking and bypassing. We have presented similar measurements in Chapter 2 wh
measured the fraction of dependence activity that is visible from within various address window siz
fully associative, DDT of sizen with LRU replacement is equivalent to an address window of the same
as per our definition given in Chapter 2. In this section we take a closer look at the lower end of the
trum, considering dependence detection table sizes we consider feasible and reasonable in the co
modern and next generation processors. It should be noted that the results of this section provide
indication of the fraction of loads cloaking and bypassing may handle. The actual fraction of loads th
get a correct value via these techniques may be larger or smaller as compared to the fraction of loads
dependences is detected. It can be smaller as, for example, the mechanisms we simulate are not abl
dle dependences with distances greater than one. It can be larger as the address distance of a de
may fluctuate over time. As a result, some instances of the dependence may not be visible while cl
and bypassing may still be applied as the result of an earlier detection of another instance of the sam
dependence.

Figure 4.8 reports the fraction of dynamic (committed) loads that experience a RAW or a RAR de
dence as a function of DDT size. Whenever a load experiences both a RAR and RAW dependence w
account for the RAW dependence. We do so as cloaking will give preference to RAW dependences in
cases. We consider detection table sizes in the range of 32 and up to 2K entries. In part (a), resu
shown per program, while in part (b) we present averaged results for the integer, floating point and a
grams. To aid in the interpretation of these results we present RAW and RAR fractions as separat
Moreover, the grey shaded area reports the sum of the two bars and represents the overall fraction o
that have either a RAW or a RAR dependence detected.

Focusing first on the averaged results, we can observe that a large fraction of loads get their valu
dependence that is visible even with relatively small DDTs. For integer codes about 50% of all loads
rience a RAW or a RAR dependence within the last 32 addresses accessed. This phenomenon is l
nounced for the floating point codes where about 30% of loads experience dependences within th
range. However, as we move toward larger DDTs, the fraction of loads with dependences rises, app
ing roughly 90% (integer) and 80% (floating-point) for the 2K-entry DDT.

The relative fractions of RAR and RAW dependences, and for this reason their importance are diss
for the two classes of programs. While in the integer codes RAW dependences are almost twice as fr

108

T sizes.
g point
ngly, as
crease
size in
or the
K table

). This
dences

sed, the

RAR
e of 32-
st float-

the

tection
erage
as RAR dependences are, in the floating point codes the roles are almost reversed for the smaller DD
Nevertheless, as we consider larger DDTs, the fraction of RAW dependences increases in the floatin
programs, and for a 2K entry table RAW dependences are almost as frequent as RAR ones. Interesti
we move toward larger DDT sizes, RAW dependences become increasingly frequent. The relative in
is higher for smaller sizes. While RAR dependence frequency also increases with the detection table
the range of 32 to 512, virtually no increase is observed as we move toward sizes of 1K or higher. F
floating point programs we even observe a decrease in RAR dependence frequency between 1K and 2
sizes (a decrease in RAR frequency with increased DDT size is also exhibited on a per program basis
phenomenon is explained by the increased frequency of RAW dependences: Some of the RAR depen
are among loads that read a value written by a preceding but distant store. When smaller DDTs are u
store is evicted from the DDT due to limited space and the RAW dependences escape detection.

Similar observations apply on per program basis. An increasing number of loads with RAW or
dependence is observed as we consider larger DDTs. Again the relative increase is higher in the rang
256 entries for most programs. RAR dependences are more frequent than RAW dependences for mo
ing programs, while the opposite is true for the integer programs. And finally, variation is exhibited in
frequency of RAR dependences as we move toward larger DDT sizes.

Figure 4.8: Fraction of loads that have RAW or RAR dependences as a function of dependence de
table size. Range is 32 to 2K entries in steps that are powers of two. (a) Per program results. (b) Av
over integer, floating point and all programs.

099 124 126 129 130 132 134 147

 RAR

101 102 103 104 107 110 125 141 145 146

 RAW

 RAR+RAW

(a)

SpecINT SpecFP Overall

(b)

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

109

ndences
ively).

ignifi-
step is
to mea-
-
fine

T) and
upper
This

once
lations.
ow per
nted are:
ending

3) the

ave a
er) and

aver-
s that

bserva-
subse-
that have
ndence
ction
experi-
overage
erved
er look

have a
re the
of Sec-

stances
cloak-
to link
The results of this section suggest that a DDT of moderate size (e.g., 128 entries) can capture depe
for large fractions of loads (roughly 70% and 60% for the integer and floating-point programs respect

4.6.2 Cloaking Coverage And Mispeculation Rates

The results of the previous section provide a first indication that cloaking may be able to capture a s
cant fraction of all dynamic loads. However, detecting dependences is just the first step. The next
predicting dependences and passing the values from producers to consumers. We use two metrics
sure the accuracy of cloaking:coverageandmispeculation rate.Both metrics represent a fraction of all exe
cuted loads. We definecoverageas the fraction of loads that do get a correct value via cloaking. We de
mispeculation rate as the fraction of loads that get an incorrect value from cloaking.

For the purposes of this study we assume infinite dependence prediction and naming tables (DPN
measure the fraction of loads whose value is correctly predicted for various DDT sizes. To get a rough
bound on the fraction of correctly predicted load values, we use an non-adaptive single bit predictor.
predictor will always cause cloaking to be performed for all instances of the corresponding instruction
a dependence is detected. In Section 4.6.3 we will consider adaptive predictors to reduce mispecu
Figure 4.9 shows the coverage obtained for DDTs of 64, 128, 256 and 512 entries. In part (a) we sh
program measurements. Averaged measurements are shown in part (b). The measurements prese
(1) the total fraction of loads that get a correct value (shaded area), (2) a breakdown of these loads dep
on whether they got the value via a RAW (white bars) or a RAR (dark bars) dependence, and finally (
fraction of loads for which a dependence is detected (line).

Focusing first on the averaged results (part (b)), we can observe that the majority of loads that h
dependence do obtain a correct value via the cloaking mechanism. On the average, about 65% (integ
53% (floating-point) of all loads get a correct value via cloaking when a 512 entry DDT is used. The
age for all programs is about 59%. Interestingly, cloaking sometimes supplies a correct value for load
have no dependences detected (for example, 147.vortex and a 64-entry DDT) supporting our earlier o
tion that an earlier detection of a memory dependence may be used to perform cloaking even when
quent instances of the same dependence escape detection. However, and as expected, not all loads
dependence detected get a correct value from cloaking. The fraction of loads that do have a depe
detected and do not get a correct value from cloaking is negligible for the smaller DDTs. This fra
increases as we move toward larger DDTs. Furthermore, it can be seen that while floating programs
ence a steady increase in cloaking coverage, the integer codes see virtually no increase in cloaking c
as we move toward larger DDTs. More interestingly, a slight decrease in cloaking coverage is obs
between the 256-entry and the 512-entry DDTs. These phenomena can be explained by taking a clos
at individual program behavior.

As it can be seen by the results of part (a), even on a per program basis, the majority of loads that
dependence detected also get a correct value from cloaking. The exception is 107.mgrid. Two a
causes of this behavior: (1) RAR dependences that have non-unit instance distances (see discussion
tion 4.2.2), and (2) RAR dependences that not stable. RAR dependences with non-unit instance di
are mostly caused when small arrays are traversed multiple times by different pieces of the code. The
ing mechanism we used in this experiment fails to correctly communicate values as it always attempts

110

This is

loads
ers and
g pur-
d cloak-

ntries.
black
f the
shown
with the last instance of the source load. Also, some of the RAR dependences detected are not stable.
best explained using the following example (the actual behavior of 107.mgrid is more complicated):

1: LOAD A[0]
 ...
2: LOOP i
3:LOAD A[i]
4:LOAD A[i]

During the first iteration of the loop, RAR dependences are detected among the load of line 1 and the
of line 3 and 4. Our greedy, non-adaptive approach to building dependence sets and marking produc
consumers will mark the first load as the producer and the other two loads as consumers for cloakin
poses. However, as execution progresses, the initial RAR dependences are not observed anymore an
ing fails even though memory dependences are still detected.

Figure 4.9: Cloaking coverage as a function of Dependence detection table size. Range is 64 to 512 e
Shown is the fraction of loads that obtain a correct value via a RAW or a RAR dependence (white and
bars respectively). Also shown is the fraction of loads that get a correct value independently o
dependence type (shaded area). Finally, the fraction of loads for which a dependence is detected is
(black line). (a) Per program measurements. (b) Averaged measurements.

0%
20%
40%
60%
80%

100%

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
0%

20%
40%
60%
80%

100%

 RAR RAW RAR+RAW Dependence Detected

0%
20%
40%
60%
80%

100%
(a)

(b)

SpecINT SpecFP Overall

111

eyond
nd to a

ase is
in some
depen-
rest of
reason

do not
4.2.2).

ssumed
as the

nts the
instruc-
epre-
g with
orrect
n-unit
t is not
here a
from an
ences
distant
similar

loaking
26.gcc,

vior of
RAR

tant and
enon is

uming
uction.
dence
For most programs, cloaking coverage remains relatively unchanged as we consider larger DDTs. B
an 128-entry DDT, noticeable increases in coverage are observed only for 145.fpppp and 125.turb3d a
lesser extent for 132.ijpeg, 110.applu, 141.apsi and 146.wave5. (For 132.ijpeg virtually no incre
observed beyond a 256 entry table.) One reason why cloaking coverage does not increase is that,
cases, increasing the DDT size does not result in a considerable increase in the number of detected
dences. This is the case for 129.compress, 102.swim, 103.su2cor and 104.hydro2d. However, for the
the programs, more dependences are typically detected if we use a larger DDT. In those cases, the
why these dependences do not result in an increase in cloaking coverage is that in their majority they
exhibit unit dependence distances (i.e, their dependence lifetimes overlap, see discussion of Section
This observation is supported by the measurements presented in Figure 4.10. In this experiment we a
perfect prediction of the source instruction’s identity and measured whether the value read is the same
one read or written by the last instance of the source instruction. The lower part of the bar represe
fraction of loads that read the same value as the one read or written by the last instance of the source
tion (which includes all dependence with unit instance distance). The top part of the bar (light grey) r
sents the fraction of loads that don’t (non-unit dependence distance). As it can be seen by comparin
the data of Figure 4.9, there is high correlation between (1) the fraction of loads that do not get a c
value via cloaking but do have a dependence detected and (2) the fraction of loads that exhibit no
dependence distances. As we mentioned before, the cloaking mechanism used in this experimen
designed to handle non-unit distances. In Figure 4.10, we can observe an anomaly for 107.mgrid w
decrease is observed in the fraction of loads that experience unit instance distances when we move
256-entry to a 512-entry DDT. This decrease is the result of loads that have multiple RAR depend
some of which are distant and less stable than the less distant ones. As we consider larger DDTs, the
and less stable RAR dependences are used to make predictions. As we explain in the next paragraph
behavior is observed in other programs with the non-perfect dependence predictor.

Returning to the results of Figure 4.9, we can observe that in some cases, a slight decrease in c
coverage is experienced as we increase the DDT size from 256 to 512 entries. These programs are 1
130.li and 132.ijpeg. Two factors combine to cause this behavior: (1) the intrinsic dependence beha
these programs, and (2) the use of a non-adaptive cloaking predictor. Some loads have multiple
dependences with the more distant ones being less predictable. As we consider larger DDTs, the dis
less predictable dependences take preference causing a decrease in coverage. A similar phenom

Figure 4.10: Instance Distance Breakdown As A Function Of Dependence Detection Table Size. Ass
perfect dependence prediction, we measure the distance to the correct instance of the source instr
Distance of 1 corresponds to the last instance of the source instruction. Results are show for depen
detection tables of 64, 128, 256 and 512 entries (left to right in that order).

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

101 102 103 104 107 110 125 141 145 146

 Distance = 1

 Distance > 1

099 124 126 129 130 132 134 147

112

spond-
ce with

of
e used a
ever, we
have a

ences
r the
ay vary
epen-

ach of
s data
nt
uctions
e, RAR
-
) RAW
-
ex is
found.
follow
corre-

since
mpact
ng is
esent a
, when
ly low.
e seen

te even
depen-
y: (1)

ndences,
es. In

smaller

dictor
ulation
observed on some loads that have multiple RAW dependences that do not occur every time the corre
ing store instructions are encountered. Consider for example a load that has a frequent dependen
store1 and a less frequent dependence withstore2. Furthermore, assume that the dependence withstore2
escapes detection with a smaller DDT but is detected when we use a larger DDT. Ifstore2 appears often
enough in between instances of thestore1 and load instructions, it may occasionally overwrite the value
store1 (in synonym space) causing a decrease in cloaking coverage. Because in these experiments w
non-adaptive dependence predictor, these less predictable dependences cannot be filtered out. How
should note that the decrease in cloaking coverage is relatively small and for this reason it may not
significant impact on performance.

While for most programs cloaking coverage is smaller than the fraction of loads that have depend
detected, for 124.m88ksim, 147.vortex and 125.turb3d cloaking coverage is significantly larger (fo
smaller detection table sizes). This is possible, as the distance between the dependent instructions m
over time. This is the case in 147.vortex for example. About 70% of loads instances that have no d
dence detected but do get a correct value via cloaking in 147.vortex belong to thememcpy andChkGetChunk
functions. It seems that this program copies a large number of small objects, often multiple times. E
these calls tomemcpy is separated by a different amount of processing. What happens to each object i
dependent. Since the mainmemcpy loop is unrolled, different static instructions are used to copy differe
part of the data object being copied. Whenever the data object is small, each instance of these instr
touches a single data element. As a result, whenever multiple copies of the same structure are mad
dependences exist between the loads of subsequent calls tomemcpy. Similarly, whenever a structure is cop
ied in a chain fashion (i.e., one copy is made, then that copy is used to create another one and so on
dependences exist between the stores of the previous call tomemcpy and the loads of the current call. Func
tion ChkGetChunk has a parameter that is an index to an array of object pointers. At entry point this ind
used to de-reference the corresponding object and a different action is taken depending on the data
Whenever this function is called for the same object, RAR dependences exist between the loads that
the object pointers and access the object’s elements. It should be noted that register allocating the
sponding data is not straightforward.

So far we have focused on the fraction of loads that do get a correct value via cloaking. However,
we use prediction, it is to be expected that some loads may get an incorrect value. Ultimately, the i
cloaking will have on performance will be determined by the latency reduction obtained when cloaki
successful and by the penalty paid to undo the effects of erroneous speculation. The two factors repr
trade-off. While on one side we would like to use a predictor that has the highest possible coverage
performance is considered, care must be taken to maintain the net penalty of mispeculation relative
Figure 4.11 reports the mispeculation rates for the cloaking mechanism used in this section. It can b
that mispeculation rates in most cases are high. For 107.mgrid and 132.ijpeg the mispeculation ra
exceeds cloaking coverage. It can also be seen that most of the mispeculations correspond to RAR
dences. Moreover, mispeculations typically increase with the size of the DDT. There two reasons wh
more dependences are exposed which are not necessarily regular, and (2) in the case of RAR depe
using a larger DDT often results in marking different loads as producers of values for cloaking purpos
the latter case, the dependences formed are not necessarily as regular as the ones formed with a
DDT.

Overall, the high mispeculation rate observed is the result of the non-adaptive nature of the pre
used. In the next section we consider alternative, adaptive predictors that aim at reducing the mispec
rate while maintain the benefits of high cloaking coverage.

113

on the
daptive

native
rate.

dences
epen-
aptive
dictors

hen-
hen a
e value
suffer

loaking
, deter-

ed and
lution to
e a rel-
either
intain-

the
the ini-
r is in

cloak-
f 128
ed when

n of
n rate.
dences
4.6.3 Using Adaptive Predictors to Improve Cloaking Accuracy

In the previous section we used a non-adaptive dependence predictor to obtain a rough estimate
coverage we can hope to obtain with cloaking and bypassing. As expected we have seen that a non-a
predictor results in relatively high mispeculation rates. In this section we consider a number of alter
adaptive predictors that aim at maintaining high cloaking coverage while reducing the mispeculation
As we have seen in the previous section, a significant fraction of mispeculations correspond to depen
with non-unit instance distances. Another source of mispeculations is loads which have multiple d
dences that exhibit different levels of regularity. To filter out these cases we considered a number of ad
predictors including the commonly used 1 and 2-bit saturating counter-based predictors. These pre
operate as follows: A threshold value is set to decide whether cloaking should be performed or not. W
ever cloaking is not performed, the counter is incremented (bias toward cloaking being performed) w
dependence is detected. Whenever cloaking is performed the counter is adjusted to reflect whether th
obtained was correct or not. While these predictors perform better than the non-adaptive one, they
from oscillations on those loads that exhibit detectable dependences that cannot be handled by the c
mechanism in use. On these loads, the predictors oscillate between having cloaking being performed
mining that the value so obtained was incorrect, moving back to a state where cloaking is not perform
once a dependence is detected moving back to the state where cloaking is again performed. One so
this problem is to decrement the counter by a higher amount whenever cloaking is erroneous or to us
atively high threshold value (both approaches were suggested by Tyson and Austin in [89]). However,
approach results in a relatively high decrease in cloaking coverage. To filter out these loads while ma
ing high coverage we experimented with the predictor shown in Figure 4.12. This predictor differs from
counter based ones in that cloaking is always performed when the predictor is in a state different than
tial state. However, the predicted value is propagated to the consumers of the load only if the predicto
the “Use” state.

Figure 4.13, reports the cloaking coverage (fraction of all executed loads that get a correct value via
ing) obtained with a number of different predictors. In these experiments we have used a DDT o
entries since, as we have seen in the previous section, cloaking coverage remains relatively unchang

Figure 4.11: Cloaking mispeculation rates for the non-adaptive dependence predictor as a functio
detection table size. Range shown is 64 to 512 entries. Grey area represents the total mispeculatio
The black and white bars represent the mispeculations that correspond to RAR and RAW depen
respectively. Also shown is the percentage of correctly predicted loads (black line).

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

 RAR

 RAW

 RAR+RAW

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

 Correct

114

ter, 2-
4.12
lts we
an be
ly no
grams
serva-
e, some
bit vari-
ults in a
uld also
perform
d for
show
nter-

f our two

ll mis-
RAW
rather

5). As
d to the
used.

ble in
ksim,

ransient.
ctions.
allee-

es even
ct pre-
depen-
rd way
nding
cloak-

pecula-
larger detection tables are considered. We report results for the following four predictors: 1-bit coun
bit counter with threshold of 1, 2-bit counter with a threshold of 2 and the 2-bit predictor of Figure
(shown in that order starting from the second bar from left). To aid in the interpretation of these resu
also include the 1-bit non-adaptive predictor we used in the previous section (left-most bar). As it c
seen, little variation in cloaking coverage is observed with all the adaptive predictors shown. Virtual
variation is observed for the floating point programs. Some variation is observed for the integer pro
with the decrease in cloaking coverage being noticeable only for 099.go, 130.li and 126.gcc. This ob
tion suggests that some dependences in these programs exhibit transient behavior. For exampl
dependences either do not occur every time the corresponding instructions are encountered or exhi
ance in their instance distances. The adaptive predictors filter out these dependences and this res
decreased cloaking coverage. However, it should be expected that for the same reason we sho
observe a decrease in mispeculation rates. In most programs, the 2-bit counter based predictors
slightly better than the adaptive predictor of Figure 4.12. However, the difference is relatively small an
two programs, 147.vortex and 125.turb3d the latter predictor performs better. Moreover, as we will
next, the predictor of Figure 4.12 offers significantly lower mispeculation rates compared to the cou
based predictors. These results suggest that any of the predictors studied may be used to meet one o
goals, that of maintaining a relatively high cloaking coverage.

Figure 4.14 shows the mispeculation rates for the same predictors. The grey bar reports the overa
peculation rate, while the black and white bars report the mispeculations that correspond to RAR and
dependences, respectively. We use a logarithmic scale for the Y-axis as the mispeculation range is
large (the mispeculation rates observed with the last predictor can be seen in linear scale in Figure 4.1
it can be seen, even though the counter based predictors do reduce the mispeculation rate compare
non-adaptive 1-bit predictor, the reduction is more pronounced when the predictor of Figure 4.12 is
For most programs the mispeculation rate drops below 1% (for 145.fpppp it drops to 0.03% — not visi
the figure). The only programs for which the mispeculation rate is above 1% are 099.go, 124.m88
130.li, 126.gcc and 110.applu. Some of these mispeculations correspond to dependences that are t
Another source of mispeculations are RAW dependences on callee-saved registers of recursive fun
For example, roughly 1% (absolute fraction over all loads) of the mispeculations in gcc correspond to c
saved register save-restore traffic from functionsrtx_cost andcanon_reg.

We can also observe that for the integer codes, RAR mispeculations are frequent and in some cas
more frequent than RAW dependences. However, we have seen (Figure 4.13) that most of the corre
dictions in integer codes correspond to RAW dependences. This observation suggests that RAW
dences are more regular than RAR ones for these programs. It also provides us with a straightforwa
of trading some of the cloaking coverage for a more than half reduction in mispeculation rates. Depe
on the relative cost of mispeculations it may be advantageous to not include RAR dependences in the
ing mechanism. For the floating point programs, RAR dependences are either the sole source of mis

Figure 4.12:An adaptive cloaking predictor.

Init Don’t

Use

Don’t
DD

R

R

R

R

DD = dependence detected

R = value correct
R

R

R = value incorrect

115

that for
orrectly

n order
1% for
loads)

or no
est of

now
echa-
ce and
ative to

Per
non-
ld 2
tions or they cause as many mispeculations as RAW dependences do. However, it should be noted
most floating point programs RAR dependences are also responsible for most of the loads that are c
communicated (cloaking coverage, as seen in Figure 4.13).

When all programs are considered, the predictor of Figure 4.12 reduces mispeculations by almost a
of magnitude when compared to the other predictors. The mispeculation rate is 2%, 0.35% and 1.0
the integer, floating and all program respectively. From that, 1.1%, 0.17% and 0.54% (percentage of
corresponds to RAW dependences.

Since the predictor of Figure 4.12 drastically reduces the observed mispeculation rate with little
reduction in cloaking coverage, we will focus on cloaking mechanisms that use this predictor in the r
the evaluation.

4.6.4 Characteristics of the Memory Values that are Handled by Cloaking

With a cloaking mechanism that offers relatively high coverage and low mispeculation rates, it is
interesting to attempt to gain an understanding of what kind of loads are correctly handled by this m
nism. We first present a breakdown of loads that get values from cloaking in terms of the address spa
the base register used (Sections 4.6.4.1 and 4.6.4.2 respectively). We do so as an obvious altern

Figure 4.13: Cloaking coverage with various predictors. Percentages are reported over all loads. (a)
program results. (b) Averaged results. Five predictors are shown. From left to right these are: 1-bit
adaptive, 1-bit adaptive, 2-bit saturating counter with threshold 1, 2-bit saturating counter with thresho
and the predictor shown in Figure 4.12.

 RAR

 RAW

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

(a)

(b)

0%
20%
40%
60%
80%

100%

SpecINT SpecFP Overall

be
tte

r

116

nce it
values

values
asure is
r load
ld be to
eamline
uch an
oaking
ection

ads to
d sink
tion of
cloak-
(Sec-

ged
cloaking is register allocation where a value is placed into a register so that instructions can refere
directly. The address space and base register breakdowns provide indications on why the particular
were not register allocated or whether they could be allocated if more registers were available (
accessed via the global pointer should be easy to register allocate). The next characteristic we me
address locality (Section 4.6.4.3). Address locality provides an indication on whether the particula
tends to accesses the same memory location over time. We do so as an alternative to cloaking wou
attempt to directly predict the addresses that loads and stores access and use this prediction to str
access to those locations. The address locality results provide an additional indication on whether s
approach may offer better coverage. We then measure the value locality of loads handled by the cl
mechanism and the coverage obtained through a last-value load value prediction mechanism (S
4.6.4.4). As we explained in the related work section, value prediction may also be used to allow lo
obtain their value early. We also measure the dynamic instruction distance among the source an
instructions that cloaking uses (Section 4.6.4.5). These results provide an upper bound on the frac
loads that can be handled with bypassing and provide an indication of the effective scope of a realistic
ing mechanism. Finally, we study how cloaking accuracy changes if a different input data set is used

Figure 4.14: Cloaking mispeculation rates for various predictors. (a) Per program results. (b) Avera
results. The same predictors as in Figure 4.13 are used. The Y-axis is logarithmic.

099 124 126 129 130 132 134 147

 RAR

 RAW

 RAR+RAW
0.10%
0.25%
0.50%

1%

5%
10%
25%
50%

100%

0.10%
0.25%
0.50%

1%

5%
10%
25%
50%

100%

101 102 103 104 107 110 125 141 145 146

(a)

0.10%
0.25%
0.50%

1%

5%
10%
25%
50%

100%

SpecINT SpecFP Overall

(b)

be
tte

r

117

rty of

dress
a value

hat get a
Y-axis
alues
dled by
result of
hile
le for a

by the
inter, glo-
shows
e seen
he glo-

at is
king.
tion 4.6.4.6). Our goal is to provide an indication that memory dependence behavior is mostly a prope
the program and not of the data processed by the program.

4.6.4.1 Address Space Breakdown

In this section we present a breakdown of the memory traffic handled by cloaking in terms of the ad
space through which the values are communicated. Figure 4.15 shows a breakdown of loads that get
from cloaking in terms of the address segment that the load accesses. Part (a) shows those loads t
correct value while, part (b) shows those loads that get an incorrect value. Note that in part (b), the
range is different for the integer and the floating programs. It can be seen that while most of the v
belong to the data and stack segments, a noticeable fraction of heap values are also correctly han
cloaking. (Note that the few heap accesses observed for 103.su2cor and 104.hydro2d are mostly the
the implementation of the fortran built-in functions which are translated to C in our environment.) W
heap values contribute significantly to cloaking coverage for some programs, they are also responsib
disproportionate fraction of the mispeculation rate.

4.6.4.2 Base Register Breakdown

Figure 4.16 presents a breakdown of cloaking communication in terms of the base register used
corresponding loads. Loads are separated into three classes based on whether they use the stack po
bal pointer or any other register as their base register (shown from left to right in that order). Part (a)
the loads that get a correct value, while part (b) shows the loads that get an incorrect value. It can b
that for most of the integer programs, loads that use the stack pointer directly or a register other than t

Figure 4.15: Breakdown of loads that get a value via cloaking in terms of the address segment th
accessed. (a) Loads that get a correct value via cloaking. (b) Loads that get an incorrect value via cloa
Y-axis range varies per graph.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 DATA STACK HEAP

(a)

(b)

0%

20%

40%

60%

80%

100%

0%
1%
2%
3%
4%
5%
6%

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%

118

grams
ogram
press.
that are
register
How-

ointer.
of use
of all

art (b),
ns are
e stack
d regis-
ve reg-

s are
may

ndence
er loads
ively
se the
e vir-
ch an
king.

e: sp
ctly
bal pointer are responsible for most of the correctly communicated values. For the floating point pro
most of the correctly communicated loads do not use the stack or the global pointer loads. The only pr
where global pointer loads are responsible for most of the correctly communicated values is 129.com
Most (but not all) of these accesses correspond to global variables that are not register allocated and
accessed repeatedly from within loops. Register pressure is one reason why these variables are not
allocated. In this case, providing a larger register set would help in removing these loads and stores.
ever, about 10% of all executed loads get a correct value from cloaking and do not use the global p
This observation suggests that even if the global pointer loads were eliminated cloaking may still be
as it would cover about 25% of the remaining loads (global pointer loads account for about 60%
loads).

A clear trend is demonstrated by mispeculations as shown in Figure 4.15. As it can be seen from p
virtually all of the mispeculated loads use a register other than the stack or global pointers. Exceptio
126.gcc, 130.li and 134.perl where stack loads are also a significant source of mispeculations. Th
loads that are mispeculated in these three programs correspond, in their vast majority, to callee-save
ter restore loads found in recursive functions. These loads experience RAW dependences with the sa
ister store instructions found at entry to the corresponding recursive function. These load
communicated correctly when recursion terminates (i.e., at the leafs of the calling-graph), while they
get incorrect values when further recursive calls are made.

The results of Figure 4.16 demonstrate that stack and global pointer loads exhibit more stable depe
behavior than loads that use other registers. Even so, the mispeculations that correspond to the latt
are relatively few while their contribution to correctly communicated values is by comparison relat
high. Depending on the penalty of mispeculation we could avoid using cloaking for loads that do not u
stack or global pointers in order to minimize mispeculations (for most programs mispeculations will b
tually non-existent). (Tyson and Austin suggest such a confidence prediction in [89].) However, su
approach will also lead to a significant reduction in the fraction of loads that get a correct value via cloa

Figure 4.16: Load breakdown in terms of the base register used. From left to right the categories ar
(stack pointer), gp (global pointer) and other. (a) Correctly communicated loads. (b) Incorre
communicated loads.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%

0%

1%

2%

3%

4%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b)

 Stack Global Pointer Other

0%

20%

40%

60%

119

it was
l insight
ion on
ificant
he left

loads
wn the

RAW,
exhibit
e that
expe-
re used
These

all. Had
hanism

exhibit
rd last-
y loads

ing
4.6.4.3 Address Locality Measurements

We next measure the address locality of the loads that get a correct value via cloaking. We defineaddress
locality as the probability that a load instruction accesses the same address as it did the last time
encountered. We present these address locality measurements not only because they offer additiona
on the type of loads that are correctly handled by cloaking but also because they provide an indicat
whether an address prediction based memory communication streamlining scheme would offer sign
advantages over the cloaking scheme we are investigating. The results are shown in Figure 4.17. T
bar represents the fraction of all loads that exhibit locality while the right bar represents the fraction of
that get a correct value via cloaking. To aid in the interpretation of these measurements we breakdo
loads that exhibit address locality into three categories depending on whether they also experience a
RAR or no dependence. We can observe that while many of the loads that cloaking captures also
address locality, a significant fraction of them does not exhibit address locality. We can also observ
with the exception of 145.fpppp, there are very few loads that exhibit address locality and do not also
rience a dependence. (145.fpppp uses many statically allocated variables of aggregate type that a
extensively in repeated calculations. The vast majority of these loads experience dependences.
dependences however escape detection as the detection table used in this experiment is relatively sm
we used a larger detection table, most of these loads would have been captured by the cloaking mec
also (see Section 4.6.2).) Moreover, it is often the case that cloaking captures loads that do not
address locality. These results, suggest that cloaking may offer better coverage than a straightforwa
address prediction scheme while not requiring explicit tracking of the addresses that are accessed b
and stores.

Figure 4.17: Address Locality breakdown. Left bar reports address locality. Right bar reports cloak
coverage.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 RAR No Dependence RAW RAW

Address Locality - Left Bar

0%

20%

40%

60%

80%

100%

 RAR

Cloaking Coverage - Right Bar

120

aking
resting
ssibly
long-
ty are
type this
rograms
value
ads is
depen-
s where

also
bser-
doing

via a
which
erstand
king
ue pre-
ce pre-
ism we

that
d into
4.6.4.4 Value Locality and Value Prediction Measurements

In this section we measure the value locality exhibited by the loads that get a value from the clo
mechanism. Value locality and how it is distributed among loads that have dependences is an inte
metric in this context, as value prediction can also be used to allow loads to obtain their value early, po
earlier than cloaking would allow. Figure 4.18 shows a breakdown of loads that exhibit value locality a
side with a breakdown of loads that get a correct value via cloaking. The loads that exhibit value locali
separated into three categories depending on whether they have a dependence detected and what
dependence is. The categories are: RAW, RAR and no-dependence. We can observe that for most p
cloaking coverage is higher than the percentage of loads that exhibit value locality. More loads exhibit
locality only for 132.ijpeg, 104.hydro2d, 110.applu and 125.turb3d. When the dependence status of lo
taken into consideration, we can observe that cloaking covers more of the loads that experience
dences. This phenomenon is more pronounced for those loads that experience RAW dependence
cloaking coverage is sometimes twice the fraction of loads that exhibit value locality. However, we can
observe that a noticeable fraction of loads with value locality do get a correct value via cloaking. This o
vation suggests a potential synergy of the two techniques. We do investigate this possibility. Before
so however, we take a look at a real load value predictor.

Value locality provides just an indication of the fraction of the loads that may get a correct value
value predictor. It directly measures those loads that would get a correct value from a value predictor
has infinite entries and uses a simple last-value with no hysteresis predictor (see [74]). To better und
how cloaking compares with value prediction, we next compare a finite value predictor with a cloa
mechanism that uses finite prediction and detection structures. For this experiment we simulate a val
dictor with 16K entries that uses a last-value prediction scheme augmented with a per load confiden
dictor. The confidence predictor we use is the one presented in Figure 4.12. The cloaking mechan

Figure 4.18:Value Locality breakdown. Left bar: loads that exhibit value locality separated into those
have a RAW, a RAR or no dependence. Right bar: loads that get a correct value via cloaking separate
those that have a RAW or a RAR dependence.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

100%

 RAR No Dependence RAW RAW

Value Locality - Left Bar

 RAR

Cloaking Coverage - Right Bar

121

-asso-
these

iction
echa-
offers

trends
riences

ss and
aking

e spe-
differ-
act of
est that
hibit
nergy
ate, we
iction
e also
We can
ng does
ssing

(b)
use has a 16K DPNT, an 128-entry DDT and a 2K synonym file. All structures are assumed to be fully
ciative. Figure 4.19 reports the coverage (part (a)) and mispeculation rates (part (b)) observed with
two mechanisms. The value prediction results are shown by the black left bar, while the cloaking pred
results are shown by the right grey bar. As it can be seen from the results of part (a), the cloaking m
nism offers better coverage than the value prediction mechanism for most programs. Value prediction
better coverage for three floating point programs: 104.hydro2d, 125.turb3d and 110.applu. Similar
are seen in the mispeculations observed. As it can be seen in part (b), the cloaking mechanism expe
less mispeculations than the value prediction mechanism for all programs except 129.compre
146.wave5. In those two programs the mispeculation rates are relatively small and furthermore, clo
exhibits significantly higher coverage than value prediction does.

Even though these results suggest that cloaking offers better prediction than value prediction (for th
cific predictors) it should be noted that these results should be used simply as an indication. Not only
ent or larger predictors may improve value prediction (and cloaking) but also, the performance imp
each technique can only be judged when timing is taken into account. Even so, these results sugg
cloaking provides a way of obtain load values early for a significant fraction of loads that do not ex
value locality (mostly loads that have RAW dependences). This observation hints to a potential sy
between the two techniques. To better understand how value prediction and cloaking/bypassing rel
measured the fraction of loads that get a correct value from cloaking/bypassing but not from value pred
and vice versa. The results are shown in Table 4.1. To aid in the interpretation of these results, w
present a breakdown of the values obtained via cloaking/bypassing in terms of the dependence type.
observe that indeed for most programs, value prediction captures some loads that cloaking/bypassi
not and vice versa. For most programs, the fraction of loads correctly predicted only via cloaking/bypa

Figure 4.19: Comparing a value predictor with cloaking. (a) Coverage: loads that get a correct value.
Mispeculation rates: loads that get an incorrect value.

0%

20%

40%

60%

80%

100%

0%

1%

2%

3%

4%

5%

6%

0.0%

0.5%

1.0%

1.5%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b)

 Cloaking Value Prediction

122

s are
epen-
get a

im and
ence.
value

h other,

t value
g an
n 4.3,
instruc-
on of
tances
d mea-

of the
also

when
es cor-
ress and
ctions.

ctor
is higher than the fraction of loads correctly predicted only via the value predictor. The two exception
104.hydro2d and 125.turb3d. Most of the loads captured only by cloaking get a value via a RAW d
dence. However, a noticeable fraction of the loads correctly predicted only via cloaking/bypassing
value via a RAR dependence. For some programs (most floating point programs and 124.m88ks
132.ijpeg), this fraction is close to or exceeds the fraction of loads that get a value via a RAW depend
Motivated by the observations of this section, in Section 4.6.6 we investigate possible combinations of
prediction and cloaking/bypassing and find that the two techniques can be used to complement eac
leading to further performance improvements.

4.6.4.5 Dynamic Instruction Distance Distribution

In this section we measure the distance in dynamic instructions between the loads that get a correc
via cloaking and the source instruction that supplied that value. This information is useful in obtainin
upper bound on the fraction of loads that can also benefit from bypassing. As we noted in Sectio
bypassing can be applied only when the source store or load and the consuming load co-exist in the
tion window. Figure 4.1 reports the fraction of loads that get a correct value via cloaking as a functi
dynamic instruction distance. The range shown is 4 to 16K instructions and samples are taken at dis
that are powers of four. Part (a) reports the per program measurements while part (b) reports average
surements for the integer, floating point and all programs.

As it can be seen by the results of part (b), for 50% of all correctly communicated loads the source
value is within 64 instructions. This result provides an upper bound on the fraction of loads that could
benefit from bypassing in a 64-instruction window processor. This percentage rises to roughly 75%
we consider distances of up to 256 instructions. It can also be seen that about 15% of all correct valu
respond to dependences that span more than 1K instructions. For some programs (e.g., 129.comp
107.mgrid) about 10% of all correct values correspond to dependences that even exceed 16K instru

Cloaking/Bypassing
VP

Cloaking/Bypassing
VP

RAW RAR Total RAW RAR Total

099 23.43% 5.75% 29.18% 5.29% 101 10.22% 15.35% 25.58% 0.24%

124 14.23% 10.62% 24.85% 1.88% 102 6.43% 19.98% 26.41% 0.37%

126 18.15% 5.89% 24.04% 8.01% 103 7.18% 25.89% 33.08% 2.67%

129 41.18% 0.99% 42.18% 0.22% 104 3.02% 1.29% 4.31% 49.94%

130 31.08% 1.08% 32.17% 6.14% 107 2.34% 0.43% 2.77% 2.60%

132 8.67% 5.25% 13.93% 11.24% 110 3.18% 8.29% 11.46% 12.60%

134 21.72% 1.57% 23.29% 7.82% 125 2.27% 0.55% 2.82% 41.94%

147 29.52% 3.33% 32.85% 5.03% 141 8.85% 4.47% 13.34% 9.67%

145 22.46% 17.87% 40.34% 18.17%

146 10.08% 12.84% 22.92% 5.94%

Table 4.1:Fraction of loads that get a correct value from cloaking/bypassing and not from a value predi
(“Cloaking/Bypassing” columns) and vice versa (“VP” columns).

123

emory

strate
signifi-
iction
put data
ounts.

eports
data set
on the
is used.
e alter-
ined for
cula-
te for
hile
varia-
tively

that
wing
raged
This result suggests that even the relatively small detection table we used is capable of capturing m
communication that spans large regions of the dynamic instruction stream.

4.6.4.6 Input Data Set Sensitivity Analysis

In this section we investigate the sensitivity of cloaking to a change of the input data set and demon
that, for most of the programs studied, cloaking coverage and mispeculation rates do not change
cantly. For this experiment we use the a cloaking mechanism with an 128-entry DDT and infinite pred
structures and measure the cloaking coverage and mispeculation rates observed with the second in
set detailed in Chapter 1. For most programs, this data set produces significantly longer instruction c
Figure 4.2 reports the results of this experiment. Part (a) reports cloaking coverage while part (b) r
mispeculation rates. Two bars are shown per program. The left dark bar corresponds to the alternate
while the right light gray bar corresponds to the data set we have been using so far. Focusing first
coverage results, it can be observed that little variation is experienced when the alternate data set
Only, 146.wave5 demonstrates a relatively large difference as its coverage increases by 16% when th
nate input data set is used (since mispeculations also decrease, any performance results obta
146.wave5 with the default data set will probably be pessimistic). A similar trend is exhibited by mispe
tion rates (part (b)). However, the variation here is greater. For example, the mispeculation ra
102.swim rises from 0.24% to roughly 0.9% while it drops from about 2% to 0.8% for 124.m88ksim. W
large, when viewed relatively, these variations are small in absolute terms. Overall, even though some
tion is observed in cloaking coverage and mispeculation rates, for most programs this variation is rela

Figure 4.1: Cumulative dynamic instruction distance distribution between source instruction and loads
get a correct value via cloaking. Range is 4 to 16K instructions. Samples are taken at the follo
distances: 4, 16, 64, 256, 1K, 4K and 16K (powers of 4). (a) Per program measurements. (b) Ave
measurements.

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146

 RAW

 RAR

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%
(a)

SpecINT SpecFP Overall
(b)

124

mostly

e pre-
of var-

n and
it PC,
ber of
elds)
to the
iation
ly all
e infi-
NT to

set
t (b):
small. This result provides an indication that the dependence relationships captured by cloaking are
data independent for these programs.

4.6.5 Effects of Finite Prediction Structures

So far we have been assuming infinite prediction structures. In this section we study what effect finit
diction structures have on the accuracy of cloaking. We first investigate prediction and naming tables
ious sizes and of varying associativity.

4.6.5.1 Sensitivity to the Number of DPNT Entries

Figure 4.3 reports the cloaking coverage (part (a)) and misprediction rates (part (b)) for predictio
naming tables that range from 256 to 8K entries with LRU replacement. Each entry consists of a 32-b
a two-bit confidence automaton and a 16-bit synonym. While, it may be possible to reduce the num
bits required per entry (for example by recording partial PC information or by using shorter synonym fi
we do not investigate this possibility. In Figure 4.2, the right-most dark bar per program corresponds
infinite prediction tables we have been using thus far. It can be seen that with few exceptions, little var
is exhibited even if we use a relatively small prediction and naming table of 256 entries. For virtual
programs a DPNT of 1K entries results in cloaking accuracy that is very close to that observed with th
nite table. Exceptions are 099.go, 126.gcc, 147.vortex and 145.fpppp which require an 8K-entry DP

Figure 4.2: Comparing cloaking accuracy with a different input data set. Left bar: alternate input data
(see Chapter 1, input data set 2). Right bar: default input data set. Part (a): cloaking coverage. Par
mispeculation rates.

0%

20%

40%

60%

80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(b)

0%

1%

2%

3%

4%

5%

0%

0.5%

1.0%

1.5%

 Input Data Set 1 (used in all other experiments) Input Data Set 2

125

tively
ms we

cases
te. For
ntries.
crease
1K or
aly is

mostly
or of
proach

and
o 8K
virtually match the accuracy of an infinite prediction table. This phenomenon is explained by the rela
larger instruction working set exhibited by these four programs as compared to the rest of the progra
studied.

Overall, an increase of the DPNT results in better cloaking characteristics. However, in some
increasing the number of entries may reduce cloaking coverage and increase the mispeculation ra
example, this is the case for 134.perl when we move from a table of 1K entries to one that has 2K e
Generally, these negative effects are barely noticeable. Only in the case of 107.mgrid a significant de
in cloaking coverage can be observed. Specifically, increasing the number of entries from 512 to
more results in a 14% decrease in cloaking coverage (percentage of dynamic loads). This anom
observed on loads that have multiple RAR dependences which in the case of 107.mgrid, can be found
in the nested loops of theresid routine. The dependence behavior of these loads is similar to the behavi
the loads in the loop shown on page 110. As explained in Section 4.6.2, our greedy, non-adaptive ap

Figure 4.3: Cloaking coverage and mispeculation rates as a function of the dependence prediction
naming table size. Part (a): cloaking coverage. Part (b): mispeculation rate. Range shown is 256 t
entries in steps that are powers of two. Last bar corresponds to an infinite table.

0%
20%
40%
60%
80%

100%

0%

20%

40%

60%
099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
(a)

(b)

0%

2%

4%

6%

099 124 126 129 130 132 134 147

101 102 103 104 107 110 125 141 145 146
0.0%

0.4%

0.8%

1.2%

1.6%
3.18%

be
tte

r
be

tte
r

126

oducer
e initial
d from
tween
tion of
ucers
naming
aly is
under-

ssocia-
ies.
., if
even a
y pro-
r those
tes is
sed by
aking
ssocia-

xperi-
up 2K
abso-
most

ields
ented
was

anism.
ithout
.1 we

ections
s when
lation
own in
aking/
onsider
to building dependence sets and marking producers and consumers will mark the first load as the pr
and the other two loads as consumers for cloaking purposes. However, as execution progresses, th
RAR dependences are not observed anymore and cloaking fails. If however, the first load gets evicte
the prediction table (which is more probable when the table is smaller) then the RAR dependence be
the two loop loads may result in marking the load of line 3 as a producer and in the subsequent applica
cloaking. This anomalous behavior may be eliminated by utilizing adaptive schemes in marking prod
and consumers. For example, we could use a scheme that periodically flushes the prediction and
table to achieve such an effect. However, given that for all programs except 107.mgrid this anom
barely noticeable and since our goal is to demonstrate the potential of cloaking and bypassing while
standing the issues involved, we do not investigate this issue further.

4.6.5.2 Sensitivity to the Associativity of the DPNT

Figure 4.4 shows how cloaking coverage and mispeculation rates vary as we change the DPNT’s a
tivity from full to 1-way, 2-way, 4-way and 8-way. The DPNT used in this experiment is 8K entr
Reported is theabsolutedifference in the fraction of dynamic loads that get a value from cloaking (e.g
coverage drops from 40% to 38% we report a 2% reduction). As it can be seen, for most programs,
direct mapped table (1-way) results in similar cloaking accuracy as a fully-associative one. The onl
grams for which some differences are observed are 099.go, 126.gcc, 147.vortex and 145.fpppp. Fo
programs, associativity affects mostly cloaking coverage. While some variation in mispeculation ra
also observed, the absolute differences are relatively minimal (below 1%). These variations are cau
the larger instruction working set exhibited by these four programs. Even so, the differences in clo
coverage are not extreme and drop to near 2%, for all programs except 145.fpppp when a 4-way set a
tive table is used.

4.6.5.3 Synonym File Size Sensitivity Analysis

We finally measure how cloaking accuracy varies as a function of the synonym file size. For this e
ment we assume an 8K entry 2-way set associative DPNT and investigate synonym files with 32 to
entries in steps that are powers of 2. We used fully-associative synonym files. Figure 4.5 reports the
lute difference in cloaking coverage compared to a synonym file of infinite size. It can be seen that
programs are relatively insensitive to variations in the synonym file capacity. An 1K synonym file y
cloaking accuracies that are virtually identical to a synonym file of infinite size. We have also experim
with the associativity of the synonym file. However, we omit these results as virtually no change
observed when we reduced the associativity of a synonym file with 1K entries.

4.6.6 Performance Impact

In this section we evaluate the performance impact of a combined cloaking and bypassing mech
We do so by simulating a dynamically scheduled ILP processor, measuring its performance with and w
a cloaking/bypassing mechanism. The rest of this section is organized as follows. In Section 4.6.6
describe the processor configuration and the cloaking/bypassing mechanism we simulated. In S
4.6.6.2 through 4.6.6.4 we report our findings. In Section 4.6.6.2 we measure how performance varie
cloaking/bypassing is used for various mispeculation handling models, and report: (1) the mispecu
rates observed, and (2) the fraction of loads that get a value via our mechanism along with a breakd
terms of where that value came from (cloaking or bypassing). In Section 4.6.6.3, we compare a clo
bypassing and a last-value based load value prediction mechanisms. Finally, in Section 4.6.6.4 we c
two different combinations of cloaking/bypassing and last-value load value prediction.

127

8-entry
calcu-

e yet to
emory
ment).

word
ciative
rious
tion of
depen-

nitiated
ynonyms
in the

asso-
oth the

vity.
ciative
. Note
4.6.6.1 Configuration Parameters

The base processor is capable of executing up to 8 instructions per cycle and is equipped with a 12
instruction window and a 128-entry load/store scheduler. It takes at least one cycle after a load has
lated its address to go through the load/store scheduler which implementsnaive dependence speculation(see
Section 3.3). That is: (1) a load may access memory even when there are preceding stores that hav
calculate their address, (2) a load will wait for preceding stores that are known to write to the same m
location (we have shown in Chapter 3 that dependence mispeculations rarely occur in such an environ
A detailed description of the rest of the configuration parameters was given in Chapter 1.

The cloaking/bypassing mechanism used comprises: (1) an 128-entry fully-associative DDT with
granularity (a single store can be recorded per word aligned address), (2) an 8K, 2-way set-asso
DPNT, and finally, (3) an 1K, 2-way set associative synonym file. Figure 4.6 illustrates how the va
components of the cloaking/bypassing mechanism are integrated in the processor’s pipeline. Detec
dependences occurs when loads or stores commit by accessing the DDT. Synonym file updates and
dence prediction and naming table updates also occur at commit time. Dependence predictions are i
as soon as instructions enter the decode stage. Loads and stores that are predicted as producers of s
associate the actual producer of the desired value with the predicted synonym by allocating an entry
synonym rename table(SRT) for the purposes of speculative memory bypassing. That is, SRT entries
ciate synonyms with physical registers. Loads that are predicted as consumers of synonyms inspect b

Figure 4.4: Variations in cloaking accuracy as a function of the prediction and naming table associati
Shown (Y axis) is the absolute difference (i.e., fraction of all loads executed) compared to a fully asso
table of the same size. Number of entries is 8k and associativities simulated are: 1, 2, 4 and 8 (X axis)
that the Y-axis range varies.

099
124
126
129

130
132
134
147

COVERAGE MISPECULATION RATE

101
102
103
104
107
110
125
141
145
146

1 2 4 8-8%

-6%

-4%

-2%

0%

1 2 4 80.00%

0.25%

0.50%

0.75%

1.00%

1 2 4 8-12%

-8%

-4%

0%

1 2 4 80.00%

0.05%

0.10%

0.15%

0.20%

0.25%

S
pe

c
IN

T
’9

5
S

pe
c

F
P

’9
5

be
tte

r
be

tte
r

be
tte

r
be

tte
r

128

If an
as the
m file.
ing or

tively
e have
avoids
sult in
e per-

ation
) then

t than
idation
nsuming
support
pecu-

t (a):
ers of
y set
SRT and the synonym file in parallel to determine the current location of the appropriate synonym.
entry is found in the SRT, the synonym resides in the physical register file (or in a reservation station)
corresponding load or store has yet to commit. Otherwise, the synonym is to be found in the synony
At most 8 predictions can be made per cycle and at most 8 instructions can be scheduled for cloak
bypassing per cycle. Finally, no data type information is used for cloaking/bypassing purposes.

There are final piece of the cloaking/bypassing mechanism is responsible for: (1) verifying specula
communicated values, and (2) recovering from mispeculations. For the purposes of this evaluation w
experimented with three mispeculation recovery mechanisms. The first is an oracle mechanism that
mispeculations completely. This is achieve by not speculating on a load value whenever that would re
a mispeculation. While this mechanism is impractical, its use allows us to obtain an upper bound on th
formance benefits that might be possible for the given configuration. The second mechanism usesselective
invalidationin order to re-execute only those instructions that used incorrect data. The selective invalid
mechanism we simulated works by: (1) first re-executing the instruction that was mispeculated, and (2
sending the correct result to all its dependent instructions which will re-execute if the result is differen
the one received earlier [52, 72, 89]. For loads and stores we used a variation of the selective inval
scheme described in [72] where timestamps are associated with each store and propagated to co
loads. The last recovery mechanism we simulated is the one typically used in modern processors to
control speculation. This mechanism invalidates all instructions starting from the one that was mis

Figure 4.5: Cloaking coverage and mispeculation rates as a function of the synonym file size. Par
cloaking coverage. Part (b): mispeculation rate. Range shown is 32 to 2K entries in steps that are pow
two. Last bar corresponds to an infinite table. The prediction table used has 8K entries and is 4-wa
associative.

099
124
126
129

130
132
134
147

COVERAGE MISPECULATION RATE

101
102
103
104
107
110
125
141
145
146

S
pe

c
IN

T
’9

5
S

pe
c

F
P

’9
5

be
tte

r
be

tte
r

be
tte

r
be

tte
r

64 12
8

25
6

51
2

1K
-10%

-8%

-6%

-4%

-2%

0%

64 12
8

25
6

51
2

1K
-0.3%

-0.2%

-0.1%

0.0%

64 12
8

25
6

51
2

1K
-0.10%

-0.05%

0.00%

0.05%

64 12
8

25
6

51
2

1K
-8%

-6%

-4%

-2%

0%

129

an be

e with
he abil-
values
ulation

instruc-
writes
ulative.
gs are
cates
a specu-
ly, all
uction is
is
(i.e.,

specu-
hen it
r. For
n is that
perands.
is done
a global
a data
Every

ry data
th this
lculated
-specu-
lated. These instructions have to be re-fetched from scratch. We will refer to this mechanism assquash
invalidation.

A challenge shared by most techniques that try to speculate instruction outcomes is how quickly it c
established that the values so obtained are correct, an action to which we will refer to asdata speculation
resolution. Furthermore, as also reported in [80], care must be taken to avoid destructive interferenc
other prediction techniques, especially branch prediction. For the purposes of this study we assume t
ity to resolve all speculation in a register dependence chain as soon as it is established that its input
are correct. Whether such a mechanism can be built is still an open question. The exact data spec
resolution mechanism we simulated, data speculation resolution proceeds in two steps: (1) when an
tion is issued, a determination is made on whether it is data speculative, and (2) when an instructions
back a non-speculative result, a determination is made on which instructions become non-data spec
We first explain how we determine whether an instruction is data speculative at issue time: two fla
kept per instruction indicating whether the instruction is currently data speculative. The first flag indi
whether the instruction is data speculative via a register dependence and the second whether it is dat
lative via memory. An instruction is data speculative when at least one of these flags is set. Initial
instructions are marked as data speculative as they pass through the decode stage. When an instr
issued, a determination is made on whether itsregister data speculative flag should be cleared. The flag
not cleared under the following conditions: (1) the instruction is using a value obtained via prediction
cloaking/bypassing or value prediction), or (2) the instruction is using a result produced using a data
lative value. For (2) to be possible, all we have to do is mark an instruction as data speculative w
receives a data speculative result. The required information is already there in a typical schedule
memory, we do not rely on dependences to determine whether a value is data speculative. The reaso
memory dependences may change over time as a side-effect of value speculating on base register o
Instead of attempting to track memory dependences, we use an incremental approach similar to what
for control dependences: The memory data speculative flags of loads and stores are cleared using
pointer. This global pointer points to the earliest in program order store or load that has either used
speculative value (i.e., its register data speculative flag is set) or has not yet calculated its address.
cycle, the global pointer is updated by scanning forward in the load/store queue, clearing the memo
speculative flags of loads and stores until one is found that meets the aforementioned criteria. Wi
scheme a load is marked as non-value speculative only when all preceding loads and stores have ca
their addresses and posted their data using non-speculative values. We now explain how, when a non

Figure 4.6:A out-of-order processor pipeline with a cloaking/bypassing mechanism

Fetch
Decode

&
Rename

Schedule Execute Commit

DPNT

PC

SF DDT

Verify

predict

update

SRT

update

130

rough
se this
endence

ng the
indicat-
erging

Every

hes

edup or
peedups
ts per-
s are
erfor-
e pro-

ance
ce the
sts that
ts so

ched.
esults

ance
erfor-
ance

x. It
oracle

y. The
ter get
ct per-

d reason
nce of
g.
value
ited.

om
n will

reting
ive (left
ns that
ort mis-
ion
tions on
lative value is written back, the data speculative flags of instructions are cleared for values obtained th
register dependences. When a non-speculative result is written back, all instructions that directly u
result via a register dependence, are marked as non-data speculative. This takes care of register dep
chains of unit depth. For longer dependence chains, we maintain a bit vector per instruction marki
source register dependences it has. These bits are set at decode time. Each bit is connected to a line
ing whether the corresponding instruction is data speculative or not. These signals are generated by m
together (logical OR) the register and memory data speculative flags of the corresponding instruction.
cycle, these signals are used to determine whether the instruction is still data speculative.

Finally, in order to avoid interfering with branch prediction we disallow control resolution on branc
with value speculative inputs.

4.6.6.2 Performance with a Cloaking/Bypassing Mechanism

Figure 4.7 reports how performance varies when cloaking/bypassing is used. Reported are the spe
slowdown with respect to the base processor that uses no cloaking/bypassing. Part (a) shows the s
obtained with the oracle (left bar) and the selective (right bar) invalidation mechanisms. Part (b) repor
formance variation with the squash invalidation mechanism. While performance improvement
observed for all programs studied with either the oracle or the selective invalidation mechanism, p
mance rarely improves when the squash invalidation mechanism is in place. In fact, for most of th
grams the combination of cloaking/bypassing and squash invalidation often leads to perform
degradation. As with any speculation technique, in cloaking/bypassing care must be taken to balan
benefits of correct speculation against the net penalty of erroneous speculation. This result sugge
while cloaking/bypassing may improve performance when correct, the performance improvemen
obtained cannot offset the loss incurred if all instructions following a mispeculation have to be re-fet
To overcome this limitation we may seek to improve the accuracy of the cloaking predictor, or, as the r
of part (a) suggest, use an invalidation mechanism that reduces mispeculation penalty.

Focusing on part (a), we can observe that if it was possible to avoid all mispeculations perform
improvements are observed (oracle bar). Moreover, the selective invalidation mechanism offers p
mance that is virtually identical to that of the oracle disambiguation mechanism. As shown, perform
improvements vary significantly from as low as 1.8% for 132.ijpeg to as high as 11% for 147.vorte
should be noted that often the selective invalidation mechanism leads to better performance than the
mechanism. There are two reasons why this is so. The first has to do with our simulation methodolog
oracle mechanism as simulated, does not permit any cloaking/bypassing on instructions that will la
squashed due to branch mispeculation. However, speculating on these instructions may positively affe
formance as they may, for example, prefetch data cache blocks that are actually needed. The secon
has to do with the nature of the computations that may get speculated. Consider the following seque
two instructions: “load r1; and r1, 1”, where r1 is a register and the load may receive a value from cloakin
The oracle mechanism decides on whether to speculate or not by looking at the load’s value. If the
from cloaking/bypassing is different than the one that will be read from memory, speculation is inhib
However, after the “and” instruction only the last bit of the value is relevant. Provided that the value fr
cloaking/bypassing is correct at least in that bit, any instructions that use the result of the and instructio
be correctly speculated. The selective invalidation mechanism benefits from those cases.

Figure 4.8 reports additional characteristics of the cloaking/bypassing traffic that are useful in interp
the performance results. In part (a), shown are the data mispeculation rates observed for the select
bar) and the squash (right bar) invalidation mechanisms. As performance is affected by the instructio
use the speculative values (the consumers of loads that get a value from cloaking/bypassing) we rep
peculation rates overall committedinstructions and moreover count a mispeculation for every instruct
(not only loads) that used erroneous data. In these measurements, we do not include data mispecula

131

lidation
so be
squash

oten-
n was
indow
ypass-
prove-

ads in
strates

given
e cor-
umers
ssor has

ation
d predic-

isms.
to a
rneath
onym
instructions that are squashed as the result of control mispeculation. It can be seen that selective inva
is very effective in handling relatively high mispeculation rates (as much as 7% for 134.perl). It can al
seen that with squash invalidation mispeculation rates are much smaller. This is to be expected as a
invalidation throws all instructions following the earlier mispeculation.

Part (b) of Figure 4.8 shows a breakdown of the fraction of committed loads that were identified as p
tial consumers by cloaking. Loads are classified into those that were given a value when the predictio
made (synonym or register file) and to those that had to use bypassing (actual producer was in the w
and had not yet committed). We can observe that there is not a strong correlation between cloaking/b
ing coverage and performance. Consider for example 099.go and 124.m88ksim. 099.go sees a 5% im
ment by cloaking/bypassing while 124.m88ksim sees only a 3% improvement. In contrast, 40% of lo
099.go use cloaking/bypassing while nearly 80% of loads do so in 124.m88ksim. This result demon
that ultimately, performance is affected by whether the consumers of loads can issue earlier if they are
a speculative value and by whether they are part of the critical path of the computation. Even when w
rectly speculate a load value, no benefits may be possible if no consumers are visible or if the cons
have other dependences pending. Performance improvements may not also be possible if the proce
to wait anyhow for some other part of the computation to complete.

Comparing the cloaking coverage results of part (b) with those of our preceding trace-driven evalu
we can observe that they are very close. This result suggests that delaying dependence detection an

Figure 4.7: Relative performance of cloaking/bypassing for various mispeculation handling mechan
(a) Oracle and Selective invalidation. (b) Squash invalidation. Performance changes are relative
processor that uses no cloaking/bypassing. IPCs for the base case are reported in the gray strip unde
the graph of part (a). An 8K-entry 2-way set associative DPNT table and an 1K fully associative syn
file are used.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-15%

-10%

-5%

0%

5%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 Oracle Selective Squash

(a)

(b)

0%
2%
4%
6%
8%

10%
12%
14%

2.
97

2.
45

3.
36

3.
35

4.
94

4.
18

4.
64

3.
19

3.
85

3.
74

1.
60

3.
31

2.
31

2.
17

2.
16

3.
94

2.
52

4.
36

HARMONIC MEAN INT: 6.03% FP: 4.98% ALL : 5.45%

132

some
medi-

st pro-
our base
rted in
namic

dictor.
r also
ms and
ristics

erfor-
predic-
iative
s sec-
grams.
han the
ts from
e
mance

es con-
een the

the
ion of
get a

in the
tion updates until instructions are committed does not severely impact cloaking coverage. In fact, in
cases (e.g., 145.fpppp) cloaking coverage improves as mispeculations do not affect the predictor im
ately (however, mispeculations also increase in this case). As the results of part (b) indicate, for mo
grams at least half of the speculated loads obtain a value using bypassing. This is to be expected as
processor has a relatively large instruction window and a fairly aggressive front-end. As we have repo
Section 4.6.4.5, most of the loads that may get a value from cloaking do so over relatively short dy
instruction distances.

4.6.6.3 Comparing Cloaking/Bypassing and Value Prediction

We next compare cloaking/bypassing with a simple, last-value with no hysteresis load value pre
For this experiment we use a 16K-entry fully-associative value predictor. Each entry of this predicto
contains the confidence automaton of Figure 4.12 (we experimented with other confidence mechanis
found that this automaton yields superior accuracy for value prediction also). The accuracy characte
of this value predictor are almost identical to those reported in Figure 4.19. In part (a) we report p
mance improvements over the base configuration that does not use cloaking/bypassing or load value
tion. Included are results for cloaking/bypassing mechanisms with 8K and 16K 2-way set-assoc
DPNTs. Furthermore, we used the selective invalidation mechanism outlined in the beginning of thi
tion. We can observe that increasing the size of the DPNT improves performance for some of the pro
It can be seen that for most programs the cloaking/bypassing mechanism offers better performance t
particular value predictor. However, 132.ijpeg, 104.hydro2d and 125.turb3d, see greater improvemen
value prediction. In both techniques the performance tradeoffs are similar. Performance may improvonly
wheninstructions that depend upon loads execute earlier using a correctly speculated value. Perfor
may be negatively affected when erroneous speculation causes instructions to execute multiple tim
suming resources that could be used more productively. So, in either case we have to balance betw

Figure 4.8: Characteristics of cloaking/bypassing communication. (a) Mispeculations observed for
squash and selective invalidation schemes. Rates are over all committed instructions. (b) Fract
committed loads that get a value via cloaking/bypassing. The upper part of the bar reports loads that
value at decode time. The lower part reports loads that find that the actual producer of the value is
window and has not yet produced a value. These loads benefit from bypassing.

0%

2%

4%

6%

8%

0.0%
0.5%
1.0%
1.5%
2.0%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

4.7%

 Selective Squash (a)

(b)
09

9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

 Value Available

 Wait For Producer

0%

20%

40%

60%

80%

133

ypass-
reason
e load

pipe-
r cre-
ndent

nstruc-

aking/
epen-
value
ing for
pass-
either
re the

loak-
tion of
ion is
ompar-
ediction
pro-
ndence
not be

assing
ng the
benefits of correct speculation and the impact of erroneous speculation. As we have seen cloaking/b
ing offers, in most cases, equal or better accuracy than the particular load value predictor. This is one
why cloaking/bypassing results in better performance. Another reason is how quickly the speculativ
values become available. In load value prediction, the predicted value is always available early in the
line, while, in cloaking/bypassing getting a speculative value may be delayed until the actual produce
ates it. While getting a predicted value earlier may be beneficial when the value is correct (depe
instructions may execute earlier) it is not so when the value is incorrect as the speculatively executed i
tions consume resources that could be used more productively.

4.6.6.4 Combining Cloaking/Bypassing and Value Prediction

As we have discussed in Section 4.6.4.4, it may be beneficial to combine value prediction and clo
bypassing. In this section we evaluate two alternatives, the first uses cloaking/bypassing for RAW d
dences and value prediction for other loads. Combining RAW memory dependence prediction with
prediction was suggested by Tyson and Austin [89]. Here, we extent that mechanism by using bypass
RAW dependences. In the other mechanism we utilize both RAW and RAR prediction for cloaking/by
ing. Preference is given to value prediction. Cloaking/bypassing is used when value prediction fails
by mispeculating a load or by not speculating at all. Performance results are given in Figure 4.10, whe
two aforementioned combinations of value prediction and cloaking/bypassing are marked as “CLOAK/VP”
and “VP/CLOAK”. With the exception of 104.hydro2d and 125.turb3d, all three mechanisms that use c
ing/bypassing resulted in similar performance improvements. For most programs, using a combina
cloaking/bypassing and value prediction results in slightly better performance. A notable except
099.go, whose performance improvements are reduced with either of the combined mechanisms. C
ing the two combined mechanisms, we can observe that the mechanism that attempts to use value pr
first (VP/CLOAK) and that also utilizes RAR dependence prediction performs slightly better for most
grams. For 126.gcc, 104.hydro2d and 107.mgrid the mechanism that does not use any RAR depe
prediction resulted in slightly better performance. However, overall the differences are minor and can
used as an indication of the superiority of any of the mechanisms studied over the rest of them.

The results of these experiments support our earlier observation of a synergy between cloaking/byp
and value prediction. Unfortunately, we have seen that the performance improvements by combini

Figure 4.9:Comparing a load value prediction mechanism with a cloaking mechanism.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

CLOAKING 8K-DPNT CLOAKING 16K-DPNT VALUE PRED. 16K

0%

5%

10%

15%

20%

134

erfor-
l path
used

com-
ommon
emory

nd per-
ovide
t using
meth-

n to
tify the
ctions.
hnique
ues with-
emory

hat other
duce or
nature
e also.
s.

hat was
of the

ing/
two techniques obtained are relatively minor. Further, investigation is required to determine whether p
mance is limited by the program itself (i.e., whether some other part of the program becomes the critica
when the techniques are combined) or whether it is the limited bandwidth of the processor model we
that inhibits any further improvements. Such an investigation is beyond the scope of this work.

4.7 Summary

In this chapter we identified and were motivated by two prevalent uses of memory: inter-operation
munication (passing a value from a store to a load) and data-sharing (two or more loads access a c
memory location). We reviewed how these actions are specified using the traditional address-based m
interface and identified a set of potential drawbacks: calculating an address (fetching input registers a
forming an addition), disambiguation (determining whether a preceding, yet uncompleted store will pr
the value and where the value is going to be placed) and finally, memory system access. Noticing tha
run-time calculated addresses is not the only way of specifying these actions we were concerned with
ods of explicitly specifying memory communication and data-sharing and of exploiting this informatio
streamline loading values from memory. We proposed using memory dependence prediction to iden
memory communication and data-sharing patterns dynamically, annotating the corresponding instru
We used memory dependence prediction as the basis of speculative memory cloaking, a novel tec
where we create a new, albeit speculative name space through which loads and stores can access val
out having to incur some of the overheads associated with address calculation, disambiguation and m
system access. Furthermore, observing that loads and stores act simply as agents passing values t
instructions create or use we proposed speculative memory bypassing where the instructions that pro
consume memory values via stores and loads are linked directly. Both techniques are speculative in
and for that require that the values so obtained are verified through the traditional memory name spac
For this reason, these techniques can only reduce the latency associated with reading memory value

Evaluating cloaking and bypassing we have seen that most of the executed loads read a value t
written by a recent store or read by a recent load. Moreover, we have demonstrated that the majority

Figure 4.10: Performance improvements obtained by combining load value prediction and cloak
bypassing. All cloaking/bypassing mechanisms use a 8K DPNT.

0%

2%

5%

8%

10%

12%

15%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

CLOAKING VALUE PRED. 16K CLOAK/VP VP/CLOAK

135

8 mem-
to pre-

m that
teger

0.4%
stores
e dis-

t while
floating
ture, we
tructions

cloak-
while
char-

ype of
erience

rela-
und
predic-
aking/

pass-
with an

found
squash
rada-
wever,
ance
ith the

le).

e pre-
dro2d.

found
ocessor
ls. For
fits of
ow is

assing

pecu-
similar
corresponding dependences can be captured with relatively small structures that can hold the last 12
ory locations accessed. Furthermore, we have demonstrated that this history information can be used
dict future dependence behavior with relatively high accuracy and showed that a cloaking mechanis
utilizes this prediction can provide correct values for about 70% and 50% of all loads executed in the in
and the floating point program respectively, while maintaining mispeculation rates of roughly 2% and
respectively. We have identified that important sources of mispeculations are: (i) the save and restore
and loads respectively of recursive functions, and (ii) loads that have multiple RAR dependences som
tant and less regular and some in close proximity that are fairly regular. We also demonstrated tha
RAW dependences are more frequent for the integer codes, RAR dependences are more frequent in
point codes. Moreover, we showed that even through the use of a small dependence detection struc
can capture and predict dependences that span across much larger distances in terms of dynamic ins
(some of the dependences captured were between instructions more than 16K instructions apart).

We also investigated the address and value locality characteristics of the loads that get a value via
ing. We showed that cloaking captures most of the address locality found in the programs studied and
also capturing some loads that do not exhibit any address locality. We also looked at the value locality
acteristics of the loads that get correct values from cloaking and found high correlation between the t
dependences experienced by a load and its value locality characteristics. We saw that loads that exp
RAW dependences exhibit relatively low value locality while the loads that experience RAR exhibit
tively high value locality. For most programs, few other loads exhibit value locality. Moreover, we fo
that cloaking offers superior accuracy when compared to a simple, yet realistic last-value based value
tion mechanism. However, we also found that a synergy exists between value prediction and clo
bypassing.

Moreover, we investigated the performance impact, a combined implementation of cloaking and by
ing has on a dynamically scheduled ILP processor. To do so we used a fairly aggressive processor
128-entry instruction window that performs naive memory dependence speculation as our base. We
that performance was extremely sensitive to the mispeculation recovery mechanism used. When
invalidation was used, performance improved slightly only for two programs. In fact, performance deg
tion varying from as low as 2.5% to as much as 12% was observed for the rest of the programs. Ho
when combined with an implementation of selective invalidation, cloaking/bypassing offered perform
improvements for all programs studied. The observed speedups were in the range of 1.5% to 15.4% w
harmonic mean being 4.1% (16K, 2-way set associative DPNT, 1K 2-way set-associative synonym fi

Finally, we compared our cloaking/bypassing mechanism to a straightforward last-value, load valu
dictor and found that cloaking/bypassing offered superior performance for all programs except 104.hy
We also considered two mechanisms that combined load value prediction and cloaking/bypassing and
the although some benefits were possible, in most cases those benefits were relatively small for the pr
model we used. However, these mechanisms may perform better under different processor mode
example, they may perform better: (1) when memory latency is higher as now the potential bene
obtaining a memory value as early as possible are increased, and (2) when the instruction wind
increased as in this case value prediction may supply a memory value long before cloaking or byp
could.

While conceptually exciting, our results suggest that support for selective invalidation and fast data s
lation resolution has to materialize before the techniques presented can be of practical use (under
assumptions about the processor configuration and memory access latency).

136

ul-
emory
e space
mem-

emory
rated in
as
y, the
tead, its
access
C, or
spec-

se the
ntial
mory
nlikely
ult in
We

to hide
eclud-
ssion
Chapter 5

Transient Value Cache

Highly parallel execution can benefit from both low memory latency and from the ability to perform m
tiple memory accesses in parallel. The techniques we have presented so far aimed at providing low m
latency by either scheduling loads as soon as possible (Chapter 3) or by creating a speculative nam
through which loads can obtain a value without incurring the overheads associated with the traditional
ory address space (Chapter 4).

In this chapter, we present theTransient Value Cache(TVC for short), a method of supporting multiple
memory access per cycle. The TVC is a novel memory hierarchy component that combines a m
dependence status predictor and a relatively small, narrow data cache. The basic approach is illust
Figure 5.1. The TVC records in its data cache component thenth most recent accessed memory locations
a traditional data cache would. However, contrary to what is done in a traditional memory hierarch
data cache component does not always appear in series with the rest of the memory hierarchy. Ins
placement is decided using a memory dependence prediction as follows: When a load is ready to
memory, a prediction is made on whether the memory location it will access is resident in the TV
viewed differently whether the load has a RAW or a RAR dependence with a recent store or load re
tively. If so, the load is sent only to the TVC, in which case the TVC appearsin-serieswith the L1 data
cache. Otherwise the load is sent to both the TVC and the rest of the memory hierarchy, in which ca
TVC appearsin-parallel with the L1 data cache. Provided that prediction accuracy is high, the pote
benefits of the TVC approach are: (1) the loads that hit in the TVC are hidden from the rest of the me
hierarchy, freeing up L1 data cache ports to be used by other loads, (2) the latency of loads that are u
to hit in the TVC remains unchanged. High prediction accuracy is essential as the TVC may res
increased load latency when prediction incorrectly indicates that a load will find its data in the TVC.
also discuss a possible WAW dependence status prediction extension, where the TVC is also used
from the rest of the memory hierarchy those store accesses that are likely to be overwritten quickly, pr
ing potential problems with writeback traffic contention while reducing L1 port requirements (see discu
in Section 5.2).

137

nce
ith high
uld be
ehavior
mem-
proach
xper-
e our

on, the
. Fur-

of pro-
behav-

C can
ave a
eeding
ed in a
ere we
ndence
trum
re 5.2,

art (b),
32 to
For the TVC to be effective, programs must exhibit a significant fraction of loads with short-dista
RAW or RAR dependences. Furthermore, the existence of those dependences must be predictable w
accuracy. Moreover, if we decide to use the WAW extension, the aforementioned characteristics sho
exhibited by the WAW dependence stream of programs. We have presented evidence that such b
exists in Chapter 2. In Section 5.1, we take a closer look at the short-distance RAW, RAR and WAW
ory dependence behavior of programs. We use the results of this analysis to motivate the TVC ap
which we describe in Section 5.2. In Section 5.3, we review related work. In Section 5.4 we present e
imental evidence in support of the benefits of the TVC approach. Finally, in Section 5.5 we summariz
findings.

We should warn the reader that the evaluation presented in this chapter is preliminary. For this reas
results presented should be interpreted merely as an indication of the potential of the TVC approach
ther investigation is required to determine how a TVC affects performance.

5.1 Short-Distance Memory Dependence Measurements

The TVC method is best motivated by examining the short-distance memory dependence behavior
grams. For this reason, we first present an empirical study of the short-distance memory dependence
ior of loads and stores. Specifically, to get an estimate of the fraction of loads or stores that the TV
potentially hide from the rest of the memory hierarchy we measure: (1) the fraction of loads that h
RAW or RAR dependence, and (2) the fraction of stores that have a WAW dependence with a succ
store. We measure both fractions as a function of the number of memory locations that can be stor
word-wide, fully-associative data cache. We have presented similar measurements in Chapter 2, wh
were concerned with the amount of resources required to capture a desired level of memory depe
activity. The analysis of this section differs in that we take a closer look at the lower end of the spec
and consider address window sizes that seem more appropriate from a practical perspective. Figu
reports, in part (a), the fraction of loads that would find the data they need in the data cache, and in p
the fraction of stores that would be killed in the data cache. The size of the data cache is varied from
up to 8K entries, and samples are taken at sizes that are powers of two.

Figure 5.1:The Transient Value Cache

OOO Core

TVC

Memory Hierarchy Load/Store Path

no dependence

dependence

De
pe

nd
en

ce
 S

ta
tu

s
Pr

ed
ict

or

138

ctions
last 32
can be

ively
s typi-
As we
at of

ly with
es with
rams,

For
K data

cently
s. For
2% for
cache,

rage.

essed
cations
Focusing first on the loads (part (a)), we can observe that most programs exhibit relatively large fra
of loads that read a recently written or read memory location. Even when we keep a record of just the
accessed memory locations, we can often capture around 40% or more of all load accesses. As it
seen by the results of part (b), a significant fraction of stores also get killed within the limits of a relat
small data cache. However, the fraction of stores that gets killed within a data cache of a given size i
cally smaller than the fraction of loads that would find their data in a data cache of the same size.
also noted in Chapter 2, the WAW dependence behavior of floating point programs is different from th
integer programs. In the integer programs, the fraction of stores with WAW dependences rises sharp
the size of the data cache, exceeding 65% with a data cache of 8K. In contrast, the increase in stor
WAW dependences is not as sharp for floating point programs. Moreover, for most floating point prog
the fraction of stores with WAW dependences is typically lower compared to the integer programs.
example, in 104.hydro2d the fraction of stores with WAW dependences is near 30% even when an 8
cache is used.

The results of this section suggest that a data cache that can hold a relatively small number of re
accessed or written memory locations, can potentially service significant fractions of loads and store
example, a data cache capable of recording 128 memory locations can provide values for 62% (70.
the integer codes and 56.3% for the floating point codes) of all loads on the average. In the same data
38% of all stores (55% for integer codes and 23% for floating point codes), will get killed on the ave

Figure 5.2: (a) Loads with a RAW or RAR dependence within the last n unique, most recently acc
memory locations. (b) Stores that have a WAW dependence within the next n unique memory lo
accessed. Range of n shown is 32 to 8K in steps that are powers of two.

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

(a)

(b)

139

which
hy.

g the
ts was
ow-
ensate
Fur-

urces
ts, we
e struc-
e faster
pro-

en rel-
her this
best
fore-
placed
intro-
Figure
ganiza-
Sim-
r may
on the

first is
. For
and the
place

ses in
rela-

higher,
ese
those

typi-
mem-
er the
le the
nslate

and
d with
noth-

differs
ierar-
status
Motivated by these empirical observations, in the next section we present the transient value cache
exploits this behavior to reduce the bandwidth requirements imposed on a traditional memory hierarc

5.2 The Transient Value Cache

To goal of the TVC approach is to provide support for multiple memory requests per cycle, reducin
port requirements imposed on the L1 data cache. Traditionally, support for multiple memory reques
provided by multi-porting (e.g., replication) or by partitioning (e.g., banking) of the L1 data cache. H
ever, it is likely that L1 data cache sizes will have to increase in future generation processors to comp
for increased working sets and relatively slower main memories or other levels of memory hierarchy.
thermore, it is likely that in future processors, wire propagation delays may limit the amount of reso
reachable within a clock cycle thus making larger caches relatively slower [98]. Under these constrain
argue that it is desirable to service as many memory requests as possible using relatively small storag
tures. The reasons are that: (1) relatively small structures may occupy less area and for that may b
(e.g., [98]), and (2) the cost of replicating a small structure for the purposes of multi-porting may not be
hibitive.

As the results of the previous section suggest, for the programs we studied, behavior is such that ev
atively small data caches could service significant fractions of loads and stores (a discussion on whet
observation will apply to future workloads is delayed until later in this section). The TVC approach is
motivated if we first consider how a traditional memory hierarchy could be extended to exploit the a
mentioned program behavior. In a traditional memory hierarchy, the various data cache levels are
serially. The straightforward way of exploiting the phenomena identified in the previous section, is to
duce an additional level of caching between the L1 data cache and the processor. This is shown in
5.3, where the newly introduced cache is referred to as the L0 data cache. The advantage of this or
tion is that now, loads that will hit in the L0 data cache may benefit from the additional ports provided.
ilarly, stores that get killed in the L0 are hidden from the L1 data cache. In either case, the processo
benefit from the ability to issue multiple requests at the same time, while the bandwidth requirements
L1 data cache are reduced. Unfortunately, the L0 organization has also potential disadvantages. The
that the latency of loads that do not hit in the L0 is now increased by the time required to inspect the L0
this reason, care must be taken to balance between the benefits obtained when loads hit in the L0
increases in load latency when loads do not hit in the L0. This trade-off applies to all hierarchies that
caching levels serially. However, in today’s memory hierarchies the absolute and relative increa
latency between adjacent caching levels is relatively high, while the miss rates are typically low. For
tively small L0 caches, and as the results of the previous section suggest, miss rates will be relatively
while it is likely that the latency of the L0 will be comparable, if not equal to that of the L1. Under th
new conditions the benefits of additional ports may not offset the effects of increased load latency for
loads that miss in the L0. An additional concern with the L0 organization is how it may interact with a
cal out-of-order instruction scheduler and specifically, when instructions that use a value loaded from
ory, can be scheduled for execution. If the scheduler can wait until a determination is made on wheth
source load hits in the L0, there is no concern. However, if the scheduler must optimistically schedu
dependent operations in parallel with accessing the L0 or earlier [84], then a high L0 miss rate will tra
in frequent replays in the pipeline which may degrade performance.

The goal of the TVC approach is to provide the benefits of servicing a significant fraction of loads
stores using a relatively small data cache, while avoiding the aforementioned problems associate
introducing an additional level of caching between the processor and the L1 data cache. The TVC is
ing more than a small data cache coupled with a memory dependence status predictor. The TVC
from a typical data cache in that it does not always appear in series with the next level of the memory h
chy as is the case with traditional memory hierarchies. Instead, the TVC uses memory dependence

140

ccess
recent
he L1
e bene-
h may
o not

redic-
ired

e L1
s with
tion of
epre-

made
nefits
ycles
in the
killed

diction
t stores
if we

ccess
C. If
C in
niza-
nt to
ntents

e use in
collect

.

prediction to place itself either in-series or in-parallel with the rest of the memory hierarchy on a per a
basis. Before a load is performed, a prediction is made whether it will access data written or read by a
load or store. If so, the access is directed first to the TVC, otherwise it is sent to both the TVC and t
data cache in parallel. Provided that the dependence status of an instruction is correctly predicted th
fits are two-fold: (1) accesses that find the data they need in the TVC do not consume L1 ports whic
be used by other memory instructions, (2) accesses that are not likely to find their data in the TVC d
pay the latency of having to first go through the TVC. High prediction accuracy is essential as when p
tion is incorrect one of the following two scenarios apply: (1) load latency will increase by the time requ
to first go through the TVC and then to the L1 cache, or (2) a load will be incorrectly exposed to th
unnecessarily consuming an L1 data port. In the first scenario, the TVC is incorrectly placed in serie
the L1 data cache. However, this is no different than what would have happened with the L0 organiza
Figure 5.3. In the second scenario, the TVC is incorrectly placed in parallel with the L1. This case r
sents a lost opportunity for L1 data port bandwidth reduction.

We can also extend the TVC with a WAW dependence status predictor, in which case a prediction is
on whether a store will be killed in the TVC before it is evicted to the L1 data cache. The potential be
in this case are indirect. The L1 port scheduler may use this information to better utilize idle L1 port c
by writing those stored values that are more likely to not get killed in the small data cache. However,
case of incorrect WAW prediction, the TVC may not hide some of the stores that would have been
with the organization of Figure 5.3.

The operation of the TVC is summarized in Figure 5.4 where we show how dependence status pre
is used to steer loads and stores. Loads that are likely to have RAW or RAR dependences with recen
or loads respectively, are initially sent only to the TVC. Such loads are directed to the data cache only
miss in the TVC (part (a)). In the latter case we do bring the data in the TVC. Other loads have to a
both the TVC and the data cache in parallel (part (b)) since the most recent value may be only in the TV
the WAW extension is used, then stores that are likely to be killed soon are initially sent only to the TV
hope that they will be killed in it before they are forced to go the data cache (part (c) — in an L0 orga
tion all stores will first get exposed only to the L0 if a write-back policy is used). Other stores are se
both caches to keep them coherent (part (d)). If a dirty block in the TVC needs to be replaced, its co
will have to be written to the data cache.

The TVC requires a memory dependence status predictor. The memory dependence predictors w
our evaluation associate dependence status information with static loads and stores via their PCs. To

Figure 5.3: Incorporating an additional level of caching between the L1 data cache and the processor

OOO Core

L1 Data Cache

L0

Load Latency

L0 hit: L0 latency

L0 miss: L0 latency + L1 latency

141

re
whether
e within
erva-
ences.

ime the
written.
e along

istency
ver, the

r the
ight

n rela-
read or
ever, is
re is
nts:
on of all
t harm
r 4 sug-

AW or
icted.
this information, a method of detecting theexistenceof memory dependences is required. Since we a
interested in the dependence status of instructions, the exact dependences are not important, only
dependences exist. In the case of loads, detecting whether the load has a RAW or a RAR dependenc
the limits of the TVC is equivalent to whether the load has found the data it needs in the TVC. This obs
tion suggests that the TVC itself may also serve as a detection mechanisms for RAW and RAR depend
Detecting whether a store is overwritten by a another store is not as simple. The reason is that at the t
WAW dependence occurs we want to associate the event with the store that wrote the data being over
For this reason, detecting and predicting WAW dependences requires to also record the PC of the stor
with the data in the TVC itself.

We should also note that in a shared memory multiprocessor environment and subject to the cons
model in use, we may have to expose all memory operations to the coherence mechanism. Howe
issues are no different than those applying to any memory hierarchy.

We conclude the discussion of this section by commenting on the following two issues: (1) whethe
underlying phenomena that the TVC exploits will exist in future workloads, and (2) how the TVC m
interact with the cloaking/bypassing methods we presented in Chapter 3.

We motivated the TVC by observing that the behavior of the programs we studied is such that eve
tively small data caches could service significant fractions of loads and stores; many loads and stores
write on memory address that was recently accessed by another load or store. A valid concern how
whether the aforementioned observations will or will not apply for future workloads. Unfortunately, the
no way of providing a definite proof for either possibility. However, we do offer two qualitative argume
one that suggests why short-distance memory dependences may still represent a reasonable fracti
memory traffic in some future workloads and one that suggests that the TVC approach may at least no
performance when short-distance memory dependences are not exhibited. As the results of Chapte

Figure 5.4: Transient value cache operation. Loads: (a) RAW or RAR dependence predicted, (b) no R
RAR dependence predicted. Stores: (c) WAW dependence predicted, (d) no WAW dependence pred

Data Cache

TVC

Data Cache

TVC

Data Cache

TVC

Data Cache

TVC

store store

load load

if miss

(c) (d)

(a) (b)

142

rough
w pro-
whose
ration
riod of
ctured

esults
e calls).
tored

Finally,
tructure
ben-

nism
tion to
ng are
are the
e the
g may
of the

rk that
ce, and
iction

ssing.
e data
t can be
up-free
uests

,
iple
r tech-
Alpha

ilable
. They

be ser-
mall,
g most
gest much of the short-distance memory traffic can be attributed to inter-operation communication th
memory or to repeatedly reading a memory value. These phenomena are partially the result of ho
grams operate and of how this operation is expressed. Often times, programs perform calculations
results are quickly used for further processing. Such behavior gives rise to short distance inter-ope
communication. Moreover, programs often use constants or values that do not change for some pe
time. Such behavior gives rise to short-distance RAR memory dependences. Finally, the use of stru
programming techniques, of object-oriented programming techniques and of dynamic linking often r
in increased memory traffic (passing parameters, saving and restoring registers on method/procedur
It will take a program that scans through large data structures without reusing any of its memory s
results or memory stored constants for short distance RAW and RAR dependences to be infrequent.
even when short-distance RAR and RAW dependences are not frequent the TVC being an adaptive s
may at least succeed in avoiding increasing latency for loads. Although, the TVC will not provide any
efits for such programs, it is highly probable that it will also not cause any harm.

Finally, it is also interesting to consider how the TVC interacts with the cloaking/bypassing mecha
presented in Chapter 4. Recall, that cloaking/bypassing utilizes RAW and RAR dependence predic
supply memory values early in the pipeline. The loads that cloaking/bypassing is capable of handli
those that have dependences detected via a DDT of moderate size. These loads, in their majority
loads that the TVC aims to hide from the rest of the memory hierarchy. The potential exists to combin
two techniques, sharing a common prediction structure. In this case, the TVC and cloaking/bypassin
be used to both reduce the latency for a large fraction of loads and to also hide them from the rest
memory hierarchy reducing the bandwidth requirements imposed on the L1 data cache.

5.3 Related Work

A plethora of cache related techniques and studies has been reported. In this section we review wo
specifically targets supporting multiple, simultaneous requests at the L1 data cache-processor interfa
related studies. A variation of the TVC approach, in which only RAW memory dependence status pred
was used for loads, was presented in [62].

A number of previous studies have focused on the bandwidth requirements of highly-parallel proce
Sohi and Franklin [83] argued for the need of high-bandwidth memory systems in order to support th
bandwidth demands of future, wide-issue processors. They proposed a number of organizations tha
used to support multiple, simultaneous load and store requests. Techniques suggested include lock
caches [48] and multi-ported or multi-bank caches. Another technique to support multiple memory req
per cycle istime division multiplexingor virtual multi-porting. In this technique, which is, for example
used in the IBM Power2 [76] and in the Alpha 21264 [11], multi-porting is achieved by performing mult
(two in the specific implementations) data cache accesses serially within a single clock cycle. Anothe
nique, utilizes multiple copies of the L1 data cache. This technique is used for example in the 21164
processor [45].

Wilson, Olukotun and Rosenblum [96, 95] studied how performance varied with the number of ava
data cache ports, and found that multiple cache ports can have a significant impact on performance
also suggested a number of organizations that utilize a very small data cache, theLine Bufferwhich is placed
in series with the L1 data cache [96]. They demonstrated that a large fraction of memory accesses can
viced within this small data cache. The assumption of the study is that the line buffer, being relatively s
does not impact load latency even when the data needed is not found there. The TVC aims at offerin
of the benefits of the Line Buffer approach even when this assumption is not valid.

143

esign,
ey also
pro-

he
igure

a rela-
vior of
work

gested
els of
essors
alized
eet the
can in

loads
elation
mber of
s and

e used
cality.
miss

o so,
ction of

of loads
also
. We
arn the
. The
impact
cache

.4.1.
onents
dy the
dy the
diction
e data
Rivers, Tyson, Davidson and Austin propose theLocality-Based Interleaved Cache(LBIC) [70], that
employs a line buffer per data cache bank to reduce the negative effects of bank conflicts. In their d
accesses to the same memory block can be serviced simultaneously via the use of a line buffer. Th
study the effects of multi-porting on the performance of a very aggressive dynamically-scheduled ILP
cessor and find that true multi-porting can lead to significant performance improvements.

Kin, Gupta and Mangione-Smith also suggested introducing a relatively small data cache, termed tFil-
ter Cache, in between the L1-processor interface [46]. The Filter Cache uses the L0 organization of F
5.3 as it aims to reduce power at the expense of some performance degradation.

In this work we were motivated by the large fraction of memory accesses that can be serviced with
tively small data cache. A plethora of previous studies have also looked at the memory reference beha
programs, with the focus being the optimization of the memory hierarchy. The most relevant to this
studies are the following: McNiven and Davidson [59] analyzed memory reference behavior and sug
using compiler hints to identify values that are killed in order to reduce the traffic between adjacent lev
the memory hierarchy. Huang and Shen studied the minimal bandwidth requirements of current proc
taking into account instruction issue rate, memory capacity and memory bandwidth. They also form
the notion of an efficient memory system, were the smallest possible storage structure is used to m
data requirements of program execution [35, 36]. They demonstrated that relatively small structures
principle be used to meet the bandwidth requirements of typical programs.

The TVC approach exploits the high-levels of locality exhibited in the memory dependence status of
and stores. Abraham, Sugumar, Windheiser, Rau and Gupta, have shown that there is high corr
between misses and the static load and store instructions that cause them [2]. They proposed a nu
compiler optimizations to reduce the performance impact of those misses. Tyson, Farrens, Matthew
Plezkun exploited this phenomenon to predict whether the data fetched by a memory instruction will b
again [88]. This prediction was used to increase data cache efficiency by not caching data with low lo
The TVC is orthogonal to either technique as it exploits the high correlation between instructions and
behavior to hide loads from higher levels of the memory hierarchy.

5.4 Evaluation

In this section we provide experimental evidence in support of the potential of the TVC method. To d
we assume a memory dependence status predictor of infinite size and measure its accuracy as a fun
the size, associativity and data block size of the data cache used. These results, indicate the fraction
that would be serviced by the TVC and the fraction of stores that will get killed in it. Furthermore, they
indicate the fraction of loads that will see an increased latency by having to first go through the TVC
also compare the TVC to L0 organizations that utilize the same data cache components. We should w
reader that these results should only be interpreted as indications of the potential of the TVC method
evaluation presented has several limitations, the most important of which are: (1) we do not study the
the TVC has on performance, and (2) we do not compare with other existing techniques of improving
port efficiency.

Our focus in on how the TVC interacts with load instructions. This study is presented in Section 5
Initially, we measure the effectiveness of the TVC approach for various sizes of the data cache comp
and compare its characteristics to an L0 organization of the same size. In Section 5.4.1.1, we stu
effects of using data cache components of reduced associativity. Finally, in Section 5.4.1.2 we stu
effects of increasing the block size of the data cache component. In Section 5.4.2, we study the pre
accuracy of a WAW memory dependence status predictor. In this study, we assume fully-associativ
cache components.

144

he data
ponent
ce sta-
of two
tatus pre-

seen
ss than
ould
of the
bserve
above
e can
cases

ences get
ces corre-
exhibit

they
up L1
s, a large
sible
that

hown
a frac-
, more
ach.

when
cache.
see a
ion is
y data
ads that

is per-
the tra-
been
d. As
a cache

f Fig-
serve
0 nor a
s (or
mpo-
will
ts that
5.4.1 Load Dependence Status Prediction Accuracy

Figure 5.5 reports the memory dependence status prediction accuracy on loads as a function of t
cache entries used. In these experiments we assumed a fully-associative, word-wide data cache com
and varied its size from 32 to 8K entries, in power of two steps. Furthermore, we assumed a dependen
tus predictor that associated a 2-bit saturating counter with each load and store. A threshold value
was used. That is, a load should have a dependence detected twice before a positive dependence s
diction could be made. No limit was placed in the number of predictor entries. However, as we have
in Chapter 2, the working set of loads with dependences, even when the data cache is 64K words, is le
4K for all programs except 145.fpppp. This result implies that a predictor with at most 4K entries sh
yield prediction accuracies very close to those possible with the predictor used in this study. Part (a)
figure reports the fraction of loads that have their dependence status correctly predicted. We can o
that with the exception 099.go and for data cache sizes of 128 entries or more, prediction accuracy is
90%. For most floating point programs, accuracy is above 95% independently of data cache size. W
also observe that while, typically increasing the size of the data cache improves accuracy, in some
accuracy may decrease. The reason is that when the data cache size is increased, more depend
exposed. However, these dependences are not always well behaved. In some cases, the dependen
spond to loads that traverse through structures that only partially fit in the data cache, or to loads that
control flow dependent behavior.

Part (b) of the figure, reports the fraction of loads that are correctly predicted and do find the data
need in the TVC. These are the loads that will be hidden from the rest of the hierarchy thus freeing
data cache port resources to be used by other loads or stores. We can observe that in absolute term
fraction of loads is correctly identified. Moreover, when compared with the hit rate that would be pos
with a traditional organization (part (a) of Figure 5.2), we can observe that the vast majority of loads
would indeed find their data in a data cache of the given size are predicted correctly. This is clearly s
by the results of part (d), where we report the loads that are predicted correctly and hit in the TVC as
tion of the loads that would have hit in a data cache of the same size. With the exception of 132.ijpeg
then 90% of the loads that would have hit in a traditional organization will do so using the TVC appro

As we discussed in Section 5.2, the TVC may increase the latency of some loads. This happens
dependence status prediction incorrectly indicates that the load will find the data it needs in the TVC
Part (c) of Figure 5.5 reports this fraction. We can observe that in absolute terms, few loads will
latency increase by the introduction of the TVC. However, for very small data cache sizes, this fract
noticeable. For example, about 8% of loads in 130.li will observe a latency increase when a 32-entr
cache component is used. Fortunately, as we consider larger data cache sizes the percentage of lo
will be penalized by the use of the TVC drops. In particular, when an 128-entry data cache is used, th
centage drops below 5% for all programs except 099.go. We should however note, that had we used
ditional organization of Figure 5.3, the fraction of loads that would be penalized would have
significantly higher. In fact, all loads that would miss in the L0 data cache would have been penalize
we have discussed in Section 5.1, roughly 30% and 45% of loads would miss on the average in a dat
of 128 words for the integer and floating point codes respectively.

Table 5.1 compares the TVC approach with a traditionally organized L0 data cache (organization o
ure 5.3). The comparison is done in terms of the load hit rates and of the fraction of loads that will ob
a latency increase (miss rate in the case of the L0) compared to an organization that uses neither an L
TVC. In this comparison we limit our attention to data cache sizes of 128, 256, and 512 word entrie
equivalently, 512, 1K, and 2K bytes). Moreover, we assume fully-associative word-wide data cache co
nents for both the TVC and the L0. Under the TVCHIT% columns we report the fraction of loads that
get hidden in the TVC (these are the loads for which dependence status prediction correctly predic

145

tro-
erve
at they

ectly
it in
they will find the data they need in the TVC). That is, the TVCHIT% indicates the positive impact the in
duction of the TVC may have. Under the TVCLI% columns we report the fraction of loads that will obs
a latency increase (these are the loads for which dependence status prediction incorrectly predicts th

Figure 5.5: Load dependence status accuracy. (a) Correctly predicted loads, (b) loads that are corr
predicted and hit in the TVC, (c) incorrectly predicted loads that do not hit in the TVC. (d) loads that h
the TVC as a fraction of the loads that would have hit in a data cache of the same size.

80%

90%

100%

0%

20%

40%

60%

80%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

(b)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

5%

10%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(c)

70%

80%

90%

100%

(d)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

146

f the

, 256
will find the data they need in the TVC). The TVCLI% indicates the negative impact the introduction o
TVC may have. The average memory latency is given by the following formula:

TVCHIT%× TVClat + TVCLI% × (TVClat + MEMlat) + (1 - TVCHIT% - TVCLI%)× MEMlat

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

099 64.9% 6.1% +7.0% +28.0% 101 61.8% 0.5% +0.05% +38.1%
74.9% 5.3% +5.8% +19.2% 62.0% 0.4% +0.03% +37.9%
81.6% 3.9% 4.5% +13.7% 65.0% 0.4% +0.03% +34.9%

124 79.9% 3.6% 2.5% +17.4% 102 66.9% 0.05% 0% +33.0%
95.0% 1.1% 0.9% +4.0% 66.9% 0.05% 0% +33.0%
97.1% 0.7% 0.3% +2.5% 66.9% 0.05% 0% +33.0%

126 65.0% 3.9% 4.3% +30.6% 103 54.1% 0.3% +1.4% +44.4%
71.6% 3.3% 3.5% +24.8% 54.5% 0.9% +2.4% +43.0%
76.0% 2.6% 2.8% +21.1% 56.9% 2.4% +2.7% +40.3%

129 74.8% 0.5% 0.9% +24.2% 104 45.4% 0.1% +0.1% +54.3%
75.4% 0.8% 1.4% +23.1% 46.2% 0.1% +0.05% +53.6%
76.7% 1.0% 1.8% +21.3% 46.2% 0.1% +0.05% +53.6%

130 78.8% 3.1% 2.1% +18.9% 107 66.1% 3.3% +0.1% +33.7%
82.9% 1.8% 1.8% +15.1% 67.7% 3% +0.1% +32.0%
84.4% 1.5% 1.8% +13.6% 83.4% 1.5% +0.2% +16.3%

132 29.7% 2.7% 5.0% +65.2% 110 67.2% 2.2% +0.6% +32.1%
38.9% 3.4% 5.6% +55.4% 74.5% 1.4% +0.5% +24.8%
47.3% 4.1% 5.6% +46.9% 83.5% 0.6% +0.4% +16.0%

134 69.2% 2.1% 1.6% +29.1% 125 32.1% 0.5% +0.1% +67.7%
73.4% 1.6% 1.6% +24.8% 35.9% 2.0% +1.7% 62.2%
80.7% 1.0% 0.9% +18.3% 60.8% 2.9% +2.1% +36.9%

147 72.5% 1.8% 2.9% +24.4% 141 56.1% 4.4% +3.6% 40.1%
80.2% 1.8% 1.8% +17.8% 73.6% 2.8% +2.6% +23.6%
84.0% 1.2% +1.4% +14.4% 88.6% 0.5% +0.3% 11.0%

Mean
INT

66.9% 3.0% +3.3% +29.8% 145 49.6% 0.2% +3.5% +46.8%
74.1% 2.4% +2.8% +23.1% 65.1% 0.3% +4.9% +29.8%
78.5% 2.0% +2.4% +19.0% 77.6% 0.8% +5.2% +17.1%

Mean
All

60.4% 2.0% +2.1% +37.5% 146 51.9% 0.5% +1.3% +46.6%
66.7% 1.7% +2.0% +31.3% 60.9% 0.2% +0.9% +38.1%
73.5% 1.5% +1.7% +24.7% 66.2% 0.2% +0.9% +32.8%

Mean
FP

55.2% 1.2% +1.1% +43.7%
60.8% 1.2% +1.3% +37.8%
69.5% 1.0% +1.2% +29.2%

Table 5.1:Comparing a TVC with a L0 data cache of the same size. Data cache sizes shown are 128
and 512 words (top to bottom)

147

the
TVC

d has a

port
is the
the
t the
% col-
pen-
TVC),
lized
nd the

and
LI% +
C,

oads
These
0 data
tencies.

mem-
66.9%
ports,
point

). For a
.7% of
codes

depen-
a cache
direct
re used

dden in
hes is
ber of
ches,
ncreas-
jority

oads
ith
Where TVClat is the latency of the TVC and MEMlat is the latency observed when accessing the rest of
memory hierarchy starting from the L1 data cache. Note that in the above formula, the latencies of the
and the L1 data cache add only when dependence status prediction incorrectly predicts that a loa
dependence visible from within the TVC (TVCLI% component). The L0HIT% columns report theaddi-
tional fraction of loads that would hit in the L0 cache (compared to the TVC) and the L0LI% columns re
theadditional fraction of loads that would miss in the L0 and thus observe a latency increase. That
L0HIT% rate is calculated by subtracting the TVCHIT% rate from the actual hit rate of the L0, while
L0LI% rate is calculated by subtracting the TVCLI% rate from the actual miss rate of the L0. (Note tha
loads that miss in the TVC are not necessarily the same as the ones that miss in the L0.) The L0-HIT
umn can be interpreted as the fraction of loads that will incorrectly not get hidden in the TVC (i.e., de
dence status prediction incorrectly indicates that these loads will not find the data they need in the
while the L0-LI% column can be interpreted as the fraction of loads that will correctly not get pena
when the TVC is used (i.e., dependence status prediction correctly indicates that these loads will not fi
data they need in the TVC). The average memory latency in this case is as follows:

(TVCHIT% + L0HIT%)× L0lat + (TVCLI% + L0LI%) × (L0lat + MEMlat)

Where L0lat is the latency through the L0 data cache. Note that in this formula the latencies of the L0
the L1 data cache add whenever loads do not have dependences that are visible through the L0 (TVC
L0LI%). We make the following observations: (1) very few loads that hit in the L0 do not hit in the TV
(2) very few loads will observe a latency increase with the TVC, and (3) a relatively large number of l
will miss in the L0 and thus observe a latency increase by the introduction of the L0 data cache.
results, suggest that the TVC can capture most of the loads that would hit in a traditionally organized L
cache, while avoiding the vast majority of load misses that would otherwise lead to increased load la

The results of this section suggest that a relatively small data cache (e.g., 128 words) coupled with
ory dependence predictor could be used to offer the benefits of servicing a large fraction of loads (i.e.,
and 55.2% for the integer and floating-point programs respectively) without consuming L1 cache
while increasing load latency for 3.3% and 1.1% of all loads on the average for the integer and floating
codes respectively. In the worst case observed, the latency of 7.5% of all load was increased (099.go
traditional organization, that would place an 128-word data cache in series with the L1, 29.7% and 43
all loads will have observed increased latency on the average and for the integer and floating point
respectively.

5.4.1.1 Effects of Associativity on Prediction Accuracy

In this section we vary the associativity of the data cache component and measure how memory
dence status accuracy is affected. For the purposes of this study, we restrict our attention to a dat
component of 128 words. Table 5.2 compares a TVC and a L0 cache that are, from top to bottom: (1)
mapped, (2) 2-way set associative, and (3) 4-way set associative. The same metrics as in Table 5.1 a
for this comparison.

We can observe that for smaller associativities, and as expected, the fraction of loads that can get hi
a small data cache drops. In this environment the effectiveness of both the TVC and the L0 cac
reduced. The L0 caches exhibit much higher miss rates, which would translate in an increased num
loads getting penalized by the introduction of an additional caching level. In the case of the TVC ca
prediction accuracy also drops compared to a fully-associative data cache component. Fortunately, i
ing the associativity results in higher accuracy. Compared to an L0, the TVC still captures the vast ma
of loads that would hit in the L0. However, the differences are now higher. Moreover, the fraction of l
that the TVC incorrectly tries to hide from the L1 (TVC-LI% column) is also much higher, especially w

148

ion of

ies
the direct-mapped data cache component. However, this fraction is still small compared to the fract
loads that would miss in an L0 (TVC-LI% + L0-LI%).

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

099 50.8% 10.8% +10.6% +38.6% 101 30.2% 1.6% +1.3% +68.5%
57.6% 9.0% +9.1% +33.3% 41.7% 2.4% +1.5% +56.8%
61.4% 7.7% +8.1% +30.5% 49.1% 3.2% +2.6% +48.4%

128 61.3% 10.0% +6.9% +31.7% 102 41.7% 0.3% +0.1% +58.2%
66.9% 10.4% +7.3% +25.8% 50.7% 0.5% +0.0% +49.2%
72.5% 8.9% +5.3% +22.2% 64.3% 0.1% +0.0% +35.7%

126 55.2% 7.3% +6.1% +38.7% 103 44.8% 1.7% +1.9% +53.3%
60.5% 5.6% +5.4% +34.2% 51.7% 1.1% +1.6% +46.7%
62.9% 4.7% +4.8% +32.2% 52.9% 0.6% +1.5% +45.6%

129 59.0% 4.9% +2.3% +38.7% 104 34.6% 1.6% +0.6% +64.8%
71.5% 2.5% +1.3% +27.2% 40.5% 1.5% +0.5% +59.0%
73.9% 1.1% +0.9% +25.1% 45.1% 0.5% +0.1% +54.8%

130 62.1% 10.0% +6.7% +31.1% 107 42.2% 8.2% +6.1% +51.7%
72.8% 7.1% +3.5% +23.7% 50.6% 8.9% +5.0% +44.5%
77.0% 4.6% +2.5% +20.5% 61.9% 5.8% +1.1% +37.0%

132 26.8% 2.7% +3.1% +70.0% 110 54.9% 6.6% +3.3% +41.8%
27.8% 2.3% +3.1% +69.0% 59.2% 3.4% +1.5% +39.4%
28.6% 2.8% +4.9% +66.4% 62.9% 4.0% +2.3% +34.8%

134 58.9% 4.8% +3.4% +37.8% 125 31.6% 2.6% +1.7% +66.7%
62.9% 4.1% +3.0% +34.0% 31.8% 1.8% +1.3% +66.8%
65.1% 3.4% +2.5% +32.4% 31.1% 1.5% +1.0% +67.8%

147 63.5% 4.2% +3.4% +33.1% 141 53.6% 6.7% +5.0% +41.4%
68.6% 2.7% +2.6% +28.8% 55.8% 5.7% +3.7% +40.5%
70.9% 1.8% +2.6% +26.5% 56.9% 5.6% +3.4% +39.7%

Mean
INT

54.7% 6.8% +5.3% +39.9% 145 40.5% 0.4% +2.5% +57.0%
61.1% 5.5% +4.4% +34.5% 45.3% 0.4% +2.8% +51.9%
64.0% 4.4% +3.9% +32.0% 46.2% 0.4% +3.0% +50.7%

Mean
All

46.8% 4.8% +3.8% +49.3% 146 30.3% 2.9% +3.9% +65.7%
52.9% 4.0% +3.1% +44.0% 36.0% 2.5% +3.0% +61.0%
56.9% 3.2% +2.7% +40.4% 40.9% 1.9% +2.1% +51.0%

Mean
FP

40.4% 3.2% +2.6% +56.9%
46.3% 2.8% +2.1% +51.6%
51.1% 2.3% +1.7% +47.4%

Table 5.2:Comparing an 128 word TVC with a L0 data cache of the same size for various associativit
(direct mapped, 2-way and 4-way, top to bottom).

149

ity, the
ority

In this
the L0
tively).

ble 5.3

s from
ared
col-

at the
in the
Recall

redictor.
ess that

addi-
l depen-
d by the
duced
is case,

stores
e ones we
trict our
ssocia-

cord the
igure
ctor. In
e figure
of the
ould
ve been
lts of

e been
icted
the

ms and
5.fpppp
The results of this section suggest that while TVC effectiveness drops with decreased associativ
TVC still captures most of the loads that would get hidden in an L0, while avoiding penalizing the maj
of the loads that would see their latency increased had we used an L0 organization.

5.4.1.2 Effects of Block Size on Prediction Accuracy

So far we have assumed that the data cache component of either the TVC or the L0 is word-wide.
section, we study how memory dependence status prediction and the effectiveness of the TVC and
organizations varies when we increase the block size to 2, 4 and 8 words (8, 16 and 32 bytes respec
For this experiment we use fully-associative data cache components of 128 words (512 bytes). Ta
reports the results of these experiments. The same metrics as in Table 5.1 are used.

We can observe that the TVC still offers most of the benefits of using a small data cache to hide load
the L1, while avoiding penalizing a large fraction of loads. Prediction accuracy is typically lower comp
to a word-wide data cache component. The fraction that the TVC incorrectly does not hide (L0-HIT%
umn) is now higher, and in most cases increases with the block size. Similarly, the fraction of loads th
TVC incorrectly penalizes increases with the block size. The cause of this decrease in accuracy lies
effect the increased block size has on the quality of the memory dependence status history of loads.
that we use the data cache component to detect dependences and build the history used by our p
When we use a larger block size and on a miss, additional data, beyond what is required by the acc
missed are brought into the data cache. As a result of the spatial locality found in typical programs, the
tional data cause the detection of memory dependences that do not necessarily correspond to rea
dences in the program. In this case the real memory dependence status history of loads is convolute
prefetching effect of larger block sizes. A similar decrease in dependence status history quality is intro
when due to the block size used, data that would otherwise reside in the data cache is evicted. In th
some dependences that exist in the program are not detected.

5.4.2 Store Dependence Status Prediction Accuracy

In this section we report results on the accuracy of a WAW (output) dependence status predictor for
as a function of the data cache size used. The data cache sizes and assumptions are the same as th
used in Section 5.4.1. The same applies to the memory dependence status predictor used. We res
attention only to fully-associative data cache components and do not study the effects of decreased a
tivity or of increased block sizes.

For WAW dependence detection purposes, each entry of the TVC data cache was augmented to re
store that wrote to that memory location, if any. A single store could be recorded per TVC word. F
5.1, part (a) reports the fraction of stores that are correctly predicted by the dependence status predi
all programs and all data cache sizes studied, prediction accuracy was higher than 80%. Part (b) of th
reports the fraction of stores that are correctly predicted and are killed in the TVC data cache. Part (d)
figure compares the fraction of stores that are killed in the TVC, with the fraction of the stores that w
have been killed in data cache of the same size. We can observe that most of the stores that would ha
killed in an L0 data cache, are also killed in the TVC. This observation is also supported by the resu
part (d), where we report the stores that are killed in the TVC as a fraction of the stores that would hav
killed in an L0 of the same size. Finally, part (c) reports the fraction of stores that are incorrectly pred
that they will not be killed in the TVC. These are the stores that the TVC will incorrectly not hide from
L1 data cache. We can observe, that while this percentage is in most cases low, for some progra
depending on the data cache component used it is relatively large. In the worst observed case, (14

150

e data

 (2, 4
and 2K-word data cache component), as much as 14% of stores are incorrectly identified. For th
cache component of 128-words, this fraction is below 10%, and for most programs below 7.5%.

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

T
V

C
H

IT
%

T
V

C
LI

%

L0
H

IT
%

L0
LI

%

099 53.6% 6.9% +8.1% +38.3% 101 77.5% 0.3% +0.0% +22.4%
48.5% 7.9% +8.4% +43.1% 78.2% 1.1% +6.3% +15.5%
44.1% 7.2% +8.2% +47.7% 82.2% 4.8% +0.7% +17.1%

124 43.6% 1.8% +2.6% +53.8% 102 64.1% 1.7% +13.0% +22.9%
49.7% 4.7% +2.1% +48.2% 84.0% 6.6% +0.1% +15.9%
53.1% 4.5% +4.2% +42.8% 87.5% 4.1% +0.0% +12.5%

126 62.3% 4.7% +3.7% +33.9% 103 71.5% 0.5% +0.9% +27.6%
64.6% 6.3% +5.6% +29.9% 72.4% 0.6% +6.6% +21.0%
66.7% 5.8% +5.1% +28.2% 79.7% 3.7% +1.4% +18.9%

129 73.7% 4.7% +1.4% +24.9% 104 70.0% 0.4% +0.1% +29.9%
68.6% 5.1% +1.7% +29.6% 71.2% 0.5% +11.2% +17.6%
58.8% 6.3% +4.2% +37.0% 87.5% 5.8% +0.6% +11.9%

130 66.4% 5.7% +3.3% +30.3% 107 82.6% 1.7% +0.1% +17.4%
59.4% 7.7% +6.1% +34.5% 86.2% 3.6% +3.8% +10.0%
61.1% 6.1% +6.0% +32.9% 72.8% 6.0% +0.9% +26.3%

132 56.4% 7.4% +7.9% +35.7% 110 77.7% 1.8% +0.8% +21.6%
67.3% 7.9% +5.1% +27.6% 80.0% 2.7% +4.3% +15.7%
70.0% 6.1% +4.1% +25.8% 82.9% 3.5% +1.8% +15.3%

134 66.3% 3.4% +1.8% +31.8% 125 64.0% 0.5% +0.1% +35.9%
62.9% 3.7% +2.6% +34.6% 67.9% 0.4% +11.6% +20.6%
64.9% 3.8% +2.4% +32.7% 85.0% 7.1% +1.0% +13.9%

147 64.6% 3.0% +2.1% +33.3% 141 68.7% 1.8% +1.1% +30.2%
68.1% 4.6% +4.1% +27.8% 74.1% 1.6% +3.5% +22.4%
66.8% 4.2% +3.6% +29.6% 78.1% 3.1% +2.0% +19.9%

Mean
INT

60.8% 4.7% +3.9% +35.3% 145 65.4% 0.1% +3.1% +31.5%
61.1% 5.9% +4.4% +34.4% 69.7% 0.1% +3.2% +27.1%
60.7% 5.5% +4.7% +34.5% 72.7% 0.1% +3.4% +23.9%

Mean
All

66.5% 2.6% +2.8% +30.7% 146 68.6% 0.5% +0.8% +30.6%
69.1% 3.7% +5.1% +25.8% 71.1% 1.2% +5.6% +23.3%
71.8% 4.8% +2.8% 25.4% 77.9% 3.6% +1.3% +20.8%

Mean
 FP

71.0% 0.9% +2.0% +27.0%
75.5% 1.8% +5.6% +18.9%
80.6% 4.2% +1.3% 18.1%

Table 5.3:Comparing an 128 word TVC with a L0 data cache of the same size for various block sizes
and 8 words, top to bottom).

151

e frac-
The result of this section suggest that while WAW dependence status prediction is high, a noticeabl
tion of stores may have their dependence status incorrectly identified.

Figure 5.1:Store dependence status accuracy (see text for explanation).

60%

70%

80%

90%

100%

80%

90%

100%

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(a)

(b)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

(c)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

20%

40%

60%

80%

100%

(d)

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

0%

5%

10%

15%

152

emory
s could
rest of

ith the
for all

stores
loads,
cessor

lel to
-based,
archy, a
get
che
ill not
tency.

e data
ic data
% and
mpor-
emory

8-word
nt) of
ads.
redic-
while
e an
ffec-

killed
gh not
5.5 Summary

In this chapter, we were motivated by the large fraction of loads that read a recently accessed m
location and of stores that are quickly killed by another store. We observed that these loads and store
be serviced using a relatively small data cache reducing the bandwidth requirements imposed on the
the memory hierarchy. Unfortunately, we also noted that if a small cache was introduced in series w
L1 data cache, as it is done in traditional memory hierarchies, it would also result in a latency increase
loads that do not hit in it.

To get the best of both worlds, that is to hide from the rest of the memory hierarchy those loads and
that could be serviced with a relatively small data cache, while not increasing the latency of all other
we proposed using the Transient Value Cache, a memory hierarchy component placed at the L1-pro
interface. The novelty of the TVC lies in its ability to adapt and appear either in-series with or in-paral
the L1 data cache. The decision on whether to appear in-series or in-parallel is taken using a history
memory dependence status predictor. Specifically, before a load or a store is sent to the memory hier
prediction is made on whether it will find the data it needs in the TVC (if it is a load), or whether it will
killed in TVC (if it is store). If so, the load or store is send only to the TVC, in which case L1 data ca
ports can be used to service other memory requests. If the prediction correctly indicates that a load w
find the data it needs in the TVC, it is send directly to the L1 data cache thus avoiding an increase in la

We have performed a trace driven study of the accuracy of TVC mechanism varying the size of th
cache component and found that prediction accuracy for loads is high, often above 90%. For a realist
cache component of 512 bytes (128 words) we have found that the TVC approach could hide 66.9
55.2% of all loads on the average and for the integer and floating point codes respectively. More i
tantly, only 3.0% and 1.2% of all loads would observe a latency increase as the result of erroneous m
dependence status prediction. In contrast, a traditional memory organization that would place the 12
data cache in series with the L1, would hide only an additional 3.3% (integer) and 1.1% (floating-poi
loads, while increasing the latency of an additional 29.8% (integer) and 43.7% (floating-point) of all lo
We also studied the effects of reduced associativity and of increased block size and found that while p
tion accuracy drops, the TVC still hides the majority of loads that could be hidden in such data caches
avoiding penalizing a large fraction of other loads. While our evaluation is preliminary, it does provid
indication of the utility of the proposed technique. Further investigation is required, as ultimately the e
tiveness of the TVC approach can be determined only when its effects on performance are studied.

Finally, we investigated using WAW dependence status prediction to predict whether a store will get
if allocated in the data cache component of the TVC and found that prediction accuracy is high, althou
as high as it is for RAW and RAR dependence status prediction for loads.

153

.2 we
m our

-chip
chip
niques
ity is
t (e.g.,
clock

f this

lly bet-

uracy
exact

s a spe-
e has a
es oper-
s name
nstruc-
levant
Chapter 6

Conclusion

In this last chapter, we first present a summary of our findings in Section 6.1. Finally, in Section 6
conclude by pointing to a number of research directions that may extend this work or that stem fro
experience gained while investigating memory dependence prediction and its applications.

6.1 Summary

As projected, advances in manufacturing technology will soon offer us the ability to construct single
devices containing hundreds of millions if not a billion of transistors [75]. This vast amount of on-
resources provides us with both an opportunity and a challenge. The opportunity exists to try out tech
and build mechanisms that were not previously practical. Yet, making judicious use of this opportun
bound to be challenging, more so if the underlying design tradeoffs change as many currently predic
wire transmission speed may limit how much area of the on-chip resources may be reachable within a
cycle, or power may constrain the amount of circuitry we can operate [57].

In this context, it is not our contribution that we provide definite answers on how to best make use o
forthcoming opportunity. Rather, with this thesis we contribute a new tool,memory dependence prediction,
that might be useful in developing techniques that may utilize these resources in a useful and hopefu
ter way. In particular, we have introduced two forms of memory dependence prediction: (1)memory depen-
dence status predictionand (2) memory dependence set predictionor, simply memory dependence
prediction. Memory dependence status prediction is technique that allows us to guess with high acc
whether a load or a store will experience a dependence of a particular type (for this technique the
dependence is not important, only whether a dependence exists is). Memory dependence prediction i
cialization of memory dependence status prediction where not only we guess whether a load or stor
dependence of a particular type, but also which this dependence (or dependences) is. Both techniqu
ate: (1) by observing the memory dependence behavior of instructions through the memory addres
space, (2) by associating relevant memory dependence information with the corresponding static i
tions (i.e., with the PC of a store or a load), and (3) by using the recorded information to predict the re

154

dge of

dence
em-
int dur-
ext time
(2) if at

chances
ce once
emory

ry-based
latively
struc-
or the

ory
in some
chitec-

e
ltiple
ng with

in the
tion of
is tech-
emory
emory
n and
emory
—offers

nalty of
e signif-
afore-

nuous
dresses
l inde-

on can
depen-
hnique,
ostly to
ts of (1)
tively
memory dependence information the next time a load or a store is encountered without actual knowle
the addresses being accessed.

In Chapter 2 we have provided experimental evidence in support of the efficacy of memory depen
prediction. In particular, we have identified that typical programs exhibit high regularity in both their m
ory dependence status and their memory dependence stream. We have shown that: (1) if at some po
ing execution, a load or a store experiences a dependence of a particular type, chances are that the n
the same instruction is encountered, it will experience a dependence of the same type as before, and
some point during execution, a load or a store experiences a particular memory dependence, then
are the next time the same instruction is encountered it will experience the same memory dependen
again. These results suggest that past dependence behavior is a good indicator of forthcoming m
dependence behavior. Which, in turn suggests that memory dependences may be amenable to histo
prediction. Moreover, we have shown that the working set of stores and loads with dependences is re
small (i.e., less then 4K for virtually all programs studied in this thesis). This observation suggests that
tures of reasonable size will probably be sufficient to record memory dependence history information f
purposes of memory dependence prediction.

In itself memory dependence prediction is only useful in providing advance information of the mem
dependence behavior of loads and stores. Techniques are required to make use of this information
practical manner and for a practical purpose. To this extent, in this thesis we presented three micro-ar
tural techniques: (1)dynamic speculation and synchronization of memory dependences,(2) speculative
memory cloaking and bypassing,and (3)transient value cache.The first two techniques aim at reducing th
observed memory access latency, while the third technique aims primarily at providing support for mu
memory requests per cycle. In the next three sections we briefly describe each of these techniques alo
a summary of the key results.

6.1.1 Dynamic Speculation and Synchronization of Memory Dependences

The first technique we proposed aims at supporting highly parallel execution of loads and stores
presence of ambiguous memory dependence. In particular, this technique aims at mimicking the opera
an ideal load/store scheduler that has perfect in advance knowledge of all memory dependences. Th
nique operates by: (1) predicting those load-store pairs whose unrestricted execution will result in a m
dependence violation, and (2) delaying load execution only as long as it is necessary to avoid the m
dependence violation by enforcing synchronization with the appropriate store. Dynamic speculatio
synchronization of memory dependences was motivated by the following observations: (1) naive m
dependence speculation—that is, always executing a load as soon as its address becomes available
significant performance improvements over not speculating memory dependences, and (2) the net pe
erroneous dependence speculations when naive memory dependence speculation is used can becom
icant especially as the size of the instruction window increases. We have demonstrated that the two
mentioned observations hold under the following two processing models: (1) a centralized, conti
window processor model (typical modern superscalar) when loads cannot inspect preceding store ad
to determine whether memory dependences exist, and (2) a distributed, split-window processor mode
pendently on whether store address information is available to loads prior to accessing memory.

Using timing simulations we have shown that memory dependence speculation and synchronizati
reduce memory dependence mispeculations by at least an order of magnitude over naive memory
dence speculation. Moreover, we have studied three possible implementations of our proposed tec
one centralized and two distributed ones which we assumed to be increasingly easier and less c
implement. We found that these three mechanisms can sustain average performance improvemen
28.0% (integer) and 15.43% (floating point), (2) 22.4% and 10.9%, and (3) 20.2% and 9.0%, respec

155

uld be
er) and
als of

cessor
ds or
rmance
ddress
s not
(float-
ver no
) When
nt. (3)
culation
e could
enta-
close

In this
links
emory

it until
estab-
value
same

assing
over-
ating-
last-
d mis-

oaking/
g sim-

depen-
ance
(i.e.,

t when
old-

ally all
found
ared to
and over naive memory dependence speculation. All three mechanisms performed close to what wo
possible had we had perfect, in advance knowledge of all memory dependences, that is 31.21% (integ
17.35% (floating-point). This result suggests that our technique is quite successful in attaining both go
memory dependence speculation.

We also studied memory dependence speculation under a centralized, continuous window pro
model equipped with an 128-entry window and capable of issuing up to 8 instructions in parallel (4 loa
stores) and found that: (1) naive memory dependence speculation in almost all cases improved perfo
over no speculation. The actual improvements were heavily influenced by whether preceding store a
information was available to loads prior to accessing memory. We found that when this information wa
available, naive speculation improved performance over no speculation by 29.6% (integer) and 113%
ing-point). When store address-information was available, naive speculation improved performance o
speculation by 4.6% and 5.3% provided that inspecting store address did not increase load latency. (2
store addresses were made available for load inspection, mispeculations were virtually non-existe
When store addresses were not available for load inspection the net penalty of dependence mispe
was significant. In this case, had we had perfect knowledge of all memory dependences, performanc
improve by as much as 20.9% (integer) and 20.4% (floating-point) over naive speculation. An implem
tion of our speculation/synchronization mechanism offers performance improvements which are very
to those ideally possible: 19.7% (integer) and 20.4% (floating-point).

6.1.2 Speculative Memory Cloaking and Bypassing

Speculative memory cloaking and bypassing aims at reducing observed memory access latency.
technique memory dependence prediction is used to build direct, albeit speculative communication
between loads and stores that access a common memory location, without actual knowledge of the m
location being accessed. This is done so loads may obtain a speculative value without having to wa
the traditional, address-based memory hierarchy is accessed. In particular, communication links are
lished between: (1) a load and store, when it is highly probable that the load is going to be reading the
written by the store, and (2) two loads, when it is highly probable that both loads will be accessing the
memory location.

Using trace driven simulations we have demonstrated that a straightforward model of cloaking/byp
is capable of providing correct values for about 70% (integer) and 50% (floating-point) of all loads (c
age). Moreover, the same mechanism provided incorrect values for only 2.5% (integer) and 0.4% (flo
point) of all loads (mispeculation rate). We also compared cloaking/bypassing with a straightforward
value load value prediction mechanism and found that cloaking/bypassing offers superior coverage an
peculation rates. However, we have also shown that the two techniques are complementary as cl
bypassing correctly handles some loads that load value prediction does not and vice versa. Using timin
ulations of an aggressive 8-way superscalar, with an 128-entry window that also uses naive memory
dence speculation we found that an implementation of cloaking/bypassing offered perform
improvements of 6.03% (integer) and 4.9% (floating-point) when selective invalidation was possible
invalidating and re-executing only those instructions that used erroneous data). We also found tha
combined with squash invalidation (i.e., invalidating and re-executing all instructions starting from the
est one that used erroneous data) cloaking/bypassing resulted in performance degradation for virtu
programs. Finally, we studied two combinations of last-value prediction and cloaking/bypassing and
that while performance improved somewhat for most programs the performance improvements comp
a stand-alone cloaking/bypassing mechanism were barely noticeable.

156

mory
d store
y writ-
erwrit-
r) and

ecent
over,
e that
d gran-
l those

series
ould

ll data
In our

. More-
cache

e TVC
TVC

TVC
ect, the
lled in
res, (2)

cache
confi-

mem-
sed
che)
of all

loads
associa-
ads

crease
tion of
rfor-

cha-
nd hide
6.1.3 Transient Value Cache

Finally, we proposed the transient value cache, a technique aiming at supporting multiple me
requests per cycle. For this technique we were motivated by two empirical observations about load an
behavior. We observed that: (1) a relatively large fraction of loads read a value that was either recentl
ten by a store, or was recently read by another load, and (2) a large fraction of stores get killed (i.e., ov
ten) by a subsequent, yet close in time store. In particular, we have shown that roughly 70% (intege
56% (floating-point) of all committed loads, access a memory location that is within the 128 most r
memory locations (word granularity) read by a preceding load or written to by a preceding store. More
55% (integer) and 23% (floating-point) of all committed stores, get overwritten by a subsequent stor
accesses a memory location that is within the last 128 most recently accessed memory locations (wor
ularity). Based on the aforementioned observation we further noted that it would be possible to hide al
memory references using a relatively small data cache. However, had we placed this data cache in
with the L1 cache (as it is done in traditional memory hierarchies) the latency of all other loads that w
not hit in the newly introduced data cache would now increase.

To get the best of both worlds, that is to hide all those loads and stores that would be hidden in a sma
cache, while avoiding increasing the latency of other loads, we proposed the transient value cache.
proposal, a small and preferably narrow cache is introduced in the processor-L1 data cache interface
over, memory dependence status prediction is used to decide whether the newly introduced data
should appear in-series with or in-parallel to the L1 data cache on a per access basis. Specifically, th
appears in-series with the L1 data cache for those loads that will likely find the data they need in the
and for those stores that will likely get overwritten in the TVC. For all other loads and stores the
appears in-parallel to the L1 data cache. Provided that memory dependence status prediction is corr
potential benefits of the TVC approach are: (1) the loads that hit in the TVC and the stores that get ki
the TVC are hidden from the L1, freeing up L1 data port resources to be used by other loads and sto
the latency of loads that would not hit in the TVC is not increased.

Using trace-driven simulation, we demonstrated that a TVC comprising a fully-associative data
component of 128-words (512 bytes) and a memory dependence status predictor that utilizes 2-bit
dence counters, could hide roughly 67% (integer) and 55% of all committed loads from the rest of the
ory hierarchy, while only 3% (integer) and 1.2% (floating-point) of all loads would observe increa
latency by the introduction of the TVC. For a traditionally organized (i.e., in series with the L1 data ca
data cache component of the same size, only an additional 3.3% (integer) and 1.1% (floating-point)
committed loads would be hidden from the L1 data cache, while an additional 29.8% and 46.6% of all
would observe a latency increase. We also studied the effects of increased block size and decreased
tivity and found that while prediction accuracy dropped, the TVC could still hide the vast majority of lo
that would have been hidden in a traditionally organized cache of the same size, while avoiding to in
the latency for most of the loads that would not hit in such a data cache. Our results serve as an indica
the potential utility of the TVC approach. However, further investigation is required to determine the pe
mance impact of the TVC approach.

Finally, we observed that the possibility exists to combine the TVC with the cloaking/bypassing me
nism resulting in a mechanism that can both reduce the latency of accessing some memory values a
these accesses from the rest of the memory hierarchy.

157

tions
resent
ence
f the
ce pre-
ys (for
nfigu-
g sec-
emory

ysis on
mpt to
havior
ve our
ill be
mple,
e way

similar

. Even
likely

opera-
uming
is then

“depen-
ta is
useful
of data

ope that

ss, it
ions or
h an
ce the
roniza-

emory
ecute a
e may
6.2 Future Directions

Throughout this work our goals were: (1) to provide sufficient evidence in support of our observa
about the regularity that exists in the memory dependence stream of ordinary programs, and (2) to p
techniques that can exploit this regularity for some practical purpose, also providing sufficient evid
about their utility. In our opinion, this work represents only a first step toward a thorough investigation o
dynamic memory dependence behavior programs and of potential applications of memory dependen
diction. Certainly, our evaluation and treatment of all three techniques can be extended in many wa
example, by considering alternative implementations, other prediction structures and by varying the co
ration parameters). We will not attempt to enumerate these possibilities. Rather, in the few remainin
tions we will briefly comment on some general research directions that are either directly related to m
dependence prediction or that stem from the experience we gained while working on this topic.

6.2.1 Correlating Memory Dependence Behavior
with Program Elements and Data Structures

In our treatment of memory dependence behavior presented in Chapter 2 we restricted our anal
what is the memory dependence behavior of the programs studied and, for the most part did not atte
explain why behavior is such. Further investigation could focus on correlating memory dependence be
with the program elements and the data structures that give rise to it. Such an investigation will impro
understanding of why memory dependences behave in certain ways. Hopefully, this information w
proven helpful in stimulating other applications of memory dependence prediction as it may for exa
expose previously unidentified regularities in program behavior. It may also expose weaknesses in th
programs express a desired action hinting to better ways of expressing or of performing such actions (
to what was the case for memory inter-operation communication and data-sharing).

Such an investigation may also focus on determining whether regularities exist in a coarser level
though we focused on the relationships formed when individual loads and stores access memory, it is
that similar relationships may among exist parts of the code. For example, we may find that program
tion is such that one function (or part of the program) generates data that some other function is cons
(consider a compiler where one function generates a parses a statement into an internal form which
used by another function that scans through this form to generate statements). Such coarse level
dence” information might be useful, for example, in a “smart” memory hierarchy in which a set of da
associated with the parts of the code that is generating or manipulating it. This information could be
in managing data placement in the memory hierarchy. For example, once one data element of a set
previously tagged is accessed the rest of the data could be moved in faster storage structures in h
they will also be accessed.

6.2.2 Interaction with the Compiler

Throughout this work we have focused on dynamic, architecturally invisible techniques. Neverthele
might be possible to expose some of the mechanisms we propose to the compiler through ISA extens
to rely on compiler provided information to improve the characteristics of our techniques. With suc
approach we may either hope to improve the coverage or accuracy of our techniques and/or redu
amount of physical resources required. For example, in memory dependence speculation and synch
tion we may rely on compiler hints in order to avoid speculating some loads. Or, we may expose the m
dependence prediction information to the software so that a decision can be made on whether to ex
schedule that speculates a load or an alternative one that does not. Similarly, in cloaking/bypassing w

158

r pro-

nough
inter-
ation.
rofile

mic in
exam-
t instruc-
turally
ntial
tation.

s is
e rely
perfor-
easons
tions,
fits jus-

lation
focus
nefits

e pro-
ssarily

at the

entral-
able in
l bene-
ample,
envi-
sharing
terface

hapter
nviron-
values
prop-

s for a
load).

d pre-
work
rely on compiler provided synonyms and finally, in the transient value cache we may rely on compile
vided memory dependence status information.

There are two important challenges in this context: (1) whether the compiler can provide accurate e
information, and (2) whether any of the improvements so obtained justify changing the architectural
face. We next comment on both issues. In all our techniques we relied on dynamically collected inform
Whether this information can be accurately provided by the compiler is an open question. Certainly, p
information can be useful in this context. However, some of the underlying phenomena may be dyna
nature and more importantly they may heavily depend on the particular hardware configuration. For
ple, the dependences that are mispeculated are not necessarily the same for processors with differen
tion windows. One of the potential advantages of the techniques we proposed is that they are architec
invisible. As such, they do not require modification of existing applications. Moreover, another pote
advantage of our techniques is that they can be designed to fit the particular processor implemen
These two potential advantages may be lost if we choose to rely on a compiler directed approach.

Another important consideration with using compiler information to improve upon our mechanism
whether we could obtain similar benefits by pre-existing software only approaches. For example, if w
on the compiler for hints on whether to execute a load with ambiguous dependences, we may get
mance that is similar to that possible with software-only memory dependence speculation. For these r
a more fruitful approach could be to use the compiler to improve upon the hardware-only implementa
whenever this is desired. The challenge then is once again determining whether the additional bene
tify the approach.

A study of a compiler directed approach to improving the accuracy of memory dependence specu
and to providing synonyms for the purposes of speculative memory cloaking was reported in [69]. The
of this work is on demonstrating that a compiler directed approach can provide similar performance be
to those possible with a hardware-only approach.

6.2.3 Memory Communication and Sharing in Distributed Environments

Underlying cloaking and bypassing is the general idea that while we have chosen to express som
gram actions via the traditional address based interface, in an actual implementation we do not nece
have to perform these actions in that way. In particular, we may devise techniques to identify wh
intended action is and mechanisms to perform it faster or in a better way.

While we have investigated speculative memory cloaking and bypassing in the context of a single c
ized and continuous window processor, in principle the same techniques and concepts might be applic
other environments and processing models. In fact, in the case of cloaking and bypassing the potentia
fits could be higher when the latency of accessing a value is increased. Such environments are, for ex
multi-processors executing either sequential (as in Multiscalar) or explicitly parallel programs. In those
ronments programs also read and write memory values, and inter-operation communication and data-
occurs. More importantly, in such environments other inefficiencies of the address-based memory in
may be present which are not there in the sequential, centralized execution models we considered in C
4 (e.g., data speculation or coherence related overheads [31, 32]). For example, in a multi-processor e
ment we may use memory dependence prediction of RAR dependences to speculatively propagate
read by one processor to another. Similarly, we may use RAW dependence prediction to speculatively
agate the value written by one processor to others converting the traditional “pull” approach (load ask
value and memory reacts) to accessing memory values into an active “push” one (value is sent to the
In fact, Kaxiras has recently studied such techniques in the context of explicitly-parallel programs an
sented evidence in support of their utility [43]. Other techniques may be possible. However, much

159

riately
that the
pattern

y also
s are
eful in
. For
ible by

nd fast
assume
ented is
eed in

ulative
anisms.

solved in
ed in a
ining
nisms.
l.

ve the
ng to
ance. If
niques

ing on
nted is
, and
iction
gular-
so in
branch
rves

aim at
trying
under-
with a
B was
remains in determining whether sufficient regularity exists in the memory dependence or more approp
in the load/store relationship stream under these assumptions (For example, there is nothing to say
memory dependence behavior observed on a lock will be sufficiently regular —the exact dependence
may be heavily data dependent).

Other opportunities for applications that use memory dependence information and prediction ma
exist if the current predictions about the relative speed of wires and logic of semiconductor device
proven correct [57]. In such an environment, memory dependence prediction may also be proven us
combating the increased latencies that will be experienced in forthcoming, large-integration chips
example, memory dependence prediction may be used to localize communication as much as poss
assigning those loads and stores that communicate to the same processing unit.

6.2.4 Support for Selective Invalidation and Data Speculation Resolution

In Chapter 4 we have seen that cloaking/bypassing is advantageous when selective invalidation a
data speculation resolution is possible. In fact, most value speculative techniques proposed today
that such mechanisms are possible. Yet, we noted that whether these two mechanisms can be implem
still an open question. For this reason further investigation is required. Such an investigation may proc
two directions: (1) We may focus on determining how tolerant are our techniques (or other value spec
techniques) to the speed and aggressiveness of the invalidation and data speculation resolution mech
(For example, we assumed that a data speculative register dependence chain of any length can be re
a single cycle. It might be the case that limiting the length of the dependence chains that can be resolv
single cycle does not severely impact overall performance.) Such an investigation will help in determ
whether we really need ideally accurate and fast invalidation and data speculation resolution mecha
(2) In parallel we may also seek to develop actual mechanisms that can be implemented in a practica

Moreover, our focus on this work was on demonstrating that our techniques can be used to impro
performance of highly optimized, wide-issue, long instruction window processors. It would be interesti
study whether our mechanisms can help a less aggressive processor to attain similar or better perform
so, it is then interesting to study whether a combination of a less aggressive processor and of our tech
or other speculative techniques results in less complex, faster implementations.

6.2.5 Operation Prediction

Finally we comment on a research direction that stems from the experience we gained while work
memory dependence prediction. While the specific target of each of the three applications we prese
different their operation is similar: they all try to somehow predict in-advance what the program will do
then use this information to optimize operation. Many other techniques that utilize some form of pred
exist (for example value, address and branch prediction). Most of these existing proposals to exploit re
ities in program behavior focus in regularity that exists in the products of instruction execution and not
the methods used to produce these results. For example, branch prediction observes the direction
instructions follow with no regard to how this decision is being made. Similarly, value prediction obse
the value stream produced or read by an instruction. Moreover, much of current proposals that
improving the accuracy of various predictors focus on methods to refine the history-information used
to detect patterns in the stream of events being predicted (e.g., pattern based predictors [15, 12]). The
lying operation of such predictors however remains pretty much the same: we associate a prediction
sequence of preceding events that led to it (for example, after branch A was taken 10 times, branch
also taken).

160

s (i.e.,
upport
pre-

pera-
at of
ctions
ed to

a third,

t
uce)
, this
branch
ase,
lates
mple,
ching
ate the
used
had a

tors: it
f the
gener-
However, the fact that memory dependences are predictable provides an indication that what action
instructions) a program follows to produce its desired effects are not also random. Other evidence in s
of this observation also exists [60, 51, 73, 24]. This observation hints to another direction of improving
diction accuracy and ultimately of building computing systems that are able to on-the-fly tailor their o
tion to better fit the currently executing program and the underlying semiconductor technology: th
studying what actions programs follow to produce their results and if possible using these very same a
to in-advance predict what the program will do. Our intuition is that often the sequence of actions us
produce a result is more regular than what this function produces (e.g., adding two arrays to produce
or traversing a linked list).

An example of a potential application isoperation predictionwhere the predictor does not directly predic
a desired information (e.g., which way a branch will go, or which value an instruction is going to prod
but rather, it predicts what sequence of operations will produce the desired information (for example
load reads a value which is then compared with a constant to determine which direction a subsequent
will follow). For operation prediction we may still rely on history-based prediction techniques. In this c
instead of building history that relates to the products of instruction execution, we build history that re
to the actions followed. Combined with other prediction techniques, operation predictors could, for exa
be used to improve upon the accuracy of existing control flow predictors, value predictors or for prefet
memory data. In the case of branch prediction, an operation predictor could be used to pre-calcul
direction a branch will follow. Similarly, in the case of value prediction, an operation predictor can be
to pre-calculate the value an instruction is going to produce potentially long before the processor has
chance to even fetch the corresponding instruction (note that the processor is limited the following fac
has to fetchall instructions, it has maintain program semantics, and it has no notion of which part o
computation (slice) is more critical than others). In a sense, an operator predictor can be viewed as a
alized predictor which can tailor its prediction algorithm according to program behavior.

161

and

store

with

y. In

po-
mber
Bibliography

Conference/Publication Abbreviations

ASPLOS..............International Symposium on Architectural Support for Programming Languages

Computer Architecture.

COMPCON.........IEEE International Computer Conference

HPCA..................International Symposium on High-Performance Computer Architecture

ICDD...................International Conference on Computer Design

ICS......................International Conference on Supercomputing

ISCA....................Annual International Symposium on Computer Architecture.

ISSCC..................International Solid-State Circuits Conference

MICRO................International Symposium on Microarchitecture

PACT...................International Conference on Parallel Architectures and Compilation Techniques

PLDIConference on Programming Language Design and Implementation

References

[1] PowerPC 620 RISC Microprocessor Technical Summary. IBM Order number MPR620TSU-01,
Motorola Order Number MPC620/D, October 1994.

[2] S. G. Abraham, R. A. Sugumar, D. Windheirser, B. Rau, and R. Gupta. Predictability of load/
instruction latencies. InProc. on MICRO-26, November 1993.

[3] D. Adams, A. Allen, R. Flaker J. Bergkvist, J. Hesson, and J. LeBlanc. A 5ns store barrier cache
dynamic prediction of load/store conflicts in superscalar processors. InProc. ISSCC, February 1997.

[4] R. Allen and K. Kennedy. Automatic Translation of FORTRAN Programs to Vector Form.ACM
Transactions on Programming Languages and Systems, 9(4), October 1987.

[5] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Fast address calculation. InProc. ISCA-22, June
1995.

[6] T. M. Austin and G. S. Sohi. Dynamic Dependency Analysis of Ordinary Programs. InProc. ISCA-
19, May 1992.

[7] T. M. Austin and G. S. Sohi. Zero-cycle loads: Microarchitecture support for reducing load latenc
Proc. MICRO-28, November 1995.

[8] T. M. Austin, T. N. Vijaykumar, and G. S. Sohi. Knapsack: A zero-cycle memory hierarchy com
nent. Technical Report 1189, Computer Sciences Dept., University of Wisconsin-Madison, Nove
1993.

162
alty. In

pro-

om-

y.

n the

ation

ycle

,

on.

ory
[9] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to reduce data access pen
Proc. Supercomputing ’91, 1991.

[10] U. Banerjee.Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic Publishers,
1988.

[11] P. Bannon and J. Keller. Internal architecture of alpha 21164 microprocessor. InCOMPCON’95,
March 1995.

[12] T. C. Bell, J. G. Cleary, and I. H. Witten.Text Compression. Prentice Hall, 1990.

[13] S. E. Breach.Design and Evaluation of a Multiscalar Processor, in preparation. Ph.D. thesis, Univer-
sity of Wisconsin-Madison, Madison, WI 53706, December 1998.

[14] S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. The anatomy of the register file in a multiscalar
cessor. InProc. MICRO-27, pages 181–190, December 1994.

[15] I-Cheng K. Chen, J. T. Coffey, and Trevor N. Mudge. Analysis of Branch Prediction via Data C
pression. InProc. ASPLOS-VII, October 1996.

[16] W. Y. Chen.Data Preload for Superscalar and VLIW Processors. Ph.D. thesis, University of Illinois,
Urbana, IL, 1993.

[17] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using store sets. InProc. ISCA-25,
June 1998.

[18] J. Dennis. Data Flow Supercomputers.IEEE Computer, November 1980.

[19] D. R. Ditzel and H. R. McLellan. Register Allocation for Free: The C Machine Stack Cache. InProc.
ASPLOS-I}, April 1982.

[20] K. Ebcioglu and E. R. Altman. DAISY: Dynamic Compilation for 100% Architectural Compatibilit
In Proc. ISCA-24, June 1997.

[21] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for pipelined processors. InIBM journal
on research and development, 37(4), July 1993.

[22] J. R. Ellis.Bulldog: A Compiler for a VLIW Architecture. Ph.D. thesis, Yale University, February
1985.

[23] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-to analysis i
presense of function pointers. InProc. SIGPLAN PLDI, June 1994.

[24] A. Farcy, O. Temam, and R. Espasa. Dataflow Analysis of Branch Mispredictions and Its Applic
to Early Resolution of Branch Outcomes. InProc. MICRO-31, December 1998.

[25] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture: Reducing C
Time Through Partitioning. InProc. MICRO-30, December 1997.

[26] M. Franklin.The Multiscalar Architecture. Ph.D. thesis, University of Wisconsin-Madison, Madison
WI 53706, November 1993.

[27] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dynamic Memory Disambiguati
IEEE Transactions on Computers, 45(5):552–571, May 1996.

[28] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu. Dynamic Mem
Disambiguation Using the Memory Conflict Buffer. InProc. ASPLOS VI, pages 183–193, October
1994.

[29] M. Gell-Mann.The Quark and the Jaguar. W. H. Freeman and Comparny, New York, 1994.

163

. In

ution
ltiple

nd
ecu-

Pro-

ue for

tion

roces-

xploit

lti-

uc-
[30] M. Golden and T. Mudge. Hardware support for hiding cache latency. InCSE-TR-152-93, University
of Michigan, Dept. Of Electrical Engineering and Computer Science, February 1991.

[31] Sridhar Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning cache. InProc.
HPCA-4, February 1998.

[32] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip multiprocessor
Proc. ASPLOS-VIII, October 1998.

[33] J. Hesson, J. LeBlanc, and S. Ciavaglia. Apparatus to dynamically control the out-of-order exec
of load-store instructions in a processor capable of dispatching, issuing and executing mu
instructions in a single processor cycle, US Patent 5,615,350, filed on Dec. 1995, March 1997.

[34] G. J. Hinton, R. W. Martell, M. A. Fetterman, D. B. Papworth, and J. L. Schwartz. Circuit a
method for scheduling instructions by predicting future availability of resources required for ex
tion, US Patent 5,555,432, filed on Aug. 19, 1994, September 1996.

[35] A. S. Huang and J. P. Shen. A Limit Study of Local Memory Requirements Using Value Reuse
files. InProc. MICRO-28, December 1995.

[36] A. S. Huang and J. P. Shen. The intrisinic bandwidth requirements of ordinary programs. InProc.
ASPLOS-VII, October 1996.

[37] A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative disambiguation: A compilation techniq
dynamic memory disambiguation. InProc. ISCA-21, May 1994.

[38] D. Hunt. Advanced performance features of the 64-bit PA-8000. InCOMPCON’95, 1995.

[39] W. W. Hwu and Y. N. Patt. Checkpoint Repair for High-Performance Out-of-Order Execu
Machines.IEEE Transactions on Computers, C-36(12):1496–1514, December 1987.

[40] Q. Jacobson, S. Bennett, N. Sharma, and J. Smith. Control Flow Speculation in Multiscalar P
sors. InProc. HPCA-3, February 1997.

[41] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A novel renaming scheme to e
value temporal locality through physical register reuse and unification. InProc. MICRO-31, Decem-
ber 1998.

[42] G. Kane.MIPS R2000/R3000 RISC Architecture. Prentice Hall, 1987.

[43] S. Kaxiras.Identification and Optimization of Sharing Patterns for Scalable Shared-Memory Mu
processors. Ph.D. thesis, University of Wisconsin-Madison, Madison, WI 53706, August 1998.

[44] J. Keller. The 21264: A Superscalar Alpha Processor with Out-of-Order Execution. InDigital Semi-
conductor, Digital Equipment Corp., Hudson, MA, October 1996.

[45] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 architecture. InProc. of ICCD,
December 1998.

[46] J. Kin, M. Gupta, and W. H. Mangione-Smith. The Filter Cache: An Energy Efficient Memory Str
ture. InProc. MICRO-30, December 1997.

[47] T. Knight. An architecture for mostly functional languages. InProc. ACM Conference on Lisp and
Functional Programming, August 1986.

[48] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. InProc. ISCA-8, May 1981.

[49] S. M. Kurlander and C. N. Fischer. Minimum cost interprocedural register allocation. InThe 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January 1996.

164
ersca-

ing. In

,

em-

for

rp.,

cal

inten-

niza-

e pre-

the
f Wis-

ory

ory
[50] D. Levitan, T. Thomas, and P. Tu. The PowerPC 620 Microprocessor: A High Performance Sup
lar RISC Processor. InCOMPCON’95, March 1995.

[51] J. González and A. González. Speculative execution via address prediction and data prefetch
Proc. ICS-11, July 1997.

[52] M. H. Lipasti. Value Locality and Speculative Execution. Ph.D. thesis, Carnegie Mellon University
Pitsburgh, PA 15213, April 1997.

[53] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. InProc. on MICRO-
29, December 1996.

[54] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value prediction. InProc. ASP-
LOS-VII, October 1996.

[55] W. L. Lynch, G. Lauterbach, and J. I. Chamdani. Low Load Latency through Sum-Addressed M
ory (SAM). InProc. ISCA-25, June 1998.

[56] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel scheduling
VLIW and superscalar processors. InProc. ASPLOS V, 1992.

[57] D. Matzke. Will Physical Scalability Sabotaze Performance Gains? InIEEE Computer, 30(9), Sep-
tember 1997.

[58] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital Equipment Co
WRL, June 1993.

[59] G. D. McNiven and E. S. Davidson. Analysis of Memory Referencing Behavior for Design of Lo
Memories. InProc. ISCA-15, May 1988.

[60] S. Mehrotra and L. Harrison. Examination of a memory access clasification scheme for pointer-
sive and numeric programs. InProc. ICS-10, September 1997.

[61] A. Moshovos, S.E. Breach, T.N. Vijaykumar, and G.S. Sohi. Dynamic speculation and synchro
tion of data dependences. InProc. ISCA-24, June 1997.

[62] A. Moshovos and G.S. Sohi. Streamlining inter-operation communication via data dependenc
diction. InProc. MICRO-30, December 1997.

[63] A. I. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. A dynamic approach to improve
accuracy of data speculation. Technical Report 1316, Computer Sciences Dept., University o
consin-Madison, March 1996.

[64] M. Moudgill and J. H. Moreno. Run-time detection and recovery from incorrectly reordered mem
operations. InIBM research report RC 20857 (91318), May 1997.

[65] A. Nicolau. Run-time disambiguation: Coping with statically unpredictable dependencies.IEEE
Transactions on Computers, 38(5):663–678, May 1989.

[66] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. InProc.
ISCA-24, June 1997.

[67] M. Reilly and J. Edmondson. Performance simulation of an Alpha microprocessor. InIEEE Com-
puter, 31(5), May 1998.

[68] G. Reinman and B. Calder. Predictive Techniques for Aggresive Load Speculation. InProc. MICRO-
31, December 1998.

[69] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin. Profile guided load marking for mem
renaming. Technical Report CS98-593, University of California, San Diego, July 1998.

165

n for

es. In

gy

d

. In

alar

ction

ipe-

rs. In

1994,

uto-

epen-

Man-

tion

iting
[70] J. A Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. On high-bandwidth data cache desig
multi-issue processors. InProc. MICRO-30, December 1997.

[71] A. Rogers and K. Li. Software support for speculative loads. InProc. ASPLOS-V, October 1992.

[72] E. Rotenberg, Q. Jacobson, Y. Sazeides, and Jim Smith. Trace processors. InProc. on MICRO-30,
December 1997.

[73] A. Roth, A. Moshovos, and G. S. Sohi. Dependence Based Prefetching for Linked Data Structur
Proc. ASPLOS-VIII, October 1998.

[74] Y. Sazeides and J. E. Smith. The Predictability of Data Values. InProc. MICRO-30, December 1997.

[75] Semiconductor Industry Association.The National Roadmap for Seminconductors: Technolo
Needs, 1997 edition. (Chapter on Overal Roadmap on Technology Characteristics).

[76] D. J. Shippy and T. W. Griffith. POWER2 fixed-point, data cache, and storage control units. InIBM
journal on research and development, 38(5), October 1994. An on-line revised version can be foun
at: http://www.rs6000.ibm.com/resource/technology/fxu.html.

[77] M. D. Smith, M. Horowitz, and M. S. Lam. Efficient superscalar performance through boosting
Proc. ASPLOS-V, October 1992.

[78] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting beyond static scheduling in a supersc
processor. InProc. ISCA-17, Seattle, WA, May 1990.

[79] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. InProc. ISCA-24, June 1997.

[80] A. Sodani and G. S. Sohi. Understanding the Differences Between Value Prediction and Instru
Reuse. InProc. MICRO-31, December 1998.

[81] G. S. Sohi. Instruction issue logic for high-performance, interruptible, multiple functional unit, p
lined computers.IEEE Transactions on Computers, March 1990.

[82] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. InProc. ISCA-22, June 1995.

[83] G. S. Sohi and M. Franklin. High-Bandwidth Data Memory Systems for Superscalar Processo
Proc. ASPLOS-IV, April 1991.

[84] S. Steely, D. Sager, and D. Fite. Memory reference tagging, US Patent 5,619,662, filed on Aug.
April 1997.

[85] J. G. Steffan and T. Mowry. The potential for using thread-level data speculation to facilitate a
matic parallelization. InProc. HPCA-4, January 1998.

[86] The Standard Performance Evaluation Corporation. SPEC CPU95 Benchmarks.SPEC Newsletter,
available on-line from http://www.specbench.org/osg/cpu95/news/cpu95descr.html, September 1995.

[87] J.Y. Tsai and P.-C. Yew. The superthreaded architecture: thread pipelining with run-time data d
dence checking and control speculation. InProc. PACT’96, October 1996.

[88] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A Modified Approach to Data Cache
agement. InProc. MICRO-28, December 1995.

[89] G. S. Tyson and T. M. Austin. Improving the Accuracy and Performance of Memory Communica
Through Renaming. InProc. MICRO-30, December 1997.

[90] S. Vajapeyam and T. Mitra. Improving superscalar instruction dispatch and issue by explo
dynamic code sequences. InProc. ISCA-24, June 1997.

[91] A. H. Veen. Dataflow Machine Architectures.ACM Computing Surveys, vol. 18, December 1986.

166

-

ic

. Tech-

dic-
[92] T. N. Vijaykumar.Compiling for the Multiscalar Architecture. Ph.D. thesis, University of Wisconsin-
Madison, Madison, WI 53706, May 1998.

[93] D. W. Wall. Global register allocation at link-time. InSIGPLAN’86 Symposium on Compiler Con
struction, January 1986.

[94] L. Widigen, E. Sowadksy, and K. McGrath. Eliminating operand read latency. InComputer Architec-
ture News, 24(5), December 1996.

[95] K. M. Wilson and K. Olukotun. Designing high bandwidth on-chip caches. InProc. ISCA-24, June
1997.

[96] K. M. Wilson, K. Olukotun, and M. Rosenblum. Increasing Cache Port Efficiency for Dynam
Superscalar Processors. InProc. ISCA-23, May 1996.

[97] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C Programs. InProc.
PLDI, June 1995.

[98] S. J. E. Wilton and N. P. Jouppi. An enhanced access and cycle time model for on-chip caches
nical report, WRL Research Report 93/5, Western Research Laboratory, 1993.

[99] T. Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive training branch pre
tion. InProc. ISCA-19, May 1992.

	Memory Dependence Prediction
	by
	Andreas Ioannis Moshovos
	A dissertation submitted in partial fulfillment of
	the requirements for the degree of
	Doctor of Philosophy
	(Computer Sciences)
	at the
	UNIVERSITY OF WISCONSIN—MADISON
	1998

	Abstract
	1. Dynamic Speculation/Synchronization of Memory Dependences: this thesis demonstrates that to ex...
	2. Speculative Memory Cloaking and Bypassing: this thesis approaches memory as either an inter- o...
	3. Transient Value Cache (TVC): Supporting highly-parallel execution requires the ability to perf...

	Acknowledgments
	Introduction
	1.1 Contributions
	1.1.1 Memory Dependence Locality and Prediction
	1.1.2 Dynamic Speculation and Synchronization of Memory Dependences
	1.1.3 Speculative Memory Cloaking and Bypassing
	Figure 1.1: Speculative Memory Cloaking and Bypassing. (a) Inter-operation communication: exploit...

	1.1.4 Transient Value Cache
	Figure 1.2: The Transient Value Cache

	1.2 Thesis Organization
	1.3 Experimental Framework
	1.3.1 Programs and Compiler Infrastructure
	Benchmark input parameters.
	Table 1.1: Benchmark Execution Characteristics. Instruction counts (“IC” columns) are in millions.

	1.3.2 Simulation Methodology
	Table 1.2: Default configuration for superscalar timing simulations
	Table 1.3: Default configuration for Multiscalar timing simulations.
	Table 1.4: Error introduced by the use of sampling in a timing simulation. “IPC Full” columns rep...

	Memory Dependence Behavior Analysis
	2.1 Memory Dependence Types
	Figure 2.1: Memory dependence examples. “lw” (“sw”) stands for “load word” (“store word”), where ...

	2.2 A Class of History-Based Memory Dependence Predictors
	Figure 2.2: Example illustrating the operation of history-based memory dependence predictors.
	Figure 2.3: Example code sequences that are amenable to history-based memory dependence prediction.

	2.3 Memory Dependence Behavior Analysis
	2.3.1 Metrics and Justification
	1. What fraction of loads and stores experience what memory dependence types? This metric provide...
	2. Do we have to predict a single dependence or multiple dependences per store or load? This char...
	3. How large is the working set of loads and stores with dependences? Or, for how many loads and ...
	4. What size structures are required to detect a desired level of memory dependence activity? Det...
	5. Whether sufficient regularity exists in the dynamic behavior of the attribute of memory depend...

	2.3.2 Memory Dependence Characterization
	Figure 2.4: Memory Dependence Breakdown - Loads. Shown is the fraction (Y-axis) of all executed l...
	Figure 2.5: Memory Dependence Breakdown - Stores. Shown is the fraction (Y-axis) of all executed ...
	2.3.2.1 Address Space Distribution of Memory Dependences
	Table 2.1: Address space distribution of memory dependences.
	Table 2.2: Address space distribution of load and store accesses. Fractions are reported over all...

	2.3.2.2 Dynamic Instruction Distance Distribution
	Figure 2.1: Cumulative dependence dynamic instruction distance distribution. Samples are taken at...

	2.3.3 Memory Dependence Shape Characterization
	Figure 2.2: Example illustrating the difference between static dependence set size and instance d...
	2.3.3.1 Instance Dependence Set Size
	Figure 2.3: Shape of memory dependences: cumulative dynamic instance dependence set distribution.

	2.3.3.2 Aggregate Dependence Set Size
	Figure 2.4: Static memory dependence set size cumulative distribution. (a) Read-after-Write depen...

	2.3.4 Working Set of Memory Dependences
	Figure 2.5: Probability that a store or a load instruction that has a dependence has been among t...

	2.3.5 Capturing Memory Dependence Activity
	Figure 2.6: Cumulative address-distance distribution of memory dependences as seen by loads. Samp...
	Figure 2.7: Cumulative Address-Distance Distribution of memory dependences as seen by stores. Sam...

	2.3.6 Memory Dependence Status Locality
	Figure 2.8: Examples illustrating variation in the memory dependence status of a load.
	Figure 2.9: Memory dependence status locality as a function of address window size. Address windo...

	2.3.7 Memory Dependence Locality
	2.3.7.1 Read-after-Write Dependences
	Figure 2.10: Memory dependence set locality of read-after-write dependences. Locality range shown...

	2.3.7.2 Read-after-Read Dependences
	Figure 2.11: Memory Dependence Set locality of read-after-read dependences. Locality range shown ...

	2.4 Summary
	1. Most loads and stores experience dependences. 90%-100% of all loads experience RAW dependences...
	2. No single part of the memory address space is responsible for most of memory dependence activi...
	3. Most of RAW and RAR dependences are across many dynamic instructions (more than 4K - Section 2...
	4. (a) The instances of sink instructions of RAW and RAR dependences observe a single source stor...
	5. A significant fraction of loads and stores with RAW and RAR dependences have relatively large ...
	6. The working set of instructions with dependences is relatively small for all four dependence t...
	7. Relatively small structures can be used to capture reasonable fractions of memory dependence a...
	8. The memory dependence status locality of both source and sink instructions for all dependence ...
	9. The memory dependence locality of source and sink instructions for RAW and RAR dependences is ...

	Dynamic Memory Dependence Speculation and Synchronization
	3.1 Using Load/Store Parallelism To Improve Performance
	3.2 Memory Dependence Speculation
	Figure 3.1: Using memory dependence speculation may affect performance either way. (a) Code with ...
	Figure 3.2: Executing a loop under: (b) a centralized, continuous-window execution model, and (c)...

	3.3 Memory Dependence Speculation Policies
	Figure 3.3: Example illustrating various memory dependence speculation policies. Arrows indicate ...

	3.4 Mimicking Ideal Memory Dependence Speculation
	Figure 3.4: Example code sequence that illustrates that multiple instances of the same static dep...
	Figure 3.5: Synchronization example

	3.5 Implementation Aspects
	MDPT
	MDST
	3.5.1 Working Example
	Figure 3.6: Synchronization of memory dependences.

	3.6 Issues
	3.6.1 The Multiscalar Execution Model
	Figure 3.7: The Multiscalar execution model. (a) Continuous, centralized instruction window (e.g....

	3.6.2 Incorporating Speculation/Synchronization into a Pipeline
	3.6.3 Incomplete Synchronization
	3.6.4 Intelligent Prediction
	3.6.5 Control Mispeculations
	3.6.6 Multiple Dependences Per Static Load or Store
	Figure 3.8: Two schemes of supporting multiple static dependences per load or store. (a) Combined...

	3.6.7 Centralized Versus Distributed Structures

	3.7 Related Work
	3.8 Evaluation - Distributed, Spit-Window Processor Model
	3.8.1 Performance Potential of Load/Store Parallelism
	Figure 3.9: Comparing no speculation with oracle speculation. Shown are the speedups obtained wit...
	Table 3.1: Characteristics of the no-speculation configurations. Shown are the frequency of false...

	3.8.2 Naive Memory Dependence Speculation
	Figure 3.1: Performance with naive memory dependence speculation relative to no-speculation.
	Table 3.2: Comparing naive and oracle speculation. Shown are the speedups possible over naive spe...

	3.8.3 Using Store Address Information To Improve Speculation Accuracy
	Table 3.3: Impact of exposing store addresses on performance. Relative performance over naive spe...

	3.8.4 Selective Memory Dependence Speculation
	Figure 3.1: Relative performance of selective memory dependence speculation over naive memory dep...

	3.8.5 Speculation/Synchronization - Centralized Mechanism
	Table 3.4: Breakdown of memory dependence status prediction on loads.
	Table 3.5: Memory dependence mispeculation rates as a percentage over all committed loads with sp...
	Figure 3.1: Performance improvements over naive speculation with our speculation/synchronization ...
	Figure 3.2: Relative performance of speculation/synchronization with respect to oracle speculatio...

	3.8.6 Speculation/Synchronization - Distributed Mechanisms
	Table 3.6: Performance of the first distributed mechanism over the centralized mechanism that use...
	Table 3.7: Performance of the second distributed mechanism over the centralized mechanism that us...

	3.8.7 Comparison of Speculation/Synchronization Mechanism
	Table 3.8: Comparison of four speculation policies/mechanism: (1) oracle, (2) “CENT” centralized ...

	3.9 Evaluation - Centralized, Continuous -Window Processor Model
	3.9.1 Performance Potential of Load/Store Parallelism
	Figure 3.1: Performance (as IPC) with and without exploiting load/store parallelism. Notation use...
	Table 3.9: Fraction of loads with false dependences and average false dependence resolution laten...

	3.9.2 Performance with Naive Memory Dependence Speculation
	Figure 3.1: Naive memory dependence speculation. (a) Performance results (IPC). (b) Memory depend...

	3.9.3 Using Address-Based Scheduling to Extract Load/Store Parallelism
	Figure 3.2: (a) Relative performance of naive memory dependence speculation as a function of the ...
	Figure 3.3: Comparing oracle disambiguation and address-based scheduling plus naive memory depend...

	3.9.4 Speculation/Synchronization
	Figure 3.4: Performance of an implementation of speculation/synchronization.(a) Performance impro...
	Table 3.10: Memory dependence mispeculation rate with our speculation/synchronization mechanism (...

	3.10 Chapter Summary
	1. Naive memory dependence speculation offers significant performance improvements over no specul...
	2. Perfect knowledge of all memory dependences could potentially lead to a 31% (integer) and 17% ...
	3. Using store address information to detect memory dependences and avoid mispeculations could he...
	4. Selective speculation, i.e., using prediction to avoid speculating on those loads that would o...
	5. We evaluated three alternative implementations of our dependence speculation and synchronizati...
	1. Naive memory dependence speculation can improve performance over not speculating memory depend...
	2. Exposing store addresses can eliminate virtually all memory dependence mispeculations. Perform...
	3. The memory dependence speculation and synchronization technique we proposed could be useful in...

	Speculative Memory Cloaking and Bypassing
	4.1 Two Common Uses of Memory
	4.1.1 Memory as an Inter-operation Communication Agent
	Figure 4.1: An example of inter-operation memory communication. (a) Program segment with a store ...

	4.1.2 Memory As A Value Place Holder
	4.1.3 Using Memory Dependence Prediction To Streamline Memory Accesses
	Figure 4.2: Speculative Memory Cloaking and Bypassing. (a) Inter-operation communication: exploit...

	4.2 Speculative Memory Cloaking
	Figure 4.3: Streamlining memory communication via cloaking: (a) Detecting a read-after-write depe...
	4.2.1 Detection and Prediction of Dependences
	Figure 4.4: Code fragments that have multiple true dependences.

	4.2.2 Synonym Generation and Communication
	Figure 4.5: Examples illustrating dependences whose lifetimes do not overlap (part (a)) or do ove...

	4.2.3 Verification
	4.2.4 Implementation Aspects
	Figure 4.6: Speculative Memory Cloaking: working example.

	4.3 Speculative Memory Bypassing
	Figure 4.7: Speculative Memory Bypassing. (a) Communication path followed when the traditional me...

	4.4 Extending Cloaking and Bypassing to Support Data-Sharing
	4.5 Related Work
	4.5.1 Register Allocation Alternatives
	4.5.2 Address Prediction Based Techniques
	4.5.3 Value Prediction
	4.5.4 Techniques Similar to Cloaking or Bypassing

	4.6 Evaluation
	4.6.1 Memory Dependence Detection
	Figure 4.8: Fraction of loads that have RAW or RAR dependences as a function of dependence detect...

	4.6.2 Cloaking Coverage And Mispeculation Rates
	Figure 4.9: Cloaking coverage as a function of Dependence detection table size. Range is 64 to 51...
	Figure 4.10: Instance Distance Breakdown As A Function Of Dependence Detection Table Size. Assumi...
	Figure 4.11: Cloaking mispeculation rates for the non-adaptive dependence predictor as a function...

	4.6.3 Using Adaptive Predictors to Improve Cloaking Accuracy
	Figure 4.12: An adaptive cloaking predictor.
	Figure 4.13: Cloaking coverage with various predictors. Percentages are reported over all loads. ...
	Figure 4.14: Cloaking mispeculation rates for various predictors. (a) Per program results. (b) Av...

	4.6.4 Characteristics of the Memory Values that are Handled by Cloaking
	4.6.4.1 Address Space Breakdown
	Figure 4.15: Breakdown of loads that get a value via cloaking in terms of the address segment tha...

	4.6.4.2 Base Register Breakdown
	Figure 4.16: Load breakdown in terms of the base register used. From left to right the categories...

	4.6.4.3 Address Locality Measurements
	Figure 4.17: Address Locality breakdown. Left bar reports address locality. Right bar reports clo...

	4.6.4.4 Value Locality and Value Prediction Measurements
	Figure 4.18: Value Locality breakdown. Left bar: loads that exhibit value locality separated into...
	Figure 4.19: Comparing a value predictor with cloaking. (a) Coverage: loads that get a correct va...
	Table 4.1: Fraction of loads that get a correct value from cloaking/bypassing and not from a valu...

	4.6.4.5 Dynamic Instruction Distance Distribution
	Figure 4.1: Cumulative dynamic instruction distance distribution between source instruction and l...

	4.6.4.6 Input Data Set Sensitivity Analysis
	Figure 4.2: Comparing cloaking accuracy with a different input data set. Left bar: alternate inpu...

	4.6.5 Effects of Finite Prediction Structures
	4.6.5.1 Sensitivity to the Number of DPNT Entries
	Figure 4.3: Cloaking coverage and mispeculation rates as a function of the dependence prediction ...

	4.6.5.2 Sensitivity to the Associativity of the DPNT
	Figure 4.4: Variations in cloaking accuracy as a function of the prediction and naming table asso...

	4.6.5.3 Synonym File Size Sensitivity Analysis
	Figure 4.5: Cloaking coverage and mispeculation rates as a function of the synonym file size. Par...

	4.6.6 Performance Impact
	4.6.6.1 Configuration Parameters
	Figure 4.6: A out-of-order processor pipeline with a cloaking/bypassing mechanism

	4.6.6.2 Performance with a Cloaking/Bypassing Mechanism
	Figure 4.7: Relative performance of cloaking/bypassing for various mispeculation handling mechani...
	Figure 4.8: Characteristics of cloaking/bypassing communication. (a) Mispeculations observed for ...

	4.6.6.3 Comparing Cloaking/Bypassing and Value Prediction
	Figure 4.9: Comparing a load value prediction mechanism with a cloaking mechanism.

	4.6.6.4 Combining Cloaking/Bypassing and Value Prediction
	Figure 4.10: Performance improvements obtained by combining load value prediction and cloaking/ b...

	4.7 Summary

	Transient Value Cache
	Figure 5.1: The Transient Value Cache
	5.1 Short-Distance Memory Dependence Measurements
	Figure 5.2: (a) Loads with a RAW or RAR dependence within the last n unique, most recently access...

	5.2 The Transient Value Cache
	Figure 5.3: Incorporating an additional level of caching between the L1 data cache and the proces...
	Figure 5.4: Transient value cache operation. Loads: (a) RAW or RAR dependence predicted, (b) no R...

	5.3 Related Work
	5.4 Evaluation
	5.4.1 Load Dependence Status Prediction Accuracy
	Figure 5.5: Load dependence status accuracy. (a) Correctly predicted loads, (b) loads that are co...
	Table 5.1: Comparing a TVC with a L0 data cache of the same size. Data cache sizes shown are 128,...
	5.4.1.1 Effects of Associativity on Prediction Accuracy
	Table 5.2: Comparing an 128 word TVC with a L0 data cache of the same size for various associativ...

	5.4.1.2 Effects of Block Size on Prediction Accuracy
	Table 5.3: Comparing an 128 word TVC with a L0 data cache of the same size for various block size...

	5.4.2 Store Dependence Status Prediction Accuracy
	Figure 5.1: Store dependence status accuracy (see text for explanation).

	5.5 Summary

	Conclusion
	6.1 Summary
	6.1.1 Dynamic Speculation and Synchronization of Memory Dependences
	6.1.2 Speculative Memory Cloaking and Bypassing
	6.1.3 Transient Value Cache

	6.2 Future Directions
	6.2.1 Correlating Memory Dependence Behavior with Program Elements and Data Structures
	6.2.2 Interaction with the Compiler
	6.2.3 Memory Communication and Sharing in Distributed Environments
	6.2.4 Support for Selective Invalidation and Data Speculation Resolution
	6.2.5 Operation Prediction

	Bibliography
	Conference/Publication Abbreviations
	References
	[1] PowerPC 620 RISC Microprocessor Technical Summary. IBM Order number MPR620TSU-01, Motorola Or...
	[2] S.�G. Abraham, R.�A. Sugumar, D.�Windheirser, B.�Rau, and R.�Gupta. Predictability of load/st...
	[3] D.�Adams, A.�Allen, R.�Flaker J.�Bergkvist, J.�Hesson, and J.�LeBlanc. A 5ns store barrier ca...
	[4] R.�Allen and K.�Kennedy. Automatic Translation of FORTRAN Programs to Vector Form. ACM Transa...
	[5] T.�M. Austin, D.�N. Pnevmatikatos, and G.�S. Sohi. Fast address calculation. In Proc. ISCA-22...
	[6] T.�M. Austin and G.�S. Sohi. Dynamic Dependency Analysis of Ordinary Programs. In Proc. ISCA-...
	[7] T.�M. Austin and G.�S. Sohi. Zero-cycle loads: Microarchitecture support for reducing load la...
	[8] T.�M. Austin, T.�N. Vijaykumar, and G.�S. Sohi. Knapsack: A zero-cycle memory hierarchy compo...
	[9] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to reduce data access penal...
	[10] U.�Banerjee. Dependence Analysis for Supercomputing. Boston, MA: Kluwer Academic Publishers,...
	[11] P.�Bannon and J.�Keller. Internal architecture of alpha 21164 microprocessor. In COMPCON’95,...
	[12] T.�C. Bell, J.�G. Cleary, and I.�H. Witten. Text Compression. Prentice Hall, 1990.
	[13] S.�E. Breach. Design and Evaluation of a Multiscalar Processor, in preparation. Ph.D. thesis...
	[14] S.�E. Breach, T.�N. Vijaykumar, and G.�S. Sohi. The anatomy of the register file in a multis...
	[15] I-Cheng�K. Chen, J.�T. Coffey, and Trevor�N. Mudge. Analysis of Branch Prediction via Data C...
	[16] W.�Y. Chen. Data Preload for Superscalar and VLIW Processors. Ph.D. thesis, University of Il...
	[17] G.�Z. Chrysos and J.�S. Emer. Memory dependence prediction using store sets. In Proc. ISCA-2...
	[18] J.�Dennis. Data Flow Supercomputers. IEEE Computer, November 1980.
	[19] D.�R. Ditzel and H.�R. McLellan. Register Allocation for Free: The C Machine Stack Cache. In...
	[20] K.�Ebcioglu and E.�R. Altman. DAISY: Dynamic Compilation for 100% Architectural Compatibilit...
	[21] R.�J. Eickemeyer and S.�Vassiliadis. A load-instruction unit for pipelined processors. In IB...
	[22] J.�R. Ellis. Bulldog: A Compiler for a VLIW Architecture. Ph.D. thesis, Yale University, Feb...
	[23] M.�Emami, R.�Ghiya, and L.�J. Hendren. Context-sensitive interprocedural points-to analysis ...
	[24] A.�Farcy, O.�Temam, and R.�Espasa. Dataflow Analysis of Branch Mispredictions and Its Applic...
	[25] K.�I. Farkas, P.�Chow, N.�P. Jouppi, and Z.�Vranesic. The Multicluster Architecture: Reducin...
	[26] M.�Franklin. The Multiscalar Architecture. Ph.D. thesis, University of Wisconsin-Madison, Ma...
	[27] M.�Franklin and G.�S. Sohi. ARB: A Hardware Mechanism for Dynamic Memory Disambiguation. IEE...
	[28] D.�M. Gallagher, W.�Y. Chen, S.�A. Mahlke, J.�C. Gyllenhaal, and W.�W. Hwu. Dynamic Memory D...
	[29] M.�Gell-Mann. The Quark and the Jaguar. W. H. Freeman and Comparny, New York, 1994.
	[30] M.�Golden and T.�Mudge. Hardware support for hiding cache latency. In CSE-TR-152-93, Univers...
	[31] Sridhar Gopal, T.�N. Vijaykumar, J.�E. Smith, and G.�S. Sohi. Speculative versioning cache. ...
	[32] L.�Hammond, M.�Willey, and K.�Olukotun. Data speculation support for a chip multiprocessor. ...
	[33] J.�Hesson, J.�LeBlanc, and S.�Ciavaglia. Apparatus to dynamically control the out-of-order e...
	[34] G.�J. Hinton, R.�W. Martell, M.�A. Fetterman, D.�B. Papworth, and J.�L. Schwartz. Circuit an...
	[35] A.�S. Huang and J.�P. Shen. A Limit Study of Local Memory Requirements Using Value Reuse Pro...
	[36] A.�S. Huang and J.�P. Shen. The intrisinic bandwidth requirements of ordinary programs. In P...
	[37] A.�S. Huang, G.�Slavenburg, and J.�P. Shen. Speculative disambiguation: A compilation techni...
	[38] D.�Hunt. Advanced performance features of the 64-bit PA-8000. In COMPCON’95, 1995.
	[39] W.�W. Hwu and Y.�N. Patt. Checkpoint Repair for High-Performance Out-of-Order Execution Mach...
	[40] Q.�Jacobson, S.�Bennett, N.�Sharma, and J.�Smith. Control Flow Speculation in Multiscalar Pr...
	[41] S.�Jourdan, R.�Ronen, M.�Bekerman, B.�Shomar, and A.�Yoaz. A novel renaming scheme to exploi...
	[42] G.�Kane. MIPS R2000/R3000 RISC Architecture. Prentice Hall, 1987.
	[43] S.�Kaxiras. Identification and Optimization of Sharing Patterns for Scalable Shared-Memory M...
	[44] J.�Keller. The 21264: A Superscalar Alpha Processor with Out-of-Order Execution. In Digital ...
	[45] R.�E. Kessler, E.�J. McLellan, and D.�A. Webb. The Alpha 21264 architecture. In Proc. of ICC...
	[46] J.�Kin, M.�Gupta, and W.�H. Mangione-Smith. The Filter Cache: An Energy Efficient Memory Str...
	[47] T.�Knight. An architecture for mostly functional languages. In Proc. ACM Conference on Lisp ...
	[48] D.�Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In Proc. ISCA-8, May 1981.
	[49] S.�M. Kurlander and C.�N. Fischer. Minimum cost interprocedural register allocation. In The ...
	[50] D.�Levitan, T.�Thomas, and P.�Tu. The PowerPC 620 Microprocessor: A High Performance Supersc...
	[51] J.�González and A.�González. Speculative execution via address prediction and data prefetchi...
	[52] M.�H. Lipasti. Value Locality and Speculative Execution. Ph.D. thesis, Carnegie Mellon Unive...
	[53] M.�H. Lipasti and J.�P. Shen. Exceeding the dataflow limit via value prediction. In Proc. on...
	[54] M.�H. Lipasti, C.�B. Wilkerson, and J.�P. Shen. Value locality and load value prediction. In...
	[55] W.�L. Lynch, G.�Lauterbach, and J.�I. Chamdani. Low Load Latency through Sum-Addressed Memor...
	[56] S.�A. Mahlke, W.�Y. Chen, W.�W. Hwu, B.�R. Rau, and M.�S. Schlansker. Sentinel scheduling fo...
	[57] D.�Matzke. Will Physical Scalability Sabotaze Performance Gains? In IEEE Computer, 30(9), Se...
	[58] S.�McFarling. Combining branch predictors. Technical Report TN-36, Digital Equipment Corp., ...
	[59] G.�D. McNiven and E.�S. Davidson. Analysis of Memory Referencing Behavior for Design of Loca...
	[60] S.�Mehrotra and L.�Harrison. Examination of a memory access clasification scheme for pointer...
	[61] A.�Moshovos, S.E. Breach, T.N. Vijaykumar, and G.S. Sohi. Dynamic speculation and synchroniz...
	[62] A.�Moshovos and G.S. Sohi. Streamlining inter-operation communication via data dependence pr...
	[63] A.�I. Moshovos, S.�E. Breach, T.�N. Vijaykumar, and G.�S. Sohi. A dynamic approach to improv...
	[64] M.�Moudgill and J.�H. Moreno. Run-time detection and recovery from incorrectly reordered mem...
	[65] A.�Nicolau. Run-time disambiguation: Coping with statically unpredictable dependencies. IEEE...
	[66] S.�Palacharla, N.�P. Jouppi, and J.�E. Smith. Complexity-effective superscalar processors. I...
	[67] M.�Reilly and J.�Edmondson. Performance simulation of an Alpha microprocessor. In IEEE Compu...
	[68] G.�Reinman and B.�Calder. Predictive Techniques for Aggresive Load Speculation. In Proc. MIC...
	[69] G.�Reinman, B.�Calder, D.�Tullsen, G.�Tyson, and T.�Austin. Profile guided load marking for ...
	[70] J.�A Rivers, G.�S. Tyson, E.�S. Davidson, and T.�M. Austin. On high-bandwidth data cache des...
	[71] A.�Rogers and K.�Li. Software support for speculative loads. In Proc. ASPLOS-V, October 1992.
	[72] E.�Rotenberg, Q.�Jacobson, Y.�Sazeides, and Jim Smith. Trace processors. In Proc. on MICRO-3...
	[73] A.�Roth, A.�Moshovos, and G.�S. Sohi. Dependence Based Prefetching for Linked Data Structure...
	[74] Y.�Sazeides and J.�E. Smith. The Predictability of Data Values. In Proc. MICRO-30, December ...
	[75] Semiconductor Industry Association. The National Roadmap for Seminconductors: Technology Nee...
	[76] D.�J. Shippy and T.�W. Griffith. POWER2 fixed-point, data cache, and storage control units. ...
	[77] M.�D. Smith, M.�Horowitz, and M.�S. Lam. Efficient superscalar performance through boosting....
	[78] M.�D. Smith, M.�S. Lam, and M.�A. Horowitz. Boosting beyond static scheduling in a superscal...
	[79] A.�Sodani and G.�S. Sohi. Dynamic Instruction Reuse. In Proc. ISCA-24, June 1997.
	[80] A.�Sodani and G.�S. Sohi. Understanding the Differences Between Value Prediction and Instruc...
	[81] G.�S. Sohi. Instruction issue logic for high-performance, interruptible, multiple functional...
	[82] G.�S. Sohi, S.�E. Breach, and T.�N. Vijaykumar. Multiscalar processors. In Proc. ISCA-22, Ju...
	[83] G.�S. Sohi and M.�Franklin. High-Bandwidth Data Memory Systems for Superscalar Processors. I...
	[84] S.�Steely, D.�Sager, and D.�Fite. Memory reference tagging, US Patent 5,619,662, filed on Au...
	[85] J.�G. Steffan and T.�Mowry. The potential for using thread-level data speculation to facilit...
	[86] The Standard Performance Evaluation Corporation. SPEC CPU95 Benchmarks. SPEC Newsletter, ava...
	[87] J.Y. Tsai and P.-C. Yew. The superthreaded architecture: thread pipelining with run-time dat...
	[88] G.�Tyson, M.�Farrens, J.�Matthews, and A.�R. Pleszkun. A Modified Approach to Data Cache Man...
	[89] G.�S. Tyson and T.�M. Austin. Improving the Accuracy and Performance of Memory Communication...
	[90] S.�Vajapeyam and T.�Mitra. Improving superscalar instruction dispatch and issue by exploitin...
	[91] A.�H. Veen. Dataflow Machine Architectures. ACM Computing Surveys, vol. 18, December 1986.
	[92] T.�N. Vijaykumar. Compiling for the Multiscalar Architecture. Ph.D. thesis, University of Wi...
	[93] D.�W. Wall. Global register allocation at link-time. In SIGPLAN’86 Symposium on Compiler Con...
	[94] L.�Widigen, E.�Sowadksy, and K.�McGrath. Eliminating operand read latency. In Computer Archi...
	[95] K.�M. Wilson and K.�Olukotun. Designing high bandwidth on-chip caches. In Proc. ISCA-24, Jun...
	[96] K.�M. Wilson, K.�Olukotun, and M.�Rosenblum. Increasing Cache Port Efficiency for Dynamic Su...
	[97] R.�P. Wilson and M.�S. Lam. Efficient Context-Sensitive Pointer Analysis for C Programs. In ...
	[98] S.�J.�E. Wilton and N.�P. Jouppi. An enhanced access and cycle time model for on-chip caches...
	[99] T.�Y. Yeh and Y.�N. Patt. Alternative implementations of two-level adaptive training branch ...

