SEMANTICALLY ORDERED PARALLEL EXECUTION OF MULTIPROCESSOR PROGRAMS

By
Gagan Gupta

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON
2015

Date of final oral examination: 6/4/2015

The dissertation is approved by the following members of the Final Oral Committee:
Gurindar S. Sohi, Professor, Computer Sciences
Mark D. Hill, Professor, Computer Sciences
Mikko H. Lipasti, Professor, Electrical and Computer Engineering
Karthikeyan Sankaralingam, Associate Professor, Computer Sciences
Michael M. Swift, Associate Professor, Computer Sciences
David A. Wood, Professor, Computer Sciences

© Copyright by Gagan Gupta 2015
All Rights Reserved

Dedicated to Sanika, Megan, Ragini, Mom, and Dad

iii

Acknowledgments

All that follows in the following pages is a synthesis of what I have learnt from my teachers at
UW-Madison. This work could not have been possible without help from my colleagues and support
from my family.

From Gurindar Sohi I learnt the art of analyzing problems, conducting research, drawing
insights, and presenting the work. He was more than generous with his time, advice, coaching, and
financial support. He permitted me to recruit as many as nine students to use the runtime systems
I built as I explored multiple directions. I could not have asked for a better advisor.

Much of this work started in classes taught by David Wood, Mark Hill, and Jeff Naughton.
David Wood and Mark Hill have supported the work enthusiastically throughout its duration.
They periodically advised on presentation methods and research questions to answer. David Wood
progressively raised the bar for me to achieve, whether on purpose I do not know. Mark Hill
encouraged the work during the tough periods by reminding me of its utility. He also patiently
guided me in making my claims precise.

I received guidance from Michael Swift on system issues related to this research. He also
encouraged and helped me to widen the scope of this work to include concurrent programs. From
Karthikeyan Sankaralingam I learnt to analyze and present related work. Mikko Lipasti made
suggestions on future hardware-assist for the ideas here. He has also kindled my interest in neuro-
inspired computing.

Ben Liblit helped me learn the basics of operational semantics. He patiently oversaw my
application of it to describe the execution model the runtimes employ, although the description did
not make it to the dissertation. The late Susan Horwitz guided work on static analysis of programs,
a direction that Rathijit Sen and I were unable to pursue to fruition for the lack of time.

Srinath Sridharan was my partner in several research crimes, in the course of which he gave me
insightful feedback and perspectives on ideas, designs, and writings. My predecessor, Matthew
Allen, left behind an excellent infrastructure that formed the launching pad for the runtimes I
eventually built. With Rathijit Sen I had many enriching philosophical discussions on specific
problems, defining terms, the claims I made, and research in general. I received much programming
help from Marc de Kruijf, Venkat Govindaraju, and Jai Menon. I have also learnt one thing or
another from Arka Basu, Nilay Vaish, Hongil Yoon, Cong Wang, Emily Blem, Derek Hower, Dan
Gibson, Tony Nowatzki, Lena Olson, and Jason Power. Eric Harris, Peter Ney, Luke Pillar, Raghav
Mohan, Dinesh Thangavel, Bhuvana Kukanoori, Raj Setaluri, and Aditya Venkataraman tested the
runtime systems, and helped develop several programs used in this work.

Finally, my daughters, Sanika and Megan, have endured a mentally absent father for the last
several years. My wife, Ragini, has sacrificed more than me as I pursued this endeavor. If this

iv

research amounts to anything, much credit should go to her. Ragini also editorializes all that I
write.

Contents

Contents
List of Figures, Tables, and Listings
Abstract

1 Introduction

1.1 Improving Multiprocessor Usability is Important 1
1.2 The State of the Art is Unsatisfactory 3
1.3 Semantically Ordered Parallel Execution 5

1.3.1 Parakram: Ordered Programs, Ordered Execution
1.3.2 Applying Ordered Execution to Simplify Other Uses
1.4 Dissertation Outline 12

2 Terms and Definitions
2.1 Algorithms 14
2.2 Programs 15
2.3 Execution 15

3 A Case for Ordered Execution of Ordered Programs

3.1 Design-assist Solutions 19
3.2 Sequential Execution 22
3.3 Nondeterministic Execution 24

3.3.1 Design-assist Solutions 25
3.3.2 Programming 25
3.4 Deterministic Execution 29
3.5 Ordered Execution of Ordered Programs 30

4 Parakram
4.1 The Parakram Approach 32
41.1 Programming Multiprocessors 32

4.2 The Parakram Model 34
421 The Execution Model 34
42.2 The Programming Model 37
4.3 Parakram Prototype 38

iv

ix

xvil

)
11

14

18

31

vi

4.4 Summary 40

Ordered Programs
5.1 Parallelism Patterns 42
5.2 Parakram APIs 50
5.3 Ordered Programs 56
5.3.1 Defining Objects 59
5.3.2 Pbzip2 60
5.3.3 Cholesky Decomposition 64
534 Delaunay Mesh Refinement 70
5.4 Multithreaded Programming 73
5.5 Summary 78

Executing Ordered Programs
6.1 Terms 75
6.2 System Architecture 75
6.3 Execution Manager Operations 78
6.3.1 Basic Dataflow Execution 78
6.3.2 Globally-precise Interrupts 83
6.3.3 Handling More than Dataflow Tasks 86
6.3.4 Speculative Execution 89
6.3.5 Scheduling Tasks for Execution 97
6.3.6 Other Aspects of Ordered Execution 98
6.4 Execution Manager Prototype 101
6.4.1 Basic Dataflow Execution 102
6.4.2 Speculative Execution 109
6.4.3 Other Operations 113
6.44 Example Executions 115
6.4.5 Summary 122

Experimental Evaluation
7.1 Expressiveness 124
711 Programmability = 129
7.2 Performance 131
721 Eager Programs. 133
7.2.2 Non-eager Programs. 137
7.2.3 Performance Limitations of Order. 140
7.3 Analyzing Ordered and Nondeterministic Executions 146
7.4 Summary 151

Recovering from Exceptions
8.1 Introduction 152
8.2 A Case for Handling Exceptions Efficiently 154
8.2.1 Impact of Technology Trends on Program Execution 154

41

74

123

152

vii

8.2.2 Exceptions 156
8.2.3 Recovery from Global Exceptions 157
8.3 An Efficient Approach to Frequent Exception Recovery 160
8.4 Globally-precise Restartable System 168
8.4.1 Overview 163
8.4.2 Assumptions 165
8.4.3 Executing the Program 166
8.4.4 Recovering from Exceptions in the Runtime 167
8.4.5 Recovering from Global Exceptions 170
8.4.6 Third Party Functions, I/O, System Calls, and Transient Events 171
8.4.7 Exception-recovery Operations 172
8.4.8 Recovering from Exceptions During the Recovery 174
8.5 Other Applications of GPRS 174
8.6 Experimental Evaluation 176
8.7 Related Work 190
8.8 Summary 191

9 Related Work 192
9.1 Approach to Multiprocessor Programming 198
9.2 Techniques 199
9.3 Execution Properties 200

10 Conclusions and Future Work 201
10.1 In the Past 201
10.2 In this Work 202
10.3 In the Future 206
10.3.1 Applying Ordered Execution 206
10.3.2 Programmability 208
10.3.3 Design 210

Bibliography 212

ix

List of Figures, Tables, and Listings

Figure 1.1

Figure 1.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1
Figure 4.2
Figure 4.3

Figure 5.1

Listing 5.2
Listing 5.3
Listing 5.4
Listing 5.5
Table 5.6

Logical view of the proposed approach, Parakram. Parakram relies on sequen-
tially expressed parallel algorithms, i.e., ordered multiprocessor programs, and
introduces an Execution Manager between the program and the system. The Ex-
ecution Manager orchestrates the program’s parallel execution, while providing
an ordered view.
A logical flowchart of Parakram’s operations.

(a) A sequence of operations in MySQL. (b) Parallel implementation: lines 1-6
and line 7 are divided across two threads. Arrows depict the execution sequence
that violates Exclusion of operations in thread 1. Operation on line 7 in thread 2
can influence the operations of thread 1.
(a) A sequence of operations in Mozilla. (b) Parallel implementation: lines 1-7
and line 8 of the sequential operations are divided across two threads. Arrows
show the execution sequence that violates Atomicity. putc on line 8 uses partial,
inconsistent results from Thread 1.
(a) Another sequence of operations in Mozilla. (b) Parallel implementation in
which line 2 and line 4 are performed on different threads. Dashed arrow shows
the desired flow of control; solid arrow shows the sequence that can result due
to the loss of Flow-control independence.

Overview of multiprocessor programming approaches.
Block diagram of an out-of-order superscalar processor.
Parakram prototype. It comprises a C++ programming interface and a runtime
system. The programming interface provides APIs to develop ordered programs.
The runtime parallelizes their execution on a multiprocessor system.

MAPLE: pattern language for multiprocessor programs. (a) Design spaces. (b)
Sub-space within each design space, with examples.
Parallel bzip2 algorithm. 0 L.
Iterative Cholesky decomposition algorithm
Recursive Cholesky decomposition pseudocode.
Delaunay mesh refinement algorithm.
Parakram APIs related to program objects, their brief descriptions, and declara-
tionsinpseudocode. L L Lo L

26

27

28

33
35

39

43
44
45
46
46

52

Table 5.7

Table 5.8

Table
Table

59
5.10

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11
Table 6.12

Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16

Figure 6.17
Figure 6.18

Parakram APIs to invoke tasks, their brief descriptions, and declarations in
pseudocode. Multiple interfaces are provided for programming convenience,
e.g., pk_task() can take individual objects or set of objects as arguments. . .

Parakram APIs related to dataset declaration, their brief descriptions, and decla-
ration in pseudocode.
Miscellaneous Parakram APIs, their brief descriptions, and usage in pseudocode.
Programs and their relative characteristics. CD = Cholesky decomposition, CGM
= conjugate gradient method, Data-ind. = data independent, Data-dep. = data
dependent, LU = LU decomposition, I. = iterative, DeMR = Delaunay mesh
refinement, JIT = just-in-time, BFS = breadth-first search, R. = recursive. . . .

Architecture of Parakram’s Execution Manager. The Sequencer interfaces with
the program. The Speculative Dataflow Engine performs dataflow execution,
and speculates to maximize parallelism. The Globally-precise Restart Engine
provides an appearanceof order. L L L
Example ordered program and dynamic task invocations. (a) Function (task)
F is invoked in a loop. foo() is a “poorly” formed function whose dataset is
unknown. (b) Dynamic instances of task F, and the dynamic instances of objects
in their writeand readsets. 0 0 L.
Execution of the example ordered program. (a) Data dependence graph of the
dynamic instances of task F in example 6.6b. (b) A possible execution schedule
of the tasks on three processors. (c) Operations of the Reorder List. Shaded tasks
in the List have completed but not yet retired.
Ordered program and its dynamic logical decomposition. (a) Example pro-
gram code. Function F is invoked from a loop, same as the one in Figure 6.6.
(b) Dynamic execution in which tasks and intervening program segments, i.e.,
control-flow tasks, interleave.
Parallel execution of nested tasks. (a) Example pseudocode. (b) Sequential order
of task invocation. (c) Dynamic order.
Misspeculation due to non-eager tasks (a) Sequential task invocation order. Task
D has a RAW dependence on C. (b) Misspeculation from out-of-order invocation
of nested tasks. (c) Misspeculation due to non-eager dataset declaration.
Handling parallel execution of nested tasks. (a) Example pseudocode. (b) Tasks
divided into subtasks for order tracking. (c) IDs based on a hierarchical scheme.
Summary of dependence management issues. Each row lists the possible issue
on the first line and Parakram’s approach on the next.
Logical operations of the thread scheduler.
Logical Execution Manager operations to process a dataflow task..
Prelude, Execute, and Postlude phase operations of the Execution Manager. .
The Token Protocol. Definition of availability, read /write token acquistion, and
tokenrelease. L
GRX operations toretireatask. L.
Execution Manager operations to process non-eager dataset.

53

54
56

57

76

79

81

87

90

92

94

95
102
103
104

105
108
110

Figure
Figure
Figure

Figure

Figure

Figure

Table

Table

Table
Figure

Figure

Figure

Figure
Figure

Table
Figure

Figure
Figure

Figure

6.19
6.20
6.21

6.22

6.23

6.24

7.1

7.2

7.3
74

7.5

7.6

7.7

7.8

7.9
7.10

7.11
7.12

7.13

Operations performed to rectify misspeculation.
Restarting misspeculated tasks. o0 0L
Example execution. (a) Initial state of the system. (b) State of the system after
processing the six invocations of task F, denoted as: F write set read set. . . .
Example execution. (a) State of the system after invocation F1 completes exe-
cution. (b) State of the system after invocations F2 and F6 complete execution.
Speculative execution of the program in Figure 6.9a. (a) Task invocation order.
(b) Execution schedule on three processors and corresponding Reorder List
operations. Shaded entries in the Reorder List indicate completed tasks not yet
retired.
Token manager operations on object O. D acquires token speculatively, but is
found to be misspeculated when the request for C arrives.

MAPLE: Classification of common patterns in parallel programs. The first col-
umn lists the design spaces and the second column lists the sub-spaces in each
designspace.
Programs and their relative characteristics. CGM = conjugate gradient method,
Seq.= sequential time, Scale. = scalability, Chkpt. = checkpoint, Lin. = linear, DS
= dataset, DI/DD = data- independent/dependent, Decl. = declaration. . . .
Machine configuration used for experiments.
Speedups for eager programs, Barnes-Hut, Swaptions, CGM, and Histogram, in
which Parakram matches Multithreading. deterministic (no ROL tracking and
checkpointing). O.Parakram = ordered execution.
Speedups for eager programs, Iterative CD, Iterative Sparse LU, Black-Scholes,
and Pbzip2, in which Parakram outperforms Multithreading. D.Parakram =
deterministic (no ROL tracking and checkpointing). O.Parakram = ordered
execution. L L e
Parakram ’s ability to exploit latent parallelism. (a) Task dependence graph of
the first five CD tasks (nodes). Label next to a node is the epoch in which the
task is invoked. (b) Preferred execution schedule.
Parakram’s speculative execution performance on RE, Mergesort, Genome, and
Labyrinth. O.Parakram = ordered Parakram.
Parakram’s speculative execution performance for Recursive CD and Recursive
Sparse LU. Multithreaded variants are listed in Table 5.10.
Characterization of average Parakram overheadsincycles.
Parakram’s speculative execution performance for BFS and DeMR. Multithreaded
variants are listed in Table 5.10.
Idealized executionof DeMR. L L.
Generic tasks executing in an ideal system. Say tasks B and D conflict. Nonde-
terministic execution will complete B. Ordered execution will complete B and
attempt to substitute D with a non-conflicting younger task.
Ideal speedups on infinite resources for nondeterministic and ordered executions.

Xi

111
112

116

117

119

120

125

130
131

134

135

136

137

138
140

143
144

147
149

xii

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Table 8.5
Figure 8.6
Figure 8.7
Figure 8.8

Table 8.9

Figure 8.10

Figure 8.11

Figure 8.12

Figure 8.13

Figure 8.14

Characteristics of exceptions. (a) Latency to detect and report an exception. (b)
A local exception affects an individual computation. (c) A global exception affects
multiple computations. o oo oo
Recovering from global exceptions. (a) Conventional checkpoint-and-recovery.
(b) Restart penalty. (c) Inter-thread communication. (d) Ordered computations.
GPRS System Architecture. o Lo oo
Managing runtime mechanisms and state for exception recovery.
Baseline execution time of the programs at different context counts, with no
support for exceptionrecovery. L Lo
Basic overheads for Pbzip2 and Histogram. NSB bars show the ROL management
and checkpointing overheads. BR(0) and SR(0) bars show the overheads once
the signal blocking is applied to system functions.
Basic overheads for Swaptions and RE. NSB bars show the ROL management
and checkpointing overheads. BR(0) and SR(0) bars show the overheads once
the signal blocking is applied to system functions.
Basic overheads for Barnes-Hut and BlackScholes. NSB bars show the ROL
management and checkpointing overheads. BR(0) and SR(0) bars show the
overheads once the signal blocking is applied to the system functions.
Injected exception rate (Expt.) and the delivered rate of exceptions at the different
context counts (columns 4 to 11), for the two types of recovery (Rcvry.) systems.
oo indicates that the program failed to complete.
Barnes-Hut recovery overheads over the baseline execution time (listed under
context-count) at different exception rates and context counts. Total tasks in
the program are listed under the name. BR(e) = Base Restart, SR(e) = Selective
Restart, at e exceptions/s. Total exceptions at the given rate are listed on the bars.
Black-Scholes recovery overheads over baseline execution time (listed under
context-count) at different exception rates and context counts. Total tasks in
the program are listed under the name. BR(e) = Base Restart, SR(e) = Selective
Restart, at e exceptions/s. Total exceptions at the given rate are listed on the bars.
Pbzip2 recovery overheads over baseline execution time (listed under context-
count) at different exception rates and context counts. Total tasks in the program
are listed under the name. BR(e) = Base Restart, SR(e) = Selective Restart, at e
exceptions/s. Total exceptions delivered are listed on thebars.
Swaptions recovery overheads over baseline execution time (listed under context-
count) at different exception rates and context counts. Total tasks in the program
are listed under the name. BR(e) = Base Restart, SR(e) = Selective Restart, at e
exceptions/s. Total exceptions at the given rate are listed on the bars.

RE recovery overheads over baseline execution time (listed under context-count)
at different exception rates and context counts. Total tasks in the program are
listed under the name. BR(e) = Base Restart, SR(e) = Selective Restart, at e
exceptions/s. Total exceptions at the given rate are listed on the bars.

156

158

164

168

177

179

180

181

183

184

185

186

186

187

Figure 8.15

Figure 8.16

Figure 8.17

Figure 8.18

Figure 9.1

Table 9.2

Table 9.3

Histogram recovery overheads over baseline execution time (listed under context-
count) at different exception rates and context counts. Total tasks in the program
are listed under the name. BR(e) = Base Restart, SR(e) = Selective Restart, at e
exceptions/s. Total exceptions at the given rate are listed on the bars. Overheads
larger than the graph scale are listed on the bars, followed by total exceptions; co
exceptions =>oco overheads.
Exception-tolerance of Base Restart and Selective Restart at different exception
rates for Pbzip2 and Swaptions at 20 contexts.
Exception-tolerance of Base Restart and Selective Restart at different exception
rates for Pbzip2. (a) BR Pbzip2, from 1 to 24 contexts. (b) SR Pbzip2, from 1 to 24
contexts. e
Exception rate at which Pbzip2 does not complete, for contexts 1 to 24.

Categorizing multithreading programming abstractions. Proposals are grouped
based on the programming model they use and the execution characteristic of
themodel.

Key differences between Parakram and other multiprocessor programming meth-
ods based on program execution properties.

Ordered proposals and their key capabilities. (1) Proposals; (2) Compiler in-
dependence; (3) Dependence analysis; (4) Dynamic data structure updates in
concurrent UEs; (5) Data-dependent datasets. (6) Nested UEs; (7) Task depen-
dence types: conservative for nested tasks, restricted for nested tasks, or limited
in general; (8) Dependence granularity between nested UEs; (9) Granularity
of UE coordination; (10) Dependence management. (11) Runtime support for
exceptions and I/0O. Capabilities of Multithreading are listed for comparison.

xiii

188

189

189
190

193

194

198

XV

Abstract

Conventional wisdom says that to scale a program’s performance on multiprocessors, designers
must explicitly exploit parallelism by discarding the sequential order between computations. Unfor-
tunately, the resulting nondeterministic execution makes systems difficult to program and operate
reliably, securely, and efficiently. Unless made easier to use, multiprocessor computing systems
may remain underutilized.

Proposals to improve multiprocessor usability largely address the individual aspects of system
use affected by the nondeterministic execution, without addressing the nondeterminism itself.
Hence these proposals may have limited utility. Moreover, they can be complex and limit perfor-
mance.

To improve system usability, this dissertation proposes parallel, but semantically ordered ex-
ecution of ordered programs on multiprocessors. Ordered programs are sequentially expressed
parallel algorithms composed for multiprocessors. Parallelism from these programs is reaped by
performing dataflow execution of computations. To maximize the parallelism, the computations
may also execute speculatively when the dataflow between them is temporarily unknown. Despite
the concurrency and speculation, the execution is managed to make the computations appear to
execute in the program order, eliminating nondeterminism. This approach improves usability by
eliminating nondeterminism, and yet exploits the available parallelism.

But, can an ordered approach, ostensibly antithetical to parallelism, effectively exploit parallelism
and simplify system use in practice? To answer this question, the approach is applied to two of the
more complex aspects of system use: programmability and reliability mechanisms.

In this dissertation we design runtime systems to implement, apply, and test the ordered
approach. The runtimes provide a C++ programming interface to develop ordered programs, and
libraries to parallelize their exception-tolerant execution. The runtimes were used to express a range
of parallel algorithms as ordered programs. The ordered approach matched the explicitly parallel
programs in expressing algorithms, with the added benefit of simplified programming. In almost
all cases it also yielded comparable performance. However, on certain “highly nondeterministic”
algorithms, it may underperform, presenting a choice to trade off performance for simplicity in such
cases. The ordered approach also simplified recovery from exceptions, such as transient hardware
faults. Its ability to handle exceptions scaled with the system size, where the conventional method
failed altogether.

Introduction

I suppose that we are all asking ourselves whether the computer as we now know it is here to stay,
or whether there will be radical innovations. In considering this question, it is well to be clear
exactly what we have achieved. Acceptance of the idea that a processor does one thing at a time-at
any rate as the programmer sees it—made programming conceptually very simple, and paved the
way for the layer upon layer of sophistication that we have seen develop. Having watched people
try to program early computers in which multiplications and other operations went on in parallel,
I believe that the importance of this principle can hardly be exaggerated.

— Maurice WiLkEs (1967)

By discarding order between computations, nondeterministic parallel programs may yield
performance, but complicate system use. Programs with implicitly ordered computations can
do better. Respecting the implicit order during their execution can simplify system use. Despite
the implicit order, the execution can be orchestrated to be parallel without compromising the
performance in all but a few cases.

1.1 Improving Multiprocessor Usability is Important

Computers have proliferated almost all walks of life today, making information economy the
backbone of modern society. The proliferation has been fueled by the phenomenal advances in
hardware and software. Designers developed progressively more powerful computers to solve
increasingly more complex problems. Successful solutions, in turn, drove further proliferation,
creating a demand for even more powerful computers to solve new problems. Sustaining this cycle
of innovation is important for the continued growth of the information economy and society.

In our view, a key to this virtuous cycle was the relative ease of using computers. We believe
that the intuitive, sequential view of a program’s execution on computers is central to their usability.
Computers present a consistent sequential view to users, abstracting away the complex hardware-
software mechanisms used to speed up the execution, or to enable new system capabilities (e.g.,
resource management). The sequential view put the increasing capabilities of computers within
the reach of more and more programmers. It simplifies programming, simplifies the analysis and
design of efficient systems, and promotes overall productivity.

A confluence of recent and emerging trends, however, threatens the above cycle of innovation.
Multiprocessors have replaced uniprocessors in almost all devices, ranging from mobile phones
to cloud servers. Although multiprocessors provide more computational power, unlike before,
the computational power is no longer within the easy reach of programmers. Programmers now
have to explicitly tap it, by developing parallel algorithms, expressing the algorithms as parallel

programs, and managing the program’s execution for the desired efficiency. Programmers also have
to account for the target platform’s artifacts, e.g., the memory consistency model. Unfortunately, for
various well-known reasons, parallel programming has proven to be challenging to both humans
and tools alike [180].

Looking ahead, future systems may further complicate matters by failing to execute programs
as intended. Designers are striving to utilize compute, energy, and power resources more and more
efficiently. To improve efficiency, they are proposing dynamic techniques to scale voltage [81, 82], op-
erate hardware close to margins [188], compute approximately [17, 65, 66, 160], share resources[24],
and provide only best-effort resources [3, 60], among others. Further, ultra-deep submicron semicon-
ductor technology is rendering computer components increasingly unreliable[28, 99]. As a result,
programs will be frequently exposed to dynamically changing, unreliable, potentially insecure, and
imperfect resources. Consequently, programs may not execute without interruptions, or complete,
or execute efficiently, or produce correct results. Moreover, growing system sizes will make them
more vulnerable to such vagaries.

In summary, the evolving technology trends will have the following implications for future
computers. Multiprocessors will be ubiquitous. Programmers will be required to develop parallel
algorithms. But developing and deploying parallel programs will be complex. Multiprocessors
may not automatically scale their performance. Worse, due to techniques used in these systems,
programs may frequently produce erroneous results or not run to completion. Yet, users will
desire systems that are easy to program, on which programs complete, efficiently, with the desired
accuracy, and with minimum intervention. To do so, making the program’s execution easy to
manage and analyze will become important. Unless their usability is improved, multiprocessors
may remain underutilized, slowing the cycle of innovation.

1.2 The State of the Art is Unsatisfactory

Although the challenges posed by the above multiprocessor trends impact different aspects of
system use, ranging from programming to reliability, as we shall see in Chapter 3, the execution
characteristic of the program is key to them all. The execution characteristic of parallel programs,
in turn, is influenced by the programming abstraction.

Since Gill first anticipated and coined the term Parallel Programming in 1958 [75]', researchers
have proposed more than three hundred parallel programming abstractions®. They have primarily
focused on simplifying programming.

The prevailing and predominant approach is Multithreading. The popular APIs, Pthreads [1],
OpenMP [48], MPI [70], and TBB [151] are some examples of this approach. Multithreading
approaches rely on multithreaded programs. Multithreaded programs do not specify a static total
order on their computations, i.e., any order of execution of parallel computations may be acceptable.
The lack of order leads to nondeterminism.

lIn’ceres’cimgly, in the addendum to the same paper,].A.Gosden immediately predicted the problems parallel pro-
gramming might create in operating computers—issues that we address in this dissertation!

2 We do not include work on auto-parallelization of sequential programs in this discussion, due to its limited success
in exploiting reasonable degrees of parallelism in algorithms for non-scientific problems [128].

Multithreading gives programmers the utmost freedom to express and exploit parallelism,
setting the theoretical benchmark for parallel processing. But Multithreading puts the entire burden
to exploit the parallelism on the programmer. Programmers have to explicitly coordinate the
execution, while accounting for the underlying system architecture. Despite the general lack of
order, on occasion programmers have to enforce order, e.g., between dependent computations.
Nondeterminism and the need for explicit coordination complicate reasoning about the program’s
dynamic execution, managing it, and developing correct programs. Multithreaded programming
can be onerous [109, 180]. Although some proposals simplify some aspects of multithreaded
programming (to be seen in Chapter 9), overall, it makes multiprocessor systems difficult to use.

To overcome the challenges nondeterminism poses, researchers have tried to eliminate it in
recent proposals. Deterministic approaches eliminate nondeterminism by introducing determinism
during the execution. Like Multithreading, some Deterministic approaches start with multithreaded
programs. Although the multithreaded program defines no static order, Deterministic approaches
introduce a partial dynamic order between the computations by ordering accesses to a given
datum. This order is repeatable, and hence partially eliminates the nondeterminism. Determinism
can potentially make the execution easier to reason, possibly simplifying system use. However,
Deterministic approaches are not entirely satisfactory solutions. Some Deterministic approaches can
penalize the performance [18, 22, 135, 137], sometimes severely, and may require complex hardware
support [51, 52, 97]. Moreover, the introduced order can be arbitrary and system-specific, and hence
it is unclear how effective they are in practice.

Other deterministic approaches enforce a user-provided order, by using ordered programs [2, 9,
34,141,154,179, 183, 190]. Contrary to multithreaded programs, ordered programs specify an order
on computations, either implicitly [9, 141, 154, 183] or explicitly [2, 34, 179, 190]. These proposals also
use the order to automate the parallelization, relieving the programmer from explicitly coordinating
the execution. Since the order is derived from the program, it is portable and more intuitive.
However, whereas some proposals perform well on some programs [9, 141], others have shown
otherwise on other programs [88]. Further, our analysis shows that these approaches may not
match multithreaded programs in expressing and exploiting parallelism. Moreover, the order,
although not arbitrary, is deterministic only for accesses to a given program variable, but not
between variables. As we show in Chapter 3, in practice deterministically ordering accesses to
individual program variables alone is insufficient to simplify system use. For all of these reasons,
deterministic approaches have not found a broad acceptance.

In short, although multiprocessor programming has received much attention, we believe that
no proposal is satisfactory. Issues other than programming, e.g., efficiency and reliability, that arise
in operating parallel systems, have received only nominal attention. Solutions for them are largely
based on the prevalent multithreaded programs. Nondeterminism of multithreaded programs
complicates their design, but alternatives are limited as long as multithreaded programs are used.

1.3 Semantically Ordered Parallel Execution

We observe that the state-of-the-art multiprocessor programming approaches have moved from non-
determinism to determinism, making the program’s execution less intractable to reason. Although
a step in the right direction, we believe that ultimately they do not go far enough.

[Ordered Multiprocessor Program]

[Execution Manager]

Multiprocessor System

Figure 1.1: Logical view of the proposed approach, Parakram. Parakram relies on sequentially
expressed parallel algorithms, i.e., ordered multiprocessor programs, and introduces an Execution
Manager between the program and the system. The Execution Manager orchestrates the program’s
parallel execution, while providing an ordered view.

Drawing lessons from the past, especially from the factors that have contributed to computer
proliferation, we argue for the elimination of all nondeterminism from the program’s execution
for a given input. We note that modern microprocessors execute instructions in parallel and yet
provide a precise-interruptible, sequentially ordered view of the execution. The execution itself
may be parallel, but it appears to be totally ordered.

Sequential execution has several desirable properties, which arise because computations execute,
or at least appear to, one at a time in a specified order. For a given input (which may arrive asyn-
chronously during the execution), the flow of execution and the results it produces are naturally
repeatable, intuitive to reason, and amenable to intermediate interruptions. These properties make
it easy to analyze and manage the program’s execution. Almost all aspects of system use rely on
managing the program’s execution in one form or another. For example, debugging a program
requires stopping and resuming the execution from desired points, as does fault tolerance. By
discarding order, multithreaded programs programs lose repeatability, intuitiveness, and inter-
ruptibility. Worse yet, they may admit conditions such as data races and deadlocks, which further
compound the complexity.

Therefore, analogous to sequential execution, we propose ordered execution of multiprocessor
programs to obtain the concomitant properties. The challenge is to then achieve ordered execution,
but without compromising the parallelism.

1.3.1 Parakram: Ordered Programs, Ordered Execution

In this dissertation we take a broader view of how programs might be composed, executed, and
managed on multiprocessor systems.

We start from ordered programs and then obtain a parallel, yet ordered execution. We envision
that programmers will develop parallel algorithms, but express them sequentially, as ordered
programs. Ordered programs will express computations, but not explicitly coordinate their parallel
execution. Although developed for parallel execution on multiprocessors, they will imply a total

order on computations. The order will be implied through the program’s text, analogous to the
canonical sequential programs.

To orchestrate the program’s envisioned execution, we interpose an Execution Manager between
the program and the system, as depicted in Figure 1.1. The Execution Manager, oblivious to
the programmer, will dynamically parallelize the execution, while respecting the implicit order.
Importantly, the Execution Manager will abstract away the system from programmers. It may
be implemented in hardware, or software, or in some combination of the two, although we have
pursued software designs in this dissertation. No hardware modifications are needed. We call this
approach, Parakram , and also interchangeably refer to it as the “ordered approach”.

The ordered approach at once addresses multiple issues in multiprocessor programming. Its
execution is deterministic, amenable to interruptions, and is intuitive since the order is derived
from the program itself. Further, it minimizes the programmer’s burden of explicitly coordinating
the parallel execution. It leaves the programmer to deal with only the parallel algorithm, and not
its dynamic execution, simplifying programming.

Although appealing, the ordered approach will be viable only if it matches the established
multithreaded programs in expressing and exploiting parallelism. Introducing order where one is
presumably not needed, raises the following questions: Would order obscure the parallelism and
hinder performance of parallel algorithms? Can all types of parallel algorithms be expressed as
ordered programs? Can the artificial ordering constraint in such programs be overcome to discover
the parallelism automatically?

To answer these questions we analyzed and distilled the key parallelism patterns that arise
when solving problems using multithreaded programs. We ensured that Parakram permits all
commonly used parallelism patterns to be expressed programmatically in ordered programs, and
realized during the execution. Parakram comprises two logical components. The first is a task-based
programming abstraction to express annotated, arbitrary parallel algorithms. The second is an
execution model to effect their parallel execution.

Parakram’s execution model, implemented in the Execution Manager, borrows the principles
from the widely successful out-of-order (OOO) superscalar processors [172] to exploit parallelism
on multiprocessors. Parakram’s operations are logically depicted in Figure 1.2. It retains the ordered
view of programs, but treats a processor (or an execution context) as a functional unit. Instead
of instructions, coarser-grained tasks @ form units of computations. Inter-task dependences are
identified on the basis of memory locations (that hold data) accessed by the tasks, instead of registers
@. Dataflow schedule is followed to execute the tasks @.

Merely scheduling tasks in dataflow order results in deterministic, but not ordered, execution.
To obtain an appearance of a total order, we use a mechanism analogous to precise-interrupts
in microprocessors. We permit tasks to execute in parallel, but construct a precise architectural
state, after the fact, when needed, to achieve globally precise-interruptible execution. In such an
execution, tasks only up to the desired point in the program, and none beyond, appear to have
completed. Tasks and the state that they modify are tracked using structures analogous to the
Reorder (ROB) and History Buffers in microprocessors @ [171]. The architectural state reflective of
the program’s execution up to a given task, or even up to an instruction, can be constructed using
this information. Globally precise-interruptible execution can be paused and resumed from any
point in the program.

Ordered Program

0

Unravel Tasks

v

Analyze a, Track Task
Task Dataflow | Order and State

No
Execute Task in Execute Task Unroll a,
Dataflow Order Speculatively Execution

Incorrect Yes
Order?

No

Release]
Tasks’ State

&
S

Figure 1.2: A logical flowchart of Parakram’s operations.

When Parakram cannot accurately analyze the inter-task dataflow O, for a variety of reasons
that we shall see in Chapter 6, it resorts to dependence speculation to maximize the parallelism
opportunities @. When precise dataflow between tasks in unknown, Parakram speculates that
there is none, and executes the tasks without waiting to resolve the dataflow. However, speculation
can lead to execution in the wrong order. If found to be so subsequently @, Parakram rolls back
and rectifies the execution @, similar to misspeculation handling in OOO processors. To support
speculation, Parakram conveniently relies on global precise-interruptibility.

Although concurrent, possibly even speculative, Parakram execution will be ordered®. Whether
inspected at the end or intermediately, the execution will appear to have followed the defined
program order.

Parakram’s execution model has some similarities with Thread-level Speculation (TLS) [150,
174]. TLS proposals typically exploit parallelism from sequential programs, as they encounter
loop iterations and functions during the execution. By contrast, Parakram proactively seeks and
exploits higher degrees parallelism from a much larger window of tasks in programs composed for

3Formally defined in Chapter 2.

multiprocessors.

I/0 in a parallel system can pose challenges since it is often required to be performed in a
strict order amidst the otherwise concurrent execution. Multithreading approaches often require
programmers to explicitly enforce the order. By contrast, ordered execution naturally simplifies
I/0 operations.

Any method applied to parallel systems must also tackle scalability. At relatively larger scales,
different system sizes can warrant different designs and implementations. This dissertation’s
primary focus is to test the viability of what is essentially a new approach. Hence in this work we
apply Parakram to shared memory multiprocessor systems of ubiquitous sizes of tens of processors
or threads. Lessons learnt from this exercise can then be useful in applying the approach to larger
systems, an aspect we touch upon later in Chapter 10.

To evaluate Parakram we developed a software runtime prototype in the form of a C++ library.
The library provides a small set of APIs to develop imperative ordered programs in C++, although
the Parakram principles are equally applicable to functional programming languages. The library
also implements the Execution Manager. We describe the library’s design and implementation in
this dissertation.

The library applies the proposed approach in terms of the prevalent object-oriented program-
ming. The library raises the level of abstraction in the program, viewing functions as tasks and
objects as data. Programmers annotate object-oriented programs with hints identifying potentially
parallel methods, i.e., functions, and the objects they compute. The Execution Manager leverages
these hints to apply its execution mechanisms. Not all programs are suitably-written. The library
provisions to handle such cases gracefully.

Applying dataflow, dependence speculation, and globally-precise interrupts at the scale of
multiprocessors presented unique implementation challenges. In response, the Execution Manager
implements a range of mechanisms. The Manager is a parallel runtime system, modeled after
runtimes like Cilk [71] and PROMETHEUS [9], but enhanced to meet its aggressive objectives.
Its design is distributed and asynchronous. A distributed design avoids potential centralized
bottlenecks, and the asynchronous design enables the OOO dataflow execution. The Manager
manages the program’s tasks and their state to enable speculation and globally-precise interrupts. It
employs high performance non-blocking data structures and mechanisms to enable the concurrency.
The non-blocking data structures were drawn from a mix of proposals [68, 91, 167] and adapted to
suit our design.

We used the Parakram library to develop ordered programs spanning the range of common
parallelism patterns. We evaluated how well Parakram programs can express and exploit parallelism.
Developing ordered programs was easier than the multithreaded programs. Experiments on
stock multiprocessor systems showed that ordered programs can express the parallelism idioms
that are commonly found in multithreaded programs. Experiments showed that further, the
artificial constraint of order can be overcome to exploit the parallelism. Except in the cases of
certain algorithms, Parakram matched the performance of multithreaded programs, written using
Pthreads [1], OpenMP [48], Cilk [71], or TL2 software TM [54].

In two cases Parakram programs may underperform in comparison to the multithreaded pro-
grams. The first is when the algorithm uses very small task sizes. Parakram needs tasks to be of a
minimum size to achieve speedups, which can be slightly higher than the size needed in primitive

APIs like Pthreads. Parakram’s specific implementation influences the minimum needed size. The
second case arises when the algorithm is “highly nondeterministic”, i.e., in which tasks are predom-
inantly independent of each other, and traverse the data structures that they compute, e.g., trees.
Highly nondeterministic algorithms pose a more basic limitation to the ordered approach. They
can constrain the parallelism that an ordered approach can exploit in comparison to Multithreading.
In such cases, the ordered approach presents a choice to trade off performance for productivity.
However, at large, order need not constrain parallelism. Interestingly, the ordered approach can
exploit parallelism in some cases more naturally than the more explicit Multithreading approach.

1.3.2 Applying Ordered Execution to Simplify Other Uses

Several issues besides programming, such as security breaches, hardware faults, exception condi-
tions, and inefficiencies, arise when operating computing systems. Solutions to these issues become
complex in multiprocessor systems due to the parallel program’s execution characteristics. Ordered
execution can help simplify the design of these solutions. For example, elsewhere we have applied
ordered execution to improve system efficiency [177, 178].

In this dissertation we explore how ordered execution simplifies yet another use-case, recovering
from frequent exceptions. We treat events that alter the prescribed flow of a program’s execution
as an exception. For example, such events could arise due to hardware faults or OS scheduling
interrupts to manage resources. Exceptions may also be program-generated, e.g., due to divide-
by-zero errors, or be programmer-induced, e.g., due to debugging breakpoints. In future systems,
as designers introduce techniques to compute approximately, scale voltage aggressively, schedule
tasks in heterogeneous system, etc., we believe that exceptions will become the norm.

The conventional checkpoint-and-recovery (CPR) method is commonly used to recover from
exceptions in the prevalent multithreaded programs [62]. CPR periodically checkpoints the pro-
gram’s state. To recover from an exception, it restarts the program from a prior error-free checkpoint.
A plethora of hardware [5, 134, 145, 176] and software [32, 33, 56, 114, 120, 153, 189] approaches,
striking trade-offs between complexity and overheads, have been proposed in the literature. Our
qualitative analysis shows that their overheads will be too high to handle frequent exceptions. In
fact, they lack the scalability needed for future, increasingly larger, exception-prone systems.

We apply the proposed globally precise-interruptible execution to simplify recovery from
exceptions. We introduce a notion of selective restart, in which not all computations, but only those
affected are restarted. Selective restart exploits the dataflow tasks in Parakram programs to localize
the impact of exceptions to a minimum number of program’s computations. Minimizing the impact
of exceptions on the program results in a scalable design. Ordered execution also helps to combine
checkpointing and log-based approaches to minimize the recovery overheads.

We incorporated the exception recovery capability in the Parakram runtime prototype. It can
uniquely handle exceptions in the user code, third-party libraries, system calls, as well as its own
operations.

We evaluated the Parakram prototype by applying it to recover from non-fatal exceptions
in standard parallel benchmarks. Experiments showed that selective restart outperformed CPR.
Importantly, Parakram withstood frequent exceptions, and scaled with the system size, whereas the
conventional method did not, validating our qualitative analysis.

1.4 Dissertation Outline

In Chapter 2 we define the common terms used in the rest of the dissertation. Chapter 3 presents
the properties of a multiprocessor program’s execution and their impact on the system’s usability.
It describes properties of ordered execution and how they can simplify system design. Chapters 4,
5, 6, and 7 present the Parakram approach. In Chapter 4 we present our approach to multiprocessor
programming, and compare it with the prevailing Multithreading approach. This chapter expands
on our earlier work [78]. The chapter summarizes the overall Parakram approach to programs
and their execution. Chapter 5 analyzes the common patterns that arise in parallel algorithms. It
presents the Parakram APIs, which admit similar patterns in ordered programs. A few examples of
Parakram programs are also presented and examined. Parts of this chapter have been submitted to
PACT’15 [77]. In Chapter 6 we describe Parakram’s execution model and the various techniques it
employs, dataflow execution, speculation, and globally-precise interrupts, to exploit the parallelism.
The details of the dataflow execution [76] and the principles of globally-precise interrupts [80]
have been presented at other venues, whereas the details on speculation are currently in the same
submission to PACT’15 [77]. Chapter 7 evaluates the expressiveness and performance implications
of the ordered approach. We explore its benefits and limitations. In Chapter 8 we apply ordered
execution to simplify exception recovery. We analyze the performance implications of designs
based on nondeterministic and ordered execution. Related work on exception handling is also
summarized. Some aspects of exception recovery, although applied in the context of multithreaded
programs, but germane to the discussion in this dissertation, were presented at PLDI'14 [80]. Next,
we compare and contrast our work with the large body of work on multiprocessor programs, in
Chapter 9. Chapter 10 concludes with our final thoughts and future directions.

11

Terms and Definitions

Some common terms related to multiprocessor algorithms, programs, and execution have been
used inconsistently in the literature, and on occasion with inconsistent definitions. In this chapter
we state and define the main terms used in this dissertation. We have tried to be consistent with as
much existing literature as possible in our use.

Solving a problem on a multiprocessor system requires developing a parallel algorithm, ex-
pressing the algorithm as a suitable multiprocessor program, and effecting the program’s parallel
execution. The characteristics of algorithms, programs, and the execution are the focus of this disser-
tation. Although the concepts implied here are applicable to programs written in any programming
language in general, assume imperative languages for the discussion.

2.1 Algorithms

To solve a problem at hand, the programmer first develops an algorithm. Constructing algorithms
is not our focus, but their characteristics do impact our work. To take advantage of multiprocessors
the algorithm must be parallel, i.e., computations in the algorithm must be amenable to parallel
execution. Even if an algorithm is parallel, typically some computations are performed in a specific
order, e.g., I/O, or the initialization before the algorithm’s main parallel kernel, or the final steps
after the kernel.

An algorithm is nondeterministic if it solves a problem by performing computations in its
main kernel in no specific order. For example, the algorithm that finds the shortest path between
a given source node and all other nodes in a graph by traversing the graph no specific order is
nondeterministic [88]. The same problem can be solved by the well-known Dijkstra’s algorithm by
performing at least some traversals in a specific order (to be more efficient) [88].

2.2 Programs

Definition 2.1 (Instruction). An instruction is a primitive operation performed by a machine.

Definition 2.2 (Statement). A statement is the smallest standalone element that expresses some action,
as is commonly understood in a programming language.

Assume that a statement translates into an instruction, or an ordered sequence of instructions.

Definition 2.3 (Ordered Program and Program Order). A program is ordered if it statically specifies
a total order on its statements. The total order is also called the program order.

!Others have termed what we call nondeterministic algorithms as unordered [88, 142].

12

Ordered programs may statically imply the order through the program’s text, as sequential
programs do. We shall discuss ordered multiprocessor programs in more details in the following
chapters.

In practice, programs that are not ordered are seldom totally unordered, but are often partially
ordered, i.e., at least some statements, e.g., within a task, or a function, or parts of the algorithm as
stated above, are performed in order. The conventional multithreaded programs and programs
in Deterministic proposals that may explicitly specify partial order between statements (e.g., Intel
CnC programs [34]), are examples of such “unordered” programs.

2.3 Execution

Definition 2.4 (Strictly Sequential Execution). Given an ordered program, its strictly sequential
execution is the sequence in which the dynamic instances of its instruction are performed as per the static
order.

Strictly sequential execution results in a totally ordered sequence of instructions.

Even if a program does not specify a total static order, some (legal) order can be enforced on its
execution to obtain a totally ordered sequence of instructions, as can be done for multithreaded
programs [80].

Definition 2.5 (Computation). A computation is an instruction or any contiguous sequence of instruc-
tions performed by a program on a single execution context, where a dynamic instance of an instruction can
belong to one and only one computation.

No two computations can overlap. Once a computation is defined, its definition cannot change
in a particular discussion. Although the definition admits computations comprising arbitrarily long
sequences of instructions, computations corresponding to logical structures in the program, e.g.,
statements, basic blocks, logical group of statements that operate on a program variable, functions,
or tasks, are more purposeful.

A totally ordered sequence of instructions may also be viewed as a totally ordered sequence of
computations for some definition of computations.

Definition 2.6 (Point). A point refers to a computation in a totally ordered sequence of computations.

Definition 2.7 (Precede). A computation performed before a particular computation in a totally ordered
sequence of computations is said to precede the particular computation.

Definition 2.8 (Succeed). A computation performed after a particular computation in a totally ordered
sequence of computations is said to succeed the particular computation.

A program’s execution may be nondeterministic, deterministic, or ordered.

13

Nondeterministic execution is as is generally understood, one in which a program variable
may not be assigned the same sequence of values in different executions with the same input.
Nondeterministic execution is pertinent to multithreaded programs, and is perhaps not meaningful
in the context of ordered programs.

Definition 2.9 (Deterministic Execution). A program’s execution is deterministic if each program
variable is assigned the same sequence of values in any execution with a particular input?.

The input to the program may arrive during its execution. Deterministic execution orders
the computations that access a variable, thus partially ordering the program’s computations.
Kendo [137], CoreDet [18], Grace [22], Calvin [97], and others perform deterministic execution
of multithreaded programs. They impose an implementation-specific sequence on the execution.
Jade [154], SMPSs [141], and PROMETHEUS [9] perform deterministic execution of ordered pro-
grams. They derive the sequence from the program’s text.

Definition 2.10 (Ordered Execution). Given a program of totally ordered computations, the program’s
execution is ordered if at any point in the execution, the architectural state reflects that all computations that
precede the point have completed and none others have started.

Ordered execution is the main objective of our work. Note that in the ordered execution,
computations need not be performed in the given order, but the architectural state must provide
an appearance as if they did. Ordered execution appears to produce the same totally-ordered
sequence of assignments to the program variables in every run for an input. Ordered execution is
also deterministic.

Note that the execution type is distinct from the algorithm type despite the use of the common
term nondeterministic to describe them. A nondeterministic algorithm may be expressed as a
multithreaded program, whose execution may be nondeterministic. A nondeterministic algorithm
may also be expressed as an ordered program, but with the added artificial, ordering constraint. Its
execution may be ordered. When the term is used, its meaning will be evident from the context,
otherwise it will be explicitly qualified.

ZKarp first defined this property and called it determinate [101], but the term deterministic has gained currency in
the literature.

15

A Case for Ordered Execution of
Ordered Programs

Everything that’s worth understanding about a complex system, can be understood in terms of
how it processes information.

— SeTH LLoYD

The properties of a program’s execution on a system influence how easy or difficult the system
is to use. In this chapter we identify key desirable properties and study their impact on the system’s
programmability and usability. Nondeterministic execution lacks these properties whereas ordered
execution naturally exhibits them.

Programmability. Complexities in composing the multithreaded program, arising chiefly due to
the difficulties in analyzing the program’s nondeterministic execution, are well understood and
documented [118, 181]. We will briefly touch upon the related issues and present how ordered
programs and their ordered execution can address the issues.

Usability. When programs are being developed and are eventually deployed, various artifacts
can prevent the programs from functioning as intended. These artifacts can arise from within
the program, e.g., software bugs, or from the system, e.g., hardware faults. Unless addressed
adequately, they can adversely affect the system’s usability. For example, bugs in parallel programs
are known to have been fatal in the extreme [112]. Frequent faults can prevent programs from
completing execution [35, 36].

To tackle these artifacts and ensure that programs function as desired, designers often use
design-assist solutions. Design-assist solutions are tools and procedures used to identify the
source of the artifacts, or recover from them, or circumvent them. Design-assist solutions often
become an integral part of the program development process and the system design. Debugging
procedures and fault tolerance mechanisms are examples of design-assist solutions. As we describe
in Section 3.1, some solutions may rely on managing the execution, e.g., to recover from faults, while
others may require reasoning the execution, e.g., to find bugs. The program’s execution properties
influence the processes of managing and reasoning, and hence also the implementations of the
design-assist solutions, as we shall see in this chapter.

We examine the properties of the conventional sequential execution, and examine how they
simplify the management and analysis, in Section 3.2. By contrast, nondeterministic execution
loses these properties, which makes managing and reasoning the execution intractable. Hence
multithreaded programs pose considerable challenges to implement the design-assist solutions
(Section 3.3). Deterministic execution can help matters, but is still inadequate (Section 3.4). Based

16

on this study of execution properties, we make a case for ordered execution of ordered programs.
Subsequently in the dissertation, we explore the impact of nondeterministic and ordered execution
on two of the more complex aspects of system use, program development and exception handling.

3.1 Design-assist Solutions

Design-assist solutions, which help ensure that programs execute as intended, although varied in
design and execution scenarios, rely on three basic common operations. They rely on the ability
to pause the execution at a precisely desired point, possibly analyze the execution, and resume it
thereafter. These operations may be periodically repeated at intermediate points during a single
run of the program, or across multiple runs. We briefly describe how these operations are used in
practice, and then turn our attention to how the properties of the program’s execution affect them.

Debugging and testing. Almost all non-trivial software development undergoes debugging and
testing.

Programs are typically debugged by examining and analyzing the state modified individually
or collectively by computations [10]. The control-flow followed during the execution is also often
analyzed. The observed execution is compared with “expected” results, which are often precom-
puted, e.g., by analyzing the program’s text. Reasoning about the execution also involves similar
steps.

In the debugging process it is customary to examine the state at intermediate points during
the execution, as well as after the program completes. Pausing the execution, often by setting
breakpoints, inspecting the state, and resuming the execution are critical to this process. Multiple
iterations of this process, on repeated executions, to hone in on a bug, is common.

Similar to debugging, procedures to test software compare intermediate and final results created
by the program against known “good” results [61]. When comparing intermediate results, as the
program executes, it is repeatedly paused (and resumed) to record and compare the state.

Resource Management. Shared systems, which are becoming prevalent with the growing popu-
larity of cloud systems, need to ensure that all users receive their promised share of computational
resources. In this process systems may periodically schedule and deschedule programs for execution,
which essentially requires pausing and resuming the execution.

In some instances, like Amazon’s EC2 [60] and modern mobile platforms [3], the system may
simply terminate the program without rescheduling it. Even in such cases the user may want to
resume the execution at another time, possibly on another system, without discarding the already
completed work. This process is also akin to pausing and resuming the execution.

Fault Tolerance. System hardware, which is becoming increasingly unreliable, can suffer from
transient and permanent faults, potentially corrupting or crashing programs [28, 35, 36, 99]. Yet it
will be desirable that programs resume and complete as if they were not affected.

Tolerating faults requires detecting faults and then recovering from their effects [175]. One
approach to detecting faults is to run temporal or spatial replicas of a program and periodically

17

compare the intermediate results of the replicas. Different results of the same computations, or of
the entire program, at identical intermediate points across the replicas indicates presence of faults.
This process involves periodically pausing (and resuming) the execution.

To recover from faults, a common approach is to periodically checkpoint a program’s results
at intermediate points [175]. When a fault is detected, the system “rolls” back the execution to a
past known error-free checkpoint and resumes the execution, discarding the affected work. The
checkpointing process pauses and resumes the execution periodically. The recovery process also
relies on resuming the program, although from a different (past) point.

Efficiency. An increasingly important aspect of operating computers is executing a program
efficiently on the system. In the case of multiprocessor programs, merely exposing parallelism
does not guarantee efficient execution. Efficient execution requires continuously regulating the
parallelism [177, 178]. Regulating the program’s parallelism requires pausing and resuming parts
of its execution.

Security. Interconnected and shared systems are often vulnerable to malicious manipulations.
Clients who use third-party systems to conduct transactions may desire audit logs, to hold the
system accountable in case of improper operations.

To analyze security breaches [15, 57] or untoward manipulations [83], forensic analysis of a
program’s execution periodically pauses and resumes the execution to analyze it for unexpected
events. The execution may be compared with precomputed expected results, or against a spatial or
temporal replica.

Other Cases. Pausing, analyzing, and resuming a program’s execution is a common idiom that
also arises in other aspects of system use. For example, emerging proposals like approximate
computing [17], near-margin operation of hardware[81, 82, 113, 188], etc., can affect a program’s
execution by producing erroneous results or crashing programs. These proposals hold promise,
but if they hinder the program’s functioning, their utility will be limited. If ways can be found to
recover from their effect and produce acceptable results, they may meet better success. Design-assist
solutions, similar to those needed to tolerate hardware fault, can help these proposals.

An execution that is interruptible, deterministic, and intuitive, can prove beneficial in all of the above
scenarios. A program’s execution is interruptible if it can be suspended at a desired point to create
a consistent architectural state from which the program can be resumed to complete correctly. The
execution is deterministic if it generates the same results in every run for an input (Definition 2.9).
The execution is intuitive if the unique sequence of assignments to each program variable can be
predicted only from the program and the input. If the execution is interruptible, deterministic,
and intuitive at any given point during the execution, then pausing, analyzing, and resuming the
execution can be greatly simplified.

The ability to interrupt the execution, and knowing precisely what results to expect simplifies
program analysis, which is needed for debugging, testing, forensics, and fault detection. Determin-
istic execution and intuitiveness help establish unique expected results based only on the program
and the input. Interruptibility, in addition to pausing the program, also ensures that once the

18

program resumes, its integrity will be preserved. All of these aspects simplify the implementation
of the design-assist solutions. As we expound with the help of the conventional sequential program,
order naturally yields these properties.

3.2 Sequential Execution

Consider the sequential execution of programs on a microprocessor. We present the properties of
sequential execution to highlight the difficulties designers face when these properties are lost.

The dynamic sequence of computations of a sequential program reflects the order specified
in the program!, where a computation may be a function, or a basic operation, or any arbitrarily
long contiguous sequence of operations. We introduce the notion of four properties, Sequentiality,
Atomicity, Flow-control independence, and Exclusion, acronymed SAFE, which the sequential
execution exhibits even when the execution is parallel. We define them as follows:

1. Sequentiality: Sequentiality is ordered execution of ordered programs (Definition 2.10), i.e.,
each computation appears to be performed after the preceding computations have completed.

2. Atomicity: All updates to the architectural state of a computation appear to take effect instan-
taneously, i.e., all updates are available to a succeeding computation.

3. Flow-control independence: The flow of control at any point in the program is independent of
any computation that happens-after [106] in the program, and is dependent only on the current
architectural state of the system.

4. Exclusion: Each computation is performed in isolation from all other computations, i.e.,
during its execution, no other computation in the program can alter the architectural state.

Note that defining an order on the program’s computations naturally leads to Sequentiality.
Sequentiality, by definition, ensures that the execution is deterministic and intuitive for a given
input (as intuitive as a sequential program can be). If interruptibility is desired, a point in the
program, i.e., the position of a computation in the program, can be clearly defined. Interruptibility
can then be implemented using appropriate mechanisms, as modern processors do. Consequently,
Sequentiality simplifies the implementation of the design-assist solutions.

Sequentiality also simplifies programming. A program may be developed from a collection
of modules, each developed independently. Once developed, any part of the program may be
analyzed using the ground facts as established before its start. This makes the program naturally
composable, and the execution easier to reason.

Atomicity, Exclusion, and Flow-control independence follow from Sequentiality. The appearance
of executing operations in an order implies that each completes before the next is executed, each
executes in isolation from others, and no “future” computations affect a computation’s results. But
we list these properties separately since they become relevant when the execution loses Sequentiality,
as we see next.

Dijkstra introduced a notion of nondeterminism in sequential programs to analyze algorithms [55]. Although not
commonly adopted, if so realized, the resulting program will be considered multithreaded for our purposes.

19

3.3 Nondeterministic Execution

Nondeterministic execution poses challenges to both programming and design-assist solutions
since it lacks the desired SAFE properties.

The semantics of multithreaded programming abstractions permit the program’s state and the
order in which the state is modified to differ from run to run. The execution schedule, and hence the
sequence in which variables are accessed and computed, is influenced by the program, the input,
as well as system-specific parameters, such as OS scheduling and inter-processor communication
latencies. Hence, across runs program variables can receive different values, possibly in a different
sequence, and in different order relative to each other.

Moreover, nondeterministic algorithms permit the program’s state to diverge across runs. For
example, in the single-source-shortest-path algorithm [88], the intermediate program state can
be different across runs even if the final results are identical. In yet other algorithms, e.g., the
Delaunay mesh refinement [42], even different final results are acceptable as a solution to the
problem. Multithreaded programs permit programmers to exploit these algorithmic properties,
which they often do in search of performance. The resulting property of the program’s execution,
nondeterminism, complicates pausation, analysis, and resumption of the program.

Since multithreaded programs are devoid of a total order, a point in the program may only
indicate a position locally within a computation, but its global position in the entire program is moot.
Moreover, parallel execution spatially disperses the program’s state and the execution contexts
across multiple processors. Contexts may communicate with each other, and the communication
is not instantaneous. Due to these factors, interruptibility, i.e., pausing the execution at a desired
point, is neither clearly definable, nor straightforward.

Since the execution schedule and the sequence in which variables receive values is nondetermin-
istic, the execution may not be ordered, i.e., lacks Sequentiality, especially at intermediate points
across runs. Understanding nondeterministic execution requires reasoning about the possible
parallel execution schedules of the computations and their dynamic interleavings, which can be
inordinately very large in number [109]. Hence the program’s results, whether final or intermediate,
are not predictable or intuitive, or at least not as predictable and intuitive as of a sequential program.

3.3.1 Design-assist Solutions

Given that the execution is not easily interruptible, deterministic, and intuitive, design-assist
solutions take the following approach to pause, analyze, and resume multithreaded programs. To
pause an execution they typically enforce system-wide barriers to first quiesce the execution, either
from within or without the program, an aspect we explore further in Chapter 8. This approach
ensures that the observed results are consistent with execution, and the execution can be easily
resumed. However, it gives only a coarse-grain control to manage the execution, which can only
be applied sparingly due to its performance impact. Moreover, it is intrusive and can alter the
execution and its results, which may be unhelpful in some use-cases, like debugging. Furthermore,
the intervening execution is still nondeterministic.

When it comes to analyzing and reasoning the execution, programmers are largely left to their
own ingenuity and skills, despite the availability of debugging tools [41, 170].

20

1 if (thd->proc_info) {
2
3
4
5 fputs (thd->proc_ info,..);
6 1}
7 thd->proc_info = NULL;
(a)

Thread 1 Thread 2
1 if (thd->proc_info) {
2 \
3 7 thd->proc_info = NULL;
4 N
5 fputs (thd->proc_info,..);
6 1}

(b)

Figure 3.1: (a) A sequence of operations in MySQL. (b) Parallel implementation: lines 1-6 and line 7
are divided across two threads. Arrows depict the execution sequence that violates Exclusion of
operations in thread 1. Operation on line 7 in thread 2 can influence the operations of thread 1.

3.3.2 Programming

In addition to developing the parallel algorithm to solve a problem, multithreaded programs
may require the programmer to explicitly coordinate their parallel execution, which increases the
potential sources of bugs [118]. Since multithreaded programs explicitly permit at least a subset of
the computations (user-designated) to execute in any order, they may violate the SAFE properties.
We exposit further with the help of examples from real-world applications, which were presented
by Lu et al. in their analysis of concurrency bugs [118].

In multithreaded programs, operations within a computation follow the sequential order, but
not across computations. Hence Sequentiality is violated. Violation of Sequentiality can produce
erroneous results if dependent computations are not executed in the correct order (producer —
consumer).

Concurrent computations can access common data, leading to data races and potentially impact-
ing each other’s execution. If they do, Exclusion is violated. For example, consider the operations in
MySQL, as shown in Figure 3.1a. Operations on lines 1-6 are expected to be performed in Exclusion,
and complete before the operation on line 7. In the parallel implementation of these operations,
shown in Figure 3.1b, Exclusion can be violated by the execution sequence depicted using arrows.
Operation on line 7 can influence the operations on line 1-6 and produce incorrect results.

21

1 mContent[..] = ..
2 mOffset = calcOffset (..);
3
4
5
6 mLength = calcLength (..);
7
8 putc (mContent[mOffset+mLength-1]);
(a)

Thread 1 Thread 2
1 mContent[..] = ..
2 mOffset = calcOffset (..);
3 \
4 8 putc (mContent[mOffset+mLength-1]);
5
6 mLength = calcLength (..);
7

(b)

Figure 3.2: (a) A sequence of operations in Mozilla. (b) Parallel implementation: lines 1-7 and line
8 of the sequential operations are divided across two threads. Arrows show the execution sequence
that violates Atomicity. putc on line 8 uses partial, inconsistent results from Thread 1.

Further, due to loss of Sequentiality, a computation may access only partial results of another
concurrent, not yet completed computation, violating Atomicity. For example, consider the sequence
of operations in Mozilla, shown in Figure 3.2a. Operations on lines 1-6 are expected to complete
before line 8. In a parallel implementation of these operations, Atomicity can be violated by the
execution sequence depicted using arrows. The operation on line 8 can consume partial results of
the operation on lines 1-6. (Lu et al. have termed this as a “multi-variable concurrency bug”.)

Loss of Sequentiality can also lead to loss of Flow-control independence. Consider another
sequence of Mozilla operations in Figure 3.3a, and its parallel implementation in Figure 3.3b. Line 4
assumes that line 2 has completed. But in the parallel design the flow of control must reach line 4
after line 2 in Thread 1 happens, as shown by the dashed arrow. But if the actual sequence is as
shown by the solid arrow, the Flow-control independence is violated. (Lu et al. have termed this as
“order violation”.)

Needless to say, violation of Sequentiality, Exclusion, Atomicity, and Flow-control independence
can produce erroneous results [118]. To restore these properties in the desired parts of the multi-

22

mThread=PR CreateThread(mMain,...)

mState = mThread->State;

S W N

(a)

Thread 1 Thread 2

SN
1

K

mState = mThread->State;

S

2 mThread=PR_CreateThread(mMain,..);

N
\

N
o

(b)

Figure 3.3: (a) Another sequence of operations in Mozilla. (b) Parallel implementation in which line
2 and line 4 are performed on different threads. Dashed arrow shows the desired flow of control;
solid arrow shows the sequence that can result due to the loss of Flow-control independence.

threaded program, programmers often serialize accesses to the shared data, or create critical code
regions, or control the execution sequence. This is achieved by imposing an order, possibly arbitrary,
on the involved operations by means of regulating the control-flow in the respective computations,
e.g., by using locks. If performed incorrectly, Sequentiality, Exclusion, and Atomicity may still be
violated.

Locking can introduce other complications. When one computation waits for the lock to be
released, Flow-control independence is violated since the computation’s execution can proceed only
after the lock is released, which is expected to happen after. The loss of Flow-control independence
can lead to livelocks or deadlocks if the locks are used carelessly. This affects the composability of
multithreaded programs.

Locking can also have performance implications. Serializing needlessly large portions of compu-
tations can defeat the very purpose of paralleling the program. Hence careful use and placement of
locks becomes necessary to obtain the desired execution property without compromise performance.

In summary, the lack of SAFE properties makes multithreaded programs difficult to develop
and analyze. Multithreaded programs abandon the properties for the sake of performance, but
then need to explicitly restore them in parts, for correctness. Explicitly doing so is non-trivial.

23

Unfortunately, tools can only be of limited assistance since automated analysis of parallel programs
is provably undecidable [147].

3.4 Deterministic Execution

Deterministic execution yields some of the desired properties, and can be helpful depending on
the programming abstraction used. Since deterministic execution orders accesses to a program
variable, the execution exhibits Atomicity and Exclusion. However, if the program is written using
Multithreading, the programmer still has to develop the program keeping nondeterminism in mind,
which is still non-trivial. Moreover, the execution, although repeatable, is not intuitive. Hence it is
unclear how useful this “after-the-fact” determinism is. On the other hand, if ordered programs
are used, the deterministic execution can be more intuitive.

Nonetheless, irrespective of the programming abstraction, deterministic execution lacks Sequen-
tiality. It is not interruptible.

3.5 Ordered Execution of Ordered Programs

Given the above, wide-ranging impact of the properties of a program’s execution on programming
and using multiprocessor systems, we argue for an approach that first simplifies these aspects
and then seeks methods to exploit parallelism. We aim to obtain the desired SAFE properties, but
without compromising performance or complicating programmability and usability in other ways.
Inspired by the success of the sequential programs and their sequential execution in the realm of
uniprocessors® , we argue for ordered execution of ordered programs on multiprocessors.

We distinguish ordered programs from sequential programs. Whereas sequential programs are
composed for execution on a single processor, ordered programs are composed for multiprocessors.
In addition to solving the problem at hand, ordered programs need to account for parallelism,
as will be seen in the next two chapters. Although composed for parallel execution, the order in
ordered programs may come from different sources. One convenient source is the program’s text,
analogous to sequential programs. Another source can be the sequence of asynchronous events
processed by concurrent programs. We envision that an ordered execution will respect the order
as the system defines it, and hence is distinct from sequential execution which, as is generally
understood, follows only the program’s sequential order.

By performing an ordered execution, and using an user-friendly, well-defined order, we can
obtain Sequentiality, Atomicity, Flow-control independence, and Exclusion.

The notion of sequential operations to manipulate numbers was first introduced by Charles Babbage in 1837 [117].
Sequential programming has survived almost eight decades of remarkable advances in computer science since Alan
Turing formulated the notion of sequential manipulation of symbols (on an infinite tape) in his automatic machine, now
popularly known as the “Turing” machine, in 1935 [182].

25

Parakram

Parakram (English)
Pronunciation: para (as in para-legal) - crum (as in ful-crum)
Etymology:

2010, Parakram is a portmanteau, derived from the English Word “parallel” and the Sanskrit
word “anukrama”: para+kram

Parallel: A line that runs side by side with and equidistant from another, things running side by
side

Anukrama (Sanskrit, 3TJ##): Succession, due order, sequence

Noun

1. A system to concurrently perform tasks drawn from a sequence
Adjective

2. Of or pertaining to parakram

parakrama (Sanskrit, IYTHH)
Pronunciation: per (as in per-haps) -a (as in o-ut) - cru (as in cru-x) - ma (as in dog-ma)
Verb

1. To march forward, advance, excel, distinguish one’s self

In Chapter 3 we hypothesized that ordered execution of ordered programs can simplify program-
ming and the use of multiprocessor systems. Over the next five chapters we test this hypothesis.

Conventional parallel programming has a long legacy. We believe that any new proposal
must measure up to it to be considered viable. Specifically, any new approach must match the
conventional approach in expressing and exploiting parallelism. The new approach must meet
three criteria: (i) it must match the conventional approach in expressing parallel algorithms, (ii) it
must obtain matching performance, and (iii) it must not complicate programming and usability in
other ways.

We draw several lessons from the modern out-of-order superscalar processors in our work. Based
on these lessons we summarize the proposed general approach to multiprocessor programming
and how it compares with conventional parallel programming in Section 4.1. We applied the lessons
to formulate Parakram, a model to express and execute ordered programs on multiprocessors.
This chapter overviews Parakram. Parakram’s model to perform parallel, but ordered execution,

26

and a companion programming model are presented in Section 4.2. We developed a practical
Parakram prototype to evaluate its efficacy against the three criteria. The prototype implements the
programming and execution models. Its overview is presented in Section 4.3.

4.1 The Parakram Approach

Over a period of many years modern out-of-order (OOO) superscalar processors have progressively
scaled performance of sequential programs. Programs remained sequential, but processors exe-
cuted the program’s instructions in parallel. Architects introduced mechanisms, such as dataflow
execution and speculation, to exploit the parallelism, but always provided an ordered view of
the execution to the programmer. Such an abstraction permitted the architects to introduce many
performance-enhancing innovations transparently to the programmer. Further, system software
developers used architectural features, like precise interrupts, to introduce usability-enhancing
innovations, like handling page faults, also transparently to the programmer. We apply a similar
paradigm to multiprocessors.

411 Programming Multiprocessors

In conventional parallel programming, the programmer develops a parallel algorithm and also
explicitly manages its concurrent execution, as depicted in Figure 4.1a. The algorithm considers and
exposes parallel computations, in the form of tasks, to operate on data concurrently. Programmers
reason about the dynamic task-local data accesses. Using this analysis they identify and schedule
independent tasks for parallel execution. They reason about the dynamic interactions of tasks
with each other and the underlying system’s artifacts, such as the memory consistency model.
They coordinate the task execution to avoid data races, enforce order to respect dependences,
account for the system artifacts, and maximize the parallelism. In the process, they may use a
range of concurrency control mechanisms. This recipe is then statically baked into a multithreaded
program. Explicitly managing the program’s parallel execution makes parallel programming
onerous. Relatively newer proposals simplify one aspect or another of the above process, but fail to
address the problem in entirety. They are summarized in Chapter 9.

We envision a simpler approach to multiprocessor programs (Figure 4.1b). Programmers will
still develop parallel algorithms, often similar to the ones they already do in the conventional
approach. They will reason about the task-local data accesses, but the actual management of the
concurrent execution will be abstracted away from them. They will not need to reason about
dynamic independent tasks, data races, system artifacts, or the inter-task dependences. Neither will
they need to coordinate the execution. Instead, they will express the computations as a list of tasks
in an object-oriented, annotated ordered program. Then under the hood, an execution manager
will intercept the program, and dynamically manage its ordered, parallel execution with the help
of the program annotations, transparently to the programmer. Thus we decouple the expression
of a parallel algorithm from its execution, easing much of the burden on the programmer. The
execution manager will also provide a convenient facility to introduce new techniques to meet new
objectives, also transparently to the programmer, one example of which we will present later in the
dissertation. This approach then forms the basis for the Parakram model.

27

4 N\ { N\
Parallel Algorithm Parallel Algorithm
. J . J
4 N\ 4 N\
+ Analyze task-local + Analyze task-local
data accesses data accesses J
\

J\.

+ Identify and schedule
independent tasks

>
+ Analyze data races,
architecture artifacts

I\,

>
+ Analyze dependences,
enforce order

+ Multithreaded Program + Ordered Program
e N\
@ Execution Manager
|\ /)
CPU|((CPU| |CPU CPU| |CPU| |CPU
Multiprocessor System Multiprocessor System
(a) The conventional approach. (b) The Parakram approach.

Figure 4.1: Overview of multiprocessor programming approaches.

4.2 The Parakram Model

Parakram incorporates two main components: an execution model and a programming model. The
execution model facilitates the execution while providing a simple interface to the programming
model. The programming model facilitates the execution model while providing a simple interface
to the programmer.

4.2.1 The Execution Model

Parakram uses the time-tested principles commonly employed by the microprocessor to execute
programs. Consider the execution of a program in a modern OOO superscalar microprocessor, as
depicted in Figure 4.2. The processor fetches a sequence of instructions of the sequential programs
and creates an Instruction Pool. A Speculative Dataflow Unit creates a dynamic dataflow graph of
the instructions using their order (sequential) and operands, e.g., the register names embedded
in the instructions or the memory locations accessed by the instructions. From this pool it issues

28

Sequential Program

l

Instruction
Fetch

—> »

\ Reorder Buffer

Precise
Instruction Pool Exception

Unit

A

\4
Dataflow
Analyzer

Speculative Issue Logic
Dataflow Unit l

Functional Units

Figure 4.2: Block diagram of an out-of-order superscalar processor.

multiple ready instructions for execution to functional units, possibly out of order, thus exploiting
parallelism.

To maintain an appearance of ordered execution, the processor tracks the order of in-flight
instructions and the state they modify. It uses two features to do so. It logs the incoming instructions
into the Reorder Buffer (ROB) in the program order. Results from an instruction are temporarily
held separately from the architectural state, in the ROB, or a history buffer, or a future file [171],
or their variants [172], until the instruction is ready to retire. A Precise Exception Unit waits for the
oldest instruction to complete, which is conveniently always at the head of the ROB, and retires it
by committing its results to the architectural state. Thus the architectural state always appears to be
updated in the original program order. If a breakpoint or an exception were to be encountered, the
Precise Exception Unit marshals the execution, and uses the instruction order and the separately
held state to ensure that the architectural state reflects the execution precisely up to that point.

As instructions complete and retire, additional instructions from the program are added to the
Instruction Pool. The Speculative Dataflow Unit reconstructs the dataflow graph, accounting for
the completed and the new instructions, and advances the execution as above.

The Speculative Dataflow Unit (SDU) does not always have the complete or accurate information
to immediately build a complete or accurate dataflow graph, e.g., due to temporarily unknown
memory locations accessed by instructions. To prevent the loss of parallelism, the SDU will often
issue subsequent instructions speculatively, assuming that they are independent of the previous
instructions. Speculative instructions are tracked in the ROB. When subsequently the necessary

29

information becomes available, the SDU completes or corrects the dataflow graph and checks
whether it had misspeculated. If it had, the misspeculation is treated as an exception. The Precise Ex-
ception Unit rectifies the misspeculation by undoing the operations performed by the misspeculated
instructions, and resumes the correct execution.

Thus the microprocessor exploits instruction-level parallelism in a sequential execution.

Parakram maps an analog of this execution model to multiprocessors. First, it replaces the
functional units with hardware execution contexts (processors or threads). Next, it replaces the
sequential program with an ordered program, composed as described before. To match the scale of
multiprocessors, it executes coarser-grained tasks, instead of instructions, as a unit of execution
on a context. It analyzes the dataflow between the tasks and schedules them for execution in the
out-of-order dataflow fashion.

To effect the dataflow execution, Parakram fetches tasks, ascertains their operands, builds a
task dataflow graph, and issues ready tasks for execution. Parakram introduces globally-precise
interrupts, analogous to precise interrupts, to give an appearance of ordered execution. As we
shall see, like in the microprocessor, on occasion the dataflow between tasks may be temporarily
unknown. In such instances Parakram may execute tasks speculatively to maximize the parallelism.
To perform speculative execution correctly, Parakram incorporates features to detect and rectify
misspeculations, analogous to the microprocessor.

In summary, the execution model effects speculative, dataflow execution by relying on the
knowledge of tasks, their order, and their operands. The programming model provides it this
information.

4.2.2 The Programming Model

To enable its execution model, Parakram employs a programming model with matching capabilities.
It leverages the programming practices developers use, raises the level of abstraction to match the
abstraction at which the execution model operates, and takes assistance from programmers without
overly burdening them.

Programmers today follow modern software engineering and object oriented (OO) design
principles [27]. These principles encompass modularity, OO designs, data encapsulation, and
information hiding. Programs are composed from reusable modules in the form of functions (or
methods). Consequently functions act as self-contained computations that manipulate “hidden”
data, and communicate with each other using well-defined interfaces. Manipulating global data
not communicated through the interface is often avoided and hence most such computations are
free from side-effects. We exploit these common practices in “well-composed” programs, and also
provision for the rare “poorly-composed” program in which these practices may not have been
followed (as will be seen).

To enable the execution model, we first raise the level of abstraction of a computation from an
instruction to a function. We observe that the programs already comprise functions. Functions
make an appropriate fit, logically as well as in granularity, for a unit of computation at the scale of
multiprocessors. User-designated functions are treated as tasks by the execution model.

Second, the order of tasks, needed by the execution model to establish the dataflow, is obtained
from the program’s text. The dynamic invocation order of a function at run-time, together with its

30

invocation context provide a function’s order in the program, as is detailed in Chapter 6.

Third, Parakram raises the level of abstraction of a datum from a register or a memory location
to an object. An object, possibly comprising multiple fields, typically forms the atomic unit of data
in modern object oriented programs.

Finally, the programming model helps the execution model to ascertain a task’s operands, which
are also needed to determine the dataflow. A task’s operands are the data it reads, i.e., its read
set, and the data it writes, i.e., its write set, also collectively called its dataset. In well-engineered
reusable functions, the operands are often readily available from the function’s interface. Parakram
obtains the operands with the help of user annotations. We view a task’s dataset as comprising
objects. The execution model treats the dataset objects as the task’s operands. Often objects in
the dataset are statically unknown. The execution model enumerates the dataset dynamically, at
run-time.

4.3 Parakram Prototype

To evaluate the ordered approach we developed a fully functional Parakram prototype. Figure 4.3
shows the logical view of the prototype as it relates to the model. The prototype mimics the model
and also comprises two components: a programming interface and an execution engine.

The programming interface provides APIs for the programmer to express parallel algorithms.
The APIs permit programmers to annotate tasks for parallel execution, identify their datasets, and
help guide the execution. Traditional dataflow machines have relied on functional programming
languages to express programs. However, imperative languages have gained more popularity.
Hence we adopt the more familiar and established C++ as the programming language for our
prototype. Other languages, imperative or functional, may be used just the same.

A key aspect of the programming model and its actual implementation is to ensure that they
match multithreaded programs in expressing parallel algorithms. This forms an important part of
our study and Parakram design, described in Chapter 5.

The second component, the execution manager, is implemented as a software runtime library. In
addition to parallelizing the execution, it enables the parallelism idioms expressed in the program.
The library can operate on stock multiprocessor systems. No additional hardware support is needed
for its functioning.

Implementing the execution model presented several challenges. In its design, we addressed
the following key questions in the context of a multiprocessor program (Chapter 6):

1. How will a sequence of tasks be fetched from the program?
2. What are a task’s operands, and how will they be identified?
3. How will the dataflow graph be constructed?

4. How will a task be “issued” for execution?

o

What is the meaning of precise interrupts in a parallel execution?

o

How will an ordered view be provided?

31

[Parallel Algorithm]

+ Analyze task-local
data accesses

C++ task-based programming model
APIs to express and assist parallelism

+ Ordered Program

—

C N

Execution Manager Runtime System
& J

—

CPU|(|CPU| |CPU

Multiprocessor System

Figure 4.3: Parakram prototype. It comprises a C++ programming interface and a runtime system.
The programming interface provides APIs to develop ordered programs. The runtime parallelizes
their execution on a multiprocessor system.

7. Is speculation needed?

8. If needed, how will speculation be supported, especially when a task’s state can be very large?

4.4 Summary

In summary, we have proposed that: programmers express parallel algorithms as ordered programs,
they annotate the program with task-local information, and an execution manager will parallelize
the program’s execution with no further help from the programmer.

Can this approach, based on order, express and exploit parallelism to the same degree as
multithreaded programs? Can the seemingly artificial ordering constraint be overcome? Does it
simplify programming and system use in practice? We answer these questions in the following
chapters.

33

Ordered Programs

I decided long ago to stick to what I know best. Other people understand parallel machines much
better than I do; programmers should listen to them, not me, for guidance on how to deal with
simultaneity.

— DonaLp KnuTtH

In Chapter 4 we presented the overall Parakram approach to multiprocessor programs. One of
the two aspects of the Parakram approach is its programming model. In this chapter we expound
the programming model more concretely by describing the details of the programming interface
provided by the Parakram prototype.

Our primary objective with ordered programs is to simplify multiprocessor programming and
improve usability, but without compromising the ability to express parallel algorithms. Using
ordered programs raises the question whether imposing order fundamentally prevents them from
expressing parallel algorithms that can otherwise be expressed in multithreaded programs. In
theory, a parallel Turing machine, as a multithreaded program might represent, is only as powerful
as a sequential Turing machine (ordered program) in expressing computations [186]. Expressiveness
then boils down to the capabilities of specific programming abstractions. Hence we need only ask,
in practice what facilities does the multithreaded programming abstraction provide, and can an
ordered approach match them?

To answer the above question, we study the common parallelism patterns that arise in multi-
threaded programs and apply the lessons to ordered programs. With an appropriate programming
interface, supported by a matching execution manager, we ensure that ordered programs can
express similar patterns.

Although parallelism patterns have been studied in the past, past studies were inadequate
for our analysis since their perspectives do not reveal the details germane to our work. Hence,
based on our study of the popular multithreaded programming APIs, past studies on patterns,
and a range of parallel programs, we formulate MAPLE, a multiprocessor programming pattern

language'. MAPLE and the pattern analysis are presented in Section 5.1. Based on the observed
patterns, we then formulate the Parakram APIs that admit similar patterns in ordered programs.
The APIs are described in Section 5.2. In Section 5.3 we present example programs authored using
Parakram APIs and compare them with equivalent multithreaded programs. Ordered programs,
despite implementing parallel algorithms, closely resemble the sequential counterparts, unlike the
multithreaded programs, are easier to develop, and provide similar capabilities.

l“Lamguage” is a standard term others have used to organize patterns; we use the same term in this dissertation.

34

5.1 Parallelism Patterns

Design patterns are an established way to organize and understand recurring design structures in
engineering fields [7, 72]. We use a similar approach to study multithreaded programs.

To solve a problem on a multiprocessor system, a programmer first uses domain expertise to
develop a solution. The solution is transformed into a parallel algorithm, which is then expressed
as a multiprocessor program. Multithreaded programs also explicitly manage the execution by
using concurrency mechanisms.

We observe that problem domains, and algorithms needed to solve them, are orthogonal
to the programming interface. As long as multithreaded and ordered programs use similarly
capable languages they should be equally capable of expressing the basic algorithm needed to
solve the problem. The differences between the two might arise in the concurrency mechanisms.
Multithreaded programming abstractions, e.g., Pthreads, provide a well-defined repertoire, and it is
unclear how ordered programs, with the added constraint of order, can provide similar capabilities.

Others have classified design patterns that arise in multithreaded programs [103, 122, 131, 142].
They take a literal view of the program, in which the program intertwines the algorithm needed
to solve the problem with the coordination needed to parallelize its execution. Consequently, the
patterns they formulate present a composite view of the problem domain, algorithm choices, and
concurrency mechanisms. These patterns do not clearly articulate the concurrency mechanisms,
which are of primary interest to us. Hence we develop a pattern language that isolates them.

To better understand the concurrency management capabilities of multithreaded programs, we
separate the algorithm from its coordination. MAPLE draws inspiration and some terminology
from the prior work, but organizes the parallelism patterns by taking a more elemental view of
how concurrency is achieved and managed, and how concurrency interacts with the algorithm
itself. It distills the core capabilities from common design patterns and logically organizes them
into four design spaces, as shown in Figure 5.1a, which represent the key aspects of developing
parallel programs. To solve a problem, the programmer develops a parallel Algorithm Structure,
encodes the algorithm into a Program Structure, and develops an Execution Structure to coordinate
the algorithm’s dynamic execution, using Concurrency Tools. Typically, programmers iterate over
this process to reach a satisfactory design. Multiple patterns arise in each design space. Depending
on their purpose, we group the patterns into sub-spaces within each design space, as shown in
Figure 5.1b along with examples in each sub-space.

We highlight the patterns using three algorithms, parallel bzip2 (Pbzip2) [74], dense matrix
Cholesky decomposition [144] and Delaunay mesh refinement [42]. We examine the parallelism
opportunities in the three algorithms and the related patterns.

Parallel bzip2 is the parallel implementation of the popular bzip2 compression utility. Algo-
rithm 5.2 shows the pseudocode of the main kernel of the algorithm. It iteratively reads blocks
from an input file (line 3) to be compressed, compresses the blocks (line 6), and writes the results to
an output file (line 9). Parallelism arises when the three operations are performed concurrently on
different blocks.

Cholesky decomposition (CD), a popular scientific kernel, is mainly used to solve linear equations
of the form Ax = b. A is a a Hermitian, positive-definite matrix, and b is a vector. Cholesky
decomposition factorizes the matrix into a product of lower triangular matrix and its conjugate

35

.

Solution Decomposition | Computations, data

Data Organization Graphs, cliques

Y
J

Dependence Analysis

Algorithm Structure \
@ Data Structure Design | Arrays, trees
Program Structure Dataset Computation Data independent
@ UE Composition Tasks
| Execution Structure | UE Discovery Linear, nested
ﬁ UE Scheduling Immediate, later
Concurrency Tools UE Coordination Arbitrary, specific

Context Abstraction Threads, tasks
Synchronization Locks, barriers

J

(a) (b)

Figure 5.1: MAPLE: pattern language for multiprocessor programs. (a) Design spaces. (b) Sub-space
within each design space, with examples.

transpose, A = LL', then forward substitutes to solve Ly = b, and finally solves Lx = y by
back substitution. Parallelism in the algorithm arises from computing sub-matrices concurrently.
The matrix may be decomposed into sub-matrices geometrically and processed iteratively [141], or
decomposed and processed recursively [123]. Algorithms 5.3 and 5.4 show the respective algorithms.
In both cases multiple instance of tasks, as invoked in a loop in Algorithm 5.3 (lines 5, 13), and
recursively in Algorithm 5.4 (lines 6, 7). Inter-task dependences arise in Cholesky decomposition
which need to be respected for correct results.

Delaunay mesh refinement (DeMR) pertains to mesh generation, a popular engineering applica-
tion [42]. Mesh generation tesselates a surface or a volume with shapes such as triangles, tetrahedra,
etc. DeMR ensures that the triangles in a given tesselated mesh meet a specified quality criteria.
DeMR refines “bad” triangles in the mesh (Algorithm 5.5). The mesh is maintained as a graph,
whose nodes represent triangles. Bad triangles are queued in a work list (line 2). Refining a triangle
causes the triangle and any adjacent triangles within a region around the bad triangle, called its
cavity, to be modified (line 8). This process may delete the cavity from the graph (line 10), and add
new triangles to the mesh (lines 9, 12). Some of the new triangles may also be bad, which are added
back to the work list (line 13). The algorithm iterates until no bad triangle is left. Parallelism arises
from refining (non-conflicting) triangles concurrently, as depicted by task A in the algorithm (lines

36

1...
2 while blocks still in file do

/* Create a pipeline of read, compress, and write tasks */

3 | task read(block,input file)

4 | | block < readFile (input file)

5 | end

6 | task compress(block)

7 ‘ block < compressBlock (block)
8 | end

9 | task write(block, output file)
10 ‘ output file «+ writeFile (block)
11 | end
12 end
13 ...

Algorithm 5.2: Parallel bzip2 algorithm.

5-14). DeMR is a part of the Lonestar benchmark suite [104].
We now describe the MAPLE patterns with the help of these examples. Wherever applicable,
we put the MAPLE patterns in context with patterns from the related literature.

Algorithm Structure. The Algorithm Structure captures the process of developing a parallel
algorithm from a domain-specific solution. There can be multitudinous domain-specific pat-
terns [103, 142], and they can be grouped in this design space. However, the Algorithm Structure is
not our primary focus since algorithm construction and related aspects are independent of a given
programming abstraction.

Briefly, the solution is first decomposed into potentially concurrent computations (sub-space
Solution Decomposition). There are two primary sources of parallelism. The first comes from the
computational steps involved in solving the problem; different steps may operate concurrently, e.g.,
the three operations in Pbzip2 (Algorithm 5.2) can be performed concurrently on different blocks.
The second comes from decomposing data such that the sub-units may be computed concurrently,
e.g., the matrix M in CD (Algorithms 5.3 and 5.4) can be divided into sub-matrices and computed
concurrently.

Next, abstract data structures, e.g., a graph in the case of DeMR (Algorithm 5.5), best suited to
permit and expose the concurrency are identified (sub-space Data Organization). Also, dependences
are analyzed by examining data-sharing and data-flow between the computations (sub-space
Dependence Analysis). For example, in Pbzip2, for a given block, the write computation is dependent
on compress, which is in turn dependent on read.

Program Structure. The Program Structure captures the process of transforming the algorithm
structure into a program. This includes designing data structures and composing computations. A
key part of this process is computing the identity of data that will be processed.

37

1 Data: matrix M[blocks]
2 ...
3 for i + 1 to #blocks do

4 | ...
/* Operate on sub-matrices concurrently */
5 | taskBQ)
6 ‘ MIi] < cd(..)
7 | end
8 end
9 barrier

10 ...

11 forj <— i+ 1 to #blocks do
12 | ...
13 | task AQ)

14 .
/* Operate on sub-matrices concurrently */
15 M[j] <+ mmult(..)
16 | end
17 end
18 barrier
19 ...

Algorithm 5.3: Iterative Cholesky decomposition algorithm

Appropriate concrete data structures, such as trees, queues, etc., to match the algorithm are
chosen (sub-space Data Structure Design). CD in our examples uses a two-dimensional array to hold
the matrix. Further, data may be allocated statically, or dynamically. Declaring an array to hold the
matrix in CD (Algorithm 5.3, line 1), whose size remains static is an example of the former. The
graph that grows dynamically in DeMR (Algorithm 5.5, lines 9, 12) is an example of the latter.

Before a computation can process data, it must first identify them, i.e., compute its dataset (sub-
space Dataset Computation). The dataset may be data-independent or data-dependent. Data-independent
datasets can be identified without examining the data itself, e.g., by using index-based referencing,
as is done in CD (Algorithm 5.3, line 6, 15). By contrast, data-dependent datasets require examining
the data first, e.g., DeMR first traverses the graph, i.e., reads the nodes, to locate the nodes that will
be operated on (Algorithm 5.5, line 8).

Finally, the computations identified in the Algorithm Structure are organized into units of
execution (sub-space UE Composition). An unit of execution (UE) forms a logical computation, e.g.,
the tasks in the three algorithms, that is submitted for execution to a hardware context.

Execution Structure. Once the algorithm is encoded, the Execution Structure captures the process

Vi

of exposing and coordinating its parallel execution. “Task parallelism”, “geometric decomposition”,

e A

“loop parallelism”, “fork-join”, “divide-and-conquer”, “recursive data”, “pipeline parallelism” ,

s

“master-worker”, “event-driven coordination”, and “work queue” are examples of patterns that

38

1 Data: matrix M[blocks]

2

3 task B(M, blocks)

4| ...
5 | if blocks > 1 then
/* Recursive call to task B */
6 task B(M, blocks/2);
7 task B(M, blocks/2);
8
9 | else
10
11 task AQ)
12
13 MJj] + mmult(..)
14 end
15
16 | end
17 end
18 ...

Algorithm 5.4: Recursive Cholesky decomposition pseudocode.

1 Data: Graph G
2 workList W «+ bad A (G)
3 while W # empty do

4| ...

5 | task A(item)

6 A +— Wlitem]

7 W=W-A

8 C + cavity(G, A)

9 new N < refine(C)
10 G=G-C

11 delete C

12 G =G+N

13 W =W+bad A (N)
14 | end

15

16 end

17 ...

Algorithm 5.5: Delaunay mesh refinement algorithm.

39

arise in this process [102, 122, 123]. We distill these patterns into three basic elements: (i) exposing
UEs at run-time, (ii) scheduling them for execution, and (iii) ordering them or their operations,
when required.

When a parallel program executes, UEs may be discovered or invoked from the program (sub-
space UE Discovery) in two ways for potentially concurrent execution with other UEs. They may
be discovered linearly, i.e., from a single context, or in a nested fashion, i.e., invoked from other
UEs. Task invocation in iterative CD (Algorithm 5.3, line 5-7) is the example of the former. Task
parallelism, geometric decomposition, loop parallelism, and fork-join parallelism are examples of
such discovery. Nested task invocation in recursive CD (Algorithm 5.4, task B on line 6 is nested in
task B on line 3) is an example of the latter. This pattern can arise in recursive data decomposition
and divide-and-conquer algorithms.

Once discovered, executing a UE presents two choices (sub-space UE Execution). The UE may
be scheduled for execution eagerly, or lazily. Pbzip2 and both implementations of CD schedule
tasks eagerly, i.e., immediately upon invocation. Task parallelism, loop parallelism, geometric
decomposition, fork-join, divide-and-conquer, and recursive data patterns typically schedule UEs
eagerly. Discovered tasks may also be scheduled lazily for execution, i.e., at a later time, to honor
dataflow dependences or to utilize resources efficiently. Patterns such as master-worker (as in
DeMR, line 13), event-driven coordination, and work queues employ such a design.

When UEs execute concurrently, on occasion the programmer may coordinate parts of their
execution (sub-space UE Coordination). The programmer may order UEs to: (i) synchronize accesses
to shared resources, (ii) create critical regions, or (iii) respect data dependences. We saw some
examples in Section 3.3.2 where such coordination was needed for correctness. There are myriad
ways to coordinate, each with associated tradeoffs [124]. However, ultimately, they all impart an
order to the involved UEs by serializing them at the desired points. The order may be arbitrary if it
does not affect the correctness. For example, in DeMR, a user may choose to synchronize concurrent
accesses to W on line 7 (Algorithm 5.5), in some arbitrary order since the order does not affect the
correctness. However, often a specific order is enforced between the entire or specific portions
of UEs, e.g., to respect data dependences. The barrier in CD is used to ensure that subsequent
UEs are invoked only after all preceding UEs have completed (Algorithm 5.3, line 9), to ensure
correctness. It is an example of specific ordering. Producer-consumer designs, pipeline parallelism,
and event-driven coordination are also examples of the specific-ordering pattern.

Further, the ordering may be applied at a desired granularity, ranging from individual data
accesses to coarse-grained computations. For example, fine-grain locks may be used in DeMR to
synchronize the concurrent accesses to W on line 7. Locking larger parts of the DeMR code, say
encompassing lines 10-13 to synchronize accesses to both G and W in one critical region would be
an example of coarse-grain ordering. The ordering granularity has performance implications, and
the choice of granularity permits the programmer to tune the execution as desired.

Concurrency Tools. Finally, programmers use Concurrency Tools to manage the execution. They
map UEs to programmatic entities, e.g., threads and tasks , which are scheduled for execution as a
unit (sub-space Context Abstraction). Synchronization primitives, e.g., locks, barriers, etc., (sub-space
Synchronization) may be used to implement the UE Coordination patterns. Constructs to coordinate

40

the control-flow across threads (e.g., signals in Pthreads [1]), support for inter-task communication
(e.g., send and receive directives in MPI [70]), etc., may also be employed.

Typically, Concurrency Tools are provided by the system; the programmer rarely needs to
implement or alter them.

Summary. In general, Multithreading gives a great degree of latitude to express parallel programs.
Parallel computations may operate on static and dynamic data structures. They may first inspect
data to determine what data to operate on. Computations may be exposed linearly or through
nesting. Their execution schedule and their relative execution order may be arbitrarily coordinated.

5.2 Parakram APIs

Parakram APIs serve the goal of matching the capabilities of multithreaded programs by enabling
the parallelism patterns identified above, but without complicating programming. Parakram
provides a small set of APIs to express task-based ordered programs in C++.Whereas the APIs
permit the programmer to express the intent, the Parakram runtime library realizes the patterns
at run-time. We will refer to various operations performed by the runtime in this section, but the
details will be described in Chapter 6.

The APIs permit programmers to express: (i) arbitrary, including nested, invocation of tasks, (ii)
tasks with data-independent and data-dependent datasets, which may operate concurrently on
static and dynamic data structures, and (iii) fine- and coarse-grain inter-task ordering.

The APIs abstract away most of the concurrency management details, e.g., threads, locks, task
scheduling, etc., from the programmers. Through the APIs, programmers identify the following
basic information: (i) potentially parallel tasks, (ii) objects shared between the tasks, (iii) the task
datasets, and (iv) provide deep copy constructors of the objects in the dataset. Note that the
programmer already reasons about parallel tasks and the data they access when constructing the
parallel algorithm. Copy constructors are often routinely coded in the regular course of developing
programs. None of this information requires an analysis of the program’s dynamic execution, as
was our original objective with Parakram.

Parakram’s execution model hinges on identifying data accessed by tasks and executing them
in the dataflow fashion. Identifying tasks, their order, and the data they access are sufficient to
enable this model. The copy constructors are needed to enable speculation when Parakram strives to
explore parallelism that may be otherwise obscured when programmers use patterns such as nested
tasks and data-dependent datasets. All patterns described above can be realized by Parakram using
this information alone. However, Parakram yields additional control to the programmer to guide
the execution, for performance fine-tuning, or simply for programming convenience, as will be
seen.

Parakram APIs are grouped into four types, related to objects (Table 5.6), tasks (Table 5.7),
datasets (Table 5.8), and miscellaneous functions (Table 5.9).

Objects. Refer to Table 5.6. Parakram requires that programmers identify global objects accessed
in parallel tasks, particularly those shared between the tasks, by inheriting from a provided base
class, token_t. This allows the Parakram runtime to track objects and manage their state during

41

APIs Description and Usage

token_t Parakram base class that global objects accessed in parallel tasks must inherit
from.

clone O Virtual copy constructor method in the token_t class. Derived class must

provide a definition.

token_t* clone ();

restore () Virtual assignment operator method in the token_t class. Derived class
must provide a definition.

void restore (token_t* object);

pk_obj_set_t Parakram STL set container of token_t type objects. Used to communicate a
task’s dataset.

Table 5.6: Parakram APIs related to program objects, their brief descriptions, and declarations in
pseudocode.

the execution. The base class defines two virtual methods, clone() and restore(), which the
programmer must define for the derived class. clone () is similar to a deep copy constructor, and
restore () is equivalent to an assignment operator. The runtime uses them to manage the program’s
execution.

Tasks. Refer to Table 5.7. Parakram provides two APIs, pk_task(), pk_task_uc(), to invoke
potentially parallel tasks. Both support linear and nested invocations. pk_task() expects the task
to modify the program’s state eagerly, i.e., at any time during the execution. pk_task_uc() is a
performance-enhancing variation of pk_task() for use by tasks that use data-dependent datasets.
It expects the task to modify the state lazily, i.e., Parakram permits the task to execute speculatively
and modify local copies of the state, and updates the globally visible state once it has ensured that
the speculation was not incorrect.

Datasets. Refer to Table 5.8. Parakram requires that each task declare its dataset, as a separate read
set, a write set, and a mod set, by providing pointers to the objects in them. It is necessary to include
only objects that are shared with other parallel tasks in the read and write sets. Whereas the write
set includes shared objects that the task may modify, the mod set includes all global objects that
the task may modify; thus the mod set is a superset of the write set. Objects allocated in the task
need not be included in the mod set. The mod set serves a purpose similar to the undo log used in
Transactional Memory [86]. (The mod set can be computed by the compiler, but in this work it is
provided by the programmer.) Each set is formed using the provided pk_obj_set_t set container.

42

APIs Description and Usage

pk_task (O Invokes parallel task. The task may declare its dataset eagerly through the
same interface, or just-in-time, or lazily. The task updates state eagerly.

void pk_task (pk_obj_set_t* write set, pk_obj_set_t* mod set,
pk_obj_set_t* read set, void* task pointer, void* task
arguments) ;

void pk_task (token_t* write object, token_t* mod object,
token_t* read object, void* task pointer, void* task
arguments) ;

void pk_task (void* task pointer, void* task arguments);

pk_task_uc() Invokes parallel task. Task declares dataset lazily. Updates state on commit.

void pk_task_uc (void* task pointer, void* task arguments);

pk_ic O Invokes function on commit; used to perform non-idempotent I/O.

void pk_ic (voidx* task pointer);

Table 5.7: Parakram APIs to invoke tasks, their brief descriptions, and declarations in pseudocode.
Multiple interfaces are provided for programming convenience, e.g., pk_task() can take individual
objects or set of objects as arguments.

Objects specified in the write set need not be included in the mod set (the execution manager uses
their union in its internal operations).

Importantly, a task need declare only its own dataset and not of any nested children tasks. This
features simplifies use of nested tasks and enables nested parallelism patterns.

The dataset declaration is eager if performed at the time the task is invoked, through pk_task().

To support datasets dependent on dynamic data structures, which a task may need to first
traverse, Parakram permits just-in-time (JIT) declaration. The task can declare objects in the read,
write, and mod sets as it advances (APIs pk_read (), pk_write(), and pk_mod()). In just-in-time
declaration, the task declares an object before accessing it.

Parakram provides more flexible APIs, pk_declare() and pk_declare_ia(), to declare the
dataset lazily. Lazy declaration permits the task to read objects before declaring them, but requires
the task to declare the read set, the write set, and the mod set before it modifies data. The differences
between the two APIs will be described in the next chapter.

A task can also release objects in its dataset eagerly, indicating that it will no longer access them
(pk_release()). If not released eagerly, they are implicitly released when the task completes. Eager

43

APIs Description and Usage

pk_read () Declares object(s) to read (just-in-time).

void pk_read (token_t* object);

pk_write () Declares object(s) to write (just-in-time).

void pk_write (token_t* object);

pk_mod () Declares object(s) to modify (just-in-time).

void pk_mod (token_t* object);

pk_declare () Declares read set, write set, and mod set (lazily).

void pk_declare (pk_obj_set_t* write set, pk_obj_set_t* mod
set, pk_obj_set_t* read set);

void pk_declare (token_t* write object, token_t* mod object,
token_t* read object);

pk_declare_ia () Similar to pk_declare (). Declares read set, write set, and mod set (lazily).

void pk_declare_ia (pk_obj_set_t* write set, pk_obj_set_t* mod
set, pk_obj_set_t* read set);

void pk_declare_ia (token_t* write object, token_t* mod object,
token_t* read object);

pk_release () Releases object(s) from the dataset (eagerly).

void pk_release (pk_obj_set_t* object);
void pk_release (token_t* object);

Table 5.8: Parakram APIs related to dataset declaration, their brief descriptions, and declaration in
pseudocode.

release allows other dependent tasks to proceed sooner, instead of waiting for the task to finish.

With linear and nested tasks, and eager, JIT and lazy dataset declaration, Parakram admits
arbitrary algorithms. Combined with eager release, it also permits finer ordering granularity.
Chapter 6 describes these aspects in detail.

44

APIs Description and Usage

pk_except () Reports exception. Exceptions are processed in the program order.

void pk_except (int error code);

pk_barrier () Barrier synchronization.

void pk_barrier ();

pk_serial () Delineates serial region of execution.

void pk_serial ();

pk_allocate () Allocates memory for an object.

void* pk_allocate ();

pk_delete () Deallocates memory for an allocated object.

void pk_delete (object);

Table 5.9: Miscellaneous Parakram APIs, their brief descriptions, and usage in pseudocode.

Concurrency Tools. Refer to Table 5.9. Parakram precludes the need for the programmer to
coordinate the execution. However, in certain cases when the programmer cannot specify a task’s
dataset, e.g., of a third-party function, Parakram permits the user to revert to safe, sequential
execution by first quiescing the parallel execution. The pk_serial() API may be used for this
purpose. pk_serial() acts an ordered barrier. It quiesces the parallel execution that logically
precedes the pk_serial() call. The next pk_task() or pk_task_uc() call resumes the parallel
execution.

pk_barrier () is another concurrency control API, butis provided for programming convenience.
It helps perform coarse-grain parallelism control which might otherwise require the programmer
to create large datasets. pk_barrier() acts as barrier for a given nested scope, analogous to the
sync directive in Cilk [71]. It permits the execution to advance only after all children tasks invoked
by the parent have completed.

No other concurrency tools are provided. There is no implicit barrier at the end of the task
calls in Parakram, unlike the implicit sync in Cilk’s spawned tasks, or the implicit join in OpenMP’s
parallel for pragma.

45

Other APIs. pk_ic() (Table 5.7) is used to perform I/O when a program uses speculation.
pk_except () (Table 5.9) allows programmers to throw exceptions for the Parakram runtime to
process. Their utility is described in the next chapter.

5.3 Ordered Programs

Given the above APIs, we evaluated Parakram’s expressiveness. Expressiveness is function of the
APIs and Parakram’s execution model. We study the APIs in this chapter and revisit expressiveness
as a whole in Chapter 7 after the execution model has been described in Chapter 6.

To study the expressiveness, we developed ordered programs for a wide range of algorithms com-
monly used in parallelism studies, as listed in Table 5.10. We chose programs from the PARSEC [23],
Phoenix [149], STAMP [129], Lonestar [104], and Barcelona [59] suites, scientific kernels, common
utilities Pbzip2 [74] and Mergesort, and a networking program RE [11]. We chose algorithms with
different characteristics: type of parallelism (column 4), static and dynamic dependences, task types
(column 5), dataset types (column 6), dataset declaration (column 7), and dataset release (column 8).

To develop Parakram programs we started with the original C/C++ sequential codes and
first transformed them into C++ object-oriented programs. Next, we studied the parallelization
strategies used in the multithreaded variants, and applied similar strategies using Parakram APIs,
e.g., recursion, to develop the ordered versions.

In this section we compare the Parakram programs with their sequential and multithreaded
counterparts. An extensive user-study comparing the programming effort required for multi-
threaded and ordered programs, similar to one performed for Transactional Memory [157], was
outside the scope of our work. Nonetheless, we briefly comment on the relative programming effort
needed to develop ordered and multithreaded programs.

Column 3 in Table 5.10 lists the multithreaded variants used for comparison. We coded published
parallel algorithms for iterative CD [141] and the Conjugate gradient method [93] in OpenMP. We
implemented nondeterministic Galois-like designs [142] for DeMR and breadth first search (BFS) in
Pthreads. RE was parallelized by us using Pthreads. Cilk codes for recursive CD and Mergesort
were obtained from McCool et al. [123]. Iterative Mergesort was coded by us in Cilk. All other
multithreaded parallel codes were obtained from their sources (column 2).

In all cases the Parakram code is similar to the sequential code, except for the additional code
needed to formulate the read and write sets, and the use of Parakram APIs. Unlike multithreaded
programs, no threads are created and no synchronization primitives are needed to facilitate the
concurrent execution. No explicit work distribution or explicit ordering of the execution is required.
Further, no pattern-specific structure is needed in the code to exploit the parallelism.

We highlight the key aspects of developing ordered programs using the three examples from
before, Pbzip2, Cholesky decomposition, and Delaunay mesh refinement. We show (incomplete)
code segments of the main kernels of the three programs to highlight the differences®. To ease the
comparison, the sequential and Parakram codes are listed beside each other and the sequential code
is appropriately formatted. The multithreaded code, which is usually longer, follows thereafter.

2Details not relevant to parallelism are omitted.

46

Programs Source Multithreaded Parallelism UE Dataset Declare Release
) (2) (3) (4) (5) (6) () (8)
Barnes-Hut Lonestar Pthreads Regular Linear Data-ind. Eager Lazy
Black-Scholes PARSEC Pthreads Regular Linear Data-ind. Eager Lazy
Iterative CD [141] OpenMP Irregular Linear Data-ind. Eager Lazy
CGM [93] OpenMP Regular Linear Data-ind. Eager Lazy
Histogram Phoenix Pthreads Map-reduce Linear Data-ind. Eager Lazy
Dedup PARSEC Pthreads Irregular Linear Data-ind. Eager Lazy
Pbzip2 [74] Pthreads Irregular Linear Data-ind. Eager Lazy
I. Sparse LU Barcelona OpenMP Irregular Linear Data-ind. Eager Lazy
Reverse Index Phoenix Pthreads Map-reduce Linear Data-ind. Eager Lazy
Swaptions PARSEC Pthreads Regular Linear Data-ind. Eager Lazy
Word Count Phoenix Pthreads Map-reduce Linear Data-ind. Eager Lazy
L. Mergesort Cilk Regular Linear Data-ind. Eager Lazy
Recursive CD [123] Cilk Irregular Nested Data-ind. Eager Lazy
DeMR Lonestar Pthreads Irregular Linear Data-dep. JIT Lazy
Genome STAMP TL2TM Irregular Nested Data-dep. JIT Eager
Labyrinth STAMP TL2TM Irregular Linear Data-dep. Lazy Lazy
Mergesort [123] Cilk Regular Nested Data-ind. Eager Lazy
BFS Lonestar Pthreads Irregular Linear Data-dep. Lazy Lazy
RE [11] Pthreads Regular Linear Data-dep. JIT Lazy
R. Sparse LU Barcelona OpenMP Irregular Nested Data-ind. Eager Lazy
Vacation STAMP TL2TM Irregular Linear Data-dep. JIT Eager

Table 5.10: Programs and their relative characteristics. CD = Cholesky decomposition, CGM =
conjugate gradient method, Data-ind. = data independent, Data-dep. = data dependent, LU =
LU decomposition, I. = iterative, DeMR = Delaunay mesh refinement, JIT = just-in-time, BFS =
breadth-first search, R. = recursive.

We first show how a generic object is defined in a Parakram program, and then present how the
parallelism is expressed using Parakram in the three examples.

5.3.1 Defining Objects

Listing 5.1 shows an example of a user-defined class inheriting from the token_t base class (line
2), and defining the clone () (line 6) and restore() methods (line 14). clone() and restore()
are essentially functions that make copies of an object. The former also allocates memory for the
copy. These functions are needed to make “deep” copies, i.e., to ensure that the data in dynamically
allocated object fields are also copied instead of only pointers. Similar functions are routinely
used in regular sequential programming. pk_alloc_t is a Parakram provided templated class that
supports the pk_alloc() API (line 8).

47

1 // User defined class; note that it inherits token_t
2 class user_object_t : token_t {

3 public:

4 ..

5 // Allocate memory for the clone and define the copy constructor
6 token_t* clone (void) {

7 user_object_t* obj_clone;

8 obj_clone = pk_alloc_t <user_object_t>::pk_allocate();
9 // Copy fields of this object into obj_clone’s fields
10 .

11 return obj_clone;

12 }

13 // Define the assignment operator

14 void restore (token_t* obj_clone) {

15 // Copy fields of obj_clone to this object’s fields

16 ce

17 }

18 ce

19 private:

20

21 };

Listing 5.1: Defining a user class in a Parakram program.

53.2 Pbzip2

Listing 5.2 shows the sequential code for Pbzip2 and Listing 5.3 shows the Parakram code. The
Parakram code is similar to the sequential code in structure. The compress and output functions
on lines 12 and 13 in Listing 5.2 are invoked using pk_task() (lines 12, 13 in Listing 5.3). Parakram
code forms the write set for the compress function on lines 10 and 11. Note that the write set of
compress, i.e., the data it computes, becomes the read set for the output function (line 13). Explicit
mod set is not needed in Pbzip2. Pbzip2 invokes tasks linearly, the tasks declare datasets eagerly,
and release the dataset lazily. Note that formulating the read and write sets required only reasoning
about the task-local accesses and not about the dynamic inter-task interactions.

W N =

13
14
15

1
2

48

R 1 ...
while (blockBegin < fileSize - 1) { 2 while (blockBegin < fileSize - 1) {
OFF_T bytes_left = fileSize - blockBegin | 3 OFF_T bytes_left = fileSize - blockBegin
OFF_T block_length = blockSize; 4 OFF_T block_length = blockSize;
if (bytes_left < block_length) 5 if (bytes_left < block_length)
block_length = bytes_left; 6 block_length = bytes_left;
7
blockBegin += block_length; 8 blockBegin += block_length;
block_t* block = new block_t(hInfile, 9 block_t* block = new block_t(hInfile,

block_length) ; block_length);
10 pk_obj_set_t* wrSet = new pk_obj_set_t;
11 wrSet->insert (block);

compress (block); 12 pk_task (wrSet, NULL, NULL, &compress);
output (op_file, block); 13 pk_task (opSet, NULL, wrSet, &output);
b 14 3
15 ...
Listing 5.2: Sequential bzip2 pseudocode Listing 5.3: Parakram parallel bzip2 code
segment. segment.

Listing 5.4 shows the main parts of the multithreaded Pthreads implementation of Pbzip2. The
Pthreads code, optimized for performance, is far more complex, as is also noted by others [73]. The
producer function on line 1 reads from the input file, the consumer function on line 25 compresses
the data and the fileWriter function on line 51 writes the compressed data to the output file.
The code is complex because of several reasons. It explicitly implements pipeline parallelism, it
ensures that the writes to the output file are performed in the correct order, and it orchestrates the
execution for optimum performance. The code implements the pipeline between the three functions
executing on different threads, using lock-protected queues (lines 13, 28, 54). Embedded in the code
on lines 16, 19, 36, and 44 is the logic to ensure that the output is written in the correct order despite
the nondeterministic execution. To optimize resource utilization, the code uses wait-signalling
mechanisms (lines 18, 34, 38, 58).

Note that the Pthreads design requires reasoning about the task-local data accesses as well as
the dynamic inter-task interactions. By contrast, the Parakram code achieves the same goals of
exploiting pipeline parallelism, performing I/O in the correct order, and optimizing performance,
with only task-local reasoning and with no explicit coordination, as the Listing 5.3 shows. We shall
see how these goals are realized once the execution model is presented in detail.

The Pthreads code highlights the complexity of developing optimized multithreaded designs
using a generic parallel programming APIL

int producer(int hInfile, int blockSize, queue *fifo) {

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50

while (1) {
inSize = blockSize;

// read file data
ret = bufread(hInfile, (char *) FileData, inSize);
if (ret == 0) {

break;

3

// add data to the compression queue

pthread_mutex_lock(fifo->mut);

while (fifo->full) {
pret = pthread_cond_wait(fifo->notFull, fifo->mut);
queueAdd(fifo, FileData, inSize, blockNum);
pthread_mutex_unlock(fifo->mut) ;
pthread_cond_signal (fifo->notEmpty) ;
blockNum++;

}

}

}
void *consumer (void *q) {

for (5;) {
pthread_mutex_lock(fifo->mut);
while (fifo->empty) {
if (allDone == 1) {
pthread_mutex_unlock(fifo->mut) ;
return (NULL);
}
pret = pthread_cond_timedwait(fifo->notEmpty, fifo->mut, &waitTimer);
}
FileData = queueDel(fifo, &inSize, &blockNum);
pthread_mutex_unlock(fifo->mut);
pret = pthread_cond_signal (fifo->notFull);
outSize = (int) ((inSize*1.01)+600);

ret = BZ2_bzBuffToBuffCompress(CompressedData, &outSize, FileData, inSize,

BWTblockSize, Verbosity, 30);

// store data to be written in output bin
pthread_mutex_lock(OutMutex) ;

OutputBuffer [blockNum] .buf = CompressedData;
OutputBuffer [blockNum] .bufSize = outSize;
pthread_mutex_unlock(OutMutex) ;

49

51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

1
2
3

50

void *fileWriter(void *outname) {

while ((currBlock < NumBlocks) (allDone == 0)) {
pthread_mutex_lock(OutMutex) ;
if ((OutputBuffer.size() == 0) (OutputBuffer[currBlock].bufSize < 1) (OutputBuffer[
currBlock] .buf == NULL)) {

pthread_mutex_unlock(OutMutex) ;
// sleep a little so we don’t go into a tight loop using up all the CPU
usleep(50000) ;
continue;

} else
pthread_mutex_unlock(OutMutex) ;

// write data to the output file
ret = write(hOutfile, OutputBuffer[currBlock].buf, OutputBuffer[currBlock].bufSize);

CompressedSize += ret;

pthread_mutex_lock(OutMutex) ;

pthread_mutex_lock(MemMutex) ;

if (OutputBuffer[currBlock].buf != NULL) {
delete [] OutputBuffer[currBlock].buf;
NumBufferedBlocks--;

}

pthread_mutex_unlock(MemMutex) ;

pthread_mutex_unlock(OutMutex) ;

currBlock++;

¥
Listing 5.4: Pthreads parallel bzip2 code.

Modern programming models like TBB [151] and Cilk [110] do provide some respite from the
complexity of multithreaded programming by directly supporting some of the parallelism patterns.
For example, the programmer can instruct them to create a pipeline between identified tasks and
the associated runtimes provide the necessary underlying concurrency mechanisms. Listing 5.5
shows the code snippet for Pbzip2 implemented using TBB (Cilk also provides a similar capability).
It uses the in-built pipeline construct [123]. Line 2 informs TBB about the pipeline between the
three tasks specified on lines 3, 14, and 25. This code is far simpler than Pthreads. It is similar
to the sequential and the Parakram versions, but still requires the programmer to reason about
the parallelism pattern in the algorithm. If the pattern does not fit a predefined template, the
programmer must pursue a regular design.

tbb: :parallel_pipeline(simultaneous,
tbb: :make_filter<void, blockBuf*>(tbb::filter::serial_in_order, [&] (tbb::flow_control &

51

fc)-> blockBuf* {

4 blockBuf *b = new blockBuf (BLOCKSIZE) ;

5 int ret = read(hInFile, b->buf, BLOCKSIZE);
6 if (ret == 0) {

7 fc.stopQ);

8 return NULL;

9 }

10 b->originalSize = ret;

11 return b;

12 }) &

14 tbb: :make_filter<blockBuf*,blockBuf#*>(tbb::filter::parallel, [] (blockBuf *b)->
blockBuf* {

15 unsigned int outSize = b->originalSize * 1.01 + 600;

16 b->bufSize = outSize;

17 char *temp = new char[outSize];

18 int ret = BZ2_bzBuffToBuffCompress(temp, &outSize, b->buf, b->originalSize, BLOCKSIZE
/ 100000, 0, 30);

19 b->bufSize = outSize;

20 delete b->buf;

21 b->buf = temp;

22 return b;

23 P&

24

25 tbb: :make_filter<blockBuf*,void>(tbb::filter::serial_in_order, [&] (blockBuf x*b)->
blockBuf* {

26 int ret = write(hOutFile, b->buf, b->bufSize);
27 delete b;

28 return NULL;

29)

30);

31

Listing 5.5: Using the pipeline template in TBB for parallel bzip2

5.3.3 Cholesky Decomposition

Listing 5.6 shows the sequential code for iterative design of Cholesky decomposition and Listing 5.7
shows the Parakram code.

(O BN e NG BT NNCV RN \O R

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

52

matrix M[blocks];

for (i =

for

in

0; i < blocks; i++) {
(j = 1i; j < blocks; j++) {
= j*x(j+1)/2 + i,

for (k=0; k < i; kt+) {

11
12

j*x(§+1)/2 + k;
ix(i+1)/2 + k;

mmult (M[in], M[11], M[12], size,
-1);
}
if (1 == j) {
cd_diag (M[in], size);
} else {

}
}
¥

Listing

12 = ix(i+1)/2 + k;

cd (M[in], M[12], size);

5.6: Sequential ~ Cholesky

decomposition code snippet.

matrix M[blocks];

O O NONUT = WN -

10

11
12
13
14

15
16
17

18
19

20
21
22

23

24
25
26

27
28
29

matrix M[blocks];

for (i = 0; i < blocks; i++) {
for (j = i; j < blocks; j++) {

in

= j*x(j+1)/2 + 1i;

for (k = 0; k < i; k++) {

}

11 = j*(j+1)/2 + k;

12 = i*x(i+1)/2 + k;

pk_obj_set_t* wrSet = new
pk_obj_set_t;

pk_obj_set_t* rdSet = new

pk_obj_set_t;
wrSet->insert (&M[in]);
rdSet->insert (&M[11]);
rdSet->insert (&M[12]);
pk_task (wrSet, NULL, rdSet, &
mmult, args);

if (1 == 3) {

}
}
}

Listing 5.7:

pk_obj_set_t* wrSet2 =
pk_obj_set_t;

wrSet2->insert (&M[in]);

pk_task (wrSet2, NULL, NULL, &
cd_diag, args);

else {

12 = ix(i+1)/2 + k;

new

pk_obj_set_t* wrSet3 = new
pk_obj_set_t;

pk_obj_set_t* rdSet3 = new
pk_obj_set_t;

wrSet3->insert (&M[in]);

rdSet3->insert (&M[12]);

pk_task (wrSet3, NULL, rdSet3, &cd,
args) ;

Parakram iterative Cholesky

decomposition code snippet.

53

for (i =1; i < blocks; i++) {
#pragma omp parallel for schedule ...
for (j = i; j < blocks; j++) {
in = j*(j+1)/2 + i-1;
12 = (i-1)*i/2 + i-1;
ch (M[inl, M[121);
b
#pragma omp parallel shared (M) num_threads ... {
#pragma omp single {
in = i*x(i+1)/2 + 1i;
11 = i*x(i+1)/2 + i-1;
#pragma omp task shared (M, index, 11)
{
mmult_diag(M[in], M[11], M[11]);
}
X
for (j = i+l; j < blocks; j++) {
#pragma omp parallel for schedule ...
for (k = i; k <= j; k++) {

in = j*(j+1)/2 + k;
11 = j*(j+1)/2 + i-1;
12 = k*x(k+1)/2 + i-1;

if (k == j) {

mmult_diag (M[in], M[11], M[12]);
} else {

mmult (M[in], M[11], M[12]);

Listing 5.8: OpenMDP Cholesky decomposition code snippet.
g P y p pp

Once again, the Parakram code is similar to the sequential code but for the creation of the read
and write sets (lines 9-13, 17-18, 22-25) and the pk_task () calls (lines 14, 19, 26). Iterative CD also
uses linear tasks, eager dataset declaration, and lazy dataset release. CD has complex, unstructured
inter-task dependences. Parakram precludes the need to analyze and account for them in the code.
Only task-local analysis is required, to formulate the read and write sets (there is no need for a
separate mod set). By contrast, the multithreaded code, written in OpenMP (Listing 5.8) needs to
explicitly expose and coordinate the parallelism, which results in a different code structure. It uses
the fork-join parallelism, that OpenMP facilitates readily, and relies on the implicit barriers at the
join points to respect inter-task dependence. This comes at a performance penalty, as we will see in
Chapter 7.

(O BN e NG BT NNCV RN \O R

54

matrix M[blocks];
cd_rec (int i, int j, ...) {

if (blocks > 1) {
int n2 = blocks/2;

cd_rec (i, j, M, n2, size);

cd_rec (i, j+n2, M, n2, size);

cd_rec (i+n2, j, M, n2, size);

cd_rec (i+n2, j+n2, M, n2, size);

} else {
int in = i*x(i+1)/2 + j;°¢
int k;

for (k =0; k < j; k++) {
int 11 = i*x(i+1)/2 + k;
int 12 = j*(j+1)/2 + k;

mmult (M[in], M[11], M[12], size,
-1);

O O NONUT = WN -

14
15
16
17

18
19
20
21

22
23
24
25

26
27
28
29
30

31
32
33

34

matrix M[blocks];

cd_rec (int i, int j, ...) {
if (blocks > 1) {
int n2 = blocks/2;

cd_args_t* argl = new cd_args_t;

argl->i = i; argl->j = j;

pk_task (NULL, NULL, NULL, &cd_rec,
argl);

cd_args_t* arg2 = new cd_args_t;

arg2->i = 1i; arg2->j = j+n2;

pk_task (NULL, NULL, NULL, &cd_rec,
arg2);

cd_args_t* arg3 = new cd_args_t;

arg3->i = i+n2; arg3->j = j;

pk_task (NULL, NULL, NULL, &cd_rec,
arg3);

cd_args_t* arg4 = new cd_args_t;
arg4->i = i+n2; argd4->j = j+n2;
pk_task (NULL, NULL, NULL, &cd_rec,
arg4) ;
} else {
int in = i*(i+1)/2 + j;
int k;
pk_obj_set_t* wrSet = new pk_obj_set_t
wrSet->insert (&M[in]);
for (k = 0; k < j; kt+) {
int 11 = i*(i+1)/2 + k;
int 12 = j*(j+1)/2 + k;
pk_obj_set_t* rdSet = new
pk_obj_set_t;
rdSet->insert (&M[11]);
rdSet->insert (&M[12]);
pk_task (wrSet, wrSet, rdSet, &mmult,
args) ;

40
41
42
43
44
45
46
47
48
49
50
51

—_
SOOI UT = WN -

11

55

int 12 = j*(j+1)/2 + k; 36 int 12 = j*(j+1)/2 + k;
if (1i==3) A1 37 if (i==3) A
cd_diag (&M[in], size); 38 pk_task (wrSet, wrSet, NULL, &
cd_diag, args);
} else { 39 } else {
40 pk_obj_set_t rdSet;
41 rdSet.insert (&M[12]);
cd (&M[in], &M[12], size); 42 pk_task (wrSet, wrSet, rdSet, &cd,
fn_args);
} 43 }
} 44 }
} 45 3}
Listing 5.9: Sequential recursive Cholesky Listing 5.10: Parakram recursive Cholesky
decomposition code. decomposition code.

CD can also be implemented using recursive decomposition. Listings 5.9 and 5.10 show the
sequential and Parakram codes. Once again both are similar. Listing 5.11 shows a recursive design
in Cilk, which is particularly well-suited for recursive algorithms. Yet the Cilk code is dramatically
more complex to design and develop [123]. The complexity arises because Cilk requires that
concurrently spawned tasks be independent. The algorithm implemented in the Cilk code is
structured to avoid the complex inter-task dependences (implicit barriers at the end of spawned
functions in Cilk help in the process). As we will see, despite this complex design, it fails to exploit
the algorithm’s inherent parallelism.

Note that designing the Cilk program required reasoning about the dynamic execution and
devising an algorithm that fit the Cilk paradigm. By contrast the Parakram code is simply a listing
of tasks annotated with read and write sets, which require only task-local reasoning. Also note that
although Cilk (and likewise TBB) could simplify Pbzip2, it is unable to simplify the CD code because
the dependence patterns in CD are unstructured and do not neatly follow a pattern template. By
contrast, Parakram can handle arbitrary, as well as structured dependences equally well.

void parallel_potrf (int n, T a[], int 1lda) {

if (double(n) *n*n<=CUT) {
leaf_potf2(n, a, lda);

} else {
int n2=n/2;
parallel_potrf(n2, a, lda);
parallel_trsm(n-n2, n2, a, lda, a+n2, lda);
parallel_syrk(n-n2, n2, a+n2, lda, a+n2+n2+lda, lda);
parallel_potrf(n-n2, a+n2+n2*lda, lda);

}

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45

46
47
48
49
50

51
52

53
54

56

void parallel_trsm (int m, int n, comnst T b[], int 1db, T a[], int 1da) {
if (double(m) *m*n<=CUT) {
leaf_trsm(m, n, b, 1db, a, 1lda, ’R’, ’T’, ’N’);

} else {
if (m>=n) {
int m2=m/2;

cilk_spawn parallel_trsm(m2, n, b, 1ldb, a, 1lda);
parallel_trsm(m-m2, n, b, 1ldb, a+m2, 1lda);

} else {
int n2=n/2;
parallel_trsm(m, n2, b, 1db, a, lda);
parallel_gemm(m, n-n2, n2, a, lda, b+n2, 1ldb, a+n2*lda, 1lda,’N’, ’T’, T(-1), T(1))
parallel_trsm(m, n-n2, b+n2+n2*1db, 1ldb, a+n2+*lda, lda);

}

}
}

void parallel_syrk (int n, int k, const T c[], int ldc, T all, int 1lda) {
if (double(n) *n*k<=CUT) {
leaf_syrk(n, k, c, ldc, a, lda);
} else if(n>=k) {
int n2=n/2;
cilk_spawn parallel_syrk(n2, k, c, ldc, a, lda);
cilk_spawn parallel_gemm(n-n2, n2, k,c+n2, ldc, c, ldc, a+n2, 1lda,’N’, °T’, T(-1), T
(1));
parallel_syrk(n-n2, k, c+n2, ldc, a+n2+n2+lda, lda);
} else {
int k2=k/2;
parallel_syrk(n, k2, c, 1ldc, a, lda);
parallel_syrk(n, k-k2, c+k2*1ldc, ldc, a, lda);
}
}

void parallel_gemm (int m, int n, int k, const T a[], int lda, const T b[], int 1db, T c
[1, int 1ldc, char tramnsa=’N’, char transb=’N’, T alpha=1, T beta=1) {
if (double (m) *n*k<=CUT) {
leaf_gemm(m, n, k, a, lda, b, 1ldb, c, ldc, transa, transb, alpha, beta);
} else if(n>=m && n>=k) {
int n2=n/2;
cilk_spawn parallel_gemm(m, n2, k, a, lda, b, 1db, ¢, ldc, transa, transb, alpha,
beta);
parallel_gemm(m, n-n2, k, a, lda, at(transb,0,n2,b,1db), 1ldb, c+n2*ldc, ldc, transa,
transb, alpha, beta);
} else if(m>=k) {
int m2=m/2;
cilk_spawn parallel_gemm(m2, n, k, a, lda, b, ldb, c, ldc, tramsa, transb, alpha,
beta);

55

56
57
58
59

60
61
62
63
64
65
66
67

57

parallel_gemm(m-m2, n, k, at(transa,m2,0,a,lda), lda, b, ldb, c+m2, ldc, transa,
transb, alpha, beta);

} else {
int k2=k/2;
parallel_gemm(m, n, k2, a, lda, b , 1ldb, c, ldc, transa, transb, alpha, beta);
parallel_gemm(m, n, k-k2, at(tramnsa,0,k2,a,lda), lda, at(transb,k2,0,b,1db), 1db, c,

ldc, transa, transb, alpha);
}
}

int main () {
parallel_potrf (size, &M, rows);

}

Listing 5.11: Cilk recursive Cholesky decomposition code.

5.3.4 Delaunay Mesh Refinement

Listings 5.12 and 5.13 show the sequential and Parakram codes for DeMR. DeMR uses linear (line
25) as well as nested tasks (line 17), just-in-time dataset declaration (lines 3, 8), and lazy dataset
release. DeMR also dynamically allocates and deallocates objects (lines 13, 14). Once again, the
Parakram code resembles the sequential code.

For the multithreaded DeMR, we implemented a speculative design analogous to the Galois
system [142]. Some aspects of the speculation are visible in the Listing 5.14 (lines 20-23). The
design is more complex than Parakram because of the explicit coordination. The Pthreads DeMR
example shows the complexity of coding algorithms that use data-dependent datasets, when high
performance is desired. The code would be simpler if the Galois runtime and APIs were used.
Galois uses TM-like speculation, and provides Atomicity and Isolation. Such algorithms can take
advantage of Galois” automated conflict detection and rollback, which can eliminate the need for the
explicit coordination, simplifying the code. Galois is also particularly suitable for graph algorithms.
Parakram code is be similar to the Galois code in the Lonestar suite.

Nonetheless, Parakram matches the Pthreads DeMR code in expressiveness. The pk_write ()
on lines 3 and 8 in Parakram (Listing 5.13) parallel the locking on line 5 and 13 in the Listing 5.14.
The logic to enable speculation in Pthreads is not needed in Parakram.

(O BN e NG BT NNCV RN \O R

25
26
27
28
29
30

O O IO Ul = WN -

58

void refine (graph, node) {

while (.. // cavity is incomplete
node_t neighbor;
// Scan neighbors
neighbor = findNeighbor (node, ...);

cavity->insert (neighbor);
}
new_nodes = retriangulate (cavity);

deleteGraph (cavity);
addGraph (new_nodes);

new_bad_nodes = checkNodes (new_nodes);
updateWorkList (new_nad_nodes);
}
iﬁé main (..) {
%ﬁile ('workList->empty()) {
ﬁéae = workList->front ()
refine (graph, node)
. .
. e

Listing 5.12: Sequential Delaunay mesh
refinement code.

void* refine (void* args) {

while (!localWorkList.empty()) {
node = localWorkList[next];
if (!get_lock (node)) {
continue;
}
bool got_lock = true;
while (.. // cavity is incomplete

O O NONUT = WN -

18
19
20
21
22
23
24
25
26
27
28
29

void refine (graph, node) {

pk_write (node)

while (.. // cavity is incomplete
node_t neighbor;
// Scan neighbors
neighbor = findNeighbor (node, ...);
pk_write (neighbor);
cavity->insert (neighbor);

3

new_nodes = retriangulate (cavity);
deleteGraph (cavity);

addGraph (new_nodes);

new_bad_nodes = checkNodes (new_nodes);
pk_task (updateWorkList, new_bad_nodes)

>

}
iﬁé main (..) {
%ﬁile ('workList->empty()) {

node = workList->front ()
pk_task (&refine, graph, node)

}

Listing 5.13:
refinement code.

Parakram Delaunay mesh

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

59

node_t neighbor;
// Scan neighbors
neighbor = findNeighbor (node, ...);
got_lock = get_lock (neighbor);
if (!got_lock) {
break;
}

cavity->insert (neighbor);

}

if (!got_lock) {
release_locks ();
continue;

3

new_nodes = retriangulate (cavity);
deleteGraph (cavity);
addGraph (new_nodes) ;
new_bad_nodes = checkNodes (new_nodes);
updatelLocalWorkList (localWorkList, new_nad_nodes)
localWorkList.remove ();
}
}

int main (..) {
workList_t workList[num_threads];

for (int i = 0; i < num_threads; i++) {
// Populate workList for each thread
createWorkList (workList[i], Graph);

}

for (int i = 0; i < num_threads; i++) {
pthread_create (&refine, args);

3

for (int i = 0; i < num_threads; i++) {
pthread_join (...);

}

¥
Listing 5.14: Pthreads Delaunay mesh refinement code.

5.4 Multithreaded Programming

We make a brief note on our experience with multithreaded programs. We studied and used several
APIs to develop them. Many more APIs are available. We found that Multithreading APIs do

60

not provide uniform capabilities, nor is any one API suitable for a broad range of algorithms. For
example, a TBB design for pipeline parallelism is simpler than the Pthreads implementation, but the
DeMR design in TBB will be no simpler than the Pthreads design. Similarly, DeMR implemented
in Galois [142] or TM [129] can be simpler than Pthreads (Listing 5.14), but Galois or TM cannot
simplify the pipeline parallelism in Pbzip2 to the same extent as TBB. Neither can they tackle CD
the way Parakram does. In our experience, the ordered interface of Parakram proved to be the
easiest to express the range of programs in Table 5.10. No one Multithreading API proved easy to
express all of them.

5.5 Summary

Multithreading abstractions permit programmers to implement a wide range of concurrency design
patterns. It is possible for an ordered programming abstraction to provide features that admit
analogous design patterns. Order need not constrain the expression of parallelism. We presented
Parakram’s programming APIs and a few program examples authored using them. Programming
in Parakram requires programmers to reason about only task-local operations, and precludes the
need for explicit coordination and orchestration of the execution. We found that all Parakram
programs that we developed resembled the sequential counterparts and were simpler to code than
the multithreaded counterparts.

61

Executing Ordered Programs

It turns out that an eerie type of chaos can lurk just behind a facade of order - and yet, deep inside
the chaos lurks an even eerier type of order.

— Doucras HOFSTADTER

In Chapter 4 we presented an overview of the Parakram ordered approach. Recall that we posed
the fundamental question, does the artificial constraint of order in a multiprocessor program, where
one is presumably not needed, hamper the program’s expressiveness and performance? Of the
two-part answer to this question, in the last chapter we presented the first, Parakram’s programming
model. In this chapter we present the second part, Parakram’s execution model.

Parakram’s execution model serves two main goals. The first is to combine with the program-
ming model and realize the encoded parallelism patterns at run-time. The second is to overcome
the ordering constraint and exploit the program’s inherent parallelism. Parakram achieves both
objectives by primarily relying on dataflow execution. But exploiting parallelism requires breaking
the strict total order of the program’s computations. Nonetheless, Parakram provides an appearance
of order, on demand, by managing the program’s execution and its state. Furthermore, to maximize
the parallelism opportunities when the dataflow execution may not be immediately possible, for
reasons to be seen, Parakram may execute computations speculatively. Speculative execution may
violate the order and dependence between computations. Yet, Parakram ensures that the program
executes correctly and gives the appearance that it executed in order. Order may appear to constrain
parallelism, and as we shall see in some cases, it can. But counter to intuition, order can also assist
in exploiting parallelism.

To aid the exposition, we present the execution model’s details in two parts: the conceptual
principles it employs and the implementation of its prototype. Section 6.1 provides definitions of
some terms that are relevant to the discussion. Section 6.2 presents the overall architecture of the
model and Section 6.3 describes its operating principles. In Section 6.4 we present the design details
of the prototype and its mechanisms. In Chapter 7 we experimentally evaluate the Parakram design
for expressiveness and performance.

6.1 Terms

Definition of terms commonly understood in the literature, but used by us in the context of ordered
programs, are provided here for reference.

Definition 6.1. Given a program and its ordered computations, an older computation precedes (Defini-
tion 2.7) a younger computation in the order.

62

Ordered Multiprocessor Program

I

a Task Order e @
Sequencer —» >
L o Reorder List
6 © Globally /0
00O Token N Dependence s Y e -precise -
Manager Analyzer Sckpore” agse Restart
1 v —» @ » Engine
s ? History Buffer
Task Pool
Order-aware T
-

Speculative Dataflow Engine Task Schedule

l Exception

CPU| |CPU| (CPU

Figure 6.5: Architecture of Parakram’s Execution Manager. The Sequencer interfaces with the pro-
gram. The Speculative Dataflow Engine performs dataflow execution, and speculates to maximize
parallelism. The Globally-precise Restart Engine provides an appearance of order.

Definition 6.2. A conflicting access to an object is said to be performed if two or more computations
simultaneously access the object and at least one computation writes to it.

Definition 6.3. Given a program of ordered computations, if two computations access an object and at
least one writes to it, then the younger computation is said to be data-dependent on the older, precedent
computation.

Whenever it is evident from the context, we will shorten “data-dependent” to “dependent”.
Definition 6.4. A computation is said to be control-dependent on the computation it is invoked from.

When a function calls another, the child is control-dependent on the parent.

6.2 System Architecture

Establishing the dataflow between a program’s tasks and scheduling them for execution in dataflow
order is central to Parakram’s execution model.

Dataflow execution has proven highly successful when applied to instructions in modern
microprocessors [12, 140, 173]. Dataflow scheduling permits instructions to execute as soon as their

63

input operands are available [14]. This enables independent instructions to execute concurrently,
breaking the ordering constraint where it is not needed. Furthermore, dependent instructions are
automatically serialized, preserving the order where it is needed for correctness. Consequently,
dataflow execution naturally exposes the program’s innate parallelism, while ensuring deterministic
execution, and remains an idealized standard for exploiting concurrency. We apply these principles
to multiprocessor programs. In the process, we address some of the inherent and new challenges
dataflow execution poses: applying the principles to tasks, managing inter-task dependences,
managing resources, and applying the principles at the scale of multiprocessors.

Figure 6.5 shows the block diagram of Parakram’s Execution Manager, which implements the
execution model. The Manager interposes between the program and the underlying system. It
effects and manages the program’s parallel execution, exploiting parallelism while providing an
ordered view. The Execution Manager comprises four main components: (i) a Sequencer @, (ii) a
Speculative Dataflow Engine @, (iii) an Order-aware Task Scheduler @), and (iv) a Globally-precise Restart
Engine @.

The Sequencer @ intercepts the program to discover dynamic instances of potentially parallel
tasks. It also identifies the dynamic identities of the objects in each task’s user-provided dataset.
The Speculative Dataflow Engine (SDX) @ uses the task order and the task datasets to dynamically
construct a precise task dataflow graph. From the dataflow graph, independent tasks, i.e., tasks that
do not need results from any other task, are considered to be ready for execution. Tasks dependent on
results from other task(s) must wait until the results are available, i.e., until their dependences have
resolved. Ready tasks are submitted to the Task Pool 0. Dependent tasks are shelved, i.e., suspended
from further execution and set aside on the Task Shelf @), freeing the resources to execute the program
past them. Thus the execution can create a large task window to exploit the dynamic parallelism
from. A shelved task is submitted to the Task Pool when all of its dependences have resolved.

The SDX exposes the Task Pool to the Order-aware Task Scheduler (OTS) @. The OTS monitors
the system resources and the task order. It schedules tasks for execution, prioritizing older tasks
over younger tasks, when resources are available, and balances the load within the system to use
resources efficiently.

Dataflow task scheduling may execute tasks in parallel and out of program order. The Globally-
precise Restart Engine (GRX) @ makes the program appear to execute in a strict order at any instance.
It implements globally-precise interrupts, using which the execution may be paused at any point
in the program. Once paused, the GRX can construct the precise architectural state of the program
as if it had executed up to a given task, or even an instruction. A Reorder List ®Qanda History Buffer
@, analogous to the Reorder Buffer in microprocessors [171], are used for this purpose.

The Reorder List (ROL) @ tracks in-flight tasks and their relative order. The History Buffer
(HB) @ is used to checkpoint a task’s user-provided mod set before it modifies objects. The order
from the ROL and the state from the HB are used to construct the precise architectural state when
needed.

On occasion the SDX cannot immediately analyze the task dataflow, e.g., when tasks are nested
or use data-dependent datasets, as will be seen. One approach to tackle such cases is to wait until
the necessary information becomes available and the task dataflow can be established. But resources
may idle in the meantime. Hence, to maximize parallelism, in such cases SDX speculates that the
tasks are independent, and are ready for execution. We call this scheme dependence speculation.

64

wrSet rdSet
1 Fl: {B, C} {a}
2 F2: {D} {a}
1 for (i=1; i < 7; i++) { 3 F3: {A, E} {1}
2 pk_task (wrSet, modSet, rdSet, &F);
3 1}
4 pk_serial (); 4 F4: ({B} {D}
5 foo (..);
5 F5: {B} {D}
6 F6: {G} {H}
(a) (b)

Figure 6.6: Example ordered program and dynamic task invocations. (a) Function (task) F is invoked
in aloop. foo () is a “poorly” formed function whose dataset is unknown. (b) Dynamic instances
of task F, and the dynamic instances of objects in their write and read sets.

Subsequently, if misspeculation is detected, it is treated as an exception. The GRX rectifies the
execution using the ROL and the HB, analogous to recovery of misspeculation in microprocessors.

Order also helps Parakram to gracefully handle I/O despite the out-of-order and speculative
execution.

6.3 Execution Manager Operations

The Execution Manager works in coordination with the programming APIs. It employs a range of
mechanisms to support the APIs. Its operations serve three goals: discover parallel tasks, schedule
them for execution, and maintain order. We describe the operations in two steps. The first addresses
the operations needed for the basic APIs, which we call the basic dataflow case. In the second step
we address the remaining, more complex APIs.

6.3.1 Basic Dataflow Execution

Assume for now that the program uses linear tasks and data-independent datasets which are
declared eagerly. The dataset may be released lazily or eagerly. Linear tasks that declare datasets

65

eagerly form the basic dataflow case for Parakram, and are preferred since they permit Parakram to
exploit the parallelism with least overheads, as will become evident from the following exposition.

Consider the example ordered code in Figure 6.6a. It invokes the function F, as a task through
pk_task(), from a loop and designates it for potentially parallel execution. Figure 6.6b shows the
dynamic instances of F as they would be invoked in a sequential execution. The objects in the write
and read sets of each dynamic instance of the function are also listed (ignore the mod set for now).

At run-time, the Sequencer sequences through the program, a task at a time. When pk_task()
is encountered, it first ascertains the invoked task’s operands to build the dataflow graph. Often
objects in the dataset are unknown statically. Therefore, Parakram enumerates the objects in the
dataset dynamically, by dereferencing the pointers provided in the read and write sets.

The Dependence Analyzer @ uses the object identities to establish the data dependence between
tasks. This is in contrast to multithreaded programs, which establish independence between tasks.
In particular, the Dependence Analyzer determines whether the task currently being processed is
dependent on any prior task that is still executing. If not, the task is submitted to the Task Pool. If
the task is found to be dependent, it is shelved until its dependences are resolved. In either case,
the Sequencer then proceeds to process the next task in the program.

Handling Dependences.

Classical dataflow machines handle dependences using tokens to signal production and avail-
ability of data [14]. We employ a similar technique, but make two enhancements. First we associate
tokens with objects instead of individual memory locations. Second, we assign each object multiple
read tokens and a single write token, to manage both production and consumption of data.

The Token Manager @ employs a Token Protocol to manage the data dependences. When the
Dependence Analyzer encounters a task to be considered for dataflow execution, it requests read
tokens for objects in the task’s read set and write tokens for the objects in the write set objects. A
task is ready for execution only after it has acquired all the requested tokens. Upon completion or
when the task explicitly releases the objects (through pk_release()), the tokens are relinquished.
Relinquished tokens are then passed to the shelved task(s) that may be waiting to access the
associated objects. When a shelved task has acquired all of its requisite tokens, it can be unshelved
and submitted to the Task Pool.

Imperative programs can impose additional hurdles. A “poorly” composed function (e.g., one
which modifies global variables not communicated to it) or an opaque function (e.g., from a third
party) may make it difficult to ascertain the function’s read and write sets. In such a case the
programmer may instruct Parakram to resort to sequential execution of the function, i.e., all prior
computations in the program order complete before performing the function, and any subsequent
computation begins only after its completion. This precludes the need to determine precise data
dependences for the function, and hence its dataset.

Executing Tasks.

We illustrate the execution model using the program in Figure 6.6a. Figure 6.7a shows the data
dependence between the dynamic task instances shown in Figure 6.6b. F3 writes objects to A and E,
and thus it has a WAR dependence (solid arrows in the figure) on F1 and F2, which read from A.
F4 writes to object B, which F1 also writes to, hence F4 has WAW dependence (dotted arrows) on

66

>
(a)

P1

P2

P3

(b)

Epoch Reorder List Completed Retired
t1 | F1| F2| F3| F4| F5| F6

t2 | F2| F3| F4| F5| F6 F1 F1
t3 | F2| F3| F4| F5| F6 F1,F6

t4 | F3| F4| F5| F6 F1,F6, F2 F2
t5 | 3| Faf rs|re F1,F6, F2,F4

t6 | ral rs| e F1,F6, F2,F4,F3 | F3
t6 Fs| F6 F1,F6,F2,F4,F3 | F4

(c)

Figure 6.7: Execution of the example ordered program. (a) Data dependence graph of the dynamic
instances of task F in example 6.6b. (b) A possible execution schedule of the tasks on three processors.
(c) Operations of the Reorder List. Shaded tasks in the List have completed but not yet retired.

67

F1. F4 also reads from object D and hence has a RAW dependence (dashed arrows) on F2, which
writes to D. Likewise F5 has WAW dependence on F4 (both write to object B), and has a RAW
dependence on F2 (F5 reads from D which F2 writes to). Note that F1, F2, and F6 are independent.
Any dependences must be preserved for correctness and to maintain the ordered appearance of the
program.

Figure 6.7b simulates Parakram’s execution of the code on a three-processor system. The
execution is shown in time epochs. As the program begins execution in epoch t1, the Execution
Manager first encounters invocation F1 and tries to acquire the necessary object tokens. Attempts to
acquire a read token to object A, and write tokens to B and C are successful. Hence F1 is scheduled
for execution on an available processor (P1). The execution proceeds (on another processor, not
shown) and processes F2 while F1 is executing. Attempts to acquire a write token to D and a read
token to A are successful, and thus F2 is scheduled to execute on processor P2. The execution
advances to F3, which is shelved because a write token to object A cannot be acquired since F1 and
F2, which are still executing, are reading from A. However, before being shelved, F3 acquires the
read token to I and the write token to E. Next, tasks F4, F5, and F6 are processed in turn. F4 and F5
are shelved because they require the write token to B, which is being held by F1. On the other hand,
F6 is able to acquire its requisite tokens (to G and H) and thus can be executed, possibly even in
parallel (on processor P3) with F1 and F2.

As the execution continues, when F1 completes its execution in epoch t2, it releases the write
tokens to B and C (signaling the availability of B and C). The token to B is passed to the shelved
task F4, since it is the oldest task waiting for it; F5 continues to wait until F4 finishes and releases
the token to B. The token for C is returned to the object since no task is waiting for it. At this point,
none of the shelved tasks (F3, F4, or F5) are ready since none of them has successfully acquired all
its tokens. F6 completes execution in t2.

Next, when F2 completes in t3, it releases the tokens to D and A (signaling the availability of D
and completion of the read of A), thus waking up F3 (awaiting write token to A) and F4 (awaiting
read token to D). These tasks can be executed starting in epoch t4 (e.g., on processors P1 and P2),
with F3 now being able to write to A in the same order as in the sequential program (after F2 is done
reading it). When F4 completes, it passes the write token for B to F5, which can then be executed in
epoch t6.

As tasks complete and resources become available, the Sequencer “fetches” new tasks and
updates the dataflow graph by removing the completed tasks and adding the new tasks. The
dataflow execution proceeds as above.

Note that dependences, even between dynamic instances of the same task, may or may not
manifest at run-time, e.g., dynamic instances of the task F, F1 and F2 are independent whereas F2
and F3 are not. Handling the dependences statically, as is required in Multithreading approaches,
often leads to overly conservative solutions. Thus by detecting and only serializing the dependent
tasks dynamically, while permitting independent tasks to proceed in parallel, Parakram achieves
the ideal dataflow schedule of execution (resources permitting).

In the event the programmer cannot formulate a function’s dataset, e.g., for foo in the example
code (Figure 6.6a, line 5), the programmer can guide Parakram to execute such functions serially, as
the example does by using pk_serial() online 4. pk_serial () ensures that foo executes only after
the preceding parallel execution has quiesced. A subsequent pk_task() will prompt the Execution

68

Manager to revert to parallel execution.

The dataflow execution as described above is naturally deterministic, i.e., any program variable
receives the same sequence of values in any execution for a given input. Furthermore, because
no two concurrently executing tasks can perform conflicting accesses, the execution is naturally
race-free, unlike in multithreaded programs in which it is up to the programmer to ensure data-race
freedom.

6.3.2 Globally-precise Interrupts

In the above example, although the program was statically ordered, the dynamic architectural state
during the execution at any given instance may not be ordered due to the out-of-order execution.
This can lead to an imprecise architectural state when exceptions occur or when the programmer
desires to inspect the state. For example, in Figure 6.7(b) F1, F2 and F6 execute in epoch t1. F1
completes in t1, F6 in t2 and F2 in t3. F4 can begin only in t4, once F1 and F2 complete. Thus, F6
completes out of the program order, and if the programmer were to inspect the architectural state
or an exception were to occur in epoch t3, the state will be incongruous with ordered execution
since F6 will have completed while F3, F4 and F5 have not even started.

Note that the program’s execution need not be strictly ordered, merely an appearance is sufficient
when desired. This model has been highly successful in the realm of sequential programs executing
on modern superscalar processors. Despite executing instructions out of program order, they
provide an ordered view, but only when desired, using precise interrupts.

Analogous to precise interrupts in microprocessors, we introduce the notion of globally-precise
interrupts in the context of multiprocessor programs. Globally-precise interrupts (GPI) help
Parakram manage the program’s execution and state. In the case of the sequential program, its state
is contained within the microprocessor (and the memory hierarchy) it is executing on, making it
relatively easy to provide precise interrupts. The state of the multiprocessor program is dispersed
among multiple processors. Hence, although a multiprocessor program’s individual task running
on a processor can be interrupted precisely (provided the processor supports precise interrupts), but
not the entire multiprocessor program. The Globally-precise Restart Engine (GRX) extends precise
interrupts globally across the multiprocessor program (and hence globally-precise interrupts). GRX
permits users to pause an ordered program’s execution and ensures that the collective system
state reflects the program’s ordered execution precisely up to the point whereby all computations
preceding (Definition 2.7) it have completed and none succeeding (Definition 2.8) have started.

To implement GPI, GRX exploits the dataflow, race-free execution, leveraging the resulting
properties. It achieves GPI in two steps: first, at the task boundary, and then within the task, at the
instruction boundary. Since a task executes as a unit on a processor, it relies on precise-interruptible
processors to provide GPI within a task. It is then left to achieve GPI at task boundaries.

The Execution Manager advances the program’s execution by creating a sliding window of
consecutive tasks. GRX introduces the notion of retiring tasks. It manages the execution of the
in-flight tasks until they retire. At run-time, as tasks are invoked, they are logged at the Reorder
List’s (ROL) tail, in the program order. The GRX retires the task when it reaches the ROL's head,
i.e., becomes the oldest task.

69

Figure 6.7(c) shows the ROL’s use when the example program executes as per the schedule in
Figure 6.7(b). At t1, instances F1 to F6 have been processed and hence they are logged in the ROL
in the program order. In t2, F1’s is retired since it has completed, and its entry is removed from
the ROL. At t3, F6 completes, but its entry is held in the ROL, and removed only after t6, once all
preceding tasks have retired. Similarly, F4’s entry is held in the ROL until F3 retires in t6. Note that
since F3 and F4 complete in t5, their entries are retired in t6, one at a time.

Parakram’s notion of retiring a computation is only logical. Unlike microprocessors, it permits
computations to complete and update the architectural state before arriving at the ROL-head. To
manage the program’s state, it uses the History Buffer (HB).

Recall that the granularity of a datum is an object, and each task identifies its mod set. Once
a task is scheduled, but before it starts, Parakram clones, i.e., checkpoints, the union of objects
in its write and mod sets. The dynamic identities of the mod set objects are also established by
dereferencing pointers (objects allocated in the task need not be included in the mod set). Since the
dataflow execution is race-free, a clone can be created without interference from other concurrent
tasks. Further, the Execution Manager clones the PC and the registers of the context just prior to
invoking the task. These clones are logged in the HB for each task. When a task is retired from the
ROL, the clones are discarded (and their memory is recycled). The task is no longer tracked.

The clones may be created using copy-on-write or other software-hardware schemes. Alter-
natively, we can use a software-hardware future file to hold the modified state until it can be
committed to the memory when tasks retire (we do not explore these different cloning options in
this dissertation).

Analogous to the microprocessor, when a program is to be paused for any reason such as an
exception in a task, say, e.g., F4 excepts in epoch t4 (Figure 6.7(c)), the task is halted and the status
is recorded in its ROL entry. Other tasks (F3 in this case) continue to execute (epoch t5). After F3
completes and is retired, F4 reaches the ROL-head and attempts to retire in epoch t6. An exception
status in the retiring task causes the program’s execution to pause. The architectural state modified
by the younger tasks (F6 in this case; F5 has not yet executed) is restored using the clones, in the
reverse ROL order, effectively squashing their execution. The global architectural state now reflects
the program’s ordered execution up to the excepted instruction, i.e., F1, F2 and F3 as completed, F4
as executed up to the excepted instruction, and F5 and F6 as not started. The PC and registers saved
in the precise-interruptible processor are sufficient to resume the execution from the excepting
instruction. Thus we achieve globally-precise interrupts and ordered execution.

On occasion the processor may not be able to provide precise interrupts. For example, an
exception caused by a hardware fault may not be precisely traceable to a specific instruction within a
task. In such cases Parakram cannot be globally-precise interruptible (neither can the microprocessor
be precise-interruptible). However, Parakram can provide coarse-grain preciseness. It can provide
task-boundary GPI, by squashing the task itself (along with the younger tasks). It can roll back even
deeper by squashing more tasks. The execution may resume from the oldest squashed task using
its cloned PC and registers.

Order ensures that every dynamic task instance occupies a unique position in the the total
program order. Using this fact we can apply GPI to achieve ordered execution. Achieving an analog
in multithreaded programs would be difficult due to the lack of order.

70

wrSet rdSet
1 Fl: {B, C} {a}
) control-flow
2 i=2 task
3 F2: {D} {a}
_ control-flow
4 1i=3 task
5 F3: {A, E} {I}
1 for (i=1l; i < 7; i++) 6 i =4
2 pk_task (wrSet, modSet, rdSet, &F);
3} 7 F4: {B} {D}
4 pk_declare (G, modSet, NULL);
5 Gt++; 8 1i=5
9 F5: {B} {D}
10 i =6
11 F6: {G} {H}

12 pk_declare (G,...)
- control-flow

task

13 G++

(a) (b)

Figure 6.8: Ordered program and its dynamic logical decomposition. (a) Example program code.
Function F is invoked from a loop, same as the one in Figure 6.6. (b) Dynamic execution in which
tasks and intervening program segments, i.e., control-flow tasks, interleave.

6.3.3 Handling More than Dataflow Tasks

Above we have described only the execution of parallel tasks invoked from the program, but the
program is usually composed from more than just parallel tasks. For example, the code in Figure 6.6a
invokes task F, but from a loop which is not a part of any parallel task. Of course, the loop operations
and any such non-task operations also need to be performed.

Parakram views the program as consisting of a main program from which parallel tasks are
invoked. Consider the example program in Figure 6.8a consisting of the same loop as in Figure 6.6a.

71

The loop is part of the main program and task F is invoked from it. Figure 6.8b shows a more
complete dynamic execution of the program. F1-F6 are the dynamic invocations of the parallel task
F, as before. Call these, dataflow tasks. The dynamic execution also shows the operations performed
on the induction variable i of the loop (other aspects of the loop operation are not shown). The
execution past the last invocation, F6, is also shown (lines 12, 13). Tasks in turn may invoke nested
tasks (but do not in this case).

Parakram logically treats the program segment between two successive dynamic task invocations
as a control-flow task. Thus it views the program to be composed of interleaved dataflow tasks and
control-flow tasks (CF tasks). F1, F2,.F6 are the dynamic invocations of F and the intervening
segments are CF tasks, as marked.

When a dataflow task is invoked, Parakram attempts to execute the task in parallel with other
dataflow tasks already invoked, but not yet completed, and the program continuation. The program
continuation at a given point in the program is the remaining program past that point. For example,
during the course of the execution, when the dynamic instance F3 on line 5 is invoked, it may
execute concurrently with preceding instances F1 and F2 and the program continuation beginning
from line 3 in Figure 6.8a, which corresponds to the dynamic sequence beginning from line 6 in
Figure 6.8b.

Whereas the tasks may execute concurrently with respect to each other and the program contin-
uation, CF tasks execute in the sequential order with respect to each other. Invocation F3 on line 5
may execute concurrently with the preceding and succeeding instances, F1, F2, F3-F6 (dependences
permitting), but CF tasks on lines 2, 4, 6, etc., are assured to execute in that order.

Once a parallel task is processed, and whether it is submitted for execution or shelved, the
control must flow through the following program segment (and hence called a control-flow task) to
reach the next dataflow task invocation. This process repeats throughout the program.

A CF task may use results produced by preceding task(s). The programmer may specify the
CF task’s dataset, using pk_declare(). In our example, pk_declare() on line 4 states that the
following CF task will write to the object G and hence declares G as a part of the write set (the read
set is empty). If no pk_declare() is encountered, Parakram assumes that the CF task’s dataset is
empty. Parakram treats CF tasks the same as tasks for dataflow and globally-precise interruptible
execution, as described earlier. Entries for CF tasks are also logged in the ROL along with dataflow
tasks, in the program order, and retired when they complete and become the oldest. When a
pk_declare() is encountered in a CF task, tokens are processed and objects are cloned as described
earlier. If a control-flow task cannot acquire a token, the entire program continuation gets suspended
until the associated object is released.

6.3.4 Speculative Execution

So far we have described execution of programs that invoke linear tasks with eager datasets. We
now turn our attention to nested tasks and lazy datasets, the more complex of the cases.
Parakram encourages use of linear tasks and eager datasets whenever possible. They help
analyze dependences before executing the task, needed to facilitate the high performance dataflow
execution. The order and the task datasets are used to construct the dataflow graph. Order of the
dynamic instances of linear tasks is merely the same as their invocation order, as seen in examples

72

task A () {
//Al
task B ()
/ /B2 o
task D ()
//A3
} (&)
task B () {
o ©
task C
//B2 ()
}
task D () {
}
(a) (b) (c)

Figure 6.9: Parallel execution of nested tasks. (a) Example pseudocode. (b) Sequential order of task
invocation. (c) Dynamic order.

Figures 6.6 and 6.8. Eager datasets allow the Execution Manager to establish the object identities
before the task is executed. The immediate availability of the object identities and the task order
permits the Execution Manager to construct the precise dataflow graph. However, nested tasks and
lazy datasets pose challenges to this scheme.

Nested Tasks.

Unlike linear tasks, the invocation order of the dynamic instances of nested tasks may not be
the same as the program order, preventing the Execution Manager from constructing the dataflow
graph. Consider the pseudocode in Figure 6.9a. All tasks except A are nested. Figure 6.9b shows
the sequential invocation order of the tasks (which is not the same as the program’s execution order,
as we shall see). Consider a possible parallel execution schedule of the tasks in Figure 6.9c along a
time-line in epochs. Tasks A, B, and D are invoked as per the program order, but not C. Hence we
cannot rely on the invocation order to determine their program order. If the order is unknown, the
precise dataflow graph cannot be constructed.

Lazy Datasets.
The dataset can be declared eagerly if the dataset is data-independent. However, data-dependent
datasets require that the task first execute to compute the dataset, which poses two challenges.
The first challenge arises when an in-flight task modifies data that affects another task’s dataset.
For example, in Delaunay mesh refinement (DeMR), refining a triangle may change the graph,
which may affect another task’s dataset (Algorithm 5.5, if lines 8 and 10 in different tasks execute
concurrently). Further, computing the dataset forms bulk of a DeMR task’s work. Hence requiring a
task to wait could serialize the entire execution. One approach to handle such cases is to restructure

73

the algorithm, e.g., by dividing the work into two. The first part would compute the dataset, without
updating the data, and the second would perform the update. But the programmer may have to
manually detect conflicts and coordinate the execution, complicating programming. Although this
approach may be automated [89, 135], it can fail to maximize the parallelism.

The second challenge, arising from dynamic data structures, compounds the first. Algorithms
that inspect and operate on dynamically changing data complicate concurrent execution. Again,
in DeMR, as before, a task may insert nodes in the graph which can influence nodes traversed by
another task as it computes the dataset, interfering with its operations (Algorithm 5.5, line 12).
Moreover, traversing the graph while it is being modified can be unsafe. The conservative two-step
approach, as above, may be employed here too, but is undesirable for similar reasons.

Most Deterministic proposals based on ordered programs do not support these two patterns,
and either complicate programming or give up performance.

Recall that Parakram supports data-dependent datasets with simple, intuitive interfaces. It
permits just-in-time (JIT) declaration via pk_read (), pk_write (), and pk_mod() APIs. A task can
declare objects in the read, write, and mod sets as it advances, but before the objects are accessed
the first time, as DeMR does in Listing 5.13, line 3. Parakram also provides a more flexible API,
pk_declare(), to declare the dataset lazily. This permits the task to read objects before declaring
them, but requires the task to declare the dataset before it modifies data.

JIT and lazy declaration enhance the expressiveness, but the task’s dataset is unavailable before
the task executes, and hence the precise dataflow graph cannot be built when the task is invoked.

In summary, a nested task may not be invoked in the correct program order, and JIT and lazy
datasets are known only after the task starts executing. When such a non-eager task is encountered,
the dataflow graph cannot be completely built, hindering the dataflow execution.

Handling Nested Tasks and Non-eager Datasets.

One option to handle non-eager tasks is to serialize the execution. Alternatively, they may be
handled conservatively by waiting until the necessary information is known, still losing parallelism
opportunities in the interim. However, Parakram resorts to dependence speculation to maximize
the parallelism. It speculatively explores and exploits the parallelism when dependences are
unknown, and still provides the ordered execution semantics.

When a non-eager task is encountered, the Dependence Analyzer builds an incomplete dataflow
graph. In the example of Figure 6.9, when task D is invoked in t3, Parakram builds the graph
assuming only tasks A, B, and D, without being aware of C. If the task has no dependence on the
current in-flight tasks, Parakram speculates that the task is indeed independent, and submits it to
the Task Pool (from where it is scheduled for execution, resources permitting). In this case, if D is
found to be independent of A and B, it will be submitted.

Eventually when the task’s order and/or the dataset become known, the Dependence Analyzer
completes the dependence graph, and checks whether it had misspeculated. In the example, once C
is invoked in t4, the Execution Manager will complete the dataflow graph using C’s dataset. Based
on this new graph, if D is found to be independent of C, the speculation was correct and no further
action is required.

74

-

)
R
\
/ \
(e)~(c) [>ic)
N

t1 t2 t3 t4 5 Time

(a) (b) (c)

Figure 6.10: Misspeculation due to non-eager tasks (a) Sequential task invocation order. Task D
has a RAW dependence on C. (b) Misspeculation from out-of-order invocation of nested tasks. (c)
Misspeculation due to non-eager dataset declaration.

However, the speculation can be incorrect under two scenarios. Figure 6.10 redraws the sequen-
tial task invocation order from the nesting example of Figure 6.9. Say task D reads object O which
task C writes, as depicted by the RAW dependence arrow from D to C in Figure 6.10a. The first case
of misspeculation arises from out-of-order invocation of nested tasks, as shown in Figure 6.10a. Task
D is invoked in t3 and is executed speculatively. It reads the object O. When task C is invoked in t4
and declares its dataset, the Token Manager detects the violation of the RAW dependence between
D and C. The second case of misspeculation arises from non-eager dataset declaration. Say, for the
same nested code, tasks C and D are invoked in the correct order, as shown in Figure 6.10c. But in
this case, say C declares the dataset either lazily or JIT. When D is invoked in t4, the dataflow graph
between C and D cannot be constructed because C has not yet declared its dataset. Nonetheless, D is
executed speculatively. Task D reads the object in t4. In t4, C finally declares its intent to write object
O. The Dependence Analyzer completes the dataflow graph, and detects that the RAW dependence
between D and C has been violated. In both cases, task D has misspeculated. Its execution and of
any data- and control-dependent tasks (none in our example) was incorrect. Irrespective of the
scenario, misspeculation has the same effect-incorrect execution.

To rectify the misspeculation, the GRX performs dataflow recovery, by undoing the operations
of only the misspeculated and dependent tasks, and re-executing them. The ROL and the HB are
repurposed, with some extensions, for this purpose. Before a task executes, its mod set is already
checkpointed in the HB. To undo the task’s operations, the checkpoint is restored from the HB.
Once the correct state has been reinstated, the execution resumes in the correct dataflow order, as
dictated by the more accurate dataflow graph.

Supporting speculative execution requires detecting and correcting misspeculation. This re-
quires dynamically tracking the precise order of tasks and managing their dependences. Maintaining
an ordered view of the execution helps with this process. We discuss these aspects next.

75

task A () {

task D () {
}

/ /Al @
task B ()
/ /A2 e
/ /A3 6
} P OkE
//B1 @ 3 @
task C
/ /B2 5
} @ tl t2 t3 t4 Time

(a) (b) ()

Figure 6.11: Handling parallel execution of nested tasks. (a) Example pseudocode. (b) Tasks
divided into subtasks for order tracking. (c) IDs based on a hierarchical scheme.

Tracking Task Order.
Tracking a linear task’s order is relatively easy; it is the same as its invocation order. A strictly
monotonic ID may be assigned to the task for tracking purposes. Nested tasks pose a challenge.

Parakram logically decomposes a nested task’s parent into subtasks, at the task’s call site, as
shown in Figures 6.11a and 6.11b. In Figure 6.11a, task A is divided into subtask A1, comprising
operations up to task B, and subtask A2, comprising computations between invocations of B and
D, as marked. Parakram now views the program as comprising these ordered subtasks, shown in
Figure 6.11b. Note that this is consistent with the program’s sequential order. (Similar schemes
have been used by others for sequential programs [6, 152].)

Parakram permits each subtask to declare its dataset using pk_declare (). If undeclared, the
parent task’s dataset is inherited by the subtask. This is in contrast to the CF task, in which case an
undeclared dataset implies an empty dataset. When nested tasks are used, the programmer may
choose to declare the datasets of individual subtasks, which may yield higher parallelism.

Parakram uses a hierarchical numbering scheme, inspired by the Dewey Decimal Coding
system [53], to assign unique, but ordered identifiers to the subtasks. The identifier is formed by
concatenating “fractions”, one per nesting level of the task. Each fraction is strictly monotonic. The
nested task inherits its parent’s identifier and appends a fraction in the least significant position.
The succeeding subtask inherits the parent’s identifier and the least significant fraction in it is
incremented. Figure 6.9e labels the tasks with the IDs formed using one such scheme. How this
scheme is used in practice is described later.

76

Dependence Management

Issue Data-independent Data-dependent
Eager JIT/Lazy Eager JIT Lazy
@ @) ®G) 4 ©) (6)
Known Unknown Known Unknown Unknown
1 Dependence
Dataflow Speculation Dataflow Speculation Speculation
2 State write Speculative - Speculative Speculative
Eager Eager Eager Eager At commit
3 State read Correct Misspeculation Correct Misspeculation Misspeculation
- Rollback - Rollback Rollback+Exception

Table 6.12: Summary of dependence management issues. Each row lists the possible issue on the
first line and Parakram’s approach on the next.

Managing Dependences.

Managing dependences of eager tasks is relatively straightforward. But when tasks execute
speculatively, out of order, we need to ensure that the states tasks read and update are correct.
Table 6.12 lists the issues and how Parakram handles them (the Parakram approach is listed in italics
below the related issue in the table).

When a data-independent dataset is declared eagerly (column 2), Parakram simply performs
dataflow execution (row 1). Any state updates (row 2) and reads (row 3) are correct.

Although data-independent datasets can be declared eagerly, programmers may declare them
JIT or lazily (column 3). In that event, the task starts executing speculatively since the dataset is
unknown to the Execution Manager (row 1). Parakram allows the task to update the program’s
state eagerly (row 2), i.e., it becomes visible to all other tasks immediately. If Parakram subsequently
discovers that it had misspeculated, the dataflow recovery repairs the state, and dependent tasks
read the correct state upon re-execution (row 3).

If the dataset is data-dependent, the programmer may construct the program such that the
dataset is computed outside of the task (e.g., in a CF task) and the task declares the dataset eagerly
(column 4). This case is similar to tasks declaring the dataset eagerly, and hence handled similarly.

A data-dependent dataset may be declared JIT (column 5). Parakram executes the task specu-
latively (row 1) and permits eager updates (row 2). It tackles misspeculation using the dataflow
recovery, and re-executing the affected and dependent tasks (row 3).

Lazily declared data-dependent datasets pose a unique challenge since such tasks are allowed
to read data without first declaring them (column 6). We call such tasks, lazy, and require that
they be invoked through the pk_task_uc() APIL They are executed speculatively (row 1). Lazy
tasks may read data to compute the dataset. Another executing task that speculatively updates
data eagerly can influence the dataset. For programs that use lazy tasks, Parakram permits them
to update the state upon commit, i.e., when the task’s dependences are known for certain and the

77

task is known to have not misspeculated (row 2). Conservatively, this is always the case when a
task becomes non-speculative, i.e., becomes the oldest in the execution. Parakram presently relies
on the programmer to perform updates locally, but updates the global state when the task commits
(using the user-provided assignment operator). A task can still read incorrect data (if the producing
task has not yet committed its updates). This case is detected as a misspeculation, and the task is
rolled back and re-executed (row 3).

Further, a lazy task may read an object being modified by another task (even if it is being updated
on commit). Since the object will be in the task’s dataset (data read to compute the dataset is also
part of the dataset), the conflict will be detected eventually and rectified. But the task may read
inconsistent data in the meantime.

Programmers often use assertions to test invariant conditions. Such assertions can also poten-
tially catch inconsistencies that may arise in lazy tasks. Parakram allows the program to report
exceptions on such assertions to the Execution Manager, using pk_except (). These exceptions will
cause the task to (eventually) re-execute. We successfully used this scheme in some programs, e.g.,
DeMR. Exceptions in non-speculative tasks are reported to the programmer.

Special Cases.

Certain algorithms may use datasets which are dependent on data structures that are not modi-
fied. In such cases, tasks may declare the datasets lazily, but may not require the full support for
speculation. For example, in one phase of its processing, Genome (Table 5.10) maps its input strings
into a hash table. Finding the slot in the hash table in which a string will be inserted requires com-
puting the hash of the string (and hence data-dependent dataset), but the input strings themselves
do not change. Hence, a task’s dataset is not affected by other concurrently executing tasks. In
such cases, although the datasets are declared lazily, order can be maintained and misspeculations
can be entirely avoided if we simply wait to schedule tasks until the dataflow graph is constructed
completely. This can be done by processing the datasets in the program order. Parakram permits
programmers to identify such tasks and guide the dependence management. Programmers may
declare the dataset using the pk_declare_ia() API, and request Parakram to perform in-order
token acquisition. When a task declares its dataset in this fashion, Parakram assumes that the task
need not be re-executed, even if the task started executing speculatively and declared its dataset out
of the program order.

6.3.5 Scheduling Tasks for Execution

Once the Speculative Dataflow Engine (SDX) has gathered parallel tasks, speculative or not, in
the Task Pool, the Order-aware Task Scheduler (OTS) schedules them for execution on hardware
contexts. Cilk-5 has popularized load-balancing task schedulers over the recent years due to their
provably optimal properties [71]. They create tasks lazily, use the work-first principle to unroll the
program only when a resource is available, and use randomized task-stealing to balance the load
in the system. OTS borrows some of these principles, but introduces new features to support the
dataflow and speculative execution.

Schedulers for multithreaded programs, like Cilk-5, treat all tasks as “equal” and randomly
schedule them when resources are available. In practice, programs are constructed such that tasks

78

whose results will be needed by other tasks are performed sooner. This is usually reflected in the
program encoding by the order in which the tasks are performed. OTS takes advantage of this order
and prioritizes older tasks over younger tasks for scheduling. In our experiments, we observed that
in some algorithms like Cholesky decomposition, given a pool of ready tasks, executing an older
task exposed more downstream parallelism. Hence OTS ensures that older tasks get scheduled
before younger tasks from the Task Pool.

OTS employs two schemes to distribute work for execution. The first permits individual hard-
ware contexts to run schedulers that actively seek work by querying the Task Pool, analogous to
task stealing. The second assigns tasks to hardware contexts, eliminating the schedulers. Our
experiments show that the first performed better for programs with relatively larger tasks whereas
the second worked better for programs with very small tasks. The current prototype allows the
programmer to choose between the two. An hybrid approach and an automatic, adaptive scheme
to dynamically pick between multiple schemes can be an interesting future direction to pursue.

6.3.6 Other Aspects of Ordered Execution

Performing computations in parallel is but one aspect of executing multiprocessor programs. Other
issues arise in this process, such as managing resources, executing computations efficiently, and
performing I/O correctly. Parakram relieves the programmer from explicitly coordinating the
execution, but introduces its own mechanisms. Parakram must ensure that these mechanisms do
not alter the program semantics. Further dataflow and speculative execution can introduce new
issues that must be tackled to create a viable solution. We discuss these aspects next.

Efficiency. Applying dataflow principles incurs overheads. The overheads can defeat the par-
allelism if the principles are applied to computations that are too fine-grained [163]. Parakram
applies these principles to tasks, which are sufficiently coarse-grained, thus justifying the associated
overheads. Nonetheless, task granularity plays an important role in how successfully the parallelism
can be exploited, as will be seen in Chapter 7.

Resource Management. Another drawback of the classical dataflow execution was the possibility
of resource deadlocks [47]. Dataflow machines can easily scout an entire program for parallelism
even when only a fraction of the program has actually executed. In the process they can exhaust
resources, causing deadlocks. We prevent such deadlocks by unraveling the ordered program only
as much as the resources permit, in an approach similar to superscalar processors which apply the
dataflow principles to a relatively small window of instructions. As long as resources are available
to execute at least one task, Parakram can ensure forward progress since it can always permit the
oldest task in the system to proceed while suspending all other tasks. The Execution Manager’s
approach to unwinding the program ensures that it always has access to the oldest in-flight task.
The Execution Manager can control the amount of program that is unwound in search of parallelism
to match the available resources.

Tackling Deadlocks. The token mechanisms can potentially create deadlocks. We ensure that the
mechanisms either do not create deadlock situations, or if they are about to, we avoid them with the

79

help of order. We divide this discussion into two cases: basic dataflow execution and speculative
execution.

The token mechanism in the basic dataflow execution could deadlock if two or more tasks
create a cyclic dependency on tokens. For example, in the Figure 6.7b, invocations F4 and F5 may
create a request sequence F4:B (acquired) — F5:B (waiting) — F5:D (acquired) — F4:D (waiting)
and deadlock. This scenario cannot occur because: (i) token requests are processed one task at a
time, and (ii) tokens for an object are granted in the order they are requested. Essentially, tokens are
acquired strictly in the task order. Thus F5’s token requests are only processed after F4’s, and F5
can only receive tokens to its objects after all previous requesters have relinquished them.

The ordered token acquisition is violated when tasks are nested or when the datasets are not
declared eagerly. Nesting can cause concurrent unrolling of parallelism. Non-eager datasets permit
multiple tasks to execute before any of them declares its dataset. In these cases concurrently
executing tasks can attempt to acquire tokens simultaneously (and also out of order). Now cyclic
dependency on tokens can arise, leading to deadlocks. In all of these cases we leverage order to
resolve the deadlock by breaking it in the favor of the older task. The younger task is aborted, any
granted tokens are reclaimed from it, and granted to the older task. (The younger task is re-executed
in the correct order with the help of speculation recovery.) The hierarchical task IDs are used to
determine the task order.

Performing I/O. Parallel execution, irrespective of the programming interface used, complicates
I/0O operations. Program’s computations may execute in parallel, but most I/O must be performed
in a serial order. In multithreaded programs the programmer must explicitly coordinate the I/O
operations to ensure that they are performed in the correct order. To do so efficiently can complicate
the design. The Pthreads implementation of Pbzip2 in the last chapter is an example of the added
complexity (Listing 5.4). Speculative Multithreading approaches, such as Transactional Memory, can
further complicate matters since speculatively executed computations may have to be re-executed.
If they perform operations such as network I/O, those actions may not be retractable.

Ordered execution naturally simplifies I/O operations. Despite the parallel execution, tasks
that perform I/O to an interface naturally execute in the program order, since the interface acts as a
shared object. This relieves the programmer from any explicit coordination.

However, 1/0 performed by speculative tasks can result in inconsistent state if the task is
re-executed. If the I/O is idempotent, e.g., file reads and writes, Parakram provides support for
automatically rolling back such operations as a part of the misspeculation recovery. For non-
idempotent I/0O, e.g., the network operations, Parakram permits tasks to perform I/O only when
the tasks become non-speculative. The programmer can invoke such linear or nested tasks tasks
using the pk_ic() APL It is always safe to execute such tasks when they are ready to retire. The
GRX submits the task enclosed in pk_ic () when it reaches the ROL-head.

Exceptions. Handling exceptions is another aspect complicated by parallel execution, especially if
the execution is speculative. Ideally, it is desirable to report exceptions to the programmer in the
program order so that the user can track the exception to the dynamic instance of the corresponding
task.

80

Ordered execution is also helpful in handling exceptions. The GRX catches user-invoked ex-
ceptions, pk_except (), as well as system exceptions, e.g., SIGSEGV. They are reported to the
programmer or the excepting task only when the task becomes non-speculative.

Furthermore, if so directed, the GRX can roll back and re-execute the excepted task. This feature
may be used if the user expects the exception condition to be transient. We applied this feature
gainfully in DeMR and Labyrinth. Since a task in DeMR traverses the graph while another is
modifying the graph, it can read inconsistent data. While this is a dependence violation, and will be
treated as such, reading inconsistent data is also an exception condition. However, once the updates
to the graph are complete, the data will become consistent. In this case the exception condition was
transient and it is desirable to retry the task without throwing an exception to the programmer.
This also serves the purpose of correcting the dependence violation.

In the case of Labyrinth, we used exception support to reduce dataset processing overheads. We
will revisit Labyrinth in the next chapter once we see the Execution Manager’s operations in more
details next.

If the task is non-speculative, and the programmer did not request re-execution, the exception
must and will be reported to the programmer.

6.4 Execution Manager Prototype

To evaluate Parakram we developed a software prototype of the Execution Manager in the form
of a compiler- and OS-agnostic C++ runtime library. The library supports the Parakram APIs and
implements the mechanisms described in this chapter. Applications to be parallelized are compiled
with the library; the library becomes a part of the program that it dynamically parallelizes. The
library itself is implemented using the Pthreads API. However, it abstracts away the underlying
concurrency mechanisms, such as threads, synchronization operations, etc., from the programmer,
as originally intended. The library design follows the overall architecture presented in Figure 6.5.

We describe the prototype operations in three parts: basic dataflow execution, speculative
execution, and miscellaneous features. We will describe the operations with the help of pseudocode,
which will be self-evident from the figures.

6.4.1 Basic Dataflow Execution

Runtime Basics.

At the start of a program, the runtime creates threads, usually one per hardware context available
to it. A double-ended work queue (deque) is then assigned to each thread in the system. Tasks
are submitted for execution by queuing them in the work deques. The work deques collectively
represent the Task Pool (Figure 6.5 @). Each thread also uses a task-stealing scheduler, which
continually seeks work from the Task Pool by querying the deques, and dequeuing work from them
if available. Figure 6.13 shows the logical operations performed by the scheduler. The details will
be seen below.

Discovering Tasks for Parallel Execution.
At the onset, all but one of the processors idle, waiting for work to arrive in the deques. Execution

1
2
3
4
5
6
7
8
9

10

81

schedule () {
while (always) {
obtain work from Task Pool
// work can be a task or the program continuation
if dataset declared {
clone work’s (write set U mod set)
}
execute work
}
}

Figure 6.13: Logical operations of the thread scheduler.

Prelude:
Parakram Preprocessing

1 for (i=1; i < 7;-4++) {
Execute:
2 pk_task “(wrSet, modSet, rdSet, &F);
3) Execute instance of F
4 pk_declare (G, modSet,-NULL);
Postlude:
5 G++;

Parakram Postprocessing

Figure 6.14: Logical Execution Manager operations to process a dataflow task.

of the program begins on a single processor and unfolds in a fashion similar to sequential execution.
When a function to be considered for parallel execution, e.g., via pk_task(), is encountered, the
Sequencer in the runtime is activated. The Execution Manager expands the APl into three decoupled
phases: Prelude, Execute, and Postlude, as logically shown in Figure 6.14. Execute may not be
immediately performed after Prelude, as will be seen, but Postlude follows Execute.

In the Prelude phase, shown in more detail in Figure 6.15 @), the Sequencer first assigns a
hierarchical ID to the task. The Sequencer then logs an entry for the task at the end of the ROL. It
then dereferences pointers to objects in the read and write sets, and attempts to acquire the tokens.
Successful acquisition of tokens leads to the Execute phase, detailed in Figure 6.15 @, in which the
task is submitted for (potentially parallel) execution. Specifically, the runtime pushes the program
continuation (remainder of the program past the pk_task() call) onto the thread’s work deque,
and executes the task on the same thread. A task-stealing scheduler, running on each hardware

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30

31
32
33
34

82

Prelude (task) @ {

}

enqueue task in ROL
if task is nested {
mark task as control-dependent on parent

}

if task is eager {
Acquire tokens @ // See Figure 6.16

if all tokens not acquired {

Shelve task @

return to program
} else {
Shelve program continuation
Execute task // See below
b
} else {
Shelve program continuation
Execute task // See below
3

// All tokens acquired
Execute (task) @ {

}

if dataset declared {
clone task’s (write set U mod set)

}

execute task @

// Task completed
Postlude (task) @ {

}

Release tokens @ // See Figure 6.16
Restart misspeculated tasks (task) // See Figure 6.20

Retire (task) @ // See Figure 6.17

Figure 6.15: Prelude, Execute, and Postlude phase operations of the Execution Manager.

83

context, will cause an idle thread to steal the program continuation and continue its execution, until
it encounters the next pk_task (), repeating the process of submission and pushing of the program
continuation onto the work deque. Thus the execution of the program unravels, in parallel with
executing tasks, and possibly on different hardware contexts rather than on one hardware context.
The Postlude phase is described later in the subsection.

Tokens and Dependency Tracking.

The Token Manager implements a Token Protocol to manage the dependences between tasks and
implicitly creates the dataflow graph. The Token Protocol is shown in Figure 6.16. During the
program execution, when an object that inherits token_t is allocated, it receives one write token,
unlimited read tokens (limited only by the number of bits used to represent tokens), and a Wait
List. Tokens are acquired for objects that the dataflow tasks operate on, and are released when the
tasks complete, or when the task uses pk_release () to explicitly release the objects.

A token may be granted only if it is available. Figure 6.16 gives the definition of availability of
read and write tokens (lines 2-11), and shows the token acquisition protocol (lines 14-23). The Wait
List tracks the current in-flight task(s) that have been allocated tokens, and the tasks to which the
token could not be granted at the time of their requests. To prevent deadlocks, all token requests
from a task are processed before proceeding to the next task, possibly in parallel with other executing
tasks, and a token is granted strictly in the order in which it was requested. Hence an available
token is not granted if an earlier task enqueued in the Wait List is waiting to acquire it. For example,
if a read token is available but a prior task requires a write token to the object, it cannot be granted
to the requester, ensuring that tasks acquire tokens in the program order.

Shelving Tasks/Program Continuations.
After a task’s requests are enqueued in the Wait Lists of all the objects (Figure 6.16, line 14), and

if it is unable to acquire all of the requested tokens, the task is shelved (Figure 6.15 @). While the
shelved task waits for the dependences to resolve, the runtime looks for other independent work
from the program continuation to perform, as above.

pk_serial (), pk_barrier (), pk_declare(), pk_read(), and pk_write() can cause the pro-
gram continuation to be shelved. The continuation is enqueued in the Wait List of the object(s)
identified in pk_declare(), pk_read (), and pk_write(). pk_serial() and pk_barrier () cause
the program continuation to be shelved until all relevant executing tasks complete. In this event,
the continuation is shelved on a special runtime structure (and not a Wait List).

Since the program is now suspended in either case, the context looks for previously shelved
tasks that may now be unshelved, via task stealing.

Executing Tasks.
Once the scheduler obtains a task from either its own deque or steals a task from another thread’s
deque, the objects in its mod set and write set are cloned. The object clones are held in the HB. The

control is then transferred to the task to perform the actual work (Figure 6.15 @).

O 00 N3 O U1 = W N

—_ =
_ O

29
30
31
32
33
34
35
36
37
38
39
40

84

Token Availability

Initial State:
Read Token: None granted.
Write Token: Not granted.

Read

Token is available if:

Write Token is not granted.

Write Token is available if:

no

Read Token is granted AND

Write Token is not granted

Release Token (Read/Write):

release () {
return token

while Wait List is not empty {

if token is available {

grant token

if waiting task is ready {
submit task to Task Pool
}

} else {

Figure 6.16: The Token Protocol. Definition of availability, read /write token acquistion, and token

release.

break

14
15
16
17
18
19
20
21
22
23
24
25
26

Acquire Read/Write Token:

acquire (task) {
enqueue in Wait List
if younger task acquired token {
Rectify misspeculation () {
// See Figure 6.19

}

for each waiting task in Wait List {

3

}

if token is available {

}

grant token to waiting task

85

Completion of Tasks.

When a dataflow task completes execution it returns the control to the runtime, which initiates the
Postlude phase (Figure 6.15 @). In this step all acquired tokens are released. Figure 6.16 describes
the token release protocol (lines 29-40). Once a token for an object is relinquished (Figure 6.16, line
30), it is passed to the next waiting task(s) in the Wait List (Figure 6.16, line 31), if present, in the
same order that the tasks were enqueued. When a shelved task receives all requested tokens, it is
considered to be ready for execution. The thread that grants the final token also awakens the ready
task and schedules it for execution by enqueuing it in its own work deque (Figure 6.16, line 35).
Then either the same thread, or another that steals the task, will eventually execute it (Figure 6.15
@). The process is identical if a pk_declare() caused the program continuation to be enqueued in
a Wait List. Different threads may simultaneously attempt to release, acquire, and pass a token. The
runtime manages the data races in such scenarios by using non-blocking concurrent data structures.

Retiring Tasks.
Once all tokens are relinquished, the GRX is reported about the completed task. The GRX attempts

to retire the task (Figure 6.15 @). Figure 6.17 gives more details. The GRX checks whether the
task is at the head of the ROL. If it is not then the task cannot be retired. If the task is at the head of
the ROL, its entry is removed, the clones are removed from the HB, and the memory held by clones
are is recycled.

If the continuation was shelved, the Postlude phase of the last task to finish will submit the
continuation for execution, resuming the program.

Thus, by shelving dependent tasks, scheduling them for execution as soon as their dependences
have resolved, and executing other independent tasks in the meantime, the Parakram achieves the
basic dataflow execution.

6.4.2 Speculative Execution

Each thread in the Execution Manager tracks whether it is currently executing a control-flow
task or a dataflow task. The Execution Manager automatically switches to speculative mode
when a pk_task_uc() is invoked, or a pk_task(), pk_task_uc(), pk_declare(), pk_read(), or
pk_write() is invoked from a dataflow task, since the task may have been invoked, or the dataset
may have been declared out of program order. In this mode, the Execution Manager submits tasks
to the Task Pool in anticipation of the need to rectify misspeculations arising from out-of-order
token processing.

Nested Tasks.

When the Sequencer encounters a task invoked from a dataflow task, indicating that it is nested,
the Prelude, Execute, and Postlude phases remain the same as before. In the Prelude phase, when
the entry for the task is logged in the ROL (after the task has been assigned its hierarchical ID), the
task is inserted in the position which reflects the task’s relative order among the tasks currently in
the ROL (Figure 6.15, line 2). The hierarchical ID is used for this purpose. (There are alternative

O 0 N O UG Wi -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

86

Retire (task) {

}

while next task at ROL-head completed or excepted {
if next task excepted {
Handle exception (next task) // See below
3
if next task requested update on commit {
// For tasks invoked via pk_task_uc()
Acquire tokens (next task)
// All tokens should get acquired since this is the oldest task
submit next task to Task Pool
exit Retire
¥
for each object in next task’s (write set U mod set) {
recycle clone
+
for each object in next task’s read and write set {
remove next task’s entry from Wait List
3
remove next task’s entry from ROL
}
jump to schedule () // See Figure 6.13

Handle exception (task) {

3

pause execution
for each younger task in reverse ROL order {
abort younger task
for each object in younger task’s (write set U mod set) {
restore from clone
b
}
report exception to user
// Further action is user-dependent

Figure 6.17: GRX operations to retire a task.

O 0O N O U = W IN -

I S ey Sy
U k= W N = O

87

non-eager declaration (task) {
mark parent task as speculative
if in-order token acquisition requested {
while oldest task in ROL whose dataset has been declared but not processed {
Acquire tokens (task) // See Figure 6.16
if all tokens acquired {
submit oldest task to Task Pool
} else {
Shelve oldest task
jump to schedule () // See Figure 6.13
b
+
jump to schedule () // See Figure 6.13
+
3

Figure 6.18: Execution Manager operations to process non-eager dataset.

methods to insert entries in the ROL.) The invoked task is also marked as control-dependent on the
parent task (Figure 6.15, line 4).

Non-eager Datasets.

When the Sequencer encounters pk_declare (), pk_declare_ia(), pk_read(), or pk_write(),
it initiates non-eager dataset handling, as shown in Figure 6.18. The Sequencer marks the parent
task as speculative. Tokens are acquired next.

During token acquisition, The Token Manager first inserts the request in the ROL (Figure 6.16,
line 15) in its correct position (using the hierarchical task ID). In this process it can identify whether
a younger task was issued the requested token. If it was not, the processing proceeds as before. If
the younger task was issued the token and it performed a conflicting access, then the younger task
executed speculatively and has violated a dependence. The GRX is informed about the misspecula-
tion.

Misspeculation Recovery.

The GRX initiates misspeculation recovery, as shown in Figure 6.19. It walks the ROL and creates
a transitive closure of tasks data-dependent or control-dependent on the precedent task. They
are all designated to be misspeculated. Misspeculated tasks are aborted. Their modifications are
unrolled by restoring the objects in their datasets from the clones. Any state unrolling is performed
from the youngest to the oldest task. If a misspeculated task was control-dependent, its entry

88

Rectify Misspeculation (misspeculated task) {

// tasks_to_abort is an ordered set of tasks sorted by task ID
tasks_to_abort = misspeculated_task
for each task younger than misspeculated task in ROL {
if task is data-dependent on any task in tasks_to_abort {
tasks_to_abort += task
}
if task is control-dependent on any task in tasks_to_abort {
tasks_to_abort += task
3
+
for each task in tasks_to_abort in reverse {
abort task
if task is control-dependent on any task in tasks_to_abort {
for each object in task dataset {
restore state from clone
remove task from Wait List
}
remove task from ROL
} else {
if task is speculative {
for each object in task dataset {
restore state from clone
remove task from Wait List
}

enqueue task in misspeculated task’s Restart List

Figure 6.19: Operations performed to rectify misspeculation.

Ul = W N -

89

Restart misspeculated tasks (given task) {
for each task in restart list of given task {
Restart misspeculated tasks (task)
submit task to Task Pool

Figure 6.20: Restarting misspeculated tasks.

is removed from Wait Lists of its dataset and the ROL (because control-dependent tasks will be
invoked again). Of the remaining, if the task was marked speculative, its entry is removed from
Wait Lists of its dataset (they will re-declare their datasets). These tasks are enlisted in the Restart
List of the precedent task. Now the precedent task’s execution can begin.

Completed tasks.

When a task completes, in addition to processing as before, it also now checks whether any
previously misspeculated non-eager data-dependent tasks are waiting for its completion. Such
tasks are in the restart list. A transitive closure of tasks in the Restart List are submitted to the Task
Pool (Figure 6.15, line 29 and Figure 6.20).

Retiring Tasks.

Recall that tasks invoked via pk_task_uc () update state lazily. When a task is being retired, the
GRX processes its dataset and requests the Token Manager to acquire the tokens (Figure 6.17, line
14). At this point, since the task is the oldest (it is being retired), all its tokens will be acquired and
the task is submitted for execution to the Task Pool. When the task is (eventually) scheduled, it can
then complete its processing, by committing its locally computed state to the architectural state .

All other operations remain the same as in basic dataflow execution.

6.4.3 Other Operations

Scheduling and Balancing Load.

The OTS is implemented in the form of asynchronous distributed schedulers, one assigned to
each thread. There are two key aspects to the scheduling mechanism: task-stealing and continuation
scheduling. Each thread’s scheduler seeks work when the thread is idle. The scheduler first executes
tasks from its own thread’s deque when available, failing which it randomly steals from others
threads. This distributed, asynchronous system avoids bottlenecks that result from centralized
resources, and helps balance the system load.

90

The work deques are polymorphic-they can hold tasks and program continuation. The thread
that awakens a shelved task or program continuation, enqueues it in its own deque, potentially
executing it next. Scheduling dependent tasks on the same thread as the precedent task permits the
dependent task to migrate to the thread that may have already cached the data.

Although popular, continuation scheduling and random task-stealing are not ideal. In continua-
tion scheduling, when a task is invoked it is preferred that the task execute on the same context,
while the program continuation may move to another context (via task-stealing). This operation was
described in the description of basic dataflow execution earlier. This scheduling scheme is adequate
when the tasks are reasonably large. But for small tasks, it can be grossly inefficient. Continuation
scheduling results in cache misses every time the continuation moves, and task-stealing can unnec-
essarily chew up memory bandwidth. Furthermore, this scheme does not take into account task
order, which contains valuable information about the user’s intention.

We implemented two further enhancements in the OTS. First, we implemented task-distribution
in addition to task-stealing. In this scheme, the main program executes on a single context, and
invoked tasks are distributed to other processors. Other processors need not continuously seek work;
work is assigned to them The user may instruct the Execution Manager to chose task-distribution
over task-stealing.

Second, we ensured that tasks are enqueued in the work deques in a sorted order, such that
older tasks are scheduled for execution before younger tasks. This scheme ensures that possibly
precedent tasks execute before other tasks. It becomes especially critical in speculative execution.
Any task can be executed speculatively. Younger tasks may get scheduled before older tasks, only
to misspeculate. If care is not taken, this can result in wasted work, and even slowdowns.

Memory Allocation.

Programs often use dynamic data structures which are allocated and deallocated as the program
executes. Additionally, the Execution Manager employs several data structures, e.g., the ROL,
the HB, and the clones, for its own operations. The Execution Manager uses dynamic memory
allocation and deallocation to minimize its memory overheads. These operations are performed
for almost every task it processes. Dynamic memory allocation poses two challenges to Parakram.
The first arises due to poor performance of prevailing memory allocators [8], which is an issue that
affects multiprocessor programming in general, but more so Parakram-like systems that may use
the memory allocators more frequently. The second challenge arises due to speculative execution.
Speculative tasks that allocate and/or deallocate structures may be re-executed, which can leave
memory allocators in inconsistent state and exacerbate memory use.

Parakram runtime addresses both challenges by implementing its own high performance mem-
ory allocator. The allocator creates thread-local pool of memory resources from which both the
user program and Parakram allocate structures. The allocator maintains only as large a pool as the
program requires. By implementing its own allocator, the runtime can also support speculative
allocation, deallocation, misspeculation recovery, and re-executions.

All allocator requests by a task are logged. Any allocation requests are immediately serviced,
but deallocation requests are deferred until the task retires. Objects allocated in a speculative task
are automatically deallocated if the task is squashed. To recover from misspeculations, the log is
used to gracefully undo operations.

91

T)) EEE
SO Ltiu,j[tg

Main . -
Pl P L @ F. (D}, {A)

Program for (i=1; i<7..

pk_task (., &F);

P2 } P2 F, 0O © AR
pk_declare (G,..); ¢) F, ({8}, (D))
P3 GHi P3 F, @ o
O F ({8}, {D})
O F ({6}, {H))
(a) (b)

Figure 6.21: Example execution. (a) Initial state of the system. (b) State of the system after processing
the six invocations of task F, denoted as: F write set read set.

Data Structures.

The runtime is essentially a parallel program whose threads operate asynchronously on its
own internal data structures. The ROL, Wait Lists, work deques, and memory allocator pools can
be potentially accessed concurrently. We investigated multiple designs to implement these data
structures [40, 68, 91, 126, 167]. Concurrent data structures are already complex to design. Frequent
allocation and deallocation of fields in the data structures further complicate matters (e.g., the ABA
problem [167]). The runtime uses a mix of strategies, tuned to specific uses of the structures, to
implement high performance designs.

Whenever possible, the runtime creates thread-local private structures, e.g., the memory allocator
pools. In all other cases it uses non-blocking concurrent data structures. For the work deques we
implemented a scheme similar to the one proposed by Chase and Lev [40]. For the ROL and Wait
Lists we used combining synchronization schemes similar to the ones proposed by others [68].

6.4.4 Example Executions

We now illustrate the runtime operations using code examples by simulating their parallel execution.
We first present the basic dataflow execution and then the speculative execution.

92

Basic Dataflow Execution.

Consider the the example code in Figure 6.8a. Assume that it is executing on a three-processor
system. Figure 6.21a shows the initial state of the system. P1 is executing the main program,
and objects have been constructed. Objects A to F are depicted along with their tokens. R = n
indicates that n read tokens have been granted; W indicates the write token has been granted (none
at this time). Wait Lists of objects A, B and D, currently empty, are also shown. (We omit the ROL
operations from this basic dataflow case, but describe them in the speculative part.)

Figure 6.21b shows the state of the system as the program begins execution (the same while
loop as in Figure 6.8). Events are identified using €) time stamps. The first invocation of F, F1, with
write set {B, C} and read set {A} is encountered. Write tokens for B and C, and a read token for A
are acquired @ and the task is delegated for execution on P1 @), and the program continuation is
pushed on to the deque of P1.

From there, P2 steals the continuation, and encounters the second invocation, F2. It acquires
tokens for objects D and A, and delegates F2’s execution on itself @. Note that at this time, two read
tokens for object A have been granted. Next, the third invocation, F3, attempts to acquire a write
token to A, and fails (however it succeeds in acquiring tokens to E and F ©). 1t is hence shelved
and enqueued in the Wait List of A ©. The next invocation, F4, also fails to acquire a read token
to object D and a write token to B, and is enqueued in their Wait Lists @. Likewise, the following
invocation, F5, has to be enqueued in object B and D’s Wait Lists @. While the shelved methods
await their tokens, the main program context on P3 reaches the final invocation of F from the loop,
F6, which acquires tokens to G and H (not shown), is delegated for execution on P3 itself @.

Upon completion, F1 releases the tokens back to objects B, C and A (@ in Figure 6.22a). This
causes B’s write token to be granted to F4 @. However F4 cannot execute yet since not all of its
requested tokens have been granted. Next P1 steals the program continuation from P3 and encoun-
ters pk_barrier (). It causes the runtime to shelve the program continuation beyond pk_barrier ()
in G’s Wait List (not shown) and await completion of all tasks accessing G (only Fé6 in this case),
before advancing further.

Eventually, F2 and F6 complete (Figure 6.22b), and release their tokens €. Now that all of its
read tokens are available, the write token to A is granted to F3 @ Since F3 now has all its tokens, it
is enqueued in the work deque, from where the next available context will execute it @ Similarly,

once the write token is returned to object D, read tokens are granted to F4 and F5 (@, @). This
causes F4 to transition to the ready state, and be scheduled for execution on an available context
@. Completion of F6 causes the runtime to execute the program continuation (G++) @ F5 will be
scheduled for execution once F4 completes and releases the tokens to objects B and D.

Thus the basic dataflow execution takes place.

Speculative Execution Example.

We next present an example of speculative execution and also show the ROL operations. We
use the example program from Figure 6.9a, and assume the same three-processor system. The
execution is summarized in Figure 6.23. Recall that task D reads from object O which task C writes
to, creating a RAW dependence between D and C (the dashed arrow in the Figure). Figure 6.23a
shows the task invocations from the program at different time epochs and Figure 6.23b shows the

93

>
w
(g

D E F A B Cc

e
Lﬁi&

F, ({D}, {A}) @D rae

Z F; ({A, E}, {F) Z " @ @ .oy
®

P2 F F, ({8}, {D}) P2 Fa @ -0
P3 Fo ® F ({8}, (D} P3 o+ @® ® ridectare (0)
F6 ({G}! {H} G++
pk_declare (G)
G++
(a) (b)

Figure 6.22: Example execution. (a) State of the system after invocation F1 completes execution. (b)
State of the system after invocations F2 and F6 complete execution.

execution along with the ROL operations. In this example we focus on the ROL operations and
speculation, and not as much on the Token Protocol.

As before, the main program begins execution on a single processor, and the runtime sets up its
schedulers and data structures on different processors. In epoch t1, task A is invoked. An entry for
A (which subsequently becomes subtask A1 when B is invoked) is logged in the ROL (the head is to
the left). Before A1 modifies any data, its modset is checkpointed and stored in the HB. The HB,
which is not shown, mirrors the ROL in structure, and in the insert and retire operations. The HB
stores a computation’s checkpoint whereas the ROL holds an entry for the computation. HB may
be logically combined with the ROL.

In epoch t2, when task B is invoked, subtask Al has completed. Since it is at the head of the
ROL, and hence non-speculative, it is retired and its entry is removed. A1l’s checkpoint from the HB
is also removed. Any token requests it may have performed are removed from the corresponding
Wait Lists. Next, entries for tasks Bl and A2 are logged in the ROL in the program order, and they
are scheduled for execution.

In epoch t3 A2 completes. But since an older task, B1, has not yet retired, A2 cannot be retired.
Task D and A3 are invoked, their entries are logged in the ROL, after A2. The runtime recognizes
that D is a nested task, and because tasks preceding it in the ROL have not completed, its order in

94

@
| ENE?

t1 t2 t3 t5 t6

(a)

P1 P2 P3

Reorder List Completed Retired

t1 Al

t2

Bl | A2 Al Al
@ Bl | A2 D A3 A2
@ B1 C B2 | A2 D A3 B1, A3

t3

©

t4

t5

@ B2 | A2 D | A3 C C
@ B2 | A2 D [A3

(b)

t6

Figure 6.23: Speculative execution of the program in Figure 6.9a. (a) Task invocation order. (b)
Execution schedule on three processors and corresponding Reorder List operations. Shaded entries
in the Reorder List indicate completed tasks not yet retired.

95

t1 —>

t2 I

t3 —> D21

t4 s

s D2.1

t6

Figure 6.24: Token manager operations on object O. D acquires token speculatively, but is found to
be misspeculated when the request for C arrives.

the program may not be determinable. Nonetheless, since resources are available, tasks A3 and D
execute speculatively.

Before D executes, it acquires the read token to O. The token protocol operations, only for object
O, are shown in Figure 6.24. An entry for task D, which includes its ID, is logged in O’s Wait List,
as shown in Figure 6.24, epoch t3.

In epoch t4, tasks B1 and A3 complete. The ROL changes are shown in two steps. Task C and
subtask B2 are invoked, entries for them are logged in the ROL, after B1, but before A2, indicating
their relative positions. Note that the hierarchical ID assists in this process. Next, B1 is retired and
its entry is removed from the ROL (and any checkpointed modest from the HB, and token requests
from the Wait Lists).

Before C executes, it tries to acquire the write token to O. When inserting an entry for C in the
Wait List, the Token Manager discovers that the read token was granted to a computation with a
younger ID and thus detects misspeculation. From the Wait List the Token Manager can ascertain
that D is dependent on C, and informs the GRX about the misspeculation. The GRX aborts D (or

96

could have waited until D completes). D’s checkpoint from the HB is used to restore any state that
it may have modified. Tokens acquired by D are returned. Next, tokens for task C are acquired, and
C is submitted for execution.

Once task C completes, in epoch t5, it returns its tokens. The token to O is passed to task D.
Since task C is at the head of the ROL, it is retired (Figure 6.23b, epoch t5)-its entry from the ROL,
checkpoint from the HB, as well as its entry from object O (and from any other objects in its dataset)
are removed from the corresponding Wait List (Figure 6.24, epoch t5). Next, task D is scheduled for
execution since it now has all its tokens (Figure 6.23b, epoch t6).

Note that when misspeculation was detected, only the misspeculated task was aborted and
needed to be restarted in the above example. It is also possible that misspeculated tasks have
completed when the misspeculation is detected, or the misspeculated task has already invoked
control-dependent tasks. For example, above when task C tries to acquire the token to O in epoch t4,
the younger task D may have already completed and returned its token to O. Although now the token
to O will be available for C to acquire, the Token Manager will detect the misspeculation because D’s
token request will still be in the Wait List. The Token Manager will report the misspeculation to GRX.
GRX will deem D and any tasks transitively data- or control-dependent on D, to have misspeculated.
GRX restores the state the misspeculated tasks may have modified by using their checkpoints from
the HB. Token requests for the misspeculated tasks are removed from the respective Wait Lists.
Entries for the control-dependent tasks are removed from the ROL. Finally, GRX submits C for
execution, and once it completes, D and its dependent tasks are restarted in the dataflow fashion.

6.4.5 Summary

Parakram’s Execution Manager uses a range of mechanisms, dataflow execution, speculation,
globally-precise interrupts, task scheduling, and the like, to reap parallelism and support the
APIs the Parakram programming model provides to programmers. While the Execution Manager
presents an ordered view of the execution to the programmer, it also takes advantage of the order
for its own operations, such as resource management. With linear and nested tasks, eager, JIT, and
lazy datasets, eager dataset release, and barriers, Parakram admits arbitrary parallel algorithms.

Parakram does not limit itself to performing just computations. It makes for a more comprehen-
sive solution, adequately addressing often neglected aspects of multiprocessor programming-I/0O,
exceptions, resource management, and efficiency. Furthermore, it forms the basis for enabling
new capabilities. In one example of its broader utility, in Chapter 8 we apply it to recover from
frequent exceptions. We have explored yet another application, to improve system efficiency, else-
where [177, 178]. Executing a multiprocessor program efficiently requires regulating the exposed
parallelism—-increasing or decreasing the parallelism to match the available resources. Regulating
the parallelism is easier in the ordered execution than in the nondeterministic execution because
the ordered execution can ensure forward progress more easily.

97

Experimental Evaluation

The greatest value of a picture is when it forces us to notice what we never expected to see.

— Joun W. Tukgy (1977)

Over the last three chapters we presented the Parakram approach and the design details of its
prototype. Chapter 5 described the common patterns that arise in parallel algorithms, and Parakram
APIs that enable them in ordered programs. Parakram realizes the parallelism patterns through a
combination of the programming APIs and a supporting Execution Manager. In comparison to the
established multithreaded programs, we had stipulated that: (i) Parakram must deliver the benefits
of ordered programming, (ii) it must not compromise expressiveness or complicate programming in
other ways, and (iii) and it must not compromise performance. In this chapter we evaluate whether
the Parakram prototype meets these three criteria.

To evaluate Parakram, we developed programs listed in Table 5.10. They were selected from
benchmark programs commonly used in parallel processing studies. They cover the range of
parallelism patterns identified in Chapter 5, and stress the different aspects of the Parakram design.
We partially evaluated Parakram’s expressiveness in Chapter 5 by examining how the Parakram
APIs can be used to express the different patterns using ordered programs. We complete the
expressiveness evaluation in Section 7.1 by examining how the patterns are actually realized at
run-time.

In Section 7.2 we evaluate Parakram’s ability to exploit parallelism and deliver performance.
To evaluate the performance, we experimented on commodity multiprocessor systems. We study
two aspects of performance: speedups achieved by Parakram and the overheads it incurs due to its
mechanisms.

Our study, using the wide range of algorithms, shows that Parakram can match multithreaded
programs in expressing parallelism. It also matches multithreaded programs in performance in
almost all but a few cases that use very small tasks or implement highly nondeterministic algorithms.

7.1 Expressiveness

Codes developed for the benchmarks using Parakram closely resembled the sequential versions
intended to run on a uniprocessor. No threads were created and no synchronization primitives
were used. No explicit work distribution or re-creation of the original execution sequence was
required. Moreover, no pattern-specific algorithm structures were needed to exploit parallelism.
We evaluate Parakram’s expressiveness with the help of the MAPLE design patterns (Section 5.1).
Recall that MAPLE comprises four design spaces, the Algorithm Structure, the Program Structure,

98

Design Space Design Sub-space

Solution Decomposition
Algorithm Structure Data Organization
Dependence Analysis

Data Structure Design
Program Structure Dataset Computation

UE Composition UE: unit of execution, i.e., task

UE Discovery
Execution Structure UE Scheduling
UE Coordination

Context Abstraction

Concurrency Tools L
y Synchronization

Table 7.1: MAPLE: Classification of common patterns in parallel programs. The first column lists
the design spaces and the second column lists the sub-spaces in each design space.

Execution Structure, and Concurrency Tools. Each design space comprises multiple design sub-
spaces. The design spaces and sub-spaces are summarized in Table 7.1. We analyze how Parakram
supports the patterns that arise in three of the four design spaces: the Program Structure, Execution
Structure, and Concurrency Tools. Recall that Parakram does not provide any special support for
the Algorithm Structure, because none is needed beyond using a capable enough programming
language, like C++. The following description is organized along the lines of the design sub-spaces.

Data Structure Design. Choice of data structures, static allocation of data, and dynamic allocation
of data are the patterns that arise in Data Structure Design.

Parakram relies on object-oriented designs and treats individual objects as atomic unit of data,
but does not restrict the programmer from using any type of data structures. Scalars, block-allocated
arrays, pointer-based structures, etc., are all permissible. For example, Swaptions uses a 1D array,
Labyrinth and Cholesky decomposition use 2D arrays, RE and Genome use hash tables, DeMR
implemented graphs uses arrays and linked lists, and Barnes-Hut uses a tree structure.

Parakram interfaces with the program’s data structures through the datasets. Pointers to objects
from any of these data structures are easily included in the read, write, and mod sets, which
Parakram dereferences to identify the dynamic instances of the objects being accessed by a task.

Parakram also supports both statically and dynamically allocated data structures. It provides
its own memory allocator and supports either type of data structures for basic dataflow as well as
speculative execution. In particular, the allocator performs better than standard allocators, e.g., the
one available in the GNU C++ runtime library (commonly used by the gcc compiler), and enables
rollback and re-execution to support speculative execution.

99

Dataset Computation. Data-dependent datasets and data-independent datasets are the two pat-
terns that arise in Dataset Computation.

Parakram supports data-dependent and data-independent datasets through the combination
of the pk_task(), pk_task_uc(), pk_read(), pk_write(), pk_declare(), and pk_declare_ia()
APIs. Speculative execution is used to exploit parallelism when the datasets are data-dependent.

Cholesky decomposition, Sparse LU, CGM, Histogram, Pbzip2, Reverse Index, Swaptions, Merge-
sort, Barnes-Hut, and Black-Scholes use data-independent datasets. DeMR, Genome, Labyrinth,
BFS, RE, and Vacation use data-dependent datasets. DeMR and RE use pk_write (), Genome
uses pk_declare_ia(), Labyrinth and BFS use pk_declare(), and Vacation uses pk_read() and
pk_write(Q).

A combination of the patterns in Dataset Computation and Data Structure Design can arise
in algorithms. For example, tasks in Delaunay mesh refinement operate on a graph, which is
implemented using arrays and linked lists. After the initial graph is constructed, the algorithm dy-
namically allocates and deallocates objects to add and delete nodes from the graph. Task datasets are
data-dependent. Parakram supports the combination of these patterns with the help of speculation.

UE Composition. Parakram provides two simple interfaces, pk_task() and pk_task_uc(), to
express units of computations as tasks. All programs, except Labyrinth, were developed using the
simple pk_task() calls.

Labyrinth poses a unique challenge to parallelization. Labyrinth reads a large part of a grid
structure to route paths between two points. Whereas each task may read thousands of points on
the grid, it updates only tens of points to route the path. All of these points are part of the dataset,
but the large read set can lead to considerably large overheads (irrespective of the programming
model used). Further, the route a task computes changes based on the points already occupied on
the grid. Hence, a task concurrently updating the grid can influence another’s dataset. We tackled
Labyrinth as follows, using the Parakram APIs. First, we used pk_task_uc() to ensure that the grid
points are not updated speculatively. Tasks are allowed to read the grid and create a local copy of
the routed path. The read and write sets are then declared lazily. Parakram processes the dataset
at commit, and the task had not misspeculated, the control is returned to the task. (If the task
had misspeculated, it is re-executed.) The task can now commit the path to the architectural state.
pk_task_uc() is supported with the help of speculation. Second, to reduce the read set size and
reduce the token processing overheads, the read set includes only the points that are on the actual
path, and not all the read points. However, to ensure correctness and that the order is maintained,
after declaring the dataset, each task now checks whether any points were updated since it read
them last. If any has changed, the task throws an exception using pk_except (), requesting the task
to be re-executed. If no point has changed, the task can proceed and update the global state from
the local state, and complete successfully.

UE Discovery. Tasks in multithreaded programs can be invoked in a linear sequence or by nesting
in other tasks. Parakram supports both types. It uses speculation to support nested tasks, while
still maintaining ordered execution. Recursive CD, Mergesort, recursive Sparse LU, and DeMR use
nested tasks. Other programs use linear tasks.

100

UE Scheduling. Multithreaded programs permit explicit scheduling of UEs (i.e., tasks). Tasks may
be scheduled for execution as soon as they are invoked, or after a delay. In general, multithreaded
programs explicitly implement scheduling patterns such as pipelining, master-worker, work queues,
etc., although newer programming models like TBB and Cilk provide declarative constructs to
achieve similar effects.

Parakram provides mechanisms to invoke tasks, and programmers can control when the tasks
are invoked, but Parakram automates their scheduling. Parakram’s internal Task Pool and dataflow
scheduling, combined with the load-balancing scheduler, naturally admit patterns such as pipeline
parallelism, master-worker, and work queues. For example, recall that the Pthreads design of Pbzip2
explicitly implements the pipeline parallelism, and TBB directly provides the pipeline parallelism
construct. In Parakram, the code is structured like the original sequential loop, and the dataflow
processing achieves the pipeline effect without user intervention. Parakram serializes dependent
computations and schedules their execution when they are ready, thus automatically creating a
pipeline of computations, e.g., by serializing a dependent file write after the compression, but
overlapping it with compression of another block. Further, lazy task creation and work-stealing
ensure that work is sought and created only when a thread is idle, thus efficiently utilizing resources.

Above capabilities not withstanding, ordered programmers are free to implement scheduling
patterns explicitly, and in some cases may prefer to trade off performance and complexity. For
example, DeMR code in Figure 5.13 (lines 17, 22) implements a work queue, and controls the task
invocation. The DeMR code may implement a single work queue, or a queue of work queues
for better performance. In event-based coordination, e.g., to simulate a hardware circuit, the
programmer may implement multiple work queues from which tasks are invoked for execution
under user control.

UE Coordination. Coordinating UE execution around shared data accesses is a critical aspect
of multithreaded programs. There is no one-to-one correspondence between Parakram APIs and
multithreaded programs in this regard.

By automatically ordering computations at the task boundaries and ensuring data-race freedom,
Parakram eliminates the need to explicitly order UEs, synchronize data accesses, or use critical
regions. However, this ordering is applied at a coarser, task granularity. Furthermore, the ordering
takes place eagerly, i.e., at the start of a task. In contrast, multithreaded programs permit arbitrarily
fine-grained UE ordering.

Parakram permits programmers to start executing a task and delay the dataset declaration by
using JIT or lazy datasets. It also allows tasks to release objects in their dataset eagerly, indicating
they will no longer access the data, via pk_release (). If not released eagerly, objects are implicitly
released when the task completes. Eager release allows other dependent tasks to proceed sooner,
instead of waiting until the task finishes. JIT and lazy datasets, combined with eager release
narrow the region of code which gets serialized, effectively permitting finer grain coordination. But
permitting tasks to execute before knowing their datasets hampers dataflow scheduling. Parakram
relies on speculation to provide this support.

DeMR, Genome, RE, and Vacation use JIT datasets. Labyrinth and BFS use lazy datasets. We
also used eager release in Genome and Vacation but, in general, found no pressing need for it in
other programs.

101

No explicit coordination was needed to perform I/O. Reading input from a file is straightforward.
Dataflow scheduling ensures that the writes happen in the correct order, e.g., in Pbzip2, Swaptions,
and Labyrinth, with no user coordination. (We did not explore asynchronous parallel I/O, typically
performed in concurrent programs, in this work.)

Parakram also provides the barrier APIs, pk_serial() and pk_barrier (), for control-flow
coordination. Barnes-Hut, CGM, and Mergesort use pk_barrier().

Context Abstraction and Synchronization. Parakram provides no explicit notion of threads or
execution context to programmers; programmers may invoke tasks using pk_task() and pk_task_
uc (). Since Parakram automates the parallelization, other explicit concurrency mechanisms are
neither needed nor provided.

Using Parakram APIs and its execution model, we were able to implement all of the parallelism
patterns we encountered in the benchmark programs that we studied.

Result 1. Although the eventual code structures are different from their multithreaded counterparts,
Parakram ordered programs could express the same types of parallelism in all cases. Parakram’s APIs
were adequate to express tasks, perform I/O, declare, and release the datasets.

7.1.1 Programmability

Although in this dissertation we have not quantified Parakram’s impact on programmer productivity,
especially when coding for performance, we rely on arguments to convince the reader of its positive
impact. In Chapter 3 we presented the properties of ordered execution, and how they simplify
programming. In Chapter 4 we described the simpler process of developing ordered programs,
and compared ordered code examples with the more complex multithreaded examples in Chapter
5. Based on these arguments, examples, and our experience developing about twenty programs
during this work, we conclude that ordered programming is easier than Multithreading.

7.2 Performance

To evaluate Parakram’s performance we study the speedups it achieves on the various algorithms.
Achieved speedups are influenced by multiple factors. Algorithm characteristics influence speedups.
For example, small task sizes can limit scalability. In a managed runtime system like Parakram,
the runtime overheads also impact speedups. The algorithm characteristics in turn can impact
the overheads. For example, small tasks can exacerbate the overheads, which can also limit the
scalability. Hence, in addition to measuring speedups, we also characterize Parakram’s overheads.

Table 7.2 lists the programs for which we measured the speedups. Programs with different
algorithm characteristics were chosen. We ensured that all design patterns are tested. The table
also summarizes the program characteristics and patterns: parallelism type (column 4), task size
(column 5), scalability (column 6), mod set checkpoint size (column 7), task types (column 8), dataset
type (column 9) and dataset declaration type (column 10). The overheads are characterized using
micro-benchmarks, which are described later.

102

Programs Seq. Multi- Parallel- Task Scale. Chkpt. UE DS Decl. Input
(s) thread. ism size size type type
@ @ €) *) G © 0 ©® © o 1n

Barnes-Hut 387.23 Pthreads Regular Med. High Med. Lin. DI Eager 100K bodies,
75 steps

Black-Scholes 214.73 Pthreads Regular Med. Med. Large Lin. DI Eager 10M options

Iterative CD 15.11 OpenMP Irregular Large High Large Lin. DI Eager 4Kx4K matrix

CGM 2412 OpenMP Regular Med. High Med. Lin. DI Eager 4Kx4K matrix

Histogram 1.6 Pthreads Regular Small High Med. Lin. DI Eager 1.4GB bitmap
file

Pbzip2 170.38 Pthreads Irregular Med. Med. Small Lin. DI Eager 673MB file

I. Sparse LU 6.95 OpenMP Irregular Large High Large Lin. DI Eager 4Kx4K matrix,
0.108 density

Swaptions 421.7 Pthreads Regular Large High Small Lin. DI Eager 128 swaptions,
1M simulations

Recursive CD 15.11 Cilk Irregular Large High Large Nest DI Eager 4Kx4K matrix

DeMR 7.63 Pthreads Irregular Small High Small Nest DD JIT 250K triangles

Genome 713 TL2TM Irregular Small Low Small Lin. DD JIT 16K nucleotides,
64 nucleotide segments
16M segments

Labyrinth 43.62 TL2TM Irregular Small Low Med. Lin. DD Lazy 512x512x7 grid,
512 paths

Mergesort 12.49 Cilk Regular Med. High Small Nest DI Eager 1M elements

BFS 3.41 Pthreads Irregular Tiny Low Small Lin. DD Lazy 10M nodes,
degree 5

RE 15.77 Pthreads Regular Med. Low Small Lin. DD JIT 1.2M packets

R. Sparse LU 6.95 OpenMP Irregular Large High Large Nest DI Eager 4Kx4K matrix,
0.108 density

Table 7.2: Programs and their relative characteristics. CGM = conjugate gradient method, Seq.=
sequential time, Scale. = scalability, Chkpt. = checkpoint, Lin. = linear, DS = dataset, DI/DD = data-
independent/dependent, Decl. = declaration.

103

Specification Intel AMD Intel AMD
Core i7-965 Opeteron 8350 Xeon E5-2420 Opetron 8356
Sockets 1 4 2 8
CPUs per socket 4 4 6 4
Threads per CPU 2 1 2 1
Total contexts 8 16 24 32
Clock 3.2GHz 2.0GHz 1.9GHz 2.3GHz
L11$, D$ per CPU 32KB 64KB 32KB 64KB
L2$ per CPU 256KB 512KB 256KB 512KB
L3$ (shared) 8MB 2MB 15MB 80MB
Linux kernel 2.6.32 2.6.25 2.6.32 2.6.25

Table 7.3: Machine configuration used for experiments.

We experimented on four machines of ubiquitous sizes, but different organizations: 4-core and
12-core, 2-way hyperthreaded Intel processor systems, and 16-core and 32-core AMD processor
systems. The machine specifications are provided in Table 7.3.

We compare speedups obtained by Parakram and the multithreaded equivalent, over the original
optimized sequential version. The sequential execution times are listed in column 2 of Table 7.2. The
multithreaded variant used are listed in column 3. For comparison with multithreaded programs we
chose the best available multithreaded implementation when multithreaded implementations were
available. We were unable to locate satisfactory multithreaded designs for DeMR, BFS, and RE. We
developed Pthreads parallel code for them ourselves. Galois-like [142] designs were implemented
for DeMR and BFS, and a straightforward design for RE.

Besides exploiting parallelism, Parakram strives for efficient execution by balancing the system
load as the program runs. For a fair comparison it was necessary that a similar optimization be
applied to multithreaded programs, developed using OpenMP, Pthreads, Cilk, and TL2 TM in
our study. OpenMP and Cilk runtimes do provide in-built load-balancing capabilities. OpenMP
provides in-built scheduling directives that the programmer can choose; we used the directive that
yielded the best speedups. Cilk automatically applied lazy task creation, continuation scheduling,
and dynamic task-stealing, and provides no direct control to the programmer. Pthreads provides
no such support, and leaves it to the programmer to implement it. Among the Pbzip2 programs we
tested for speedups, only Pbzip2 design incorporated load balancing. In the other programs, we
incorporated load-balancing by implementing virtual threads [178]. A transparent shim layer is
introduced between the program and the Pthreads runtime library. Unbeknownst to the program-
mer, the shim layer logically divides the program threads into sub-threads at run-time, and a load
balancing scheduler is used to execute the sub-threads. This scheme improved speedups in several
cases, especially when task sizes are large, e.g., virtual threads improved Swaptions speedup by
~2x. It is unclear whether TL2 TM [54], which is implemented using Pthreads, balances system
load; we did not alter TL2. The two TL2 programs in our study use very small tasks, making load

104

imbalance a non-critical issue, and hence it is unlikely that they affect the overall results of our
study.

Perhaps unsurprisingly, Parakram programs in some cases outperform the multithreaded vari-
ants, in many they give similar speedups, and in some rare cases they underperform. However,
the reasons they outperform or underperform make for an interesting study. In general, the mul-
tithreaded and Parakram programs showed similar relative speedup trends, but for the absolute
values. We present speedups on the 24-context Intel Xeon machine (specifications listed in Table 7.3).
Programs were compiled using gcc 4.8.2, with the -03 and march=corei7-avx options. For all
programs large inputs were used to measure the speedups. The input size details are listed in
Column 11 of Table 7.2. Results are averages over ten runs. We present the experimental results in
three groups. The first presents Parakram’s speedups for eager programs—programs that use linear
tasks and eager datasets. The second presents results for non-eager programs—programs that use
nested tasks, or JIT datasets, or lazy datasets. Within the first two groups we examine the cases
when Parakram matches or outperforms the multithreaded programs. The third group examines
Parakram’s performance limitations.

7.2.1 Eager Programs.

Figure 7.4 shows Parakram speedups for programs that used linear tasks and eager datasets. They
do not benefit from speculation, but incur the overheads nonetheless. Speedups are plotted on the
Y axis and context-counts on the X. The O.Parakram lines show the speedup for ordered execution.
The D.Parakram lines show speedups for deterministic execution, i.e., when the ROL and precise-
exception capabilities are switched off. For the multithreaded variants, we label the lines in the
graphs with the corresponding Multithreading API.

In the first set of results for eager programs O.Parakram matched the multithreaded speedups,
as shown in Figure 7.4. When algorithms are dominated by simple fork-join parallelism, e.g., Barnes-
Hut, Histogram, Swaptions, and CGM, Parakram has the same opportunities as multithreaded
methods to exploit the parallelism, and hence does equally well. But importantly, Parakram performs
ordered execution.

When the parallelism is irregular, Parakram can exploit latent parallelism, and hence can do
better, e.g., in Pbzip2, Black-Scholes, Iterative CD, and Iterative Sparse LU, as shown in Figure 7.5.
For example, on Iterative CD it outperformed Multithreaded OpenMP by 3.35x (Figure 7.5).

Performance Benefits of Order.

Consider the iterative CD code in Figure 5.3. Figure 7.6a shows the dataflow graph of its first five
tasks. Next to each task (labeled node) is the epoch in which the task is invoked. In the parallel
execution, after task 1 completes, task 2 can execute in epoch 2, but not tasks 5 and 6 due to their
dependences. However, task 3, which is independent, can, resources permitting, but only if it can
be discovered in epoch 2.

In the multithreaded paradigm, two concurrently executing tasks must be independent. Hence
it is the programmer’s responsibility to expose the parallelism at the right time, i.e., invoke task
3 in epoch 2. If not exposed, an unassisted system cannot reach it, even speculatively, because
the system cannot compute the dependences. Even if the system, e.g., Transactional Memory or

105

Barnes-Hut Swaptions
14 14
12 12
10 10
8 @) Parakram 8 @) Parakram
6 O.Parakram 6 O.Parakram
4 @ @ pthreads 4 @» @ pthreads
2 2
0 0
3 1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24
3
()]
w .
& CGM Histogram
5 8
3 @D .Parakram
4
2 @D Parakram O.Parakram
1 0O.Parakram 2 @ @» pthreads
& &» OpenMP
0 0
1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24

Context Counts

Figure 7.4: Speedups for eager programs, Barnes-Hut, Swaptions, CGM, and Histogram, in
which Parakram matches Multithreading. deterministic (no ROL tracking and checkpointing).
O.Parakram = ordered execution.

Galois [142], can observe and identify the data a task accesses, the task order, which is the other
critical information needed to compute the dependence, is missing. Moreover, the multithreaded
programming abstraction permits arbitrary placement of computations in the program’s text. Hence
even inspecting the program’s text to discover the order is futile.

In contrast, Parakram can compute the dependences using the order and the dataset information.
It builds the dependence graph and searches it dynamically, setting aside dependent tasks, seeking
and executing tasks that are independent or whose dependences have resolved (Figure 7.6b). CD
presents many such latent parallelism opportunities, which an ordered approach like Parakram can
exploit, as is also observed by Perez et al. [141]. Similar opportunities arise in Iterative Sparse LU
due to irregular dependences, and in Pbzip2 and Black-Scholes when they write computed results
to a file.

Multithreading does give the freedom to structure the code and expose any parallelism, which
can indeed be applied to CD. But when the dependences are complex, as they are in CD, or when
the dependences can only be known at run-time, programmers often take a conservative approach

106

Iterative CD Iterative Sparse LU
12 12
@) .Parakram @D .Parakram
10 10
0.Parakram O.Parakram
8 @ e» OpenMP 8 @ e» OpenMP \\
6 6 \
2 S, 2
0 0
§ 1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24
T
Q
(%
& Black-Scholes Pbzip2
8 @ D) Parakram 12 @) Parakram
6 O.Parakram 10 0.Parakram
. @ @» pthreads 2 @ @» pthreads A - -’
4
2
2
0 0
1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24

Context Counts

Figure 7.5: Speedups for eager programs, Iterative CD, Iterative Sparse LU, Black-Scholes, and
Pbzip2, in which Parakram outperforms Multithreading. D.Parakram = deterministic (no ROL
tracking and checkpointing). O.Parakram = ordered execution.

that is relatively easier to understand and reason about. In bargain, they trade-off performance, as
the OpenMP CD code does, which they need not when using Parakram.

For eager programs, the programmer may also instruct Parakram to switch off dependence
speculation (since it does not benefit eager tasks), defaulting to deterministic execution. In that
case the D.Parakram lines show the speedups, which are better than O.Parakram due to reduced
overheads, even if slightly (more later).

Result 2. When algorithms have complex dependences, like Cholesky decomposition, exploiting parallelism
may be more natural in the ordered method, whereas the multithreaded method may require considerable
efforts.

107

(2) (b)

Figure 7.6: Parakram ’s ability to exploit latent parallelism. (a) Task dependence graph of the first
five CD tasks (nodes). Label next to a node is the epoch in which the task is invoked. (b) Preferred
execution schedule.

7.2.2 Non-eager Programs.

Parakram switches to speculative execution for programs that use nested tasks or non-eager datasets.
Since speculation is always on, D.Parakram is inapplicable here. In general, non-eager programs
exhibit irregular parallelism. Parakram matches or outperforms the multithreaded methods, except
for DeMR and BFS, which we discuss later.

Figure 7.7 shows the speedups achieved for Genome, Labyrinth, RE, and Mergesort. Graphs
show Multithreading and O.Parakram speedups (TL2 supports only power-of-two threads, hence
the truncated TL2 STM lines for Genome and Labyrinth). On Genome, Labyrinth, Mergesort, and
RE, Parakram matches or slightly outperforms the multithreaded variants, while providing ordered
execution.

Genome, Labyrinth, and RE algorithms are nondeterministic, i.e., the task order is immaterial
for correctness. The artificial constraint of order in these cases does not impede the Parakram
performance, as the Figure 7.7 shows. In fact, speculation allows Parakram to discover parallelism
more aggressively in these cases.

The Mergesort algorithm is dominated by nested fork-join parallelism—parallel computations
within a parallel region do not perform conflicting accesses. Hence, Parakram’s speculative execution
does not unearth more parallelism than the Cilk design. However, since the design is recursive,
and hence used nested tasks, Parakram applies speculation.

Figure 7.8 shows the speedups for Recursive CD and Recursive Sparse LU, on which Parakram
outperforms Multithreading. The far more complex Cilk Recursive CD [123] (the structure of which
is shown in Listing 5.11) outperforms the OpenMP Iterative CD design since the Cilk design exposes
more parallelism (compare the OpenMP line for Iterative CD in Figure 7.5 with the Cilk line for
Recursive CD in Figure 7.8). We implemented the Cilk recursive algorithm in Parakram. Parakram
yielded similar speedup (not shown). However, on the naive recursive design of Figure 5.10

108

RE Mergesort
5 14
0.Parakram 12 =
4 @ a» pthreads - -
10 /’

3 8 4

2 6 //

1 —_—-—---" T° 4 ’,/ 0O.Parakram

2 - - - Cilk

0 0
3 1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24
3
(7]
w 0
& Genome Labyrinth

5 5

4 - 4

3 P 3 o

7/ ST
2 ” 2 7
1 Z o s 0O.Parakram 1 Ze P4 0.Parakram
- e T|2 STM - e T2 STM
0 0
1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24

Context Counts

Figure 7.7: Parakram’s speculative execution performance on RE, Mergesort, Genome, and Labyrinth.
O.Parakram = ordered Parakram.

Parakram outperformed the Cilk design by 60% (Figure 7.8), for the same reasons that the iterative
Parakram CD outperformed the OpenMP implementation. Cilk requires that spawned tasks do
not perform conflicting accesses (unless the programmer is willing to explicitly coordinate the
execution). This limits the exposed parallelism in the recursive CD design. Parakram imposes no
such constraint.

Speculation is also applied to Recursive Sparse LU. Speculation benefits Recursive Sparse LU
for the same reasons as it benefits recursive CD.

Misspeculations.

Algorithm properties and system size influence Parakram’s misspeculations. In general, data-
dependent datasets cause more misspeculations. Larger systems present more resources to specu-
late, and hence also cause more misspeculations. However, Parakram limits the total misspeculations
by performing ordered, dataflow recovery. On average, Parakram misspeculated 3.88% of the tasks
in Recursive CD, 30.42% in DeMR, 0.45% in Genome, 13.3% in Labyrinth, 1.3% in RE, and almost

109

Recursive CD Recursive Sparse LU
12 12
0.Parakram O.Parakram
w 10 : 10
o - e Cjlk @ a» OpenMP -\
] 8 8 - \
O - a» a» a» ot \
g © gl ; / '
S 4 ’ 4 V4 *
I, 2 I’
2 e -
0 0
1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24

Context Counts

Figure 7.8: Parakram’s speculative execution performance for Recursive CD and Recursive Sparse
LU. Multithreaded variants are listed in Table 5.10.

none in Recursive Sparse LU and BFS, on 24 contexts. Although Mergesort uses nested tasks, they
do not perform conflicting accesses and hence do not misspeculate.

Parakram overcomes the artificial order in the nondeterministic Genome, Labyrinth, Mergesort,
and RE algorithms by using dataflow and speculation. Despite the misspeculations, dependence
speculation yields net performance benefits.

If speculation were unavailable, non-eager problems may still be implemented as ordered
programs, e.g., using a Deterministic Galois-like design [135], which we also implemented in
Parakram. Briefly, in such a scheme, the execution proceeds in rounds. In each round the runtime
picks a set of tasks to execute in parallel. Tasks execute in two phases. In the first phase, the runtime
launches a set of parallel tasks for execution. The tasks declare their datasets and pause. The runtime
then acquires the tokens for each task, in the program order. Only tasks that could acquire all their
tokens proceed to the next phase and complete. Tasks that couldn’t acquire all the tokens re-execute
from the start, in the next round along with additional tasks. Essentially the irregular parallelism is
forced into fork-join type parallelism, which limits the exploitable parallelism. Speedups achieved
by this scheme were lower (not shown), e.g., only ~ 1.4x for Genome, instead of ~ 4x at 24 context.

Result 3. An ordered approach need not compromise performance for a wide range of algorithms. Dataflow
and dependence speculation can overcome the artificial ordering constraints.

7.2.3 Performance Limitations of Order.
Above results not withstanding, Parakram performance can suffer due to two reasons: overheads

and the ordering constraint.

Overheads.
Being a software model, the Parakram prototype has multiple sources of storage and computa-

110

Overheads 8x 16x 24x 32x
corei7 AMD 8350 Xeon AMD 8356

1 ROL enqueue 100 500 100 1000
(Figure 6.15, line 2)

2 Token Acquire 100 200 100 300
(Figure 6.16, line 22-23)

3 Token Release 100 200 100 300
(Figure 6.16, line 30)

4 Token Enqueue 575 750 575 1400
(Figure 6.16, line 15)

5 Token Pass 1 object 500 600 500 1000

6 (Figure6.16, 4 et 100 150 100 300
lines 31-35)

7 Prelude Base 500 1000 500 2000

8 ((.Fi)gure 615 Token Acquire 250 300 250 500

9 Token Enqueue 600 750 600 1500

10 Postlude Base 250 300 250 400

11 (Figure 6.15, Token Release 300 300 300 450

12 ©) Token pass(1) 650 700 650 1500

13 Token pass (>1) 100 200 100 200

14 _ Base 3000 5000 3000 10000
Granularity

15 >1 object 200 200 200 500

Table 7.9: Characterization of average Parakram overheads in cycles.

tional overheads. The runtime’s interface and mechanics add indirect calls, manage tokens and
wait lists, manage the ROL, perform checkpoints, and shelve/schedule computations. These opera-
tions are often concurrent with the actual execution. For large enough tasks, these overheads are
relatively small. The ROL overhead is proportional to the total tasks, and ranged from 1% to 3%.
Checkpointing overheads ranged from 1% (Pbzip2) to 23.6% (Black-Scholes). The collective ROL
and checkpoint overheads are evident in the difference between O.Parakram and D.Parakram lines
in Figure 7.4. On average (harmonic) the combined overheads were 6.43% relative to D.Parakram.

We used micro-benchmarks to characterize the sources of overheads. Table 7.9 summarizes
them. In general, overheads are proportional to total tasks and their dataset sizes. Hence we
attribute overheads to each task, as a sum of: (i) a minimum cost to “manage” it (e.g., to process
the ROL) and (ii) the cost to manage its dataset (e.g., to build the dependence graph). Depending
on the machine, the management cost ranged from a few 100 cycles to a few 1000 cycles (row 1,

111

Table 7.9). An additional cost of 100 to 500 cycles is incurred for each object in the dataset. As a
result, Parakram requires that the task size be a minimum of 3000 to 10000 cycles, with additional
200 to 500 cycles of work for each dataset object, to achieve speedups. These overheads are specific
to the current design, and may be optimized.

We instrumented the runtime to measure the overheads and frequency of events in the Prelude
and Postlude phases, and the execution time of tasks, using six micro-benchmarks (described below).
For fine-precision analysis, the overheads were measured in clock cycles. They were obtained by
using the rdtsc instruction to read the x86 Time Stamp Counter. To ensure accuracy we first pinned
the thread to the processor, and flushed the pipeline before and after rdtsc.

First, we used a microbenchmark to invoke dataflow tasks with appropriate datasets and created
various conditions leading to the different overheads. The overheads are machine organization-
dependent. Rounded off average measurements made on the four machines are listed in Table 7.9.
We discuss the results below using the 24-context Intel Xeon data and refer to the rows in Table 7.9.
Overheads are the same for both read and write tokens.

To study the bare bones token acquisition (Figure 6.16, lines 22-23) and release (Figure 6.16, line
30) overheads, we created datasets such that the tasks in the micro-benchmark were independent.
We varied the number of objects in the dataset from 1 to 10 and measured the overheads for 10,000
such tasks. On an average it took 100 cycles to acquire (Table 7.9, row 2) or release (row 3) a token.
To study the token enqueue overhead, we created a pair of tasks with the same write sets. Thus
the second task was dependent on the first and every token request it made was enqueued in a
wait list. We invoked 10,000 such pairs, varied the write set size from 1 to 10, and measured the
overheads for the second task. The enqueue logs the token request in the wait list (Figure 6.16, line
15). It allocates a data structure to hold the requester information and invokes race-free functions to
log the request in the wait list, a concurrent queue [8, 91]. Hence enqueue incurs a higher overhead
of 575 cycles (row 4).

To study the token passing overheads, we created a set of tasks that consumed (read) data
produced (written) by a precedent task. Thus upon completion, the producing task passes tokens
to the consumers. By varying the number of consuming tasks we simulated token passing to up to
10 tasks, and measured the overheads in the producing task for 10,000 such sets. Token passing first
releases the token, traverses the wait list to pass it to waiting requesters, possibly enqueues ready
requesters in the work deque (Figure 6.16, lines 31-35), and deallocates data structures. Passing
a token too involves operations on a concurrent queue and possibly the work deque. It incurs an
overhead of 500 cycles (row 5) for the first requester. In the current implementation, once the wait
list traversal begins, concurrent queue processing simplifies, and hence only 100 cycles (row 6) are
needed to pass tokens to every subsequent requester.

To characterize the total overheads of Prelude (Figure 6.15 @) and Postlude (Figure 6.15 @)
phases, we used the same three set ups as before but measured the overall costs. The total overheads
can be viewed as comprising of: (i) a base cost that is always incurred, and (ii) an additional cost
proportional to the dataset size. The prelude phase performs allocation and population of data
structures, checks for duplicates in the data set and processes tokens. The total base overhead
to submit a function is 500 cycles (row 7), and thereafter 250 cycles/object for an acquired token
(row 8), or 600 cycles/object for an enqueued request (row 9). Postlude releases tokens, deallocates
structures and returns to the runtime scheduler. It requires 250 cycles in the least (row 10), and 300

112

BFS DeMR
10 O.Parakram 10 0O.Parakram ’P - -
a 8 @» @ pihreads 8 @» @ pthreads Vi
3 /
-] 6 . 6
7] =T " /
] ”~ /
o 4 ’ 4 7
(V) 7 ’
2 -7 2 2
o’ -
0 0
1 2 4 8 12 16 20 24 1 2 4 8 12 16 20 24

Context Counts

Figure 7.10: Parakram’s speculative execution performance for BFS and DeMR. Multithreaded
variants are listed in Table 5.10.

cycles/object to return a token (row 11) thereafter. If a token is returned and passed, it consumes
650 cycles (row 12) for the first requester, and 100 cycles for every subsequent requester (row 13).

Next we assessed the minimum task granularity needed to achieve speedups with Parakram.
We invoked 10,000 tasks from the microbenchmark and increased the total number of dynamic
instructions in them until the parallel execution achieved lower execution time than the sequential
version. We also varied the data set sizes from 0 to 10. With empty data sets, tasks at least 3000
cycles long are profitable to parallelize (row 14). Their size needed to grow by about 200 cycles for
every object added in the data set (row 15), to be profitable. The granularity results are similar to
other task-based models [151].

Parakram can switch to deterministic execution (when a program comprises only eager tasks).
In that case the ROL and checkpointing overheads are saved.

Given the above overheads, Parakram fails to speed up BFS (Figure 7.10) since the average BFS
task size is ~1000 cycles, smaller than the needed minimum of 3000 cycles.

Parakram also incurs memory overheads for checkpoints and its own data structures. Algorithm
characteristics and the machine size influence these overheads. Recursive CD incurred the most,
4MB (~5% of its own memory use), on the 32-core system.

Result 4. Beyond a minimum task size, overheads of ordered execution are reasonable relative to both, the
multithreaded and deterministic execution.

Ordering Constraint.

Although the overheads arising from mechanisms can hamper the speedups Parakram can
achieve, they can be overcome, at least to a certain degree, with a better design, and perhaps even
with hardware support. However, algorithms with a combination of certain characteristics pose a
more fundamental challenge to the ordered method. Following a strict order in such algorithms
may limit the parallelism Parakram can exploit in comparison to an multithreaded method.

113

<«—— Compute dataset

D D Compute data

Figure 7.11: Idealized execution of DeMR.

Consider DeMR. Parakram achieves a speedup of 5.78, compared to 9.75 by the multithreaded
variant, as the graph in Figure 7.10 shows. DeMR is highly nondeterministic [104]. The algorithm is
nondeterministic; any task order produces an acceptable, albeit different, final solution. Further-
more, datasets are data-dependent (and hence highly nondeterministic). Moreover, tasks spend
much time computing the datasets. DeMR is also highly parallel, but tasks can perform many
conflicting accesses, which need to be avoided for correctness.

Consider DeMR’s idealized parallel execution of four tasks in Figure 7.11. Say tasks B and D
conflict, but A and C do not, either due to the execution schedule or because they do not perform
conflicting accesses. The multithreaded method would deem C as completed. But an ordered
execution cannot, because C’s data-dependent dataset may be influenced by the data yet to be
computed by B, which precedes it in the order. B will re-execute, and if C conflicts with it, C will be
re-executed, leading to order-induced loss of parallelism (OLP). OLP is the parallelism lost due to
order, and not true dependence.

Were the datasets declared eagerly, OLP could be avoided. In the above example, Parakram
would have shelved C before it had begun executing, and permitted another non-conflicting task
to execute, utilizing the resource. But DeMR datasets are data-dependent, and hence tasks must
start executing first. Further, computing the dataset takes up almost the entire task. Hence, when a
task needs to be re-executed, all previous work has to be discarded, exacerbating the loss. Note that
OLP will also similarly impact a deterministic execution model [135].

When B and D conflict, a Multithreading system like Transactional Memory or Galois may
re-execute both tasks immediately, in the hopes of avoiding the data race. They may conflict again.
But Parakram will serialize B and D, avoiding this scenario, giving it a potential performance
advantage. But frequent conflicts, as is the case in DeMR (30% tasks re-execute), lead to a net loss
of parallelism. Further, DeMR’s small tasks accentuate Parakram’s overheads. Hence Parakram
underperforms for DeMR, despite its ample parallelism in DeMR. However, speculation helps
Parakram (5.78x) outperform a Deterministic Galois-like scheme (2.43 x on our system).

Note that Genome, Labyrinth, and RE are also nondeterministic algorithms. However, in
comparison to DeMR, Parakram fares better in these cases. In case of Genome and Labyrinth, the
conflict rate is relatively lower and the task sizes are relatively larger. Hence the amount of work
discarded is less and serializing the conflicting tasks is beneficial. Parallelism in RE is constrained

114

Figure 7.12: Generic tasks executing in an ideal system. Say tasks B and D conflict. Nondeterministic
execution will complete B. Ordered execution will complete B and attempt to substitute D with a
non-conflicting younger task.

because tasks update a few common hash tables. Hence both Parakram and multithreaded methods
do equally poorly.

Result 5. A unique combination of the following patterns in an algorithm can cause the ordered approach
to underperform: multithreaded tasks that conflict at a high rate, whose datasets are data-dependent, and
whose work on the data is otherwise small.

7.3 Analyzing Ordered and Nondeterministic Executions

So far we have compared ordered execution with nondeterministic execution empirically. We next
compare the speedups the two can achieve using an analytical model. Although implementation
artifacts influence achievable speedups, we use the model to focus on the fundamental differences
and similarities between the two approaches, without being encumbered by the implementation.
Achievable speedups, as is evidenced from the CD and DeMR examples earlier, is impacted by the
algorithmic properties: dataset types and task types. We will account for them in the model. We
first build individual models for the two approaches, and then present a unified model for both.

Consider an ideal system with infinite resources that attempts to perform all of the program’s
tasks in one epoch, as depicted in Figure 7.12. Assume that the overheads associated with managing
the execution are negligible in comparison to the actual work performed by each task, which are
also, say, uniform in size. Assume a sophisticated nondeterministic system in which, if tasks conflict,
one completes successfully and the rest are re-executed (as opposed to all having to retry). Using
Figure 7.12, we will simply follow the convention that when tasks conflict, the “leftmost” completes,
without losing generality. Say, tasks B and D conflict with each other. Task B will complete in the
nondeterministic execution.

For this analysis, it is helpful to view Parakram’s execution model as follows. When Parakram
anticipates that a younger task will conflict with an older task, i.e., the younger task is dependent,
its dataflow execution attempts to substitute the dependent task with another task to utilize the
resources. In Figure 7.12, Parakram will attempt to group the non-conflicting tasks to the “left”.

115

Task B will execute and complete, similar to the nondeterministic execution, but Parakram will try
to substitute D with another task, perhaps E.

We analyze the maximum speedup the two approaches can achieve in any epoch when N
tasks are available for execution. Say on average, a task conflicts with another given task with the
probability p, i.e., it does not conflict with the probability ¢ = 1 — p. p may also be viewed as the
pair-wise conflict probability between the tasks. To compute the total tasks that may successfully
complete in an epoch, we first compute the probability for successful completion of each task. We
will consider the different algorithm characteristics in turn.

Data-independent Datasets.

When tasks use data-independent datasets, in both types of execution the same tasks will conflict
with each other, and both will have equal opportunities to reap the parallelism. Therefore, in
Figure 7.12, task A will always complete. Task B completes if it does not conflict with A, i.e., with the
probability (1 —p). Task C completes if it conflicts with neither A, nor B, i.e., with the probability
(1 —p)?. Therefore, given N tasks, the total number of tasks that will complete, i.e., the achieved
speedups, S, (nondeterministic) and S, (ordered), over the sequential execution are:

Sn=So=1+q+q*+..+q" !

1 7.1
= ﬁ —q" (sum of a geometric series) @D

Data-dependent Datasets.

If the datasets are data-dependent, once again in both cases the same tasks will conflict with each
other, but the two approaches behave differently depending on the task type. First consider the
case when the algorithm is nondeterministic, i.e., all parallel tasks are independent of each other.
As we saw in DeMR, nondeterministic execution will deem any task that has not conflicted to have
completed. Therefore, the achieved speedup, S;, is the same as in Equation 7.1.

In the ordered case, since the dataset is data-dependent, Parakram cannot immediately apply
dataflow and reorder the tasks. If a task conflicts, all younger tasks must wait until the conflicting
task eventually re-executes, and check for conflicts with its new results. Effectively, to maintain
order, the younger task that conflicts with an older task is treated as dependent even if logically
it is not. Therefore, a task will complete only if (i) it does not conflict with any older task, and (ii)
none of the older tasks conflict with each other. The second condition implies that no pair of older
tasks must conflict. Therefore, task A always completes. Task B completes if it does not conflict
with A. But, task C completes if it conflicts with neither A, nor B, and B does not conflict with A.
The speedup, S,, achieved by the ordered execution is:

N—-1
CZ

So=14+q9+¢*-q2+¢*-q%+..+qV1-q

N-1 . (7.2)
= Z q1 . qcz
i=0

116

Ideal Speedups

30 |
|
|
|
25 L3
'
|
\
20 4
2 \
5 A
\
@ 15 A _..
-3 Loy == Nondeterministic
(%]

—Ordered

Figure 7.13: Ideal speedups on infinite resources for nondeterministic and ordered executions.

Where C! is the combination of selecting a pair of (two) tasks from i tasks, and C} = 0 for i < 2.
Note that in the above equation we have assumed that all tasks younger to the conflicting task are
deemed incomplete, whereas in practice, only a subset of the younger tasks are likely to actually
conflict with the re-executed task. Hence , equation 7.2 is a conservative estimate of the ordered
execution’s speedup. Nonetheless, we use this equation to keep the model simple, and to compare
the worst-case speedup of the ordered execution with the best-case speedup of the nondeterministic
execution.

Figure 7.13 plots the Equations 7.1 and 7.2, by spanning p from 0 to 1 and using N = co. For
N = oo, the Equation 7.1 reduces to S = 2—. To obtain S, using Equation 7.2, we solved the
equation until S, converges to ten digits after the decimal point. The Y axis plots the achievable
speedup for different values of p on the X axis. When p = 1, i.e,, all tasks conflict, or p =0, i.e,,
none conflicts, both approaches yield the same speedup. When the probability of conflict is “high”,
i.e., > 30%, both approaches yield similarly poor performance. However, they differ considerably
at lower conflict probabilities. When the probability of conflict is only 0.01%, on infinite resources
the nondeterministic approach yields a speedup of 100 x, whereas the ordered approach achieves
12.5x. Nondeterministic execution outperforms ordered execution by an order of magnitude in this
case. However, when the conflict probability goes up to 5%, the nondeterministic speedup is 20x,
whereas the ordered speedup is a much closer 5.5x.

Next, if the algorithm were not nondeterministic, i.e., there were true dependences between
tasks, then even the nondeterministic execution cannot assume that a non-conflicting task has
completed when a prior task (to the “left” in Figure 7.12) conflicts. In this case the nondeterministic
speedup will be similar to the ordered speedup. Therefore, the two lines in Figure 7.13 represent the
range of possible differences in speedups achieved by the two approaches when tasks are completely

117

independent and use data-dependent datasets. In other cases, their speedups are comparable.

A Unified Speedup Model.

In a more general case, it is possible that an algorithm contains a mix of independent and
dependent tasks, with data-independent and data-dependent datasets. Further, a task may conflict
with different tasks with different probabilities. We provide a more generic speedup model, which
is applicable to both approaches:

pi,; = Probability that task f; conflicts with task fj, i # j

qij =1—pi;
1 always for ordered execution, i # j
dij=4 1 if task f; is dependent on task f; in the nondeterministic execution, i # j
0 otherwise (7.3)
o = { 1 if task f; uses data-dependent dataset
Y7L 0 otherwise
N-1

5=, “E[qm"(f[ﬁ qﬁfﬁ)ai}

i=0 -j=i-1 k=i—-1 1l=k-1

n
Where [[= 1 for m > n. The } captures the successful completion of each task. The term,
m

I qi,j, ensures that task f; does not conflict with any prior task. The second term, (][] qgfik)4, is

applied only when the dataset is data-dependent (a; = 1), and the sub-term qgiik is applied when
the task f; is dependent on task fy (dix = 1). The second term accounts for an}; precedent task fy
that may have conflicted. When a; = 0 (data-independent datasets) or d; i = 0 (independent tasks
in nondeterministic execution) for all task pairs, and q; j is the same for all task pairs, the equation
devolves into Equation 7.1. When a; = 1 (data-dependent datasets) and d; x = 1 (dependent tasks)
for all task pairs, and q; ; is the same for all task pairs, the equation devolves into Equation 7.2.

7.4 Summary

Ordered programs can match multithreaded programs in expressing parallelism. Ordered pro-
grams, at large, do not compromise performance. When algorithms comprise dependent computa-
tions, exploiting parallelism appears to come naturally in the ordered method, whereas considerable
effort may be needed in Multithreading. In contrast, if the algorithm exhibits irregular, entirely
dependence-free parallelism, and uses data-dependent datasets, the artificial constraint of order
can limit the exploitable parallelism, which Multithreading is not limited by.

119

Recovering from Exceptions

Your ability to deal with surprise is your competitive advantage.

— Davip ALLeN (“GETrTiNG THINGS DONE”)

In this dissertation we have argued that an ordered approach to multiprocessor programs can
simplify system use. Over the last few chapters we presented the details of the Parakram ordered
approach and applied it to simplify programming. In this chapter we apply the ordered approach
to simplify yet another aspect of multiprocessor system use, recovering from exceptions.

8.1 Introduction

An exception is an event that may alter the program’s prescribed execution. Debugging breakpoints,
OS scheduling interrupts, and hardware faults are examples of exceptions. For a variety of reasons,
as we will see, exceptions are slated to increase in future systems, due to which programs may not
execute efficiently, accurately, or to completion. Yet designers will desire systems that recover from
exceptions gracefully, and execute programs as intended, with minimum intervention from the
users.

Recovering from an exception requires diverting the execution to handle the exception-causing
event, and once the event is handled, resuming the execution such that it can complete correctly.
Handling an exception entails responding to the specific event. For example, recovering from an
OS scheduling exception may be as simple as pausing the execution and resuming it at a later time,
perhaps on a different resource, requiring no special handling. Recovering from a hardware fault
can be more involved. It may require that the program be paused, and the fault be handled by
correcting the program’s corrupted state, before resuming the execution from an appropriate point.
Typically, exceptions can arise at any time during the execution.

Irrespective of the exception source, pausing the nondeterministic execution of a multithreaded
program at an arbitrary point is non-trivial, as will be seen in Section 8.2. This can complicate
system design and impose overheads when recovering from exceptions. Approaches to recover from
exceptions in nondeterministic programs periodically checkpoint the program’s state as it executes.
Upon exception, they recover to a prior error-free state and resume the program, losing all work
completed since. A plethora of hardware [5, 134, 145, 176] and software [32, 33, 56, 114, 120, 153, 189]
approaches, striking trade-offs between complexity and overheads, have been proposed in the
literature. Our analysis shows that due to the overheads, their checkpointing and recovery processes
will be too inefficient to handle frequent exceptions. In fact, they lack the scalability needed for
future, increasingly larger systems.

120

By contrast, as we show in this chapter, ordered execution lends itself well to exception recovery.
Order can be used to simplify system design, and reduce the overheads related to checkpointing
and recovery. Note that Parakram can already recover from misspeculation, which is but a type
of exception, with the help of globally-precise interrupts. The same technique can be extended to
tackle exceptions in general.

We use the Parakram model as a foundation, draw from multiple past works on recovery, and
introduce new features to build a globally-precise restartable recovery system (GPRS) for shared memory
systems. GPRS provides a generic substrate to recover from different types of exceptions, ranging
from debug breakpoints to irrepairable memory faults.

Our design goal for GPRS was to preclude the need for complex hardware since future systems
will likely rely on software to handle exceptions [37, 127]. In line with other production-worthy
software recovery solutions [33, 114, 120], we developed GPRS as a software runtime system.
GPRS is OS-agnostic, fully-functional, and operational on stock multiprocessors. It exploits the
Parakram programming APIs, and combines checkpointing and log-based approaches to minimize
the overheads and achieve scalability. Significantly, GPRS can handle exceptions in user code,
third-party libraries, system calls, as well as itself.

Although GPRS has wide applicability, in this dissertation we apply it to recover from non-
fatal exceptions in Parakram programs. We evaluated GPRS in comparison with the conventional
checkpoint-and-recovery method designed for multithreaded programs. Experiments conducted
on a 24-context multiprocessor system showed that exception recovery in ordered programs can be
more efficient than the recovery in multithreaded programs. Importantly, GPRS withstood frequent
exceptions and scaled with the system size, whereas the conventional method did not, validating
our qualitative analysis.

In Section 8.2 we overview the reasons for the increasing rates of exceptions and why handling
them efficiently is important. The section summarizes and analyzes the prevailing method to handle
exceptions. In Section 8.3 we describe how the ordered approach can simplify exception recovery.
Section 8.4 presents the details of GPRS and its operations. Applying GPRS to other use cases not
considered in this dissertation, is discussed in Section 8.5. In Section 8.6 we evaluate GPRS when
applied to recover from non-fatal exceptions, such as soft hardware faults. Many proposals have
been made to recover from hardware faults in multithreaded programs; they are briefly summarized
in Section 8.7.

8.2 A Case for Handling Exceptions Efficiently

8.2.1 Impact of Technology Trends on Program Execution

As mobile and cloud platforms grow in popularity, and device sizes shrink, designers face energy
and resource constrained, unreliable systems. Proposals are being made to address these challenges,
but they can affect the program’s originally intended execution, even terminally. Their unanticipated
affect on the program’s execution may be viewed as exceptions. Recovering from these exceptions
will make these proposals practical. We analyze these proposals by dividing them into three broad
categories: resource management, inexact computing, and fault tolerance. We briefly describe how

121

they may raise exceptions during the program’s execution, and make a case for why the exceptions
should be processed efficiently.

Resource Management. Managing resources to save cost or energy can impact a program’s exe-
cution. Shared systems, e.g., Amazon’s EC2 [60] and mobile platforms [3], can abruptly terminate a
program, even without notifying the user. Systems are now incorporating heterogeneous resources
with disparate energy/performance profiles [29, 30]. To maximize benefits, dynamic scheduling
of computations on these resources will be desirable [24]. One can also envision scheduling com-
putations, even interrupting and re-scheduling currently executing computations, on the “best”
available resource as the resources become available dynamically.

Inexact Computing. Further, emerging programming models can impact the program execution.
Disciplined approximate computing [160], a recent research direction, permits hardware to inac-
curately perform programmer-identified operations in a bid to save time and/or energy [65, 66].
Emerging proposals provide a software framework to compute approximately, but with a guar-
anteed quality of service, by re-computing when errors are egregious [17]. In the future one can
imagine integrating approximate hardware with such a software framework for even more benefits.
Interestingly, some proposals tolerate hardware faults by admitting computation errors in a class of
error-tolerant applications such as multimedia, data mining, etc., while ensuring that the programs
run to completion [113].

Fault Tolerance. Finally, hardware design can impact the execution. Faults due to soft (transient)
errors, hard (permanent) errors, and process variations can cause programs to crash or compute
incorrectly on increasingly unreliable hardware [28, 99]. Hardware designers are employing tech-
niques to manage energy consumption [81, 82] and device operations [188], which can lead to
frequent timing, voltage, and thermal emergencies. Like faults, these techniques can also affect the
execution. Moreover, growing system sizes makes the systems more vulnerable to such vagaries.

In all of the above scenarios, the program execution may be viewed as one interrupted by dis-
cretionary exceptions. These are exceptions that the system allows, in bargain for other benefits,
such as energy savings. If these exceptions can be tolerated, efficiently, and oblivious to the pro-
grammer, designers can effect such and perhaps yet undiscovered tradeoffs. In fact, a similar trend
ensued in uniprocessors when precise interruptibility provided a low overhead means to tolerate
frequent exceptions. Once introduced, designers exploited the capability to permit high frequency
discretionary exceptions arising from predictive techniques, for net gains in performance. For
example, techniques to predict branch outcomes, memory dependences, cache hits, data values, etc.,
relied on precise interrupts to correct the execution when they misspredicted. Hence we believe
that recovering from exceptions in parallel programs, and resuming the execution efficiently and
transparently, will be highly desirable in the future.

122

Computation Threads Threads
Exception |' \ /
site N
Detection
Errors— latency
Exception /. Eﬂf b= QE 3
reported

Data communication
(a) (b) (c)

Figure 8.1: Characteristics of exceptions. (a) Latency to detect and report an exception. (b) A local
exception affects an individual computation. (c) A global exception affects multiple computations.

8.2.2 Exceptions

Recovering from exceptions is complicated by two factors. The first is the detection latency, the
delay between the time an exception occurs and it is reported, which can range from one to many
cycles (Figure 8.1(a)). For example, it may take tens of cycles to detect a voltage emergency [82],
or an entire computation to detect errors in results [17]. The second, more pertinent to parallel
programs, is due to the dispersal of a parallel program’s state among multiple processors. To study
the complexity of handling exceptions, we categorize exceptions into two types: local and global.
Local exceptions, e.g., page faults, impact only an individual thread, and can be handled locally
without affecting other concurrent threads (Figure 8.1(b)). Local exceptions are often handled by
using precise interrupts in modern processors [64, 82]. Global exceptions, in contrast, may impact
multiple threads simultaneously, e.g., a hardware fault that corrupts a thread whose results are
consumed by other threads before the fault is reported (Figure 8.1(c)). Due to the inter-thread
communication in parallel programs and the system-wide impact of global exceptions, global
exceptions are complex to handle. This dissertation focuses on global exceptions.

8.2.3 Recovery from Global Exceptions

The traditional method to recover from a global exception is to periodically checkpoint the program’s
state during its execution, often on stable storage. Upon exception, the most recent possible, error-
free consistent architectural state is constructed from the checkpoint, effectively rolling back the
execution. The program is then resumed from this point. There are three main types of such
checkpoint-and-recovery (CPR) methods: coordinated, uncoordinated, and quasi-synchronous [62, 119].
In coordinated CPR, program threads periodically coordinate to perform consistent checkpoints.
Since every checkpoint is consistent, it can be used to perform quick restarts after exceptions occur.
However, the coordination process incurs the overheads of stopping the participating threads.

123

Threads Threads Threads
2
2
—
© t
0
= t
3 A\
Q.
S
S Restore ; C
S state w

Data communication

(a) (b) () (d)

Figure 8.2: Recovering from global exceptions. (a) Conventional checkpoint-and-recovery. (b)
Restart penalty. (c) Inter-thread communication. (d) Ordered computations.

In uncoordinated CPR, threads checkpoint independently, without the overhead of coordination.
But it incurs the expense of recreating a consistent checkpoint prior to restart, which may lead to
cascading rollbacks. Cascading rollbacks can cause much of the executed program to be discarded,
even entirely. Quasi-synchronous CPR also performs uncoordinated checkpoints, but it additionally
logs the inter-thread communication, using which it avoids the cascading rollbacks. However,
quasi-synchronous CPR now incurs the additional logging overheads.

Of the three types of CPR, coordinated CPR has gained popularity in shared memory systems
since it is relatively simple, and guarantees recovery at relatively lower overheads. Hence we
consider coordinated CPR here.

Parallel programs are characterized by nondeterministic concurrent threads that may communi-
cate with each other. Hence, the execution needs to be quiesced to take a checkpoint of the state
that is consistent with a legal execution schedule of the program up to the checkpoint [62]. A con-
sistent checkpoint is essential for the program to restart and execute correctly. The lost opportunity
to perform work, i.e., the loss of parallelism, during the CPR processes effectively penalizes the
performance. Hence, CPR schemes incur a checkpoint penalty, P., every time they checkpoint, and a
restart penalty, P, when they restart from an exception.

To checkpoint, prevailing software approaches [32, 33, 56, 120, 153, 189] first impose a barrier
on all threads, and then record their states (Figure 8.2(a)). A second barrier is used to ensure that a
thread continues the execution only after all others have checkpointed, to prevent the states they are
recording from being modified. The checkpoint penalty (P.) is proportional to the average time each
context spends coordinating at the two barriers, t., recording its state, ts, and the checkpointing
frequency. Ignoring actual mechanisms and assuming contexts can record concurrently, in an n
context system, for a checkpoint interval of t sec, the checkpoint penalty for the entire system is,
Pe=1-m(tc+ts)

To restart an excepted program, the program is stopped and the last checkpoint is restored
(Figure 8.2(b)). In this case the potential loss of parallelism arises from the work lost since the last

124

checkpoint, i.e., over the interval t, and from the wait time, t,,, to restore the state. Therefore, the
total restart delay, t, =t + t,, and for a rate of e exceptions/sec, the restart penalty for the entire
systemis, P =n-e-t;.

Recent hardware proposals can reduce the two penalties by involving only those threads (n.)
that communicated with each other during a given checkpoint interval, in the checkpoint and
recovery processes [5, 145]. Hence in their case, P, = % ‘Me - (te + n% - ts) (all threads still record
the state), and P =n. - e - t;.

We believe that as exceptions become frequent, the restart penalty will become critical. Intuitively,
if exceptions occur at a rate faster than checkpoints, the program will never complete. Hence, for

a program to successfully complete, it is essential thatn-e-t, <n,ie, e < i The hardware

proposals can improve this to e < nlc . Decreasing P, by simply 1ncreas1ng the checkpoint
frequency, i.e., decreasing t, will mcrease Pc, and hence may be unsuitable for high-frequency

discretionary exceptions.

If exceptions become frequent, as we anticipate, to the tune of making every task, or one in every
few tasks, susceptible, we believe that an online system that can quickly repair the affected program
state, with minimum impact on the unaffected parts of the program, analogous to the precise
interrupts in microprocessors, will be needed. CPR-based systems alternate between checkpoint
and execution phases since care needs to be taken that checkpointing and execution do not interfere
with each other. Also, recovery requires that the system halt while the state is being restored. For
frequent exceptions, this halt-and-start approach may prove inadequate. Hence, for a practical and
efficient solution, all factors of checkpoint and restart penalties need to be reduced.

8.3 An Efficient Approach to Frequent Exception Recovery

To build a practical and efficient exception recovery system for frequent discretionary exceptions, we
target all the related overheads: the discarded work, the checkpointing frequency, the coordination
time, the recording time, and the restart process. Parakram’s execution and programming models
naturally help address all of these aspects. In particular, Parakram’s task-based ordered execution,
globally-precise interrupts, and the programming interface can be leveraged for this purpose.

1. Ordered Computations. Ignoring threads for the moment, ideally, when an exception occurs,
only the affected computations, i.e., the excepted computation and those which may have consumed
the erroneous results produced by it, should be squashed and restarted. For example, in Figure 8.2(c),
if only computation C consumes the data produced by B, when B excepts only B and C need restart,
without affecting A. Multithreaded programs permit arbitrary and nondeterministic communication
between computations, making it difficult to identify the precise dynamic producer-consumer
relationships between them. Hence CPR schemes take the conservative approach of discarding all
computations after an exception.

To overcome the limitations of nondeterminism, we can take advantage of ordered programs.
The implicit order precludes communication from younger computations to older computations.
Hence, an affected computation cannot corrupt older computations. When an exception occurs,

125

undoing the effects of the excepted computation and all younger to it results in a program state that
is consistent with the execution, as is achieved by globally-precise interrupts.

For exception recovery, a globally-precise interruptible execution can reduce the restart penalty,
as compared to CPR, since not all computations, but only the excepted and younger computations
need be discarded. The ordering further enables the desired selective restart of only the affected
producer-consumer computations, and not of other unrelated older or younger computations. This
minimizes the amount of the discarded work. This is also analogous to re-executing only an excepted
instruction and its dependent instructions in superscalar processors, e.g., a load that misses in the
cache but was presumed to have hit, without squashing all other in-flight instructions. Dataflow
execution naturally admits selective restart.

Selective restart potentially reduces the restart penalty to P, = e - t; (assuming that the average
computation size is t, and time t,, is taken to reinstate its state), since only the excepted computation
may need to restart, and the unaffected computations need not stall. This also enables an online
system that can continuously respond to frequent discretionary exceptions while minimizing the
impact on the program’s unaffected parts. For a program to now successfully complete, e - t, < n,

ie, e < . Thus selective restart is potentially n x more exception-tolerant than the conventional

CPR (e < %), and n. x more tolerant than the recent hardware proposals (e < nlc
more effective in parallel systems.
Ordering provides other benefits, as we shall see in the design of the GPRS system. It helps

simplify the recovery from exceptions in the GPRS mechanisms (Section 8.4).

: t%), making it

2. Tasks. To take advantage of order, a naive approach could order the threads themselves, which
may serialize the execution. Moreover, the restart penalty will be too large, given the relatively large
granularity of threads. Parakram programs already decompose the program into relatively smaller
tasks. Checkpoints can be taken at the start of tasks. Further, execution of Parakram tasks is free
from races, i.e., tasks are ordered such that they communicate with each other at task boundaries.
This execution model yields three benefits.

First, race-free tasks help to localize an exception’s impact to a given task if the exception is
detected before the task completes, i.e., before the erroneous results are communicated. Second, the
relatively smaller tasks increase the checkpoint frequency (reduce t), further reducing the restart
penalty, P,, but potentially increasing the checkpoint penalty, P.. The third advantage, due to task
boundary checkpointing, is that at that time no other task can be communicating with it. This
eliminates the need to coordinate (t.), entirely, reducing the checkpointing penalty Pc to 1 - n - t;
(average task size is t).

Although the ordered approach can reduce the checkpoint and restart penalties as outlined
above, it introduces new overheads when applying the order and housekeeping for selective restart,
if we were to view exception handling in isolation. These overheads, e.g., dependence analysis and
ROL management, which we have examined in detail Chapter 6, are already part of the ordered
approach. But we characterize these overheads afresh from the perspective of exception handling
in this chapter. When a context enforces order on a task and checkpoints its state, it can delay the
task’s actual execution (as seen in the last chapter). If the average delay is tg, the total penalty of
the globally-precise interruptible model, Py = % ‘T - tg. As we show in the evaluation, the overall
benefits of the model far outweigh this penalty.

126

3. Application-level Checkpointing. Finally, we reduce the recording overhead, t, by resorting
to application-level checkpointing, which can dramatically reduce the checkpoint sizes [33]. Instead
of taking a brute-force checkpoint of the system’s entire state [114] or the entire program [56, 153],
only the state needed for the program’s progress is recorded. Often, instead of saving data, data
can be easily re-computed, especially if the computation is idempotent [148]. Several compiler
proposals automate application-level checkpointing [32, 120]. Alternatively, the user’s intimate
knowledge of the program can be exploited for this purpose by requiring the user to annotate the
program. Parakram already captures this information in the form of a task’s mod set. We take
advantage of this aspect.

The above principles, based on ordering computations, enable a responsive and efficient recovery
model for discretionary exceptions. No system-wide barriers or other coordination is needed. Since
tasks checkpoint independently, the overhead is comparable to that of uncoordinated checkpointing
schemes. Although uncoordinated, the checkpoint is consistent with the ordered execution, and
hence recovery does not require offline analysis, avoiding any cascading rollbacks.

We next describe one embodiment of the model, the Globally-precise Restartable System. Im-
plementing a recovery system in practice poses additional challenges. We describe how we tackle
them while automating the recovery mechanisms.

8.4 Globally-precise Restartable System

Parakram’s Execution Manager can already handle exceptions, e.g., the misspeculations. The
Globally-precise Restartable System (GPRS) makes this capability more generic. It can recover from
simple exceptions, such as OS scheduling interrupts, as well as more complex exceptions, such as
hardware faults that can corrupt the program’s state. The following description is presented from
the perspective of the program-corrupting exceptions, without loss of generality. An overview of
the system is presented, followed by assumptions made in its design and details of its operation.

8.4.1 Overview

GPRS builds upon the Parakram Execution Manager, and adds new capabilities. First, GPRS sup-
ports exceptions that can affect any arbitrary part of the program. Parakram can handle exceptions
in tasks that it knows may misspeculate or when exceptions are raised by the tasks themselves.
In these cases Parakram knows precisely which tasks are affected. But a generic exception, like a
hardware fault, is external to the program, and can affect any part of the program. Hence it may
not always be clear precisely which tasks are affected, requiring additional support to handle such
cases.

Second, GPRS adds support for recovery from exceptions in Parakram’s runtime operations.
Discretionary exceptions can not only affect the user code and functions invoked from it, but
also GPRS’s own mechanisms. For example, a fault due to voltage emergency can corrupt GPRS
operations, which can ultimately corrupt the user program. GPRS is uniquely capable of handling
exceptions in its own operations. For this purpose, GPRS records its operations in a Write-ahead
Log (WAL) instead of checkpointing its state. The WAL mirrors the History Buffer (HB), except that

127

Ordered Multiprocessor Program

U

Task Order
—© (9] ©

Sequencer [—»

Reorder List

A
o © N Globally | /¢,
000 Token | Dependence " BUff -precise -
Manager Analyzer Istory Bu er@ Restart
1 L, »| Engine

v
: ? Write-ahead Log m
Task Pool ©

;) Order-aware
Speculative Dataflow Engine Tl Rehaalier

l Exception

CPU| |CPU| |CPU

Figure 8.3: GPRS System Architecture.

it records the runtime state or operations instead of the program state. GPRS leverages the task
order to optimize the logging.

Third, GPRS adds support for global exceptions, which are reported after a delay, e.g., hardware
faults. Delayed reporting of exceptions can cause the execution to be out of sync with the reporting.
GPRS must correlate the exception with the corresponding task to perform accurate and efficient
recovery.

Finally, GPRS must handle I/O operations and “poorly composed” tasks when exceptions
occur. When recovering from an exception, re-performing I/0O, e.g., printing, may lead to incorrect
execution. Not enough information may be available about poorly-formed tasks to perform proper
program recovery. GPRS, like other recovery systems, also has to account for exceptions in operations
that perform I/O, and transient events during the re-execution of a recovered program. GPRS can
handle all of these cases.

Figure 8.3 shows the block diagram of GPRS, which has the same components as the Execution
Manager, except for the added Write-ahead Log @ Operations related to chiefly executing the
program remain the same as we have seen in Chapter 6. GPRS too interposes between the program
and the underlying system. It manages the program’s parallel execution (essentially the same
functionality seen before), the program’s state, and shepherds the execution to completion when
exceptions, discretionary or otherwise, arise during the program or from the system itself. GPRS
extends the C++ runtime library with its exception-handling functionality.

128

8.4.2 Assumptions

Designing a recovery system is heavily influenced by the assumptions made about the system and
exceptions. We assumed the following.

The system can detect exceptions and report them to GPRS, possibly with a non-trivial detection
latency (time taken to report the exception after it occurs). An exception can corrupt the executing
program’s state. During the detection latency, additional state computed by the program may get
corrupted. GPRS assumes that most exceptions can be reported within a given latency, and the
system can report the execution context on which the exception occurred.

It is possible that the system cannot detect all exceptions within the stipulated latency. Addition-
ally, some exceptions cannot be traced back to an execution context, e.g., a non-correctable memory
error that is detected only when the location is accessed, which may be at a point in the execution
far removed from when the location was updated. On occasion, an exception may be irrecoverable,
e.g., a system crash. GPRS treats such exceptions as “catastrophic exceptions”. The current design
does not handle catastrophic exceptions, but we describe how they can be with some enhancements.

GPRS also assumes availability of stable storage to store the WAL and the checkpoints, if
recovery from exceptions that can corrupt the program’s state is desired. Incorporating stable
storage in a recovery system requires careful attention [165]. Access characteristics of the storage
can contribute to the overall overheads. We focused on evaluating the restart overheads in this
dissertation, hence we treated the main memory of the system as stable storage in our experiments.
Whenever a checkpoint is logged by an execution context, GPRS assumes simplistically that the
execution advances only after the checkpoint is known to have been correctly committed to the
storage. Storage-related overheads are proportional to the size and frequency of checkpoints, which
will be similar in both GPRS and conventional CPR for a given program. Hence, our assumptions
about the storage characteristics does not alter our main analysis.

The GPRS design, as presented next, assumes that online recovery of frequent exceptions is
desired. Hence it checkpoints frequently, incurring proportional overheads. If exceptions are not
expected to be frequent, the checkpointing frequency can be reduced. In general, for a given use,
the checkpointed state size in GPRS and CPR will be similar.

We do not address recovery from exceptions in the actual I/O operation, e.g., hardware faults
during the transmission of data over the network, although we can address exceptions in the
computations that produce the data. GPRS being a software system, also assumes that an exception
that corrupts the address of a main memory location being updated, is reported before the update
takes place. Handling such errors is non-trivial, even in systems with hardware support, and
requires special handling [175].

8.4.3 Executing the Program

The program executes as before (Chapter 6), but for the following modifications. Recall that a
Parakram program comprises alternating control-flow (CF) tasks and dataflow tasks. To perform
speculative execution, Parakram already relies on checkpointing the mod sets of the dataflow tasks.
To handle arbitrary exceptions, GPRS now also checkpoints the mod sets of the control-flow tasks. It
once again relies on the programmer to provide these mod sets using the pk_declare () or pk_mod ()
APIs.

129

Previously we saw dataflow tasks and sub-tasks being logged in the Reorder List (ROL). Now,
when the program starts executing, both control-flow and dataflow tasks are logged in the ROL.
Control-flow tasks are also assigned the hierarchical ID indicating their position in the total order,
as before. Before a task, whether dataflow or control-flow, is executed, in addition to its mod set, its
stack is checkpointed and logged in the HB. When recovery needs to be performed, this checkpoint,
of the mod set and the stack, is used to unroll the task’s execution.

8.4.4 Recovering from Exceptions in the Runtime

The Parakram runtime employs data structures and sophisticated concurrency algorithms in its
own operations (Chapter 6). These data structures include the work queues, the memory allocator
lists, the ROL, and other book-keeping structures. While the operations are invisible to the user,
exceptions during these operations, e.g., hardware faults, can impact the runtime’s state as well as
the user-visible state.

When an exception affects the runtime, GPRS must provide two capabilities: (i) identify a restart
point, and (ii) rectify the affected data structures. In addition to rolling back the program’s state to
an error-free state, the runtime data structures need to be brought to an error-free state that is also
consistent with the program’s state. To ensure correctness, GPRS effectively rolls back the execution
to the oldest affected task by restoring the collective program and runtime state to that point.

Restarting the Program.

Exceptions during the runtime operations may ultimately manifest as exceptions in the user
computations. We note that each runtime operation is performed on behalf of one or more tasks.
Hence we treat them as such. We attribute the exception in a runtime operation to the corresponding
oldest task. Essentially, the Prelude and Postlude phases (Figure 6.15) for a task get logically
combined with the task for the sake of recovery from exceptions. For example, logging a task’s
entry in the ROL can be attributed to the task. An exception during the communication between a
completing task and a dependent task (e.g., the token passing in the Postlude phase) can be ascribed
to the completing task. Similarly, an exception when retiring a task from the ROL can be ascribed
to the task. Once so ascribed, and the runtime state is corrected (seen next), the exception can be
processed as an exception in that task. Program resumption simply forces the runtime operations
to be performed again.

Managing the Runtime State.

Runtime operations and data structures are as challenging to exception recovery as nondeter-
ministic programs. The runtime mechanisms can be distilled into operations on its context-private
data structures, e.g., the memory allocator structures, and shared queues, e.g., the work deques.
They employ concurrency techniques at a much finer granularity than tasks. While the program
computations are race-free, these operations may not be. They are in essence, nondeterministic.
Therefore they cannot be subjected to trivial cloning and rollback.

We once again exploit the program order to effect the rollback of the runtime state. We use
a combination of three strategies (Figure 8.4) to restore runtime data structures: (i) reset them to

130

RuntirTle Rollback—T——Reset e.g., reorder list
Mechanisms
. Undo
——Repair — e.g., memory allocator
l P from log & y
Data Structures L +Reconstruct — Replay

e.g., work deque

/\ from log

Private Shared

Per-context Write-Ahead Log

Figure 8.4: Managing runtime mechanisms and state for exception recovery.

consistent states, (ii) “repair” them to reflect their pre-exception conditions, or (iii) reconstruct them
to their pre-exception states.

Resetting a data structure can be straightforward, e.g., the ROL can be assumed to be empty
when there are no in-flight tasks in the system. If the program is to be restarted assuming that all
in-flight tasks should be discarded, the ROL can be simply reset.

We repair context-private structures when resetting them would result in lost work, and re-
constructing them would be prohibitive. For example, restoring the state of the memory allocator,
which may accumulate state over the entire duration of the program, may be more practical than
reconstructing its state from the start.

We reconstruct the concurrent structures, e.g. the work deques, instead of repairing them, to
avoid run-time inter-context coordination.

For the latter two strategies, we draw inspiration from the Aries [130] recovery mechanism,
commonly used in DBMS, and adapt it to our model. We already assign each task a unique ID,
reflective of its order. Before operating on the runtime data structures, each context uses a write-
ahead-log (WAL) to independently log the logical and/or physical operation, the task ID on whose
behalf it was performed, and the wall clock time when the operation was initiated (whose use will
be seen below). Each context maintains a private ordered log, in which the information is recorded
before the action is performed. For example, before logging an entry for a task in the ROL, the
context logs the action, the task ID, and the pointer to the task, in the WAL. When allocating an
object, the memory allocator first logs the action and the head pointer of the memory pool in the
WAL. To deallocate an object, it first logs the action and the tail pointer to the memory pool. No
inter-context coordination is needed to update the WAL since each context maintains its own private
log.

The logs are used to undo/replay operations when repairing/reconstructing the structures.
Log-based recovery is described in great detail by Mohan et al. [130], although the fact that each
context maintains a private log simplifies the process. We assume that GPRS can store the WAL and
the HB on a fault-free storage, e.g., on non-volatile memory and/or disk, when GPRS is applied to
hardware fault-recovery. Hardware faults can corrupt the program’s state. Non-corrupt checkpoint
is needed to ensure correct recovery, hence the need for stable storage.

131

Although the WAL logging is uncoordinated, we can reconstruct the precise architectural state
of the runtime, as follows. First we determine the identity of the excepted task. When possible,
structures are reset. Next, for each aborted task, the logs are used to determine whether the
operations on context-private structures, e.g., memory allocation, took effect. For example, when
an object was deallocated, the logged tail pointer is compared with the current pointer to check
whether the operation was indeed performed. If the operations were performed, they are undone
in the reverse chronological order. Task IDs provide the inter-task order and the sequence in the
log provides the intra-task order.

To reconstruct the concurrent queues, the affected structures are first identified using the
excepted task. This is done by scanning the WAL for operations performed on behalf of the task.
The state of the concurrent queues just past a retired computation (no longer in the ROL) can
be assumed to be reset (entries in the log for retired computations, if present, may be ignored).
The state of the concurrent queues can be reconstructed by sequentially replaying the performed
operations (but not executing the actual task), for each exception-free, or up to the desired task in
flight.

Entries in the WAL are removed when computations retire. The WAL size can be bounded by
controlling the execution.

8.4.5 Recovering from Global Exceptions

As the program executes, the Globally-precise Restart Engine (GRX) tracks the completion of tasks,
and retires them as they complete exception-free. When a task completes, its entry in the ROL is
stamped with the clock time, indicating the time of completion. The GRX treats both control-flow
and dataflow tasks alike in this regard.

When exceptions arise, GRX reconstructs the program’s error-free state and that of the GPRS,
using the recorded state in the History Buffer and the WAL, as described above. It then instructs the
Speculative Dataflow Engine (SDX) to resume the execution from this reconstructed “safe” point.

Because exceptions can be reported with a delay, GRX does not retire completed tasks imme-
diately. GPRS assumes a maximum user-specified detection latency, as do other fault-tolerance
proposals [176]. Once a task completes, GRX waits until the latency elapses before retiring the task.
If no exception is reported, the task is retired as usual.

When an exception is reported on an execution context, all tasks and runtime operations per-
formed by that context within the detection latency are deemed excepted, and any transitively
data-dependent tasks (identified from the dataflow graph) and control-dependent tasks (identified
in the ROL) are deemed to have consumed erroneous results. If a runtime operation is found to be
affected, the corresponding task is said to be excepted. The affected tasks are marked as excepted,
and GRX recovers and restarts from the exception.

8.4.6 Third Party Functions, I/O, System Calls, and Transient Events

Programs often perform I/0, and use system and third-party functions. These functions pose
unique challenges to recovery and restart. GPRS must have access to their mod sets, and have the
ability to re-execute them, which may not always be the case. Moreover, some I/O operations, e.g.,
network I/0, cannot be “undone”, and re-executing them may lead to incorrect results if they are

132

performed more times than intended. Not unique to GPRS, these issues arise in any recovery system.
There are two aspects to tackling them: rolling them back as part of recovery, and exceptions arising
during their operations. Ordered execution can simplify both.

A certain class of I/O operations, e.g., file read and writes, can be made idempotent [161]. As
an example, GPRS implements its own version of file I/O system calls, which have been made
idempotent. GPRS can track the associated internal state and checkpoint them as needed, with no
further input from the user, and can automatically perform their rollback and recovery. Similarly,
GPRS also implements its own version of the memory allocator, and automatically recovers its state
when needed. GPRS’s implementations of the file I/O calls and the memory allocator eventually use
the system-provided calls for I/O and memory allocation, which too need to be exception-tolerant
to provide end-to-end exception tolerance. The GPRS implementations are adequate examples of
how such functions can be made exception-tolerant.

Handling non-idempotent computations, e.g., network I/O, or a third-party function whose
mod set is unknown, requires some help from the user. The user can invoke such functions using
pk_task_ic() and identify them to GPRS. While other tasks may execute in dataflow fashion,
functions invoked via pk_task_ic() execute only when they reach the ROL-head. Thus such
functions do not execute out of the program order, and their rollback is unnecessary if exceptions
occur in other tasks. However, exceptions in these functions also need to be handled.

Exceptions in tasks that produce data for non-idempotent I/O can be handled in the same
way that the output-commit problem is handled, by waiting for the exception-detection latency
before committing the data to output [175]. Of course, the same approach may be also applied
to non-idempotent I/O. An exception in functions with unknown mod sets can be treated as a
catastrophic exception, whose handling will be seen later, although this feature is not supported by
GPRS at present.

Non-repeatable Events The non-repeatability of certain operations, such as system calls, e.g.,
random (), asynchronous events, e.g., interrupts, and uninitialized variables can cause the program
to diverge from its original execution, after exception-recovery. If repeatability is desired during a
program’s re-execution, the non-repeatable events can be recorded, including their outcome where
applicable, along with the associated dynamic task ID. The events can be played back, or their
recorded outcomes can be supplied to the precise related tasks when they re-execute. Care needs to
be taken that the outcomes are recorded only when they are known to be non-faulty. Uninitialized
variables can be caught using software engineering tools, and reported to the programmer during
the program development.

8.4.7 Exception-recovery Operations

Chapter 6 already describes the general Parakram operations, implemented by the Globally-precise
restartable engine (GRX), to recover from exceptions that affect only the user program. We now
describe GPRS operations to handle generic exceptions. The operations are described in two steps:
the Basic Restart operations (BR), and the Selective Restart (SR) operations.

133

Basic Restart.

Basic Restart (BR) takes a conservative approach. It presents two user-selectable recovery choices.
When a task excepts, either all current in-flight tasks can be discarded, like conventional CPR, or
only those younger to the actually affected task can be discarded.

BR design is simpler than SR, and relies on minimum logging. Only the ROL and memory
allocator operations are logged. When an exception occurs, GPRS pauses the program. The GRX
identifies the excepted and affected tasks, based on the recovery choice made, and marks them so
in the ROL. It then aborts all executing younger tasks, and permits older tasks, if any, to complete.
Once the execution quiesces, GRX initiates recovery. It makes the ROL consistent with the retired
tasks in the WAL, and retires tasks that can be. It walks the ROL in the LIFO order, restoring
data using their clones. Next, it repairs the memory allocator using the log. Since all tasks have
either completed or terminated, all runtime data structures (work deques, ROL, wait lists, WAL,
etc.), except for the ROL-head and its entry in the WAL, are reset. The program state now reflects
sequential execution up to the (only) task in the ROL, from where the program may be resumed.

An exception in the very first control-flow task of the program, i.e., the program segment
between the program start and the first dataflow task, which has executed only on a single context,
causes the program to re-execute from start.

Selective Restart.

Selective Restart (SR) minimizes the amount of discarded work after an exception, and hence
yields higher performance than BR. In comparison to BR, it performs additional logging to facilitate
selective restart of only the affected tasks. In addition to the ROL and allocator operations, each
context logs all the operations performed in the Prelude and Postlude phases, e.g., the token protocol
operations, work deque operations, etc. When an exception is signaled, the program execution
is paused while the recovery is performed. The GRX identifies excepted and affected tasks, and
marks them so in the ROL. The IDs of affected tasks are used to identify the affected data structures,
which are either repaired (e.g., memory allocator) or reconstructed (e.g., ROL) using the WAL. The
affected tasks’ data are then rolled back using the clones. Entries for control-dependent tasks are
removed from the ROL, the respective Wait lists, and the WAL. Once the recovery completes, all
paused computations resume while the remaining affected tasks are submitted to the Task Pool.

An exception in a work deque is handled as a special case. When a work deque operation
excepts, e.g., when a task was being enqueued or dequeued, no task is affected since its execution
has not begun. The affected deque is reconstructed by replaying the operations performed on it
after the last retired computation. The rest of the recovery process remains the same.

Thus GPRS recovers from exceptions.

8.4.8 Recovering from Exceptions During the Recovery

It is possible that an exception arises during the recovery process. If the exception is reported
before the process is complete, the current recovery can be discarded and the recovery itself can be
restarted. If the exception is reported after the process completes, the exception will manifest as an
exception in the re-executing tasks, which are handled in the same fashion as above.

134

8.5 Other Applications of GPRS

We provide a few examples of how GPRS, with appropriate enhancements, may be used to simplify
other aspects of system use.

Recovery from Catastrophic Exceptions. In case of a “catastrophic” exception, e.g., in which the
integrity of the system is suspect, or to migrate a program, or to analyze the execution, or when
an exception cannot be attributed to a specific execution context, global checkpoints, possibly
committed to stable storage, can be used. A global checkpoint is the checkpoint of the entire
program’s state. It is often created incrementally as the program executes. To create a global
checkpoint in GPRS, it is sufficient to checkpoint: (i) a task’s mod set as the task retires, and (ii)
the registers and the PC of the following task. A checkpoint created by this process is sufficient to
resume the program either on the same machine once it is restored, or another machine. Since in
the GPRS execution subsequent tasks may modify the objects in the task’s mod set by the time it
retires, the task’s mod set must be cloned immediately after it completes (cloning objects prior to a
task’s start may not always be necessary, as is the case in this application). The clone memory may
be recycled when the task retires. Only the retiring context need perform the checkpoint, while
others may continue to perform work. No system-wide barriers or other coordination is needed.
When a catastrophic exception occurs, the last known good global checkpoint may be used.

Handling More Frequent or Infrequent Exceptions. GPRS assumes that exceptions may approx-
imately occur at the same rate as tasks, and hence checkpoints at task boundaries. If the exceptions
are relatively more frequent, i.e., multiple exceptions may occur during a single, perhaps long
running, task, then for an even finer-grained recovery the task’s mod set may be checkpointed more
frequently (at the expense of additional overheads). The runtime can interrupt the task periodically
to perform these checkpoints.

On the other hand, if exceptions are not expected to be as frequent, then the checkpointing
frequency can be reduced. Checkpoints may be taken every few tasks to reduce the checkpointing
overheads. As tasks execute, objects can be checkpointed, and already checkpointed objects need
not be checkpointed until they are encountered in the next checkpointing interval. This process
requires additional housekeeping to track the objects already checkpointed in a given interval.

Overall, for a given checkpointing frequency and checkpointing scheme, the size of the check-
pointed state by both GPRS and CPR will be similar.

Debugging and Testing. Globally-precise interrupts enables traditional debugging capabilities
similar to those of sequential programs. At any instance, either the system-wide concurrent ex-
ecution state or a sequentially consistent state, which is repeatable, can be obtained. Users may
inspect program state and resume execution as they would in a sequential program, e.g., by using
breakpoints. One can envision implementing debugging mechanisms, e.g., reverse execution and
reverse debugging, using the basic ability to “rollback” computations. Reproducing an execution
and halting it, or creating logs precisely when desired to test programs is also straightforward.
Enhanced ROL management, e.g., retiring computations from the ROL using different criteria (such
as user-specified conditions) can also be used to provide enhanced debug capabilities.

135

Fault Detection. We have applied ordered execution to recover from exceptions once they are
detected. A common approach to detecting hardware faults is to run redundant temporal or spatial
replicas of the program, possibly on different systems. The results produced by the replicas are
periodically compared. Any divergence is treated as a fault. This requires that the replicas produce
identical results (when fault-free, and for the same input). Ordered execution naturally yields
such an execution. The values of the mod set and the stack state of each task can be compared
between the replicas, possibly when the tasks retire. Establishing identity between computations
of the replicas is straightforward given their sequential order. The global checkpoint may be used
for a more system-wide fault detection. No additional handling is needed to execute the replicas
temporally, possibly even interleaved with each other, or to execute them on heterogeneous systems.
Nondeterministic execution does not lend itself well to such redundancy-based fault detection.

Computer Security. Precisely interruptible execution that also produces repeatable results across
runs is also desirable in systems in which security is important [57, 83]. Often in these systems, the
execution is examined once malicious activity is suspected. In GPRS, since global checkpoints of
two different executions of the same program (for the same input) will always be identical, they can
be used to audit an execution against a known-good execution. Accountable systems can use the
audit to identify break-ins, deliberate manipulations, platform mis-configurations, and also identify
the responsible party. The global checkpoint may be analyzed to detect malicious actions, and so
can the operations resulting from re-execution of a program from a given checkpoint. Importantly,
all of the above security checks may be applied offline, once an execution completes, or online,
simultaneously with the execution, with or without a lag.

8.6 Experimental Evaluation

We evaluated GPRS by applying it to recover from program-corrupting exceptions, such as transient
hardware faults. Exceptions were “injected” during the program’s execution. Selective Restart
(SR) was used to recover from them. We evaluated SR’s overheads, and its ability to recover from
exceptions at different exceptions rates and system sizes (represented by the execution context
counts). We compare GPRS with conventional CPR.

We emulated conventional CPR using the Base Restart (BR) implemented for Parakram programs
in GPRS, instead of CPR implemented in multithreaded programs. This allows us to compare
the restart-related aspects without the unrelated differences arising from different programming
models and the global barriers used in CPR. Like CPR, we used BR to discard all current in-flight
work when exceptions occur. Further, BR is already more efficient than CPR, since BR does not
perform the barrier-based checkpoints. (As our other related work on conventional CPR shows,
barrier-based checkpointing can incur high checkpointing overheads [80].) Hence, for this study,
using BR allows us to focus on the restart penalty, which is likely to have a larger impact on recovery
in future systems.

We used Barnes-Hut, Black-Scholes, Pbzip2, Histogram, Swaptions, and RE in the evaluation.
From among the programs we studied in this dissertation, these programs were picked to span
different task sizes, checkpoint sizes, performance scalability, total tasks launched, and the frequency
of system calls (I/O and memory allocation). Swaption task sizes are relatively large, Barnes-Hut,

136

Program Baseline Execution Time (s)

1 2 4 8 12 16 20 24

1) 2)) @ 6 © O ©& ©
Barnes-Hut 309.6 158.86 8321 4272 3257 29.62 29.46 284
Black-Scholes 301.59 151.64 78.2 42.86 3533 38.12 42.83 48.58

Pbzip2 287.14 147.12 7734 6245 613 61.77 61.58 63.66
Swaptions 421.7 212.18 105.86 5292 4045 36.83 33.19 32.32
RE 18.77 3.24 105 9.78 10.38 11.04 13.02 13.73
Histogram 2.04 1.09 06 032 029 026 023 031

Table 8.5: Baseline execution time of the programs at different context counts, with no support for
exception recovery.

Black-Scholes, and Pbzip2 tasks are smaller, and RE and Histogram tasks are very small. Barnes-Hut
and Swaptions scale the best, Black-Scholes, Pbzip2, and Histogram less so, and RE barely. Mod
sets in Black-Scholes were the largest. Pbzip2. Histogram, Swaptions, and RE mod sets were small
in size. Mod set sizes for Barnes-Hut were in-between. Histogram launched the least number of
tasks (as many as contexts in the system), and Black-Scholes the most, 400K. We used pk_declare ()
to provide the mod sets of the control flow tasks in the programs (in addition to the mod sets for
the dataflow tasks). All programs invoked system calls, RE, Barnes-Hut, and Black-Scholes more
frequently than others. Black-Scholes, Pbzip2 and Swaptions also write to files. Experiments were
conducted on the 24-context machine (specifications are given in Table 7.3). The baseline execution
time of the programs on different context counts, when no exception recovery support is included,
is provided in Table 8.5.

Exception Model and System Assumptions.

Many fault-detection techniques have been proposed [125, 136, 175], and are beyond the scope
of our work. We assume that mechanism(s) in the system detect faults and/or other types of
exceptions, and report the excepting context to GPRS, with a maximum latency of 400,000 cycles,
as have others [176]. We emulated this by launching one additional thread in GPRS, which uses
Pthreads signals to periodically signal the other contexts, and randomly designates one of them as
“excepted”. We assume that in the interim, the program state is corrupted (the test setup does not
actually corrupt the state). Although GPRS implements exception-tolerant file I/O and memory
allocator functions, the system I/O functions and the GCC memory allocator that it eventually uses
are not. Hence we blocked the signals around the system and GCC calls, effectively delaying the
exception signal until it was safe to process them.

We also assumed the availability of stable storage to maintain the logs. Recovery from a corrupt
stable-storage, exceptions that cannot be attributed to a context, and system-level policies, e.g.,
handling permanent, repeating or non-recoverable failures are beyond the scope of our experiments.
We did not model the storage characteristics; our experiments used the system’s memory as storage

137

Pbzip2

% Overhead
N

1 2 4 8 12 16 20 24
Context Count

Histogram
40
mNSB
30 T WBR(0)
1LSR(0)

% Overhead
N
o

1 2 4 8 12 16 20 24
Context Count

Figure 8.6: Basic overheads for Pbzip2 and Histogram. NSB bars show the ROL management and
checkpointing overheads. BR(0) and SR(0) bars show the overheads once the signal blocking is
applied to system functions.

for both CPR and GPRS.

We also assume a single-fault model. We stress-tested the system under various exception rates
(without emphasizing the distribution) since our focus was on restart overheads. As will be seen,
since the current GPRS design tackles exceptions at task granularity, the program’s task size dictates
how well the program can tolerate the exceptions. If tasks are small, the program can tolerate
relatively high rate of exceptions, and if the tasks are large, the programs can tolerate relatively
lower rate of exceptions. Hence in our experiments, we varied the exception rates to match the
program’s characteristics. This allowed us to emulate conditions in which individual program tasks
are susceptible to exceptions.

We summarize the key results by analyzing the graph bars in the figures to follow. The figures
show the overheads incurred by the exception-tolerant programs over their non-exception-tolerant
versions (baseline) for the given context count. We studied the impact on overheads under the

138

Swaptions

% Overheads

1 2 4 8 12 16 20 24
Context Count

RE

HNSB

60 TWBR(0)

_QR({'\)

% Overhead
D
o

1 2 4 8 12 16 20 24
Context Count

Figure 8.7: Basic overheads for Swaptions and RE. NSB bars show the ROL management and
checkpointing overheads. BR(0) and SR(0) bars show the overheads once the signal blocking is

applied to system functions.

following conditions: (i) increasing context count, (ii) recovery using BR and the GPRS selective
restart (SR), and (iii) increasing exception rates. The Y-axis plots the overheads in percentage.
The X-axis plots the context count. Overheads consider the entire program, including all file I/O
operations. The discussion is divided into basic (no exceptions) and exception recovery overheads.

Basic Overheads.
Refer to Figures 8.6, 8.7, and 8.8. The NSB (no signal blocking) bars show the BR overheads when

no exceptions occur and the Pthreads signals are not blocked (the baseline execution times over
which these overheads were measured are listed in Table 8.5). Thus they show the basic BR overheads
which arise from ROL management and checkpointing. In general, across all programs, the ROL
management overheads are small (<10%). The checkpoint penalty is program and context-count

dependent.

139

Barnes-Hut

% Overhead

1 2 4 8 12 16 20 24
Context Count

Black-Scholes

150

100 -

% Overhead

50

1 2 4 8 12 16 20 24
Context Count

Figure 8.8: Basic overheads for Barnes-Hut and BlackScholes. NSB bars show the ROL management
and checkpointing overheads. BR(0) and SR(0) bars show the overheads once the signal blocking is

applied to the system functions.

Pbzip2 and Histogram overheads are shown in Figure 8.6, and Swaptions and RE overheads
are shown in Figure 8.7. Since these programs mostly perform idempotent computations, they
require relatively less checkpointing. Hence, they expose the ROL management overheads. ROL
overheads are fairly constant in these four programs, with the maximum of ~10% (RE, 24 contexts).
Histogram shows shows over 20% overheads at 12 contexts, but we believe that this is an artifact of
the experimental setup. Histogram’s total execution time at 12 contexts is about 0.3s, and hence
even a slight perturbation in the experimental setup can dramatically affect the measurements.

Figure 8.8 shows the basic overheads for Barnes-Hut and Black-Scholes. They perform a large
number (150K and 400K) of tasks, and still incur low ROL management overheads, but their
overheads are relatively higher due to the checkpoint penalty. Barnes-Hut and Black-Scholes
checkpoint large amount of data. The NSB bars at one context expose the checkpoint penalties, ~8%
and ~25%, respectively. In general, BR’s checkpoint penalty is similar to SR’s, across all contexts, as

140

expected from their similar checkpointing mechanisms and the total state checkpointed. As the
contexts increase, a program’s execution time and the absolute checkpoint penalty decrease, but
the penalty can be up to 135% of the execution time (Black-Scholes, at 16 contexts). We note that
the actual overhead is not rising, but the checkpointing starts affecting the program’s scalability,
which manifests as overheads. This will be seen again when we start injecting exceptions during
the execution. The harmonic mean of the total basic overheads across all programs and contexts is
25% (not shown).

The BR(0) and SR(0) bars in the three Figures, 8.6, 8.7, and 8.8, show BR and SR overheads
with unblocked signals, but at 0 exceptions (baseline execution times are in Table 8.5). The bars
at 1 context show that the absolute overheads are quite small, ~15% in the case of RE. Hence they
incur signal-blocking overheads, proportional to the frequency of the system calls. Barnes-Hut,
Black-Scholes, Swaptions, and RE perform relatively more frequent system calls (file I/O and/or
memory allocation), incurring larger blocking-related overheads, up to ~70% in the case of RE at
24 contexts. Once again, the absolute overheads of signal blocking are not increasing, but signal
blocking is affecting the program’s scalability, which is manifesting as overheads. SR(0) incurs the
logging overheads for selective restart, over and above the BR(0) overheads. Data shows that it is
almost negligible in most cases, but can manifest as ~15% in the case of RE at 20 contexts.

Exception Recovery Overheads.

We now examine the overheads of recovering from non-zero exceptions. Using Linux signals to
deliver exceptions in the experimental setup is imprecise. Linux controls when a signal is actually
delivered to a thread, based on a number of factors, such as thread scheduling decisions. Signal-
blocking makes the setup even more imprecise. Hence our experimental setup does not precisely
deliver the injected rate of exceptions. Table 8.9 lists the injected rate of exceptions (column 2) for
the different programs (column 1), and the actual achieved rate of exceptions at the different context
counts (columns 4 to 11), for the two types of recovery systems (column 3).

Refer to Figures from 8.10 to 8.15. The BR(e) and SR(e) bars show overheads at e exceptions/sec for
each context count. When compared to overheads at 0 exceptions/sec, they denote the restart penalty
(the BR(0) and SR(0) bars are redrawn in these graphs). The baseline execution time in seconds
(wall-clock time, including all file I/O operations) for each context count is listed underneath. The
total number of exceptions handled are listed on top of the bars. Each graph title gives the program
name and the total number of tasks it executes. Program characteristics influence the restart penalty.
Results show that when BR incurs a relatively large restart penalty, SR can reduce it, especially at
larger context counts, as predicted by our model (Section 8.3).

Barnes-Hut (Figure 8.10) and Black-Scholes (Figure 8.11), due to their relatively small-sized
tasks, can easily tolerate exception rates of 1/sec and 2/sec in both runtimes. In both programs, a
total of only a few thousand computations get discarded, and hence both BR and SR yield similar
execution times, in general, across all contexts. The restart penalty can be up to ~20% (Black-Scholes,
at 16 contexts). The large number of tasks in Black-Scholes, and their checkpointing (the most
among all programs) impede the scalability, creating an effect of relatively large total checkpoint
penalty. This is true of both the recovery systems. But since the task size is small, work lost at
recovery is low, and hence the BR restart penalty is low. Since the checkpoint penalty dominates
the restart penalty, SR is unable to do much better than BR for a given exception rate and context

141

Program Expt. Rcvry. Delivered Exception Rate

Is 1 2 4 8 12 16 20 24

@ @2 0 @@ 6 ©6 O ¢ © 0@ Jd
BR 0.992 0973 0958 0955 0.853 0.833 0912 0.869
SR 0.994 0985 0980 0938 0.947 0943 0927 0.903

Barnes-Hut
5 BR 1974 1921 1.854 1.792 1.720 1.757 1.660 1.598
SR 1983 1961 1.947 1940 1.883 1.892 1.877 1.756
1 BR 0.953 0915 0862 0.799 0.799 0.824 0.816 0.822
SR 0.954 0918 0926 0.805 0.804 0.820 0.833 0.820
Black-Scholes
5 BR 1907 1.819 1.703 1.589 1581 1.611 1.641 1.568
SR 1909 1.827 1.689 1567 1578 1.625 1.637 1.585
0.05 BR 0.045 0.045 0.036 0.042 0.043 0.044 0.043 0.041
Pbzip2 SR 0.045 0.044 0.035 0.048 0.032 0.032 0.032 0.031
0.2 BR 0.179 0.162 0.150 0.111 0.117 0.119 0.116 0.116
' SR 0.179 0.148 0.133 0.141 0.144 0.145 0.127 0.137
0.033 BR 0.031 0.029 0.025 0.033 0.033 0.033 0.033 0.027
. SR 0.031 0.033 0.025 0.033 0.033 0.033 0.033 0.033
Swaptions
0.04 BR 0.038 0.036 0.033 0.027 0.020 0.033 0.027 0.031
SR 0.038 0.036 0.040 0.040 0.040 0.040 0.038 0.040
5 BR 2.616 1755 1.136 1.091 0.949 0.866 0.638 0.580
RE SR 2.604 1.823 1.050 0.524 0.324 0.226 0.159 0.089
10 BR 5.250 3.606 3.456 3.254 2.845 2552 2265 2302
SR 5.263 3.553 2.141 1.048 0.556 0.400 0.260 0.171
5 BR 0 00 00 00 2174 2326 0.000 1.923
. SR 0 3.509 4.054 4255 5263 2381 0.000 2941
Histogram
10 BR 00 o0 o0 o0 o0 9.068 8.271 oo

SR 00 00 8.661 8955 7.143 7.317 7.143 6.061

Table 8.9: Injected exception rate (Expt.) and the delivered rate of exceptions at the different context
counts (columns 4 to 11), for the two types of recovery (Rcvry.) systems. oo indicates that the
program failed to complete.

count. Further, increasing the exception rate from 1/sec to 2/sec has little impact on the total restart
penalty due to the small task sizes.

Pbzip2 (Figure 8.12), Swaptions (Figure 8.13), and RE (Figure 8.14) present a different scenario,
due to their relatively large, small number of total tasks, and little checkpointing. This effectively
creates a relatively small total checkpoint penalty, but a larger BR restart penalty since more work

142

50 Barnes-Hut
45 (150,000)
40
35
3 HBR(0)
30
£ HSR (0)
2% WBR (1)
o
= 20
15 MSR (1)
10 CIBR (2)
5 BSR (2)

1 2 4 8 12 16 20 24
(309.65s) (158.865) (83.21s) (42.72s) (32.57s) (29.62s) (29.46s) (28.4s)

Context Count

Figure 8.10: Barnes-Hut recovery overheads over the baseline execution time (listed under context-
count) at different exception rates and context counts. Total tasks in the program are listed under
the name. BR(e) = Base Restart, SR(e) = Selective Restart, at e exceptions/s. Total exceptions at the
given rate are listed on the bars.

160
(400,000)
140
120
]
8100 BR(0)
£ HSR (0)
T 80
H . WBR (1)
ES MR (1)
40 CIBR (2)
20 BSR(2)

1 2 4 8 12 16 20 24
(401.59s) (151.64s) (78.2s) (42.86s) (35.33s) (38.12s) (42.83s) (48.58s)

Context Count

Figure 8.11: Black-Scholes recovery overheads over baseline execution time (listed under context-
count) at different exception rates and context counts. Total tasks in the program are listed under
the name. BR(e) = Base Restart, SR(e) = Selective Restart, at e exceptions/s. Total exceptions at the
given rate are listed on the bars.

is lost at recovery. While both BR and SR start out with similar execution times for one and two
contexts, SR performs consistently better as the exception rate grows, especially at higher context
counts (e.g., the rightmost two bars for each context count-lower is better). In the case of BR,
the problem is compounded since the increased execution time increases the exposure to more
exceptions. Note that, in general, for the three programs (Pbzip2, Swaptions, and RE), while BR(e)

143

60 Phzip2

18

(2350) -
—
50 S
S =
5 40 = — EBR(0)
£ HSR (0)
[
3 M BR (0.05)
® W SR (0.05)
BR(0.2)
BSR (0.2)

1 2 4 8 12 16 20 24
(287.14s) (147.12s) (77.34s) (62.455) (61.3s) (61.77s) (61.58s) (63.665)
Context Count

Figure 8.12: Pbzip2 recovery overheads over baseline execution time (listed under context-count) at
different exception rates and context counts. Total tasks in the program are listed under the name.
BR(e) = Base Restart, SR(e) = Selective Restart, at e exceptions/s. Total exceptions delivered are
listed on the bars.

140 TSwaptions

(129) o
120
100
g HBR (0)
£ 80 HSR (0)
Q
3 60 M BR (0.033)
o
® 20 W SR (0.033)
BR (0.04)
20 W SR (0.04)

1 2 4 8 12 16 20 24
(421.75) (212.18s) (105.86s) (52.92s) (40.45s) (36.83s) (33.19s) (32.325s)

Context Count

Figure 8.13: Swaptions recovery overheads over baseline execution time (listed under context-count)
at different exception rates and context counts. Total tasks in the program are listed under the name.
BR(e) = Base Restart, SR(e) = Selective Restart, at e exceptions/s. Total exceptions at the given rate
are listed on the bars.

grows, SR(e) remains relatively constant, close to SR(0) and BR(0) for a given context count. These
results highlight selective restart’s ability to handle more exceptions by reducing the restart penalty.

Whereas the other programs comprised fixed-size tasks, Histogram creates only as many tasks as
contexts, and hence its task size grows inversely with the number of contexts. As contexts decrease,
the total tasks decrease. Hence the total checkpoint penalty decreases, while the BR restart penalty

144

120 T+ RE
(513) .
100 3
3
1) o~
5 80 3 3 = HBR (0)
5 3 | HSR(0)
< o0
S 60 = > [|ew "~ 2
6 ~ o~ 1\2 = <rm " ®BR(5)
Q M N 3 — o < -
= a0 e 5 = - M SR (5)
o Ll
BR (10)
20
B SR (10)
0
1 2 4 8 12 16 20 24
(18.77s) (13.24s) (10.5s) (9.78s) (10.38s) (11.04s) (13.02s) (13.73s)

Context Count

Figure 8.14: RE recovery overheads over baseline execution time (listed under context-count) at
different exception rates and context counts. Total tasks in the program are listed under the name.
BR(e) = Base Restart, SR(e) = Selective Restart, at e exceptions/s. Total exceptions at the given rate
are listed on the bars.

grows (Figure 8.15). The program fails to complete at exception intervals shorter than the growing
task sizes (shown as oo in the graph). We present data for histogram at 5 and 10 exceptions/sec. SR
fares better at these rates, although for small number of contexts, one and two, the task sizes are too
large even for it to complete.

Exception-tolerance Scalability.

As the exception rate increases, for a given task size, the restart penalty grows. Beyond a certain
exception rate, BR fails to complete the program. Figure 8.16 shows an example. It plots the
execution time of Pbzip2 and Swaptions at exception rates varying from 0.03/sec to 2/sec, on 20
contexts. The execution time grows until BR fails to complete Pbzip2, at 0.71 exceptions/sec , and
Swaptions at 0.06 exceptions/sec. SR, however, maintains a stable execution time for the ranges
shown. Similar trend holds for the other programs, and at other context counts.

Next, we stressed the two recovery systems to test their exception tolerance limits. Figures 8.17(a)
and 8.17(b) plot the exception rates (X axis) for BR and SR, respectively, and the execution time (Y
axis) of Pbzip2 for 1 to 24 contexts. The restart penalty, and hence the execution time increases with
the exception rate until the tipping rate, also tabulated separately in Figure 8.18, when the program
cannot be completed. For BR (Figure 8.18, 2nd column) this point is around a single exception rate
for all contexts, ~1/sec (0.67 to 1.12), as expected from our analysis (e < 1/t). The tipping rate shifts
to higher exception rates with increase in the number of contexts for SR (Figure 8.18, 3rd column),
6.8 to 71.43 exceptions/sec, going from 2 to 24 contexts, also as expected (e < n/t), thus validating
selective restart’s efficacy. Also note that for n =1 context, both SR and BR have the same tipping
rate, (~1/sec), as also predicted by the analysis.

145

Histogram
(contexts) o
3 N N X ¢
S R 2 S ~ xR
3388 3Sgg 888D 3~gd 3 g 2 3
100 B BR (0)
90
80 - H SR (0)
-~ —
g0 - - ®BR (5)
2 60
@ 50 ™ ™SR (5)
3 40
X 30 ~ BR (10)
20 I ° I - BSR (10)
10 =}
0 o - = Al m
1 2 4 8 12 16 20 24
(2.04s) (1.09) (0.55s5) (0.32s) (0.29s) (0.26s) (0.23s) (0.31s)

Context Count

Figure 8.15: Histogram recovery overheads over baseline execution time (listed under context-count)
at different exception rates and context counts. Total tasks in the program are listed under the name.
BR(e) = Base Restart, SR(e) = Selective Restart, at e exceptions/s. Total exceptions at the given rate
are listed on the bars. Overheads larger than the graph scale are listed on the bars, followed by total
exceptions; co exceptions => oo overheads.

In summary, the above results, based on a real machine, demonstrate GPRS’s viability. They
show selective restart’s tolerance to high exception rates where the conventional CPR would fail. As
future computers provide more contexts and exceptions increase, either due to hardware failures
or new resource management techniques, GPRS can provide a low-overhead approach to handle
exceptions.

8.7 Related Work

We are unaware of another proposal that achieves globally-precise restartable execution of an
ordered multiprocessor program, like GPRS. However different proposals, mostly focused on
multithreaded programs, support the different capabilities addressed by us.

Hardware and software CPR systems have been traditionally used to enable restartable execu-
tion [5, 33, 62, 176]. The different proposals trade off system complexity with the various overheads.
CPR schemes may be employed within [120] or without [114] the user programs, in hardware [5]
and/or in software [50]. System-level checkpointing [114], implemented outside the program, is
oblivious to program operations and simply copies modified memory locations to create a check-
point. On the other hand, application-level checkpointing [120] relies on the user to checkpoint from
within the program. Hybrid schemes that combine the strengths of the two have also been proposed
[33]. Our work relies on application-level checkpointing. Use of CPR to provide QoS guarantees in
cloud-computing type environments can also be easily envisioned [189]. CPR schemes may also be
used to debug programs [44].

Our Base Restart implementation is the most similar to the CPR scheme. Almost all of the above

146

Figure 8.16: Exception-tolerance of Base Restart and Selective Restart at different exception rates for

9
g 80T
60 =

0.03

Tolerating Exceptions

N N~ o o o™ o
S 9o 9 & © R~
o o o o o o
Exception Rate (1/s)

Pbzip2 and Swaptions at 20 contexts.

proposals require program execution to pause while its state is begin restored. Selective Restart
in GPRS selectively restarts only the affected computations while allowing other computations to

proceed.

Our prior work also achieves Selective Restart-like capability, but in multithreaded programs,
by totally ordering the execution [80] and using design features similar to those presented in this

chapter.

410
=360
£ 310

[=
< 260

_O
g 210
2 160
110
60

Figure 8.17: Exception-tolerance of Base Restart and Selective Restart at different exception rates for

/
/
- la/ -
A —
LN o o o~ o [e2]
@ L K~ N~ o ©Q
o o o o — —

Exception Rate (1/s)

(a)

1.11

BR: Tolerating Exceptions (Pbzip2)

=24

20
<16
*-12

—410
=
o 360

~*-Pbzip2
BR(20)

-#-Pbzip2
SR(20)

=*=Swaptions
BR(20)
Swaptions
SR(20)

SR: Tolerating Exceptions (Pbzip2)

£ 310
h |,

.g 260
B 210
@ 160
x
w110
60

0.05 ¥

1

\\

0.67

|

—

0.72
1.05]
1.11
5.00
6.67
32.26

Exception Rate (1/s)

(b)

Pbzip2. (a) BR Pbzip2, from 1 to 24 contexts. (b) SR Pbzip2, from 1 to 24 contexts.

71.43

=24
20

=16

12
3

—+4

Pbzip2 Tipping Rate
BR R
e faults/s fajlts/s
24 0.67 71.43
20 0.71 71.43
16 0.73 55.56
12 1.05 33.33
8 1.1 50
4 1.12 5.88
2 1.12 6.8
1 1.12 1.14

Figure 8.18: Exception rate at which Pbzip2 does not complete, for contexts 1 to 24.

8.8 Summary

147

Ordered execution can be beneficial beyond just programming. In this chapter we presented ordered
execution’s utility in recovering from exceptions that can be handled only after the execution
has advanced past the point where the exception occurred. Handling such exceptions requires
unwinding the execution to a point before it was corrupted, and resuming again from that point
with the correct state. The availability of an ordered view of the execution simplifies this process
and reduces overheads. Nondeterministic execution, due to the lack of a precise expected flow of

execution, is not easy to roll back and resume.

The ability to pause the execution at a precisely desired point and inspect its state, has utility

beyond what we have studied in this dissertation. Ordered execution enables this ability.

149

Related Work

...we [the Moderns] are like dwarves perched on the shoulders of giants [the Ancients], and thus
we are able to see more and farther than the latter. And this is not at all because of the acuteness of
our sight or the stature of our body, but because we are carried aloft and elevated by the magnitude
of the giants.

— BERNARD OF CHARTRES (CIRCA 1100)

Speeding up programs by executing coarse-grained computations concurrently on multiple
resources has been a topic of research since early days of computing [75]. This effort has received
renewed and more intense attention recently. Over three hundred proposals, spanning software
and hardware, have been made to simplify multiprocessor programming.

Most related proposals abandon order between computations to exploit the parallelism, although
different proposals abandon order to different extent. In contrast, this dissertation introduces
methods to express parallelism as ordered programs, and introduces techniques to perform parallel,
yet ordered, execution. Other proposals neither perform ordered execution of ordered programs,
nor propose such comprehensive techniques to exploit parallelism. Moreover, other proposals
seldom apply themselves to such a wide range of algorithms or to different aspects of system use.

We compare and contrast the work in this dissertation with related work along two main
dimensions: the conceptual approach (Section 9.1) and the techniques employed (Section 9.2). We
also briefly compare the properties of ordered execution identified by us with properties exhibited
by other execution models.

9.1 Approach to Multiprocessor Programming

To compare different approaches, we broadly classify them using Figure 9.1. The proposals are
categorized along two axes. The first, plotted on the Y axis, depicts the programming abstraction
employed by the proposal: ordered and multithreaded. The second, plotted on the X axis, depicts
the execution characteristic: ordered, deterministic, and nondeterministic. Parakram is also plotted
on the graph. We highlight the different categories in our classification with the help of a few
prominent examples. Table 9.2 summarizes the comparison based on the properties of program
execution.

Multithreading.

On the top right of the classification graph, we first plot the classic Multithreading approach. We
include well-known APIs, e.g., Pthreads [1] and MPI [70], among others, in this category. Multi-
threading approaches rely on nondeterministic, multithreaded programs. Instructions within a

150

é Multithreaded .
S Programs . .
% Ordered Deterministic Multithreading
2 Multithreading Multithreading
80
£
g
g
c
50 Ordered .
= Programs o
Parakram Deterministic

Programming

Ordered Deterministic Nondeterministic

< Execution Characteristic >

Figure 9.1: Categorizing multithreading programming abstractions. Proposals are grouped based
on the programming model they use and the execution characteristic of the model.

Property Multithreading Deterministic Ordered Deterministic Parakram
Multithreading Multithreading Programming
Deterministic X v 4 v 4
Interruptible X X v X v
Intuitive X X X 4 4
Ordered X X 4 X v

Table 9.2: Key differences between Parakram and other multiprocessor programming methods
based on program execution properties.

computation are ordered, but may not be across computations. In Multithreading approaches, pro-
grammers must ensure that parallel computations are independent, and dependent computations
are serialized. Multithreading is a double-edged sword: it gives the utmost flexibility to express
parallelism and control the execution, but complicates programming and system use in the process.

Over time many proposals have increasingly simplified various aspects of Multithreaded pro-
gramming, but without fundamentally giving up nondeterminism. Some permit programmers to
provide high level directives to a runtime system. For example, OpenMP [48] provides compiler
directives to simplify the expression of fork-join parallelism. More recent proposals, such as Cilk [71]
and TBB [151], simplify expression of certain parallelism patterns, such as recursive decomposition

151

and pipeline parallelism. These proposals may also improve execution efficiency by automatically
balancing the system load. Parakram requires and provides no special support for specific patterns.

Transactional Memory (TM) has also been proposed to ease Multithreaded programming by not
requiring explicit synchronization between parallel computations [86]. TM-based systems provide
declarative interface to designate independent computations as transactions. TM ensures Atomicity
and Exclusion for these computations. X10 [39] and Habanero [38] combine many features of
Pthreads, OpenMP, TBB, Cilk, and Transactional Memory. They too can ensure Atomicity and
Exclusion in user-designated regions of the code. But the programmer still needs to coordinate the
control-flow between dependent computations. In comparison, Parakram programs are SAFE, and
require no explicit coordination.

Galois [142] provides high-level programming constructs, e.g., system-defined set containers
and associated functions similar to containers in C++, that are well-suited for graph algorithms.
Like Parakram, Galois also relies on user annotations. Galois uses a TM-like speculative scheme
to parallelize the execution. Hence it too ensures the Atomicity and Exclusion properties. Galois
also permits the programmer to indicate whether conflicting tasks must be executed in the pro-
gram order, providing deterministic execution in such cases. If not so indicated, the execution is
nondeterministic.

Others have proposed compiler-assisted analysis to simplify programming by guaranteeing
safety properties, such as data race-freedom and atomicity [13, 69, 92]. In another approach, a
programming framework assisted by tools extracts parallelism from sequential code [31]. However,
it assumes a three-phase dependence pattern in loops and performs non-deterministic speculative
execution of programs.

Multithreading proposals, whether basic or programmer-friendly, ultimately execute programs
nondeterministically. Moreover, proposals may simplify one aspect of programming but not another,
and may introduce new issues. For example, Cilk can simplify divide-and-conquer type algorithms,
but only if the parallel tasks are independent. TM can eliminate explicit synchronization, but may
now require the programmer to reason the specific TM’s execution semantics, which can also be
non-trivial [86, 121]. Galois provides high-level constructs, but they are helpful only in a certain class
of problems. Hence in general, programming remains complex. In contrast, Parakram consistently
provides the simpler, ordered programming and ordered execution interface, analogous to the
well-understood sequential paradigm.

Deterministic Multithreading.

In the second group we include the Deterministic Multithreading approaches. Like Multithreading,
they start with multithreaded programs, but introduce determinism during their execution [16,
18,19, 21, 46, 51, 52, 97, 115, 135, 137]. They partially order the computations, in addition to the
instructions within the computation, by ordering all accesses to a given datum. The order is
repeatable, and hence they partially eliminate nondeterminism. However, these approaches can
penalize the performance [20], sometimes severely, and may require complex hardware support [51,
52, 97]. Moreover, the introduced order can be arbitrary and system-specific. Hence these proposals,
except deterministic Galois [135], are not portable

Some proposals may use a program-agnostic method to order the computations [18, 19, 51, 52,
97, 135]. Hence, although the execution is repeatable, it may not be predictable. Other proposals

152

order the execution at synchronization points in the program [21, 115, 137]. Their execution may be
predictable, but to what degree, has not be studied.

In general, it is unclear how effective Deterministic Multithreading is in practice. Although their
proponents claim benefits, we are unaware of a proposal that has been actually applied to simplify
system use. In contrast, Parakram’s execution is deterministic, interruptible, intuitive, and portable.
We have shown its utility in simplifying programming and exception recovery.

A set of proposals closely related to Deterministic Multithreading fall in the category of record-
and-replay techniques (not included in the classification graph). Once a multithreaded program
has been run, these proposals can ensure that the same execution schedule replays in subsequent
runs. They log the sequence of memory interleavings in the original run, and enforce that sequence
in the subsequent runs. Some proposals add hardware complexity to the system [96, 132, 133, 187].
Other proposals are software-only solutions, but trade off performance with the replay precision [10,
58, 98, 105, 108, 139, 156, 184]. Parakram naturally admits precise repeatability without the need
for explicitly logging and replaying what can be a large number of events.

Ordered Multithreading.

In the third category, we recently proposed the Ordered Multithreading approach [80]. It too starts
from multithreaded programs, but provides a totally ordered view of the execution, like Parakram.
Like Kendo [137], Grace [21], and DTHREADS [115], it orders the computations at synchronization
points, but instead of a partial order, it introduces a total order. We showed that the total order helps
in exception recovery, similar to Parakram. However, the order is neither intuitive nor portable, and
performance can suffer in some cases.

Deterministic Programming.

In the fourth category of our classification, Deterministic Programming, we group approaches
that also perform deterministic execution, but start from ordered programs [2, 9, 26, 34, 63, 73,
87,89, 141, 146, 154, 166, 179, 183]. Instead of an arbitrary order, these proposals enforce a user-
provided order. The order may be specified explicitly [2, 34, 87, 166, 179] or implicitly through the
program’s text [9, 63, 73, 89, 141, 146, 154, 183]. Further, these proposals use the order to automate
the parallelization, relieving the programmer from explicitly coordinating the execution. Since
the order is derived from the program, it is portable and more intuitive. Hence these proposals
claim simplicity over multithreaded programs. Although most proposals are based on software
runtime systems, some hardware proposals have also been made [67], and some are compiler-
assisted [26, 63].

Deterministic Programming is appealing, but whereas some proposals show it performs well [9,
141, 154], others have shown otherwise [88]. Further, our analysis shows that these approaches
may not match multithreaded programs (Multithreading) in expressing and exploiting parallelism.
Moreover, the order, although not arbitrary, is deterministic only for accesses to a given datum.
As we showed in Chapter 2, in practice deterministic order alone is insufficient to simplify system
use. Software runtime-based Deterministic Programming proposals are closest to Parakram. We
elaborate on these proposals further.

Parakram supports a wide range of parallelism patterns, and bridges the performance gap
between ordered and multithreaded programs. The closely related Deterministic Programming

153

Proposal Comp. Dep. Patterns Dep. Exc.,
Indep. Analysis 1, D.set UE Disc. UE ordering Mgmt. 1/O
Dyn. D.-dep. Nested Task Dep. Nest Dep. Granularity
1 2) ®3) 4) ®) (6) 7) 8)) (10) (11)
Jade [154] No Dynamic No No Yes Conservative Coarse Fine Eager No
SMPSs [141] No Dynamic No No No Limited No Coarse Eager No
Galois [142] No Dynamic Yes Yes No Limited No Coarse Eager No
PROMETHEUS [9] Yes Dynamic No No No Limited No Coarse Eager No
DPJ [26] No Static No No No Limited No Coarse Eager No
00QJ [100], DOJ [63] No Stat.+Dyn. Yes No Yes Conservative Coarse Coarse Eager No
US [183] Yes Dynamic No No Yes Restricted No Coarse Eager No
S.Dataflow [76] Yes Dynamic No No No Limited No Coarse Eager N/Y
KDG [89] No Dynamic Yes Yes No Limited No Coarse Eager No
Parakram Yes Dynamic Yes Yes Yes Arbitrary Fine Fine Eager, Yes
Lazy
Multithreading Yes - Yes Yes Yes Arbitrary Fine Fine Eager -
Lazy

Table 9.3: Ordered proposals and their key capabilities. (1) Proposals; (2) Compiler independence; (3) Dependence analysis;
(4) Dynamic data structure updates in concurrent UEs; (5) Data-dependent datasets. (6) Nested UEs; (7) Task dependence
types: conservative for nested tasks, restricted for nested tasks, or limited in general; (8) Dependence granularity between
nested UEs; (9) Granularity of UE coordination; (10) Dependence management. (11) Runtime support for exceptions and
I/0. Capabilities of Multithreading are listed for comparison.

154

proposals, summarized in Table 9.3, lack in one aspect or another. In general they lack Parakram’s
expressiveness, performance benefits, and the ordered appearance. For example, Parakram supports
arbitrary dependences between nested tasks, others don’t. They either don’t support nesting, or
only conservatively [63, 100, 154], or permit only independent nested tasks [183]. None supports
lazy dependence management, unlike Parakram. Only Jade [154] supports fine-grain concurrency
management between dependent tasks and Galois [142] supports data-dependent datasets, like
Parakram. Although several perform dataflow execution [63, 100, 141], and Galois uses TM-like
speculation, none speculates dependences. TaskSs [67] is a hardware proposal for SMPSs [141],
and has similar limitations. No proposal employs the range of parallelization techniques that
Parakram employs. Only Parakram handles exceptions and I/O gracefully. The table enumerates
other comparisons.

9.2 Techniques

Parakram, like TM, ordered TM [185], and TLS [150, 174], uses speculation and similar mechanisms.
TM is nondeterministic, and speculates that tasks are race-free. Parakram is ordered and speculates
that tasks are independent. TLS, usually compiler- or hardware-assisted, is ordered and has been
mostly applied to sequential programs. TM, TLS, and Parakram monitor the datasets, in one way
or another, to identify conflicts. Parakram obtains the dataset as soon as possible, whereas TM and
TLS in most cases obtain them as the tasks execute. This allows Parakram to minimize the loss of
parallelism due to conflicts.

TLS and TM (ordered or not) have a limited ability to exploit parallelism past conflicting tasks.
TM may apply back-off schemes to reduce the conflicts in the hopes of opportunistically avoiding
the data race. TLS relies on order to let the oldest task proceed, but will resubmit the younger tasks
for re-execution immediately. By contrast, compiler- and hardware-agnostic Parakram explicitly
builds a dataflow graph. It can shelve blocked tasks, freeing resources to exploit latent parallelism
in a larger window. A conflicting task is re-executed only after the current precedent tasks have
completed, instead of immediate or arbitrarily delayed re-execution.

Parakram requires that programmers declare the datasets. With hardware support, TM and
TLS can automatically identify the task datasets. This also allows them to handle what are poorly
composed tasks for Parakram, more gracefully.

Many runtime systems, like Cilk, OpenMP, PROMETHEUS, and TBB, employ dynamic load
balancing techniques. Parakram too employs similar schemes, but includes the task order in its
decisions.

9.3 Execution Properties

On occasion, systems guarantee properties of their program execution models, like Parakram,
providing a framework for users to reason about the execution. TM systems provide Atomicity and
Isolation [86]. Atomicity in the SAFE properties of Parakram pertains to visibility of a task’s updates
to succeeding tasks, whereas TM’s Atomicity pertains to “all-or-nothing” execution semantics—
either a transaction appears to have executed or not. The Isolation property in TM is analogous to
Exclusion defined by us.

155

Database systems often support the well-known ACID properties: Atomicity, Consistency, Isola-
tion, and Durability [84]. These are more application-oriented, whereas SAFE are more execution-
oriented. Atomicity and Isolation in ACID are analogous to Atomicity and Isolation in TM, and
compare along the same lines with Atomicity and Exclusion in SAFE. There is no analog of Consis-
tency and Durability, which pertain to the state the database system ensures is visible to the user, in
SAFE.

Often database and TM transactions are Serializable, i.e., they appear to execute in some (ar-
bitrary) serial order. Sequentiality in SAFE is a stricter property; tasks appear to execute in the
specific serial order defined by the program, and not some arbitrary serial order.

Memory consistency models, which are closer to the program execution, define the order in
which memory operations of a multiprocessor program appear to have been performed to the
programmer [4, 94]. Sequential consistency, analogous to Serializability, ensures that they appear
to be performed in some serial order. It is the strictest among the memory consistency models
proposed in most of the literature and used in products. Sequentiality in SAFE is even stricter, due
its adherence to the program order.

157

Conclusions and Future Work

We're just starting. It's a bit evolutionary and there are an awful lot of chicken-and-egg problems.
You have to have parallel computers before you can figure out ways to program them, but you
have to have parallel programs before you can build systems that run them well.

— Cauck THACKER (2010)

Multiprocessors are now ubiquitous, and every major processor vendor continues to have them
on its product roadmap. But using multiprocessors is not easy. The prevailing approach to program
them is based on the belief that order must be discarded from programs to secure performance. But
discarding order diminishes programmability and usability. Hence, in this dissertation we have
questioned whether order should be abandoned.

10.1 In the Past

Although parallel processing has been prevalent for several decades, it was largely confined to
high-performance computing (HPC) in which performance is paramount. In the past, a few domain
experts developed a few program, mostly embarrassingly-parallel, for a small number of parallel
systems. Parallel systems have been traditionally designed with the view that ordering impedes
performance. For example, memory consistency models forsake sequential consistency, which
attempts to order memory accesses by the system’s multiple processors, and adopt weaker models
to avoid the performance penalty, despite the resulting software complexity [4, 94]. More recently,
TM systems have similarly realized the need to order transactions, but not too strictly, to avoid
performance penalties [49]. A combination of these factors-relatively few users, programs with
mostly regular parallelism, and the need for uncompromising performance-likely resulted in the
multithreaded programming models, which disregarded order, provided basic features, and put
much of the control in the user’s hands. But over the last decade parallel systems have reached the
mainstream, at once exposing parallel programming challenges to multitudinous programmers
and to all types of programs, making productivity and system usability no less important than
performance.

10.2 In this Work

The thesis of this dissertation is that we must embrace order in multiprocessor programs. Order
can make multiprocessors easier to program and use. At the same time, order need not obscure

158

parallelism. Parallelization techniques can be used under the hood to overcome the order, and
secure performance. We tested this thesis, and proposed supporting methods and techniques. Much
of our proposal has drawn inspiration from sequential programs and the modern microprocessor.

We analyzed the properties of a sequential program’s ordered execution on the microprocessor,
and studied the benefits of order to the usability of computing systems. We identified four properties
that result from ordered execution, Sequentiality, Atomicity, Flow-control independence, and
Exclusion, which simplify programming and system use. The conventional, multithreaded parallel
programs lack these properties. Based on this analysis we argued for ordered programs and their
ordered execution on multiprocessors, analogous to the sequential paradigm, to obtain the attendant
benefits.

We proposed that programmers develop parallel algorithms but express them as ordered
programs. To compose programs, programmers need reason about only individual computations,
but not their dynamic parallel execution. A programmer-oblivious entity would parallelize the
program’s execution. We stipulated that, in addition to providing the benefits of order, our approach
must match multithreaded programs in expressing and exploiting parallelism, and not diminish
programmability or usability in other ways.

The proposed ordered approach, Parakram, comprises a programming model and an execution
model. We analyzed the common parallelism patterns that arise in multithreaded programs.
Parakram’s programming model provides a small set of APIs to express these patterns as object-
oriented, task-based ordered programs. Programmers annotate the task with local information, its
dataset.

Parakram’s execution model parallelizes the program’s execution using principles that the
microprocessor has successfully used. Parakram discovers the program’s tasks, and dynamically
builds a task dataflow graph using the dynamic objects the tasks access. Parallelism is exploited by
executing tasks concurrently in the dataflow order. However, not all parallelism patterns are well-
suited for dataflow execution. To realize such patterns without compromising parallelism, Parakram
resorts to speculative execution. Despite the parallel, out-of-order, and speculative execution, at any
instance the program appears to have executed as per the program order. To achieve this ordered
view, Parakram introduces the notion of globally-precise interrupts in multiprocessor programs.

We built a software prototype of Parakram in the form of a C++ runtime library. The library
provides the APIs to develop ordered programs, and implements the execution model. The runtime
is implemented as a distributed, asynchronous design, and employs non-blocking concurrent data
structures and associated mechanisms to orchestrate the execution. The library was used to develop
benchmark programs that spanned the parallelism patterns. Programs were run on commodity
multiprocessor systems, and the obtained speedups were measured. The program development
process and the achieved speedups were tested against the stipulated criteria for success.

Developing ordered programs was far less complicated than multithreaded programs. Ordered
programs closely resembled the original sequential programs in structure. Annotating the programs
as needed by Parakram APIs entailed providing information that was already used to develop the
parallel algorithm. We note that the community at large is coming to a consensus that programmer
annotations in multiprocessor programs are acceptable, and may even be essential [90, 107, 164].
Annotating the Parakram code posed only a modest burden. But importantly, to develop and debug
the programs we did not have to reason about the dynamic parallel execution. Nor did we have to

159

reason about the program’s interaction with the system’s artifacts, such as the memory consistency
model. Parakram programs were able to express all of the parallelism patterns that arose in the
benchmark programs. We have not yet encountered a pattern that could not be expressed using
Parakram. We conclude that ordered programs can be as expressive as multithreaded programs.

The ordering constraint can be overcome to exploit the parallelism in ordered programs in
almost all cases. Except for algorithms with very small task sizes, or highly nondeterministic tasks,
Parakram matched the performance of the Multithreading methods. In programs with complex
inter-task dependences, dataflow execution enabled Parakram to exploit parallelism more naturally
than the Multithreading method. In such cases Parakram outperformed the multithreaded program,
unless considerably more efforts were to be spent to optimize the multithreaded implementation.
In general, the dataflow and speculation principles are able to unearth parallelism, especially latent
parallelism past blocked computations, easily. Although in principle multithreaded programs are
equally capable of exploiting parallelism, the onus is on the programmer to do so.

Above results notwithstanding, order does come at a price in some cases. Maintaining order
can penalize performance in two ways. The first is due to overheads, and the second is due to
the ordering constraint itself. Parakram performs additional work to maintain order and marshal
the execution. Associated overheads and Parakram’s implementation influence the minimum task
size needed to achieve speedups. Although the current implementation can be optimized, the
minimum task size needed for profitable application of Parakram will likely be larger than the
Multithreading method. When task sizes are sufficiently large, which is the more common case in
parallel processing, the overheads do not matter.

The ordering constraint poses a more basic limitation when an algorithm exhibits a unique
combination of properties. Insisting on order constrains the exploitable parallelism in algorithms
that (i) use small, order-agnostic computations, (ii) process data-dependent datasets, and (iii) have
ample parallelism, but whose tasks conflict at high rates. In such cases, dataflow and speculation
are defeated by the ordering constraint, whereas the Multithreading method can opportunistically
exploit parallelism by ignoring order. Although the Multithreading approach outperforms the
ordered approach, it produces nondeterministic results, and of course suffers from the related issues.
In such cases, the ordered approach presents a choice to trade off performance for productivity.

We developed an analytical model that captures the theoretical similarities and differences in
speedups attained by the ordered execution and the nondeterministic execution of multithreaded
programs, for different types of algorithms. The model provides a simple, yet effective tool for a
systematic comparison of the performance capabilities of the two approaches.

To test the utility of the ordered approach beyond programmability, we applied Parakram to
recover from frequent exceptions. Once again we were able to exploit order to build a system
more efficient than the conventional checkpoint-and-recovery method. Parakram’s globally-precise
interrupts were extended to recover from exceptions, such as soft hardware errors. Parakram'’s
dataflow execution could be leveraged to perform selective restart, which discards only affected
tasks, unlike the conventional method which may discard more work. As a result, Parakram’s
ability to recover from frequent exceptions scaled with the system size, where the conventional
method failed altogether.

160

The Final Analysis.

The conventional wisdom may have been that order obstructs parallelism, and reaping paral-
lelism requires explicitly identifying independent computations. Indeed, parallelism requires that
computations be independent. However, this dissertation shows that independence between com-
putations need not be explicitly identified. Computations may be listed in an order, for convenience.
But the ordering constraint can be overcome by establishing dependences between computations,
and treating the absence of dependence as independence. Once dependences are established, the
parallelism can be reaped by avoiding occupying a resource with work that will conflict with other
work. Instead, the resource can be used more gainfully by performing work that will not. And if
an algorithm has parallelism, then our study shows that non-conflicting work can be found. This
process of establishing dependences and orchestrating the resource use, can be automated by first
establishing the computations’ order and datasets during the execution. The sooner the order and
the datasets are known, the more effective is the approach.

The Final Word.

Based on our experiments and experience with Parakram, we conclude that the ordered approach
has met the criteria of simplifying programming and system use, without compromising perfor-
mance at large. Order, after all, may not have the performance drawbacks that seem to be the
conventional wisdom. In conclusion, with the support of time-tested parallelization techniques,
ordered programs and their ordered execution may yet prove viable to program multiprocessors.

10.3 In the Future

As this dissertation shows, ordered execution of ordered programs holds promise. But more
questions need to be answered to make the approach practical and realize the promise. These
questions range from the applications of the approach, to the low-level concurrency mechanisms
used in the implementation of the approach. We divide these questions into three broad research
topics: application, programmability, and design. The first explores the utility of ordered execution
in simplifying system use and design. The second and third enhance the programming and
execution models, with the goal of widening Parakram’s reach to more types of problems.

10.3.1 Applying Ordered Execution

In this dissertation we applied the ordered approach to a wide range of algorithms and explored its
limitations. Given the minimum task size needed by the current design, we were unable to apply it
extensively to certain algorithms, such as graph analytics and circuit simulation, that use small task
sizes and generate work that has specific scheduling constraints [89]. They are similar to DeMR, but
they may additionally constrain the execution order of newly created tasks, e.g., simulating a gate
in a circuit only after the simulation time has reached a certain epoch. These algorithms typically
use concurrent priority queues in the Multithreading implementation. Of course, before Parakram
can be applied to them, its overheads must be first reduced (to be seen below). But say, they can be,
then what additional challenges might we have to overcome? What opportunities might an ordered

161

approach present for such cases? Particularly, how will an efficient concurrent priority queue be
implemented in the ordered paradigm?

Yet another useful direction will be to apply Parakram to program heterogeneous systems,
such as ones comprising GPGPUs. Current GPGPU programming models [162] are similar to
the Multithreading approach. Can we apply an ordered approach to develop GPGPU kernels?
In one trial, we applied a simple ordered programming interface to GPGPU computations. The
runtime aggregated the same type of computation invoked on different objects, into a container to
be delegated to the GPGPU. It automatically managed the transfer and the co-ordination of data
objects between the CPU and GPU. This initial work showed encouraging results [79]. This direction
gains significance as GPGPUs integrate more tightly with the CPU, presenting an opportunity for
finer-grain coordination between tasks intended for the two [30, 155, 168]. How can programmers
take advantage of this integration? Our initial work can be enhanced to compose ordered programs
comprising a mix of GPGPU and CPU computations. An interesting question to answer will be, if
and how will we maintain order, especially when GPGPU kernels execute?

We saw the application of the ordered execution to recover from exceptions in Chapter 8. In
practice, recovering from errors spans a wide range of issues, not all of which we considered. Larger
systems are more susceptible to errors. Error recovery is a critical issue in HPC systems [36]. It
will be worthwhile to apply our approach to a large system, perhaps by pursuing a hierarchical
design [45], and address the related challenges. In particular, we hypothesize that knowing the
precise inter-task communication can simplify the overall design. Can order help further? A key
challenge a large system will pose to the ordered approach is the design of the shared Reorder
List structure. Clearly a simple centralized structure will create bottlenecks. A hierarchical design
can be explored instead. Such a design will also suit well to domain-oriented recovery [45]. Might
there be additional hurdles to the ordered approach? Logging checkpoints also contributes to high
overheads in fault-tolerant systems. Ordered execution already permits independent concurrent
logging—how does it compare with the traditional methods? Can logging be made more efficient
with the help of order? Further, we took a simplistic view of the stable storage in the GPRS design.
How does a more realistic storage impact the GPRS design? Finally, a software-only design may not
be robust enough to tackle all types of errors. Some hardware-assist, e.g., to checkpoint data, may
make the design more robust. In that case, what would be the right hardware-software design?

Ordered execution may also prove useful in managing system resources. A runtime system
that manages the program’s execution is in a vantage position to also manage the resources. This
capability can be especially useful in a heterogeneous system. The runtime can be made intelligent
and system-aware, shielding the programmer from the system details. The runtime can seek to
optimize the execution to better utilize resources, or to take advantage of the heterogeneity by
dynamically mapping a task to the best-suited, among currently available, resources. Ordered
execution can simplify migration of tasks, or even the entire program across systems, or between
logical partitions within a system. This capability can be applied to optimize the execution for
energy, power, resources, and other metrics.

Order can also be useful to detect faults and make systems secure. Both applications can
benefit from the ability to pause and analyze the program’s precise state. Redundant execution
is a popular technique to detect faults [175]. That multiple executions, spatially or temporally
redundant, produce the same results at intermediate points is key to such techniques. Ordered

162

execution and globally-precise interrupts naturally give this capability. Designing, implementing,
and analyzing such a system, and comparing it with traditional approaches will make for a useful
study. The same capabilities can also be applied to secure systems.

10.3.2 Programmability

In the dissertation we had hypothesized that ordered programs simplify programming. We have
provided evidence by way of code examples and our experience. As a next step, a comparative
user-study can evaluate this aspect more systematically [157]. The study might consider algorithms
of different types, and recruit programmers to compare ordered programming with Multithreading,
e.g., using TM. The study should include programming for performance. We have also claimed
that ordered execution improves debuggability. Integrating a gdb-like debugger with the Parakram
runtime library could form a part of this project, to evaluate the overall programming ecosystem.
A key aspects of integrating the debugger will be to ensure that it provides a “feel” of sequential
execution while permitting debugging of the parallel execution [111].

Parakram’s current programming APIs were adequate to explore its potential. A simpler inter-
face will promote wider deployment. We believe that annotations that capture the programmer’s
intent, at least the key aspects, can go a long way in meeting the challenges multiprocessor systems
pose. Some of this was evidenced in our work, e.g., we relied on user-specified datasets. How can
we minimize the amount of information we seek, and simplify its specification?

As a first step, can we automatically formulate a task’s read set, write set, and mod set? This
will ease the programmer’s burden, as well as eliminate related programming bugs. A compiler can
readily generate a task’s mod set by using static program slicing [95]. A compiler can also identify
a task’s read and write sets using static program analysis. It is necessary that the read and write
sets be precise (without being incorrect) to avoid creating superfluous inter-task dependences, but
also be coarse in granularity to avoid including individual memory locations. Hence the analysis
must capture only coarse-grain objects that are truly shared between tasks, which requires high
fidelity pointer analysis. But static program analysis can be conservative due to imprecise pointer
alias analysis, to the point of obscuring most parallelism, and can also be slow to perform. Tasks
that concurrently operate on object fields can also make the analysis conservative. A worthwhile
direction will be to combine pointer analysis proposed for multithreaded programs [158] with
recent work on pointer analysis [85], and improve its precision using shape analysis [159] and other
abstract interpretation techniques [169]. This analysis may be further refined and sped up with the
help of dynamic program analysis, similar to some recent work [63]. The dynamic analysis can
be more precise and fast, and augment the conservative static analysis at run-time. Interestingly,
Parakram’s speculation capability may enable aggressive dynamic analysis and ease the pressure
on the static analysis.

Next, can we seek programmer’s inputs to help in the above automated analysis? As a first step,
language extensions, similar to Jade [154], can be added to identify shared objects and parallel tasks.
As a next step, a type and effect system, along the lines of DPJ [26] and TWE]Java [92], might be
pursued for ordered programs. With the help of programmer annotated data types, a compiler can
infer effects that can assist the analysis. This analysis may also be used to provide safety guarantees.
Dynamic effect checking may also be combined, to improve precision and still retain strong safety

163

guarantees [116].

10.3.3 Design

Finally, the Parakram design can be enhanced to bring more and more programs, especially ones
with small task sizes, within its purview. The design can be enhanced by adding more concurrency
mechanisms, and improving the current implementation, perhaps using hardware support.

So far we have taken advantage of certain algorithmic properties, e.g., data-independent datasets,
to parallelize the execution. Additional properties of the algorithm, e.g., commutativity, can
be exploited to expose higher degrees of parallelism. Others have done so in multithreaded
programs [25, 143]. Can the same be done in ordered programs and ordered execution? Maintaining
order will be a key challenge, although speculative execution may be leveraged for the purpose. We
can exploit the fact that the ordered appearance need be provided only when asked for. We can
permit computations that commute to actually violate the order, as long as we can reconstruct the
ordered appearance. Note that this is different from dependence speculation presented earlier in
the dissertation, which may violate order only temporarily. We hypothesize that programs with
small task sizes, like Breadth-first Search and other graph algorithms with similarly small task sizes,
will benefit from such a scheme. How will programmers identify the properties to Parakram? What
will the performance benefits be?

The software runtime can be optimized by employing lower overhead concurrency mechanisms.
The runtime uses three main concurrent data structures: the Reorder List, work deques, and Wait
Lists. Their current implementation is better suited for relatively large tasks. For example, the
work deques support random task stealing, which helps to balance the system load, an issue that
arises when tasks are large. These data structures can be manipulated concurrently by the runtime
from different threads. This requires the use of appropriate synchronization mechanisms, such as
FENCESs, which incur overheads. For programs with smaller tasks, different designs may prove
better. First, the right design for each of the data structures needs to be chosen [68, 167]. Second, a
design that limits concurrent accesses to them to reduce the needed synchronization may be more
suitable. In such a design, a single thread may be responsible to operate on the data structures,
and possibly on behalf of the other threads. If followed, how will other threads communicate their
requests? Will the design reduce overheads? Still, no one design may be suitable for all types of
algorithms. An adaptive approach that dynamically switches between designs, based on program
properties, may widen Parakram’s applicability to more algorithms. How can we identify the
properties at run-time? Can this scheme be applied across program phases?

To further reduce overheads and improve performance, hardware support may be added. The
communication and synchronization overheads in the runtime can be characterized. Targeted
hardware features can be added to reduce them. What additional hardware features might help
Parakram achieve its objectives efficiently? Can the caches be used to hold speculative state, but
without limiting the amount of state that can be held? Can the characteristics of the Parakram
execution model simplify hardware design, e.g., of the memory subsystem [43, 138]? A carefully
partitioned hardware-software Parakram design may make for a compelling multiprocessor solution.

Almost all high-productivity parallel programming models are supported by runtime systems.
The runtime systems are parallel programs themselves, as is the Parakram runtime. Developing

164

Parakram presented the same set of challenges that we had set out to solve for the general multipro-
cessor programmer! Yet another interesting direction would be to study whether TM-like hardware
can simplify the development of parallel runtime systems. We postulate that a generic TM may not
be required, but some basic features, enough to ensure atomicity and isolation of small code regions,
may be adequate for expert developers who cannot entirely avoid multithreaded programming.

165

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

IEEE Standard for Information Technology-Portable Operating System Interface (POSIX) -
Thread Extensions. IEEE Std 1003.1c-1995, pages i —22, 1995. doi: 10.1109/IEEESTD.2000.
92296.

Axum Programmer’s Guide. Microsoft Corporation. http://msdn.microsoft.com/en-
us/devlabs/dd795202.aspx., 2009.

Android Developr’s Guide. http://developer.android.com/guide/components/activities.html.
Google, 2013.

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.
Computer, 29(12):66-76, December 1996. ISSN 0018-9162. doi: 10.1109/2.546611. URL
http://dx.doi.org/10.1109/2.546611.

Rishi Agarwal, Pranav Garg, and Josep Torrellas. Rebound: scalable checkpointing for
coherent shared memory. In Proceeding of the 38th annual international symposium on Computer
architecture, ISCA "11, pages 153-164, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0472-
6. doi: http://doi.acm.org/10.1145/2000064.2000083. URL http://doi.acm.org/10.1145/
2000064 .2000083.

Haitham Akkary and Michael A. Driscoll. A dynamic multithreading processor. In Proceedings
of the 31st Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 31, pages
226236, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press. ISBN 1-58113-016-3.
URL http://dl.acm.org/citation.cfm?id=290940.290988.

Andrei Alexandrescu. Modern C++ design: generic programming and design patterns applied.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. ISBN 0-201-70431-5.

Matthew D. Allen. Data-Driven Decomposition of Sequential Programs for Determinate Parallel
Execution. PhD thesis, University of Wisconsin, Madison, 2010.

http://dx.doi.org/10.1109/2.546611
http://doi.acm.org/10.1145/2000064.2000083
http://doi.acm.org/10.1145/2000064.2000083
http://dl.acm.org/citation.cfm?id=290940.290988

166

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Matthew D. Allen, Srinath Sridharan, and Gurindar S. Sohi. Serialization Sets: A dy-
namic dependence-based parallel execution model. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP '09, pages 85-96, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-397-6. doi: 10.1145/1504176.1504190. URL
http://doi.acm.org/10.1145/1504176.1504190.

Gautam Altekar and Ion Stoica. ODR: output-deterministic replay for multicore debugging.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP "09,
pages 193-206, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/
1629575.1629594. URL http://doi.acm.org/10.1145/1629575.1629594.

Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ramjee. Redun-
dancy in network traffic: findings and implications. In Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems, SIGMETRICS "09, pages 3748,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-511-6. doi: 10.1145/1555349.1555355.
URL http://doi.acm.org/10.1145/1555349.1555355.

D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. The IBM System /360 Model 91: Machine
philosophy and instruction-handling. IBM J. Res. Dev., 11(1):8-24, January 1967. ISSN 0018-
8646. doi: 10.1147/rd.111.0008. URL http://dx.doi.org/10.1147/rd.111.0008.

Zachary Anderson, David Gay, Rob Ennals, and Eric Brewer. Sharc: Checking data shar-
ing strategies for multithreaded c. In Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI '08, pages 149-158, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.1375600. URL
http://doi.acm.org/10.1145/1375581.1375600.

K. Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. IEEE Trans. Comput., 39(3):300-318, March 1990. ISSN 0018-9340. doi: 10.1109/
12.48862. URL http://dx.doi.org/10.1109/12.48862.

Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determinating timing
channels in compute clouds. In Proceedings of the 2010 ACM Workshop on Cloud Computing
Security Workshop, CCSW "10, pages 103-108, New York, N, USA, 2010. ACM. ISBN 978-1-
4503-0089-6. doi: 10.1145/1866835.1866854. URL http://doi.acm.org/10.1145/1866835.
1866854.

Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-enforced deter-
ministic parallelism. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI'10, pages 1-16, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1924943.1924957.

Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting energy-conscious
programming using controlled approximation. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI "10, pages 198-209, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3. doi: 10.1145/1806596.1806620. URL
http://doi.acm.org/10.1145/1806596.1806620.

http://doi.acm.org/10.1145/1504176.1504190
http://doi.acm.org/10.1145/1629575.1629594
http://doi.acm.org/10.1145/1555349.1555355
http://dx.doi.org/10.1147/rd.111.0008
http://doi.acm.org/10.1145/1375581.1375600
http://dx.doi.org/10.1109/12.48862
http://doi.acm.org/10.1145/1866835.1866854
http://doi.acm.org/10.1145/1866835.1866854
http://dl.acm.org/citation.cfm?id=1924943.1924957
http://doi.acm.org/10.1145/1806596.1806620

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

167

Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. CoreDet: A
compiler and runtime system for deterministic multithreaded execution. In Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XV, pages 53-64, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-839-1.
doi: 10.1145/1736020.1736029. URL http://doi.acm.org/10.1145/1736020.1736029.

Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. Deterministic process groups in
dOS. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI'10, pages 1-16, Berkeley, CA, USA, 2010. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1924943.1924956.

Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. The deterministic execution
hammer: how well does it actually pound nails? In The 2nd Workshop on Determinism and
Correctness in Parallel Programming, WODET 11, 2011.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe multithreaded
programming for c¢/c++. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09, pages 81-96, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/1640089.1640096. URL http://doi.
acm.org/10.1145/1640089.1640096.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: safe multithreaded
programming for ¢/c++. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, OOPSLA 09, pages 81-96, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/1640089.1640096. URL http://doi.acm.
org/10.1145/1640089.1640096.

Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

Filip Blagojevic, Costin Iancu, Katherine Yelick, Matthew Curtis-Maury, Dimitrios S.
Nikolopoulos, and Benjamin Rose. Scheduling dynamic parallelism on accelerators. In
Proceedings of the 6th ACM Conference on Computing Frontiers, CF 09, pages 161-170, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-413-3. doi: 10.1145/1531743.1531769. URL
http://doi.acm.org/10.1145/1531743.1531769.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally de-
terministic parallel algorithms can be fast. In Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP "12, pages 181-192, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1160-1. doi: 10.1145/2145816.2145840. URL
http://doi.acm.org/10.1145/2145816.2145840.

http://doi.acm.org/10.1145/1736020.1736029
http://dl.acm.org/citation.cfm?id=1924943.1924956
http://dl.acm.org/citation.cfm?id=1924943.1924956
http://doi.acm.org/10.1145/1640089.1640096
http://doi.acm.org/10.1145/1640089.1640096
http://doi.acm.org/10.1145/1640089.1640096
http://doi.acm.org/10.1145/1640089.1640096
http://doi.acm.org/10.1145/1531743.1531769
http://doi.acm.org/10.1145/2145816.2145840

168

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh
Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A type
and effect system for deterministic parallel java. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA ’09,
pages 97-116, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/1640089.
1640097. URL http://doi.acm.org/10.1145/1640089.1640097.

Grady Booch, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen, and Kelli
Houston. Object-oriented analysis and design with applications, third edition. Addison-Wesley
Professional, third edition, 2007. ISBN 9780201895513.

Shekhar Borkar. Designing reliable systems from unreliable components: The challenges
of transistor variability and degradation. IEEE Micro, 25(6):10-16, November 2005. ISSN
0272-1732. doi: 10.1109/MM.2005.110. URL http://dx.doi.org/10.1109/MM.2005.110.

Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun. ACM, 54
(56):67-77, May 2011. ISSN 0001-0782. doi: 10.1145/1941487.1941507. URL http://doi.acm.
org/10.1145/1941487.1941507.

Alexander Branover, Denis Foley, and Maurice Steinman. AMD Fusion APU: Llano. IEEE
Micro, 32(2):28-37, 2012. ISSN 0272-1732. doi: http://doi.ieeecomputersociety.org/10.1109/
MM.2012.2.

Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David August. Revis-
iting the sequential programming model for multi-core. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 69-84, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3047-8. doi: 10.1109/MICRO.2007.35.
URL http://dx.doi.org/10.1109/MICRO.2007.35.

Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and Martin Schulz.
Application-level checkpointing for shared memory programs. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XI, pages 235-247, New York, NY, USA, 2004. ACM. ISBN 1-58113-804-0. doi:
10.1145/1024393.1024421. URL http://doi.acm.org/10.1145/1024393.1024421.

Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav Pingali, and Paul Stodghill.
Recent advances in checkpoint/recovery systems. In Proceedings of the 20th international
conference on Parallel and distributed processing, IPDPS’06, pages 282-282, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 1-4244-0054-6. URL http://dl.acm.org/citation.
cfm?id=1898699.1898802

Zoran Budimli¢, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan New-
ton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, and Sagnak Tasirlar.
Concurrent collections. Sci. Program., 18(3-4):203-217, August 2010. ISSN 1058-9244. doi:
10.1155/2010/521797. URL http://dx.doi.org/10.1155/2010/521797.

http://doi.acm.org/10.1145/1640089.1640097
http://dx.doi.org/10.1109/MM.2005.110
http://doi.acm.org/10.1145/1941487.1941507
http://doi.acm.org/10.1145/1941487.1941507
http://dx.doi.org/10.1109/MICRO.2007.35
http://doi.acm.org/10.1145/1024393.1024421
http://dl.acm.org/citation.cfm?id=1898699.1898802
http://dl.acm.org/citation.cfm?id=1898699.1898802
http://dx.doi.org/10.1155/2010/521797

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

169

Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir. To-
ward exascale resilience. Int. J. High Perform. Comput. Appl., 23(4):374-388, November
2009. ISSN 1094-3420. doi: 10.1177/1094342009347767. URL http://dx.doi.org/10.1177/
1094342009347767.

Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. Toward
exascale resilience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014. ISSN
2313-8734. URL http://superfri.org/superfri/article/view/14.

Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat, Howard David, Dave
Dunning, Joshua Fryman, Ivan Ganev, Roger A. Golliver, Rob Knauerhase, Richard Lethin,
Benoit Meister, Asit K. Mishra, Wilfred R. Pinfold, Justin Teller, Josep Torrellas, Nicolas
Vasilache, Ganesh Venkatesh, and Jianping Xu. Runnemede: An architecture for ubiquitous
high-performance computing. In Proceedings of the 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), HPCA "13, pages 198-209, Washington,
DC, USA, 2013. IEEE Computer Society. ISBN 978-1-4673-5585-8. doi: 10.1109/HPCA.2013.
6522319. URL http://dx.doi.org/10.1109/HPCA.2013.6522319.

Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: The new adven-
tures of old x10. In Proceedings of the 9th International Conference on Principles and Practice of
Programming in Java, PPPJ "11, pages 51-61, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0935-6. doi: 10.1145/2093157.2093165. URL http://doi.acm.org/10.1145/2093157.
2093165.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA "05, pages 519-538,
New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/1094811.1094852. URL
http://doi.acm.org/10.1145/1094811.1094852.

David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA "05,
pages 21-28, New York, NY, USA, 2005. ACM. ISBN 1-58113-986-1. doi: 10.1145/1073970.
1073974. URL http://doi.acm.org/10.1145/1073970.1073974.

Guang-len Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F.
Stark. Detecting data races in Cilk programs that use locks. In Proceedings of the Tenth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 98, pages 298-309,
New York, NY, USA, 1998. ACM. ISBN 0-89791-989-0. doi: 10.1145/277651.277696. URL
http://doi.acm.org/10.1145/277651.277696.

L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. In Proceedings
of the Ninth Annual Symposium on Computational Geometry, SCG '93, pages 274-280, New
York, NY, USA, 1993. ACM. ISBN 0-89791-582-8. doi: 10.1145/160985.161150. URL http:
//doi.acm.org/10.1145/160985.161150.

http://dx.doi.org/10.1177/1094342009347767
http://dx.doi.org/10.1177/1094342009347767
http://superfri.org/superfri/article/view/14
http://dx.doi.org/10.1109/HPCA.2013.6522319
http://doi.acm.org/10.1145/2093157.2093165
http://doi.acm.org/10.1145/2093157.2093165
http://doi.acm.org/10.1145/1094811.1094852
http://doi.acm.org/10.1145/1073970.1073974
http://doi.acm.org/10.1145/277651.277696
http://doi.acm.org/10.1145/160985.161150
http://doi.acm.org/10.1145/160985.161150

170

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand, Sarita V.
Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. DeNovo: Rethinking the
memory hierarchy for disciplined parallelism. In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT "11, pages 155-166, Washington, DC,
USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4566-0. doi: 10.1109/PACT.2011.21.
URL http://dx.doi.org/10.1109/PACT.2011.21.

Jong-Deok Choi and Janice M. Stone. Balancing runtime and replay costs in a trace-and-replay
system. In Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed debugging,
PADD 91, pages 26-35, New York, NY, USA, 1991. ACM. ISBN 0-89791-457-0. doi: http://
doi.acm.org/10.1145/122759.122761. URL http://doi.acm.org/10.1145/122759.122761.

Jinsuk Chung, Ikhwan Lee, Michael Sullivan, Jee Ho Ryoo, Dong Wan Kim, Doe Hyun
Yoon, Larry Kaplan, and Mattan Erez. Containment domains: A scalable, efficient, and
flexible resilience scheme for exascale systems. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC "12, pages 58:1-58:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press. ISBN 978-1-4673-0804-5. URL
http://dl.acm.org/citation.cfm?id=2388996.2389075.

Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang, Garth A.
Gibson, and Randal E. Bryant. Parrot: A practical runtime for deterministic, stable, and
reliable threads. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP "13, pages 388-405, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8.
doi: 10.1145/2517349.2522735. URL http://doi.acm.org/10.1145/2517349.2522735.

D. E. Culler and Arvind. Resource requirements of dataflow programs. In Proceedings of
the 15th Annual International Symposium on Computer Architecture, ISCA ’88, pages 141-150,
Los Alamitos, CA, USA, 1988. IEEE Computer Society Press. ISBN 0-8186-0861-7. URL
http://dl.acm.org/citation.cfm?id=52400.52417.

Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard api for shared-
memory programming. IEEE Comput. Sci. Eng., 5(1):46-55, January 1998. ISSN 1070-9924.
doi: 10.1109/99.660313. URL http://dx.doi.org/10.1109/99.660313.

Luke Dalessandro, Michael L. Scott, and Michael F. Spear. Transactions as the foundation
of a memory consistency model. In Nancy A. Lynch and Alexander A. Shvartsman, edi-
tors, DISC, volume 6343 of Lecture Notes in Computer Science, pages 20-34. Springer, 2010.
ISBN 978-3-642-15762-2. URLhttp://dblp.uni-trier.de/db/conf/wdag/disc2010.html#
DalessandroSS10.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: an architectural
framework for software recovery of hardware faults. In Proceedings of the 37th annual interna-
tional symposium on Computer architecture, ISCA "10, pages 497-508, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0053-7. doi: http://doi.acm.org/10.1145/1815961.1816026. URL
http://doi.acm.org/10.1145/1815961.1816026.

http://dx.doi.org/10.1109/PACT.2011.21
http://doi.acm.org/10.1145/122759.122761
http://dl.acm.org/citation.cfm?id=2388996.2389075
http://doi.acm.org/10.1145/2517349.2522735
http://dl.acm.org/citation.cfm?id=52400.52417
http://dx.doi.org/10.1109/99.660313
http://dblp.uni-trier.de/db/conf/wdag/disc2010.html#DalessandroSS10
http://dblp.uni-trier.de/db/conf/wdag/disc2010.html#DalessandroSS10
http://doi.acm.org/10.1145/1815961.1816026

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

171

Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic shared
memory multiprocessing. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XIV, pages 85-96, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-406-5. doi: 10.1145/1508244.1508255. URL
http://doi.acm.org/10.1145/1508244 . 1508255.

Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. RCDC: A relaxed
consistency deterministic computer. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 67—
78, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0266-1. doi: 10.1145/1950365.1950376.
URL http://doi.acm.org/10.1145/1950365.1950376.

Melvil Dewey. A Classification and subject index for cataloguing and arranging the books and
pamphlets of a library. Amherst, Massachusetts, 1876.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings of the 20th
International Conference on Distributed Computing, DISC’06, pages 194-208, Berlin, Heidelberg,
2006. Springer-Verlag. ISBN 3-540-44624-9, 978-3-540-44624-8. doi: 10.1007/11864219_14.
URL http://dx.doi.org/10.1007/11864219_14.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Commun. ACM, 18(8):453-457, August 1975. ISSN 0001-0782. doi: 10.1145/360933.360975.
URL http://doi.acm.org/10.1145/360933.360975.

Jason Duell, Paul Hargrove, and Eric Roman. The Design and Implementation of Berkeley
Lab’s Linux Checkpoint/Restart. White paper, Future Technologies Group, 2003.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. SIGOPS
Oper. Syst. Rev., 36(SI):211-224, December 2002. ISSN 0163-5980. doi: 10.1145/844128.844148.
URL http://doi.acm.org/10.1145/844128.844148.

George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen. Execution
replay of multiprocessor virtual machines. In Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, VEE ‘08, pages 121-130, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-796-4. doi: 10.1145/1346256.1346273. URL http:
//doi.acm.org/10.1145/1346256.1346273.

Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade.
Barcelona openmp tasks suite: A set of benchmarks targeting the exploitation of task paral-
lelism in openmp. In Proceedings of the 2009 International Conference on Parallel Processing, ICPP
‘09, pages 124-131, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-
3802-0. doi: 10.1109/ICPP.2009.64. URL http://dx.doi.org/10.1109/ICPP.2009.64.

EC2. Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/spot-instances/, 2009.

http://doi.acm.org/10.1145/1508244.1508255
http://doi.acm.org/10.1145/1950365.1950376
http://dx.doi.org/10.1007/11864219_14
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/844128.844148
http://doi.acm.org/10.1145/1346256.1346273
http://doi.acm.org/10.1145/1346256.1346273
http://dx.doi.org/10.1109/ICPP.2009.64

172

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded java program test
generation. IBM Syst. J., 41(1):111-125, January 2002. ISSN 0018-8670. doi: 10.1147/sj.411.
0111. URL http://dx.doi.org/10.1147/sj.411.0111.

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375-408,
September 2002. ISSN 0360-0300. doi: 10.1145/568522.568525. URL http://doi.acm.org/
10.1145/568522.568525.

Yong hun Eom, Stephen Yang, James C. Jenista, and Brian Demsky. DOJ: Dynamically
Parallelizing Object-oriented Programs. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP "12, pages 85-96, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1160-1. doi: 10.1145/2145816.2145828. URL http://doi.acm.
org/10.1145/2145816.2145828.

Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad
Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge. Razor: A low-
power pipeline based on circuit-level timing speculation. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 36, pages 7—, Washington,
DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2043-X. URL http://dl.acm.org/
citation.cfm?7id=956417.956571.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture support
for disciplined approximate programming. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
XVII, pages 301-312, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0759-8. doi: 10.1145/
2150976.2151008. URL http://doi.acm.org/10.1145/2150976.2151008.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural acceleration for
general-purpose approximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-45, pages 449-460, Washington, DC,
USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4924-8. doi: 10.1109/MICRO.2012.48.
URL http://dx.doi.org/10.1109/MICR0.2012.48.

Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R.M. Badia, E. Ayguade, J. Labarta, and M. Valero.
Task superscalar: An out-of-order task pipeline. In Microarchitecture (MICRO), 2010 43rd
Annual IEEE/ACM International Symposium on, pages 89-100, Dec 2010. doi: 10.1109/MICRO.
2010.13.

Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining synchronization
technique. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP "12, pages 257-266, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1160-1. doi: 10.1145/2145816.2145849. URL http://doi.acm.org/10.1145/2145816.
2145849.

http://dx.doi.org/10.1147/sj.411.0111
http://doi.acm.org/10.1145/568522.568525
http://doi.acm.org/10.1145/568522.568525
http://doi.acm.org/10.1145/2145816.2145828
http://doi.acm.org/10.1145/2145816.2145828
http://dl.acm.org/citation.cfm?id=956417.956571
http://dl.acm.org/citation.cfm?id=956417.956571
http://doi.acm.org/10.1145/2150976.2151008
http://dx.doi.org/10.1109/MICRO.2012.48
http://doi.acm.org/10.1145/2145816.2145849
http://doi.acm.org/10.1145/2145816.2145849

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

173

Cormac Flanagan and Stephen N. Freund. Type-based race detection for java. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation,
PLDI '00, pages 219-232, New York, NY, USA, 2000. ACM. ISBN 1-58113-199-2. doi: 10.1145/
349299.349328. URL http://doi.acm.org/10.1145/349299.349328.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical
report, Knoxville, TN, USA, 1994.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, PLDI "98, pages 212-223, New York, NY, USA, 1998.
ACM. ISBN 0-89791-987-4. doi: 10.1145/277650.277725. URL http://doi.acm.org/10.
1145/277650.277725.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995. ISBN 0-201-63361-2.

David Gay, Joel Galenson, Mayur Naik, and Kathy Yelick. Yada: Straightforward parallel
programming. Parallel Comput., 37(9):592-609, September 2011. ISSN 0167-8191. doi: 10.1016/
jparco.2011.02.005. URL http://dx.doi.org/10.1016/j.parco.2011.02.005.

Jeff Gilchrist. Parallel data compression with bzip2. URL http://compression.ca/pbzip2/.

Stanley Gill. Parallel programming. The Computer Journal, 1(1):2-10, April 1958. ISSN
0010-4620 (print), 1460-2067 (electronic). doi: http://dx.doi.org/10.1093/comjnl/1.1.2.

Gagan Gupta and Gurindar S. Sohi. Dataflow execution of sequential imperative programs on
multicore architectures. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44, pages 59-70, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-1053-6. doi: 10.1145/2155620.2155628. URL http://doi.acm.org/10.1145/2155620.
2155628.

Gagan Gupta and Gurindar S. Sohi. Does order constrain parallelism? In Submitted to the
24th International Conference on Parallel Architectures and Compilation Techniques, PACT "15, 2015.

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi. The road to parallelism leads through
sequential programming. In 4th USENIX Workshop on Hot Topics in Parallelism, HotPar'12, Berke-
ley, CA, USA, June 7-8, 2012, 2012. URL https://www.usenix.org/conference/hotpari2/

road-parallelism-leads-through-sequential-programming.

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi. Program execution on multicore and
heterogeneous systems. CS Technical Report TR1804-2. Department of Computer Sciences,
University of Wisconsin-Madison, 2013.

http://doi.acm.org/10.1145/349299.349328
http://doi.acm.org/10.1145/277650.277725
http://doi.acm.org/10.1145/277650.277725
http://dx.doi.org/10.1016/j.parco.2011.02.005
http://compression.ca/pbzip2/
http://doi.acm.org/10.1145/2155620.2155628
http://doi.acm.org/10.1145/2155620.2155628
https://www.usenix.org/conference/hotpar12/road-parallelism-leads-through-sequential-programming
https://www.usenix.org/conference/hotpar12/road-parallelism-leads-through-sequential-programming

174

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi. Globally precise-restartable execution
of parallel programs. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI "14, pages 181-192, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594306. URL http://doi.acm.org/
10.1145/2594291.2594306.

Meeta S. Gupta, Jude A. Rivers, Pradip Bose, Gu-Yeon Wei, and David Brooks. Tribeca: design
for pvt variations with local recovery and fine-grained adaptation. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages 435-446,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-798-1. doi: 10.1145/1669112.1669168.
URL http://doi.acm.org/10.1145/1669112.1669168.

M.S. Gupta, K.K. Rangan, M.D. Smith, Gu-Yeon Wei, and D. Brooks. DeCoR: A delayed com-
mit and rollback mechanism for handling inductive noise in processors. In High Performance
Computer Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on, pages 381 -392,
teb. 2008. doi: 10.1109/HPCA.2008.4658654.

Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel. Accountable
virtual machines. In Proceedings of the 9th USENIX conference on Operating systems design and
implementation, OSDI'10, pages 1-16, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1924943.1924952.

Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287-317, December 1983. ISSN 0360-0300. doi: 10.1145/289.291.
URL http://doi.acm.org/10.1145/289.291.

Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of lines of code.
In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO "11, pages 289-298, Washington, DC, USA, 2011. IEEE Computer Society.
ISBN 978-1-61284-356-8. URL http://dl.acm.org/citation.cfm?id=2190025.2190075.

Tim Harris, James Larus, and Ravi Rajwar. Transactional memory, 2nd edition. Synthesis Lec-
tures on Computer Architecture, 5(1):1-263, 2010. doi: 10.2200/5S00272ED1V01Y201006CACO011.
URL http://www.morganclaypool.com/doi/abs/10.2200/S00272ED1V01Y201006CACO11.

Tim Harris, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Mark Moir. Constrained
data-driven parallelism. In 5th USENIX Workshop on Hot Topics in Parallelism, HotPar'13,
San Jose, CA, USA, June 24-25, 2013, 2013. URL https://wuw.usenix.org/conference/

hotpar13/workshop-program/presentation/harris.

Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali. Ordered vs. unordered:
A comparison of parallelism and work-efficiency in irregular algorithms. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming, PPoPP "11, pages 3-12,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0119-0. doi: 10.1145/1941553.1941557.
URL http://doi.acm.org/10.1145/1941553.1941557.

http://doi.acm.org/10.1145/2594291.2594306
http://doi.acm.org/10.1145/2594291.2594306
http://doi.acm.org/10.1145/1669112.1669168
http://dl.acm.org/citation.cfm?id=1924943.1924952
http://doi.acm.org/10.1145/289.291
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://www.morganclaypool.com/doi/abs/10.2200/S00272ED1V01Y201006CAC011
https://www.usenix.org/conference/hotpar13/workshop-program/presentation/harris
https://www.usenix.org/conference/hotpar13/workshop-program/presentation/harris
http://doi.acm.org/10.1145/1941553.1941557

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

175

Muhammad Amber Hassaan, Donald D. Nguyen, and Keshav K. Pingali. Kinetic dependence
graphs. In Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS "15, pages 457-471, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.2694363. URL http://doi.
acm.org/10.1145/2694344 .2694363.

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Concur-
rent data representation synthesis. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI "12, pages 417-428, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1205-9. doi: 10.1145/2254064.2254114. URL
http://doi.acm.org/10.1145/2254064.2254114.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008. ISBN 0123705916, 9780123705914.

Stephen T. Heumann, Vikram S. Adve, and Shengjie Wang. The tasks with effects model for
safe concurrency. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP "13, pages 239-250, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-1922-5. doi: 10.1145/2442516.2442540. URL http://doi.acm.org/10.1145/2442516.
2442540.

Vincent Heuveline, Sven Janko, Wolfgang Karl, Bjorn Rocker, and Martin Schindewolf. Soft-
ware transactional memory, OpenMP and Pthread implementations of the conjugate gradients
method - a preliminary evaluation. In 10th International Meeting on High-Performance Comput-
ing for Computational Science, VECPAR 2012, pages 300-313. Springer Berlin Heidelberg, 2012.
URL http://dx.doi.org/10.1007/978-3-642-38718-0_30.

M.D. Hill. Multiprocessors should support simple memory consistency models. Computer, 31
(8):28-34, Aug 1998. ISSN 0018-9162. doi: 10.1109/2.707614.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation, PLDI "88, pages 35-46, New York, NY, USA, 1988. ACM. ISBN 0-89791-269-1.
doi: 10.1145/53990.53994. URL http://doi.acm.org/10.1145/53990.53994.

Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes for lightweight memory race
recording. In Proceedings of the 35th Annual International Symposium on Computer Architecture,
ISCA 08, pages 265-276, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-
7695-3174-8. doi: 10.1109/ISCA.2008.26. URL http://dx.doi.org/10.1109/ISCA.2008.26.

Derek R. Hower, Polina Dudnik, Mark D. Hill, and David A. Wood. Calvin: Deterministic or
not? free will to choose. In Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, HPCA 11, pages 333-334, Washington, DC, USA, 2011.
IEEE Computer Society. ISBN 978-1-4244-9432-3. URL http://dl.acm.org/citation.cfm?
1d=2014698.2014870.

http://doi.acm.org/10.1145/2694344.2694363
http://doi.acm.org/10.1145/2694344.2694363
http://doi.acm.org/10.1145/2254064.2254114
http://doi.acm.org/10.1145/2442516.2442540
http://doi.acm.org/10.1145/2442516.2442540
http://dx.doi.org/10.1007/978-3-642-38718-0_30
http://doi.acm.org/10.1145/53990.53994
http://dx.doi.org/10.1109/ISCA.2008.26
http://dl.acm.org/citation.cfm?id=2014698.2014870
http://dl.acm.org/citation.cfm?id=2014698.2014870

176

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Jeff Huang, Peng Liu, and Charles Zhang. Leap: Lightweight deterministic multi-processor
replay of concurrent java programs. In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE "10, pages 207-216, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-791-2. doi: 10.1145/1882291.1882323. URL http://doi.acm.
org/10.1145/1882291.1882323.

ITRS. Semiconductor Industry Association (SIA), Design, International Roadmap for Semi-
conductors, 2011 edition. http://public.itrs.net.

James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky. OoQOJava: Software out-
of-order execution. In Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, PPoPP "11, pages 57-68, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0119-
0. doi: 10.1145/1941553.1941563. URL http://doi.acm.org/10.1145/1941553.1941563.

R.M. Karp and R.E. Miller. Properties of a model for parallel computations: Determinancy,
termination, queueing. SIAM Journal on Applied Mathematics, 14(6):1390-1411, 1966.

Kurt Keutzer and Tim Mattson. A design pattern language for engineering (parallel) software.
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/.

Kurt Keutzer, Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. A design
pattern language for engineering (parallel) software: Merging the plpp and opl projects. In
Proceedings of the 2010 Workshop on Parallel Programming Patterns, ParaPLoP "10, pages 9:1-9:8,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0127-5. doi: 10.1145/1953611.1953620.
URL http://doi.acm.org/10.1145/1953611.1953620.

Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Keshav Pingali. Lonestar: A suite
of parallel irregular programs. In ISPASS '09: IEEE International Symposium on Performance
Analysis of Systems and Software, pages 65 —76. IEEE, april 2009. doi: 10.1109/ISPASS.20009.
4919639.

Oren Laadan, Nicolas Viennot, and Jason Nieh. Transparent, lightweight application exe-
cution replay on commodity multiprocessor operating systems. In Proceedings of the ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS "10, pages 155-166, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0038-4. doi:
10.1145/1811039.1811057. URL http://doi.acm.org/10.1145/1811039.1811057.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558-565, July 1978. ISSN 0001-0782. doi: 10.1145/359545.359563. URL http:
//doi.acm.org/10.1145/359545.359563.

James Larus. Programming multicore computers: Technical perspective. Commun. ACM, 58
(5):76-76, April 2015. ISSN 0001-0782. doi: 10.1145/2742908. URL http://doi.acm.org/10.
1145/2742908.

T.]. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay.
IEEE Trans. Comput., 36(4):471-482, April 1987. ISSN 0018-9340. doi: 10.1109/TC.1987.1676929.
URL http://dx.doi.org/10.1109/TC.1987.1676929.

http://doi.acm.org/10.1145/1882291.1882323
http://doi.acm.org/10.1145/1882291.1882323
http://public.itrs.net
http://doi.acm.org/10.1145/1941553.1941563
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/
http://doi.acm.org/10.1145/1953611.1953620
http://doi.acm.org/10.1145/1811039.1811057
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/2742908
http://doi.acm.org/10.1145/2742908
http://dx.doi.org/10.1109/TC.1987.1676929

177

[109] Edward A. Lee. The problem with threads. Computer, 39(5):33—42, May 2006. ISSN 0018-9162.
doi: 10.1109/MC.2006.180. URL http://dx.doi.org/10.1109/MC.2006.180.

[110] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha, and Zhunping Zhang.
On-the-fly pipeline parallelism. In Proceedings of the Twenty-fifth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA "13, pages 140-151, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1572-2. doi: 10.1145/2486159.2486174. URL http://doi.acm.org/
10.1145/2486159.2486174.

[111] Yossi Lev and Mark Moir. Debugging with transactional memory. In 1st Workshop on Lan-
quages, Compilers, and Hardware Support for Transactional Computing, TRANSACT 06, 2006.

[112] N.G. Leveson and C.S. Turner. An investigation of the Therac-25 accidents. Computer, 26(7):
1841, July 1993. ISSN 0018-9162. doi: 10.1109/MC.1993.274940.

[113] Xuanhua Li and Donald Yeung. Exploiting application-level correctness for low-cost fault
tolerance. J. Instruction-Level Parallelism, 10, 2008.

[114] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint and migration
of UNIX processes in the Condor distributed processing system. Technical Report UW-CS-
TR-1346, University of Wisconsin - Madison Computer Sciences Department, April 1997.

[115] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: Efficient deterministic
multithreading. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP "11, pages 327-336, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6.
doi: 10.1145/2043556.2043587. URL http://doi.acm.org/10.1145/2043556.2043587.

[116] Yuheng Long, Yu David Liu, and Hridesh Rajan. Intensional effect polymorphism. In
Proceedings of the 29th European Conference on Object-oriented Programming, ECOOP’15, July
2015.

[117] A. Lovelace. Notes to the translation of sketch of the analytical engine invented by charles
babbage esq. by L. F. menabrea, of turin, officer of the military engineers. Scientific Memoirs,
Selections from The Transactions of Foreign Academies and Learned Societies and from Foreign Journals,
edited by Richard Taylor, F.S.A., Vol III London: 1843, Article XXIX, 1843.

[118] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XIII, pages 329-339, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-958-6.
doi: 10.1145/1346281.1346323. URL http://doi.acm.org/10.1145/1346281.1346323.

[119] D. Manivannan and Mukesh Singhal. Quasi-synchronous checkpointing: Models, character-
ization, and classification. IEEE Trans. Parallel Distrib. Syst., 10(7):703-713, July 1999. ISSN
1045-9219. doi: 10.1109/71.780865. URL http://dx.doi.org/10.1109/71.780865.

http://dx.doi.org/10.1109/MC.2006.180
http://doi.acm.org/10.1145/2486159.2486174
http://doi.acm.org/10.1145/2486159.2486174
http://doi.acm.org/10.1145/2043556.2043587
http://doi.acm.org/10.1145/1346281.1346323
http://dx.doi.org/10.1109/71.780865

178

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Daniel Marques, Greg Bronevetsky, Rohit Fernandes, Keshav Pingali, and Paul Stodghil.
Optimizing checkpoint sizes in the ¢3 system. In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 10 - Volume 11, IPDPS
‘05, pages 226.1-, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2312-9.
doi: http://dx.doi.org/10.1109/IPDPS.2005.316. URL http://dx.doi.org/10.1109/IPDPS.
2005.316.

Milo M. K. Martin, Colin Blundell, and E. Lewis. Subtleties of transactional memory atomicity
semantics. Computer Architecture Letters, 5(2), 2006. URL http://dblp.uni-trier.de/db/
journals/cal/calb.html#MartinBLO6.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel programming.
Addison-Wesley Professional, first edition, 2004. ISBN 0321228111.

Michael D. McCool, Arch D. Robison, and James Reinders. Structured parallel programming
patterns for efficient computation. Elsevier/Morgan Kaufmann, Waltham, MA, 2012. ISBN
9780124159938 0124159931.

Paul E. McKenney. Selecting locking primitives for parallel programming. Commun. ACM,
39(10):75-82, October 1996. ISSN 0001-0782. doi: 10.1145/236156.236174. URL http://doi.
acm.org/10.1145/236156.236174.

Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-cost, comprehensive error
detection in simple cores. In Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 40, pages 210-222, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-3047-8. doi: 10.1109/MICRO.2007.8. URL http://dx.doi.org/10.
1109/MICRO.2007.8.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21-65, February 1991.
ISSN 0734-2071. doi: 10.1145/103727.103729. URL http://doi.acm.org/10.1145/103727.
103729.

Diego Melpignano, Luca Benini, Eric Flamand, Bruno Jego, Thierry Lepley, Germain Haugou,
Fabien Clermidy, and Denis Dutoit. Platform 2012, a many-core computing accelerator for
embedded socs: Performance evaluation of visual analytics applications. In Proceedings of the
49th Annual Design Automation Conference, DAC "12, pages 1137-1142, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1199-1. doi: 10.1145/2228360.2228568. URL http://doi.acm.
org/10.1145/2228360.2228568.

Samuel P. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler Techniques.
Morgan & Claypool, 2012.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stanford
transactional applications for multi-processing. In David Christie, Alan Lee, Onur Mutlu,
and Benjamin G. Zorn, editors, IISWC, pages 35-46. IEEE, 2008. ISBN 978-1-4244-2778-9. URL
http://dblp.uni-trier.de/db/conf/iiswc/iiswc2008.htm1#MinhCK0OO08.

http://dx.doi.org/10.1109/IPDPS.2005.316
http://dx.doi.org/10.1109/IPDPS.2005.316
http://dblp.uni-trier.de/db/journals/cal/cal5.html#MartinBL06
http://dblp.uni-trier.de/db/journals/cal/cal5.html#MartinBL06
http://doi.acm.org/10.1145/236156.236174
http://doi.acm.org/10.1145/236156.236174
http://dx.doi.org/10.1109/MICRO.2007.8
http://dx.doi.org/10.1109/MICRO.2007.8
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/2228360.2228568
http://doi.acm.org/10.1145/2228360.2228568
http://dblp.uni-trier.de/db/conf/iiswc/iiswc2008.html#MinhCKO08

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

179

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: A
transaction recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. Database Syst., 17(1):94-162, March 1992. ISSN 0362-5915.
doi: 10.1145/128765.128770. URL http://doi.acm.org/10.1145/128765.128770.

P. Monteiro, M. P. Monteiro, and K. Pingali. Parallelizing Irregular Algorithms: A Pattern
Language. In 18th Conference on Pattern Languages of Programs, Portland, USA, 2011.

Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and deterministically
replaying shared-memory multiprocessor execution efficiently. In Proceedings of the 35th
Annual International Symposium on Computer Architecture, ISCA '08, pages 289-300, Washington,
DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3174-8. doi: 10.1109/ISCA.2008.36.
URL http://dx.doi.org/10.1109/ISCA.2008.36.

Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo: A software-
hardware interface for practical deterministic multiprocessor replay. In Proceedings of the
14th International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIV, pages 73-84, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-406-5.
doi: 10.1145/1508244.1508254. URL http://doi.acm.org/10.1145/1508244.1508254.

J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas. ReVivel/O: efficient handling of
i/ o0 in highly-available rollback-recovery servers. In High-Performance Computer Architecture,
2006. The Twelfth International Symposium on, pages 200-211, Feb 2006. doi: 10.1109/HPCA.
2006.1598129.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. Deterministic Galois: On-demand,
portable and parameterless. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 14, pages 499-512, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5. doi: 10.1145/2541940.2541964. URL
http://doi.acm.org/10.1145/2541940.2541964.

Shuou Nomura, Matthew D. Sinclair, Chen-Han Ho, Venkatraman Govindaraju, Marc
de Kruijf, and Karthikeyan Sankaralingam. Sampling + DMR: Practical and low-overhead
permanent fault detection. In Proceeding of the 38th annual international symposium on Computer
architecture, ISCA "11, pages 201-212, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0472-
6. doi: http://doi.acm.org/10.1145/2000064.2000089. URL http://doi.acm.org/10.1145/
2000064 .2000089.

Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient deterministic
multithreading in software. SIGPLAN Not., 44(3):97-108, March 2009. ISSN 0362-1340. doi:
10.1145/1508284.1508256. URL http://doi.acm.org/10.1145/1508284.1508256.

Vassilis Papaefstathiou, Manolis G.H. Katevenis, Dimitrios S. Nikolopoulos, and Dionisios
Pnevmatikatos. Prefetching and cache management using task lifetimes. In Proceedings of the
27th International ACM Conference on International Conference on Supercomputing, ICS "13, pages
325-334, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2130-3. doi: 10.1145/2464996.
2465443. URL http://doi.acm.org/10.1145/2464996.2465443.

http://doi.acm.org/10.1145/128765.128770
http://dx.doi.org/10.1109/ISCA.2008.36
http://doi.acm.org/10.1145/1508244.1508254
http://doi.acm.org/10.1145/2541940.2541964
http://doi.acm.org/10.1145/2000064.2000089
http://doi.acm.org/10.1145/2000064.2000089
http://doi.acm.org/10.1145/1508284.1508256
http://doi.acm.org/10.1145/2464996.2465443

180

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee, and
Shan Lu. Pres: Probabilistic replay with execution sketching on multiprocessors. In Proceed-
ings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP '09, pages 177-
192, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629593.
URL http://doi.acm.org/10.1145/1629575.1629593.

Y. N. Patt, W. M. Hwu, and M. Shebanow. HPS, a new microarchitecture: Rationale and
introduction. In Proceedings of the 18th Annual Workshop on Microprogramming, MICRO 18, pages
103-108, New York, NY, USA, 1985. ACM. ISBN 0-89791-172-5. doi: 10.1145/18927.18916.
URL http://doi.acm.org/10.1145/18927.18916.

J.M. Perez, R M. Badia, and]. Labarta. A dependency-aware task-based programming envi-
ronment for multi-core architectures. In Cluster Computing, 2008 IEEE International Conference
on, pages 142 -151, 29 2008-oct. 1 2008. doi: 10.1109/CLUSTR.2008.4663765.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Hassaan,
Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario Méndez-
Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algorithms. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 11, pages 12-25, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. doi:
10.1145/1993498.1993501. URL http://doi.acm.org/10.1145/1993498.1993501.

Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson, and David I. August.
Commutative set: A language extension for implicit parallel programming. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI "11, pages 1-11, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/
1993498.1993500. URL http://doi.acm.org/10.1145/1993498.1993500.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York,
NY, USA, 3 edition, 2007. ISBN 0521880688, 9780521880688.

Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: Cost-effective architectural
support for rollback recovery in shared-memory multiprocessors. In Proceedings of the 29th
Annual International Symposium on Computer Architecture, ISCA '02, pages 111-122, Washington,
DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1605-X. URL http://dl.acm.org/
citation.cfm?7id=545215.545228.

Hridesh Rajan. Building scalable software systems in the multicore era. In Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, FOSER "10, pages 293-298, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0427-6. doi: 10.1145/1882362.1882423. URL
http://doi.acm.org/10.1145/1882362.1882423.

G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst., 22(2):416—430, March 2000. ISSN 0164-0925. doi: 10.1145/349214.
349241. URL http://doi.acm.org/10.1145/349214.349241.

http://doi.acm.org/10.1145/1629575.1629593
http://doi.acm.org/10.1145/18927.18916
http://doi.acm.org/10.1145/1993498.1993501
http://doi.acm.org/10.1145/1993498.1993500
http://dl.acm.org/citation.cfm?id=545215.545228
http://dl.acm.org/citation.cfm?id=545215.545228
http://doi.acm.org/10.1145/1882362.1882423
http://doi.acm.org/10.1145/349214.349241

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

181

Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via idempotence. In Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL "13, pages 249-262, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1832-7. doi:
10.1145/2429069.2429100. URL http://doi.acm.org/10.1145/2429069.2429100

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In Proceedings of the
2007 IEEE 13th International Symposium on High Performance Computer Architecture, HPCA "07,
pages 13-24, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 1-4244-0804-0. doi:
10.1109/HPCA.2007.346181. URL http://dx.doi.org/10.1109/HPCA.2007 .346181.

Lawrence Rauchwerger and David Padua. The Irpd test: Speculative run-time parallelization
of loops with privatization and reduction parallelization. In Proceedings of the ACM SIGPLAN
1995 Conference on Programming Language Design and Implementation, PLDI '95, pages 218-232,
New York, NY, USA, 1995. ACM. ISBN 0-89791-697-2. doi: 10.1145/207110.207148. URL
http://doi.acm.org/10.1145/207110.207148.

James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, first edition, 2007. ISBN 9780596514808.

Jose Renau, James Tuck, Wei Liu, Luis Ceze, Karin Strauss, and Josep Torrellas. Tasking
with out-of-order spawn in tls chip multiprocessors: Microarchitecture and compilation. In
Proceedings of the 19th Annual International Conference on Supercomputing, ICS 05, pages 179-188,
New York, NY, USA, 2005. ACM. ISBN 1-59593-167-8. doi: 10.1145/1088149.1088173. URL
http://doi.acm.org/10.1145/1088149.1088173.

Michael Rieker, Jason Ansel, and Gene Cooperman. Transparent user-level checkpointing
for the native posix thread library for linux. In The International Conference on Parallel and
Distributed Processing Techniques and Applications, Las Vegas, NV, Jun 2006.

Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of jade.
ACM Trans. Program. Lang. Syst., 20(3):483-545, May 1998. ISSN 0164-0925. doi: 10.1145/
291889.291893. URL http://doi.acm.org/10.1145/291889.291893.

Phil Rogers, Ben Sander, Yeh-Ching Chung, Ben Gaster, and Wen Mei Hwu. Heterogeneous
system architecture (hsa): Architecture and algorithms tutorial. In Proceedings of the 41st
Annual International Symposium on Computer Architecture, ISCA "14, Los Alamitos, CA, USA,
2014. IEEE Computer Society Press.

Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated practical record/replay
system. ACM Trans. Comput. Syst., 17(2):133-152, May 1999. ISSN 0734-2071. doi: 10.1145/
312203.312214. URL http://doi.acm.org/10.1145/312203.312214.

http://doi.acm.org/10.1145/2429069.2429100
http://dx.doi.org/10.1109/HPCA.2007.346181
http://doi.acm.org/10.1145/207110.207148
http://doi.acm.org/10.1145/1088149.1088173
http://doi.acm.org/10.1145/291889.291893
http://doi.acm.org/10.1145/312203.312214

182

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

Christopher]J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional pro-
gramming actually easier? In Proceedings of the 15th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP "10, pages 47-56, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-877-3. doi: 10.1145/1693453.1693462. URL http://doi.acm.org/
10.1145/1693453.1693462.

Radu Rugina and Martin Rinard. Pointer analysis for multithreaded programs. In Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementation,
PLDI 99, pages 77-90, New York, NY, USA, 1999. ACM. ISBN 1-58113-094-5. doi: 10.1145/
301618.301645. URL http://doi.acm.org/10.1145/301618.301645.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued
logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL '99, pages 105-118, New York, N, USA, 1999. ACM. ISBN 1-58113-095-3.
doi: 10.1145/292540.292552. URL http://doi.acm.org/10.1145/292540.292552.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. Enerj: Approximate data types for safe and general low-power computation.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI "11, pages 164-174, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0663-8. doi: 10.1145/1993498.1993518. URL http://doi.acm.org/10.1145/1993498.
1993518.

R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Innovations in internetworking.
chapter Design and Implementation of the Sun Network Filesystem, pages 379-390. Artech
House, Inc., Norwood, MA, USA, 1988. ISBN 0-89006-337-0. URL http://dl.acm.org/
citation.cfm?id=59309.59338.

Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 1st edition, 2010. ISBN 0131387685,
9780131387683.

Vivek Sarkar and John Hennessy. Partitioning parallel programs for macro-dataflow. In
Proceedings of the 1986 ACM Conference on LISP and Functional Programming, LFP '86, pages
202-211, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4. doi: 10.1145/319838.319863.
URL http://doi.acm.org/10.1145/319838.319863.

Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer, Mikhail
Smelyanskiy, Milind Girkar, and Pradeep Dubey. Can traditional programming bridge the
ninja performance gap for parallel computing applications? Commun. ACM, 58(5):77-86, April
2015. ISSN 0001-0782. doi: 10.1145/2742910. URL http://doi.acm.org/10.1145/2742910.

Mohit Saxena, Mehul A. Shah, Stavros Harizopoulos, Michael M. Swift, and Arif Mer-
chant. Hathi: durable transactions for memory using flash. In Shimin Chen and Stavros
Harizopoulos, editors, DaMoN, pages 33-38. ACM, 2012. ISBN 978-1-4503-1445-9. URL
http://dblp.uni-trier.de/db/conf/damon/damon2012.html#SaxenaSHSM12.

http://doi.acm.org/10.1145/1693453.1693462
http://doi.acm.org/10.1145/1693453.1693462
http://doi.acm.org/10.1145/301618.301645
http://doi.acm.org/10.1145/292540.292552
http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518
http://dl.acm.org/citation.cfm?id=59309.59338
http://dl.acm.org/citation.cfm?id=59309.59338
http://doi.acm.org/10.1145/319838.319863
http://doi.acm.org/10.1145/2742910
http://dblp.uni-trier.de/db/conf/damon/damon2012.html#SaxenaSHSM12

183

[166] Jan Schafer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to concurrent
components. In Theo D’Hondt, editor, ECOOP, volume 6183 of Lecture Notes in Computer Sci-
ence, pages 275-299. Springer, 2010. ISBN 978-3-642-14106-5. URL http://dblp.uni-trier.
de/db/conf/ecoop/ecoop2010.html#SchaferP10.

[167] Michael L Scott. Shared-Memory Synchronization. Morgan and Claypool Publishers, USA, 2013.
ISBN 9781608459575.

[168] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Grochowski,
Toni Juan, and Pat Hanrahan. Larrabee: A many-core x86 architecture for visual computing.
ACM Trans. Graph., 27(3):18:1-18:15, August 2008. ISSN 0730-0301. doi: 10.1145/1360612.
1360617. URL http://doi.acm.org/10.1145/1360612.1360617.

[169] Rathijit Sen and Y. N. Srikant. Executable analysis using abstract interpretation with circular
linear progressions. In MEMOCODE, pages 39-48. IEEE Computer Society, 2007. ISBN
1-4244-1050-9. URL http://dblp.uni-trier.de/db/conf/memocode/memocode2007 .html#
SenS07.

[170] Akhter Shameem and Jason Roberts. Multi-Core Programming. Intel Press, USA, 2006.

[171] James E. Smith and Andrew R. Pleszkun. Implementing precise interrupts in pipelined
processors. IEEE Trans. Comput., 37:562-573, May 1988. ISSN 0018-9340. doi: http:/ /dx.doi.
org/10.1109/12.4607. URL http://dx.doi.org/10.1109/12.4607.

[172] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Proceedings of the
IEEE, 83(12):1609-1624, Dec 1995. ISSN 0018-9219. doi: 10.1109/5.476078.

[173] Gurindar S. Sohi. Instruction issue logic for high-performance, interruptible, multiple func-
tional unit, pipelined computers. IEEE Trans. Comput., 39(3):349-359, March 1990. ISSN
0018-9340. doi: 10.1109/12.48865. URL http://dx.doi.org/10.1109/12.48865.

[174] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In ISCA
"95:1SCA "95: Proceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 414-425, June 1995.

[175] Daniel J. Sorin. Fault tolerant computer architecture. Synthesis Lectures on Computer Ar-
chitecture, 4(1):1-104, 2009. doi: 10.2200/S00192ED1V01Y200904CACO005. URL http:
//www.morganclaypool.com/doi/abs/10.2200/S00192ED1V01Y200904CACO0S.

[176] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood. SafetyNet: improving
the availability of shared memory multiprocessors with global checkpoint/recovery. In
Proceedings of the 29th Annual International Symposium on Computer Architecture, ISCA 02, pages
123-134, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1605-X. URL
http://dl.acm.org/citation.cfm?id=545215.545229.

http://dblp.uni-trier.de/db/conf/ecoop/ecoop2010.html#SchaferP10
http://dblp.uni-trier.de/db/conf/ecoop/ecoop2010.html#SchaferP10
http://doi.acm.org/10.1145/1360612.1360617
http://dblp.uni-trier.de/db/conf/memocode/memocode2007.html#SenS07
http://dblp.uni-trier.de/db/conf/memocode/memocode2007.html#SenS07
http://dx.doi.org/10.1109/12.4607
http://dx.doi.org/10.1109/12.48865
http://www.morganclaypool.com/doi/abs/10.2200/S00192ED1V01Y200904CAC005
http://www.morganclaypool.com/doi/abs/10.2200/S00192ED1V01Y200904CAC005
http://dl.acm.org/citation.cfm?id=545215.545229

184

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Holistic run-time parallelism man-
agement for time and energy efficiency. In Proceedings of the 27th International ACM Con-
ference on International Conference on Supercomputing, ICS "13, pages 337-348, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2130-3. doi: 10.1145/2464996.2465016. URL
http://doi.acm.org/10.1145/2464996.2465016.

Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Adaptive, efficient, parallel execution
of parallel programs. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI "14, pages 169-180, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594292. URL http://doi.acm.org/
10.1145/2594291.2594292.

Sven Stork, Karl Naden, Joshua Sunshine, Manuel Mohr, Alcides Fonseca, Paulo Marques, and
Jonathan Aldrich. AEMinium: A Permission-Based Concurrent-by-Default Programming
Language Approach. ACM Trans. Program. Lang. Syst., 36(1):2:1-2:42, March 2014. ISSN
0164-0925. doi: 10.1145/2543920. URL http://doi.acm.org/10.1145/2543920.

Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3(7):54-62,
September 2005. ISSN 1542-7730. doi: 10.1145/1095408.1095421. URL http://doi.acm.org/
10.1145/1095408.1095421.

Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3(7):54-62,
September 2005. ISSN 1542-7730. doi: 10.1145/1095408.1095421. URL http://doi.acm.org/
10.1145/1095408.1095421.

Alan Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230-265, 1936.

Hans Vandierendonck, George Tzenakis, and Dimitrios S. Nikolopoulos. A unified scheduler
for recursive and task dataflow parallelism. Parallel Architectures and Compilation Techniques,
International Conference on, 0:1-11,2011. ISSN 1089-795X. doi: http://doi.ieeecomputersociety.
org/10.1109/PACT.2011.7.

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M. Chen, Ja-
son Flinn, and Satish Narayanasamy. Doubleplay: Parallelizing sequential logging and
replay. In Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages 15-26, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0266-1. doi: 10.1145/1950365.1950370. URL http:
//doi.acm.org/10.1145/1950365.1950370.

Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht, Christopher
Barton, Raul Silvera, and Maged Michael. Evaluation of blue gene/q hardware support for
transactional memories. In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, PACT "12, pages 127-136, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1182-3. doi: 10.1145/2370816.2370836. URL http://doi.acm.org/10.1145/
2370816.2370836.

http://doi.acm.org/10.1145/2464996.2465016
http://doi.acm.org/10.1145/2594291.2594292
http://doi.acm.org/10.1145/2594291.2594292
http://doi.acm.org/10.1145/2543920
http://doi.acm.org/10.1145/1095408.1095421
http://doi.acm.org/10.1145/1095408.1095421
http://doi.acm.org/10.1145/1095408.1095421
http://doi.acm.org/10.1145/1095408.1095421
http://doi.acm.org/10.1145/1950365.1950370
http://doi.acm.org/10.1145/1950365.1950370
http://doi.acm.org/10.1145/2370816.2370836
http://doi.acm.org/10.1145/2370816.2370836

185

[186] Juraj Wiedermann. Parallel turing machines. Technical Report RUU-CS-84-11. Dept. of

[187]

[188]

[189]

[190]

Computer Science, University of Utrecht, 1984.

Min Xu, Rastislav Bodik, and Mark D. Hill. A "flight data recorder" for enabling full-system
multiprocessor deterministic replay. In Proceedings of the 30th annual international symposium
on Computer architecture, ISCA 03, pages 122-135, New York, NY, USA, 2003. ACM. ISBN
0-7695-1945-8. doi: http://doi.acm.org/10.1145/859618.859633. URL http://doi.acm.org/
10.1145/859618.859633.

Guihai Yan, Xiaoyao Liang, Yinhe Han, and Xiaowei Li. Leveraging the core-level complemen-
tary effects of pvt variations to reduce timing emergencies in multi-core processors. In Proceed-
ings of the 37th annual international symposium on Computer architecture, ISCA "10, pages 485-496,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0053-7. doi: 10.1145/1815961.1816025.
URL http://doi.acm.org/10.1145/1815961.1816025.

Sangho Yi, Derrick Kondo, and Artur Andrzejak. Reducing costs of spot instances via
checkpointing in the amazon elastic compute cloud. System, (January):236-243, 2010. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557987.

Jin Zhou and Brian Demsky. Bamboo: A data-centric, object-oriented approach to many-core
software. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 10, pages 388-399, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0019-3. doi: 10.1145/1806596.1806640. URL http://doi.acm.org/10.1145/1806596.
1806640.

http://doi.acm.org/10.1145/859618.859633
http://doi.acm.org/10.1145/859618.859633
http://doi.acm.org/10.1145/1815961.1816025
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557987
http://doi.acm.org/10.1145/1806596.1806640
http://doi.acm.org/10.1145/1806596.1806640

	Contents
	List of Figures, Tables, and Listings
	Abstract
	Introduction
	Improving Multiprocessor Usability is Important
	The State of the Art is Unsatisfactory
	Semantically Ordered Parallel Execution
	Parakram: Ordered Programs, Ordered Execution
	Applying Ordered Execution to Simplify Other Uses

	Dissertation Outline

	Terms and Definitions
	Algorithms
	Programs
	Execution

	A Case for Ordered Execution of Ordered Programs
	Design-assist Solutions
	Sequential Execution
	Nondeterministic Execution
	Design-assist Solutions
	Programming

	Deterministic Execution
	Ordered Execution of Ordered Programs

	Parakram
	The Parakram Approach
	Programming Multiprocessors

	The Parakram Model
	The Execution Model
	The Programming Model

	Parakram Prototype
	Summary

	Ordered Programs
	Parallelism Patterns
	Parakram APIs
	Ordered Programs
	Defining Objects
	Pbzip2
	Cholesky Decomposition
	Delaunay Mesh Refinement

	Multithreaded Programming
	Summary

	Executing Ordered Programs
	Terms
	System Architecture
	Execution Manager Operations
	Basic Dataflow Execution
	Globally-precise Interrupts
	Handling More than Dataflow Tasks
	Speculative Execution
	Scheduling Tasks for Execution
	Other Aspects of Ordered Execution

	Execution Manager Prototype
	Basic Dataflow Execution
	Speculative Execution
	Other Operations
	Example Executions
	Summary

	Experimental Evaluation
	Expressiveness
	Programmability

	Performance
	Eager Programs.
	Non-eager Programs.
	Performance Limitations of Order.

	Analyzing Ordered and Nondeterministic Executions
	Summary

	Recovering from Exceptions
	Introduction
	A Case for Handling Exceptions Efficiently
	Impact of Technology Trends on Program Execution
	Exceptions
	Recovery from Global Exceptions

	An Efficient Approach to Frequent Exception Recovery
	Globally-precise Restartable System
	Overview
	Assumptions
	Executing the Program
	Recovering from Exceptions in the Runtime
	Recovering from Global Exceptions
	Third Party Functions, I/O, System Calls, and Transient Events
	Exception-recovery Operations
	Recovering from Exceptions During the Recovery

	Other Applications of GPRS
	Experimental Evaluation
	Related Work
	Summary

	Related Work
	Approach to Multiprocessor Programming
	Techniques
	Execution Properties

	Conclusions and Future Work
	In the Past
	In this Work
	In the Future
	Applying Ordered Execution
	Programmability
	Design

	Bibliography

