Optimizing Interinstruction \Alue Communication through Beee of Use Prediction

by

Jefrey Adam Butts

A dissertation submitted in partial fulfillment of the

requirements for the deee of

Doctor of Philosoph

(Computer Sciences)

at the
University of Wsconsin—Madison
2004

© Copyright by Jefrey Adam Butts 2004
All Rights Resered

Abstract

Thedesignof high-performancealuecommunicatiorstructuregepresenta significantchal-
lengein the implementationof future microprocessors.The compleity of thesestructures—
namely the register file, the bypassnetwork, and the instruction windon—dwarfs that of the
actualinstructionexecutionhardwareandhasbecomethe predominanfactorin determiningthe
maximum operatingfrequeng. Being wire-dominated thesestructuresalso benefitlessfrom
technology scaling than theexution circuitry increasing the importance of this problem.

Valuecommunicatiorstructuresare complex becausehey areoverly general. Eachof these
structuresis built to supportthe most generalpossiblecommunicationpatternfor eachvalue.
However, examining value communicationin actual programsreveals that most values are
involved in simplecommunicationsuchasproducerto singleconsumer This dissertatiorpro-
posesan alternatemodelfor interinstructionregistervaluecommunicationn which valuesmay
be handled diérently by mechanisms optimized to their indual needs.

Thefoundationfor this modelis knowledgeof communicatioron apervaluebasis. Thecom-
municationresourceequirementsf avaluearesummarizedy its degreeof use,whichis simply
the numberof consumersf that value. Accuratedegree of useinformation may be obtained
speculatrely via a predictionmechanism. This information may then be usedto handleeach
value in the most &€ient manner\ailable.

This dissertatiormakesthreemajor contributionsto the developmentof this communication
model. First, anin-depthstudyof registervaluecommunicatiorin termsof the degreeof useis
presentedn orderto demonstratéhe opportunityfor alternatve communicationmechanisms.
Second,methodsfor the accuratepredictionof degree of useare presentedand characterized.
Finally, two proof-of-conceptapplicationsof thedegreeof useknowvledgearedeveloped. Useless
instructioneliminationexploits the occurrenceof degreeof usezerovalues,which have no con-
sumers. Avoiding the executionof instructionsgeneratingsuchvaluesreducesesourceutiliza-
tion, and,underresourcecontention,improvesperformance.Use-basedegistercachingapplies
degreeof useinformationto the managementf aregistercache. Theresultinginsightinto each
value’s communicatiorbehaior allows the limited cachespaceto be usedmoreeffectively than

previously proposed gaster caches.

Acknowledgements

Above all others,| wantto thankmy wife, SusanKalis. A Ph.D.candidateherself,shehas
beenremarkablyunderstandingf the afflictions associatedvith being a grad student:strange
hours,long bingesat the computeylack of motivation,inability to maintaina sociallife, andgen-
eralmalaise. Especiallyduringthe pastseveralmonths,shehasput herown needsasidein order
to supportmeduringmy final pushto graduate.l amlooking forwardto returningthefavor. It is
saidthatit is easierto suffer togetherthanto suffer alone—truly I would endureany hardshipso
long asshewastherewith me. | would notbehere,norwould | wantto, without her, sothis work
is dedicated to her

| owe atremendousmountto my parents,Jefrey andStephanie.Rootedin the pacificnorth-
west,they have seenlittle of mesincel left to attendcollegein the midwest11 yearsago. How-
ever, knowing that | hada homealways opento me hasbeena sourceof strength. It is their
upbringingto which | creditbeingoneof the mostemotionallystablepeoplel know. They have
alwaysencouragedne to excel andprovided an ervironmentin which | coulddo so. | canonly
aspire to someday be as good a parent as each of theto we.

My advisorGuri Sohihasbeeninstrumentain makingmetheresearchethatl amtoday He
spentthe betterpartof the lastsix yearstrying to breakme of my engineeringnentality encour-
agingmeto stepbackandlook at the biggerpictureinsteadof gettingboggeddown in gatesand
propagtiondelays. He hastaughtme a greatdealnot only aboutthe field of computerarchitec-
ture, but aboutthe practiceof performinggood research. | am also grateful for his inhuman
patience with my. . flexible approach to time management.

In avery realsense) have hadmary researchadvisors. An incrediblestrengthof the com-
puter sciencedepartmenat the University of Wisconsinis the engagemenbf the faculty in the
developmentof eachand every graduatestudent. | have benefittedfrom discussionsvith Ras
Bodik, Charlie Fischer Jim Goodman,Mark Hill, SusanHorwitz, and Mary Vernon. David
Woodin particularhasbeenatremendousesourcan mattersbothtechnicalandotherwise.l am
also happ to count him among my friends (and felléeft wings).

All of the membersof my thesiscommitteedesere creditfor the researclcontainedherein

(althoughl bearfull responsibilityfor its shortcomings).In additionto Guri andDavid, Charlie

1l
Fischer Mikk o Lipasti, andJim Smith all contritutedto my developmentasan architect. Aside
from their direct input on my researchboth pastand present,| have learnedfrom their own
research.Perhapsnostof all, though,I have benefitedrom the opportunityto obsene themon
others’committeesaandat conferenceswherel wasexposedo theirthoughtprocesseandanaly-
ses of diferent research ideas.

For reasonstill opaqueo me, Amir Roth,CraigZilles, andMilo Martin befriendedme back
whenl wasa know-it-all first-yearstudentdespitebeingseveralyearsmy senior They arethree
of thesmartespeoplel have ever met,andit wasaninvaluableexperienceo watchthemprogress
throughandsucceedn graduateschool. | have tried hardto emulatethem,which hasprobably
been a significaneftor in my avn graduation.

Many othercurrentandformer studentsandstaf in the computersciencedepartmenat Wis-
consinhave also beenfriends and collaboratorsincluding RossDickson, Brian Fields, Allison
Holloway, Carl Mauer David Parter Erik Paulson,andRavi Rajwar. David Parterhasmy extra
thanks for opening his home to me as my Madison base since | relocated to Chicago. last year

My graduateschoolexperiencevould have beenlessproductve andmuchlessfun wereit not
for the greatcompary of so mary other graduatestudents. Of these,BrandonSchwartz and
Paramjit Oberoi desere specialmention. Brandonwas my roommatefor most of graduate
school,and,in additionto sitting anddiscussingmicroarchitecturen front of the 4-by-8foot dry
eraseboardin our apartmentwe encgagedin endlesgpost-midnightdiscoursen computersci-
ence,physics,philosoply, psychologysociology political scienceandhockey amongothertop-
ics. Paramand| had mary equally wide-rangingdiscussionsgespeciallyafter he becamemy
officemate. Paramalsoendurechaving measa partnerfor not oneclassproject,but every project
in all four classesve took together Both BrandonandParamhelpedmerefinenearlyevery idea
in this work and may more that are not.

A conserative estimateputsthetotal computeitime spentobtainingthe datain this document
atover 100,000hours(almostll.4years), althoughit wasgeneratedn only afew monthsof cal-
endartime. The Condorsystemmadethis possibleandl amgratefulto the membersf the Con-
dor teamfor providing and supportingthis service. They often wentthe extra mile to scrounge

additional machines to help me meatigus deadlines.

v

| am also extremely thankful for all of the people, those | know personally and otherwise, who

maintain the amazing research support infrastructure in the computer science department. The

staff of the computer systems lab performs the monumental—and often thankless—task of keep-

ing the computers and the network up and running. It is atestament to their success that | find it

difficult to express the extent of their role: everything just works, allowing people to concentrate
fully on their research.

| still find it remarkable that | was able to get paid to learn for the past six years. For thisl am
deeply indebted to the Fannie and John Hertz Foundation and Intel Corporation. In addition to its
generous financial support over five years, the Hertz Foundation has also been a valuable source
of contacts and an advocate for my personal career. For the final year of my graduate career, it
was a fellowship from Intel that allowed me to maintain focus on my research instead of the
source of my next meal.

Finally, | would be remiss if | did not at least mention several others who have helped me
reach this point. Kathy Pfaendler, George Delegans, Nels Doeleman, Richard Green, Ken Houle,
Carl Simonsen, Youssef El-Mansy, Greg Taylor, and Jeff Smith have all had profound effects on
my life and intellectual development.

Table of Contents

N 015 = o PSPPSR i
ACKNOWIEAGEMENLS ... bbbttt sn b sreens i
TaDIE Of CONLENLS ..ot ettt st sb et e e e b e e aeesaeesbeennesneenbeas Y
LISE OF FIQUIES ..ttt ettt bbbt bt e e et e st e e b b e eneeneeneas X
LISE Of TADIES ..t sttt b et sb e b st e ae e e Xil
Chapter 1. INIrOTUCTIONoiuiiiieiieiieiee ettt b e bt see s b b e eneeneeneas 1
1.1. Inter-Instruction Value COmMMUNICELIONc.coeeririienienieeie e see e naeas 2
1.1.1. Inter-instruction communication in sequential architeCturesc.ccoveeverereennn. 2

1.1.2. Register value COMMUNICALIONeeiueeiieiiieiieeireeseeesteesee e e sseesseesreesseesseesse e 3

1.1.3. Meeting the demands of parall&liSm ..o 4

0 I o 0] o = o SRS 5

1.2. DEGIEE OF USE ...ttt sttt bbbttt e e et et be b neeneeneas 6
N I N IS 1] o] SRS 7

1.2.2. Classifying values uSing degree Of USEcccceveierereninenee e 8

1.2.3. The need for PrediClion ... 9

IR @0 141 o111 T USRS 9
IR V= i T e (0] o | SRRSO 11
IO I T o 0= 11

142, SIMUIBLOIS ..ottt sttt b et e st e st e et e e ne e s beebesaeenrs 11

1.4.3. Model architecture and MiCroarChiteCtureccceeveeeeeieereseeseere e se e 12

1.5. DisSSertation OULHINGocuoiiiiieieee ettt sre e 13
Chapter 2. Characterizing Value Degreg 0f USE ... 14
2.1. Degree of Use CharaCteriStiCSuuiiiiiiiiiie ettt s 15
2.1.1. Mean, median, mode, and MaXiMUINMccooecveeeiieiieieeeesreieeeeiereesseiseeeesssseeesssnens 15

2.1.2. Degree of Use Of INPUL VAIUEScocviiiiiiiieccie ettt s 19

2.2. ClasSITYING VAIUESooeiiiiiieeee sttt st 20
2.2.1. Classification by iNSIFUCHION TYPE ...cuveevieiieeciie ettt 20

2.2.2. Classification Dy regiSter TyP.ooiiiiirerieieee et 22

2.3. Temporal CharaCteriStiCScviiiiiiiiiiieiie et sre e 24

2.4. WOrking Set BENAVIONccoiiiiiiierise s 25
2.4.1. Number of possible degreesS of USeccccveiieieiiie i 27
2.4.2. Relative likelihood of possible degrees of USeccoevererieiciese s 30
2.4.3. Temporal locality in per-instruction degrees of USeccccccevevvcieeviecciecviee s, 34

2.5. MathematiCal MOGELSccveeieeceee e neenee s 34
2.5.1. Degree of USe diStriDULTONc.coiiiiieeiie e st 34
2.5.2. Independent derivation of the mean degree of USEccoceeeievineneni s, 38

2.6, SUMMIAIY .eveieitieeiiieeesitesassee e s stee e s steessse e e ssseeessseesasseeeesseesasseessaeesabeeesabeeesabeeesnbeeesnsaeennnenans 39

Chapter 3. Degree 0f USE PradiClionccocooiiirieieieieese et 41

3.1, Predictor EVAIUBLIONcociiiiiiiieii ettt sttt nne s 43

3.2. Encoding Degree of Use INfOrMEationc.ccoeeieiienieneseseseseseeee e 45
3.2.1. Maximum predictable degree Of USEccoeviecceevie e 45
S22, BIBSING .eeiueeiieieie ettt e et bbb e e e 46
3.2.3. Default PrediClioNSccoieeiiieiie e st ene e 47
I N €1 (018 o1 o USRS U RU USROS 47

3.3. Static Degree of USe PrediClioncceoiiiiieiiie ettt 438
3.3.1. Formulating degree of use determination as a dataflow problemc..ccccue...... 49
3.3.2. Solving the degree of use dataflow problem ..., 52
T TG T (== 1 S 53
3.3.4. Applying profile infOrmationccccceiiieiie i e 54
3.3.5. Communicating static predictions to the hardwarecccccoooveveeceveececceseee, 58

3.4. Dynamic Degree of USE PrediCtionccccveiieciiciie ettt s 58
3.4.1. Simple predictor: last observed degree of USEcccvererererieenere e 60
3.4.2. AddiNG CONFIABNCEveeeeeeeiie e re e 62
3.4.3. Using control-flow INfOrmMationccoceeeeieiinenene e 65
3.4.4. Aliasing in degree of USe PrediCtorsccveieeiieeiie e 71
3.4.5. CompParative EValUBLIONcccooererinirinieieee e sre s 74
G0 G I = 11 1T USSR 82
3.4.7. Verifying degree of USe PrediClionsccooeererenenesesesee e 85

3.4.8. PrediCtor DANAWIAINooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt eeee e e e e e e e e e e e e e e ereeees 86

3.5. Hybrid PrediCtion SChEMESooiiiieeee e 88
3.6, SUMIMIAIY ..eveiiitieeiiiie et st e et et e e st e e s ste e e s sbe e e s te e e saeessaeesaseeesabeeesnseeesnbeeennsneennneeaas 88
Chapter 4. Useless Instruction ElMINatiONcocooieiiiiiiieeeseseeeeee e 90
4.1. Characterizing USeleSS INSLIUCLIONScooiiiiiiiiie et 92
0 5t R @ [o 11 0 USSP PPV 92
A.1.2. PEVAIEINCE ...ttt ettt e e nh e r e a e nae s 94
4.1.3. ROIE Of the COMPITEN ... 98
4.1.4. USEl€SSINSLIUCLION FESOUITESc.veiveeieeeisieesieeiesieesseseesieestesseseeessesnsesseessesneeses 100
4.2. Useless INStruction EliMIiNationcccceeoieeeneeieseesessieseese e seeses e sseessessessseenseens 103
4.2.1. Elimination CaNAIAALEScooeeiiiiiiiiniceesiee e 105
4.2.2. Normal operation of uselessinstruction eliminationc.ccccuereinienenecienenns 106
4.2.3. Misprediction detection and rECOVENYcceveeiiieeiieciieeiee st esree e 107
4.2.4. RELiremMent DACKUDooiiiiirieiiriieeeee e s 109
B.2.5. LOBAScooivenieiietesieiete ettt sttt ettt b e a e nenaenn e ne e 109
4.2.6. Instructions With SIde effECLSccccceeveeiicece e 110
4.2.7. DeadlOCK aVOITANCEooceiiieiieie e 112
G T (== S 113
4.3.1. Parameter SenSitivity @analySIScccoeeiieiiiicieccie e 115
4.3.2. RESOUICE ULHTTZBLIONcveeieeeeeieeie ettt e e nee e nns 117
4.3.3. RESOUICE OCCUPAINCY ...eveuveeeireeissrerissresesssesesssesssssesssssesssssessseesssessssesssssesssssessnnns 119
G I o 1] 0= (0 120
4.4, REBEA WOIK ...oovieiciiieiieeee ettt b et b e be e e sesbesae e enennas 122
A5, SUMIMEIY ..ovteitieieeeteete ettt s s e s e et e e e e sse e s e e s e e be e b e eae e s be e s e eneesneennennnenneenneens 123
Chapter 5. Use-Based Register CaChingcccocieiiiiiiiiiieciee et 125
o300 R 1 011 0o 1 Tox i o o PSR 125
5.2. Register Cache OPEratioNccecieeiieeiieiieciiee e esreesee e e s e sre e ree e e sneeense e 129
5.3. Use-Based Register Cache Managementcocooerirenenenencneeeesee e 133
5.3.1. Register cache iNSertion POICY ...c.veiieeiieiie e 134
5.3.2. Register cache replacement POIICYooevereeieeiererese e 136

5.3.3. Counting reMaiNING USESccoueiirieieeeireesieesteessesaseesessseessessssesssessnsesssessssesssens 137

5.3.4. INCOrrect USE iNFOMMELIONcceeieeeieeieeeesie et ee e ee e nns 139

X V7= U= 1 o o SRR 140
5.4.1. ProCeSSOr MOUELccceeiiiieiieie et esneeeeeneenns 141

5.4.2. REQISLEr CACNE SIZEveeciee ettt ettt e e neearee s 142

BuA.3. IMISSES ..ttt s e et s e et e e e b e e e et e e eaeeereeaaeeereenreeenneeareeas 143

5.4.4. Comparing iNSErtion POIICIESc.eciieeiiieiie et 146

5.4.5. Comparing replacement POlICIEScccoeereriererere e 150

5.4.6. MiSS DIEaKAOWNcoueiiiiiieiee et 152

5.4.7. SENSITIVITY STUAIESeoeiiiiiiieeeee et 154

I B s = 1= o VLY o SRR 156
5.6. SUMIMEAIY ...ttt b et e e s e st b e se e s re e s b e e s e e me e neennenneenne e e e 158
(@170 g ST @0 o 11 Ko S SRR 160
6.1. Contributions and Key RESUILScccoviiiririiieee s 161
6.1.1. Degree of USe CharaCteriZationccceeieeiieiiieece et 161

6.1.2. Degree of USE PrediClioncoocverirereeeeee e 162

6.1.3. Usalessinstruction eliminationcocooeeiineenienie e s 163

6.1.4. Use-based register Caching ..o 163

6.2. Additional Applications of Degree of Use Knowledgecccoccvevieiiieeiie e evee e 164
6.2.1. Early register reClamationcoccoeeeeeeieiene s 164

6.2.2. Registerless COMMUNICALIONcocuiiiiieiie i 165

6.2.3. Collapsing dependent OPEraLioNScccoverererirereseseeee e 165

6.2.4. Direct consumer SCheAUIINGccvviiiieiiieiie e 166

6.2.5. Widely-USEA VAIUESooiiiiiiiiriieee et 166

6.3. Costs and Benefits of Use-Based Communication Optimizationscccccceeveevnenne. 167
= =0 169
AppendiX. MethodOIOgYccooiiiiiiicce et nree s 179
AL BENCAMEIKS ...ttt e s e s e e e sneesseenseennenneas 179
Nt 0 I 1 0o 11 | = = NSRS 179

A.1.2. Multiple-input BENChMArKS ..o 180

N I A o Tl I (= B 1 0] o | OSSR 180

A.2. Benchmark COmMPIlationcooeiiiiiininieeee e e 181
N I @0 o]] = £ OSSR 181
A.2.2. OPtIMIZATON TEVELS ... s 182

A.3. Binary Dataflow ANBIYZEYooouiiieeiee ettt 183
A.3.1. PreCision CONSIAEIALIONScovueeiueieerieeieseesieeeeseeseeeesseesseesesseessesnsesseesseensenns 184
A.3.2. Operation of binary analyzZerccccceieiiie i 184

S 4 T o o OSSP 185
A.4.1. Execution-driven SIMUIBEIONcccoiiriiiiienieee e e 186
A.4.2. Functional versus timing SIMUIAtioNccocoviiininenineeeeese e 186
A.4.3. System Call @MUIGLTONcocuiiiiecii e e 187
AAA SEEIC TINKING .o sr e 188

A.5. Timing Simulator Microarchitectural Modelcccooeiieiiiiie i, 189
A.5.1. Fetch pipeling (front @Nd)ccooiiiiirieeeee e 190
A.5.2. DECOUE PIPEIINEG ...t e re e 192
A.5.3. Instruction window and sChedulercccooeeiieeniere e 193
A.5.4. Register file and EXECULIONcccviiiieiieiiie e 194
38 T o 2] o 1 S 195

ALS.6. MEMOTY SYSIEIM ...t rba e sb e sbe e sareeennes 196

List of Figures

Figure 1.1. Degree of use illustrated............coooiiiiiiiii i 1.....
Figure 2.1. Observed degree Of USE.......cuuuiiiiiiiiiiiiiii ettt 16....
Figure 2.2. Correlation between number of potential static consumers and degree.af .uk@
Figure 2.3. Degree of use of inStruction iNPUt ValLES.............uuuiiiiiiiiiiiiiiiiieeeeeeeeees 20..

Figure 2.4. Distance between a value’s generation and its first use, last use, and over2éite

Figure 2.5. UnNiqUe degrees Of USE........ooiiiiiiiiiiiiiitiiiiii ettt 28....
Figure 2.6. Possible unique degrees Of USE...........uviiiiiiiiiiiii e 29...
Figure 2.7. Unique degrees of use weighted by execution COUNL...............ccccvvvvvvinnnnnen. 31
Figure 2.8. Likelihood of possible degrees of use from static instructions...................... 32
Figure 2.9. Likelihood of possible degrees of use from static instructions...................... 33
Figure 2.10. Temporal locality in per-instruction degrees of USe...........ccccoveeveiiviiiiinnnn. 35
Figure 2.11. Analytical models of degree of use diStribution...............cccuvveiiiiiiiieieninnnnnn. 38
Figure 3.1. Accuracy and coverage in degree of use prediCtion................cccccveeiveeeeennnnn. 44
Figure 3.2. Control flow graph annotated with degree of use dataflow.facts.................. 52
Figure 3.3. Static prediction using dataflow analysis.............ccccceeiiiiiiiiiiiie e, 54..
Figure 3.4. Static predictions derived from degree of use profiling...........cccccevvvvvennnnnnnn. 56
Figure 3.5. Optimum threshold value versus misprediction penalty...............ccccceeeeeeenens 57
Figure 3.6. A dynamic degree of use predictor in a processor pipeling................cccuoe.... 59
Figure 3.7. Performance of predicting last-observed degree of.use.........ccccceeeeeievennnnnnn. 6l

Figure 3.8. Performance vs. non-prediction threshold for predictor with confidence caw#ters
Figure 3.9. Performance vs. initial confidence for predictor with confidence counters...65
Figure 3.10. Control-flow SIgNAtUIES............uuuiiiiiiiiiiiiieii e 67....

Figure 3.11. Degree of use predictor performance as a function of signature length.....69

Figure 3.12. Easy-bit enhancement to control-flow Signature..........cccccccceeeeeiiniiiinnns 71

Figure 3.13. Effect of tag length on predictor aCCuracy............cccuvviiiieeieeiiiiie e, 73.
Figure 3.14. Predictor coverage VS. OrganiZatiOnl...........uuueeeeeeieiiiieeeeeeeaansssssssnenenennens 75..
Figure 3.15. Prediction aCCUracCy VS. COVEIAG0Eiiiitiiriiiieeeeeettiieeeeseesisneeeeseassnnaeeaeaenes 76...
Figure 3.16. Comparison of replacement POlICIES...........cooeiiiiiiiiiiiiiiieeeee e 77..

Figure 3.17. Degree of use prediCtor CONENIS...........uuuiiiiiiiiiiiie e 79...

Figure 3.18. Benefit of different prediction algorithms vs. Capacityccocevvevererenereneennn 80
Figure 3.19. Tuned predictor performance on all benchmarks ... 81
Figure 3.20. Predictor performance by predicted degreeoovivirenerieneiesese e 82
Figure 3.21. Predictor training with rename vs. retirement instruction streamsccccceeuve.e. 84
Figure 3.22. Structure and operation of adegreetrainingtableccoceveieiininnnc s, 85
Figure 4.1. INStrucCtion taXONOMYcc.ecceeiiieiiieeieeesieeseeesteesae e e sreesbe e s s e e sseessaeesseesnneesreesnreeans 91
Figure 4.2. Assembly code examples illustrating sources of uselessinstructions 93
Figure 4.3. Prevalence of USEIESSINSIIUCIIONSccceeiieiiiieiiecsiee st 95
Figure 4.4. Prevalence of static instructions contributing uselessinstances.............c.ccocvvereneee. 97
Figure 4.5. Pitfalls of eliminating partially-dead instructions staticallycccccovvviceevininenne. 99
Figure 4.6. Processor pipeline with uselessinstruction eliminationccccoceveevenienenenenne 105
Figure 4.7. Operation of uselessinstruction eliminationccccocevieeiiesieesiee e 107
Figure 4.8. ROB fill thresnold SENSITIVILYccooiririnieiiee e 116
Figure 4.9. PUT SIZE SENSITIVITY ..oiiviiiieiiieiie ettt sttt e et e sneesnneennee s 117
Figure 4.10. Retired USElESSINSITUCTIONSccoviiiiiiiiieiee e 119
Figure 4.11. RESOUICE OCCUPANCY ...veevveeereeireeereessessseessessseessessseessesssesssessssesssessssesssessssesssenss 120
FIgure 4.12. PerfOrMENCEcceiiiuiriieieieiee ettt bbbttt bt sae b ene s 121
Figure 5.1. Contents of physical register file ..o 127
Figure 5.2. Role of the Dypass NEIWOIK ... s 127
Figure 5.3. Use-based register cache managementccccvevveeieeniee e esee s 129
Figure 5.4. Flow of values between instructionsin the pipelineccccooevenininnenenenene 131
Figure 5.5. Effect of missrate on performancCecccceiieiie i ecie et 144
Figure 5.6. INSErtion POIICIESccueiuiiiiiiieiesie et 146
Figure 5.7. Replacement POLICIESccuviiiieiie ettt e s aeennee s 150
Figure 5.8. Hybrid replacement POlICIES ... s 151
Figure 5.9. RegiSter CACNE MISSESccuviiiiiiie ettt re e neenree s 153
Figure 5.10. CaChe CAPACITYcoeruirierieieiesie ettt bbb 154
Figure 5.11. Register cache performance in afour-wide machinecccocceeveviieiiieccieenienns 156

Figure A.1. Microarchitecture modeled by the timing Simulatorcccccooeieriiinencnenene 190

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 3.1:
Table4.1:
Table4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table5.1:
Table5.2:
Table A.1:
Table A.2:
Table A.3:
Table A .4:
Table A.5:
Table A.6:
TableA.7:
Table A.8:

Xii

List of Tables

Degree of Use CharaCteriStiCScuoiiiiiieiieciie ettt st e e snee s 17
Degree of Use Properties of INStruction Groupsc.ccceveeeeieereenieniesieseseseseeeans 22
Average Degree of Use by Register Classcoocvvvieiiiiiiiecieciec e 23
Analytical Model Parameters ... 37
ANASING RELES ...ttt e e et e e sae e e aeesneeearee e 72
Types Of USElESS INSIIUCTIONSooverieriieieeieiesie st 102
Number of Inputs of USelesS INSIIUCLIONSccceviieiiiiiicsiee e 104
Simulated ProCessor ParamELEN'Scoveieviereeiieseeseeeeseeeseeseesseeseeseesseessesseessens 114
Functional Unit and Issue Port Configurationscccccceeveeviieevie s e s 114
Utilization Impact of Useless Instruction Eliminationccccvevnnencnennne, 118
Simulated ProCessor ParamELEr'Sooeeieiienieriiisee et neeas 141
Evaluating Use-Based Filteringccoovveiienenereeee s 148
COMPIEE SUITES ..ttt et et e e b e sar e e nreeennas 181
Tuned-Benchmark Compilation OPLioNSccoeverininenenieeseses e 183
Fetch PIpeline Parametersc.ooiieeiieie ettt 191
Decode Pipeling Parametersoccveieeiiieierese et 193
Instruction Window and Scheduler Parameterscocevieenencnveeneneeneeeee e 194
Register File and EXecution Parameterscccoeviiineninienieenesese s 195
COMMIT PAraIMELENSccueiieieieeie ettt st b et s sreene e 196

Memory SyStemM Parameters ... s 197

Chapter 1

I ntroduction

At avery high level, the operationof a general-purposeomputercanbe broken into two tasks:
the manipulationof databy individual instructionsandthe communicatiorof datavaluesamong
the appropriatanstructioninstantiations.Of thesetwo tasks,inter-instructionvaluecommunica-
tion is vastlymoredifficult andis theorigin of muchof thecompleity foundin high-performance
processors today

This dissertatiorexplorestherelationshipof a values degreeof useto the natureof its com-
munication. A value’s degreeof useis simply thenumberof timesthevalueis usedasaninput by
thesuccessie instructionsof the program,andit is anindicatorof theresourcesieededo distrib-
utethatvalueto its consumers Most valuesexhibit very simplecommunicatiorpatternsyet cur-
rent implementationshandleall valuesuniformly. The resulting communicationinefficiency
manifests as inflated compley, communication laterygcand paver dissipation.

Theapplicationof speculatre degreeof useinformationallows for the handlingof eachvalue
to betunedto its particularcharacteristicsTwo suchoptimizationsarepresentedonecompletely
avoids the creationof a valuewhenit will not be communicatedo ary subsequenistructions,
while the otherappliesdegreeof useknowledgeto managehe setof valueskeptin a small,low-

lateng register cache.

1.1 Inter-Instruction Value Communication

I nter-instruction value communication is aneed common to all general-purpose processing archi-
tectures. All such architectures provide primitives—instructions—for the manipulation of certain
datarepresentations. The operation of a computer entails the execution of instructions on a set of
data according to a program. The actions specified by the individual instructions are generally
simple and have changed little since the introduction of the first programmable computers. The
versatility of a computer results from the ability to describe arbitrarily-complicated operationsin
terms of these simple instructions. Regardless of the variety and richness of the available instruc-
tions, however, nearly all tasks of interest will require the sequential application of multiple prim-
itives. Thus, the communication of data values between the instructions constituting a programis
a fundamental aspect of computing.

The primary motivation for thiswork is that thistask of inter-instruction value communication
isdifficult. While part of this difficulty isinherent to the actual communication of values, much
of it results from how communication mechanisms are implemented in current architectures. The
sequential, register-based architecture isthe basis for the majority of modern general -purpose pro-
cessor implementations. Most value communication in this architecture occurs through alimited
number of storage locations called registers, and it is this class of communication that is the focus
of this dissertation. Achieving high performance under this model requires complex value com-
munication mechanisms. Technology trends will render current methods of register value com-

munication inadequate for future high-performance implementations.

1.1.1 Inter-instruction communication in sequential architectures

In a sequential architecture, inter-instruction communication is specified in a program via named
storage locations. Each instruction addresses (i.e., specifies) storage locations where its inputs
may be found and where its output should be placed. Thus, value communication is specified
indirectly: instructions do not name the consumers of their result, nor do the consumers name the
producers of their inputs. Instead, avalue may be communicated between two instructions if they
name a common storage location. This condition is necessary but not sufficient. The two instruc-
tions must occur in the proper temporal sequence, with the producer of the value occurring prior

to the consumer. Additionally, no intervening instruction can place its result in the storage loca-

3
tion or it would becomethe producer The sequenc®f instructionswithin the program,descrip-

tively calledprogram order, is thereforeftundamentato the specificatiorof valuecommunication,
and this is what ges the sequential processing model its name.

It is importanthere,andthroughoutthe remainderof this documentto distinguishbetween
two differenttypesof instructions. A static instruction is anatomof a programi;it specifiesa sin-
gle kind of supportedperation(e.g.,addition),andthelocationsof its input(s)andoutput(s). As
its nameimplies, it doesnot changeduringthe executionof the programJ.r A givenstaticinstruc-
tion may executemary timeson differentvaluesby virtue of the storagelocation(s)it specifies
containingdifferentvalueseachtime. Onesuchinstanceof a staticinstructionis calleda dynamic
instruction. A dynamicinstructiononly occursonce;its inputsare fixed to the contentsof the

named storage locations at the time of its instantiation.

1.1.2 Register value communication
Two differentclasse®f storagdocationsmay be namedby the staticinstructionsof the program:
registersand memory Registerscomprisea small number—architecturdependentbut on the
orderof a few tens—ofstoragelocationsthat are nameddirectly. In otherwords,given a static
instructionthatnamesa particularregisterasan input, every dynamicinstanceof thatinstruction
will alsoreceve its inputfrom the sameregister The capacityof memoryis vastlylarger(ideally
infinite). Thenumberof individually-addressablmemorylocationshindersthedirectaddressing
of particularmemorylocation(althoughsomearchitecturesupportit); generallyamemoryloca-
tion is named with the aid of ale stored in a ggster

This dissertatiorfocuseson the valuecommunicatioroccurringthroughregistersbecausét is
the dominantmode of interinstruction communication,n spite of the much smaller register
namespace Registerbasedarchitecturesare aptly named:nearly every usefulinstructionspeci-
fiesatleastoneregisterasa sourceor destination.Load-store architectures area subclas®f reg-
isterbasedarchitecturesn which only two specificclassesf instructionscanaddressmemory
A load movesavaluefrom memoryto aregister while a store performsthe reverseoperation.In

eachcase,anotherregistercontainsa value usedin addressinghe memorylocation. While all

t Stored-program computers do not distinguish between instructions and other kinds of program data.
few architecturesllow runningprogramgo modify their programcode;the occurrencef suchself-mod-
ifying code is rare gen where supported.

4
other types of operations may communicate only via registers, these memory operations still use
two registers each, illustrating the importance of register value communication. Architectures
such asthe A-32 allow instructions to specify amemory location as a source or destination; how-
ever, most implementations convert these instructions into a sequence of simpler ones communi-

cating viaregisters and using loads or stores as needed [44].

1.1.3 Meeting the demands of parallelism
Achieving high-performance in a sequential architecture necessitates overcoming an inherent dis-
advantage of the programming model. While a sequential program imposes a total ordering
among all instructions, a given instruction frequently does not depend on the execution of all prior
instructions. The useful consequence of thisfact isthat the execution of instructionsthat are inde-
pendent of one another can take place simultaneously, reducing the total time required to execute
all of the operations specified by the program. The existence of independent instructions within a
program is referred to as instruction-level parallelism.

Exploiting paralelism for high-performance using register-based communication demands:
(1) many register storage locations, (2) high register access bandwidth, (3) many communication
endpoints, and (4) low access latency. Each simultaneously-executing instruction requires input
values from storage (some of which may be shared) and storage for its result, requiring more total
register storage than if execution occurred one-instruction-at-a-time. Even if few unique register
names are available, register renaming enables more physical storage locations to be in use con-
currently than the number of register names would otherwise support.T The adoption of simulta-
neous multi-threading [85], which increases available parallelism by offering multiple execution
contexts with their own register namespaces, requires even more register storage [13]. While the
guantity of register storage grows with the degree of parallelism, so too does the access bandwidth
required of that storage. Each instruction must access the register storage to retrieve its input

operands and store its result value; simultaneously-executing instructions must perform these

t Where parallelism exists, it can be obscured by fal se dependences introduced as a result of alimited reg-
ister namespace. Sequences of instructions belonging to otherwise independent computations are serial-
ized merely by virtue of specifying the same register at some point. Register renaming maps the limited
number of namesfor register locations (the architectural registers) to amuch larger—and implementation
dependent—number of storage locations for actual values (the physical registers). Physical register iden-
tifiers are substituted for architectural register names such that real data-dependences are preserved.

5
accesses concurrently. Furthermore, the instructions will occupy different execution resources,

each of which needs its own connections to the register storage. Finally, the latency of the access
to register values must not suffer unduly: the benefit of executing many instructions at atime is
diminished if the instructions take much longer to obtain their input values.

Much of the complex circuitry in current processors exists to support these demands of regis-
ter value communication. Besides the register file itself, this circuitry includes the bypass net-
work and the instruction scheduling hardware (in dynamically-scheduled processors, which are
the focus of thiswork) [66]. The bypass network provides direct interconnection among different
execution units so that latency-critical value communication may occur without traversing the
register storage. The instruction scheduler enforces program data-dependences by alowing
instructions to execute only after their input values are available; thus, its design is heavily
impacted by the nature of inter-instruction communication. In some instances, the instruction
scheduling apparatus even stores register values[11, 67, 83]. The resources spent supporting
inter-instruction value communication dwarf those spent to actually execute instructions. Sup-
porting high-performance value communication with these structures represents a significant

challenge facing future designs.

1.1.4 Theproblem

Value communication mechanisms benefit less from technology scaling than other types of cir-
cuitry because they are large, centralized, and wire-dominated [66]. First, the quantity of storage
accessible in afixed period of time relative to the latency of afixed computational operation (e.g.,
addition) is decreasing [1]. Thus, the relative latency of the access to a fixed amount of register
storage will increase. If the amount of register storage must also increase, the effect will be corre-
spondingly larger. Supporting more simultaneous accesses to the register storage has a penalty
similar to that of increasing its capacity. A second—and not unrelated—trend is the smaller rela-
tive improvement in the speed of wires versus transistors as semiconductor technology moves
forward [10]." Slow interconnection imposes a cost for increasing the number of execution units

that must access the value storage structures. In addition, it reduces the effectiveness of bypass-

T Physical limitations to scaling, while of increasing importance, should not prevent the continuous
improvement of CM OS semiconductor technology through at least the end of the decade. Further scaling
depends on the devel opment of and transition to non-classical CMOS technol ogies [45].

6
ing, which attemptsto reducethe impact of register accesslateny by passingresult values
directly amongexecutionunits. Finally, the emegenceof staticanddynamicpower dissipation
asarchitecturakonstraintddemandsefficient implementatiorof the large amountof value-com-
munication circuitry{16, 65].

The complity of value communicationstructuresarisesfrom their generality They are
designedto supportarbitrary data-dependenceelationshipsamong all in-flight instructions.
Thus, their compleity dependsprimarily on details of the implementation (e.g., the pipeline
width anddepth),even asthe value communicatiorcalledfor by a given programremainscon-
stant. As aresult,the overheadof currentvalue communicatiormechanismsncreasesspipe-
lines grav to exploit parallelism.

Moving forward, novel valuecommunicatiormechanismsnustbe devisedto exploit parallel-
ism moreefficiently. Specializednechanismspptimizedfor specificvaluecommunicatiorpat-
terns,canfill this role. Renderedndependentf the scalingof the pipeline,they will be more
resistanto the negative effectsof technologytrends. A prerequisitefor the applicationof these
alternatve mechanismdyowever, is away of classifyingthecommunicatiorrequirement®f each

value.

1.2 Degreeof Use
The thesisof this work is that a value's degree of use providesthe most pertinentinformation
regardingthatvalue’s communicatiorrequirements.Degreeof useis simply the numberof con-
sumersof a particularregistervalue. It is a dynamicproperty—thats, successie instantiations
of the sameinstructionin the programmay leadto valueswith differentdegreesof use. Values
thathave a high degreeof use(i.e., mary consumersjnustbe widely available(e.g.,to multiple
functionalunits) at low latenciesfor long periodsof time. In contrast,valuesthat are usedbut
oncedo notrequiresucha powerful (andexpensve) communicatiormechanism.The bestcom-
municationmechanisnfor a value dependsn the needsof that valuerelative to the capabilities
of thevariousavailablecommunicatiormechanisms.Therelative proportionsof theseclasse®of
values will determine the forms of and relatneeds for these tBfent mechanisms.

To avoid unwieldy sentenceghe degreeof use“of aninstruction” or “of a register” will be

usedoccasionallythroughouthis dissertation.Of course degreeof useis a propertyof a specific

-
dynamic value. These phrases are shorthand for the degree of use of the value generated by a par-

ticular instruction or the degree of use of the value in a particular register, respectively.

1.2.1 Anexample

Figure 1.1 illustrates some of the interesting properties of degree of use using a short example
function that returns the first occupied bucket in a hash table. The C source code example
appears on the left and the corresponding Alpha[5] assembly code on the right. A portion of the
dynamic dataflow graph corresponding to a particular execution of the function appears at the bot-
tom of the figure.

Alpha assembly code will appear throughout this dissertation, so a brief explanation is pro-
vided here. Most instructions with a register destination (e.g., arithmetic and logical operations)
name that register on theright. The sole exceptions are load instructions, which name the destina-
tion register on the left. All load instruction mnemonics begin with | d (the | da and | dah
instructions perform address computations and do not access memory, although their destination
registers still appear on the left). Memory addresses for |oads and stores appear on the right and
consist of a fixed offset to be added to the contents of a base register appearing within parenthe-
ses. Control instructions can be identified by the presence of alabel, except for the indirect jumps
j mp, j sr, and r et , which branch to an address stored in a given register (appearing within

parentheses).

do { | oop: rs8addq t1, a0, t2

bucket ptr = hash_tabl e[idx]; —/—"’—"(I dq v0, (t2)

i dx++; » addl tl, Ox1, t1

i f (idx >= num buckets) { . /subl t1, al, t3
return O;

- 7\ bge t3, exit

| | _—» beq v0, | oop
I d v0, 24(vO

| y(!dd (vO)

}
} while (bucket ptr == NULL);

ret zero, (ra), 1
return bucket ptr->list_head; | lexi }l :(bi S zero, zero, vO
ret zero, (ra), 1

num bucket s
al
s8addq) s8addq; s8addq; s8addq s8addq)
t2 vO0 t2 vO0 t2 vO0 t2 vO0 t2 vO0
a0
hash_t abl e @

Figure1.1. Degreeof useillustrated

tl
idx

8
The figure illustrates several interesting aspects of degree of use. First, many values are used
only once. Valuesassignedtot 2 andt 3, for example, will always exhibit a degree of use of one.
Of the 23 values represented in the dataflow graph, 14 of them are used only once. Second, some
static instructions always generate values with the same degree of use (e.g., the s8addq and
subl instructions). Instructions whose results are live across one or more conditional branches
can have different degrees of use depending on the particular path taken through the program. For
example, thevalueint 1 has adegree of use of onein the final loop iteration, but a degree of use
of threein all prior iterations. Finally, notethat it is possible for avalue to have a degree of use of
zero (i.e., never be used). Had theloop terminated due to the bge being taken (rather than the ter-
mination of the whi | e loop as shown), the two shaded nodes in the dataflow graph would not be
executed and the value generated by the | dq instruction would not be used.”

1.2.2 Classifying values using degree of use

The example clearly demonstrates how degree of use provides information about the communica-
tion of adynamic value lost as a consequence of the programming model. Thelevel of indirection
inherent to register-based architectures obscures this information for the sake of compact instruc-
tion encoding. Thus, the ultimate fate of an instruction’s result is hidden when that result is gen-
erated: it may be read from the destination register once or many million times or any number in
between. Without additional information, all value-producing instructions have no choice but to
place their resultsinto the specified registers. Also, the microarchitecture must ensurethat all reg-
isters can support being read any number of times. These consequences are at the root of the inef-
ficiencies in current inter-instruction communication mechanisms.

Degree of use information restores knowledge about the fates of individual dynamic values.
Using this knowledge, it is possible to identify values that have different communication needs
and handle them in an optimized manner. In fact, degree of use offers the most direct measure of
communication, asit quantifies the actual flow of avalueto its consumers. Therefore, itisaprop-

erty solely of the value's dataflow (and, by extension, the value's role in the program). Possible

T Because of the focus on register value communication, values are not tracked through memory. Store
instructions are terminal: from the perspective of register values, a store represents one use of each of two
register values (one containing an address and another the data to be written to memory). Subsequent
loads of this stored value would each be considered to create a new value.

9
alternative measures are influenced by other factors than the communication structure of the pro-

gram, such as dynamic events. For example, consider classifying a value’s communication by its
lifetime: values generated by the same instruction and communicated in the same manner may

have significantly different lifetimes in consecutive executions due to an unrelated L2 cache miss.

1.2.3 Theneed for prediction

Using a value's degree of use to optimize its communication requires knowledge of the future.
The degree of use of a particular value is calculated by counting its uses; thus, it is not certain
until the last use has been observed. Prediction is a well-understood technique for obtaining
information that would not normally be available (e.g., the direction of a conditional branch prior
to its execution). Based on the predicted information, actions can be taken speculatively, and the
prediction verified later. Given high enough prediction accuracy, the effect is the same as having
future knowledge.

This work describes degree of use prediction, which supplies high-accuracy speculative
degree of use information for values early in the processing of their producer instructions. Degree
of use prediction is successful because the dataflow patternsin programs are predictable. Asdem-
onstrated by the example, many instructions generate values that aways have the same number of
uses. Determining the degrees of use for values from these instructions is trivial. Even where
control flow can affect the degree of use of values from a particular instruction, the predictability
of control flow (demonstrated by the success of branch prediction) leads to similar predictability
in the degree of use. As with branch prediction, past behavior is a very good predictor of the

future.

1.3 Contributions

The initial work on degree of use arose in connection with the Multiscalar project [78]. In this
work, Franklin and Sohi presented the distribution of degree of use (coining that term in the pro-
cess) of dynamic values[32]; they observed the dominance of single-use values and used their
observations to propose an aternative value-communication mechanism—namely, a distributed
register file. These observations (low average number of uses, many single-use values) have since

been used to justify certain design decisions or motivate complete optimizations (e.g., [8, 24, 43,

10
50]), but none has yet exploited knowledge of number of uses of a particular value because of the
unavailability of thisinformation. This dissertation addresses how to obtain that information, its
relationship to the role of avalue within the program, and how it can be exploited.

The first mgjor contribution of thiswork is athorough exploration of the degree of use proper-
ties of register values. The observations of Franklin and Sohi are confirmed and expanded upon;
the use of a different architecture as well as different benchmarks and compilers broaden the
scope of their initial study. Correlations between the role of a value within a program and its
degree of use help to explain some of the consistency that is observed with respect to the distribu-
tion of different degrees of use. An in-depth characterization of the stability of the degree of use
of individua instructions demonstrates the feasibility of history-based dynamic prediction
schemes. Finally, the distribution of values with different degrees of use is examined analytically.
A previously-proposed analytical model is extended, and the mean degree of use is derived from
considerations of the instruction mix.

The demonstration of accurate static and dynamic degree of use prediction is the second con-
tribution of thiswork. The degree of use of avalue is determined by itsrolein the program; since
the role of a given instruction of the program is fixed, the possible degrees of use of values pro-
duced by that instruction are pre-determined. A formulation of the degree of use dataflow prob-
lem is presented, which, when solved with standard interprocedural dataflow analysis techniques,
allows assignment of the set of possible degrees of use to each static instruction of the program.
Thisassignment isthe basis for static degree of use prediction. Dynamic degree of use prediction,
on the other hand, is based on run-time profiling of degree of use. Here, the novel concept of for-
ward control flow isintroduced, which offers short-range path |ook-ahead as a direct consequence
of pipelining. In more advanced dynamic predictors, this information can be used to distinguish
among different previously observed degrees of use for the same instruction.

The third significant contribution of this work is useless instruction elimination (UIE). This
technique avoids the execution of instructions that produce values that will not be used (i.e,
degree of use zero values). UIE is representative of the class of optimizations that uses degree of
use information to affect the handling of the producer instruction. The performance benefit of
UIE is limited by the frequency of occurrence of useless values and the importance of resource

contention. Nonetheless, resource utilization is reduced, which can lead to lower power dissipa-

11
tion. A minor contribution associated with this optimization is an in-depth study of the existence

and properties of the useless instructions, which implicates compiler optimizations in increasing
the incidence of useless instructions.

Finally, use-based register caching applies degree of use information more broadly. The
large, low register file is replaced by the combination of the bypass network and a small, fast reg-
ister cache. Degree of use information is used to determine the expiration of a value's usefulness
by comparing the number of actual uses with the prediction. Only those values that are useful
after bypassing are placed in the register cache, enabling its size advantage over the register file.
The register file is relegated to the task of recovery, supplying values that were mistakenly

dropped from or never placed in the cache.

1.4 Methodology

This section summarizes aspects of the methodology common to the different experiments con-
ducted. The issues presented here are general in nature; details specific to a given experiment are
provided in the associated chapter where necessary. Many additional details too cumbersome or

arcane to present within a chapter (or here) are described within the appendix.

141 Benchmarks

The benchmarks used in all experiments are from the SPEC CPU 2000 suite [80]. Depending on
the experiment, data is provided for all benchmarks (26 total) or only the integer benchmarks (12
total). Except where noted, the training inputs provided with the benchmark suite were used.
Benchmark binaries generated with different compilers and compiler options were used in some
experiments. Descriptions of the compilers and the flags used in each configuration may be found
in section A.2 of the appendix. If unspecified for a particular experiment, the binaries used were
those compiled with the Compag/Digital C, C++, and Fortran-90 compilers (cc, cxx, and f 90
under Digital UNIX 4.0, respectively) with the flags that yielded the best performance on an
aggressive (8-wide, deeply-pipelined) simulated machine. All binaries were statically-linked.

142 Smulators
The majority of the results in this dissertation come from execution-driven simulation of user-

level code (system calls are executed on the host machine). Two different simulators were used—

12
afunctional simulator and atiming ssimulator. All characterization data were gathered using func-
tional simulation of benchmarks executing to completion. Performance data (and other associated
results) were obtained using a detailed, parameterized microarchitectural timing model. The
parameters varied among experiments; important features of the microarchitecture common to all
of the experiments are discussed in the next section. The significant slowdown of the timing ssim-
ulator versus native execution prohibited ssimulation of the benchmarks to their completion under
the timing simulator (a complete timing simulation of apsi , for example, runs for more than a

month). Instead, the first four billion instructions of each benchmark were simulated.

1.4.3 Modd architecture and microarchitecture

The benchmarks are compiled to an Alpha instruction-set architecture (ISA) target [5]. The
Alpha ISA is a sequential, register-based, load-store ISA. Thirty-two each integer and floating-
point registers are defined; one of each kind always contains zero. Excepting loads and stores, all
instructions operate exclusively on register values. Most instructions have one or two inputs,
although conditional move instructions are provided, which effectively have three inputs. Instruc-
tions have a maximum of one output.

Where timing simulation is required, a pipelined, out-of-order superscalar microarchitecture
with MIPS R10K-style register renaming is assumed [89]. Instructions are scheduled dynami-
cally—subject to resource constraints—from an instruction window as soon as their input oper-
ands are available. Multi-cycle execution resources are assumed to be fully-pipelined, and the
execution of a dependent operation may begin in the cycle immediately following the completion
of its parent.

L oads may issue before older store addresses are completely known and assume both a cache
hit and no unknown memory dependence to an older store[72]. A cache miss resultsin the need
to re-issue all operations issued after the load through the signalling of the miss. Loads may
bypass their data from older executed, unretired stores with the same latency as a cache hit. A
conflicting older store executing after aload results in a pipeline squash and refetch of al opera-
tions beginning with the load. A load-dependence predictor is used to delay the issuing of loads
that have previously caused such squashes[90].

13
Instruction sequencing uses separate conditional and indirect branch predictors and a return
address stack. Execution proceeds down a wrong-path until the mispredicted control instruction
is executed; fetch begins along the correct path in the cycle immediately following the execution
of a misprediction; more generally, any pipeline squash completes in a single cycle and fetch
resumes the following cycle. Thereisno limit to the number of outstanding, unresolved branches.
The performance of most Alpha implementations are sensitive to code layout with respect to
branches and their targets [6]. For this reason, the compilersinsert many NOPs. These NOPs are
eliminated during instruction fetch—they have no effect other than occupying cache space.
The memory hierarchy consists of three caches and a fixed-latency, infinite memory. Separate
L1 instruction caches and data caches are backed by a unified L2 cache. The L1 data cache and
the L2 cache are writeback caches. The memory system supports multiple outstanding misses at
each level; each level also contains an opportunistic stride-based prefetcher. Data and instruction

TLBsare perfect (i.e., not modeled).

1.5 Dissertation Outline

The next four chapters of the dissertation each present a primary contribution in the order
described in Section 1.3. Chapter 2 presents an in-depth characterization of degree of use proper-
ties. Degree of use prediction is described in Chapter 3. Both static and dynamic prediction
methods are presented; the formulation of the degree of use dataflow problem appears in connec-
tion with the static prediction. Chapter 4 presents useless instruction elimination. The incidence
and causes of useless instructions are investigated, followed by a description and experimental
evaluation of the UIE technique. Use-based register caching is the topic of Chapter 5. The pro-
posed register cache organization is motivated by considering the bypass network the primary
value communication mechanism in lieu of the register file. Managing the register cache contents
using degree of use information is demonstrated to be superior to previously proposed techniques.
Chapter 6 summarizes the contributions detailed in the prior chapters of the dissertation; it also
discusses possible additional applications of degree of use information and issues with such opti-

mizations in general. References and the appendix make up the remainder of the document.

14

Chapter 2

Characterizing Value Degree of Use

This chapter presents a detailed characterization of inter-instruction communication through reg-
isters in terms of degree of use. The data presented here serve three functions: (1) to illuminate
the inter-instruction communication patterns that occur in programs, (2) to suggest opportunities
for communication optimizations, and (3) to demonstrate the feasibility of degree of use predic-
tion.

First, aggregate degree of use properties are presented. Values generated during a program’s
execution are classified by their degree of use, and the types of communication that are revealed
are discussed. In some cases, the role of avalue in the operation of the program can be identified
by the type of instruction that generates the value or the architectural register to which the valueis
assigned. With this additional data, values with specific roles in a program are shown to have
degree of use characteristics significantly different than the overall average. Next, the stability of
the communication is explored on a per-instruction basis. Stable inter-instruction communication
suggests that degree of use prediction, the topic of the next chapter, will be successful. Finally,
mathematical models for degree of use characteristics are devel oped, extending some prior work
inthisarea. Theresults of thisanalysis alow for both the calculation of the probability of occur-
rence of a particular degree of use and the estimation of the mean degree of use from the expected

instruction mix.

15
2.1 Degreeof Use Characteristics
Figure 2.1 shows data on the observed degree of use distribution for each of the benchmarks com-
piled under two different compiler suites: the vendor suite (offered by the same company respon-
sible for the instruction set architecture) and the third-party suite. Details on the specific
compilers in each suite and the compilation methodology can be found in section A.2 of the
appendix.

It is readily apparent that most of the communication occurring during program execution is
direct communication to one consumer: an average of over 67% of dynamic values have a degree
of use of one. The frequency of degree of use two values show the most absolute variation,
accounting for anywhere between 4% and 33% of all values. No higher degree of use accounts
for more than 11% of the valuesin any of the benchmarks. 4-5% of the values generated by most
of the integer benchmarks are not used at all.

Comparing Figure 2.1(a) and Figure 2.1(b), it is apparent that the degree of use behavior of a
given program is quite similar even when different compilers are used, especialy for the C and
C++ benchmarks. This should not be surprising since the overall value communication structure
is a function of the ISA and the program itself. The only immediately obvious difference is a
trade-off between one- and two-use values: the vendor compilers tend to generate more of the
former and less of the latter while the third-party compilers do the opposite. The third-party com-
pilers also generate fewer degree of use zero instructions. These minute differences arise from
how each compiler performs register allocation, code scheduling, and other optimizations that

affect how registers are mapped onto the inherent dataflow specified by the program.

211 Mean, median, mode, and maximum

The median and mode degrees of use are easily observed on each distribution of Figure 2.1 (the
bin crossed by the 50% level and the largest bin, respectively). Without exception, the median
and mode degree of use are one. The mean degree of use for each benchmark appearsin Table 2.1
along with the maximum degree of use and the percentage of non-nop instructions that produce a
register result. An average of about 76% of dynamic instructions produce a value; the remainder

are amost entirely stores and branches, although a few rare instructions (e.g., certain system

16

Type

Floating-point

Integer

Language

Fortran-90 —|

Fortran-77

07+
6
Bs
Oa4
ls3
B2
Oz
o

1 1 1 1 1 1 1
[]
-I I I I I I I
[| I I I I I I
[]
-I I I I I I I I
[| I I I I I I I
[]
—I I I I I I
[| I I I I I
-I I I I I I I I
_I I I I I I
-II I I I I I
| I I I I I I
[]
[| I I I I I I I
[]
—I I I I I I I I
—I I I I I I
L I I I I _J
] |
-I I I I I I I _l
[] I I I I I I I
-I I I I I I I I
L I I I I I I I
[]
| I I I I I I
[]
—I I I I I I
[] I I I I I
[]
-I I I I I I
-I I I I I I
-I I I I I I
—I I I I I I I
-I I I I I I I
-I I I I I I]
I I I I I]
I
I I I I I I
[]
[] I I I I I I
-||
o o o o o o o o o o
®»@ 0 N~ ©O©o ,m o o 9~

San[eA 91WeUAp 10 1US0 JBd

v
uelJuo4
++0/0
dd
JEYSENT]

Type
Language

sean|
1o6reb
pgewy
RETEL)T

Fortran-90 —|

asimdnm
wims
YoelXIS
pubw

Floating-point
Fortran-77

1sde
nidde
esaw
aYenba
ue
dwwe
1da

(a) Vendor Compiler Suite

X910A
jlomy

TN 8
Jasied

Jow
dizb
206
deb
Ayelo
zdizq
uoa

Integer

o o o o o o o o o o
m [e2] [e°] N~ © o < [92] [3\] —

SoN[eA o1WeRUAp JO 1USD lod

IV
ueino4
++0/0
dd
1aba1u|
seon|
|1ob1eb
peewy
281928}
asimdnm
IS
Noenxis
pubw
isde
nidde
esaw
ayenba
e
dwuwe
ada
X8UOA
jlomy
|dad
Jasred
pow
dizb
206
deb
Ayeln
zdizq
uoa

(b) Third-party Compiler Suite

Figure2.1. Observed degree of use

Table 2.1: Degree of Use Characteristics

17

Vendor Compiler Suite

Third-party Compiler Suite

Benchmark Mean Maximum | % Dynamic Mean Maximum | % Dynamic
eon 1.94 8.46 K 63.7% 2.06 8.49K 62.4%
bzi p2 1.76 336 M 76.6% 1.74 67.5M 81.1%
crafty 1.53 540 M 82.8% 1.54 2.34M 76.5%
gap 1.53 3.21M 76.0% 1.59 116 M 72.7%
gcc 1.70 2.68 M 69.7% 1.73 421 K 62.5%
gzip 1.58 828 K 76.2% 1.52 419 M 78.0%
ncf 151 34.0M 67.5% 1.71 33.8M 70.4%
par ser 1.76 13.8 M 74.2% 1.73 3.26 M 71.4%
per | 1.68 579 K 71.0% 1.67 122 K 67.4%
t wol f 1.68 69.3K 70.8% 1.78 441K 72.9%
vortex 1.54 6.98 M 71.4% 1.61 86.7 K 66.1%
vpr 1.72 285 M 71.7% 1.63 864 K 77.9%
ammp 1.88 205 M 81.8% 1.78 86.6 M 82.9%
art 1.96 250 K 67.3% 1.69 571 M 81.5%
equake 1.56 7.66 M 92.1% 1.58 357M 86.6%
nmesa 1.72 1.31M 74.9% 1.66 1.31M 74.2%
appl u 1.91 1.67M 86.1% 1.78 2.08 M 65.7%
apsi 1.92 6.25 M 80.9% 1.85 250 M 78.2%
ngrid 1.74 344 K 91.9% 1.59 3.44M 80.8%
si xtrack 1.91 16.3M 88.3% 1.99 5.64 M 73.9%
SW m 1.85 863 K 82.8% 1.63 967 K 74.2%
WUpW se 1.73 289 M 79.1% 1.78 9.22M 67.3%
facerec 1.85 11.3M 82.2% 1.79 296 M 78.4%
f ma3d 1.90 80.3K 77.9% 1.80 41.8K 79.9%
gal gel 1.85 299 M 75.9% 1.75 6.73 M 78.8%
| ucas 1.83 51.5K 90.4% 1.80 249 M 75.9%
| nteger 1.66 336 M 72.6% 1.69 67.5M 71.6%
Floating Pt. 1.83 205 M 82.3% 1.75 86.6 M 77.0%
C/C++ 1.69 336 M 74.2% 1.69 86.6 M 74.0%
Fortran 1.85 16.3M 83.6% 1.78 249 M 75.3%
All 1.75 336 M 77.8% 1.72 67.5M 74.5%

18

200

150

100 —

Average degree of use

50

Number of unique consumer instructions

Figure2.2. Correlation between number of potential static consumersand degree of use

calls) do not produce results either. Note that the average degree of use differs very little between
the different compiler suites.

While the relative fraction of values with a high degree of use is very small, the data in
Table 2.1 show that degrees of use themselves can be large. Maximum degrees of use range over
five orders of magnitude from a few thousand to over three hundred million (a globa pointer
valuein bzi p2) across the different benchmarks. Instructions exhibiting the largest degrees of
use fall into two overlapping categories: (1) address-generating instructions (often stack and glo-
bal pointer updates), and (2) instructions generating loop-invariants. In the first case, the number
of unique static consumer instructions tends to be high, while in the second case the high degree
of use frequently results from repeated communication to a set of static consumers.

This relationship between the number of unique consumer instructions and the average degree
of use appearsin Figure 2.2 for static instructions generating a significant number of val ues.” The
diagonal line corresponds to an average degree of use equal to the number of static consumers.

Points above this line represent instructions that generate values used within loops. the average

T Only static instructions generating more than 1000 values are represented. The data in the figure corre-
sponds to benchmarks compiled with the vendor compilers; data from the benchmarks compiled with the
other compilers appears nearly identical.

19
number of uses of such a value exceeds the number of unique consumer instructions. A typical
example of such an instruction is one that generates the base address of an array accessed in the
loop body. Conversely, points below the line represent instructions generating values with a
smaller average degree of use than the number of potential consumer instructions. For these
instructions, variation in the subsequent control flow results in different consumers receiving the
result of the instructions on different executions. Note that some of these consumers may still
receive one of these values multiple times due to looping. A representative example of an instruc-
tion in thisregion is an indirect subroutine call, which has as its result the return address. many
return instructions in different subroutines will use the result of the call, but the average degree of

use will be only one.

2.1.2 Degreeof useof input values

The average degree of use of instruction inputsis higher than the average degree of use of instruc-
tion results. To understand this phenomenon, consider a single value used ten times. The degree
of use of the value is ten and that value would be counted once in the distributions of Figure 2.1.
However, that value accounts for ten instruction inputs: while only one instruction generates a
result with a degree of use of ten, ten instructions use a degree-of-use-ten value as an input. In
other words, the frequency of occurrence of a particular degree of use as an input is its frequency
as aresult weighted by the degree of useitself.

Therefore, the distribution of the degree of use of instruction inputs may be obtained from the
distributionin Figure 2.1(a) by doubling the height of the degree of use two bar, tripling the height
of the degree of use three bar, and so on, and then renormalizing. The resulting distribution is por-
trayed in Figure 2.3 (for benchmarks compiled with the vendor compilers). Note that while an
instruction is most likely to generate a value that is used once, an instruction will most likely use
avalue that is used more than once. Values with seven or more uses account for nearly a quarter
of al values used even though they comprise less than 3% of all values (see Figure 2.1(a)). As
would be expected, degree of use zero values account for no inputs.

Another way to think about distributions of Figure 2.3 is as the relative contribution that val-
ues with a particular degree of use make to the average degree of use. Consider how the mean

degree of use is calculated: each degree of use is multiplied by its frequency of occurrence to

20

Integer I Floating-point —I Type
Fortran-77 —|— Fortran-90 —| Language

100

90

80

70

o 7+
[3
s
W4
03
2
[t

60

50

40

30

Per cent of dynamic values

20

10

cC N >0 0 o fn 5 &— = X =5 o o @ S5 p T X QO O T [N = + c =
oQcmo,:,ggaogggaxmagzog_ggmgmw&+m<
N 8 o P o5 5 225 IS ggammeggmmagg O =
E <
2 © o > 5 o3 © S~ g—%ém—g O o
[} 7] El = L

Figure 2.3. Degree of use of instruction input values

obtain its contribution to the mean (an exercise that will be demonstrated more explicitly in
Section 2.5). This procedure is exactly that used to generate the distribution of input degrees of
use (except for the final renormalization). Figure 2.3 shows that while single-use values comprise
the majority (just over two-thirds) of all values generated, they contribute less than 40% to the

overall mean degree of use.

2.2 Classifying Values

The degree of use of avalue isintimately tied to the role of that value in the execution of a pro-
gram. Therefore, one expects to see different degree of use properties for different classes of val-
ues. In this section, two proxies for the role of a value in a program are considered: the type of

instruction that generates the value and the architectural register to which the value is assigned.

2.2.1 Classification by instruction type
Table 2.2 shows degree of use data for six classes of instructions. In addition to the average

degree of use, the table shows the average number of unique static consumers for that class of

21
instruction. The categories in the table represent about 80% of dynamic instructions, including

the largest five (control instructions were among the smallest classes of value-generating instruc-
tions). The categories listed were chosen based on whether the degree of use data were notewor-
thy or could be explained by considering the role of those types of instructions within a program.

Load instructions exhibit a larger than average number of static consumers although their
degree of useisabout equal to the overall average. Further partitioning the loads by the size of the
memory access reveals that 64-bit integer loads average over six distinct consumers, while the
remaining loads average less than two. In spite of this distinction, the average degree of use of
64-bit loads is only 13% higher than that of other types. Due to the variety of rolesfor loadsin a
program, it is difficult to draw any conclusions from these characteristics, although one might
speculate that the behavior of the 64-bit loadsis correlated with the fact that addresses are 64 bits.

The data in the table indicate a significant difference in the behavior of the results of integer
and floating-point math operations. These categories include add, subtract, multiply, divide, and
square root instructions of all data sizes but exclude scaled adds, shifts, conversions, and other
logical operations, which showed somewhat different behavior. The data show that integer values
are used more often than floating-point values,; besides their role in computation, integer values
perform other functions that are likely to result in many uses of the same value. For example,
some integer variables are loop induction variables or containers of multiple smaller-sized data
items (e.g., packed bytes or bitmasks). Variation in control flow causes the number of potential
consumers to exceed the average number of uses for integer results; floating-point operations typ-
ically communicate to afixed set of consumers.

The | da or load address instruction exhibited the highest average degree of use of any com-
mon instruction. | da places the result of an effective address calculation into a register where it
often is used as a base address for many loads or stores, accounting for both the high average
degree of use and number of unique consumer instructions. Those | da instructions that did not
take a register input were classified instead as load immediates, which exhibit very different
behavior.

The results of compare instructions have a very well-defined role—determining the direction
of a subsequent conditional branch. These values are almost aways used just once by a subse-

guent branch. Occasionally, a branch condition will be computed by a compare instruction prior

22

Table 2.2: Degee of Use Poperties of Instruction Groups

Vendor Compiler Suite Third-party Compiler Suite
Group % dynami c| Average Average % dyngmi c| Average Average

instructions | consumers DOU instructions | consumers DOU
Load 30.3% 3.73 1.71 31.0% 3.71 1.67
FP math 22.1% 1.46 1.34 18.3% 2.00 1.70
Integer math 11.0% 2.61 1.74 13.2% 2.84 1.77
Load address 9.6% 11.42 4.90 8.6% 16.47 6.00
Compare 5.0% 1.14 1.04 6.2% 1.15 1.01
Control 1.1% 3.12 1.18 1.0% 2.93 1.08

to one or more different branches, resulting in more than one possible consumer for the computed
condition. This phenomenon accounts for the number of potential consumers exceeding one.
Finally, control instructions (those that generate values) supply many different consumers, but
their average degree of use is much lower than that of the load addressinstructions. This category
is amost entirely composed of subroutine call instructions, each of which generates a return
address used by one of many potential consumers. Indirect calls(j sr), comprising about 10% of
this category, have an average of 75 consumers, while the more common direct calls (bsr) supply

an average of only 1.3 consumers.

2.2.2 Classification by register type

Guessing the role of avalue using only the nature of its source instruction is difficult. Loads, for
example, perform too many different functions in a program to hint at the purpose of the loaded
value. A better clue to the role of a value is the identity of the architectural register containing
that value. Many registers or groups of registers have functions designated by convention to allow
different software components (e.g., compilers, assemblers, and libraries) to cooperate. The func-
tions of these registers should correlate with the degree of use properties of the values assigned to
them. The stack pointer is perhaps the most obvious example: within afunction body, accessesto
local variables stored in the stack frame use the stack pointer as a base register. Thus, one expects

valuesin this register to exhibit a high average degree of use, which isthe case.

23
Table 2.3 shows the average degree of use for several classes of registers (as defined by the

Alpha Assembly Language Programmers Guide [6]). Data are shown for benchmarks compiled
with the vendor compilers only; the other compiler suite exhibits comparable behavior.

Of all registers or groups of registers, the stack pointer has the highest average degree of use.
Within Fortran programs, which frequently pass large arrays on the stack, stack pointer values are
used almost three times as often asin the C or C++ programs. The global pointer, used as a base
address for the access of global data objects, also shows a significantly higher average degree of
use than other register categories, although the behavior is much more consistent across the differ-
ent benchmark groups.

Callee-saved integer and floating-point registers are those integer registers defined by the
assembly language programming conventions to be preserved across subroutine calls. If a sub-
routine uses one of these registers, it must save the register first and restore it before returning.
The higher degree of use of these registers may be ascribed to two factors. First, asmart compiler
will preferentially assign values with long live ranges to these registers to avoid having to spill
them before subroutine calls. These long-lived values are more likely to have ahigh degree of use
(see Section 2.3). Second, the save operation (a store into the stack frame) results in a use of the
value not demanded by the underlying communication structure of the program. Thus, a save
resultsin an additional use being credited to the a callee-saved register value. If the value happens
to be dead at the time of acall, the restore at the end of the subroutine will create a value that will

Table 2.3: Average Degree of Use by Register Class

Bench- Stack Global Cdlee- | Tempo- | Specid |FPcalee-| All other

marks | pointer | pointer saved? raries® | integer® | savedd FP
C/IC++ 7.65 5.09 1.77 1.44 1.15 2.00 1.24
Fortran 30.11 14.09 3.62 2.13 1.69 1.63 1.47
I nteger 8.13 5.05 1.94 1.48 1.18 1.45 1.39
FP 18.48 9.59 3.32 1.99 1.55 1.61 1.46
All 11.63 6.05 2.53 1.71 1.38 1.61 1.46

a s0-5

b. v0,a0-5,t0-11
c.tl12,at,ra
df2-9

24
not be used. In Chapter 4, such restore instructions are shown to account for a significant fraction

of the degree of use zero values observed.

Values in integer registers have a higher average degree of use than those in the floating-point
registers, matching the behavior observed in the results of integer and floating-point math opera-
tions (see Table 2.2). Interestingly, this is true for both integer and floating-point programs. In
fact, the higher average degree of use of floating-point programs (see Table 2.1) is due to a greater
average degree of use among the integer register values in those programs. This effect can be
attributed to the existence of many high-use loop induction and array base address variablesin the
numerical codes.

Temporaries are those registers frequently used by the compiler during general register aloca-
tion and expression evaluation (i.e., as intermediates in the evaluation of a complicated source
expression). In the integer programs, the average degree of use of values in these registers is
under the overall average (from Table 2.1) because many of them are involved in the aforemen-
tioned expression evaluation, which tends to result in single-use values. Floating-point bench-

marks use many integer temporaries for addresses, which inflates their average degree of use.

2.3 Temporal Characteristics
While degree of use of avalueis not atemporal property (i.e., itisnot specifically atiming related
parameter), it does have a tempora aspect. In particular, it is interesting to correlate a value's
degree of use with the intervals between the value's generation and itsfirst use, last use, and over-
write. Each of these intervals has a particular importance. Thefirst use of avalue begins the com-
munication process, knowing the distance between the value's creation and its first use defines a
window in which communication can be detected. Similarly, the distance to the last use defines a
window that contains the entire communication of a value. It also indicates the lifetime of the
value from the perspective of the program. Finally, the distance between consecutive definitions
of the same register indicates the lifetime of the value from the perspective of the hardware.
Absent some additional information, observing the definition of aregister is the only signal that
there will be no more uses of the value previously occupying that register.

Figure 2.4 illustrates how these intervals are correlated with avalue's degree of use. To avoid

making these measurements dependent on the configuration of a particular machine, the results

25
are expressed in terms of the number of instructions rather than a number of cycles. The very
long-tailed nature of the distance distributions renders the mean distance an inappropriate
measure [28]. Therefore, the data plotted in Figure 2.4 are the median distances with al bench-
marks in each group weighted equally.

The first use of a value occurs soon after the value's definition, independent of the degree of
use. This behavior is expected since one goal of the compiler isto minimize values' live ranges.
Programs compiled by the vendor Fortran compiler tend to have more instructions between the
generation of a value and its first use than the C/C++ codes. This difference may be attributed to
instruction scheduling of multi-cycle latency floating-point operations by this particular compiler,
especially within unrolled loops, the scheduler attempts to insert independent instructions
between the generation of avalue by along-latency operation and its subsequent use.

The interval between the generation and its final use is correlated with the degree of use of a
value—higher degrees of use require more instructions to reach the final use. The correlation
breaks down in some groups of benchmarks for degrees of use greater than four. Further investi-
gation indicates that thisis not systematic; rather, the number of static instructions generating val-
ues with high numbers of usesis relatively small and is therefore more subject to influence by a
small set of frequently-executed instructions with unrepresentative behavior.

The distance between consecutive definitions of a register tracks degree of use in a manner
similar to the distance between the definition and the final use. Note that degree of use zero val-
ues exhibit a relatively long interval between the definition of the value and its overwrite, espe-
cially for codes compiled with the vendor compilers. It isto be expected that for such values the
defining and overwriting instructions are in different basic blocks; otherwise, the definitions could
have been trivially optimized away. Values with uses, especialy those with just one use, may be

overwritten within a single basic block.

2.4 Working Set Behavior
Of particular interest in characterizing inter-instruction communication is the stability of that
communication during the execution of aprogram. Stability of communication istied to the num-

ber of possible degrees of use for values generated by a given static instruction, the relative fre-

26

Distance (instructions)

Distance (instructions)

[e2]
o

]
o

N
o

w
o

N
o

10

[e2]
o

al
o

N
o

w
o

N
o

Integer Floating-point C/C++

8265119
95

Fortran
8262181
32

Average

77
67

01234567+ 01234567+ 01234567+ 01234567+ 01234567+

Degree of use

(a) Vendor Compiler Suite

Integer Floating-point C/C++

62

10 ‘ ‘|}|
0

7193
78

Fortran
80 75133
108

Average

72

|

01234567+ 01234567+ 01234567+ 01234567+ 01234567+

Figure 2.4. Distance between a value’s generation and its first use, last use, and overwrite

Degree of use

(b) Third-party Compiler Suite

W Def-Overwrite
O Def-Last Use
@ Def-First Use

W Def-Overwrite
O Def-Last Use
@ Def-First Use

27
guencies with which those different degrees of use occur, and the temporal locality in the degrees

of use of consecutive values from that instruction.

2.4.1 Number of possible degrees of use

Figure 2.5 classifies static instructions based on the number of different degrees of use of values
generated by the instructions of the class. The vast mgjority of static instructions (87% on aver-
age) generate the same degree of use every execution. Due to their richer control-flow, integer
programs have a dightly larger fraction of instructions that generate multiple degrees of use.
Static instructions having more than two unique degrees of use comprise less than 3.5%, and in no
case more than 8.5%, of al static instructions.

The data of Figure 2.5 pertain to a particular execution of each benchmark. Thus, whileasig-
nificant number of instructions only generate values with a particular degree of use, it does not
mean that these instructions cannot possibly generate values with other degrees of use in other
runs of the same benchmark (e.g., given other inputs). The determination of the possible degrees
of use for an instruction may be formulated as a dataflow problem. This dataflow problem was
solved for these benchmarks to estimate the impact of variationsin control flow on the stability of
inter-instruction communication. For details on the dataflow formulation of the degree of use
problem, see Section 3.3.1.

The results of the analysis appear in Figure 2.6. Static instructions not represented in the data
of Figure 2.5 were filtered to allow a more direct comparison between the two fi gureﬁ.T The static
analysis data indicate that much more variability in the degree of use is possible than is observed.
However, an indeterminate amount of this increased variability results from limitations of the
analysisitself. The dataflow analysisisformulated in such away that it is guaranteed to be safe—
no degree of use can occur that is not identified by the analysis. However, it may assign degrees
of use to certain instructions that only occur along infeasible paths through the program (e.g., an
impossible path through two branches that are correlated). Therefore, the datain Figure 2.6 must

be considered to be an upper bound on the variability of the degree of use; the real results will be

T Onesmall difference between the two figures is that the static analysis cannot distinguish multiple
degrees of use above six uses. Regardless of how many unique degrees of use greater than six can occur
for aparticular static instruction, they count for only one unique degree in Figure 2.6. Figure 2.5 does
count each degree of use separately, but, due to the multiplicative effects of few high-use values and few
many-degree instructions, the difference between the two methods is negligible.

28

Type
Language

Fortran-90 —|

Floating-point
Fortran-77

Integer

SUOI1ON JISUI D17RIS 1O 1USD Jod

[1\4
uelslio4
++2/0
dd
18b91u|
seon|
|ob1eb
peeuwy
291998}
asimdnm
WwIms
NoenXIS
pubw
isde
nidde
esaw
ayenba
ue
dwuwe
idn
X91I0A
jlomy
|1ad
Jasred
Jpow
dizb
206
deb
Ayelo
zdizq
uoa

(a) Vendor Compiler Suite

Type

Floating-point

Integer

Language

Fortran-90 —|

Fortran-77

SUOI1ON JISUI D1TRIS JO 1USDJ2d

v
ueJslioo
++2/0
dd
1aba1u|
seon|
|1ob61eb
peewy
291908}
asimdnm
WIMs
MNoeAXIS
pubw
isde
nidde
esawl
ayenba
e
dwuwe
ada
X91I0A
jlomy
|dad
Jasred
ow
dizb
206
deb
Ayeln
zdizq
uoa

(b) Third-party Compiler Suite

Figure2.5. Unique degreesof use

29

Type
Language

Fortran-90 —|

Floating-point
Fortran-77

Integer

SUOI1ON JISUI D17RIS 1O 1USD Jod

[1\4
uelslio4
++2/0
dd
18b91u|

Type
Language

seon|
|1o6eb
peeuwy
291998}

Fortran-90 —|

asimdnm
WwIms
oRNXIS
pubw

Floating-point
Fortran-77

isde
nidde
esaw
ayenba
ue
dwuwe
1da

(a) Vendor Compiler Suite

X91I0A
Jlomy

|dad o
Jasred

Jpow
dizb
206
deb
Ayelo
zdizq
uoa

Integer

SUOI1ON JISUI D17RIS O 1USD Jod

[1\4
uellio4
++2/0
dd
JEYGENT]|
seon|
|obeb
peewy
RETERT]
asimdnm
WIms
NoenXIS
pubw
isde
nidde
esaw
ayenba
ue
dwuwe
1da
X91I0A
Jlomy
|ad
Jasred
Jpow
dizb
206
deb
Ayelo
zdizq
uoa

(b) Third-party Compiler Suite

Figure2.6. Possible unique degrees of use

30
in between those in Figure 2.5 and Figure 2.6. Even this conservative analysis indicates that some
58% of static instructions are constrained to generate only a single degree of use; less than 10% of
them generate more than four.

Figure 2.7 presents the distributions of Figure 2.5 weighted by the execution counts of the
static instructions. In other words, these distributions show the probability that arandom dynamic
value originated from a static instruction capable of generating the indicated number of different
degrees of use. On average, 14% of the value-producing static instructions in these benchmarks
are executed only once, resulting in an underestimation of the importance of instructions with
more variable behavior in Figure 2.6. The datain Figure 2.7 indicate that while instructions with
multiple possible degrees of use can generate as many as 43% of all values generated by a pro-
gram, they account for only 21% on average. Lessthan 4% of values are produced by instructions

with more than three different degrees of use.

2.4.2 Relativelikelihood of possible degrees of use
Just because an instruction generates values with many different degrees of use does not imply
that each of the possible degrees of useisequally likely. A static instruction executed one million
times might generate values with the same degree of use 99% of those times or it might generate
values alternating between two different degrees of use. These behaviors are obviously very dif-
ferent, but that difference is not captured in the data of Figure 2.5 or Figure 2.7. Figure 2.8 pre-
sents a distribution of dynamic values based on the frequency of occurrence of values with the
same degree of use from the same static instruction. In other words, the distribution bin N repre-
sents the frequency that a given value has the Nth most common degree of use of its originating
instruction. Over 96% of values exhibit whatever degree of use is most common for their pro-
ducer instructions. The two most common degrees of use possible from each static instruction
account for more than 98% of values for even the worst-case benchmark and for 99.5% of values
overal.

Figure 2.9 presents another slice of the same data depicted in Figure 2.8. In Figure 2.9, the
data from groups of benchmarks are combined and then broken down by the number of unique
degrees of use possible. Obviously, all values from instructions generating only one unique

degree of use have the most common degree of use possible from that instruction. About 90% of

31

Type

Floating-point

Integer

Fortran-90 —|

Language

Fortran-77

SonfeA o1WRUAp JO 1USD JBd

[1\4
uelslio4
++2/0
dd
18b91u|

Type
Language

seon|
|1o6eb
peeuwy
291998}

Fortran-90 —|

asimdnm
WwIms
NoenXIS
pubw
isde
nidde
esaw

Floating-point
Fortran-77

ayenba
ue
dwuwe
idn

(a) Vendor Compiler Suite

X91I0A
jlomy

|1ad 0
Jasred

Jpow
dizb
206
deb
Ayelo
zdizq
uoa

Integer

SoNn[eA o1WeRUAp JO 1USD lBd

v
ueJtlioH
++2/0
dd
1aba1u|
seon|
|1ob1eb
peewy
RETER)=T]
asimdnm
WIMms
NoeIXIS
pubw
isde
nidde
esawl
ayenba
e
dwuwe
ada
X91I0A
jlomy
|1ad
Jasred
Jow
dizb
206
deb
Ayeln
zdizq
uoa

(b) Third-party Compiler Suite

Figure2.7. Unique degrees of use weighted by execution count

32

Type

Floating-point

Integer

Language

Fortran-90 —|

Fortran-77

SUOION JISUI D1TRIS JO 1USD Jod

v

ueJlio4

++2/0
dd
18b91u|
sean|
1o6reb
pgewy
RETEL)T

asimdnm

wims
SoRNXIS
pubw
1sde
nidde
esaw
aYenba
e
dwuwe
1da
X91I0A
jlomy
Jhad
Jasied
pow
dizb
206
deb
Ayelo
zdizq
uos

(a) Vendor Compiler Suite

Type

Floating-point

(b) Third-party Compiler Suite

Integer

Language

Fortran-90 —|

Fortran-77

Figure2.8. Likelihood of possible degrees of use from static instructions

SUOION JISUI D1TRIS JO 1USD Jod

14
uelJlio4
++2/0
dd
18b91u|
sean|
1ob61eb
pgewy
291908}
asimdnm
wims
NoenxIs
pubw
1sde
nidde
esaw
ayenba
e
dwuwre
1da
X910A
jlomy
J4ad
Jasred
pow
dizb
206
deb
Ayelo
zdizq
uoa

33

Cumulative frequency

Cumulative frequency

100

90

80

70

60

50

40

100

90

80

70

60

50

40

Integer

123456 7+

Integer

123456 7+

Floating-point C/C++ Fortran Average

1234567+ 1234567+ 1234567+ 123456 7+

Unique degrees of use

(a) Vendor Compiler Suite
Floating-point C/C++ Fortran Average

1234567+ 1234567+ 1234567+ 123456 7+
Unique degrees of use

(b) Third-party Compiler Suite

Figure2.9. Likelihood of possible degrees of use from static instructions

W 6+
05
=4
H3
02
E1

W 6+
a5
=4
m3
02
E1

34
values from instructions with two potential degrees of use end up with the most common of the

two. Thefigureillustrates that even among those instructions that can generate values with many

different degrees of use, one particular degree of use is dominant.

243 Temporal locality in per-instruction degrees of use

Finally, it is important to ascertain whether there is any temporal locality to the degrees of use
generated by a particular static instruction. Consider an instruction that generates two different
degrees of use with equal frequency over the execution of a program. If these different degrees of
use are distributed randomly, this makes prediction more difficult than if al instances with one
degree of use occur sequentially before those generating the other possible degree of use.

Figure 2.10 presents data on the temporal locality of the degrees of use arising from particul ar
static instructions. The distribution shows how recently a value of the same degree of use came
from the parent static instruction. In other words, if the last N unique degrees of use for each
static instruction could be remembered, Figure 2.10 shows where the degree of use for the next
value would occur in this set. The dataindicate significant temporal locality: a value has the same
as the degree of use as the last value from the same parent instruction 95% of the time; one of the

last two observed degrees of use match the next one to occur over 99% of the time.

2.5 Mathematical Models

To this point, the properties of degree of use have been considered purely by experimental obser-
vation. Considering the properties of degree of use analytically can also be useful. One way in
which an independent analytical model can be useful is to lend confidence to the correctness of
experimental results. Another application isin answering questions for which experimental data
is unavailable or difficult to obtain. This section presents mathematical descriptions of degree of
use properties, improving a previously existing model and offering an independent confirmation

of the observed mean degree of use.

251 Degreeof usedistribution

Eeckhout and Bosschere observed that the relative frequencies of values with different degrees of
use (greater than zero) were well-fit by a power law model [28]. Mathematically, the probability
that the degree of use D of avalueisequal to x is given by:

35

Type

Floating-point

Integer

Language

Fortran-90 —|

Fortran-77

m
© < N o [o¢] © < [o
() (o)) (o)) () [ee]) [ee] [ee] o0

SaNn[eA o1WeRUAp JO 1USD lBd

14
uellio4
++2/0
dd
18b91u|
sean|
1ob61eb
pgewy
291908}
asimdnm
wims
NornNXIS
pubw
1sde
nidde
esaw
axenba
e
dwuwre
1da
X910A
jlomy
J4ad
Jasied
pow
dizb
206
deb
Ayelo
zdizq
uos

(a) Vendor Compiler Suite

Type

Floating-point

Integer

Language

Fortran-90 —|

Fortran-77

I
[oe] © < N o [o2] © < N o
[«2) [« [«2) [« [« [ce) <) [ce) [ce) [¢°)

SaN[eA JIWRUAP JO 1USD Jod

v
ueJslioH
++2/0
dd
JELENT]
seon|
|1ob1eb
peewy
791908}
asimdnm
IS
MNoRAXIS
pubw
isde
nidde
esawl
ayenba
e
dwuwe
ada
X91I0A
jlomy
|dad
Jasred
ow
dizb
206
deb
Ayeln
zdizq
uoa

(b) Third-party Compiler Suite

Figure2.10. Temporal locality in per-instruction degrees of use

36

PID=x] = a X", forxOz" (Eq. 1)
where a and [3 were determined using linear regression. Taking the log of Equation 1 yields:
logP[D = x] = loga — 3 ogx (Eq. 2
whichislinear in x. Notethat by letting x = 1, it iseasily shown that a is the frequency of sin-
gle-use values.

Equation 1 cannot be a proper probability distribution function (PDF) for two reasons. First,
it cannot account for the occurrence of values with a degree of use of zero, being undefined at that
point. Second, a PDF must have the property that the probabilities of all possible values of the

random variable sum to one:

S PID=x] =1 (Ea.3)
=0

There is no such guarantee when a and 3 are empirically determined. However, it is possible to
fix this model, simultaneously accounting for zero-use values and ensuring that the result isatrue
PDF.

Assuming that Equation 1 accurately describes the probabilities of al non-zero degrees of
use, the fraction of values with degree of use zero is exactly the “leftover” probability when all

non-zero degrees are summed:

PID = O]-l—ZP[D-x]-l—ZaD(B—l amziﬁzl—a[z(g) (Eq. 4)

X =
where {([3) denotes the Riemann Zeta function.

Combining Equation 1 with Equation 4, a proper PDF is obtai ned:

_ @-aX@) x=0
P[D =x] = ED(D(_B <> 1 (Eq. 5)

Note that this formula till has only two independent parameters, a and 3, newly constrained by
the requirement that P[D = 0] = 0. Asaresult, the distribution can be completely defined by the
frequencies of zero-use and single-use values, although it remains to be seen whether the resulting

distribution will match the empirical data as well asif the parameters were determined by fitting.

37
Table 2.4: Analytical Model Parameters

Method a B <D> P[D =Q] P[D = 1]
Linear regression 0.832 2.79 1.58 -3.96% 83.2%
Mean and single-use 0.674 2.50 1.75 9.65% 67.4%
Mean and zero-use 0.717 2.55 1.75 5.05% 71.7%
Zero-use and single-use 0.674 2.35 2.34 5.05% 67.4%
Actua data N/A N/A 1.75 5.05% 67.4%

One nice side effect of having a PDF is that it allows for the analytical determination of the
mean. The mean degree of use or expectation value [DL issimply the sum of all possible degrees
of use weighted by their frequency of occurrence:

0= ¥ x(P[D=x] = ZxEuD(B:aDZ x P = az(p-1) (Eq. 6)
1

x=0 X = x=1
The above formula also offers additional methods for determining a and 3 without linear regres-
sion. Any two of (1) the probability of zero-use values, (2) the probability of single-use values, or
(3) the mean can be manipulated to find the two PDF parameters without fitting. Table 2.4 shows
the values of a and 3 derived by these methods and linear regression; the resulting mean and fre-
guencies of zero- and single-use values are shown along with those from the actual datafor com-
parison purposes. The bold values in each row were those used to determine o and 3.

The requirement that the model be a proper PDF forces the selection of one of the methods
that explicitly uses the frequency of zero-use values. Equation 5 ensures that when a and 3 are
chosen to match the observed zero-use frequency, the aggregate probability will sum to one. Of
the two possibilities, the one that aso fits to the observed mean gives much better agreement to
the free parameter. Note that linear regression resultsin quite poor agreement with both the mean
degree of use and the frequency of single-use values. Also, justifying the initial criticism, linear
regression does not yield a true PDF since the aggregate probability of all degrees of use greater
than zero is 104% (witness the —4% leftover for zero-use values)! Neither of these problems exist
with the improved model of Equation 6 with a and 3 derived from the observed mean degree of

use and zero-use frequency.

38

Linear regression
<D>and P[D = 0]

In(frequency)

-10 +————————— —— —

In(degree of use)

Figure2.11. Analytical models of degree of use distribution

Thefit of thismodel is shown graphically in Figure 2.11 along with the original linear-regres-
sion-based model. On thislog-log plot, the degree of use-zero data cannot be included—the | eft-
most datapoints are the frequencies of single-use values. Linear regression gives relatively more
weight to the frequencies of high use values,; Table 2.4 shows that as a result, it does not fit the
data as well for either the most frequent degree of use (or the mean). The improved model does a
much better job in thisregard. Where the two models do deviate significantly (the frequencies of
the highest-use values), the actual data shows far more variability, validating the improved model

in thisregion.

2.5.2 Independent derivation of the mean degree of use

The preceding section provided probabilities for any possible degree of use and related them to

the mean given a couple of parameters derived from observation. It isalso possibleto arrive at the

mean degree of use by considering the properties of groups of instructions comprising a program.
The average degree of use [DL isjust the total number of uses divided by the total number of

values;

39

N Lutix N; w0
EDD: uses = nsns — E) 7
N fxN f (Ea.7)

values vpi insns vpi

where N o5 1S the total number of uses, N, 4 es 1S the total number of values, N5 IS the number
of instructions, LLL is the average number of inputs per instruction, and f,y; is the fraction of
instructions that produce result values.

[UC and f,; are not independent, but may be estimated separately by considering a typical
mix of dynamic instructions. Alpha machine instructions have between zero and three (inclusive)
inputs. Zero input instructions are primarily used to load registers with constants; conditional
moves are the only three input instructions (the Alpha architecture does not include fused multi-
ply-adds). Neither category contributes more than 2% to the dynamic instruction count. Thus,
[uC is essentially determined by the relative proportions of one- and two-input operations with
loads and branches being the most important class of single-input instructions. Finally, an adjust-
ment must be made for operations that take an immediate value as an input. Estimating f,, is
more straightforward: as mentioned in Section 2.1, stores and branches comprise nearly all of the
instructions that do not generate result values.

Starting with Equation 7 and applying these approximations,

D= DUD: 2f2-input + f1-input B fimmed ~ 2(1- f1-input) + f1-input B fimmed

fvpi 1- fstores —f branches 1- fstores —f branches

2t i 2_f, 1 f (Ea.8)
- ~ "1-input — "immed ~ ~ "loads ™ ' branches™ 'immed

1- fstores —f branches 1- fstores —f branches

where fyye is the fraction of instructions of the given type. Using a mix of 17% branches, 9%
stores, 26% loads, and 35% immediate mode operations (observed on DL X, an archetypical RISC
architecture [38]), yields an average degree of use of 1.65, close to the observed means listed in
Table 2.1. Thisresult adds confidence to the notion that the mean degree of use will be consistent

across different programs compiled to the same instruction set.

2.6 Summary
This chapter presented an exploration of inter-instruction value communication patterns viaregis-
ter degree of use. Several noteworthy properties were found to hold across a range of bench-

marks, even when compiled with different compilers. Most importantly, single-use values

40
dominate all values produced during a program’s execution, accounting for over 60% of valuesin
most benchmarks; values with more than three uses account for under 10%. The high incidence
of values with a small number of uses leads to an average degree of use of around 1.7, although
this varies anywhere from 1.5 to 2.1 among the individual benchmarks. Together, these properties
indicate that much of the value communication occurring during the execution of a program is
simple in nature and thus should not require complicated mechanisms.

Two other interesting properties that could be exploited in the design of alternative communi-
cation mechanisms are the occurrence of zero-use values and the frequent use of high-use values
as instruction inputs. The occurrence of zero-use values is highly-dependent on the specific
benchmark and compiler, but can exceed 10%. These will be investigated in more detail in
Chapter 4. While values with a high degree of use account for a small portion of all values pro-
duced, they supply a much larger fraction of all values used. Roughly one-third of instruction
inputs come from values with more than seven uses (with another third from values with two to
six uses and the remainder from single-use values). These widely-used values are precisely those
that are well-suited to the register communication model in which a value is assigned dedicated
long-term storage from where it can supply many consumers.

Examining degree of use behavior by architectural register and instruction type shows that a
value's degree of use behavior istied to its role within a program. For example, instructions that
generate temporaries have a low average degree of use, while those that manipulate the stack
pointer or other registers containing addresses generate more frequently-used values.

Because the purpose of each static instruction isfixed in a program, the per-instruction degree
of use behavior shows little variation over the execution of a benchmark. More than 75% of all
values come from static instructions that generate values with the same degree of use every time
they are executed. Even among those instructions that can generate values with different degrees
of use, the observed degrees of use are biased towards those generated most commonly and most
recently. The per-instruction locality of degree of useis crucia to the success of degree of use

prediction, which is presented next.

41

Chapter 3

Degree of Use Prediction

To guide the communication of a value, its degree of use must be known as soon as it is known
that the value will exist, even prior to the computation of that value. However, degree of use
information on a particular value cannot be obtained until the value is overwritten, after its com-
munication has completed. The disparity between when degree of use information is needed and
when it is known may be resolved through prediction and speculation.

High-performance microarchitecture speculate on many different kinds of information before
the information may be observed or calculated. In each case, the speculation is enabled by the
existence of a predictor for the information that is needed. For example, predicted outcomes of
conditional branches are used by high-bandwidth fetch mechanisms before the branches have
been executed. This chapter devel ops the concept of degree of use prediction, which will enable
optimizations presented in subsequent chapters.

A feature common to all of the degree of use predictors described is the association of degree
of use knowledge with the static instructions comprising the program. The structure of a program
necessarily encodes the dataflow possible during any execution: the consumers of an instruction’s
result are only those instructions that use the result register and can be reached by that definition.
Depending on the actual flow of execution, the same static instruction may give rise to instances
that differ in the number (and identity) of consumers, but all of these possibilities are evident

within the original program. Thisfact givesriseto the central role of the static instruction identity

a2
in degree of use prediction and underlies the difference between static and dynamic degree of use
prediction.

Static degree of use prediction involves analysis of a program to enumerate all possible
degrees of use that can arise from each individual instruction. Perfect accuracy is attained for pre-
dictions on instances of instructions that only generate a single unique degree of use. Where the
analysis finds that multiple degrees of use are possible, profile information or a predetermined
policy can be applied to select the most likely or desirable prediction. In al cases, however, the
prediction is associated with identity of the static instruction.

Dynamic degree of use prediction uses the observed behavior of the program during execution
to predict its future behavior. Even in the dynamic scheme, the identity of the static instruction is
of paramount importance. The use of dynamic prediction does not change the fact that the range
of possible communication behaviors of each static instruction is fixed by the program. There-
fore, astatic instruction’sidentity is the best possible key with which to associate dynamic knowl-
edge about instances of that instruction. Also, the raisond’étre of a degree of use predictor isto
supply information about avalue beforeit is generated. Asthe processing of an instruction begins
with a fetch operation on the instruction’s address, that address (equivalent to the identity of the
static instruction) is the first piece of information enabling the generation of a prediction.” The
real potential of dynamic prediction schemes lies in their ability to leverage other information
besides the identity of the executed instructions to differentiate among instances of a static
instruction that behave differently.

This chapter begins with an explanation of how specific predictor implementations are evalu-
ated. Next, the nature of the information provided by the degree of use predictor is discussed—in
many cases, the exact degree of use may not be representable or even desired. A discussion of
static degree of use prediction follows, including a complete description of how degree of use
information for individual static instructions may be found through dataflow analysis. Most of the
remainder of the chapter focuses on dynamic degree of use prediction, which uses past observa-

tions of the degree of use to generate subsequent predictions. Three different prediction algo-

t This statement isasimplification. In superscalar machines, for example, that fetch multiple instructions
per cycle, only the starting address of a block of consecutive instructions may be explicitly generated for
the fetch process. However, the argument is unchanged as the individual instruction addresses are trivi-
aly derivable from the block address.

43
rithms are presented, offering different trade-offs among performance, capacity, and complexity.
Finaly, the potential for hybrid prediction schemes, which combine elements of static and

dynamic prediction schemes are addressed.

3.1 Predictor Evaluation

The prediction strategies in this chapter are presented without reference to any particular optimi-
zation. Not knowing how degree of use predictions are to be used, performance (or execution
time) cannot be used to evaluate the efficacy of a predictor. Instead, indirect measures such as
accuracy, that are independent of the application of the predictions, are used in this chapter.
Unlike for a branch predictor, however, accuracy alone is insufficient to describe the complex
behavior of a degree of use predictor. While a branch predictor supplies binary predictions for
every branch, a general degree of use predictor supplies multi-valued predictions for a subset of
value-producing instructions.

A degree of use predictor can be characterized by the relative numbers of overpredictions,
underpredictions, non-predictions, and correct predictions (only three of which are independent).
Overpredictions and underpredictions quantify predicted degrees of use greater than or less than
the actual degree of use, respectively. The consequences of overpredictions and underpredictions
may be vastly different depending on the application and the extent to which the prediction is
incorrect. Absent an application, however, all mispredictions will be considered equivalent. Non-
predictions count the number of values for which the predictor did not supply a prediction.

It is also useful to establish the notions of accuracy and coverage. Accuracy is defined in the
typical fashion—the percentage of all predictions that are correct. Non-predictions do not influ-
ence accuracy but are instead reflected in coverage, which is defined as the percentage of all val-
ues for which a prediction (right or wrong) is generated. Figure 3.1 defines these relationships
graphically. Note that increasing coverage alone increases correct predictions and mispredictions,
while increasing accuracy alone changes mispredictions into correct predictions. Provided the
accuracy is above a minimum threshold (established by the benefit of correct predictions versus
the cost of mispredictions), increasing either accuracy or coverage in isolation resultsin anet ben-
efit.

All values Predictions
100% 100%
O dict Correct on. mis-
o verpredic |on. predictions predictions
=}
©
° O
5 []
S []
g . Underprediction
8 Coverage Accuracy
o
N No prediction
T, Talalel gl Tglgl *
0'1'2'"3'4'5'6'7"'8'9
Actual degree of use
0% 0%
(@ (b)
Figure3.1. Accuracy and coverage in degree of use prediction

Many predictor parameters offer a trade-off between accuracy and coverage. The optimal
value of any such parameter ultimately depends on the application, but it is possible to make some
observations using a simple model. Assume that any performance benefit made possible by
degree of use prediction occurs in proportion to the number of correct predictions. This benefit is
offset by a performance cost in proportion to the number of mispredictions (a simplification, since
mispredictions occur in different magnitudes and directions). By expressing the average cost of a
misprediction as a multiple (the cost factor) of the average benefit of a correct prediction, an
effective performance benefit can be cal cul ated:
B=n—-flh,=Nh-fINEQl-a) = NtHa-f{1-a)] (Eqg. 9)
where B is the effective benefit, n; is the number of correct predictions, ny, is the number of
mispredictions, N is the total number of instructions, c is the coverage, a is the accuracy, and f is
the cost factor. Note that the magnitude of the benefit is directly proportional to the coverage,
which is good as long as the benefit is positive.

Achieving a positive effective benefit requires the factor in brackets to be positive, which

establishes a constraint on the minimum accuracy:

f

45
High cost factors (i.e., more costly mispredictions) demand a more accurate predictor, and make it

more difficult to justify sacrificing accuracy for coverage. For example, given 80% coverage and
90% accuracy, a decrease in accuracy to just 89% must be met by a coverage increase to better
than 94% to achieve a net performance improvement at a cost factor of five. Even at a cost factor
of one, the 1% accuracy decrease is only offset by a 2% coverage increase. Thus, within the con-
straints of complexity and hardware cost, it will nearly always be better to choose policies that

lead to more selective predictors (i.e., those that increase accuracy at the expense of coverage).

3.2 Encoding Degree of Use Infor mation

Before exploring how degree of use prediction may be accomplished, the form of the prediction
itself will be considered. This discussion is meant to provide an overview of the possibilities as
the specifics will depend on how the predictions are to be used. As applications are discussed in
the following chapters, this topic will be revisited with the specific needs of the applications in
mind.

Figure 3.1 implies certain characteristics about the information available from the predictor.
Specifically, thereisalimit (six usesin the example) beyond which all degrees of use are consid-
ered equivalent from the predictor’s point of view. Below this limit, the predictor differentiates
each possible degree of use. Finally, the degree of use predictor may abstain from generating a
prediction at all. This section discusses the issues surrounding predictor policies regarding the
maximum degree of use, the preference for certain outcomes, the grouping together of different

degrees of use, and the choice of a default behavior.

3.2.1 Maximum predictable degree of use

The huge range of potential degrees of use of dynamic values (see Section 2.1) must be consid-
ered in the design of a degree of use predictor. Values with very high degrees of use occur infre-
guently relative to other values. While it may be important to identify high-use values, it almost
certainly does not matter whether such avalue has a degree of use of one hundred thousand or one
hundred million—in both cases, the live time of the valueis very large compared to the lifetime of
atypical instruction within the processor, and the value will be needed by many consumers long

after the generating instruction retires. Also, there isthe practical issue of physically representing

46
degree of use information. Allocating tens of bits to a degree of use prediction when three bits
suffices over 99% of the timeis clearly wasteful.

These considerations |ead to the selection of a degree of use limit. Thus, all degree of use pre-
dictors are saturating: degrees of use greater than the limit are treated as equivalent to the limiting
degree of use. The precise limit is dictated by the representation and storage overhead, the dimin-
ishing ability of a predictor to distinguish among high degrees of use (see Figure 3.20), and the
particular application. Beneficial side effects of reducing the maximum predictable degree of use
include increased accuracy and a potential decrease in predictor overhead (if the degree of use can
be represented with fewer bits).

The choice of encoding of the degree of use information leads to a spectrum of different pos-
sibilities. An example two-bit encoding might differentiate instructions that: (1) generate single-
use values, (2) generate values with some other single degree of use, (3) generate values with
many uses, (4) have variable/indeterminate behavior. The final choice of encoding necessarily
would depend on the number of available bits and the expected application of the information.
Considering that a majority of values have one of a small number of degrees of use (Figure 2.1),
most interesting applications could probably be handled with two or three bits of degree of use
information per instruction. For the predictors studied in this chapter, a three-bit encoding is

assumed, allowing degrees of use less than seven to be fully differentiated.

3.2.2 Biasing

Biasing refers to the practice of preferentially selecting certain possible degrees of use based on
the application. It isfrequently possible for instructions that are indistinguishable to the predictor
to have different degrees of use. For a static predictor, this manifests as more than one degree of
use being possible for a given instruction with no additional information favoring a particular out-
come. The same situation applies to a dynamic predictor when identical input information corre-
sponds to different possible degree of use outcomes. The application of the degree of use
prediction may indicate that, for example, the highest possible or observed degree of use be deliv-
ered under these circumstances. In this case, the predictor would be biased towards the maximum
degree of use. Other biases that might be reasonably expected to be useful are biasing towards the

minimum degree of use, the most likely degree of use (exactly the same as minimum with the

47
exception of degree of use zero), and (for dynamic predictors only) the most recently observed

degree of use. Biasing is not employed by any of the predictors that will be presented.

3.2.3 Default predictions

Any application of degree of use prediction must be able to handle the unavailability of a predic-
tion for certain instructions. This situation applies to both dynamic and static prediction methods.
Dynamic schemes may lack information on instructions before they are first executed or if along
time has elapsed since their last execution; static degree of use information may not be available
within certain dynamically-linked libraries or may be deliberately omitted for instructions that
have statically-indeterminate behavior. In such cases, a default degree of use prediction can be
supplied by the predictor in place of a non-prediction.

The use of such an implicit default prediction can reduce predictor overhead. In order to han-
dle non-predictions, any application of degree of use information will have an implicit behavior in
the absence of information, which may match that corresponding to a specific degree of use pre-
diction. In this case, explicit demarcation or storage within the predictor of the degree(s) of use
leading to that default behavior is unnecessary as predictions of this degree are correctly sub-
sumed by the default prediction. The savings correspond to the frequency of occurrence of the
default degree of use; the cost of using a default prediction is the loss of information about the
confidence of a particular default prediction.

Because different applications of degree of use prediction will be studied and the default is an
application-dependent policy, implicit default predictions are not considered for the evaluation of
the predictor inisolation. Instead, the predictor is alowed to deliver a non-prediction as a distinct

outcome from any particular degree of use.

3.24 Grouping

Grouping multiple degrees of use into classes (e.g., many-use or few-use) is another potentially
beneficial predictor policy. For certain applications, knowing that the degree of use of avauelies
within a certain range is more important than knowledge of the exact degree of use. Predicting
that the degree of use of avalue will be in a specific range is easier than attempting to predict the
exact degree of use because the latter can exhibit mispredictions due to confusion between

degrees of use belonging to asingle group. Thus, a predictor that employs grouping will always

48
have higher accuracy. Note that the saturating maximum degree of use (Section 3.2.1) is equiva

lent to a grouping of all predictions greater than or equal to that limit. In this chapter, absent a
particular application, it will be assumed that it isimportant to differentiate among all the degree

of use outcomes below the limit.

3.3 Static Degree of Use Prediction

This section devel ops static degree of use prediction. The defining characteristic of static degree
of use prediction is the generation of predictions through off-line analysis. Such schemes rely
upon the compiler or a profiler to annotate each value-generating static instruction with degree of
use information. Thisinformation can then be conveyed to the hardware to generate degree of use
predictions.

The capabilities of a static prediction scheme depend on the sophistication of the analysis per-
formed and the expressiveness of the interface used to communicate analysis results to the hard-
ware. For example, it may be possible to communicate multiple possible degrees of use per
instruction along with the dynamic conditions that lead to one particular outcome. In this section,
however, it is assumed that the goal of the static analysis is the assignment of a single degree of
use to each static instruction.

The characterization data presented in Section 2.4 illustrates the potential for obtaining rea-
sonable performance from such a static prediction scheme. Specificaly, the majority of static
instructions generate values that have only a single unique degree of use during a program’s exe-
cution; even among those generating values with different degrees of use, one particular degree of
use dominates. However, this data applies to one specific execution. Since Figure 2.6 shows that
an average of 40% of static instructions have more than one statically-possible degree of use, one
must ask the question of how well a single, statically-selected degree of use for such an instruc-
tion would suffice across executions.

Executions differ only as aresult of input data—the program itself does not change. There-
fore, any variability in the degrees of use must result from differencesin the input data. Since the
degree of use of a particular dynamic instruction is completely determined by the program (fixed)
and the subsequent dynamic control flow (variable), this issue is equivalent to a more familiar

one—the effect of input data on dynamic control flow.

49
Others have observed that the control flow of a program is relatively constant with respect to

the input data[33, 86]. Also, consider the categorization of static instructions into those with:
(1) asingle static degree of use; (2) asingle degree of use where the analysis derives multiple pos-
sible degrees of use (e.g., because certain paths are impossible due to the logic of the program);
(3) two possible degrees of use where one only occurs in the presence of a rare error condition;
(4) multiple possible degrees of use where many inputs lead to the same single degree of use; and,
(5) highly-input dependent multiple degrees of use. Only those static instructions in the final cat-
egory will contribute significantly to variability in degree of use characteristics across different
executions. Therefore, it can be expected that the performance of a static prediction scheme with
afixed, single degree of use per static instruction will be robust with respect to varying input data.

The actual process of static determination of degree of use information involves dataflow anal-
ysis similar to that aready performed by optimizing compilers. The efficacy of this technique
alone is limited because it computes for each instruction every possible degree of use, including
those that result from impossible or unlikely paths through the program. Without additional infor-
mation, no prediction may be safely selected where the analysis indicates multiple possible
degrees of use, resulting in limited coverage (but 100% accuracy!). The coverage can be
improved with varying accuracy degradation using profiling: data from branch or path profiles
used during the dataflow analysis can identify the most likely prediction among the set of possible
predictions. The direct application of degree of use profiles to improve the results of the data-
flow analysisis considered in Section 3.3.4. Augmenting the analysisitself with control-flow pro-

filing information is also possible [7, 21, 62, 70], but is outside the scope of thiswork.

3.3.1 Formulating degree of use determination as a dataflo problem

A dataflow problem is simply a system of equations associated with a control-flow graph whose
solution yields information about the data in the program represented by the graph. The variables
within the system of equations are the dataflow facts one at each node. The directionof the prob-
lem—forward or backward—determines whether dataflow information propagates in the same or
opposite direction as the flow of execution, respectively. A meetopemator specifies how multiple
facts are combined into a single fact. Finally, each node in the graph has an associated dataflow

function which summarizes the dataflow effect of that node, or how that node changes a dataflow

50
fact. Thus, to define the degree of use dataflow problem, each of (1) the kind of dataflow facts,

(2) the direction of the problem, (3) the meet operator, and (4) the possible dataflow equations
must be specified.

At each point in the program, the dataflow fact for aregister R is the set of all possible num-
bers of uses of R between that point and the end of the program. When the point under consider-
ation is the instruction that writes R, the dataflow fact for R is exactly the set of possible degrees
of use for that instruction, which is precisely the information required by a static prediction
scheme. A maximum representable degree of use D, Mmust be defined to avoid infinite-sized
facts.T Thus, for any given register, the facts are represented by a set S, where Du S,
0< U< Dppgx-

Note that the dataflow problems for the architectural registers are completely independent: the
dataflow facts (i.e., possible degrees of use) for one register never affect the facts about another
register. Thus, without loss of generality, the discussion of the dataflow problem can be smplified
by limiting it to asingle architectural register. The overall solution consists of the set of indepen-
dent solutions for al architectural registers, which may be determined in parallel.

The determination of degree of use is a backward dataflow problem since the facts at each
point pertain to paths from that point to the exit. Each instruction that writes a register defines a
new value. For uses of that value to be attributed to the instruction, information must flow from
the uses and be collected at the definition (i.e., backwards with respect to execution). Thus, each
definition (1) assumes the dataflow facts true immediately after the definition as the possible
degrees of use for its values, and (2) creates a new fact {0} for the overwritten register (true
immediately prior to the instruction) that indicates that once the flow of control reaches this defi-
nition, no more uses of the prior contents of the register can occur.

Consider next the meet operation to combine dataflow facts along two potential paths. If dif-
ferent sets of degrees of use are possible along two different paths from a certain point, then the
set of possible degrees of use prior to that point includes the elements of both sets. Given facts U

and V (representing sets of possible degrees of use for a particular register), true for two different

T For example, consider avalue used within aloop body. Since loop iteration counts are opague to the
analysis, the fact for the register containing that value must account for all possible iteration counts
[1, 0). Without an upper bound, the size of the dataflow fact would be infinite. A further discussion of
the maximum degree of use may be found in Section 3.2.1.

51
potential paths from apoint, the factstrue at that point are U [J V. Thus, the meet operator for this

dataflow problem is set union.

Finally, consider the dataflow functions for an instruction, which modify the facts to account
for theinclusion of that instruction on the path. Any instruction may be decomposed into uses of
some registers (occurring first) and (sometimes) the definition of aregister. Because degree of use
determination is a backward dataflow problem, the dataflow function must convert the facts true
after the instruction is executed to those that are true beforehand. Therefore, the register defini-
tion modifies the facts first: if the instruction writes the register R, the set of possible degrees of
use corresponding to that register is made to contain only the zero element (not the empty set: itis
known immediately prior to the definition that R will be used exactly zero times prior to it being
overwritten). Subsequently, the facts are modified by the input registers of the instruction. For
each input register, every element in the set of possible uses corresponding to that register isincre-
mented. For example, if the set of possible uses of aregister after an instruction is{2, 5, 6}, then
a single use of that register by the instruction leads to the set {3, 6, 7} applying prior to the
instruction. The dataflow functions are as follows:

Definition of R: AS{0} (Eq. 11)
Useof R: AS{min(u+1,D,)u0S}
where Sisthe set of dataflow facts corresponding to the register R.

An example instance of the dataflow problem and its solution appearsin Figure 3.2. The code
describes a simple function that finds the first node within a linked list that contains the specified
data. The control-flow graph for thef i nd() function appears along with the dataflow facts that
true at the entry and exit of each basic block. The derivation of facts true at points within abasic
block istrivia given the correct facts at the exit of the block.

In order to proceed with the dataflow analysis, initia facts true at the procedure exit (r et urn
instruction) must be provided from which the dataflow information for the rest of the fi nd()
procedure may be derived. Because architectural registers do not observe procedural boundaries,
the uses of values past the end of a procedure are actually determined during analysis of the call-
ing procedure. The need to initialize the facts at a procedure’s exit based on subsequent uses in
the caller illustrates the need for interprocedural dataflow analysis, wherein dataflow facts can be
propagated among the procedures of the program. The general approach used for the interproce-

52

node_t

node t *node

*find(int val,

node_t
l'ist;

*list) {

whil e (node &% (node->data != val))

node = node- >next;
return node;
}
A
bis zero,al, v0
<£§q al, D :> vO a0 al fa
(node) | (val) |[(list)

B Aenter| {0} [{0,123.}| {2} {1}
di :8, 0(()Vt02) Aexit | {12} [{0,123.}] {0} {1
’gg; to:g ! Benter| {2} |{123.} | {0} (1
Bexit | {1 [{0,1,23,.}] {0} (1
C Center| {1} 1[{0123,.}| {0} {1}
qu VO, 8(VO)> Cexit | {12} |[{0123.}| {0} (1}
bne v0, B Denter| {1} {0} {0} (1
Dexit | {1 {0} {0} {0}

D
(ret zero,(ra),l)

Figure 3.2. Control flow graph annotated with degree of use dataflow facts

dural analysiswas described by Sharir and Pneuli [75] and is detailed in Section A.3 of the appen-

dix. In Figure 3.2, it is assumed that only the return value is used by the calling function (and

only once).

3.3.2 Solving the degee of use datafle problem

Now that the dataflow problem has been completely specified, consider the following method of

solving it. Enumerate all paths through the program. For each such path, solve the dataflow prob-

lem assuming the execution traverses only that path. Finally, combine the resulting solutions
using the meet operator (since the solutions are sets of facts). The resulting solution is called the

meet-over-all-paths solution and is the most precise possible solution assuming that all paths

through the program are actually feasible. Obvioudly, this method of solution is intractable for

anything but the most trivial programs.

53
Instead the dataflav problemmay be solved iteratively asfollows. First, all of the nodesin

the control-flov graphareplacedin aqueue.In eachstep,anodeis removedfrom the queueand
the factstrue after that nodearecomputedoy combining(usingthe meetoperator)the factstrue
beforeeachof that nodes successors.Then,the nodes dataflav functionis appliedto find the
beforefactfor the node. If the beforefactis changedthe nodes predecessorareplacedin the
gueue. Assumingthat the procesgerminateq(i.e., the factscorverge), the resultingsolutionis
calledthe greatesfixed-pointsolution. The natureof the particulardataflav factsandfunctions
of thedegreeof useproblemmake it possibleto provide guaranteeaboutthe existenceandpreci-
sion of a solution awved at by this methofd9].

First, the domainof the dataflav factsis a completelattice—thatis, it is a finite, partially-
ordered set (ordered by [1) with a least upper bound [0 and a greatestlower bound
{ubDulZ,0su<Dpyd. Second,the dataflav functions of Equationll are monotonic:
POQO f(P)O f(Q).Jr Togetherthesepropertieguarante¢he existenceof agreatesfixed-point
solutionto the setof dataflav equations.Additionally, becausehe dataflav functionsaredistrib-
utive underthe meetoperatorf(P O Q) =f(P) [f(Q),jt this solutionis guaranteedo bethe same

as the meeta@r-all-paths solution.

3.3.3 Results
The dataflav analysisdescribedn the previous sectionwas performedusinga binary analyzer
Normally, this type of analysiswould be performedby a compiler but modifying the compilers
usedin generatinghe evaluationbenchmarksvasnot anoption. The consequencesf perform-
ing theanalysigdirectly on abinaryandthe operationof theanalyzeraredescribedn SectionA.3
of the appendix.

Dataflav analysisyields the setof possibledegreesof usefor eachstaticinstructionof the
program. Becausdhe analysisis safe,it will never bethe casethata degreeof useoccursthatis
not identified by the analysisprocess. Therefore,a single, static, perfectly-accuratg@rediction

may be assignedo eachstaticinstructionfor which the analysisfindsonly onepossibledegreeof

t For the definition datafle function, {0} O {0} regardless of P and Q.oFthe use dataflo function,
POQO P=POQO f(P)=f(PO Q)=f(P) O f(Q) O f(Q). This proof assumes distutivity under set
union f(PO Q) =f(P) O f(Q), which is praed belav.

T The proof is twial for the definition datafle function which alvays yields {0}. r the use dataflo
function, f(PO Q) = {f(u) Ju 1 (PO Q)} ={f(u) Ou LI P} O {f(u) Ou LI Q} =f(P) O f(Q).

I Integer I Floating-point —I Type
|C I (03 I Fortran-77 I Fortran-90 —| Language
100 —

Percent of dynamic instructions

All

C AN > Q0 0O O = «— £ X = o O ®© S ' © X O O T TJ[VO = + c
cof 80528 o0oa g g L8222 EF BRI I8
©o§ 8 o235 E Lo zcg £ S o 58285828 P Ok
=0 8 % § gET EXPERESZTZ O
(0] [u— = LL

Figure 3.3. Static prediction using dataflow analysis

use. If these arethe only predictions made, the aggregate accuracy will be 100% and the coverage
will equal the percentage of dynamic instructions receiving a correct prediction; these results
appear in Figure 3.3. The coverage spans a large range from 37% to just over 96%, but averages
an impressive 62%. The floating-point benchmarks, which in general exhibit less complicated
control-flow, have a higher average portion of static instructions with a single, statically-identifi-

able degree of use.

3.3.4 Applying profile information

Improving the capability of static degree of use prediction any further requires handling instruc-
tions for which the analysis identifies multiple possible degrees of use. While some of these
instructions certainly generate dynamic instances with different degrees of use, the difference
between Figure 2.5 and Figure 2.6 shows that some static instructions generating single degrees
of use are simply not identified by the static analysis. Such instructions are of one of two types.
(1) instructions constrained by the program to always generate a single degree of use but not rec-

ognized as such due to the limitations of the analysis, and (2) instructions for which multiple

55
degrees of use are actually possible, but do not occur in some executions. Regardless of the type,

additional information is required to select a suitable prediction from those identified by the static
analysis, and this task requires profile information. Control-flow (e.g., branch or path) profiles
used in combination with a more sophisticated dataflow analysis algorithm could provide this
information, but degree of use profiles (generated by execution-driven simulation) supply this
information directly.

Comparing Figure 3.3 with Figure 2.7, there is clearly room to improve the static coverage
while maintaining perfect accuracy. Consider first using the same program inputs during profiling
and evaluation. Making additiona predictions (beyond where the analysis indicates a single
degree of use) only for those instructions with a unique degree of use in the profile gives the high-
est possible coverage attainable at perfect accuracy (equal to the size of the lowermost bars in
Figure 2.7). The profile aso reflects single-degree-of -use-instructions that were identified as such
by the static analysis, begging the question of why the static analysis is performed at all. The
answer isthat in reality, the predictions will be applied to a program run with different inputs than
used to generate the profile. Therefore, priority must be given to any information determined stat-
ically; how the (more or less) accurate profile data is applied involves a trade-off between accu-
racy and coverage.

After annotating those instructions that yield to the dataflow analysis (i.e., can be proven to
always generate the same degree of use), oneis left with a set of static instructions without a pre-
diction. The application of the profiling datainvolves choosing, for each such instruction, what, if
any, prediction to assign. The selection of a prediction for a given instruction is trivial: choosing
whatever degree of use occurred most frequently for that instruction must (modulo the accuracy
of the profile) result in the highest predictor accuracy.” Choosing which instructions receive pre-
dictions is more difficult (excluding the trivial case in which the profile does not include the
instruction—any prediction made in this case would be no better than a guess made without the
benefit of aprofile). Each additional instruction assigned a prediction increases the coverage, but

some will reduce the accuracy substantially.

Tt Thefinal measureis, as always, performance. Some policies that give lower accuracy as defined here
may afford better performance in certain applications. Biasing, discussed in Section 3.2.2, is one exam-
ple of such apolicy.

56
The most conservative policy will attempt to identify those instructions that only generate a

single degree of use, but that were not identified by the static analysis. All such instructions will
exhibit a single degree of use in the profile itself (with 100% frequency of occurrence). The least
conservative policy assigns a prediction for every instruction for which a single outcome occurs
more often than all others combined (i.e., has greater than 50% frequency of occurrence of the
highest degree of use). In between these two extremes is a continuous spectrum of policies char-
acterized by afrequency threshold. The threshold is the minimum frequency of occurrence of the
dominant degree of use required for that degree of use to be assigned as a prediction for an
instruction. Lowering the threshold increases coverage at the expense of accuracy.

Figure 3.4 shows how accuracy and coverage vary with this threshold. Each gray line repre-
sents a single benchmark while the darker line indicates the average. The profile data were gener-
ated using the test inputs while the prediction was performed using the usua train inputs (see
Section A.1.1 of the appendix for details on the benchmark inputs).

The values of the accuracy and coverage indicate the quality of the profile data. For example,
three benchmarks exhibit relatively low coverage that is constant with threshold. In these cases,
many instructions left after the static analysis (i.e., those that have multiple possible degrees of

use) were absent from the profile data also, limiting the coverage attainable regardless of thresh-

100 ~ 100 -
o _/ 90_:
1]
1 3
S 90 S 80
> | @ 3
g g
2 85—_ 3 70—:
80 60
75 T T T T T T T T 1 7T T T T T T T
50 55 60 65 70 75 80 85 90 95 100 50 55 60 65 70 75 80 85 90 95 100
(a) Threshold (%) (b) Threshold (%)
Figure 3.4. Static predictionsderived from degree of use profiling

57
old. In one of these cases, the accuracy was also low, indicating that even those instructions that
werein the profile behaved much differently between the two runs. Another interesting feature of
the data is the relatively large jump in coverage when reducing the threshold from 100% to 95%,
implying that many values originate from instructions that can generate more than one degree of
use, but are highly biased. That the accuracy does not show the same behavior indicates that the
dominant degree of use for many of these instructions is the same for both inputs (the profile and
the evaluation).

Figure 3.5 portrays benefit (see Section 3.1) as gradationsin shading (with darker shades indi-
cating more benefit) versus threshold and cost factor. The shading range is normalized at each
cost factor (i.e., the same shade at different cost factors does not represent the same absol ute ben-
efit). A contour line illustrates the threshold for each cost factor where maximum benefit is
obtained. As the cost factor rises, accuracy becomes relatively more important and the optimal
threshold value increases. Even for very high cost factors (>15), however, it is still beneficial to
have a threshold less than 100%. The vertical extent of the shaded area at each cost factor indi-
cates the sensitivity of the performance to the threshold. At low cost factors, the performance is

relatively insengitive to the threshold, but as misprediction costs become more dominant, perfor-

100
90 —

80

Threshold (%)

70 —

60 —

50 —————
0 5 10 15 20

Cost factor (relative cost of mispredictions)

Figure 3.5. Optimum threshold value ver sus misprediction penalty

58
mance decreases more rapidly as threshold deviates from the optimal value. Therefore, this

model indicates that athreshold of around 95% is a reasonable choice for arange of applications.

3.3.5 Communicating static predictionsto the hardware

However obtained, to be useful in runtime communication optimization, statically-derived degree
of use information must be somehow passed to the hardware. Details on the various techniques
for communicating information to the runtime are outside the scope of this thesis, although some
possibilities that assume the ability to modify the instruction set are presented here.

Given complete freedom in the design of the instruction set, degree of use information can be
included directly in the instruction encodings. As degree of use information applies only to
instructions that produce a result, instructions with a destination register field are simply aug-
mented with an additional field for degree of use information. Alternatively, certain architectural
registers could be dedicated to different degree of use classes (e.g., single-use or few-use tempo-
raries or long-lived many-consumer). Such methods could only be used in a new design where
the architectural interface is not yet fixed. One might also imagine more evolutionary changes,
involving, for example, new instruction prefixes or unused instruction encodings.

One important issue with architecting the encoding of degree of use information isitsimmuta-
bility. Applications will generally need different kinds of degree of use information: some may
only need to know about single-use values while others may require more information. The two
applications presented in this dissertation illustrate this quite well: useless instruction elimination
(Chapter 4) only requires the identification of a certain class of values, while use-based register
caching (Chapter 5) depends upon knowing the exact degree of use for every value. If the archi-
tected interface is not sufficiently generic, some optimizations may not benefit from a particular

static encoding.

3.4 Dynamic Degree of Use Prediction

A dynamic degree of use predictor uses the observed run-time behavior of a program to generate
its predictions. While static degree of use prediction can offer superb accuracy, it has three nota-
ble shortcomings. First, the coverage is limited by the precision of the analysis and the availabil-

ity of good profile information. Second, the availability of static predictions for a program of

59

I
BTB/ Register Write- .
BPred I-cache Rename| Queue | Sched. R%ad Exec. back | Retire
| A
instruction
addresses Predictions instruction stream instruction stream
L Degree
Degree_of Use Verification mispredict Training
Predictor » Table ' Tabl
predicted =llis
control flow T |
observed behavior
Figure 3.6. A dynamic degree of use predictor in a processor pipeline

interest depends on a priori analysis.Jr Finally, as just discussed in Section 3.3.5, an interface
must exist to communicate the predictions to the hardware, which may constrain the amount and
format of information that can be communicated to the implementation. Dynamic prediction suf-
fers none of these problems asit profiles the actual program of interest at run time from within the
implementation.

An overview of how a degree of use predictor might interface with a prototypical processor
pipelineisshown in Figure 3.6. A storage structure maintains per-instruction state used to gener-
ate predictions. It is accessed with instruction addresses from the front end in parallel with the
fetch of the instructions from the instruction cache. Additional information (e.g., control flow
predictions) may be used in generating the fina prediction, which is available by the time the
instruction’s registers are renamed. Components for training the predictor and verifying the pre-
dictions are aso needed. These structures observe the uses and definitions in the instruction
stream to calculate actual degrees of use. The observations may be performed anywhere within
the processor pipeline, although different locations offer different trade-offs among complexity
and performance. Although both training and misprediction detection require observation of the
instruction stream, there is no requirement that the same instruction stream be used in both cases.

All of the dynamic predictor designs presented in this section operate in two separate steps.

First, al or part of the address of an instruction is used to access some per-instruction information.

T A run-time system could conceivably be used to perform on-line dataflow analysis, but its effort would be
spent much more profitably generating predictions based on direct degree of use profiling—in which case
systemisreally performing dynamic prediction.

60
Second, the state information is used (perhaps with other external information) to generate the
final prediction. The first step determines only the potential availability of a prediction for a par-
ticular instruction (i.e., the predictor’s maximum coverage). The predictor’s accuracy, however, is
determined entirely by the algorithm used to turn the per-instruction state into a prediction. A
prediction may not be generated even in cases where an entry exists for an instruction. Thus, the
prediction algorithm can cause the coverage to be lower than the ssimple availability of per-
instruction state, but it cannot increase it beyond thislevel. Thisdivision of the task of degree of
use prediction simplifies the exploration of the large predictor design space.

The next sections present the various predictor algorithms beginning with the smple strategy
of returning the last observed degree of use for a each static instruction. Then, a confidence
mechanism is added, significantly improving the accuracy. Finaly, the use of control-flow infor-
mation enables predictors that distinguish among multiple possible degrees of use for a single
instruction. The performance of each algorithm is first presented for a large predictor of fixed
organization (8K-entry, eight-way set-associative) and complete tags (i.e., the entire instruction
address is split between the set index and a per-entry tag). Smaller tags introduce the possibility
of aliasing, thetopic of Section 3.4.4, but the impact varies among the prediction algorithms, lead-
ing to different tagging requirements. With a suitable tag size chosen for each agorithm, the pre-
dictors can be compared in terms of capacity. Section 3.4.5 presents this comparison,
demonstrating the conditions which favor particular predictor algorithms. The mechanisms of
training and misprediction detection are revisited in Section 3.4.6 and Section 3.4.7, respectively.
The issue of predictor bandwidth is addressed in Section 3.4.8.

3.4.1 Simplepredictor: last observed degree of use

The data in Figure 2.10 demonstrate temporal locality in the per-instruction degree of use: 95%

of all dynamic values have the same degree of use as the last value originating from the same

static instruction. Therefore, a predictor maintaining only the last degree of use generated by each

static instruction should be capable of 95% prediction accuracy. Coverage in such a predictor

would be determined solely by the existence of an entry matching the address of the instruction.
The performance of this simple algorithm is shown in Figure 3.7. Similar presentations of

predictor performance will appear throughout this chapter. From bottom to top, the stacked bars

61

| Integer } Floating-point ~——m———n——] Type
[C+} c } Fortran-77 ————}— Fortran-90 —| Language

=

100

95

90

% dynamic values

85

80 =

C N >0 Q0 2% 5 T £ X 5 ot 0 8 3 5 T X v O T G 0 = + c =
oc:.d:‘cuo,t,UgBomg-EExma‘é_’:og_@omg,mm&+m(
ONEU’O’mEBQE%‘ £ gﬂég_mmﬁigamﬁgg O =
+— N =
e o o S @ =3 © € ¥ %gém = O o
(3] 7] Ela - L

Figure 3.7. Performance of predicting last-observed degree of use

in the graph represent correct predictions (light gray), mispredictions (dark gray), and non-predic-
tions (black) as a percentage of all dynamic values (in this particular figure, only a small number
of non-predictions are visible, mostly in gcc and vor t ex). Coverage includes correct predic-
tions and mispredictions and therefore may be read directly at the top of the dark gray bar. Accu-
racy is the height of the light gray bar (correct predictions) divided by the coverage. To enable
easy visual comparison of accuracies across benchmarks, the accuracy has been superimposed on
each bar as a small black-bordered, white hash mark. While the accuracy is read on the same ver-
tical scale, it should be noted that accuracy is a percentage of predictions, not a percentage of al
dynamic values. All predictor evaluationsin this chapter were performed using timing simulation
of thefirst four billion instructions of each benchmark. Details on the methodology may be found
in Section A.4 of the appendix.

Returning to the results of Figure 3.7, at this predictor size, non-predictions are only detect-
able in a few benchmarks, and represent less than 1% of values in those cases. With coverage
near 100%, accuracy is approximately the percentage of correct predictions, which averages
94.9%, matching expectations. The floating-point benchmarks exhibit an average accuracy better
than 95%. Even the worst among them (i.e., si xt r ack and wupwi se) exceed the average pre-
diction accuracy on the integer benchmarks. This behavior may be attributed directly to the
smaller variability in degree of use behavior in the floating-point benchmarks noted in Chapter 2

62
and is due to their less complicated control-flow, both static and dynamic. Near perfect coverage

isalso achieved for al of the floating-point benchmarks, indicating small instruction working sets.
Thisistrue even for those benchmarks with static code footprints comparable to gcc, the largest
of the integer benchmarks. Because this simplest instance of a degree of use predictor yields good
results on the floating-point benchmarks, these benchmarks are omitted when developing the
more sophisticated prediction algorithms of the next sections. The floating-point benchmarks will
be revisited during the comparative evaluation in Section 3.4.5.

The average prediction accuracy on the more fickle integer benchmarksisonly 92.2%. In par-
ticular, par ser and vpr have accuracies less than 90%. Since aliasing is not afactor and a pre-
diction is only made when a prior observation is stored for a static instruction, these benchmarks
must be executing static instructions that exhibit poor temporal locality in their degree of use pat-
terns. To improve the prediction accuracy, either predictions must be avoided on such instructions

or additional information used to make the predictions.

3.4.2 Adding confidence

Always predicting the last observed degree of use suffers from the problem of being sensitive to
temporary deviations from a dominant behavior. Consider an instruction with two different
degrees of use, one of which occurs very infrequently. Obviously, when the rare degree of use
occurs, a misprediction will result. However, upon the next execution, the predictor provides the
infrequent degree of use, which most likely causes a second misprediction. Higher accuracy
could be attained by retaining the more common degree of use rather than the most recently gen-
erated one. The potential for improvement can be seen by comparing Figure 2.10 with Figure 2.8.
The datain the latter figure show that the most common degree of use could reduce the number of
mispredictions by 24% (96.5% vs. 95.4% average accuracy).

The problem of retaining a more prevalent outcome—even when it is not the most recent
one—exists for branch predictors. Just asfor branch predictors, it can be solved by adding hyster-
esisin the form of saturating counters[77]. A saturating counter is associated with each predictor
entry. The value of the counter isincreased when the corresponding entry yields a correct predic-
tion; otherwise, it is decreased. In this manner, the predictor can retain a dominant degree of use

for an instruction even after the occasional misprediction. If the count reaches zero, however, the

63
stored degree of use will be replaced with anewly observed value. The value of the counter, then,
indicates the confidence in the stored prediction.

Unlike the simpler last-observed-degree algorithm, this algorithm can choose not to supply a
prediction based on a confidence threshold. The choice of this threshold in relation to the
counter’s maximum value (i.e., its range) provides another means to make the ubiquitous cover-
age-accuracy trade-off. In this manner, the predictor can exceed even the accuracy of one that
always returns the single most likely degree of use by avoiding predictions for certain instruc-
tions. Thus, versus the last-observed-degree algorithm, this agorithm should convert some
mispredictions into correct predictions (by virtue of returning more likely outcomes) while con-
verting others into non-predictions. Both effects increase accuracy, although the second lowers
coverage. The parameters of the confidence scheme will determine the magnitudes of these
effects.

The parameters that define a confidence scheme are: (1) the range of the counter, (2) the
adjustments made to a counter on correct and incorrect predictions, (3) the initial confidence of a
new entry, and (4) the threshold below which no prediction is made. A counter value of zero
aways results in a replacement if it causes (or would have caused) a misprediction. To limit the
number of designs considered, all schemes presented here use the full range of a two-bit counter
and increase or decrease the counter value by one. The remaining free parameters are the initial
confidence value and the non-prediction threshold.

Figure 3.8 shows the performance of the predictor versus the non-prediction threshold with
theinitial confidencefixed at 1. The S bar shows the performance of the ssmple predictor without
confidence counters (i.e., the results from Figure 3.7) for comparison. The numbered bars repre-
sent a non-prediction confidence threshold of the indicated value. The presentation of each bar is
the same as that of Figure 3.7 (i.e., correct predictions in white, mispredictions in gray, non-pre-
dictionsin black, and accuracy as a white hash mark).

At all threshold values, accuracy is improved substantially over the simple predictor. The
effect of the added hysteresisis clearly evident at low threshold values by the increased number of
correct predictions versus the simple predictor. As the threshold is increased, the predictor

becomes more selective, making fewer predictions to increase accuracy.

100

95

90 - -

85 — — — — — — — — -

% dynamic values
[
[
[
[
[

80 — — — — — — — — -

75

S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average

Figure 3.8. Performance vs. non-prediction threshold for predictor with confidence counters

When the threshold equals the maximum confidence, the benefit of the confidence schemeis
due entirely to its enhanced selectivity—at this point the hysteresis cannot result in a prediction
that would not have been made by the simple predictor, reducing the number of correct predic-
tions substantially. To explain this phenomenon, consider a particular static instruction that yields
degrees of use 1-2-1-1 during consecutive executions and simple and confidence-enhanced pre-
dictors both pre-trained to a degree of use of 1 (at maximum confidence) for the instruction in
guestion. The simple predictor will predict 1-1-2-1, for atotal of two mispredictions and two cor-
rect predictions. The enhanced predictor with a threshold equal to the maximum confidence will
return 1-1-N-1, while lowering the threshold by one will result in the sequence 1-1-1-1. In both
cases, only one misprediction occurs, but only with the lower threshold is the number of correct
predictions increased over the simple scheme.

The effect of theinitial confidence, portrayed in Figure 3.9, is weaker than that of the non-pre-
diction threshold and operates in the opposite direction (i.e., higher values of this parameter
decrease accuracy and increase coverage). In this figure, the numbered bars indicate the initial
confidence values. As before, the S bar shows the performance prediction of the last-observed
degree of use. A non-prediction threshold of 2 was selected for this experiment to avoid sacrific-
ing the hysteresis benefit. In the steady state, most instructions will be present in the predictor.
Assuming adequate capacity, replacements only occur when the instruction working set changes
significantly. The initial confidence assigned to these new observations determines how quickly

the predictor will react to the new conditions. The lower the initial confidence, the more closely

65

% dynamic values

75

S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123 S0123
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average

Figure 3.9. Performance vs. initial confidence for predictor with confidence counters

the predictor state will track rapidly changing conditions, such as might be expected during a
phase change.

For the remainder of this chapter, an initial confidence of 0 and a non-prediction threshold of 2
are assumed. These values correspond to the O bar in Figure 3.9. The confidence-enhanced pre-
dictor makes 6.1% fewer predictions than the last-observed-degree predictor. As many of these
non-predictions were mispredicted by the simpler predictor, the average accuracy is increased
from 92.2% to 96.8%.

3.4.3 Using control-flow information
Consider the nature of the mispredictions produced by the previous two prediction algorithms.
Neither of the previous algorithms has the option of issuing a different prediction than the single
stored degree of use. Thus, the mispredictions must occur on instances of static instructions that
can generate multiple degrees of use. The confidence scheme can avoid making predictions for
these instructions where their dynamic behavior isirregular, but it can never generate correct pre-
dictions for consecutive instances of an instruction that have different degrees of use, limiting the
best-case rate of correct predictions.

A prediction algorithm capable of exceeding this limit requires a means to distinguish among
multiple degrees of use for a single static instruction. Making this distinction necessitates addi-
tional information for the generation of a prediction. Such information must be available to the

predictor before the prediction is needed and must also differentiate among various dynamic cir-

66
cumstances that lead to different behaviors from a single static instruction. An obvious candidate

that meets both of these requirements is the history information maintained by the instruction
sequencer for branch prediction.

The branch history provides information about the dynamic flow of execution leading up to
the instantiation of a particular instruction. Thisinformation provides a context within the frame-
work of the program that can imply that a particular dynamic instruction will behave in a certain
manner. Applied to branch prediction, this control-flow context is used to decide the direction of
an instance of a static branch. In a similar fashion, this information can be used to decide the
number of uses likely for a certain instance of a static instruction.

Branch history information worksin thisrole precisely becauseit is correlated with upcoming
branch outcomes. The degree of use of avalue is completely determined by the instructions that
are encountered after the value is generated. These instructions are in turn determined by the
future control flow. Therefore, branch history information, which can help predict the expected
path of execution, can also discriminate among different potential degrees of use for avalue.

Rather than using the branch history, it is also possible to directly use the branch future due to
pipelining. Instructionsin the middle of a pipeline have available to them the predicted outcomes
of control instructions occurring later in the dynamic instruction stream (i.e., earlier in the pipe-
line). So long as the branch predictions are used in a later pipeline stage than where they were
generated, they represent the future. Given a high branch prediction accuracy, these predictions
are equivalent to path look-ahead, providing nearly perfect knowledge about the uses occurring in
the immediate future. The future control-flow information need not be restricted to conditional
branch outcomes. If an indirect branch (e.g., a procedure return) occurs on the future path, its pre-
dicted target address may also be used.

A reasonable question to ask iswhy using future control flow would provide any better perfor-
mance than a scheme that directly takesin the branch history. After all, the branch predictor itself
turns branch history information into the branch predictions that such a scheme would subse-
guently use. Recall that values with low degrees of use (i.e., most values) are completely used
within a short distance of when they are generated (see Figure 2.4). Thus, most of the time, only
afew upcoming branch directions are required to uniquely determine the number of uses a value

will see. Prior studies have shown that a given branch’s outcome may be correlated to one very

67
far in the past [30]. Thus, a long branch history may be needed to have the same information

about the immediate forward path. Using more input bits (in the form of along branch history)
implies more variation and a larger predictor in order to correlate this input information with a
particular degree of use. Also, the branch predictor is specialized: its very structure encodes
knowledge about the ways branches behave. Since the branch predictor already an accurate distil-
lation of long histories into expected outcomes, it is not necessary to have a large degree of use
predictor perform the same task less efficiently.

Exploiting control-flow information invol ves modifying the predictor to allow multiple entries
per static instruction. The generation of a prediction for an instruction (the target) commences by
using a portion of the instruction address to access a set within the predictor as in the previously
presented algorithms. However, by extending the tag to include the control-flow information,
multiple predictor entries—possibly with different degrees of use—can coexist for a single static
instruction. The portion of the tag containing the encoded control-flow information is referred to
as the control-flow signatue. In order to select a particular entry within the set, the entire tag
must be matched, corresponding to a match of both the static instruction and its associated
dynamic control-flow context. Using the control-flow information late in the prediction process
facilitates signatures based on future control flow. Note that this algorithm requires a set-associa-
tive predictor in order to be able to store multiple predictions per static instruction.

Figure 3.10 illustrates the three different types of signatures that are evaluated here. The
history method uses the most recent bits of the global branch history at the time of the fetch of the
target instruction as the signature. The future signature consists of the predicted directions of

conditional branches between the front end of the machine and the target instruction. indirect is

. Signatures
Pipeline oldest
x/ Instruction History Future Indirect
addg< null <« bis< cnoveq
Idl Jaddl) st [Idg —»[defgh|l [cbaoo] [yYYYY|
st rostg o xor ' np
bne "-blt - beq ~58a;;qu »|de fgh [cbaoo] [cbaoo]
youngest indirect recent branch predictions future OR part
instruction [abcdefgh] jump to history at time ~ for upcoming of upcoming
- WXYZ of instruction’s conditional predicted
Branch History fetch branches indirect branch
target address
Figure 3.10. Control-flow signatures

68
identical to future except when the first control instruction after the target is an indirect jump

(including a procedure return); in this case the signature is the low order bits of the instruction
cache index of the jump’s target.

Figure 3.11 shows the performance of the predictor as a function of signature length for each
signature type. The left-most configuration for each benchmark (the O bars in the figure) shows
the performance of a predictor without a control-flow signature for comparison. The higher num-
bered bars reflect a signature with the indicated number of bits. All of the predictors use the con-
fidence mechanism described in Section 3.4.2.

For all of the algorithms, longer signatures improve the average accuracy. In the case of the
history signature, the accuracy increases steadily over the range of signature lengths considered.
In the case of the future and indirect signatures, most of the accuracy benefit is obtained with only
two signature bits. Adding signature bits increases the possible number of entries for a single
static instruction exponentially. This increases capacity pressure on the predictor, reducing the
coverage significantly for most benchmarks at long signature lengths,

Interestingly, for up to two signature bits (one in the case of the history signature), the average
correct prediction rate is improved over the baseline predictor without any control-flow. For cer-
tain benchmarks (e.g., gap and par ser), this improvement continues to longer signature
lengths. These additional correct predictions come from instances of instructions with different
degrees of use. In the baseline predictor, which can maintain only one degree of use, the variable
behavior lowers the prediction confidence for these instruction below the non-prediction thresh-
old.

Comparing the history signature versus the forward control-flow based signatures reveals the
advantage of these latter schemes. For shorter signatures, the future branches are more likely than
the past branches to select the correct degree of use resulting in higher accuracy. Asthe signature
length increases, the accuracy of the history scheme improves becoming comparable at a signa
ture length of four bits. At this point, however, the coverage is substantially lower. Again, this
may be attributed to a better correlation between the future branch directions and the degree of use
of a given instruction. In cases where the long history signature is still unable to differentiate

instances of an instruction having different degrees of use, the confidence mechanism will come

69

% dynamic values
[
[
[

% dynamic values

01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234
bzip2 crafty eon gap gcce gzip mcf parser perl twolf vortex vpr Average

(a) History

% dynamic values

01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234
bzip2 crafty eon gap gcce gzip mcf parser perl twolf vortex vpr Average

(b) Future

01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234 01234
bzip2 crafty eon gap gce gzip mcf parser perl twolf vortex vpr Average

(c) Indirect

Figure 3.11. Degreeof usepredictor performance as a function of signature length

70
into play, reducing the number of predictions made. Of the two forward control-flow based signa-

tures, the indirect signature performs just slightly better on average.

The biggest disadvantage of the control-flow based predictors described is the reduction in
coverage due to signature variability. Each different signature encountered for an instruction
requires its own predictor entry, resulting in significant capacity pressure. Coverage is impacted
the most for those benchmarks with highly variable control flow (e.g., crafty andgcc). Since
most instructions only exhibit a single degree of use, these multiple entries are wasteful. A simple
optimization to take this common-case behavior into account reduces this pressure substantially,
allowing alonger signature to be used without unduly affecting the coverage.

The modification involves selectively ignoring the signature altogether and matching only on
the address portion of atag. To each entry, a single bit, the easy bit, is added to the signature.
When set, the signature portion of the stored entry is ignored, allowing a match with a specific
static instruction regardless of the control flow. On awrite miss (i.e., an insertion), the easy bit is
set only if thereis no other entry in the set with the same address portion of thetag. If awrite hit
occurs to an entry with the easy bit set and the stored degree of use differs from the one being
trained, the stored entry is immediately replaced and the easy bit is cleared. Normally in this
event, the confidence would be decreased instead and the replacement would only occur when it
reached zero. The modified policy ensures that a control-flow signature is associated with a par-
ticular degree of use outcome as soon as multiple outcomes are known to occur.

The performance of the enhanced predictor versus signature length is shown in Figure 3.12.
The | bar (I not 1) within each group is the baseline predictor using a two-bit indirect signature,
which was among the best performing predictors from Figure 3.11; an indirect signature is also
used along with the easy bit enhancement in the other configurations. The digits below the other
bars indicate the number of bits used in the indirect control flow signature. Thus, the 2 bar isthe
same asthe | bar in every respect except for use of the easy-bit modification.

As expected, adding the easy bit increases the coverage, providing a higher number of correct
predictions. This increase is achieved without sacrificing accuracy because only those instruc-
tions that have a fixed degree of use avoid the requirement for a control-flow signature match.
With this enhancement, a control-flow signature of three or four bitsis preferred over the two-bit

signature selected previously. For the remainder of the chapter, an indirect signature of three bits

I!!!IIIII!IIIIIIIIII_III
pppl NNy ENEES EE N BRQEN NSEUS RRERN BRRRN sstow RRERN =aREN RREAN RNEN
AR TR P =y T NS EEARR BEERN AEs= RRRRE RRORE muwnmy

(111 [8] [T [wwwEN SENEN WNSAN DRURN REEAN RORAN ROAN

05 I H (N (NISE | 1T IRl LT T =]

9 il 11 | N (SOSISE D11 I [l NI | gl 11T IRyl
=1 [Enl | | 11 (SISISININ []| Mgl I§IRINI [11T EglRIRIE
IS [[T] AN 1 L (YO 1| | |gMHE] Iyllfl (111 M B
3 [[l TH]] HEN] L [Inl] | (111 L
= 90 [(| [T H INiplAl L I Il H L (AN L
: L e e AR
c
= 1] NN] |]] IIFIf .
© |]] NN L [Nl]] IRIRIR L
< g5 1S N Iy n iy N N NI .
I | | INIRIN | INININ | | L L
I]] NN L 1NN]] 1NN L
I]] NN L 1NN]] 1NN L
I]] NN L 1NN]] 1NN L

80 [IR NN IR
12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345
bzip2 crafty eon gap gcce gzip mcf parser perl twolf vortex vpr Average

Figure 3.12. Easy-bit enhancement to control-flow signature

plus an easy bit will be assumed as the configuration of the control-flow enhanced predictor (rep-
resented by the 3 barsin Figure 3.12).

Comparing Figure 3.12 with Figure 3.7 shows that versus the simple last-observed-degree
predictor, the control-flow enhanced predictor reduces the number of mispredictions by 72%
while simultaneously increasing the number of correct predictions. This benefit comes at the cost
of adding six bits (two confidence hits, three signature bits, and the easy bit) to each three-bit
degree of use entry in the predictor. Adding the additional storage to the simple predictor as pre-
sented in Section 3.4.1 would not have helped since it already had nearly perfect coverage and the
accuracy would not have changed. In Section 3.4.5, the effect of smaller capacity limits are con-
sidered. First, however, the size of the address portion of the tag must be determined.

3.4.4 Aliasingin degreeof usepredictors

Aliasing occurs when a predictor is unable to distinguish among multiple, distinct static instruc-
tions. Since each static instruction is uniquely identified by its address, aliasing can result when
predictions are associated with anything less than the full instruction address.” Destructive alias-
ing results when the behavior of two or more indistinguishable instructions differs. In this situa-
tion, predictor accuracy can be reduced if the predictor supplies the wrong prediction for one

instruction based on the stored information about another instruction. Destructive aliasing is a

T Inamulti-programmed environment, of course, static instructions belonging to different programsin dif-
ferent address spaces may share the same virtual address and, at times, physical address.

72
well-studied phenomenon in the area of branch prediction because it is the primary cause of

reduced predictor accuracy. There is a greater potential for destructive aliasing in degree of use
prediction because of the multi-valued nature of the predictions.

While the solution to destructive aliasing is simple—using enough instruction address bits to
differentiate stored predictions, as has been assumed to this point—it has an associated hardware
cost due to the large tags required in the predictor. The tag sizes may be reduced provided the
incidence of destructive aliasing islow. Note that the frequency of aliasing depends on the total
number of address bits used to select a prediction, including both the tag and the set index. Thus,
between two predictors with the same capacity and tag size, the more associative predictor will
suffer more from aliasing (since it has fewer set bits).

Once aliasing becomes significant, the coverage increases (as predictions are generated for
instructions that are not actually present) while the accuracy drops. The coverage increase due to
aliasing is not really beneficial, however, sinceit will contain amuch higher percentage of mispre-
dictionsthan the overall rate (aliasing is more likely to be destructive). The accuracy decrease can
be reduced or delayed given a predictor that can use additional information besides the address to
differentiate aliased instructions.

Table 3.1 provides data on the occurrence of aliasing versus the number of address bits for the
prediction algorithms of the preceding sections. The table presentsthe average diasrate (over the
integer benchmarks) in terms of the number of predictions generated based on stored data for a

different instruction. The incidence of destructive aliasing is presented as a percentage of the

Table 3.1: Aliasing Rates

Tag | Tota Alias rate (% predictions) Destructive alias rate (% aliased preds)
bits | bits simple confidence | control-flow] simple confidence | control-flow

3 11 89.54 89.49 18.19 14.16 7.41 4.50

4 12 35.19 35.33 11.35 14.16 7.98 3.80

5 13 13.20 12.75 4.83 15.72 8.94 4.04

6 14 5.36 5.29 2.18 13.33 7.84 4.00

7 15 2.76 2.77 1.15 10.61 5.43 3.42

8 16 0.87 0.84 0.37 8.88 5.58 3.62

9 17 0.33 0.31 0.19 4.77 2.73 1.64

73
aliased predictions that are incorrect. A smaller predictor (256-entry, eight-way set-associative)

has been used to increase the possibility of aliasing. Thus, the total number of address bits avail-
able to distinguish any two instructions is the indicated number of tag bits plus the eight bits used
to select a particular set. A minimum of three tag bits are required in this configuration because
there are eight entries per set.

The dliasrate for the ssmple and confidence predictorsis nearly identical and drops by roughly
afactor of 2.5 per extratag bit. The advantage of the confidence predictor with respect to aliasing
isevident in its lower destructive aliasing rate, however, which isjust over half of the simple pre-
dictor’s. Employing a control-flow signature significantly reduces the occurrence aliasing due to
the availability of the signature to help distinguish instructions. The frequency of destructive
aliasing is aso reduced, providing additional benefit.

The overall effect of aliasing on the prediction accuracy is shown in Figure 3.13 (for the orig-
inal 1K-entry, eight-way set-associative predictors). The accuracy of the control-flow predictor
never drops below even the unaliased accuracy of the confidence-only configuration. Similarly,
the confidence predictor always provides better accuracy than the simple predictor. Therefore,

part of the storage cost of the more complicated algorithms can be offset by the need for fewer tag

100

J / —O0— Simple

—{— Confidence

) //O"ﬁ o—° O —— Control-flow
90

% Accuracy

85

T T T T T T T T 1
2 4 6 8 10 12

Tag bits

Figure 3.13. Effect of tag length on predictor accuracy

74
bits. For example, the simple predictor with a nine-bit tag has the same number of bits per entry
(12) as the confidence-based predictor with a seven-bit tag and the control-flow predictor with a
three-bit tag. In spite of the additional aliasing suffered by the more sophisticated algorithms, the
relative ordering of their performance is unchanged. Since the cost of the added storage is less
likely to be afactor than the question of how to effectively increase the prediction accuracy with
any amount of storage, the tag length isinstead chosen for each algorithm based on when aliasing
begins to noticeably affect accuracy. Based on the curvesin Figure 3.13, thisoccurs at six tag bits
for the control-flow enhanced predictor and seven tag bits for the other two predictors. Tag
lengths that (with the set index) yield the same total number of address bits (16 or 17) are assumed

for the remainder of the chapter.

3.4.5 Comparative evaluation

To this point, the performance of each prediction algorithm has been studied using an 8K-entry
predictor, which is large enough that capacity limitations did not significantly impact the results.
In this section, the performance of the prediction algorithms will be compared at different capaci-
ties and the conditions that favor the different algorithms reveal ed.

Figure 3.14 shows how coverage depends on predictor size and associativity. Not surpris-
ingly, higher capacity yields higher coverage. At the largest predictor size shown, the ssmple pre-
dictor delivers nearly 100% coverage (also shown in Figure 3.7). Increasing the coverage for the
other two algorithms even dlightly requires significant extra capacity.

The importance of associativity is clearly evident in the figure. For the simple and confidence
algorithms, which do not employ control-flow information, there is a one-to-one correspondence
between instructions and predictor entries. Thus, the only purpose of increased associativity in
these predictors is to reduce conflicts; as a result, the benefit of higher associativity declines with
predictor capacity. Adding control-flow signatures causes some instructions to occupy many
entries within the same set, greatly increasing the importance of associativity. Evidence of this
detail is visible in the distance between the curves corresponding to the control-flow enhanced
predictor. Longer signatures exacerbate this dependence by increasing the number of entries that

can be associated with a single static instruction. Another effect of allowing multiple entries per

75

100

80 —

oo

Simple

Confidence

A Control-flow

8-way set-associative
------ 4-way set-associative
2-way set-associative

60 —

% Coverage

40 -

20 | | | |
1K 2K 4K 8K

Capacity (entries)

Figure 3.14. Predictor coverage vs. organization

instruction is increased capacity pressure, which is evident in the steeper slope of the curves for
the control-flow predictor.

Figure 3.15 shows the interaction of accuracy and coverage for the predictor configurations of
Figure 3.14. The shape of each mark indicates the prediction agorithm, while the mark’s color
indicates the associativity. Capacity is not indicated explicitly, although groups of marks corre-
sponding to different associativities at a given capacity (1K, 2K, 4K, or 8K entries) are visually-
separable except for the simple predictor.

To first order, accuracy is independent of a predictor’s size since the prediction made depends
only on the contents and not on the availability of an entry. In other words, accuracy is primarily
dependent on the prediction algorithm while the coverage depends on the predictor’'s capacity.
This property motivated the definition of coverage to include all predictions made instead of just
including correct predictions.

The control-flow enhanced predictor exhibits the largest variation in accuracy with capacity
decreasing from 98.5% for the 1K-entry, two-way predictor to 97.7% for the 8K-entry, eight-way
predictor. To explain this variation, first note that similar variation is seen at constant capacity as

the associativity changes. Lowering the associativity reduces the ability of this predictor to main-

76

100 — 50 7
1\ Sf\ 4‘8\ N\ 6\3\ {\{\ 89\\ 9€\)\\
Y7 R N BN BN T \\\\ 4
-\ \ \ \\ \ \ \ N\ A \\ A \\\
AW NI G WEL SRR
i RN Lo I Ay
1 \| N N \ \\ \\\\ (N
74 Nme Db Ny Tk ek
I G DN G R R L
> 96! N \\\\ \\ S\ S\ osimple
&]! RN SOl Rl V> \ o Confidence
3 o5\ | N \ N | > \\\ A Control-flow
<&t§ J \[\\ \\ \\\\\\ \ \ \\\\ T\\\\ [J 2-Way
S o ‘\ \\ | | ~q \ \\\\ @ 4-way
i n \ N1 \ | T~<\ \ = O 8-way
|| S R U e A
e A LG N S S
1 \ T \
92 - \\ \\ \\ \\ o0 —\\~~.0\Tco
] \ \ \ \
91 \\ \\ \ \ \ \\ \
%0 ——T——T—T—T——T—1
20 30 40 50 60 70 80 90 100
% Coverage
Figure 3.15. Prediction accuracy vs. coverage

tain all possible signature variants for those static instructions with multiple degrees of use. This
lowers the coverage but increases the accuracy since these are the instructions that are hard to pre-
dict. Reducing the capacity has the effect of increasing the competition for entries within a set,
which causes the same accuracy increase (and coverage decrease) as directly reducing associativ-
ity.

Superimposed on Figure 3.15 are dotted-line contours representing constant benefit (using the
simple model described by Equation 9 of Section 3.1). The near-vertical contours correspond to a
cost factor of one while the curved ones represent a cost factor of ten. At low cost factors, benefit
ismore strongly dependent on coverage. Thus, even the simple predictor delivers benefit compa
rableto that of the larger, more complex predictors. At low capacities, the smple predictor issig-
nificantly better. As the cost of mispredictions increases, accuracy plays a more important role
and the more complex predictors are favored. At a cost factor of ten, 2K-entry control-flow
enhanced predictors deliver benefit on par with confidence-only predictors four times larger.
Though the coverage is around 20% lower, the 1.5% increase in accuracy is more important.

When mispredictions are this costly, the simple predictor cannot compete with any of the other
predictors regardless of its capacity.

77
Heretofore, capacity has been expressed in terms of entries, which unfairly handicaps the sm-

pler predictors with their smaller entries. In order to perform a true comparison based on capac-
ity, al bits within the predictor storage must be accounted for. The prediction algorithm specifies
the number of bits in each entry, and the choice of tag length was aready addressed in
Section 3.4.4. However, the use of set-associative storage requires a replacement policy, which
may require additional state. In the preceding sections of this chapter, perfect LRU replacement
was assumed. Implementation of this strategy for an eight-way set-associative predictor requires
aminimum of ceil(log, 8!) = 16 state bits per set to maintain ordering among the entries, a more
reasonable encoding (with respect to the update logic) requires 8 x (8 — 1) + 2 = 28 bits. Even for
the control-flow enhanced predictor, this represents a 23% storage overhead just to implement the
replacement policy.

A sub-optimal replacement policy manifests as lower predictor coverage (since more worth-
while entries will occasionally get evicted over ones less s0). As the associativity increases (and
L RU becomes more expensive), the importance of the replacement policy diminishes and rougher
approximations of LRU suffice without a significant impact. Other possible replacement policies
for an n-way set-associative predictor include tree-based pseudo-LRU (n—1 bits/set), not-MRU
(log, n bits/set), and random (free).

Figure 3.16 compares these policies on an 8K-entry, eight-way set-associative predictor. The

control-flow prediction algorithm is used since its performance is most sensitive to associativity.

!!!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlH—IIIIIIII
IsenE senn Suul Soew NEQY SUSE BENN BENN NS RREN wulN BARN HENE
AN NEEE CEEE NN wwwy NN B A= EEEN SSSS SRR RENN wul
I 111 || 111 mmum NENN NENN BENN NEEN NREN BEN
95— 11 || 11 INSIEIN || Mglwt [O D00 MREIST | M=———2 1]
1 111 || 111 IRIRIA |1 | [Nl |1 WL
g 1 Ll || 11 IEIS1EN |1 | [SIRI [11 MR
= 1 IR | | Il | || 11 | HHE 11
1 it SRS SRR AR
1R 1wt Rt | 8RR S
> H — — — — — — — - -
© 1 || || || || || || IRIRI || || [SIFI B
o b A A il mlfili= il -
1 || || || || || || ININI || || [Nl B
1 || || || || || | Il | | W L
1 || || || || || || ININI || || [Nl B
LPNR LPNR LPNR LPNR LPNR LPNR LPNR LPNR LPNR LPNR LPNR LPNR LPNR
bzip2 crafty eon gap gce gzip mcf parser perl twolf vortex vpr Average
Figure 3.16. Comparison of replacement policies

78
From left to right, the bars represent LRU, Pseudo-LRU, not-MRU, and Random replacement.

Pseudo-LRU performs similarly to true LRU, while not-MRU and random show noticeably lower
coverage. Interestingly, due to the slight increase in accuracy accompanying the lossin coverage,
the not-MRU scheme is preferred to pseudo-LRU for cost factors greater than four. Given that it
also has less than half of the space overhead (three vs. seven bits/set), not-MRU replacement will
be used for eight-way predictors. At four-way set-associativity, pseudo-LRU replacement offers
the best average performance through cost factors exceeding 11 with only one bit/set more than
not-MRU. Findly, true LRU is feasible at two-way associativity. These replacement policy
choices are reflected in the data of Figure 3.14 and Figure 3.15.

With areplacement policy decided, the capacity of a given predictor organization can be com-
puted. Figure 3.17 illustrates the contents of a representative predictor of each type, demonstrat-
ing the differing capacity requirements of each. All predictors must store observed degrees of
use. Beyond that minimum requirement, algorithm-specific storage consists of a confidence
counter, control-flow state, and the easy bit (labeled E in the figure). As discussed in
Section 3.4.4, the number of tag bits depends on number of setsin the predictor such that a certain
total number of address bits are used in generating a prediction. Finally, the choice of associativ-
ity dictates the storage overhead of the replacement algorithm.

Figure 3.18 plots the benefit of degree of use prediction versus the capacity of the predictor.
Each of the predictor configurations from Figure 3.15 is represented. Again, cost factors of one
(solid lines) and ten (dotted lines) are illustrated. The best design for a fixed amount of storage
depends on the cost factor: low cost factors will favor simple designs with higher coverage while
high cost factors will favor fewer predictions of higher accuracy. With alarge enough hardware
budget, the coverage of the complex predictorsisraised to the point that they become competitive
even at alow cost factor. These trade-offs are clearly illustrated in figure. For example, at a cost
factor of one, the smple predictor is preferred until the hardware budget exceeds 4K-bytes. The
confidence-based predictor then reigns until control-flow predictors of around 12K-bytes are pos-
sible. As the cost factor increases, the complex predictors are preferred even at low capacities.
For a cost factor of 10, the control-flow predictor delivers the best performance down to less than
3.5K-bytes.

79

512x(8x(6+3)+3) = 38,400 bits

//

1 notmru
L1

(a) 4K-entry (512x8-way) simple

512x(4x(6+2+3)+3) = 24,064 bits

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1T T T T T T T T T 1 1
1 1 T 1 T 1 pseudolru
Ll-[tag colnf d(lagr(?e L1

(b) 2K-entry (512x4-way) confidence-enhanced

512x(2x(5+3+1+2+3)+1) = 14,848 bits

IIIIIIIIIIIIIIIIIIIIII
|_ Itag siglnattjre E colnf d(legrele

(c) 1K-entry (512x2-way) control-flow-based

Figure 3.17. Degree of use predictor contents

Several circumstances favor the selection of the control-flow enhanced prediction algorithm.
First, hardware budget is not likely to be a constraint. The largest predictor represented in
Figure 3.18 has a capacity less than 16K-bytes, which is small compared to many contemporary
proposals for branch predictors. While the utility of branch predictors is most certainly larger, a
degree of use predictor isonly likely to be used when extra transistors do not add much marginal
benefit in more traditional roles (e.g., cache capacity). Second, the latency of the predictor’s stor-
age is not critical, removing another constraint on its size. Predictions cannot possibly be used
until the corresponding instructions are available. Since the actual storage access requiresonly an

instruction address (the control flow information being used later), it may proceed in parallel with

80

100

80 —

60 O Simple

O Confidence

A Control-flow
Cost factor =1

...... Cost factor = 10

Benefit

40 -

20

Capacity (bytes)

Figure 3.18. Benefit of different prediction algorithmsvs. capacity

the fetch of the corresponding instruction. Finally, given adequate storage, the control-flow
enhanced prediction algorithm is robust with respect to the cost factor—whether mispredictions
are relatively cheap or expensive, it offers the most benefit.

Based on these considerations, the large control-flow enhanced predictor represented in
Figure 3.18 (and also Figure 3.14 and Figure 3.15) will be used as the degree of use predictor in
the remainder of the dissertation (unless otherwise noted). To reiterate the parameters of this par-
ticular predictor, it is an 8K-entry, eight-way set-associative control-flow enhanced predictor.
Each entry consists of a five-bit tag, a three-bit indirect future control-flow signature, an easy bit,
a two-bit confidence counter, and a three-bit degree of use. The non-prediction threshold is two
and the initial confidence of a new entry is zero. The replacement policy is not-MRU, yielding a
total capacity of 13.4K-bytes.

Figure 3.19 presents the performance of this predictor on all 26 of the SPEC benchmarks.
Comparing with Figure 3.7 demonstrates the magnitude of the improvement achieved over the
simple predictor. Average accuracy on al benchmarks has improved to nearly 99%, correspond-
ing to a 77% drop in misprediction rate. In spite of an increase in non-predictions, the average

correct prediction rate has actually increased dlightly. Optimization of the predictor on the more

81

Integer } Floating-point ~——m————| Type

Fortran-77 ———— Fortran-90 —| Language

100

:

95

90

% dynamic values

85

80 =

C N >0 0 9% = =T = x = a t S 5 Xx [3) T 9 = =

oc:_d:«so,:,UOBomQEaggaggoggogg’,mw&i%<
©§ 8 o5 E £ a3z 5 > E S 2 3 5 282z 583 8P O =
< © <3 = @ g E o ERXR”28gEo>= ¢ O &
(] n ;w— - L

Figure 3.19. Tuned predictor performance on all benchmarks

difficult integer benchmarks does not appear to have negatively impacted its performance on the
floating-point benchmarks, none of which shows an accuracy less than 99%. With respect to the
integer benchmarks, al prediction accuracies have been brought above 95% with coverages
greater than 87%.

Prediction accuracies presented so far have been aggregate accuracies over al degrees of use.
Figure 3.20 breaks down predictor performance by predicted degree. Above each bar is the per-
centage of al predictions accounted for by that degree of use (the usual caveat about rounded per-
centages not summing to 100% applies). Degree of use one values are predicted with very high
accuracy—over 99% on average and nearly that for even the integer benchmarks. Although
degree of use one predictions are the most accurate, they contribute more total mispredictions
than any other degree of use due to the large number of predictions involved (68% of all predic-
tions). The prediction coverage of single-use values is also higher than for any other category.
This behavior may be attributed to the fact that most single-use values—most values overall, in
fact—tend to be dedicated temporaries used in direct communication between a pair of static
instructions, which istrivial to predict with perfect accuracy.

Accuracy degrades with increasing degree of use in the C/C++ benchmarks. Values with
higher degrees of use are more likely to exhibit variable behavior, rendering them more difficult to

predict. Also, their longer lifetimesincreases the possibility that branches beyond the look-ahead

82

8 66154 3 1 1 2 017 5 112 7 68154 3 1 1 2 168185 2 1 1 3 568165 2 1 1 2
| EEETEE I l nii -1 =l]
Iii ' II_h Wil iy T

100

95

90

85

% dynamic values

80

75

01234567+ 01234567+ 01234567+ 01234567+ 0123456 7+
Integer Floating-point C/C++ Fortran All

Figure 3.20. Predictor performance by predicted degree

ability of the control-flow signature contribute to the determination of their final degree of use.
The coverage decrease that accompanies the drop in accuracy is aresult of the confidence policy
reacting to these more difficult-to-predict instructions. Coverage and accuracy bottom out at a
predicted degree of use of five. The higher accuracy of the limiting degree category (7+) may be
explained by itsinclusion of multiple degrees of use and the absence of underpredictions. There
IS no apparent reason for the increased coverage and accuracy of predicted degrees of use of six

versus five, but asimilar anomaly at six uses was observed in Section 2.3.

3.4.6 Training

Any dynamic prediction technique depends on a means of observing the run-time behavior of the
predicted property. These observations modify the stored state, training the predictor to recognize
and predict subsequent occurrences of the same behavior. The dynamic observation of degree of
use requires the ability to see and count all uses and definitions of values performed by the pro-
gram, which involves tracking the source and destination registers of all executed instructions.

It isimportant to emphasi ze that degree of use appliesto dynamic values—registersare only a
means of naming particular dynamic values. An instruction that generates a value specifies ades-
tination register, binding that register to the value and giving the value aname. The degree of use
of the bound value increases as subsequent instructions name that value (via the register) as an
input. Eventually, all uses of the value will occur, and, because registers are a limited resource,

the associated register will be reclaimed by binding it to a new value. Once a new value is bound

83
to aregister, the old value with which it was associated can no longer be named or used. Thus, the

only way to dynamically detect that no more uses will occur is to observe the reclamation of its
associated name.

In most superscalar processors, there are two register namespaces—architectural and physical.
Degree of use may be computed using either, but there are two reasons to prefer using the archi-
tectural namespace. First, the architectural namespace is smaller. Therefore, the number of val-
ues that must be simultaneously tracked is smaller. Second, architectural registers have more
convenient semantics with respect to their reuse. The creation of a new value in an architectural
register implies the destruction of the prior value named by that register. The freeing of aphysical
register, however, is a separate event from its old value becoming un-nameable. Both of these
events must be handled separately or the latency of the degree of use computation would be
higher.

One other point must be made regarding computing degree of use for values in architectural
registers. Because registers are reused, the value being named by a particular architectural regis-
ter depends on when the name appears within the instruction stream of the program. A given
physical register refers to only one value for al in-flight instructions, but many values may be
simultaneously associated with a single architectural register. Therefore, the determination of
degree of use must take place on an in-order instruction stream when tracking uses via architec-
tural registers.

In an out-of-order processor, there are two possible in-order streams of instructions that may
be considered: the fetch stream and the retirement stream. The fetch stream has the disadvantage
of containing wrong-path instructions. Using this stream for training implies higher training
bandwidth and the possibility of training the predictor with spurious use information. Also, the
training state must be recovered upon branch mispredictions and other mis-speculations to avoid
attributing uses to the wrong values. Training the predictor with the retirement instruction stream
suffers none of these problems, but exhibits higher training latency. Because predictions are made
early in the pipeline, waiting for the instructions to retire before adjusting the behavior of the pre-
dictor resultsin much lower responsiveness. Also, the control-flow information must still be cap-
tured early in the pipeline (where it is used for making predictions) and kept with the instruction

until it reaches the training structure at retirement.

84
Figure 3.21 contrasts the two different training algorithms. The R bars represent the perfor-

mance of a predictor trained using the retirement instruction stream, as has been assumed until
now. The F bars show the performance when the predictor is trained from the fetch stream (actu-
aly theinstruction stream just before renaming where the predictions are consumed). Training on
the fetch stream carries a substantial accuracy penalty relative to the coverage benefit. Only for
very low cost factors (less than 1.25 here) is the gain in coverage worthwhile. Therefore, use of
the retirement instruction stream is preferred for training.

The actual mechanism for calculating the degree of use for training is straightforward. For
each architectural register, one maintains a counter that is incremented when a use of the corre-
sponding register is observed. The counters saturate at the maximum predictable degree of use, a
limit discussed in Section 3.2.1. When a register is overwritten, the counter value equals the
degree of use of the value previoudly in the register (subject to the limit). The counter isreset and
the process resumes.

This set of counters is referred to as the degree training table (DTT). In addition to the
counter, each entry contains information about the dynamic instruction that produced the value
currently in the corresponding register (e.g., the static instruction address and control-flow signa-
ture). Thisinformation is used with the final degree of usein training the predictor. If the degree

of use predictor isto be trained on the rename instruction stream, the DTT can be merged with the

100 —
NN NN NN NN NN NN = BN BN NN o BN N
| = HE =N NN N N NN EHE BN BEx BN gH
— N Tl T =™ ey B =N By AN BN BN N
1 | . | i NS NN i NN NN B
95 = | Il | A I gl gl || L
1] | IgEgl | IE.l .. | L
> Hi iR | i il
< 1 H—1 H - - -
> 1 | Iyl | | | gipi | L
o I
E 9044 — H — H — H — — H — H — —
3 1 EinE IR I . | L
c
> 1]] — H —]]]]] —_— —
©
S I N I O I I O I IR IR
St~ HFHHMFHHMFHFRFHFH — H — H — — H
80
R F R F R F R F R F R F R F R F R F R F R F R F R F
bzip2 crafty eon gap gcc gzip mcf parser perl twolf ~vortex vpr Average
Figure3.21. Predictor training with renamevs. retirement instruction streams

85

|Observed instruction PC,,,: addl r4,r5->r 6|

DTT Before DTT After
sig address uses sig address uses
rd: | x q 0 |—| x q 1
53 Y r — r
ré: z S 1 |— a m 0

Train degree predictor with: (PCs , sig z, degree 1)

Figure 3.22. Structureand operation of a degreetraining table

rename instruction map, which also is indexed by architectural register and is recovered on mis-
speculations.

The operation of the DTT isillustrated in Figure 3.22. Asthe instruction at PC,,, is observed,
it increments the use counters corresponding to its source registers. Because this instruction pro-
duces avalue, it also updates the entry for the destination register (shaded). The new contents are
created by resetting the use counter and setting the instruction identifying fields and the predicted
degree of use appropriately. The prior contents of the written entry are forwarded to the predictor
for training.

Once at the degree of use predictor, awrite access is performed. A write miss always results
in areplacement (refer to the discussion of replacement policiesin Section 3.4.5). Write hits may
be subdivided into conflictsand confirmations Conflicts occur when the training and stored
degrees of use differ while confirmations occur when they match. The actions taken in these two
cases depend on the prediction algorithm. In the simple predictor, the training degreeiswrittenin
both cases (i.e., the stored state does not actually change on a confirmation). In the predictors
with confidence counters, the confidence is adjusted upwards on a confirmation and downwards
on a conflict. A conflict when the confidence counter is zero results in a replacement. As
described in Section 3.4.3, if the easy bit is set in a predictor using this optimization, the conflict

causes replacement of the stored degree of use regardless of the value of the confidence counter.

3.4.7 Verifying degree of use predictions
The detection of degree of use mispredictionsis closely related to the training of the predictor. In

both cases, an instruction stream is observed and the degree of use for al live values determined.

86
Underpredictions are detected as soon as the first use beyond the expected number is observed.

The detection of an overprediction must wait until the final degree of use is known to be less than
that predicted. Asfor the training process, there is a choice of which instruction stream is used to
detect mispredictions. Detecting mispredictions on the fetch stream gives lower misprediction
detection latency at the cost of some false misprediction signals due to wrong-path execution.
The verification latency ultimately determines the amount of state that must be maintained in
speculative applications of degree of use prediction. Also, long verification latencies imply long
misprediction recovery times, increasing the cost of mispredictions.

The exact verification latency depends on characteristics of both the program and the proces-
sor. The number of intervening instructions between consecutive definitions of the same register
is a property of the workload (see Figure 2.4); the time taken to process these instructions, how-
ever, depends on the details of the microarchitecture, as does the rate of spurious mispredictions.
Any measurement of these properties would be specific to the workload and pipeline configura-
tion (e.g., in the original work on degree of use prediction [14]), not to the method of degree of
use verification, so these data are omitted here.

The structure performing misprediction detection is called the verification table or VT, and it
is conceptually similar to the DTT. Where the DTT keeps an address and other information to
associate with the dynamically-observed degree of use, the VT keeps the predicted degree of use
for comparison purposes. The VT must also keep information to identify each instruction with a
pending prediction. When a misprediction is detected, this information is forwarded to the users
of the predictions to initiate any necessary recovery actions. Thus, the nature of the identifying
information stored in the VT depends on how the degree of use predictions are being used. If both
training and misprediction detection occur at the same point within the pipeline, these two struc-

tures can be merged.

3.4.8 Predictor bandwidth

Another consideration in the design of the predictor storage structure is the required access band-
width. The predictor must be read for each instruction renamed and written for each instruction
renamed or retired (depending on the training method). Normally, each separate simultaneous

access to a storage structure requires a dedicated port. As both area and access time of a storage

87
structure scale up with the number of ports, the cost of supplying the predictor’s read and write
bandwidth could be prohibitive for a wide superscalar machine. Fortunately, blocking and/or
banking can be used to supply the necessary bandwidth with fewer access ports.

Blocking leverages the spatial locality inherent in consecutive read accesses to the degree of
use predictor. Because the degree of use predictor supplies predictions to instructions in the fetch
order, accesses to the degree of use predictor have the same spatial locality as do the instructions
in the execution stream itself. Rather than supplying access ports to the predictor that match the
peak fetch bandwidth of the machine, the state for multiple consecutive instructions can be
fetched with a single predictor access. An additional advantage is that the tag and control-flow
signature can be shared among all of the degrees of use in a block (confidence information and
must still be maintained per-instruction).

Blocking does have some significant disadvantages, however. Balancing the decrease in stor-
age due to sharing tags and control-flow state is an increase in predictor storage from wasted
entries. Asnot al instructions produce a value, providing predictor state to multiple consecutive
instructions introduces the likelihood of alocating predictor entries to instructions for which
degree of useis meaningless. Also, the determination of the degrees of use of values generated by
consecutive instructions are likely to occur across many different cycles. Thus, blocking does not
really help reduce the write bandwidth requirement.

Another means to deal with the access bandwidth requirements of the predictor storage is
banking. Again, the spatial locality of predictor read accesses comes into play, suggesting that
bank conflicts will not be a significant problem. In the absence of taken control instructions, read
accesses in a given cycle are to consecutive instruction addresses, which will reside in different
banks. Therefore, banking the predictor to the same degree as the fetch width (i.e., eight banksin
an eight-wide machine) is sufficient.

The lack of locality in write accesses does not pose as much problem for a banked predictor as
for one with alarger block size. Although bank conflicts will be more likely for write operations,
the average write bandwidth can be sustained. Assuming write accesses are evenly distributed
across n single-ported banks and afull complement of n writes is attempted, the expected average
write bandwidth attained will be at least 0.64n for n< 23. Since the average fetch bandwidth is
less than the fetch width and training is only required for the 80% of instructions that produce val-

88
ues (see Table 2.1), banking can provide adequate average write bandwidth. Queuing write oper-

ations between the DTT and the predictor can reduce the incidence of dropped writes due to bank

conflicts.

3.5 Hybrid Prediction Schemes

Hybrid degree of use prediction schemes combine elements of static and dynamic predictors to
exceed the performance of either in isolation. A static predictor can offer perfect accuracy, but
only on some instructions. Dynamic predictors offer much better coverage, even handling
instructions with variable behaviors, but at the cost of hardware resources and lower accuracy.
Strategies for hybrid prediction differ based on what static information is available and how that
information is used. Given the high accuracy and coverage demonstrated by reasonably-sized
dynamic predictors, there is likely to be little need for complex hybrid schemes. Also, thereisa
tremendous design space of hybrid predictors, the exploration of which is outside of the scope of
this work.

However, one very simple hybrid prediction model may be worth considering where static
degree of use information is available. This scheme uses static predictions where analysis identi-
fies a single unique degree of use for a static instruction and employs dynamic prediction for the
remaining instructions. Such a combination would yield improved coverage over a dynamic pre-
dictor (or equivalent coverage with less hardware) since the hybrid predictor would not need to
maintain state for those instructions with available static predictions (the same instructions that
motivated the introduction of the easy-bit optimization in Section 3.4.3). Also, static predictions
can be supplied immediately without a delay for the training of the dynamic predictor. Accuracy
improves due to the reduction in aliasing within the dynamic predictor and the perfect accuracy
offered by static analysis.

3.6 Summary

Degree of use prediction offers a practical method for exploiting the knowledge that degree of use
provides about values. The degree of use of a value cannot be known until all of the uses of the
value have occurred and the register holding the value has been reclaimed. At this point, the

applicability of degree of use knowledge is questionable since the associated value may already

89
have been created and distributed to its consumers. Degree of use prediction affords knowledge

about a value before the value even exists. This knowledge can therefore be used to guide the
allocation of microarchitectural resources, the value communication method, and the handling of
the instructions generating and consuming that value.

Degree of use is a property of the program’s dataflow structure making it amenable to static
dataflow analysis. Although interprocedural analysis is required, the necessary dataflow equa-
tions are straightforward and can be solved with well-understood techniques. Applying this anal-
ysis on the SPEC CPU 2000 benchmarks reveals that over 60% of the static instructions always
generate values with a unique, statically-identifiable degree of use. Applying profiling informa-
tion enables static prediction accuracies approaching 99% on over 85% of dynamic instruction
instances.

Accurate dynamic degree of use prediction is also possible. Degree of use exhibits consider-
ablelocality with respect to individual static instructions. Most static instructions generate values
with the same degree of use during every execution. When instructions can produce values with
multiple degrees of use, values produced consecutively are still likely to have the same degree of
use. Therefore, history-based prediction methods that predict future behavior based on on-line
observation are very successful. Simply predicting the last-observed degree of use for each static
instruction is good for 95% accuracy with perfect coverage. By employing confidence counters
and control-flow information, more sophisticated dynamic prediction algorithms can deliver
higher accuracies at the cost of lower coverage.

The best dynamic predictor presented in this chapter offers 98.8% average accuracy at 96.6%
coverage with 13.4K-bytes of storage. This level of performance is enabled through the use of
future control-flow information to distinguish instances of the same static instruction with differ-
ent degrees of use. Future control-flow information is available because of pipelining: control-
flow predictions for instructions in a pipeline indicate the future path of execution with respect to
instructions later in the pipeline. Originally put forth in the work on useless instruction
elimination [15], the description and exploitation of future control-flow represents a novel contri-
bution of this work with applications beyond degree of use prediction (e.g., its recent application
to branch prediction [31]).

90

Chapter 4

Usaless I nstruction Elimination

The data of Section 2.1 indicate the existence of a non-negligible number of instructions with a
degree of use of zero, especially among the integer benchmarks. These correspond to dynamic
instances of value-generating instructions whose results are not required by the program. Interms
of value communication, these instructions represent the degenerate case of non-communication.
In the absence of other side-effects resulting from these instructions, the behavior of the program
is completely unaffected by the execution (or non-execution) of these instructions. The perfor-
mance, however, can be negatively impacted when these instructions cause contention for proces-
sor resources. Even when they do not delay more useful work, such instructions represent wasted
effort, reducing a processor’s efficiency.

Zero-use dynamic values frequently arise from static instructions that can produce non-zero
degrees of use aswell. Thus, it isimportant to differentiate between static and dynamic instruc-
tions when referring to instructions throughout this chapter. The term useless instruction isintro-
duced to refer to a dynamic instruction that has no consumers (i.e., a result with degree of use
zero); conversely, dynamic instructions having consumers are useful instructions. All dynamic
instructions fall into one of these two categories. The taxonomy of static instructions is more
complex. Static instructions incapable of having useful instances are dead instructions; ideally,
these are detected and eliminated by the compiler during dataflow analysis and optimization.

Static instructions that are capable of generating useful instances, even when no such instances

91

Static instructions Live Partially-dead Dynamically- Dead
dead
v "4 4 v v
Dynamic instructions Useful Useless

Figure4.1. Instruction taxonomy

occur in a particular execution, are called partially-dead instructions [53]. That subset of par-
tially-dead instructions that generate only useless instances in a given execution are referred to as
dynamically-dead instructions.” Live instructions, which always generate useful instances, com-
prise the remaining static instructions. The taxonomy of static and dynamic instructions
described by these definitionsisillustrated in Figure 4.1 The first part of this chapter investigates
the prevalence and properties of useless instructions from these different sources.

This chapter then develops useless instruction elimination, which is a mechanism to avoid the
register alocation, scheduling, and execution of useless instructions identified through degree of
use prediction. Eliminated instructions are kept in a dedicated structure until their status can be
verified by the retirement of the instruction that renders them useless (i.e., the instruction that
overwrites the same architectural register defined by the useless instruction). The retirement of
instructions following the elimination candidate is prevented until verification occurs. Success-
fully-eliminated instructions can lead to reductions in resource utilization covering physical regis-
ter management (alocation and freeing), register file read and write traffic, register file and load
gueue occupancy, and data cache read bandwidth. Small performance improvements are aso pos-
sible in resource-constrained architectures.

The next section characterizes useless instructions in detail, looking at their origins, preva-

lence, and relationship to compilation. Section 4.2 describes a mechanism for useless instruction

Tt Theterminology used hereis different from that used in the original work on thistopic [15]. In that
work, “statically-dead instructions” included both dead and dynamically-dead instructions, while “use-
lessinstruction” and “dynamically-dead instruction” were used interchangeably.

92
elimination, which is subsequently evaluated in Section4.3. Related work is presented in
Section 4.4, and Section 4.5 summarizes the chapter.

4.1 Characterizing UselessInstructions

The potential benefit of uselessinstruction elimination depends on the prevalence of theseinstruc-
tions during actual execution. Zero-use values exhibit more variability in the frequency of their
occurrence among the different benchmarks and compilation environments versus values with
other degrees of use (as shown in Figure 2.1). In this section, the sources of useless instructions
areidentified and investigated in order to understand why they exist and what factors contribute to

their prevalence.

411 Origin

Figure 4.2 presents four examples of assembly code responsible for useless instructions. Each
code fragment was extracted from an optimized version of the indicated benchmark (the tuned
configuration used for the studies in Chapter 2 and described in Section A.2.2 of the appendix).
The dead or partialy-dead instructions that generate useless instances are highlighted with the
destination register in boldface. Subsequent references to the register are aso in boldface, and
overwrites are circled. Possible paths of control flow are indicated with arrows. Ellipsis points
indicate the omission of unrelated code.

Figure 4.2(a) shows two dead instructions of the simplest possible kind—there are no control
instructions between the creation of the dead values and their subsequent destruction shortly
thereafter. Very few actual useless instructions result from such constructs because this situation
can easily beidentified by dead code elimination. Even peephole optimization can detect this pat-
tern when the uses and definitions belong to the same basic block (as is the case with the second
dead instruction and its overwrite; the first dead instruction belongs to a different basic block
since the second is a branch target).

Useless instructions arise more frequently from code like that in Figure 4.2(b), which shows a
partially-dead instruction. In this case, avalueis placed into aregister t 0 immediately prior to a
conditional branch. On the fall-through path of the branch, the value is overwritten; if the branch

istaken, however, the value is useful. The partially-dead instruction in this example also happens

93

schedul e_bl ock(): EVEl nLi st ():

idd at, 0(t3) bi s zero, Ox1, tO

X: 1dq at, 0(t12) bne ., X
| da t12, -8128(t12) (ldbu @O 19(s0)
Crrpul e t12 t3 X .| dah al, -8193(gp)
o ' ' xor t0, Ox11, tO

(a) Dead instructions (gcc) (b) Partially-dead instruction (gap)
send_bits():
idd s0, 8(sp)
| dg sl, 16(sp)
Perl save_ary(): | dg s2, 24(sp)
. | dg s3, 32(sp)
| dg s3, 32(sp) | da sp, 48(sp)
| dg s2, 24(sp) r et zero, (ra), 1
| da sp, 48(sp)
ret zero, (ra), 1 flush_bl ock():

Perl pp_rv2av(): bsr ra, send bits
C | dg s4, -32(sl)
bsr ra, Perl_saye_ ary | dah gp, 8192(ra)
bi s zero, VO, addl zero, s0, al
- bsr ra, send_bits

| dl vQ, -44(s4)
| dl 50) -84(s4)

(c) Dead instruction (perl) (d) Partially-dead instruction (gzip)
Figure4.2. Assembly code examplesillustrating sour ces of uselessinstructions

to be dynamically-dead (i.e., the branch was never taken during the execution of the benchmark
with this particular set of inputs). Dynamically-dead instructions, including this one, are often
associated with code for the detection of run-time errors.

Interprocedural control-flow can also be responsible for dead and partially-dead instructions.
Thefirst | dg of Figure 4.2(c) restores the value of the callee-saved register s3 prior to returning
to the calling procedure. However, the value in s3 was dead prior to the procedure call as evi-
denced by its immediate overwrite afterwards. Since Per| _save_ary() isonly caled from
this single call site, the highlighted instruction is a dead instruction. Note that the corresponding

register save at the beginning of Per| _save_ary() (nhot shown) is also unnecessary, but not

94
useless (since it modifies memory). Figure 4.2(d) shows a more typical case where the restored
valueislive at some call sites and dead at others (only one of each is shown).

The code examples of Figure 4.2 demonstrate the extent to which the compiler affects the
incidence of useless instructions. Ideally, compiler optimization should leave no dead instruc-
tions. The situation with respect to partially-dead instructions is more complicated. Just because
the compiler creates or alows partially-dead instructions to exist does not imply that there are not
good reasons for doing so. Section 4.1.3 discusses some of the reasons why partially-dead

instructions are likely to continue to exist regardless of the sophistication of the compiler.

4.1.2 Prevalence

The characterization data in Chapter 2 demonstrated that different compilers generate code with
different amounts of uselessinstructions. The influence acompiler could have was also evident in
examples presented in Figure 4.2. However, the compiler does not generate useless instructions
per se; rather, the compiler creates the dead and partially-dead instructions that lead to useless
instructions during execution. Examining the prevalence of the useless instructions themselves
tells of the potential and properties of useless instruction elimination, which operates dynami-
cally. Theincidence of the static instructions that lead to these useless instances, however, illumi-
nates the role of the compiler in their occurrence. Therefore, in this section, both the static and
dynamic aspects of uselessinstructions will be considered.

Figure 4.3 shows the incidence of uselessinstructions for three different compilations of each
benchmark on each of two different compilers. The floating-point benchmarks are omitted here
and throughout this chapter due to the almost negligible quantity of useless instructions that they
exhibit. The bars show the contributions of useless instructions by dead, partially-dead, and
dynamically-dead instructions as percentages of all dynamic instructions. The U bars represent
the unoptimized benchmarks (- Q0), the O bars the lightly-optimized benchmarks (- O1), and the
T bars the tuned (i.e., highly-optimized) benchmarks. Details on the compilers and the full com-
mand line options for each configuration can be found in Section A.2 of the appendix.

The increased incidence of useless instructions among the optimized benchmarks is striking.
An average of 2% of the dynamic instructions in the unoptimized benchmarks are useless; in the

optimized benchmarks, the figure is nearly 9% (vendor compiler suite). Each benchmark exe-

95

15 | W Dead
| @ Partially-dead

[Dynamically-dead
§ 10
<
>
L
:
=)
- 5
X

0 UoT UOT UOT UOT UOT UOT UOT UOT UOT UOT UOT UOT UOT
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
(a) Vendor Compiler Suite
15 | W Dead
| @ Partially-dead

O Dynamically-dead
£ 10
©
>
2
:
=)
< 5

0_UOT UuoT UuoT UuoT uoT uoT uoT UuoT UuoT UuoT uoT -OT uoT
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
(b) Third-party Compiler Suite
Figure4.3. Prevalence of uselessinstructions

cutes a different number of instructions under different compilation options. Asaresult, a higher
fraction of useless instructions does not necessarily imply that the absolute number of them has
increased. However, the number of useless instruction instances is also increased by an average
factor of 3.1-3.9 in the optimized and tuned configurations for both compilers.

Only eon exhibits a reduction in the absolute number of useless instructions when compiled
with optimization (again, under both compilers). This benchmark is also the only one that exhib-
itsasignificant fraction of dead instructionsin the unoptimized binaries. Examining the ten static
instructions responsible for the most useless instances (32% altogether) in the unoptimized ver-

sion (from the vendor compiler) explains these phenomena. Of these ten instructions, eight are

9
dead (a ninth is dynamically-dead). All ten of them occur soon before (i.e., with no intervening

control instructions) a procedure return. Nine of them generate the return value of a simple class
member function, and in all but one of these, the return value is the implicit return value of aclass
constructor (i.e., & hi s). None of the objectsinvolved are base classes, so dl callsto these sim-
ple member functions are easily identified and replaced with inlined versions of the functions.
Inlining exposes the “deadness’ of the return values to intraprocedural dead code elimination. As
aresult, the absolute number of dead instructions drops some 73% when the lowest level of com-
piler optimization is applied. Since dead instructions cause such a large portion of the total use-
less instructions, the absolute number of useless instructions is reduced. However, the
accompanying reduction in overall instruction count ensures that eon, like every other bench-
mark, generates a higher fraction of useless instructions when compiled using optimization.

In every benchmark, partially-dead instructions are almost entirely responsible for the
increase in useless instructions with optimization. The compiler does not, in general, influence
the broad execution characteristics of the program. For example, the nature of accesses to a data
structure will be invariant with respect to compilation, irrespective of such optimizations as loop
unrolling or function inlining. Therefore, the increased incidence of useless instructions from
partially-dead sources after optimization should result from an increase in the number of these
static instructions and not from a sudden increase in the frequencies of their execution.
Figure 4.4, which provides a breakdown of the number of static instructions, confirms that thisis
the case. However, comparing Figure 4.4 with Figure 4.3 shows that the relative increase (with
optimization) in the amount of dead and partially-dead static instructions is less than the relative
increase in the number of useless instructions from these sources. Thus, the new partially-dead
instructions generate comparatively more useless instances than the ones that existed prior to opti-
mization. This effect is related to why partialy-dead instructions arise from compiler optimiza-
tion and is explored in Section 4.1.3.

The difference in incidence of useless instructions between the two compilersis small relative
to the change seen with the enabling of optimization. The types of analyses that the compilers
perform are similar as are the end results in terms of the kinds of dead and partially-dead instruc-
tions |eft after compilation. The main difference between the two different compiler suitesis that

the benchmarks compiled with the vendor compilers universally exhibit more useless instructions.

97

20
1 W Dead
1 @ Partially-dead
1 O Dynamically-dead
»n 15
c
2
i3]
2
2 10
L |
®
1]
X 5
UuoT UuoT uoT UuoT uoT uoT UuoT UuoT uoT uoT UuoT uoT uoT
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
(a) Vendor Compiler Suite
20
1 B Dead
1 @ Partially-dead
4 O Dynamically-dead
»n 15
c
=l
i3]
2
2w
L
®
7]
S 5
0 UoT UOT UOT UOT UOT UOT UOT UOT UOT UOT UOT UOT UOT
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Average
(b) Third-party Compiler Suite
Figure4.4. Prevalence of static instructions contributing uselessinstances

At the same time, these benchmarks perform better than those compiled with the third-party com-
pilers at similar levels of optimization. For the remainder of the chapter, only the tuned bench-
marks compiled with the vendor compilers will be used.

Transitively-useless instructions generate results used only by useless instructions or other
transitively-useless instructions. The incidence of transitively-useless instructions is about 33%
that of useless instructions [15]. Their relatively small occurrence is due to the short average
length of register dependence chains [50] and the likelihood that a useless instruction has no data-

flow predecessors (e.g., due to a higher fraction of load-immediates among useless instructions

08
than among all instructions). Following dependence chains through memory allows yet more
instructions to be established as transitively-useless [71], but register degree of use prediction can-
not help to identify any of them. Also, it is significantly more difficult to verify dynamically that
an instruction is transitively useless: all values derived from any dependent instruction must be
overwritten prior to their use by any instructions that are not themselves dependent. Because of
the increased complexity of detecting and verifying transitively-useless instructions and their lim-

ited number, they are not considered further.

4.1.3 Roleof thecompiler

To delve further into the role of compiler optimization, note that compilation occurs in two stages.
tranglation of the source program followed by optimization. An unoptimized binary corresponds
roughly to a simple trandlation of the source code into machine language. A dead or partialy-
dead instruction then can be said to be pre-existing with respect to the original program if it exists
in the unoptimized binary. For example, avariable set beforeani f statement and used only if the
associated condition were true would result in a partialy-dead instruction in the unoptimized
binary. Alternatively, a dead or partially-dead instruction created by the optimization process
itself is generated.

Dead instructions of either class should never remain in a program after optimization. Those
that survive optimization do so by evading detection—usually by virtue of generating values that
cross procedure boundaries. Some of these are pre-existing; others are generated by compiler
optimizations, many of which produce dead instructions as a normal side effect. The vast major-
ity of these are eliminated during a later optimization phase, but some can dlip through. In ncf ,
for example, two particular instructions in the unoptimized code have their only consumers
removed during optimization, but cannot be eliminated because their results are thought (incor-
rectly) to be used in a procedure called several instructions later. These two instructions are
responsible for 90% of the post-optimization usel ess instructions attributed to dead instructions.

Just as was the case for dead instructions, pre-existing partially-dead instructions may evade
detection. The interprocedural partially-dead instruction of Figure 4.2(d) is likely such a case.

Assuming they can be detected, however, a specific compiler optimization—partial dead code

99
elimination—exists to remove them [13]. This agorithm attempts to move partially-dead code

down into the specific paths whereit islive.

Unfortunately, the elimination of some partially-dead instructions carries a cost that makes
this operation undesirable. Figure 4.5 illustrates two such cases as portions of simplified control-
flow graphs. The partially-dead instructions (def) generate values that are used (use) or overwrit-
ten first (kill) depending on the flow of control. In the example of Figure 4.5(a), the partially-dead
instruction generates a value possibly used within a subsequent loop body. Moving the definition
to just before its consumer can result in a significant execution time penalty if the loop is executed
many times. Elimination of the partially-dead instruction of Figure 4.5(b) increases code size due
to the degree of duplication required to ensure it ends up on each path whereit islive. Procedure
cloning [23], which generates specialized copies of entire procedures, may be required to elimi-
nate all of the partially-dead instructionsin similar cases.

While difficulties with detection and costs of removal explain why pre-existing partially dead
instructions may not be significantly reduced by optimization (assuming that the compiler is even

capable of these optimizations), it does not account for the new partially-dead instructions intro-

defrl defrl

I I

return

(a) Increased execution time

=T ;o\ W
/ [\ LN
userl use rl /o NN use rl
/
/ / \
\ / 7 VR
/ / \ _
use rl / | \ kill r1
/
i / / \
| 4 /
kill r1 kill r1 use rl use rl use rl

(b) Increased code size

Figure 4.5. Pitfalls of eliminating partially-dead instructions statically

100
duced by optimization. One can surmise that the partially-dead instructions that are introduced

with optimizations involve intraprocedural control flow. Other than inlining, compilers will not
generally move instructions across procedure boundaries, especially at the lowest level of optimi-
zation represented in Figure 4.3. Therefore, the predominant cause of new partially-dead instruc-
tions must be the movement of instructions above one or more branches that determine their
liveness, and the new partially-dead instructions will resemble the onein Figure 4.2(b) rather than
Figure 4.2(d).

Compiler optimizations that can move instructions across basic block boundaries include
loop-invariant code motion and code scheduling. Loop-invariant code motion moves instructions
that compute aloop-invariant value outside of the body of theloop. Essentialy, it isthe reverse of
the partial dead code elimination transform. During code scheduling, the compilers move compu-
tations across branches to facilitate better performance on the expected target
architecture [20, 22]. For example, initiating along-latency operation earlier than when it is guar-
anteed to be used may reduce execution time along the path(s) on which it isused. Compilers for
statically-scheduled processors must move instructions to account for resource constraints and
execution latency. For example, a compare that computes the condition for a branch may need to
be moved to an earlier basic block if enough instructions cannot be found to cover its latency in
the block containing the branch.

The creation of partially-dead instructions by genuinely beneficial compiler optimizations
suggests that optimization will always generate new partially-dead instructions. In addition, the
inability to detect pre-existing dead and partially-dead instructions and the high cost of eliminat-
ing some partially-dead instructions ensures that these will continue to remain in optimized code
as well. Therefore, it is expected that useless instructions will continue to exist in significant
guantities in future optimized programs, especially where the control-flow (both intra- and inter-
procedurally) is complex. To the extent that these instructions consume scarce resources, they

will negatively impact performance.

4.1.4 Useessinstruction resources
The resource reduction potential of useless instruction elimination depends not only on the inci-

dence of these instructions but on the types of resources that they normally require. Every useless

101
instruction eliminated saves a physical register—for the unneeded result value—and reduces reg-
ister file write bandwidth. However, the elimination of a useless|oad can also reduce cache band-
width and load queue occupancy.

Table 4.1 presents data on the nature of the useless instructions with respect to their resource
requirements. For each class of instructions listed across the top of the table, the top number
reflects the percentage of useless instructions in the class, while the bottom number (shaded) rep-
resents the percentage of overall value-generating instructions in the class. Integer register
moves, load-immediates, and |oad-addresses are separated from other integer operations because
of the large differences in their representation in useless instructions versus other instructions.
However, al four of these classes (load-address, |oad-immediate, move, and integer ALU opera-
tions) of instructions require an integer ALU for execution. Some instructions may belong to dif-
ferent classes depending on the inputs. For example, a bi s (logical OR) instruction can be a
move (zer o register, other register), a load-immediate (zer o register, immediate or two
zer 0s), or an ALU operation (all other cases). Control instructions, which cannot be eliminated
due to their side effect of setting the program counter, are not represented among useless instruc-
tions.

The occurrence of useless loads is of great interest because of the extra resources required by
these instructions. In addition to the resources consumed by any ALU instruction (e.g., adestina-
tion register), loads also require load queue entries and cache bandwidth. Loads are well-repre-
sented among useless instructions, accounting for an average of 30% of them, which is nearly
equal to their average incidence among all value-generating instructions. In spite of this overall
parity, individual benchmarks exhibit significantly different ratios of loads to other operations
among useless instructions than among all value-generating instructions. In some cases (most
notably t wol f), the uselessinstructions are “enriched” in loads, whilein others (e.g., ntf), rela
tively few loads are useless. Benchmarks in the former category are likely to see larger relative
reductions in cache bandwidth under useless instruction elimination.

Nearly all useless operations that are not loads are integer ALU operations (excepting a small
fraction of useless floating-point operations, especialy in eon and vpr). However, the kinds of
integer ALU operations among useless instructions is significantly different than in value-generat-

ing instructions overal. A uselessinstruction is more than twice as likely to be aload-immediate,

102
Table 4.1: Types of UselessInstructions

Benchmark | (| | s | rog. reave| AL UG, | potog, | Contro
- 3482 | 1377 | 2586 | 1268 | 1286 0.00 0.00
Z'P 30.02 0.66 5.79 397 | 5921 0.00 0.35
f 34.43 893 | 2093 273 | 2398 0.00 0.00
crafty 2831 300 | 2025 216 | 4459 0.00 1,59
4231 542 | 3005 7.24 463 | 1036 0.00
eon 36.90 345 | 1806 473 | 1356 | 2003 3.19
1932 | 3136 | 3128 | 1020 7.66 0.17 0.00
gap 31.89 500 | 2625 640 | 26.98 0.21 237
3145 | 2364 | 1229 | 1357 | 1902 0.02 0.00
gee 32.90 453 | 1367 584 | 4159 0.02 1.43
| 2202 | 1062 | 39.12 270 | 2464 0.00 0.00
gzip 24.20 582 | 1057 047 | 5815 0.00 0.79
. 16.81 246 | 3366 | 37.84 9.21 0.02 0.00
35.19 206 | 1376 | 1638 | 27.80 0.00 3901
27.65 071 | 1010 | 3324 | 18.99 0.31 0.00
par ser 30.21 204 8.90 858 | 46.76 0.03 257
et 2896 | 2152 | 1738 | 1724 | 13.93 0.96 0.00
38.80 534 | 1918 666 | 27.22 0.32 247
- 4248 940 | 16.70 943 | 2125 0.75 0.00
30.94 238 8.92 353 | 459 7.28 0.99
oo 2635 | 3633 | 1309 | 1288 | 1120 0.13 0.00
3620 | 1354 | 1405 854 | 2416 0.65 277
3450 | 1563 752 | 1157 | 2636 4.42 0.00
vpr 37.19 1.9 7.20 303 | 39.00 9.58 118
3017 | 1573 | 2225 | 1428 | 1614 143 0.00

Average
3273 438 | 1388 503 | 37.02 318 1.97

aload-address, or aregister move. Moretypical integer computations—adds and shifts, for exam-
ple—occur less often among useless instructions. Recalling the origins of partially-dead instruc-
tions discussed in Section4.1.3 helps to explain this phenomenon. Load-immediate and

(frequently) load-address instructions create loop-invariant values. Thus, these instructions are

103
often candidates for hoisting outside of a loop body to reduce the loop’s overhead. Sometimes
this code motion will result in a new source of uselessinstructions. Register moves are most fre-
guently needed to put a value into a specific architectural register before a procedure call or
return. Valuesin the return-value and argument registers are often unused by the subsequent exe-
cution context, rendering the register move instructions usel ess.

In addition to the type of a useless instruction, the number of register inputsit requiresis also
important because it determines the demand placed on register file read bandwidth. Table 4.2 cat-
egorizes useless instructions by the number of register inputs. The actual number of non-zer o
register inputs is used; thus, an addq instruction with inputs consisting of an immediate and the
zer o register is counted as a zero-input instruction. The format of the table is identical to that of
Table 4.1 except that the average number of inputs is presented in addition to the percentages for
each category. Useless instructions exhibit an average of 23% fewer register inputs than value-
generating instructions in general. Two-input instructions are significantly under-represented
among the useless instructions while zero-input instructions tend to occur more often. These
characteristics can be attributed to the higher incidence of operations such as |oad-immediates and

|oad-addresses, which have zero and one input, respectively.

4.2 UselessInstruction Elimination

Exploiting the existence of useless instructions entails recovering the resources consumed by han-
dling them. Obviously, these resources include the functional units used for execution, but they
also include storage space for useless results (i.e., physical registers), cache bandwidth (in the
case of uselessloads), and issue bandwidth. Uselessinstruction elimination is a mechanism to fil-
ter useless instructions from the instruction stream early enough to avoid many of the overheads
associated with them.

A high-level view of the integration of useless instruction elimination with a typical out-of-
order pipeline is diagrammed in Figure 4.6. A degree of use predictor identifies candidates for
elimination. After renaming their source operands, the candidate instructions are kept in a new
structure (the predicted-useless table or PUT) until the speculation is verified. Renaming the
source operands at elimination time significantly simplifies mis-speculation recovery; the only

cost isthe lost opportunity for reducing utilization of the rename structures. No destination phys-

104
Table 4.2: Number of Inputs of Useless I nstructions

Benchmark | O-input 1-input 2-input 3-input Average
bzi 02 13.77 78.35 7.88 0.00 0.94
P 1.01 57.51 39.74 1.73 1.42
8.93 76.59 13.00 1.47 1.07

crafty
4.68 67.46 25.73 2.13 1.25
con 6.16 84.32 9.52 0.00 1.03
5.94 70.03 23.25 0.78 1.19
3 31.37 63.30 5.28 0.05 0.74
gap 6.55 76.71 16.53 0.22 1.10
ce 23.65 66.18 10.11 0.05 0.87
g 5.95 74.34 19.13 0.59 1.14
i 10.62 83.74 5.64 0.01 0.95
gzip 6.62 57.27 35.69 0.41 1.30
et 2.46 96.79 0.74 0.01 0.98
6.86 72.94 19.95 0.25 1.14
9.73 80.31 9.95 0.00 1.00

par ser
5.52 63.61 25.67 5.20 1.31
or | 21.52 72.70 5.65 0.12 0.84
P 6.97 77.68 14.50 0.84 1.09
t ol f 9.40 78.35 7.88 0.00 1.03
1.01 57.51 39.74 1.73 1.31
36.34 57.55 1.60 451 0.74

vort ex
16.39 72.10 10.77 0.74 0.96
vor 15.63 67.52 16.83 0.02 1.01
P 3.10 64.15 30.91 1.84 1.31
15.80 75.49 8.19 0.52 0.93

Average
6.08 63.31 24.04 157 1.21

ical register is allocated (although one may be reserved; see Section 4.2.7). After theinstruction’s
degree of use is confirmed to be zero, the PUT entry may be reclaimed and the instruction
dropped without any effect on the correctness of the program’s execution. After describing this
mechanism in more detail, specific issues surrounding retirement back-pressure, misprediction

recovery, the handling of loads and instructions with side effects, and deadlock avoidance will be

105

I
BTB/ Register Write- .
BPred I-cache Rename| Queue | Sched. | ragq | EXxec. back | Retire
| A
renamed aborted . .
instruction elimination | elimination Instruction stream
addresses candidates | attempts
- Degree
predicted Predicted g — Training
control flow Useless confirm elimination Table
A« » Table
instruction stream mispredict
—» Degree Verification
of Use Table
Predictor I
predictions
T observed behavior
Figure 4.6. Processor pipelinewith uselessinstruction elimination

addressed. First, however, some additional restrictions on the types of instructions eligible for
elimination must be discussed.

4.2.1 Elimination candidates

To be a candidate for elimination, an instruction must be one that (1) generates a degree of use
zero register value and (2) has no other side effects. Degree of use is only meaningful for those
instructions that generate register results; therefore, a useless instruction must be one that com-
putes avalue. This requirement excludes nops and prefetches from the set of potentially useless
instructions. Although most stores and control instructions do not generate a result value, the
remainder are subject to degree of use prediction just like any other value-generating instruction.
However, because of their side effects (modifying memory or the program counter, respectively),
such instructions may be said to generate a useful result even when the destination register is not
used. For example, while store instructions that generate a zero-use result may be truly useless if
the stored data is never again referenced (or if the store is silent [55]), the detection of such
instances (particularly in amultiprocessor machine) is more complicated, and outside the scope of

register degree of use prediction.

106
4.2.2 Normal operation of uselessinstruction elimination

Useless instruction elimination begins with the identification of an eligible candidate instruction
by the degree of use predictor (viaadegree of use prediction of zero). The candidate instruction’s
source registers are renamed, and then it enters the PUT, which stores all eliminated instructions
awaiting verification. Conceptualy, each PUT entry consists of a valid bit, a decoded and
renamed instruction, and a pointer to the reorder buffer (ROB) entry that would otherwise have
contained the instruction. Eliminated instructions receive no physical register and they do not
proceed to either the instruction window or reorder buffer; instead, a pointer to their PUT entry is
placed in the reorder buffer as a placeholder. A new field added to each VT entry also contains a
pointer into the PUT (recall that the VT structure is the part of the degree of use predictor used to
verify predictions; see Section 3.4.7).

The destination architectural registers of all instructions entering the rename stage are checked
by the VT as part of its normal operation. When an overwrite of a predicted-useless value occurs
and that value has a valid PUT pointer, the instruction being renamed is called the verifying
instruction. The PUT pointer is copied into a field in the verifying instruction’s reorder buffer
entry. Before a placeholder instruction can retire, it must match its PUT pointer to that of a
younger instruction in the reorder buffer (the verifying instruction). This matching operation is
gated by the ready-to-retire status of each intervening instruction. When the verifying instruction
and all older instructions are ready to retire, the placeholder retires and the corresponding PUT
entry isfreed. At that point, the instruction has been successfully eliminated.

Note that useless instruction elimination cannot rely on the degree of use predictor to verify a
zero-use prediction. The VT must reside in the rename stage of the pipeline for misprediction
detection (described in Section 4.2.3). Therefore, any verification of a zero-use prediction by the
VT would be tentative because of the potential for wrong-path execution. Even if the VT (or a
duplicate of it) were present in the retirement stage, the verifying instruction would have to retire
to validate the zero-use prediction. This requirement conflicts with the need to avoid the retire-

ment of the predicted-uselessinstruction until the prediction has been verified. The reorder buffer

T Thereisno specific requirement to use the PUT entry number—any means of uniquely identifying an in-
flight instruction will serve. The ROB entry number, which must be assigned to elimination candidates,
isone dternative. The PUT entry number will be slightly more efficient since there will be fewer PUT
entries than ROB entries.

107

Verification T able Predicted Useless T able Reorder Buff er

pred PUT \% instruction ROB
N
N, . B

A I M /4. 1] addinse [74— — 4

> 6:] 0 4 : 8:] stqr2, 0(r8) —
= [
[
PC;: Idg r5, 8(sp) \
PCJ-: addl r1, r5, r6 N
PCy:stq r2, 0(r8) 21:| bisr0,r3,r6 4
PCy:bis r0, r3, r6 -
/

Figure4.7. Operation of uselessinstruction elimination

matching operation solves the problem of prediction verification without the need to retire the
predicted-usel ess instruction.

Figure 4.7 illustrates this entire process from prediction to verification. In this example, the
value generated by the add| instruction at PC; receives a degree of use prediction of zero. After
renaming the instruction’s source registers, it is placed into a free PUT entry (). A pointer to
this PUT entry is placed into both the VT and the ROB (). The destination architectural register
of the eliminated instruction determines the VT entry, while the ROB entry is the normal one for
the candidate instruction. When the verifying instruction at PC, is renamed, it is annotated with
the PUT field fromthe VT entry (O) prior to installing itsown datain the VT (O). Note that mul-
tiple instructions may receive this annotation due to wrong-path execution. When the verifying
instruction and all intervening instructions are ready to retire, the speculation is verified and the
PUT entry isfreed (0J).

4.2.3 Misprediction detection and recovery

Misprediction recovery is straightforward. If the VT observes a use of a predicted-useless value,
the incorrectly-eliminated instruction is fetched from the PUT (via the pointer in the VT), allo-
cated aphysical register, and inserted into the instruction window and the reorder buffer. Because
a predicted-useless instruction is not allowed to retire before verification, the availability of its
inputs is guaranteed. The physical registers containing the inputs must be freed by the retirement
of an instruction later in program order than the predicted-useless instruction. While the physical

108
registers containing the inputs are guaranteed to be valid, it is quite likely that the architectural

registers corresponding to the input values point to different physical registers (according to the
rename map). The ephemera nature of the rename map explains why the source registers of an
elimination candidate are renamed normally.

An instruction naming a predicted-useless value as an input will not get avalid physical regis-
ter until one has been assigned by the recovery process. Therefore, register renaming must be
repeated when a misprediction is detected. The resultant pipeline bubble (potentially multiple
cycles) conveniently provides a place to insert the mispredicted-useless instruction back into the
pipeline. Ensuring that consumers of a mispredicted-useless value receive valid physical registers
after renaming is why misprediction detection must occur at rename.

The number of instructions between a value's production and its first use can be used to esti-
mate the misprediction detection latency. The median distance between the a value's definition
and itsfirst use is only four to six instructions (refer to Figure 2.4). Thus, most incorrect predic-
tions can be detected very quickly. Note, however, that the misprediction penalty is independent
of how long it takes to detect. Whether the misprediction is detected in ten cycles or a hundred,
the cost is determined only by the time required to insert the mispredicted-usel ess instruction back
into the pipeline. No instruction can have needed the value earlier than when the misprediction
was detected.

Besides true mispredictions, exceptions can also be cause for misprediction recovery to beini-
tiated. Synchronous exceptions such as a trap instruction require the retirement of all older
instructions before the trap can be taken. These introduce a circular dependency: the predicted-
useless instructions cannot be verified until the trap retires (and a subsequent verifying instruction
is reached), and the trap cannot occur until the predicted-useless instructions retire. Therefore,
upon encountering such an exception condition, the PUT must be completely emptied into the
instruction window (i.e., amisprediction is signalled for each instruction in the PUT). The han-
dling of asynchronous exceptions (e.g., external interrupts) can be handled in the same fashion.
Alternatively, new additional eliminations can be halted and the exception handled after all pend-
ing eliminations have been verified or aborted (see Section 4.2.4). Still another aternative is to

flush the entire pipeline, including the PUT, which would |eave the processor in a consistent state.

109
4.2.4 Retirement backup

The verification process involves stalling the retirement of predicted-useless instructions until
they can be verified. Therefore, the distance between consecutive writes to an architectural regis-
ter (with no intervening reads) indicates the amount of speculative state that must be maintained
in order to successfully eliminate a uselessinstruction. According to Figure 2.4, the median inter-
definition instruction count is 21 instructions for zero-use values. Given a reorder buffer with
more than 100 entries, one can expect that most useless instructions will not cause a problem.
While the median def-overwrite distance is low, the tail of the distribution extends out to very
long distances. Thus, there will be some small number of uselessinstructions that cannot be veri-
fied within the limits of any reasonable reorder buffer size.

Given the possibility of such unverifiable instructions, some additional mechanism must bein
place to ensure forward progress. The simplest such mechanism simply detects the occurrence of
this situation and initiates a recovery procedure asif ause of the unverifiable instruction had been
encountered. Thus, the instruction will execute and retire normally, allowing the reorder buffer to
drain and normal operation to proceed. These missed opportunities are called aborted predic-
tions. Predictions may also need to be aborted to avoid deadlock conditions, which is discussed in
Section 4.2.7.

Actually waiting until the reorder buffer isfull before allowing the instruction to proceed car-
ries an unreasonable performance penalty due to the resulting front end stall. A strategy that has
been found to work well empirically initiates recovery (i.e., aborts the prediction) if the ROB
capacity exceeds a threshold when the predicted-useless instruction becomes the oldest unretired
instruction. The selection of this threshold involves a trade-off between the number of instruc-
tions eliminated and the performance cost of waiting for verification and is addressed in
Section 4.3.1.

425 Loads

When an eliminated load is reinserted into the pipeline during recovery, it is delayed with respect
to other loads and stores, which has implications for the memory consistency model. Out-of-
order processors already solve this problem using mechanisms such as unified or separate load

and store queues (LSQ) to maintain program order among memory operations to the same

110
address [39, 89]. To ensurethat an eliminated load executes properly during misprediction recov-
ery, the load must be placed into the load queue. Furthermore, the ordering and operation of a
load queue frequently depends on the in-order allocation of entries to loads. Therefore, elimi-
nated loads must, like al other loads, reserve entries to guard against the possibility of needing
the services of the LSQ on a misprediction, reducing the benefit of eliminating useless loads.

One potentia solution to this problem has been offered recently by Cain and Lipasti [19].
They eliminate the load queue altogether and re-execute selected loads at retirement to ensure that
memory coherence and consistency are maintained. Such an underlying model iswell-matched to
the requirements of useless instruction elimination. Any mispredicted-useless load inserted back
into the processor pipeline can be flagged to re-execute at retirement to ensure correctness without
requiring the load to enter aload queue or check the store queue. Under certain circumstances,
such as when the load is the oldest instruction (e.g., due to an aborted prediction) and no external
memory references have occurred, the check may be safely skipped. Even when the underlying
implementation uses a load queue, re-execution can be applied specifically in the case of mispre-
dicted-useless loads. Such a scheme extends the resource reduction benefit of useless instruction
elimination to the load queue, but may reduce performance if load replays are frequent among the
reinserted loads (aload replay being the action taken to recover from aload that got the incorrect
data—often a squash and refetch of all instructions younger than the load). While this technique
may be beneficial, the simple solution of requiring loads to reserve an LSQ entry is assumed in

this chapter.

4.2.6 Instructionswith side effects

Another subtle problem with the elimination of loads arises when loads with side effects are con-
sidered. Device drivers, for example, may depend on loads to certain memory-mapped hardware
addresses. In this case, the action of the load on the hardware state (rather than the use of the
loaded value) may be the purpose of the load. Loads causing page faults or loads to intentionally
out-of-bounds addresses raise exceptions, which are architecturally-visible side effects of their
execution. Instructions other than loads may also raise exceptions. Arithmetic instructions use
exceptions to signal divide-by-zero, overflow, and underflow conditions. Instructions with poten-

tial side effects cannot be unconditionally eliminated without breaking architectural compatibility.

111
There are two broad solutions to the issue of eliminating instructions with side effects. First,

the potential for the occurrence of an exception or other side effect can be ruled out before an
instruction is eliminated. The usefulness of this method depends on the check for side effects
requiring less effort than the complete execution; otherwise, the subsequent elimination would not
offer any benefit. The other possibility is to define instructions that cannot raise exceptions or
execution modes in which the exceptions are ignored. This solution alows for the elimination of
instructions without the burden of verifying that an exception (or other side effect) will not occur,
but requires support in the architecture.

Checking for side effects before useless instruction elimination is probably best-suited to load
instructions. Note that any load that could potentially be satisfied from the cache cannot have a
side effect. By accessesing the TLB for each eliminated load, it is possible to ensure that the load
address belongs to a cacheable page. A TLB misswould result in a page fault and the scheduling
of the load for execution. This solution unfortunately requires address computation to be per-
formed on eliminated loads. However, it is guaranteed to be safe, it does not require any architec-
tural support, and it still eliminates the need to perform the cache access.

In the case of arithmetic operations, checking that an instruction is exception-free can be of
comparable complexity to the execution itself. Overflow detection for an integer addition, for
example, requires the computation of the most significant carry bits, which isalmost as difficult as
the complete addition. Checking for division by zero is simpler, but still requires that one of the
useless instruction’s operands be read.

Avoiding the expense of verifying that an elimination candidate is free from potential side
effects is possible with some architectural support. Different flavors of instructions can be pro-
vided that communicate the importance (or irrelevance) of an instruction’s exception behavior to
the hardware (i.e., the elimination mechanism). Instructions for which the exception behavior is
unimportant may be safely eliminated without any further checking. The Alpha ISA, for exam-
ple, aready provides arithmetic instructions that differ in their ability to signal overflow and other
exception conditions.

Where the instruction encodings cannot be changed or backward compatibility must be main-
tained, it is possible to define a new execution mode in which side effects are not guaranteed to

occur for eliminated instructions. Programs making use of this mode communicate to the hard-

112
ware that their operation does not depend on the exception behavior (or other side effects), allow-

ing for the elimination of arbitrary instructions. Since the SPEC benchmarks do not depend on
any exception behaviors or other instruction side effects, operation in such amode is assumed in

this chapter to demonstrate the overall potential of the technique.

4.2.7 Deadlock avoidance

The conservation of resources, execution and otherwise, and the accompanying reduction in con-
tention are the benefits of useless instruction elimination. When a predicted-useless instruction
needs to re-enter the normal execution pipeline (e.g., due to a misprediction or aborted predic-
tion), however, it will require the resources not initially allocated it. If freeing one or more of
these resources depends upon the execution of the lately-inserted instruction, deadlock can result.

Deadlock can aso occur when a predicted-usel ess instruction awaiting verification is blocking
retirement while the front end is stalled due to resource exhaustion (e.g., lack of physical registers,
load-store queue entries, reservation stations, etc.). These types of deadlocks are easily detected;
by aborting the elimination of the instruction blocking retirement, the situation frequently reverts
to the other type of deadlock wherein the aborted prediction requires additional resource alloca-
tion. Therefore, the existence of an automatic abort mechanism is assumed, which detects and
aborts an unverified elimination blocking retirement (i.e., at the head of the reorder buffer) when
any resource is exhausted.

The only resources that can lead to deadlock are those that are held by a younger instruction
through its retirement—execution resources, for example, cannot cause a problem. In the imple-
mentation of useless instruction elimination described in this chapter, only physical registers meet
this condition (recall that load-store queue entries are assigned to eliminated loads;, see
Section 4.2.5). Furthermore, the deadlock situation requires an unverified useless instruction at
the head of the reorder buffer (i.e., as the oldest in-flight instruction); otherwise, retirement will
not be blocked and physical registers will eventually be freed.

Since the deadlock case will be rare, one solution simply detects the situation and forces a
sguash as if the most recent branch had been mispredicted (additional recent branches or even the
entire pipeline can be squashed if no physical registers are freed by the first attempt). If a dead-

113
lock occurs, the particular sequence of instructions will always result in the same situation, so an

additional mechanism would be required to prevent recurrences.

An alternative solution to the deadlock problem simply provides enough physical registers to
guarantee that each predicted-useless instruction can always get a physical register. It is not
required that a physical register actually be allocated (implying modification of the freelist, etc.),
just that at least one physical register per in-flight elimination candidate is kept free. While allo-
cation and freelist management overhead and register file write bandwidth are reduced, no savings
on physical register file occupancy is observed because the useless values still, in effect, occupy
an entry. Because of its simplicity, however, this method is assumed in the evaluation of
Section 4.3.

A dlight modification (not evaluated) reduces the number of “reserved” physical registers to
one for the oldest predicted-useless instruction. Any time an abort or misprediction of any other
predicted-usel ess instruction would require this last reserved register, the oldest pending elimina-
tion is aborted instead (consuming the final physical register). As that instruction completes, it
will likely lead to the retirement of multiple instructions, freeing many additional physical regis-
ters; at a minimum, however, one physical register would be freed, allowing the process to con-
tinue. This optimization is subsumed by the aforementioned automatic abort mechanism if the

reserved physical register is excluded when determining resource exhaustion.

4.3 Resaults

This section presents an evaluation of useless instruction elimination via full timing simulation.
Parameters of the ssmulated processor appear in Table 4.3. Additional details on the ssmulator
may be found in Section A.4 of the appendix. Note the relatively large reorder buffer and physi-
cal register file sizes, which support deep speculation (execution proceeding far ahead of retire-
ment). While most of the benefit of useless instruction elimination can be obtained with more
reasonably-sized structures, these sizes allow for the study of alarger range of behaviors.

Useless instruction elimination can only improve performance when there is resource conten-
tion to begin with. For this reason, three different sets of execution resources were evaluated with
the other microarchitectural parameters fixed. Table4.4 summarizes the functional unit

resources and issue port bindings for each case. Ready instructions are issued oldest-first to the

114

Table 4.3: Simulated Pocessor Rrameters

Pipeline

4-wide superscalar; 3-stage fetch (next address + |-cache access + fetch queue),
1-stage each decode, rename, dispatch (write into window), issue, register file
read, register file write, and commit. Variable execution latency, delay between
issue and execute, and delay between register file write and commit. 10-cycle
minimum fetch redirection on branch mis-speculation.

Front end

Up to four non-nop instructions per cycle; taken branch (including uncondi-
tional) or cache line boundary terminates fetch. 16-entry instruction queue
between L1 I-cache and decode.

Issue

64-entry scheduling window, oldest ready first. 256-entry reorder buffer, 256
physical registers. Issue port bindings as described in Table 4.4.

Execute

4-cycle latency integer multiply, 2-cycle store latency (to detection of ordering
violations and ability to supply subsequent loads), 3-cycleload to use latency on
L1 hit, 2-cycle branch, 4-cycle FP multiply, 16-cycle FP divide, 33-cycle FP
sgrt; al other integer operations 1 cycle, FP operations 2 cycles. Execution
resources asin Table 4.4.

Memory

64K B, 2-way set-associative L1 inst. and data caches with 64-byte blocks.
2MB, 4-way set-associative unified L2 cache with 128-byte blocks, 8-cycle
latency. 100-cycle memory. 64-entry load queue and 64-entry store queue.

Degreeof Use
Predictor

8K-entry, 8-way set-associative, 13.4KB predictor described on page 80.

Table 4.4: Functional Unit and Issue Brt Configurations

Issue port

Rich Medium Scarce

1 Simpleinteger ALU op. |Simpleinteger ALU op. |Any integer ALU op.

(not |d/st/branch/mult)

2 Any integer ALU op. Any integer ALU op. Any FP operation

w

Simpleinteger ALU op, |Any FP operation Load or store
load, or store

Load or store Load Integer branch

Integer branch Integer branch or store

FP except mult/div/sgrt

N oo b~

Any FP operation

115
first (lowest-numbered) issue port with an appropriate ALU. The maximum issue bandwidth

eguals the number of issue ports (i.e., 7, 5, and 4 instructions per cycle for the rich, medium, and
scarce configurations, respectively). The rich configuration was obtained by considering combi-
nations of operations likely to be found in a group of four instructions without regard to the issue
width. The scarce configuration matches that of the Transmeta Crusoe[51], which is quite
resource-constrained for a four-issue machine, while the medium configuration represents an

intermediate design point.

4.3.1 Parameter sendsitivity analysis
The most important parameter of the useless instruction elimination mechanism is the ROB fill
threshold for aborting predictions. Figure 4.8(a) shows how this parameter affects the percentage
of useless instructions eliminated for each of the three resource configurations. The PUT sizeis
fixed at 64 entries for this experiment. Note that a threshold of zero still results in 50-65% of all
possible eliminations. At athreshold of zero, verification must be possible immediately when the
predicted-useless instruction reaches the head of the ROB or the elimination will be aborted.
Increasing the ROB threshold results in more eliminated instructions up to a threshold of about
192 (out of a ROB size of 256), where approximately 80% of useless instructions are eliminated.

While the portion of useless instructions eliminated rises monotonically with the threshold,
the performance reacts quite differently, as shown in Figure 4.8(b). The threshold offering the
highest performance for each configuration is indicated with an arrow. First, note the relative
positions of the curves, which indicate how the benefit (or cost) of useless instruction elimination
depends on underlying contention. The scarce configuration benefits over the range of thresh-
olds; in contrast, the rich model exhibits a performance loss everywhere. Where contention is not
a performance limiter, there is no gain to offset losses due to misidentified useless instructions or
the backup of retirement; therefore, the minimum threshold (leading to the fewest elimination
attempts) offers the minimum performance loss. This loss was primarily a result of two poorly-
performing benchmarks—eight of the other ten showed a very small speedup at a threshold of
zero. These problem benchmarks will be discussed further in Section 4.3.4.

For the other two configurations, modest performance improvements are achievable in a man-

ner that depends on the threshold. At very low thresholds, the primary cost of useless instruction

116

100 1.05

90 1.04 *

80 - W 1.03 _W
70 4 1.02 +

60 Wﬂ// 1_01%
SOM 1.00 ‘

40 0.99 I S

30 0.98 L\I\A\A\A\A

]

Speedup

20 0.97
g —a— Rich E
10 —0O— Medium 0.96
b —O— Scarce

Uselessinstructions eliminated (%)

0 — T — T T 0.95 ——TT T 7T
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
(a) Threshold (b) Threshold

Figure4.8. ROB fill threshold sensitivity

elimination is the delay of useful instructions mistakenly identified as useless. To first order, this
cost is independent of the threshold. As the threshold increases, the probability of resource
exhaustion increases aong with the attendant front end stalls. At some threshold value, the
increasing costs of the retirement backup and front end stalls exceed the benefit of the additional
eliminations. Resource contention shifts the optimal threshold to higher values as the marginal
benefit of each elimination is higher. The figure shows that the overall peak performance occurs
at athreshold of 48 and 192 for the medium and scarce configurations, respectively. Note that
the best threshold for a given benchmark may deviate significantly from the overall optimum,
making the elimination threshold an ideal candidate for dynamic tuning [25].

Figure 4.9 is similar to Figure 4.8, but shows the effect of the PUT size at a fixed threshold of
128. The behavior here is much more straightforward. The size of the PUT determines the maxi-
mum number of pending eliminations in flight. Therefore, limiting the size of the PUT will
reduce the fraction of useless instructions eliminated. Unlike the similar effect when the ROB
threshold is reduced, however, elimination opportunities are lost indiscriminately—the missed
opportunity may be an easy to verify useless instruction or a difficult one. Therefore, in those
configurations where useless instruction elimination is beneficial at all, increasing the size of the
PUT always yields more benefit. The reverse is true for baseline configurations where useless

instruction elimination is detrimental .

117

100 1.05

90 - 1.04 -
80 - 1.03

704 M:ﬁ:g 102 “/O/
60 - W 1014 W
50 - 1.00<

40 %6/ 0.99

\

Uselessinstructions eliminated (%)

30 0.98
20 0.97
g / —a— Rich E
10 —0O— Medium 0.96
/ —O0— Scarce b
0 g— , : , : , : | 0.95 : , : I ; I ; |
0 8 16 24 32 0 8 16 24 32
(a) PUT Entries (b) PUT Entries

Figure4.9. PUT size sensitivity

The choice of PUT size should therefore be dictated by hardware cost considerations. The
maximum number of instructions in flight (i.e.,, the ROB size) and the incidence of useless
instructions bound the maximum possible PUT occupancy; increasing the PUT size beyond this
point has no effect. For the pipeline studied here, this occurs at a capacity of around 32 entries.
The remainder of the experiments in this chapter assume a PUT size of 64 entries (which gives
nearly identical resultsto a 32-entry PUT) and a ROB threshold of 192.

4.3.2 Resource utilization
Table 4.5 shows the percentage of useless instructions eliminated and the resulting percentage
reductionsin resource utilization. The medium execution resource configuration was used in this
experiment. Similar results are seen with the other execution configurations athough the savings
increase dightly as the available execution resources are increased (also visible in Figure 4.8(a)).
About 80% of the useless instructions accounting for over 5% of all dynamic instructions are
eliminated successfully. Resource utilization is decreased by approximately the same magnitude.
Four of the twelve benchmarks realize reductions of over 10% in either register writes or cache
aCcCesses.

Differences in the relative reductions of executions, register reads and writes, and cache

accesses depend on the specific instruction mix of the benchmark. Benchmarks in which useless

118

Table 4.5: Utilization Impact of Useless Instruction Elimination

Benchmark Us_ele_ssinst’s - Execu_ted Register file Regis_,ter file | Data cache

eliminated | instructions reads writes reads

bzi p2 87.35 -1.38 -0.73 -1.64 -2.30
crafty 84.71 —7.60 —6.56 -8.79 -11.28
eon 68.29 -5.57 —4.32 —7.38 -6.05
gap 91.47 -8.76 —5.46 -11.09 —6.40
gcc 78.90 —6.60 —4.53 -9.09 —7.26
gzip 89.80 —7.16 -5.40 -38.88 -10.04
ncf 84.08 —6.49 —4.89 -8.22 -3.99
par ser 74.87 -3.60 —2.54 -5.02 —4.13
per | 83.27 —6.05 —4.23 —7.86 -5.97
t wol f 75.17 -1.62 -1.14 -2.02 -2.92
vortex 84.76 -9.25 -5.79 -12.86 -8.52
vpr 65.16 -3.30 -2.54 —4.05 —5.44
Average 80.65 -5.61 -4.01 —7.24 -6.19

instructions have proportionally more loads than the overall instruction mix (see Table 4.1)
exhibit an amplified reduction in the number of cache accesses relative to the number of execu-
tionseliminated (e.g., cr af t y). The mix of zero, one, and two input instructions (see Table 4.2)
affects the relative decrease in register reads. Because useless instructions have fewer register
inputs than the average for al instructions, the reduction in register reads is always less than the
reduction in executions. Register writes, on the other hand, are always decreased relatively more
than executions since not all instructions generate values (e.g., branches and stores), but all elimi-
nated instructions do.

Figure 4.10 shows the disposition of the retired useless instructions. While nearly 90% of
useless instructions are identified by the predictor (i.e., the predictor’s coverage on degree of use
zero values), only 81% of them are successfully eliminated. Three events prevent a predicted-use-
less instruction from being eliminated: (1) the ROB fill threshold was exceeded before the predic-
tion could be verified (aborted predictions), (2) a prediction was aborted due to resource
exhaustion (physical registers or LSQ entries), or (3) an apparent use of the value produced by the

instruction was observed on awrong path. Of these causes, the first two are the most important,

119

100

[] Not predicted
I RF/LSQ full
Il ROB full

[False use
[Eliminated

% Uselessinstructions

Figure4.10. Retired uselessinstructions

accounting for 90% of the non-eliminated correct predictions. Increasing the ROB threshold
reduces the number of aborted predictions, but increases the incidence of resource exhaustion.
The sum of the two effects resultsin a net decrease of aborted predictions, however, as reflected in
the increased number of successful eliminations. The non-prediction rate and the rate of elimina-

tions aborted due to false uses are approximately constant with threshold.

4.3.3 Resource occupancy

The need to stall retirement pending the verification of eliminations increases the occupancy
structures required to track in-flight instructions, which include the ROB, the load and store
gueues, and the register file. Figure 4.11 shows how the average occupancy of these structures
depends on the threshold. The data are normalized to that seen without useless instruction elimi-
nation.

Employing useless instruction elimination increases the occupancy of the ROB and the load
and store queues by a minimum of 40%. Even when unverified eliminations are aborted immedi-
ately upon reaching the head of the ROB (i.e., becoming the oldest instruction), retirement is
stalled until the aborted instruction can be scheduled and executed. Thus, occupancy is increased
even for a the ROB threshold of zero. The relative increases depend primarily on the pipeline
depth: deeper pipelines increase the abort delay, alowing more instructions to claim resources

during the retirement stall. In this pipeline configuration, occupancy increases of 80% were

120

1.8 /
) % /
N %
15
J —0— ROB
—O0— Register file
14 —0O— Load queue
] /O/o —=4— Store queue
13 /

Normalized Mean Occupancy

E A N———
11

1.0 T T T T T T |
0 32 64 96 128 160 192 224

Threshold

Figure4.11. Resource occupancy

observed at higher values of the ROB abort threshold. The smaller increases in register file occu-
pancy result from the fact that a fixed number of physical registers (62) are aways allocated to

contain the architected register state even when there are no in-flight instructions.

4.3.4 Performance

Figure 4.12 delves further into the performance effects of useless instruction elimination on a per-
benchmark basis. For each benchmark, a stacked bar represents the speedup for the Rich,
Medium, and Scarce resource configurations over a machine without useless instruction elimina-
tion. The dark gray bar indicates the actual performance with the real degree of use predictor
described in Table 4.3. Thelighter gray bar corresponds to the performance of useless instruction
elimination with a perfect degree of use predictor, but where each prediction must still be verified
normally (i.e., within the constraints of the ROB threshold and with the associated retirement
backup). Finally, the black bar indicates the performance with a perfect predictor where elimina-
tion candidates retire immediately. Where the dark gray bar appears completely absent (e.g., in
the R configuration of gzi p), the performance of the real predictor is actually higher than the
performance with a perfect predictor, but the difference is so small that the bar is not discernible.
The analogous case where the light gray bar appears missing (e.g., in the R configuration of gap)

indicates that the performance of a perfect predictor barely edges out the performance of the real

121

1.15 - -
B Immediate retire
41 0O Perfect predictor
Real predictor
110 | B Realp
| -
1.05 .
o
=) p—
B 100
F |
0.95 4 |
0.90 H A
0.85 — — — — — —
RMS RMS RMS RMS RMS RMS RMS RMS RMS RMS RMS RMS RMS
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr H.Mean
Figure4.12. Performance

predictor. Inall cases, the lowest performing configuration isindicated by the bar extending to the
bottom of the figure.

Broken down in this manner, the performance data clearly illustrate the interplay between the
two possible performance penalties of eliminating useless instructions. In nearly every case, the
performance with areal predictor isvery close to that of the performance with a perfect predictor,
indicating that the cost of degree of use mispredictionsis generally negligible, especialy since the
perfect predictor also detects additional useless instructions. The main cost of useless instruction
elimination is clearly the need to verify the predictions and the associated consequences. The ver-
ification cost is almost entirely responsible for the performance loss experienced by the resource-
rich model. The high cost of verification also explains why a perfect predictor can perform worse
than a real predictor—the costs of verifying the additional useless instructions identified exceed
the miniscule savings from the extra eliminations.

The two benchmarks contributing most to the slowdown of therich configuration are eon and
vort ex. Examining the behavior of these two benchmarks further reveals that predictions are
aborted more frequently due to a full load or store queue than due to the ROB threshold. This
behavior is confirmed in Figure4.10 for the medium configuration. As discussed in
Section 4.2.7, resource exhaustion requires an abort to avoid deadlock. The entire front end is
stalled until the aborted instruction can execute and retire and free up the necessary resource.

Lower thresholds help these benchmarks immensely because it reduces the probability that a

122
resource will run out prior to the threshold being exceeded. The mechanism of uselessinstruction

elimination could be improved by setting abort thresholds analogous to the ROB fill threshold on

the register file and load and store queue occupancies.

44 Reated Work

There is an extensive body of work on the compile-time detection and elimination of dead and
partially-dead instructions. Partial dead-code elimination [53] is a compiler algorithm that trans-
forms code to reduce or eliminate instances of instructions that produce dead values. In essence,
the algorithm detects code that generates values used on only some subsequent control flow paths
and attempts to move that code down into those paths. Improvements to the algorithm have been
offered to widen its applicability while ensuring that the number of instructions on agiven path is
never increased [9]. Asnoted in Section 4.1.3, however, the applicability of static schemesislim-
ited as many partially-dead instructions arise from beneficial optimizations that are, in effect, the
reverse of partial dead-code elimination.

Martin et a. proposed a cooperative software/hardware scheme to track registers containing
dead values[60]. Their scheme involves annotating the executable with information from the
compiler about the last use of register values (i.e., noting that specific registers are dead). This
information is subsequently used by the hardware to enable early physical register reclamation
and elimination of needless saves and restores across procedure calls and context switches. Use-
less instruction elimination cannot eliminate the saves of dead values (since stores have side
effects), but it is able to eliminate useless instructions within procedures, which are not handled
by this scheme.

Yoaz et al. [91] noted the occurrence of useless instructions, focusing on the subclass of them
called silent stores[55]. They mentioned the possibility of squashing or de-prioritizing dead
instructions, but did not present any specific schemes to identify or handle them. Rotenberg also
observed the occurrence of sequences of instructions with no externaly visible effects[71]. A
much broader category than useless instructions, his ineffectual instructions include dead instruc-
tions, silent instructions (stores and otherwise), correctly predicted branches, and instructions
transitively connected only to other ineffectual instructions. He proposed skipping these instruc-
tions to allow a speculative thread to get ahead of a slower verification thread.

123
45 Summary
Useless instructions generate result values that are not subsequently used during a program’s exe-
cution. These instructions can account for as many as 15% of the dynamic instructionsin an opti-
mized program. The execution of useless instructions wastes processor resources, increasing
utilization with no effect on the final computation. Resources used include physical registers,
load queue entries, execution units, issue bandwidth, register file read and write bandwidth, and
data cache bandwidth. A direct consequence of thisincreased resource utilization is higher-than-
necessary power consumption. Under resource contention, performance suffers as well.

The compiler is directly or indirectly involved in the existence of all useless instructions. A
small portion of uselessinstructions are the result of dead instructions undetected by the compiler;
these instances could be eliminated given more powerful compiler analysis. Most uselessinstruc-
tions, however, arise from partially-dead static instructions introduced by the compiler as a side
effect of optimizations that involve code motion. As these optimizations generally improve per-
formance, useless instructions are likely to remain in optimized programs regardless of advances
in compiler technology.

Useless instruction elimination is a scheme to avoid the execution of these instructions, reduc-
ing the utilization of several key resources. The mechanism of useless instruction elimination is
straightforward. Candidates for elimination are identified by degree of use prediction prior to
consuming most resources. These instructions are shunted into a special structure to await confir-
mation of their status by the execution of instructions that overwrite their results. When a candi-
date instruction’s value is overwritten (prior to being used) and that overwrite is known to be on
the correct execution path, the predicted-useless instruction may be discarded. Recovery from a
misprediction simply requires executing the incorrectly-eliminated instruction.

Up to about 80% of the useless instructions in the benchmarks—accounting for 5.6% of all
dynamic instructions—can be eliminated using this technique. Attendant reductions in register
reads, register writes, and L1 cache accesses of 4%, 7%, and 6%, respectively, were aso
observed. Onein four of the benchmarks realized a reduction of more than 10% in either register
file writes or cache accesses.

The performance impact of uselessinstruction elimination is heavily dependent on the conten-

tion for execution resources. An average speedup of 3.9% was obtained (with four benchmarks

124
exceeding 7% speedup) on an implementation suffering from resource contention. On an execu-

tion-resource-rich implementation, however, an average performance loss of about 0.4% was
observed.

Performance losses are primarily a result of front end stalls resulting from resource exhaus-
tion. Uselessinstruction elimination is a deeply-specul ative operation: execution can proceed far
ahead of retirement while an unverified elimination is pending. The large number of in-flight
instructions this implies require physical registers and load and store queue entries. If one of
these resources is consumed before the oldest useless instruction is verified, the entire processor
stalls while the elimination is aborted and retired, allowing resources to be reclaimed.

There are several ways in which the mechanism of useless instruction could be improved.
One optimization already aluded to in Section 4.3.4 is the use of thresholds on other consumable
resources to avoid the aforementioned resource stalls. Addition of state to the degree of use pre-
dictor could identify difficult-to-verify instructions so elimination would not be attempted. The
use of a checkpointing mechanism [3] would allow for deep speculation without a retirement
backup. Useless instructions could be discarded immediately, and the PUT and retirement verifi-
cation logic would be completely eliminated. Such an implementation would make eliminations
very cheap at the cost of much a more expensive recovery operation on mispredictions, favoring
predictor accuracy over coverage. Each of these improvements attempts to address the costs asso-
ciated with useless instruction elimination. One possible change to improve the benefit would be
to avoid the assignment of load queue entries and physical registers to elimination candidates as
suggested in Section 4.2.5 and Section 4.2.7. The pursuit of these ideasis |eft to future work.

125

Chapter 5

Use-Based Register Caching

This chapter presents the application of degree of use prediction to register cache management. A
register cache is a small structure that maintains a selected subset of the values generated by exe-
cution. By virtue of its selective nature, it can be made small, allowing lower access latency than
afull-sized register file. Together with a standard bypass network, the register cache comprises an
alternative inter-instruction communication mechanism that is more efficient than a monolithic
register file.

Degree of use prediction provides the information to determine which values should occupy
the limited storage available in the cache. By comparing the degree of use of each value with the
number of uses that have actually occurred, the occurrence of future uses can be predicted. This
chapter describes insertion and replacement policies that use this knowledge to keep the most per-

tinent values in the register cache—namely, those with outstanding consumers.

5.1 Introduction

The register file, by definition, is the predominant value communication mechanism in a sequen-
tial, register-based architecture. However, it is becoming increasingly difficult to support alarge,
low-latency, monolithic physical register files in high-performance superscalar implementations.
These processors are likely to have deep pipelines[37, 41, 79] and be multipleissue, resultingina

large number of instructions in flight, most of which require a register for their result. Simulta-

126
neously, enabled by technology improvements and a deeper pipeline, clock frequency isincreas-

ing, decreasing the amount of state that can be addressed in a fixed number of cycles[1]. The
result isincreased register file read and write latencies. The read latency is particularly problem-
atic since it appearsin both the branch misprediction and load-hit speculation loops [11]. Further-
more, to alow unrestricted issue of dependent operations, the total number of stagesin the bypass
network must increase with the register file latency. Bypass networks are dominated by long
wires and wide multiplexors, which do not scale well to high frequencies. A limited bypass
network [2] adds to the performance impact of a multi-cycle register file access.

The key to solving the register file problem is to recognize that the register file is performing
two other functions besides supplying instruction input values. First, the register file participates
indirectly in maintaining inter-instruction dependencies by supplying a namespace of physical
register tags. Architectural registers are renamed to physical registersearly in the pipeline, requir-
ing the physical registersto be alocated at that time. Asaside effect, many entriesin the register
file are empty, being allocated to instructions that have not yet produced aresult. Second, in order
to support recovery from mis-speculation, the physical register file maintains instruction result
values long after the final consumers have obtained that result. These dead values, together with
the empty registers, vastly inflate the capacity of the register file beyond what is required for its
most important role—value communication.

Figure 5.1 illustrates the combined impact of empty registers and dead values (the simulated
machine is described in Section 5.4.1; basicaly it is an aggressive, deeply-pipelined, eight-wide
superscalar machine). From bottom to top, the bar for each benchmark indicates the number of
registers associated with live values, no value (i.e., empty registers), and dead values; the total
height of the bar equals the average total number of allocated registers.T Clearly, the register file
could be made much smaller—and faster—if its contents were limited to the live values.

However, one can do even better by recognizing that most processors already employ an alter-
nate communication mechanism—the bypass network. Values that communicate to a small num-
ber of consumers shortly after being generated can be handled completely within the bypass

network, avoiding the need to store even some live values. To illustrate the potential savings,

T Register filewritelatency isignored here when classifying registers. A register is considered live as soon
as the instruction generating its contents executes.

127

| Integer } Floating-point ~———m————] Type
|C++} c } Fortran-77 ———}— Fortran-90 —| Language
320
Il Dead
280 [l Empty
[] Live
240
« 200
o}
B 160 -
§’ 1
120
80 —
40
0cmg.o.gg.‘gBt%éaatgmg'agﬁgmgca£5a+c:
8 558 E2 82 E>E°s503858:sS 38988
o o g =9 = 3 E ®© E_gwo_%gm_H S &
() 7] g w— £ L
Figure5.1. Contents of physical register file

Figure 5.2 indicates the fraction of all register file reads satisfied by each stage of the bypass net-
work. The ssimulated processor is identical to that of Figure 5.1, which has a three-cycle register
file (read and write) that is fully-bypassed (requiring six total bypass stages). The components of
each bar indicate the fraction of input values obtained from the bypass network from the first
stage (i.e., bypasses from instructions executing in the immediately preceding cycle) at the bottom

to sixth stage on the top. The remainder of the values come from the register file.

} Integer } Floating-point —— 1 Type
[C++} c } Fortran-77 ———}— Fortran-90 —| Language
100
Stage 6
Stage 5
80 Stage 4
] - - Stage 3
8 Stage 2
=i
S
= 60 B
z i
=
2 | | ||
c i | | |
= 40
< nninlnn
o || || ||
IR RAR I
20 -
]] || ||
|| || ||
LIEEE)
0
C N >0 Q % 5T E X 5 a9t 068 5 F T X £ Q0O T H A 5 OA + S o=
£ o g 2 o S ¥ 2 X = & = © £ 9] g O
S RES553E 222 EE>E"E88858sE5828o LS
a & g e E 88«5 E%“’%%ém—g BE
2 £ £

Figureb5.2. Roleof the bypass network

128

In al but three benchmarks, over half of input values are bypassed. The first bypass stage is
the most important, accounting for the majority of bypassed values in all cases. Later stages
bypass successively fewer valuesin general. Floating-point benchmarks bypass fewer values than
integer ones because floating-point values tend to be longer-lived (see Figure 2.4), supplying
many consumers beyond the reach of the bypass network. The low average degree of use com-
bined with the large number of reads occurring before the register file is able to supply values sug-
gest that many of the live values counted in Figure 5.1 are effectively dead within the register file.

These observations motivate the replacement of the register file by asmall register cache [92].
The register cache assumes the responsibility for handling register read requests by the execution
core. Whilethe register cache still needs a bypass network, the network can be much smaller than
needed for amulti-cycle register file because of the register cache’s lower latency. Also, theregis-
ter cache can work cooperatively with the bypass network, accounting for bypassed values in
managing the cache contents. The reduced latency to obtain most values shortens the execution
pipeline providing higher performance.

Degree of use prediction is fundamental to the operation of this register cache, improving its
performance over prior register cache proposals[11, 24, 92]. A value's degree of use is exactly
the number of reads that are expected for that value. Thisinformation is used to manage both the
insertion and replacement of values within the cache. The insertion policy identifies values that
have bypassed to all of their expected consumers, and avoids placing them into the cache. The
remaining-use count is kept for each cached register value and updated as uses are satisfied by the
cache. When areplacement is necessary, the cached value with the fewest remaining uses (ideally
zero) is selected as a victim, minimizing the potential for misses resulting from the replacement.

An overview of the operation of these policies appears in Figure 5.3. Each box represents a
register value; the corresponding physical register tag isindicated by p and the number of remain-
ing uses follows in parentheses. The valueitself isimmaterial and is not shown. On the left hand
side are values generated by the execution core, which each bypass to a consumer prior to arriving
at the register cache. The topmost value corresponding to p5 has no remaining uses after bypass-
ing, and it istherefore not written into the cache. The other value (in p8) is placed into the cache
along with the number of expected remaining uses (one). This insertion requires the replacement

of another entry and the one with the minimum number of uses (zero in this case, corresponding

129

register register
bypass cache cache
(before) (after)
[p5 @ }—4 p5 (0) &> p17 (1) [p9 (1) p17 (1) | p9 (1)
p6 (1) | p12 (3) > p6 (1) | p12 (3)
| p8 (2 }—i p8 (1) ——— p10(2) | P2 (0) p10 (2) | P8 (1)
p3 (5) | p1 (2) p3 (4) | p1 (2)
bypass T
read p3
Figure5.3. Use-based register cache management

to p2) is selected as the victim. The updating of a stored use count by aread of p3 isaso illus-
trated. The shaded entries indicate changed entries in the register cache after the insertion and
read.

The next section details the operation of a generic register cache without reference to its con-
tent management policies. Section 5.3 details register cache management via novel use-based
insertion and replacement policies. The new register cache is evaluated and compared to previous
register caching proposalsin Section 5.4. Related work on register file optimizations is presented
in Section 5.5, and Section 5.6 concludes.

5.2 Register Cache Operation

Figure 5.4 depicts pipeline diagrams illustrating the relationships among dependent instructions
from issue through writeback. Each row represents the steps in the processing of a single
dynamic instruction. Time is indicated by the cycle number above each column of the diagram.
Therefore, a column does not correspond to a single hardware pipeline stage, but to all of the
operations occurring in different stages at the same time. Inter-instruction value communication
isindicated using arrows: operands are communicated through either the bypass network (dotted
arrows) or storage (solid arrows), whether the register file or aregister cache.

Figure 5.4(a) shows the operation of a processor with a three-cycle (read and write) register
file and no register cache. 12-16 are all data-dependent on 11 (only). 12-15 receive their input viaa
four-stage bypass network. This bypass network is insufficient to completely hide the register file
latency; thus, instructions dependent on |1 may not issue in cycles 6 or 7 (indicated by an x). 16,

which issuesin cycle 8, can finally obtain I1's result value from the register file. In this example,

130
afull bypass network would require six stages. In an eight-way superscalar machine, this means
each ALU input (as many as 16 in an eight-way machine) must choose among 49 input sources
(6 x 8 =48 possible bypassed values + 1 from the register file). Even the four-stage network
shown requires a 1-of-33 selection.

The operation of a register cache in a similar pipeline appears in Figure 5.4(b). In this dia-
gram, 12-14 are data-dependent on |1. 14 appears twice (I4a and 14b) to illustrate the cases in
which aneeded input is present in or absent from the cache. 15 is data-dependent on 14b. Adding
aregister cache allows for a smaller bypass network (covering only the cache itself) and reduces
the read latency for most instructions (11-14a). In effect, the register cache takes the place of the
register file, providing the access bandwidth required by the execution core. Each instruction
implicitly assumes that its inputs reside in the register cache, which is accessed in the cycle after
an instruction isissued (e.g., cycle 3 for 12). Instructions issuing with and after 14 cannot obtain
11’s result value through the bypass network and must obtain it from the register cache. 14ashows
the normal case—a register cadhe hit—in which the value is present in the cache. If the value
from 11 were not present in the cache, aregistercadhe misswould result. 14billustratesthis case,
with the detection of the missindicated by a star.

In the event of aregister cache miss, the input value must be obtained from a storage structure
other than the cache. This structure is called the bading file (BK file or BK in the pipeline dia-
gram), and it is basically the original full-sized register file in a recovery role. To ensure that no
values are lost, all values must be written to the backing file. Therefore, it must be able to support
the full write bandwidth of executing instructions. The writing of the backing file commencesin
parallel with the (optional) writing of the value to the register cache. Because the register cache
and bypass network filter the vast majority of reads, however, in those rare instances in which a
value must be obtained from the backing file, a single read port (which can be shared with one of
the write ports) suffices.

The pipeline diagram assumes backing file read and write latencies of only two cycles, com-
pared with the three-cycle latency for the register file of Figure 5.4(a). By virtue of the signifi-
cantly lower number of ports compared to a register file—as little as one-third of the original

number—a backing file will be smaller and faster than a register file even though they must have

131

Cycle:

11

I4a

14b

1

issue

2 3 4 5 6 7 8 9
read read read write write write _
regfile regfile regfile ~ ©X€CU regfile regfile regfile
. read read read ' 4 write write write
Issue regfile regfile regfile : execute ragfile regfile regfile
. read read P _re_ad_ _\l write write
EEUE regfile regfile | regfile €X€CUe agiile regfile
[T
) read | read read write
Issue regfile 1 regfile regfile ~ €XeCUte| yegfile
) T Yead T read | Tead |*
E=lE regfile regfile regfile | €xecute
) —» read
Issue regfile
(a) Three-cycleregister file only
2 3 4 5 6 7 8 9
read write BK, write
RCache ©X€CU® = RcCache, BK file
) read | 4 write BK, write
ISSUE RCachel ©X€CUle | Rcache BK file
. " read \l write BK, write
il RCache | €X€CUl® Rcache | BK file
. read write BK, write
ISSUe RCache ©X€CUl® | Rcache BKfile
. read O miss! “» read read write RC,
Il RCache RFarb. BKfile BK file execute.
. read
Issue RCache

(b) Register cache and two-cycle backing file

Figure5.4. Flow of values between instructionsin the pipeline

10

write
redfile

write
regfile

write
regdfile

read
regdfile

10

write BK,

. RCache

4
execute

11

write
regfile

write
regfile

read
regfile

11

write
BK file

write
RCache

the same capacity. Unlike aregister file, the latency of abacking fileis not critical, being exposed

only during aregister cache miss.

Referring again to Figure 5.4(b), note that by the time a miss is detected, subsequent depen-

dent operations (e.g., I5) may have already issued, speculatively assuming their parent would find

its own inputs in the register cache. When this assumption fails, these instructions must either

stall until their parent completes or replay (i.e., reissue at alater time). This situation is exactly

analogous to the effect of a data cache miss under load-hit speculation [72, 90]. Stalling the

dependent instructions is difficult because the issue pipelines must buffer them while allowing

other, independent instructions to pass them. Replay-based solutions are also complicated

132
although several different processors have aready implemented them to support load-hit specula-

tion (e.g., the Alpha 21264 [48] and the Intel Pentium 4 [4Q]).

A register cache miss results in the replay of all instructions—dependent or not—issuing in
the cycle after the missing instruction issues (equivalent to the model implemented by the Alpha
21264). Instructions independent of the missing instruction may then reissue, while the depen-
dent instructions are delayed. 1n the example of the figure, when the missis detected at the begin-
ning of cycle 6, all of the instructions issued in the prior cycle (e.g., I5) are squashed. The miss
signa aso blocks the issue of any instructions dependent on the miss (or any of the squashed
instructions) occurring at the end of cycle 6. Independent instructions that were squashed may
reissue during cycle 7. Instructions dependent on 14b become €eligible for reissue as the backing
file read finishes (cycle 8), and they obtain their input value from the bypass network at the begin-
ning of cycle 10.

The delay experienced by an instruction that misses in the register cache can vary if thereis
contention for the lone backing file read port. The handling of a register cache miss includes a
cycle to arbitrate for this shared resource. If multiple register cache misses occur in the same
cycle, the arbiter will delay the resolution of the misses such that only one backing file read occurs
per cycle. For long backing file latencies and small bypass networks, a register cache miss can
require a value that has not yet finished writing to the backing file, requiring an additional bypass
network on the backing file read port to bypass incomplete writes.”

The issue port used for the cache-missing instruction is also blocked until the missis resolved
in order to prevent contention at the functional unit between the resolving miss and subsequently-
issued instructions. Otherwise, complicated mechanisms would be required to handle potential
reordering of instructions between issue and completion. Blocking the issue port also hasthe side

effect of guaranteeing that the register cache write port will be free by the time the missed valueiis

Tt The conditions under which abacking file bypass is needed can beillustrated by considering adding addi-
tional backing file write stagesto 11 in Figure 5.4(b) until the write no longer compl etes before the back-
ing file read by instruction 14b. Changing the number of overall bypass stages affects the earliest
instruction that can experience aregister cache miss. For example, adding athird bypass stage would
mean that 14b could not miss, delaying the first possible backing file read for 11’s result to cycle 8. The
number of backing file bypass stages that are needed equals Lyt yrite — Nbypass — 2, Where L yyrite iS the
write latency of the backing file and Ny a5 is the number of bypass stages. Where this quantity is less
than or equal to zero, no bypassing of the backing fileis required.

133
retrieved from the backing file. In parallel with the resumed execution of the instruction experi-

encing the miss (e.g., during cycle 9 for instruction 14b in the figure), the value is placed into the
register cache using this write port to avoid subsequent misses on that value. This operation is

referred to as aregister cade fill.

5.3 Use-Based Register Cache Management

The high cost of register cache misses means that minimizing their occurrenceis crucial to realiz-
ing the performance benefit of a register cache. For a given cache capacity and organization, the
miss rate will be a function of the insertion and replacement policies. In defining such policies,
the main consideration will be ensuring that the limited cache space contains the proper values—
namely, those values yet to be read by unexecuted consumer instructions.

Use-based register caching differsfrom previous register caching proposals by using the infor-
mation provided by degree of use prediction to identify these values. Degree of use prediction
provides the number of times that a result value will be needed; by monitoring the uses of that
value as they occur, the number of remainingusescan be determined. The use-based insertion
and replacement policies exploit the availability of remaining use information to keep the proper
valuesin the cache.

The role of the insertion policy is to filter values that have no uses left after bypassing.
Figure 5.2 illustrated the substantial role of the bypass network in value communication. By
accounting for these bypasses, values that have reached all of their consumers need never pollute
the cache, avoiding the possibility of evicting a still-live value stored there. Each time avalueis
bypassed, its degree of use is decremented. When the value must be written to the register cache,
the write is blocked if the adjusted degree of use is zero; otherwise, the value is written into the
cache along with the number of uses remaining, which enables use-based replacement.

When empty cache entries are not available to handle an insertion, the replacement policy is
invoked to select avictim. The replacement of avalid cache entry does not necessarily imply the

eviction of alive value (which would lead to a subsequent register cache miss). Once alive value

T Empty cache entries arise because cache entries must be invalidated when their associated physical regis-
ter tag isfreed. Otherwise, the cached value could be supplied incorrectly to a subsegquent instruction
assigned the reclaimed tag.

134
is cached, the cache supplies the subsequent consumers. At some point, all of the consumers of

the cached value are satisfied and the value isdead. Asindicated by Figure 5.1, many valuesin a
register file arein precisely this state. The goal of the replacement policy isto select such avaue
for replacement. The remaining use count stored with each cached value facilitates this choice.
Similar to the adjustments of the remaining use count occurring within the bypass network, the
use counts stored within the cache are decremented as their associated values are read. Use-based
replacement ssmply selects a victim with the fewest remaining uses.

The rest of this section details use-based register cache management. The insertion and
replacement policies are described in more detail in Section 5.3.1 and Section 5.3.2, respectively.
Tracking the number of remaining uses for each value is central to the scheme and is the topic of

Section 5.3.3. Section 5.3.4 covers the implications of incorrect use information.

5.3.1 Register cacheinsertion policy
The register cache insertion policy seeks to avoid caching values that will never subsequently be
read. A prerequisite (assuming all instructions are useful) is the existence of an alternative value
communication mechanism—in this case, the bypass network. The bypass network is ideally-
suited for the direct communication of a value to consumers issuing within a short window after
the value becomes available. Since the availability of a new value leads to the scheduling of oper-
ations waiting on that value, many of a value's consumers issue within this window and receive
the value from the bypass network. Valueswith low degrees of use may reach all of their consum-
ersin thismanner. Because the insertion policy prevents such values from entering the cache, it is
best described as use-based filtering

Use-based filtering is similar to a heuristic proposed by Cruz et a. [24] labeled non-bypass
which writes a value into the register file cache only if it was not bypassed to any instructions
prior to the write. In effect, this scheme uses bypassing as a rough proxy for the number of
remaining uses. Since most values have a single consumer, the intent is to keep these values from
polluting the register cache when their consumers are satisfied from the bypass network. How-
ever, values with many consumers that bypass to only some of their consumers prior to the write
are also filtered from the cache, resulting in additional misses. The non-bypass heuristic also

leads to the writing of all useless values into the limited register cache since, by definition, they

135
will not bypass to any consumers. Figure 4.3 shows that a substantial number of needless writes

may result. Use-based filtering avoids the caching of useless values detected by the degree of use
predictor.

Filtering values from the register cache based on how they are bypassed requires the ability to
detect bypass communication before the cache write takes place. Communication within the
bypass network occurs via matching of the input physical register tag of an issuing instruction
with the destination physical register tag of a recently-generated value. This dependence detec-
tion operation occurs in parallel with the access of the register cache for the same value. There-
fore, the occurrence of a bypass is known at the end of the register cache read stage of the
instruction receiving the value. In order to influence the writing of that value, then, the write must
occur after that point.

Consider theinstruction 11 in the pipeline diagram of Figure 5.4(b). It writesitsresult into the
register cache during cycle 4. The first consumers of its result, however, issue at the end of cycle
2. Therefore, during cycle 3, bypasses can be detected and used to update the remaining-use
count for the value, initially set by the degree of use predictor. If these bypasses comprise all of
the predicted uses of 11's result, the cache write during cycle 4 may be avoided. Otherwise, the
value and its remaining uses must be written into the cache. Note that potential consumers of a
value that issue two cycles after the value's producer (e.g., 13) also obtain their inputs from the
bypass network but cannot affect the writing of the register cache. These instructions will be in
the cache read stage while their parents are in the cache write stage, requiring the bypass network
to forward the communicated values as before. However, the input register tags of these instruc-
tions are not available before they arein the cache read stage, and, by thistime, the parent instruc-
tion will have already commenced writing the register cache.

These missing bypasses lead to inflated remaining-use counts being stored in the cache.’ The
consequences of these inflated use counts are addressed in Section 5.3.4. Note that by delaying
the writing of the register cache, it is possible to account for more total bypasses. In
Figure 5.4(b), if the register cache write for 11 were delayed one cycle to cycle 5, bypasses to 12

and |13 could gate the writing of 11's result. However, an additional bypass stage would aso be

t Intheinitial work on use-based caching [17], it was assumed that missing bypasses updated the cache
later, but such adesign is probably not realizable.

136
required since 14 would otherwise not be able to obtain 11's result from either the cache or the

origina bypass network. Overal, the final stage of bypassing aways accounts for the missing
bypasses. Fortunately, the data of Figure 5.2 indicate that first stage bypasses are the most impor-
tant.”

5.3.2 Register cache replacement policy

Previous register cache proposals have assumed LRU [24, 92] or FIFO [11] replacement, neither
of which are particularly suited to the behavior of register values. Due to the dominance of values
with few uses, any given use of avalue is probably itslast.* The LRU scheme, however, makes
recently-used values the least likely to be replaced. FIFO replacement ignores uses altogether,
always selecting the oldest entry as the victim. While values with a high degree of use are rare,
they have long lifetimes (Figure 2.4) and account for many of the input values likely to remain
after bypassing (Figure 2.3). Each such value can cause multiple misses asit is repeatedly written
and eventually replaced from the cache. The availability of future use knowledge (in the form of
remaining-use counts associated with each cached value), however, allows for more intelligent
victim selection.

To minimize the number of register cache misses, use-based replacement selects the cache
entry with the smallest number of remaining uses as the victim. In the event of atie, the oldest
entry is selected (i.e., FIFO). Most of the time, victims selected in this manner have zero remain-
ing uses, and the evictions do not result in afuture cache miss. This single reason accounts for the
superiority of this method over either LRU or FIFO replacement: known-dead values are replaced
preferentially. For victims with uses remaining, one or more future misses on the replaced value

are likely.

T While the datain the figure pertain to a six-stage bypass network, the dominance of the first stage
bypasses holds across bypass networks of different sizes. For bypass networks of two, four, six, and eight
stages (corresponding to register file latencies from one to four cycles), first stage bypasses account for
82.2%, 68.7%, 63.4%, and 60.4% of all bypassed values, respectively.

¥ The probability that a given use of avalueisitslast can be calculated using the analytical model from
Section 2.5.1. Given avalue with adegree of use x > 0, the probability that auseisthelastis1/x. Sum-
ming this probability over all degrees of use weighted by their frequencies of occurrence gives:

P = Z‘leip[D =x] = Sy ax Pt = ag(B+1)

Using thevaluesa = 0.717 and 3 = 2.55 from Table 2.4 gives the likelihood of any use being avalue's
last as 80.4%.

137
The importance of evicting the value with the fewest remaining uses is partially due to the

delay imposed upon operations that need that value after it has been evicted. A misson ahigh-use
value can delay more operations than a miss on a single-use value. In the latter case, there is a
greater likelihood of other independent instructions being able to execute to partially hide the cost
of the miss. If, however, the evicted value is the parent of many instructions (e.g., the base
address of a structure in which many fields are accessed), then it is possible that many or all of the
ready instructions will experience the full latency of the miss.

Another reason that selecting the victim with the fewest usesis preferred isthat it hel ps reduce
the number of future misses possible on the same value. Even though the register cache isfilled
on a miss (Section 5.2), a filled value makes a good eviction candidate because its use count is
cleared. Remaining use counts are only kept for values in the register cache (and in the bypass
network prior to their arrival). This avoids the complexity associated with writing this informa-
tion somewhere else when an entry isreplaced. Therefore, when a value is brought back into the
register cache after amiss, the use count is lost and assumed to be zero (see the discussion of the
fill default in Section 5.3.3); thus, the greater the number of remaining uses a value has when
evicted, the more misses it can cause.

The identification of the victim under the fewest-use replacement policy is a source of com-
plexity, especially in highly-associative register cache organizations. Fortunately, simpler approx-
imations of this policy are possible. The main shortcoming of FIFO replacement is the potential
for multiple misses on certain high-use values. A dight modification of the FIFO replacement
policy would skip over values with more than a threshold number of uses. Another hybrid is pos-
sible for addressing the main problem with LRU replacement. A modified LRU could be imple-
mented in which any entry with zero remaining uses would take precedence over the nominal
LRU during victim selection. In both of these hybrid schemes, the availability of the use informa-

tion enables improvement of the original replacement algorithm.

5.3.3 Counting remaining uses
The use-based policies just described depend upon the availability of a remaining-use count for
each value, which originates from the degree of use predictor. Once initialized, each count must

be updated by uses of the associated value. Within the bypass logic, matches on each result tag

138
configure the bypass multiplexors. A tag match implies a use by a soon-to-execute instruction.
To implement use-based filtering, additional circuitry accumulates the number of these matches
occurring for each value within the bypass network (matches in the last bypass stage are missing
bypasses and are not counted; see Section 5.3.1). This number is then subtracted from the degree
of use prediction to implement the insertion policy. After the adjusted use count and the value are
present in the cache, the counts are updated by subsequent reads of the value.

Use counts equal to the maximum predictable degree of use (Section 3.2.1) are handled differ-
ently. Recall that a degree of use predictor is saturating: it uses the maximum representable num-
ber of uses to denote that and all higher numbers of uses. This presents an interesting problem
with regard to managing the register cache. If asingle value will have millions of uses, the cost of
repeatedly evicting that value will be very large. Therefore, subtracting uses from the saturated
maximum is not the desired behavior. Instead, the remaining-use count is not updated for values
with the maximum predictable degree of use, effectively pinning such valuesin the cache until the
corresponding physical register isfreed; of course, bypasses must not adjust a saturated use count
either.”

The fact that a portion of values are pinned in the cache based on their predicted degree of use
has implications for the choice of the maximum predictable degree of use. It is desirable to pin
the smallest possible number of values in the cache, which favors a higher degree of use limit.
However, higher maximums have a hardware cost in the degree of use predictor, the register
cache, and the associated data paths for tracking and accumulating uses. Of these, the complexity
of the logic for updating use counts is the most critical. Updating remaining use counts of more
than a few bits is likely to be prohibitively difficult. This situation is well-suited for prediction
grouping as described in Section 3.2.4. For example, instead of using two bits to represent
degrees of use of 0, 1, 2, and >= 3, a better encoding in this application would be 0, 1, 2to 7, and
>= 8, reducing the number of pinned values substantially at the cost of some inaccuracy in the use

counts.

T Note that no values are actually pinned in the cache—their use counts are simply not decreased from the
maximum, making it much less likely that they will be replaced. If, during an insertion, a cache set con-
tains only values having the maximum use count, one will be selected as avictim, independent of the use
count of the incoming value.

139
Less than perfect predictor coverage leads to the inability to initialize some remaining use

counts. For these values, an implicit prediction (see Section 3.2.3) called the unknowndefaultis
assigned. The choice of this default is dictated by the capacity pressure on the cache. A value
with a higher default is more likely to end up in the cache after bypassing to all of its actual con-
sumers—perhaps resulting in the eviction of a more useful value (the consegquences of dead val-
ues in the cache is the topic of Section 5.3.4). When space is abundant, it is better to place them
into the cache by default to avoid the possibility of a miss. The data in Section 5.4 indicate that
capacity pressure is extremely important for reasonable register cache sizes, so an unknown
default of oneis used. Note that this default leads to behavior identical to the non-bypass inser-
tion policy (see Section 5.3.1) for these values.

A similar Situation arises after a register cache fill because the backing file does not contain
use information. As in the case of an unknown initial degree of use, the remaining-use count is
set to an algorithm parameter called the fill default Again, noting that any use of avalueislikely
the last (see Section 5.3.2), it is desirable that those values with known real uses be given priority
in avoiding replacement. Therefore, afill default of zeroisassumed. Notethat it isstill important
to perform the fill since a cached value will supply consumers regardiess of its remaining use
count. So long asthereis not any contention that would lead to replacement of the filled value, it

can reside in the cache for some time, even with zero remaining uses.

5.3.4 Incorrect useinformation
I naccurate remaining-use counts arise from degree of use mispredictions, the use of unknown and
fill defaults, missing bypasses, and the counting of wrong-path uses resulting from control-flow
speculation (e.g., branch prediction). These events result in disagreements between the number of
remaining uses recorded in the register cache and the number actually outstanding. Incorrect use
counts never lead to incorrect operation: regardless of the contents of the register cache, all values
are available from the backing file. However, they can result in poor performance by affecting the
ability of the use-based policiesto keep live values within the register cache.

Incorrect remaining-use counts manifest in one of two ways. First, avalue might be present in
the register cache with predicted remaining uses that will never be observed. These arereferred to

as stalevaluesand are exactly analogous to those registers in the register file that contain dead

140
values (Figure5.1). The storage of stale values inflates the number of register cache entries

required and can result in the eviction of genuinely useful values. Alternatively, the cache state
could indicate that a value has no remaining uses even though that value is still live. These
falsely-dead values can lead to aregister cache missif the valueis evicted before their outstanding
uses are satisfied.

The impact of stale valuesis limited by two factors. Most importantly, the invalidation of reg-
ister cache entries when the corresponding physical registers are freed (necessary to ensure cor-
rectness) bounds the lifetime of stale values in the register cache. Also, stale values are not
immune from the fewest-remaining-use replacement policy. Likeall other values, stale values are
likely to have a small number of uses, especially once any actual uses have been counted. There-
fore, they are at |east aslikely to be selected as avictim as alive value with actual uses remaining.

The potential cost of falsely-dead values is also mitigated in practice for two reasons. First,
values remain in the cache—even if their remaining-use count reaches zero—until they are explic-
itly chosen as a victim by the replacement policy. Thus, unless there is actual contention among
live values for entries in same set as the falsely-dead value, the cache will continue to supply the
value to consumers. Second, for many values, all consumer instructions will obtain their inputs
from the bypass network. Therefore, especially for values with few uses, all of those uses may be

satisfied without incurring aregister cache miss, even if the predicted number of uses was too low.

5.4 Evaluation

This section presents an evaluation of use-based cache management policies. The processor
model in which the register caches are evaluated is described in Section 5.4.1. Section 5.4.2
addresses the capacity and organization of the register cache. Section 5.4.3 discusses the costs of
register cache misses and their role in determining performance. Next, the different register cache
policies are compared in isolation: Section 5.4.4 looks at the insertion policy while Section 5.4.5
examines the replacement policy. Section 5.4.6 revisits register cache misses, discussing the per-
formance results of the prior sections in terms of different kinds of misses. Finally, Section 5.4.7

illustrates the sensitivity of the register cache to the cache size and machine width.

141
5.4.1 Processor model

The implementations for which aregister cache is likely to be beneficial are wide-issue machines
with deep pipelines. The combination of these two attributes creates the need for many physical
registers, while the deep pipeline implies that access to amonolithic register file could extend over
severa pipeline stages. Therefore, it isimportant to evaluate register caching in such a machine.
The modeled processor configuration outlined in Table 5.1 reflects this consideration. It is an
eight-issue superscalar processor with a deep pipeline (16-cycle minimum to redirect fetch after a
branch mis-speculation) supporting up to 320 in-flight instructions. The front end, execution
resources, and cache hierarchy are similarly aggressive. The effect of using a more realizable
superscalar width of four is examined in Section 5.4.7.

Especidly relevant for the evaluation of register caching are the size and latency of the physi-
cal register file and backing file and the structure of the bypass network. The physical register file
contains 320 registers (320 in-flight instructions x 80% value-generating instructions + 64 archi-
tectural registers). The register file latency only affects the baseline performance against which

register caching is evaluated. Read and write latencies are each set at three cycles, similar to the

Table5.1: Simulated Processor Parameters

Pipeline | 8-wide superscalar; 5-stage fetch (next address + |-cache access + fetch queue),
2-stage each decode and rename, 1-stage dispatch (write into window), issue,
and commit. 16-cycle minimum fetch redirection on branch mis-speculation.

Front end |Up to 8 non-nop instructions per cycle from up to 2 cache lines. Each fetch
block can contain up to one taken branch and any number of untaken branches.
48-entry instruction queue between L1 |-cache and decode.

| ssue/Execute | 200-entry scheduling window, oldest ready first. 320-entry reorder buffer.
Eight issue ports: (1) ssmple integer (no mult), (2,3) load or store, (4,5) simple
integer or smple FP (no mult/div/sgrt/branch), (6,7) any integer/FP incl. branch,
(8) simple integer or load or store.

Register/ | 320-entry physical register file, 3-cycle latency OR 1-cycle register cache and
Bypass 320-entry backing file, 2-cycle latency. 2-stage bypass network.

Memory |32KB, 2-way set-associative L1 instruction and data caches with 64-byte

blocks. 2MB, 4-way set-associative unified L2 cache with 128-byte blocks, 12-

cycle latency. 160-cycle memory latency. 128-entry load queue and 128-entry
store queue.

Degreeof Use | 8K-entry, 8-way set-associative, 13.4KB predictor described on page 80.
Predictor

142
example of Figure 5.4(a). Performance resultsin this section are presented as speedups relative to
this baseline multi-cycle register file.

The backing file is the same size as the physical register file it replaces (320 entries here).
The latency of the backing file affects the performance of register caching via the miss penalty.
The backing file does not need to support the read bandwidth of aregister file sinceit isonly read
on register cache misses. Therefore, its access latency can be lower than the physical register file;
here atwo-cycle latency is assumed.

Any implementation will include the largest bypass network allowed by the design constraints
(until the full register file latency is covered). Because alarge bypass network represents a signif-
icant limiter to clock frequency scaling [66], in the eight-wide processor model considered here, a
two-stage bypass network is assumed. Such a bypass network represents full bypassing for the
register cache, but limited bypassing [2] for the three-cycle register file.

5.4.2 Register cachesize
Based on the number of live values indicated in Figure 5.1, the register cache should have at |east
60 cache entries to have a hope of containing all of the live values. The size of aregister cache
will ultimately be determined by the need to maintain single-cycle access. Since the base case for
performance comparison assumes a three-cycle latency for a 320-entry register file, asingle cycle
register cache should certainly have no more than about 106 entries (320 + 3). However, while the
register file is direct-mapped, a register cache needs to be associative to offer reasonable
performance [17], which will make it slower for the same number of entries.

Given the three-cycle latency of the original physical register file, asingle-cycle cache of up to
80 entries is probably reasonable depending on the associativity. The latency penalty of afully-
associative design as well as the difficulty of implementing a global replacement policy over so
many entries indicate that a set-associative design ismoreredistic. In the remainder of this chap-
ter, three specific design points will be evaluated: 64x4, 80x4, and 80x8, where mxn indicates an
m-entry, n-way set-associative design.

Going from fully-associative to set-associative introduces conflict misses, which generally
will prevent the realization of the full performance potential of a given capacity. These can be

mitigated somewhat by using decoupled indexing [17]. Decoupled indexing explicitly assigns a

143
register cache set to each physical register asit is alocated instead of relying on the implicit deri-
vation of the set index from the register tag. Consumers of the register are provided with its cache
set via the standard renaming process; however, instead of receiving only a physical register tag,
they receive a tag and a register cache set index. Set indices are assigned using a policy that
attempts to minimize conflicts within the register cache. A very simple policy that works well
assigns set indices in a round-robin manner, with each newly allocated physical register assigned
to the next set sequentialy. Since execution order often resembles rename order (due to data
dependencies), this policy helps to keep values produced within a short period of time in different
cache sets. This indexing policy is used for al of the set-associative designs presented in the

remainder of the chapter.

543 Misses

The most important determinant of the performance of any register caching scheme is the aggre-
gate cost of the register cache misses. This cost is a combination of the penalty of each miss and
the frequency of their occurrence (i.e., the missrate). The per-miss penalty is independent of the
policies and organization of the register cache. Instead, it depends on the miss model and the par-
ticular benchmark. The miss model, which includes the backing file access, the issue port stall,
and the replay of operations issuing in the register cache miss shadow, merely defines the costs
associated with each.

A given benchmark may be more or less sensitive to misses due to specific interactions with
components of the miss model. For example, a benchmark with a high average IPC will be more
sensitive to misses because more independent computation will be delayed. Similarly, a bench-
mark with a high proportion of instructions requiring alimited execution resource (e.g., a floating
point divider) may perform especially poorly as misses |lead to the temporary unavailability of that
resource. Where a benchmark’s performance is severely limited by other bottlenecks (e.g., L2
misses), the benchmark may be relatively insensitive to register cache misses.

How the miss rate itself affects performance is more straightforward: more misses equals
lower performance. This relationship is illustrated quite clearly in the data of Figure 5.5. Each
point corresponds to a different combination of cache size, associativity, and insertion and

replacement policies. Note that there is no significance to the division of the benchmarks among

144

1.2 N oart
*» equake
1.0 —% +facerec
Qo ""‘.",
S 0.8 0
'§ *-H' %g o° °
B 6 T
' M-H-'i— -
+
0.4 -
0 10 20 30 40
1.2 4 ovortex
* bzip2
1.0 1 Wby, +twol f
+y
s
0.8 -
T
o
0.6 —
0.4 -
0 10 20 30 40
R °gzip
..... e vpr
1.0+ +gcc
Qo "
F o8- © 9
#
0.6 —
0.4 -

0 10 20 30 40
Missrate (%)

1.2 — . o anmp

ot % ¢ |l ucas
1.0 %%D + f ma3d

*bﬁ'_ o
®,
MmNy
+-||- ‘

0.6 H
0.4

1.2 —

1.0 H

0.8 H

0.6 —

0.4 H

1.2 —

1.0 H

0.8 H

0.6 —

0.4 H

b o WUpW Sse
e swWm
+ngrid

o ncf
ecrafty
+ par ser

0 10 20 30 40

Missrate (%)

Figure5.5. Effect of missrate on performance

1290 o si xtrack
* apsi

12 —‘ o appl u
Y * nesa
104¢ + gal gel
0.8
0.6
0.4
0
1.2 - o eon
|
AN T
0.8 o
0.6
0.4
ARAAAA LAMAAL) MM LAY

0 10 20 30 40
Missrate (%)

the different graphs other than clarity of presentation. With few exceptions (e.g., anmp and ntf),

the data show a strong negative correlation between performance and miss rate. The data gener-

aly fals on well-defined curves regardliess of the different cache parameters. Where scatter

occurs (e.g., wupw se, and to a lesser extent, nesa and ar t), the overal correlation is still

readily visible. The slope and position of a curve fitting the data for a given benchmark offer a

wealth of information.

145
The slope of the curve directly indicates the per-miss penalty. As discussed previously, this

depends on the peculiars of the miss model and the benchmark. Since the miss model is the same
for al of the experiments represented here, variations in the miss penalties (slope) of the different
curves must indicate attributes of the benchmarks themselves. For example, anmp, which spends
most of its time waiting on memory, shows very little sensitivity to the miss rate. Conversely,
among the integer benchmarks, bzi p2 shows the largest miss penalty because of a high base
IPC. The curvature seen among many of the benchmarks is related to the interaction of the miss
penalty with the base IPC. At high miss rates, the cost of each miss goes down as they cease to
delay as much independent useful work.

The vertical position of a given plot shows the benefit of using a register cache over a multi-
cycleregister file. Consider the intercept of a curve with the y-axis (speedup axis): that point indi-
cates the performance advantage of a perfect register cache. For example, the performance of
wupw se with a perfect register cache is over 20% better than its performance with the three-
cycle register file; art on the other hand, does not show much improvement even for miss rates
near zero.

Clearly, any performance advantage offered by one register caching algorithm over another
will result from a decrease in the missrate. For afixed size and associativity, then, the miss rate
must be linked solely to the predictor policies. This observation was offered unsubstantiated at
the beginning of Section 5.3 when considering the attributes of a successful cache management
policy.

In examining the effects of the prediction policies on performance in the following sections, it
will be helpful to define two possible kinds of misses. Filtering misses are the result of an attempt
to access a value that was not put into the cache because of the insertion policy. Eviction misses
result from the replacement of alive value in the register cache. Eviction misses may be dueto a
poor choice by the replacement policy or they may simply occur because of capacity constraints
or conflicts. Therefore, while filtering misses are solely attributable to the insertion policy, evic-
tion misses depend on both the replacement and insertion policies since the insertion policy can

mitigate capacity pressure on the cache viawrite filtering.

146

N U
vpr

N
perl

N

twolf vortex

parser

1.25
1.20

tion policy [24] in which values that bypass to any number of consumers are not written into the
The performance of use-based insertion filtering is indicated by the U bars. LRU is used as the

show the performance of the 64x4 cache, the light gray bars the 80x4 cache, and the black bars
cache (i.e, nofiltering is performed). The N bars show the performance of the non-bypass inser-

cache. Note that the non-bypass policy still suffers from missing bypasses (see Section 5.3.1).

Figure 5.6 compares three different cache insertion policies. For each policy, the dark gray bars
the 80x8 cache. The A bars correspond to a policy that writes all result values into the register

5.4.4 Comparinginsertion policies
replacement policy for al three configurations.

mesa mgrid sixtrack swim wupwise

Figureb5.6. Insertion policies

147

The performance advantage of use-based filtering is substantial, especially where capacity
limitations are important. Use-based filtering reduces the number of values written to the cache,
requiring fewer replacements and relieving capacity pressure. Thisadvantageisbest illustrated in
the floating-point benchmarks, where use-based filtering delivers the highest performance on
every benchmark even for the 80x8 organization. Among the integer benchmarks, the policy still
delivers the highest performance overall, although the policy that indiscriminately writes all val-
ues (A bars) can perform dlightly better for some benchmarks, especialy at large cache sizes. In
these cases, capacity is not alimitation (Figure 5.10 shows that 64-80 entries suffice for the inte-
ger benchmarks); thus, the small advantage of reducing the number of writesis offset by the addi-
tional filtering misses on values that should have been cached.

Note that the non-bypass scheme universally performs worse than filtering based on use infor-
mation. While single-use values account for more values than any other class, the combined num-
ber of al values with higher degrees of use is substantial (nearly 30%). Thus, there will be a
significant number of values that bypass to some consumer yet still have additional consumers
after bypassing. While use-based caching detects that additional uses are outstanding, the non-
bypass scheme will filter these values, leading to additional filtering misses. Still, where capacity
limitations are especially important (e.g., gal gel), even low quality filtering is better than none
at all, and the non-bypass scheme outperforms writing all values.

Table 5.2 presents additional data on the efficacy of use-based filtering for the 80x4 register
cache (i.e., corresponding to the light gray barsin Figure 5.6) in terms of the percentage of values
avoiding the cache (initially and completely) and the percentage written to the cache that are not
subsequently read. Only the last of these is meaningful for the policy that writes all values (since
the filtering percentages would be zero). Differences between the initial filtering percentage and
the complete filtering percentage (i.e., the percentage of values never entering the cache) result
from both poor filtering decisions and the difference in the sets of values under consideration.
Poor filtering results in values eventually entering the cache because of a subsequent miss; thus,
poor filtering leads to an initial filtering rate greater than the never-cached percentage (e.g., for
ammp). Thereisalso adlight difference in the two percentages because the initia filtering rateis
apercentage of all valueswritten, while the never-cached percentage considers only values gener-
ated by instructions that retire.

Table 5.2: Evaluating Use-Based Filtering

148

% valuesfiltered initially % values never cached % cached but never read
Benchmark | Use-based | Non-bypass| Use-based | Non-bypass | Use-based | Non-bypass | write All
eon 53.50 44.90 54.93 40.01 2841 46.20 67.92
bzi p2 65.88 62.87 66.66 60.27 40.96 47.90 76.82
crafty 59.71 47.14 59.95 4453 32.17 51.85 74.13
gap 67.18 52.04 68.00 47.00 27.23 57.55 76.55
gcc 62.28 51.55 62.61 48.58 32.74 52.68 74.93
gzip 58.73 42.47 62.16 43.52 35.09 57.58 74.43
ncf 57.51 47.37 57.71 42.90 24.34 49.61 69.39
par ser 56.20 54.18 57.96 51.60 39.66 49.97 74.71
per | 61.55 49.38 62.08 44.39 29.99 52.53 73.35
t wol f 53.91 51.97 55.12 45.92 30.66 44.99 68.49
vort ex 58.56 36.33 60.11 33.85 24.66 59.83 72.82
vpr 50.37 45.69 52.14 42.57 28.17 43.98 65.87
amp 41.28 38.99 43.42 33.70 37.79 54.68 65.18
art 24.63 27.96 24.62 22.86 24.60 28.73 45.15
equake 37.85 37.05 38.06 31.90 38.84 48.16 63.85
mesa 48.25 37.67 53.51 33.37 31.15 53.51 67.91
appl u 21.21 23.68 2212 21.63 53.89 54.33 61.48
apsi 30.08 27.66 30.43 23.58 42.60 45.87 57.15
mgrid 12.54 14.72 12.76 13.36 61.17 50.07 55.54
si xtrack 35.47 32.24 36.75 28.78 39.90 50.86 63.91
SW m 18.99 25.62 19.06 21.59 52.01 45.23 57.05
WUpW Sse 44.03 40.83 45.92 37.97 36.07 45.18 64.62
facerec 30.78 30.04 31.32 24.61 42.87 34.38 53.19
f ma3d 36.39 33.85 38.02 31.12 39.53 47.20 62.44
gal gel 39.16 36.03 39.32 32.40 30.85 31.24 49.36
| ucas 23.21 25.56 23.21 20.46 42.33 45.24 54.17
I nteger 58.77 48.82 59.95 45.43 3117 51.22 72.45
Floating Pt.] 31.71 30.85 32.75 26.95 40.97 45.33 58.64
C/C++ 53.58 45.47 54.94 41.69 31.65 49.98 69.47
Fortran 29.19 29.02 29.89 25.55 4412 44.96 57.89
All 44.19 39.15 4531 35.48 36.45 48.05 65.02

149

The use-based filtering policy keeps more values from entering the cache than the non-bypass
policy. In the case of the integer benchmarks, the difference is dramatic: over 30% more values
(60% versus 45%) never enter the cache under use-based filtering. Overall, the use-based policy
keeps 44% of retired values from ever entering the cache.

The filtering percentages also underscore the vastly different behavior of integer and floating-
point benchmarks. Nearly twice as many values are filtered from the register cache in the integer
benchmarks, leading to much higher capacity demands by the floating-point benchmarks. The
lower filtering rate in the floating-point benchmarks can be attributed partially to the smaller num-
ber of floating-point execution resources. Floating-point instructions with ready operands fre-
guently wait for execution resources; by the time the instruction can execute, its inputs are no
longer available on the bypass network, leading to a lower bypass rate. With fewer bypasses
occurring, fewer insertions are avoided and capacity pressure on the cacheisincreased. This con-
clusion is supported by the average number of ready instructions—28 in the floating-point bench-
marks versus 11 in the integer benchmarks—and the percentage of all reads satisfied by the first-
stage of the bypass network—25% floating-point, 46% integer.T

The percentage of cached values that are never read also quantifies the success of the insertion
filtering policy. Ideally, this percentage would be zero, indicating that only values that would
eventually be read would be cached. However, this percentage is aso subject to two factors unre-
lated to the insertion filtering. First, capacity pressure can result in the eviction of a useful value
from the register cache (i.e., one that would have been read) prior to any reads occurring. Second,
the fills that occur on a register cache miss can bring values into the cache that may not be read
again. In spite of these effects, the advantage of use-based filtering over the other two insertion
policies is clearly evident by this measure. Use-based filtering decreases the number of values
needlessly placed into the register cache by 24% and 44% versus non-bypass filtering and no fil-
tering, respectively.*

t These data correspond to use-based insertion filtering and LRU replacement with an 80x4 register cache.

T (48.05% — 36.45%) + 48.05% = 24% and (65.02% — 36.45%) + 65.02% = 44%.

150
5.4.5 Comparing replacement policies
The performance of various replacement policies are compared in Figure 5.7. The presentation is
identical to Figure 5.6 with 64x4, 80x4, and 80x8 register caches (dark gray, light gray, and black
bars, respectively) evaluated under each policy. Use-based filtering is used as the insertion policy
in al cases. Within each bar group, the replacement policies are: L(RU), F(IFO), and D(egree of
use-based), which selects for replacement the entry with the fewest remaining uses.
Again, the advantage of employing a use-based policy is evident. As was the case with the

use-based insertion policy, the benefit tends to be more pronounced under capacity constraints.

gl My
Iylf M Iy
l] [e M| III
o .:I;I- I m .ilil
5 | m 80x8
-g O 80x4
8. = 64x4

"LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD
bzip2 crafty eon gap gce gzip mcf parser perl twolf vortex vpr

1.25

1.15

1.05 '
0.95 '

0.85 — | H

Speedup

0.75 4
0.65 4
0.55 4
0.45 4

0.35

0'25_LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD LFD

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figureb5.7. Replacement policies

151
The fact that the use-based policies work well for relatively small caches indicates that they do a
good job of maintaining the most important set of values within the limited amount of space.
Because the latency of aregister cache depends on its size, a use-based cache can deliver equiva
lent performance to that of previously-proposed policies with a smaller, lower-latency organiza-
tion.
Section 5.3.2 also proposed modifications of the LRU and FIFO policies based on the avail-
ability of use information. These hybrid schemes were meant to address some of the complexity

surrounding the identification of the entry with the minimum degree of use. Figure 5.8 showsthe

1.261.26
1.25

1.20 |

1.15

1.10 —

1.05
m 80x8

1.00 i O 80x4
1 = 64x4

Speedup

0.95
0.90 —
0.85

0.80

0'75_DPZ bpbpz DPZ DPZ DPZ DPZzZ DPZ DPZ DPZ DPZ DPZ DPZ

bzip2 crafty eon gap gce gzip mcf parser perl twolf vortex vpr

1.25

1.15

1.05

0.95

0.85 |

Speedup

0.75 |

0.65
0.55
0.45

0.35

0'25_DF’Z ppz DPZ DPZ DPZ DPZ DPZ DPZ DPZ DPZ DPZ DPZ DPZ DPZ

ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figure5.8. Hybrid replacement policies

152
performance of these two schemes. Asin Figure 5.7, D indicates fewest-use replacement. P cor-
responds to a modification of FIFO in which values with the maximum degree of use are pinned
in the cache; Z shows the performance of a modification of LRU in which entries with zero
remaining uses are given priority. The latter scheme performs competitively with and, in some
cases, better than the pure use-based scheme. The performance of the pinned-FIFO replacement
policy represents a slight improvement over classical FIFO for those benchmarks where capacity
isnot at apremium (i.e., mostly the integer benchmarks), but does not perform as well as the other
two policies. Comparing the performance of these hybrid policies with that of the original use-
based replacement policy suggests that the main advantage of the original use-based replacement
policy over LRU or FIFO isits preferential selection of dead victims rather than its ability to keep

high-use values in the cache.

54.6 Missbreakdown

Figure 5.9 shows a breakdown of register cache misses for three register cache algorithms. The
configurations are drawn from Figure 5.6 and Figure 5.7: the A configuration inserts all values
and uses LRU replacement, the N configuration performs non-bypass filtering with LRU replace-
ment, and the D configuration uses use-based insertion filtering and use-based replacement. In
thisfigure, the cache organization is fixed at four-way set-associative with a capacity of 80 entries
(i.e., the 80x4 organization indicated by the light gray barsin the previous figures), and the differ-
ent components of each bar represent the portion of the overall miss rate due to filtering (dark
gray), capacity evictions (light gray), and conflict evictions (black).

Filtering misses are easily counted, but the classification of the eviction misses as conflict or
capacity misses is more involved. For each cache algorithm, the miss rate was also determined
using a fully-associative cache of the same capacity (80 entries), which does not suffer from con-
flict misses. The capacity miss rate of the set-associative cache was assumed to equal to the non-
filtering miss rate from the fully-associative cache.” The remai ning portion of the overall miss

rate was attributed to conflicts.

T Thevalidity of thisassumption depends on the filtering miss rate being the same in the set-associative and
fully-associative caches for each given algorithm; the dataindicate that thisis a reasonable approximation
(the median difference in the filtering miss ratesis 3.3% of the set-associative cache’s miss rate).

153

20
15
s
s W Conflict
® 10 O Capacity
iﬁ 1 = @ Filtering
p ||
||
5 |
]
- |
I"H [N |
[N Iy [FN
) = 1
AND AND AND AND AND AND AND AND AND AND AND AND
bzip2 crafty eon gap gce gzip mcf parser perl twolf vortex vpr
32
. |
S |
g [y
. 1
2 [o]
“TAND AND AND AND AND AND AND AND AND AND AND AND AND AND
ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise
Figureb5.9. Register cache misses

Theinsertion policy in which all values are written to the cache (A bars) cannot cause filtering
misses; in contrast, the filtering of any values by the non-bypass or use-based filtering policies
must result in some such misses. The number of filtering missesintroduced by use-based filtering
is less than the decrease in eviction misses from the lower write bandwidth, leading to a lower

overal miss rate and higher performance.T The opposite is true for the non-bypass scheme

T Thedatain Figure 5.9 do not strictly illustrate that the reduction in eviction missesis due to use-based fil-
tering since the D bars also employ use-based replacement. However, the performance results of
Figure 5.6, in which LRU replacement is used with different insertion policies, clearly show that the use-
based insertion policy must be lowering the overall missrate.

154
(N bars): here, the misses from filtering exceed the reduction in eviction misses due to that filter-
ing, resulting in a performance loss.

Filtering misses represent a substantial portion of the miss rate of a use-based register cache,
but only for the integer benchmarks. The register cache misses experienced by the floating-point
benchmarks are dominated by capacity and, to alesser extent, conflict misses. The greater capac-
ity demands of the floating-point benchmarks result from a combination of fewer bypassed values
(Section 5.3.1), a larger number of live values (Figure5.1), and longer value lifetimes
(Figure 2.4).

5.4.7 Sensitivity studies
Figure 5.10 isolates the effect of the register cache capacity by showing the performance of regis-
ter caching using fully-associative register caches of different sizes. The use-based, non-bypass,
and LRU curves correspond to the D, N, and A configurations of Figure 5.9, respectively. Float-
ing-point and integer benchmarks are separated to illustrate the extreme difference in their behav-
ior.

The use of aregister cache as small as 32 entries improves the performance of the integer

benchmarks over a three-cycle register file. For a 96-entry register cache, the performance

1.2
1 /A/'—‘f /(J
/ / A
1.0 A/ ///;/:4.&
%\ 0.9 L A
s o// o A Use-based
; r o O Non-bypass
L os 5 o LRU
g o el O Integer
-§ A o et e Floating-point
07 - . "-'o. Pid
(% Pie n_-'!"' -
L e
0.6 ‘es
O
-"’.
0.5 B
e
0.4 T T T T T
32 48 64 80 96
Capacity
Figure5.10. Cache capacity

155
improvement is about 15%, although the benefit reaches 12% with only 48 entries. Given thelim-
ited number of capacity misses exhibited by the integer benchmarks (Figure 5.9), the saturation of
the performance with capacity is to be expected.

The floating-point benchmarks suffer terribly under register caching. With the use-based
cache policies, 96 cache entries are required to exceed the performance of the three-cycle register
file on the floating-point benchmarks; the other two caching algorithms still exhibit a slowdown of
more than 20% at this capacity. In contrast with the integer benchmarks, the nearly linear
increase in performance with capacity demonstrates the significant contribution of capacity
misses to the behavior of the floating-point benchmarks.

The performance of register caching in a narrower pipelineis considered in Figure5.11. The
presentation is similar to that of Figure 5.6 except that the bars in each stack indicate the perfor-
mance of 56x4 (dark gray), 64x4 (light gray), and 64x8 (black) register caches. The simulated
parameters are identical to those presented in Table 5.1 except: (1) the pipeline is four-wide,
(2) the machine can fetch from one cache line per cycle and a single taken branch terminates fetch
for that cycle, (3) the reorder buffer, register file, and backing file have 256 entries, (4) the issue
window has 128 entries, and (5) the core configuration matches the rich resource configuration
from Table 4.4. The register cache capacities have also been reduced from the 64- and 80-entry
sizes to maintain the same relative sizes versus the smaller physical register file.

The behavior of the register cache algorithms in a four-wide machine is similar to that in the
eight-wide machine depicted in Figure 5.6 and Figure 5.7. The performance of use-based register
caching relative to the multi-cycle register file baseline or to the other caching algorithms is
reduced versus the wider machine. This phenomenon may be explained by noting that as the exe-
cution bandwidth is decreased, there are fewer opportunities for bypassing, reducing the potential
of use-based filtering. Simultaneously, value lifetimes increase, leading to a greater window of
vulnerability in which a poor decision can lead to a miss. In spite of the reduced benefit, use-
based caching still delivers the best performance of the three register caching algorithms. Speed-
ups are achieved for al of the integer benchmarks, even with a 56x4 register cache (using the use-
based policies). Of the floating-point benchmarks, only anmp achieves a speedup under any pol-

icy for the range of cache organizations tested.

156

g N |
u o AN P B M= P
=3 | 1N N N . HHEEE NN - B 64x8
? b HH - HA e - 2
@ 1 G L. 1R B 56x4
||
H

TAND AND AND AND AND AND AND AND AND AND AND AND
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

o

Speedup

TAND AND AND AND AND AND AND AND AND AND AND AND AND AND
ammp applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise

Figure5.11. Register cache performancein afour-wide machine

55 Reated Work

Due to the central role of the register file, a huge body of research has been aimed at optimizing
this structure, particularly its accesstime. Many of these proposals include some form of banking
or clustering to divide the register file's bandwidth (and sometimes capacity) requirements among
severa smaller structures. Thiswork islargely orthogonal to the use of aregister cache: many of
the schemes are as applicable to aregister cache as aregister file. Here, the discussion is limited
to register hierarchies and proposal s that leverage the occurrence of empty and dead values within
the register file (observed in Section 5.1).

157
A register cacheis a particular implementation of ageneral class of multi-level register hierar-

chies. Like memory hierarchies, multi-level register hierarchies all provide for different classes of
register storage in an attempt to reduce the average register read latency. The methods differ on
such attributes as the structure of the register hierarchy, whether inclusion is enforced, and, most
importantly, how values are managed within the hierarchy. Some of these schemes depend on
explicit software assignment of values to different levels in the hierarchy [58, 81, 93]. Such
schemes not only necessitate compiler support, but also require exposing the register file imple-
mentation to the |SA.

Previous examples of hardware register caches that operate essentially as described in
Section 5.2 have been proposed. Yung and Wilhelm [92] first suggested a two-level register hier-
archy in which a small, fast register cache that communicates directly with the execution core is
accompanied by abacking store. They evaluated afully-associative register cache managed using
an LRU policy. Cruz et al. [24] invented the non-bypass heuristic to keep bypassed values from
polluting the small register cache. Their cache was a fully-associative structure, but used pseudo-
LRU replacement. They also proposed two prefetching schemes to bring results into the register
cache before they are needed.

The distributed register algorithm by Borch et al. [11] employs multiple, fully-associative
FIFO register caches in a clustered architecture. Some writes are avoided for values whose
observable consumers: (1) can obtain the result from the forwarding buffer (bypass network),
(2) can obtain the result from the register file prior to issue, or (3) will not execute on a different
cluster.

Postiff et al. described a rather more complicated register caching scheme that amounts to a
small, exclusive, direct-mapped register cache with a special index assignment policy [69].
Because their register cache is exclusive, a cache entry must not be reassigned until prior writer of
that entry commits; at that time, the result value is written to the larger backing store and the
cache entry may be reassigned.

Balasubramonian et al. introduced another exclusive register file hierarchy in which dead reg-
ister values are moved from the physical register file (L1) to a backing structure (L2) with a hid-

den namespace [8]. Dead register values are moved when the number of L1 registers drops below

158
apredeterminedhreshold. Controlmis-speculationandexceptionsrequireregistersfrom the L2
to be copied back into the L1.

Many otherresearcherbave alsotakenaim atthe emptyanddeadvaluesoccupying theregis-
terfile. In somecasessoftwareannotationsareusedto indicatethattheregistervaluesaredead
earlierthanwould be otherwiseknown [57, 58, 60], allowing themto bereleasecarly Monreal
et al. devised a schemefor discovering theseearly releaseconditionsdynamically[64]. Some
implementationssimply rely upon the storageof the deadvaluesin a checkpoin{3, 61] or
elsavhere[56] if neededor recovery. Gonzéleztal. [35, 63] andWallaceandBagherzadef87]
attacktheemptyphysicalregistersinstead proposingo delaytheallocationof a physicalregister

to a result until after the result has been generated.

5.6 Summary

Ragistercachingis atechniqueto addresshe difficultiesin implementinglarge, low-lateng reg-

ister files and their associatedypassnetworks. Large registerfiles arerequiredto supportan

increasingnumberof in-flight instructionsin deeppipelineswith high executionbandwidth. As

clock frequenciesncreasehowever, theaccessateng of theregisterfile extendsacrosanultiple

pipeline stages. Bypassnetworks suffer similar scalingissues preventingthe increasedegister
latengy from beingfully-hidden. A registercacheleverageghe factthata large fraction of allo-

catedregistersareeitheremptyor containa valuethathasalreadybeenreadby all of its consum-
ers. By storingthesevaluesonly, the registercachecanmaintainlow lateng, andfull bypassing
can be supported.

Thesuccessfubperatiorof aregistercachedepend®ntheability to keepit filled with this set
of live values. Controlling the caches contentsis the province of its insertion policy, which
decideswhat valueswill enterthe cache,andits replacemenpolicy, which decideswhat entry
will be replacedduring an insertion. Ideally, insertionswould be restrictedto live valuesand
replacementsvould preferentiallyselectvaluesthat had becomedeadsinceenteringthe cache.
The numberof remainingusesof a value,derivedfrom comparingthe actualuseswith the infor-
mationfrom a degreeof usepredictor indicateswhetheror not it is live. This informationcan

then be used by cache management policies to approximate the ideaheha

159
This chapter described two such policies for the management of the contents of a register

cache. Use-based filtering exploits the fact that the bypass network performs a significant fraction
of al value communication. Due to the structure of the pipeline, many of these bypasses can be
observed and accounted for before the value must be written to the register cache. If the number
of observable bypasses equals or exceeds the predicted degree of use, the value can avoid entering
the cache and causing a replacement. When a replacement is necessary, use-based replacement
attempts to select those values that are either dead (i.e., have no remaining uses) or will be least
likely to lead to many future misses.

These policies substantially improve the performance of register caching over previous pro-
posals for register cache capacities of interest. Versus a three-cycle 320-entry register file, a 64-
entry, four-way set-associative use-based register cache yields a 9.3% speedup on the integer
benchmarks. Applying the best previously-proposed policy to the same cache resultsin a speedup
of only 2.7%. Performance on the floating-point benchmarks was significantly lower than when
using a multi-cycle register file, but it was still superior to that offered by previous policies. The
behavior of floating-point benchmarks was attributed to a much higher number of live values,

which led to alarge number of capacity misses.

160

Chapter 6

Conclusions

The complexity of current inter-instruction value communication mechanisms represents the most
important barrier to the implementation of future high performance processors. This complexity
arises because every value is treated exactly the same. Identical resources are used for the com-
munication of each instruction’s result, and the value communication structures support the most
general possible communication behavior of each value. Register files assume the need for long-
term storage, bypass networks assume high fan-out, and instruction windows assume that all wait-
ing instructions could use every result. The consequences of these assumptions are reflected in
the difficulty in scaling these structures to exploit more parallelism at ever higher frequencies.

Degree of use offers a method by which the degeneracy among values can be broken. Itisa
simple, intuitive indicator of the nature of avalue's participation in inter-instruction communica-
tion. Some values undoubtedly need the general high-powered communication capabilities pro-
vided to every value now—but these are few in number. A far greater portion of values have
modest requirements, being used once or twice within a short time of their generation. Degree of
use information differentiates these behaviors, allowing for the dynamic selection among mecha
nisms adapted to the needs of specific kinds of values.

This dissertation has presented an in-depth exploration of the characteristics, prediction, and
application of degree of use information. Section 6.1 summarizes these contributions.

Section 6.2 describes other potential optimizations enabled by degree of use knowledge, and

161
Section 6.3 concludes with a discussion of the factors that determine the benefit of use-based

communication optimizations in general.

6.1 Contributionsand Key Results

The maor contributions of this work were: a characterization of the properties of degree of use
and its relationship to inter-instruction communication (Chapter 2), the description of static and
dynamic methods for high-accuracy degree of use prediction (Chapter 3), a characterization of
and mechanism for exploiting zero-use values (Chapter 4), and the demonstration of a superior
method of register caching based on the exploitation of degree of use information (Chapter 5).

The key results of each of these contributions is summarized bel ow.

6.1.1 Degree of usecharacterization
The initial definition and exploration of degree of use was presented by Franklin and Sohi [32].
The characterization presented in this work both confirms and significantly expands upon their
results. The dominance of simple communication patterns in programs was demonstrated to hold
across languages, compilers, and individual programs. Single-use values comprise the majority
of all values generated during a program’s execution. Values with greater numbers of uses occur
progressively less frequently. While high-use values are less frequent, they supply proportionally
more consumers, indicating that efficient means for the wide distribution of values are needed.

New insight into the degree of use properties of values was obtained by correlating their
degree of useto individual instructions within the program. Certain kinds of values, identified by
the architectural registers to which they were bound or the type of instructions generating them,
exhibit behaviors quite different than the overall average. Addresses, for example, have a signifi-
cantly higher average degree of use than other values. The examination of degree of use on a per-
instruction basis also revealed the existence of the locality necessary to achieve accurate degree of
use prediction.

Mathematical models of degree of use properties were also considered. Previous researchers
had proposed that the frequency distribution of values with different degrees of use was fit by a
power-law model [28]. Thiswork extended the prior model to account for zero-use values, simul-

taneously providing a useful probability distribution function for the occurrence of values with

162
different degrees of use. A typical application of such a model was demonstrated during the

comparison of different register cache replacement algorithms (Section 5.3.2).

6.1.2 Degreeof useprediction

The demonstration of accurate degree of use prediction is the cornerstone of this work, enabling
the implementation of the speculative inter-instruction communication optimizations presented in
the latter chapters. How each instruction fits within the overall communication structure of the
program is fixed when the program is compiled. Therefore, the range of behaviors of values aris-
ing from a particular instruction is predetermined and can be discovered by static dataflow analy-
sis. The definition of the degree of use dataflow problem for performing this analysis represents
an important contribution of this dissertation with an immediate application to static degree of use
prediction.

Static degree of use prediction is the compile-time assignment of a single degree of use to
some or all of the value-generating instructions within a program. Many instructions have a
unique statically-determinable degree of use, making such an assignment straightforward. How-
ever, where dataflow analysis indicates multiple possible outcomes, a decision must be made on
which single degree of useto select, if any. A combination of heuristics and profiling information
may be used to guide such a decision. One such method for merging profile data with static anal-
ysis was presented and demonstrated to yield good results in terms of static prediction accuracy
and coverage.

Dynamic degree of use prediction offers an alternative means of obtaining degree of use infor-
mation. The use of dynamic prediction: (1) removes the requirement that analysis be performed
for each program of interest, (2) avoids the need to communicate the information from the static
analysis tool(s) to the runtime system, and (3) eliminates the constraint of a single degree of use
per static instruction. The success of dynamic degree of use prediction is predicated on the exist-
ence of per-instruction locality in degree of use behavior, which was amply demonstrated in
Chapter 2. Three dynamic prediction mechanisms were described representing a spectrum of
complexity and performance possibilities. The best-performing mechanism relies upon future
control-flow information, anovel contribution of thiswork with likely applications beyond degree

of use prediction.

163
6.1.3 Usdessinstruction elimination
Degree of use prediction was first applied to the exploitation of useless instructions. Useless
instructions refer to dynamic instructions that generate zero-use values, which account for more
than 10% of the dynamic instruction count in some optimized benchmarks. This phenomenon
was investigated further, and the dominant cause of useless instructions was found to be the intro-
duction of partialy-dead instructions during compiler optimization.

Consideration of the resources wasted in handling useless instructions motivated the devel op-
ment of useless instruction elimination, which is a mechanism whereby useless instructions, iden-
tified through degree of use prediction, can be retired without executing. Useless instruction
elimination is representative of a general type of use-based optimization: namely, the special han-
dling of a certain class instructions based on a predicted property of their result values. The
mechanism ensures that a candidate useless instruction can be safely removed by executing spec-
ulatively until: (1) the prediction is verified by the overwrite of the value, (2) ause of the valueis
encountered, or (3) further speculation is blocked by resource limitations. In the first case, the
candidate is retired having avoided execution; either of the latter two cases result in the delayed
execution of the candidate.

The performance benefit of useless instruction elimination is generally small and highly-
dependent on contention for issue and execution resources in the microarchitecture. Performance
losses are limited to a fraction of a percent where resources are abundant. In a resource-poor
microarchitecture, average speedups of afew percent were realized. Another benefit is the reduc-
tion in resource utilization. The frequency of L1 data cache accesses, register file writes and
reads, issue bandwidth, and instruction executions are all reduced by about the same percentage as

the incidence of usealess instructions.

6.1.4 Use-based register caching

Use-based register caching represents an application of degree of use information in optimizing
actual value communication. The large and slow physical register file is replaced by a small
cache, which ideally contains only those values that will be used (i.e., live values). The contribu-
tion of this work over previous register caching proposals is in the nature of the cache insertion

and replacement policies.

164

Both the insertion and replacement policies rely on determining the usefulness of a particular
value. Degree of use knowledge makes this possible by providing the total number of uses
expected prior to the generation of the value; once generated, the expected number of uses can be
adjusted as actual uses occur, leaving an exact count of the remaining uses. The register cache
insertion policy uses this information to explicitly account for the bypass network as an alterna
tive means of value communication: values that reach al of their consumers via the bypass net-
work are easily detected (they have zero remaining uses upon reaching the cache) and are kept
from polluting the cache. Provided alive value remainsin the cache long enough, it will eventu-
ally reach al of its consumers. At this point the value is no longer needed in the cache and should
yield to incoming live values. Use-based replacement selects victims based on the number of
remaining uses, preferring those with fewer uses left. Modulo the accuracy of the remaining use
counts, this policy will always replace dead values over live ones. In this application, use-based
register caching represents a vast improvement over prior proposals, offering better performance

for all benchmarks and cache sizes of interest.

6.2 Additional Applications of Degree of Use Knowledge

This section suggests other potential applications of the information provided by degree of use
information. Possible improvements to useless instruction elimination and use-based register
caching were addressed in their respective chapters and are not reiterated here. These represent
what | believe to be promising avenues for investigation, but their potential has not been experi-
mentally verified. In many cases, the optimizations offer an alternative to or an improvement of
previously-proposed mechanisms that were motivated by the properties demonstrated in

Chapter 2, but did not have the benefit of explicit per-value use information.

6.2.1 Earlyregister reclamation

Degree of use prediction offers a mechanism for identifying the last use of avalue. Aswas done
in use-based register caching, predictions initialize per-value counts of expected uses, which are
subsequently adjusted as those uses occur. This information can enable the speculative early rec-
lamation of physical registers with appropriate attention to mis-speculation recovery. Previous

proposals for early register release require a delay until the observation of the instruction over-

165
writing the corresponding architectural register to ensure that no further uses will occur [3, 8, 61,
64]. When using the method based on the degree of use prediction, however, thisdelay is not nec-
essary as the occurrence of the last use is made explicit. This advantage may allow for more

aggressive recycling of physical registers.

6.2.2 Registerlesscommunication

Given the abundance of degree of use one values, mechanisms exploiting their existence should
be widely applicable. Regarding the actual communication of these values, it is obvious that use
of the register file results in unnecessary overhead. The register communication model implicitly
(but incorrectly) suggests that a value bound to aregister will be used multiple times. Valueswith
apredicted degree of use of one need not even use aregister.

With proper attention to the scheduling of the producer and consumer operations, the commu-
nication of such values can occur entirely through the bypass network. Use-based register cach-
ing represents a small step towards this end, but al values till consume storage in the backing
file. Given efficient mechanisms for value for mis-speculation recovery (addressed in Section 6.3)
and good heuristics for choosing which values will receive registers, it should be possible to limit
performance loss from mis-speculation to a reasonable level. The benefit would be obtained
through a combination of the reductions in the number of registers required and the number of
register file write ports, which would significantly reduce the size of the register file, allowing it to

be faster and/or lower power.

6.2.3 Collapsing dependent operations

The knowledge that the value communicated between two instructionsis private (i.e., has adegree
of use of one) can aso be exploited to dynamically collapse dependent operations. Given simple
enough operations (e.g., dependent logical operations), it is quite possible to complete both oper-
ations in a single cycle. The resulting reduction in the dataflow height could result in increased
performance. Interlock collapsing AL Us have been proposed as a means of executing two depen-
dent operations together [59, 68, 73], but the application of thistechniqueislimited by the need to
generate and store the intermediate value or statically ensure that the dependent operation is the
only consumer. A degree of use predictor can increase the applicability of this technique by iden-

tifying such instances dynamically.

166
6.2.4 Direct consumer scheduling
The scheduling of dependent operations themselves could also be simplified with knowledge of
degree of use. Instructions with a predicted degree of use of one can be allocated dedicated reser-
vation stations that are directly addressable by the completing parent instruction. The dependent
instruction can be steered to this reservation station by information available at the rename stage.
Upon completion of the parent instruction, the wakeup operation would not require a tag broad-
cast across a large associative instruction window. Instead, the proper dependent operation could

be woken up directly.

6.25 Widely-used values

Figure 2.3 shows that the small number of values with a high degree of use contribute signifi-
cantly to the total number of values read as instruction inputs. This phenomenon suggests that
these values should migrate or be allocated to structures that can deliver them to their consumers
earlier or with less overhead than aregister file.

One possibility isto maintain avery small storage structure associated with each ALU to sup-
ply these values. With avery small capacity, such a structure could significantly reduce the band-
width demands on the power-hungry register file. This is similar to the local register files
proposed by Franklin and Sohi [32] but at afiner granularity. Rather than using a per-cluster local
register file to maintain values belonging to that cluster, a high-use value cache would maintain
only values having more than a certain number of uses.

Another potential way to exploit high-use valuesisto copy or migrate them towards the front
end. Values with many uses are likely to live long enough to reach the front end while they are
still actively mapped. In these cases, it is possible to access them directly using the architectural
register identifier instead of using a physical register tag obtained through renaming. Thisissim-
ilar to physical register inlining [56], but it does not depend on the size of the value. The avail-
ability of some values early in the pipeline may enable additional optimizations such as early

execution.

167
6.3 Costsand Benefits of Use-Based Communication Optimizations
The various value communication optimizations enabled by degree of use prediction attack the
complexity of value communication. Performance improvements are achievable only to the extent
that the complexity affects performance. A pipelined, superscalar processor capable of support-
ing single-cycle (or fully-bypassed) register operations for all simultaneously-executing instruc-
tions places an upper bound on performance. Modulo pipeline bubbles and hazards, such a
machine will execute from the available instruction window as fast as data dependences (and exe-
cution resource constraints) allow. The problem is not the peak performance of this machine, but
the inability to implement it. Optimized communication mechanisms may enable higher clock
frequencies or the realization of afeasible design that approaches this limit.

Use-based optimizations enable the use of less complex structures, but they are inherently
speculative. In order to achieve performance as close as possible to that of an ideal machine, then,
two factors must be minimized: (1) the number of mis-speculations, and (2) the cost of mis-spec-
ulation recovery. The predictor designs offered in Chapter 3 deliver very high accuracy with
respect to the degree of use itself. Any optimizations using this information to engage in further
speculation must be careful to maintain similar accuracies. Minimizing the cost of mis-specula-
tion recovery is more complex.

The obvious cost of mis-speculation recovery isincurred upon an actual mis-speculation. The
cost of thisrecovery will be an important determinant of the success of a speculative optimization.
In the case of speculative communication optimizations, recovery entails obtaining a specific
value that was not communicated correctly (and potentially re-executing instructions that received
an incorrect value). There are basicaly two approaches: the value may be regenerated (e.g.,
aborting a useless instruction elimination) or the value may be obtained elsewhere (e.g., the back-
ing file for use-based register caching). As was the case for the two optimizations presented in
this dissertation, the choice of recovery mechanism is dependent on the semantics of the particular
optimization.

A more subtle cost of mis-speculation recovery isthe overhead required to maintain the ability
to recover from mis-speculations. This cost was particularly egregious for useless instruction
elimination, where retirement had to be stalled to ensure that any unverified eliminated instruction

could bere-executed. In the case of use-based register caching, this cost manifested as the need to

168
write every value to the backing register file. Microarchitectures designed from the beginning to

support aggressive speculation (e.g., those employing checkpointing [3, 61]) are likely to be the
most appropriate substrate for communication optimizations.

Finally, it should be recognized that although use-based communication optimization seeks to
attack complexity, it can also be a source of complexity. The simplification of acomplex commu-
nication structure must be balanced against the inclusion of special-case communication struc-
tures with limited marginal utility. Again, it is likely to be the support for mis-speculation

recovery rather than the particular communication mechanism itself that will drive this trade-off.

[1]

[2]

[3]

[4]

[3]
[6]
[7]

169

References

V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus IPC: the end of
the road for conventional microarchitectures. In Proceedingsf the 27th Annualinterna-

tional Symposium on Computer Architectulene 2000. pp. 248-59.

P. Ahuja, D. Clark, and A. Rogers. The performance impact of incomplete bypassing in
processor pipelines. In Proceedingsof the 28th Annual International Symposiunon

Microarchitecture December 1995. pp. 36-45.

H. Akkary, R. Rgjwar, and S. Srinivasan. Checkpoint processing and recovery: towards
scalable large instruction window processors. In Proceeding®f the 36th Annuallinterna-

tional Symposium on Microarchitectyi@ecember 2003. pp. 423-34.

Alpha21264/EV6 MHardware ReferenceManual Compag Computer Corporation, March,
2002.

Alpha Architecture Handbook, 4th E@€ompag Computer Corporation, January 2002.
Assembly Language Programmer’s GyiDegital Equipment Corporation, March 1996.

G. Ammons and J. Larus. Improving data-flow analysis with path profiles. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
ImplementationMay 1998. pp. 72-84.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

170
R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reducing the complexity of the reg-
ister file in dynamic superscalar processors. In Proceedings of the 34th Annual

International Symposium on Microarchitecture, December, 2001. pp. 237-48.

R. Bodik and R. Gupta. Partial dead code elimination using slicing transformations. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, May 1997. pp. 159-70.

M. Bohr. Interconnect scalaing: the real limiter to high performance ULSI. In Proceed-
ings of the |EEE International Electron Devices Meeting, December 1995. pp. 241-4.

E. Borch, E. Tune, S. Manne, and J. Emer. Loose loops sink chips. In Proceedings of the
8th Annual International Symposium on High-Performance Computer Architecture, Febru-
ary 2002. pp. 270-81.

D. Burger and T. Austin. The SimpleScalar tool set, version 2.0. Technical Report CS-
TR-97-1342, University of Wisconsin-Madison, June 1997.

J. Burns, and J.-L. Gaudiot. Quantifying the SMT layout overhead—does SMT pull its
weight? In Proceedings of the 6th Annual International Symposium on High-Performance
Computer Architecture, January 2000. pp. 109-20.

J. Buttsand G. Sohi. Characterizing and predicting value degree of use. In Proceedings of
the 35th Annual International Symposium on Microar chitecture, November 2002. pp. 15-
26.

J. Butts and G. Sohi. Dynamic dead-instruction detection and elimination. In Proceed-
ings of the 10th International Symposium on Architectural Support for Programming

Languages and Operating Systems, October 2002. pp. 199-210.

J. Butts and G. Sohi. A static power model for architects. In Proceedings of the 33rd

Annual International Sympoisum on Microar chitecture, December 2000. pp. 191-201.

J. Butts and G. Sohi. Use-based register caching with decoupled indexing. In Proceed-
ings of the 31st Annual International Symposium on Computer Architecture, June 2004.
pp. 302-13.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

171
H. Cain, K. Lepak,B. Schwartz,and M. Lipasti. Preciseandaccurateprocessosimula-
tion. In Proceedings of the 5th Workshop on Computer Architecture Evaluation Using
Commercial Workloads, February 2002. pA3-22.

H. CainandM. Lipasti. Memory ordering:a value-base@pproach.In Proceedings of the

31st Annual International Symposium on Computer Architecture, June 2004. p@0-101.

P. Chang,N. Warter,S. Mahlke, W. Chen,andW. Hwu. Threearchitecturaimodelsfor
compiler-controlledspeculativeexecution. IEEE Transactions on Computers, 44(3),
March 1995. pp481-94.

P.-S.Chen,M.-Y. Hung, Y.-S. Hwang,R. Ju,andJ. Lee. Compilersupportfor specula-
tive multithreadingarchitecturawith probabilisticpoints-toanalysis. In Proceedings of the
9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
October 2003. p25-36.

W. Chen,S. Mahlke,N. Warter,S. Anik, andW. Hwu. Profile-assistedhstructionsched-
uling. International Journal for Parallel Programming, 22(2), April 1994. ppl51-81.

K. Cooper,M. Hall, and K. Kennedy. Procedurecloning. In Proceedings of the IEEE
1992 International Conference on Computer Languages, April 1992. pp96-105.

J.-L. Cruz, A. Gonzalez,M. Valero, and N. P. Topham. Multiple-bankedregisterfile
architectures.In Proceedings of the 27th Annual International Symposium on Computer
Architecture, June 2000. p@816-25.

A. Dhodapkarand J. Smith. Managingmulti-configurationhardwarevia dynamicwork-
ing setanalysis. In Proceedings of the 29th Annual International Symposium on Computer
Architecture, May 2002. pp233-44.

K. DriesenandU. Hoelzle. The cascadegbredictor:economicaland adaptivebranchtar-
get prediction. In Proceedings of the 31st Annual International Symposium on
Microarchitecture, December 1998. pR49-58.

A. EdenandT. Mudge. The YAGS branchpredictionscheme.In Proceedings of the 31st

Annual International Symposium on Microarchitecture, December 1998. pp9-77.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

172
L. Eeckhoutand K. Bosschere. Hybrid analytical-statisticalmodeling for efficiently

exploring architectureand workload designspaces. In Proceedings of the 2001 Interna-
tional Conference on Parallel Architectures and Compilation Techniques, September
2001. pp25-34.

D. Ernstand T. Austin. Efficient dynamicschedulingthroughtag elimination. In Pro-
ceedings of the 29th Annual International Symposium on Computer Architecture, May,
2002. pp37-46.

M. Evers,S. Patel,R. Chappell,andY. Patt. An analysisof correlationandpredictability:
whatmakestwo-levelbranchpredictorswork. In Proceedings of the 25th Annual Interna-

tional Symposium on Computer Architecture, June 1998. pfp2-61.

A. Falcon,J. Stark,A. Ramirez K. Lai, andM. Valero. Prophet/critichybrid branchpre-
diction. In Proceedings of the 31st Annual International Symposium on Computer
Architecture, June 2004. pR250-61.

M. FranklinandG. Sohi. Registertraffic analysisfor streamlininginter-operatiorcommu-
nicationin fine-grainparallelprocessors.In Proceedings of the 25th Annual International

Symposium on Microarchitecture, December 1992. pR36-45.

J. Fisherand S. Freudenberger.Predictingconditional branchdirectionsfrom previous
runs of a program. In Proceedings of the 5th International Symposium on Architectural

Support for Programming Languages and Operating Systems, September 1992. pg5-95.

J. Fu, J. Patel,andB. Janssens.Stride directedprefetchingin scalarprocessors.In Pro-
ceedings of the 25th Annual International Symposium on Microarchitecture, December
1992. ppl02-110.

A. Gonzalez J. Gonzéalezand M. Valero. Virtual-physicalregisters. In Proceedings of
the 4th Annual International Symposium on High-Performance Computer Architecture,
February 1998. pd.75-84.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

173
R. Gupta, D. Berson, and J. Fang. Resource-sensitive profile-directed data flow analysis
for code optimization. In Proceedingsof the 30th Annual International Symposiunon

Microarchitecture December 1997. pp. 358-68.

A. Hartstein and T. Puzak. The optimum pipeline depth for a microprocessor. In Proceed-
ings of the 29th Annual International Symposiunon ComputerArchitecture May 2002.
pp. 7-13.

J. Hennessy and D. Patterson. ComputerArchitecture,a QuantitativeApproach,2nd Ed.
Morgan Kaufmann, 1996.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The
microarchitecture of the Pentium 4 processor. In Intel TechnologylJournal, Q1, Intel Cor-
poration, 2001.

G. Hinton, M. Upton, D. Sager, D. Boggs, D. Carmean, P. Roussel, T. Chappell, T.
Fletcher, M. Milshtein, M. Sprague, S. Samaan, and R. Murray. A 0.18-pum CMOS IA-32
processor with a 4-GHz integer execution unit. In IEEE Journal of Solid-StateCircuits,
36(11), November 2001. pp. 1617-27.

M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar. The opti-
mal logic depth per pipeline stageis 6 to 8 FO4 inverter delays. In Proceeding®f the 29th
Annual International Symposium on Computer Architecturay 2002. pp. 14-24.

Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the memory system: predicting and
optimizing memory behavior. In Proceedingsof the 29th Annual International Sympo-

sium on Computer Architectyri®lay 2002. pp. 209-20.

Z. Hu and M. Martonosi. Reducing register file power consumption by exploiting value
lifetime characteristics. Presented at the Workshop on Complexity Effective Designs (held
in conjunction with the 27th Annual International Symposium on Computer Architecture),
June 2000.

IA-32 Intel Architecture Software Developer's Manuwalume 2, Intel Corporation, 2001.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

174
International Technology Roadmap for Semiconductors, Executive Summary. Semicon-
ductor Industry Association, 2003.

E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confidence to conditional branch
predictions. In Proceedings of the 29th Annual International Symposium on Microarchi-
tecture, December 1996. pp. 142-52.

N. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, May 1990. pp. 364-73.

R. Kessler. The Alpha 21264 microprocessor. In IEEE Micro, 19(2), April 1999. pp. 24-
36.

G. Kildall. A unified approach to global program optimization. In Proceedings of the 1st
Annual ACM S GACT-SIGPLAN Symposium on Principles of Programming Languages,
October 1973. pp. 194-206.

H. Kim and J. Smith. An instruction set and microarchitecture for instruction level distrib-
uted processing. In Proceedings of the 29th Annual International Symposium on Computer
Architecture, May 2002. pp. 71-81.

A. Klaiber. The technology behind Crusoe processors. Transmeta Corporation White
Paper, January 2000.

A. KleinOsowski and D. Lilja. MinneSPEC: a new SPEC benchmark workload for simu-

lation-based computer architecture research. In Computer Architecture Letters, June 2002.

J. Knoop, O. Ruthing, and B. Steffen. Partial dead code elimination. In Proceedings of the
ACM S GPLAN Conference on Programming Language Design and Implementation, June
1994. pp. 147-58.

D. Kroft. Lockup-freeinstruction fetch/prefetch cache organization. In Proceedings of the
8th Annual International Symposium on Computer Architecture, May 1981. pp. 81-7.

K. Lepak and M. Lipasti. On the value locality of store instructions. In Proceedings of the
27th Annual International Symposium on Computer Architecture, June 2000. pp. 182-91.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

175
M. Lipasti, B. Mestan,and E. Gunadi. Physicalregisterinlining. In Proceedings of the

31st Annual International Symposium on Computer Architecture, June 2004. p825-35.

J.Lo, S.ParekhS. EggersH. Levy, andD. Tullsen. Software-directedegisterdealloca-
tion for simultaneousnultithreadedprocessors. In IEEE Transactions on Parallel and
Distributed Systems, 10(9), September 1999. H22-33.

L. LozanoC. andG. Gao. Exploiting short-livedvariablesin superscalaprocessors.In
Proceedings of the 28th Annual International Symposium on Microarchitecture, Decem-
ber 1995. pp292-302.

N. Malik, R. Eickemeyer,and S. Vassiliadis. Interlock collapsing ALU for increased
instructionlevel parallelism. In Proceedings of the 25th Annual International Symposium
on Microarchitecture, December 1992. pp49-57.

M. Matrtin, A. Roth,andC. Fischer. Exploiting deadvalueinformation. In Proceedings of
the 30th Annual International Symposium on Microar chitecture, Decembed 997. pp.125-
35.

J. Martinez,J. Renau,M. Huang,M. Prvulovic, and J. Torrellas. Cherry: checkpointed
early resourcerecycling in out-of-order microprocessors. In Proceedings of the 35th

Annual International Symposium on Microarchitecture, November 2002. p3-14.

E. Mehoferand B. Scholz. Probabilisticdataflow systemwith two-edgeprofiling. In
Proceedings of the ACM S GPLAN Workshop on Dynamic and Adaptive Compilation and
Optimization, July 2000. pp65-72.

T. Monreal,A. GonzalezM. Valero,J. GonzalezandV. Vifals. Delayingphysicalregis-
ter allocation through virtual-physical registers. In Proceedings of the 32nd Annual

International Symposium on Microarchitecture, November, 1999. p{A.86-92.

T. Monreal,V. Vifals, A. GonzdlezandM. Valero. Hardwareschemedor early register
release. In Proceedings of the International Conference on Parallel Processing, August
2002. pp5-13.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

176
T. Mudge. Power: afirst-class architectural design constraint. In IEEE Computer, 34(4),

April 2001. pp. 52-8.

S. Palacharla, N. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In
Proceedings of the 24th Annual International Symposium on Computer Architecture, June
1997. pp. 206-18.

D. Papworth. Tuning the Pentium-Pro microarchitecture. In IEEE Micro, 16(2), April
1996. pp. 8-15.

J. Philips and S. Vassiliadis. High performance 3-1 interlock collapsing ALUs. In IEEE
Transactions on Computers, 43(3), March 1994. pp. 257-68.

M. Postiff, D. Greene, S. Raasch, and T. Mudge. Integrating superscalar processor compo-
nents to implement register caching. In Proceedings of the 2001 International Conference

on Supercomputing, June 2001. pp. 348-57.

G. Ramalingam. Data flow frequency analysis. In Proceedings of the ACM SGPLAN
Conference on Programming Language Design and Implementation, May 1996. pp. 267-
77.

E. Rotenberg. Exploiting large ineffectual instruction sequences. Technical Report, North
Carolina State University, November 1999.

A. Roth, A. Mendelson, and R. Ronen. Dynamic techniques for load and |oad-use sched-
uling. In Proceedings of the IEEE, 89(11), November 2001. pp. 1621-37.

Y. Sazeides, S. Vassiliadis, and J. Smith. The performance potential of data dependence
speculation and collapsing. In Proceedings of the 29th Annual International Symposium

on Microarchitecture, December 1996. pp. 238-47.

M. Schlansker and B. Rau. EPIC: explicitly parallel instruction computing. In IEEE Com-
puter, 33(2), February 2000. pp. 37-45.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.
Muchnick and N. Jones, ed., Program Flow Analysis. Theory and Applications, Prentice-
Hall, 1981. pp. 189-234.

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

177
K. Skadron, P. Ahuja, M. Martonosi, and D. Clark. Improving prediction for procedure
returns with return-address-stack repair mechanisms. In Proceedings of the 31st Annual

International Symposium on Microarchitecture, December 1998. pp. 259-71.

J. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual Inter-
national Symposium on Computer Architecture, May 1981. pp. 135-48.

G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the
22nd Annual International Symposium on Computer Architecture, June 1995. pp. 414-25.

E. Sprangle and D. Carmean. Increasing processor performance by implementing deeper
pipelines. In Proceedings of the 29th Annual International Symposium on Computer
Architecture, May 2002. pp. 25-34.

Standard Performance Evaluation Corporation. htt p: / / ww\. spec. or g.

J. Swensen and Y. Patt. Hierarchical registers for scientific computers. In Proceedings of

the 1988 International Conference on Supercomputing, July 1988. pp. 346-53.

R. Tarjan. Depth first search and linear search algorithms. In SAM Journal of Comput-
ing, 1(2), June 1972. pp. 146-60.

R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. In IBM
Journal of Research and Development, 11(1), January 1967. pp. 25-33.

L. Torvaldset al. arch/ al pha/ entry. S. In Linux kernel source code, version 2.6.0,
December, 2003.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: maximizing on-chip
parallelism. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture, May 1995. pp. 392-403.

D. Wall. Predicting program behavior using real or estimated profiles. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation,
May 1991. pp. 59-70.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

178
S. Wallace and N. Bagherzadeh. A scalableregisterfile architecturefor dynamically

scheduledorocessors.In Proceedings of the 1996 Conference on Parallel Architectures
and Compilation Techniques, October 1996. pA.79-84.

C. Webb. Subroutinecall/returnstack. In IBM Technical Disclosure Bulletin, 30(11),
April 1988.

K. C. Yeager. The MIPS R10000superscalamicroprocessor. In |IEEE Micro, 16(2),
April 1996. pp.28-41.

A. Yoaz, M. Erez,R. Ronen,andS. Jourdan. Speculatiortechniquedor improving load
relatedinstructionscheduling. In Proceedings of the 26th Annual International Sympo-

sium on Computer Architecture, May 1999. pp42-53.

A. Yoaz,R. Ronen,R. Chappell,andY. Almog. Silenceis golden? Presentedt the 7th
Annual International Symposium on High-Performance Computer Architecture, January
2001.

R. Yung and N. Wilhelm. Cachingprocessomeneralregisters. In Proceedings of the

International Conference on Computer Design, October 1995. p@07-12.

J.Zalamea,). Llosa,E. Ayguadé,andM. Valero. Two-levelhierarchicakegisterfile orga-
nization for VLIW processors. In Proceedings of the 33rd Annual International

Symposium on Microarchitecture, December 2000. pp37-46.

C. Zilles and G. Sohi. Understandingthe backwardslices of performancedegrading
instructions. In Proceedings of the 27th Annual International Symposium on Computer
Architecture, June 2000. pA.72-81.

179

Appendix

M ethodology

Details on the experimental methodology are presented in this appendix.

A.1 Benchmarks

Throughout this document, the experimental eval uations make use of the SPEC CPU 2000 bench-
mark suite[80]. The SPEC benchmark suite consists of 26 programs divided into an integer
benchmark set and a floating-point benchmark set based on the dominant type of computation
performed. The integer benchmark set consists of 12 programs, 11 of which are written in C and
one of which (eon) iswritten in C++. The 14 programs in the fl oating-point benchmark suite are
written in one of three languages. Fortran-77 (6 programs), Fortran-90 (4 programs), or C

(4 programs).

A.1.1 Input data

The train inputs provided by SPEC were used in all experiments except for the gathering of the
profile datain Section 3.3.3. The number of instructions executed to process the reference inputs
is prohibitive given the slowdown of execution-driven simulation. The train inputs are signifi-
cantly smaller, but still execute on the order of 40 billion instructions per benchmark when run to
completion. While reduced reference inputs such as those made available by the University of

Minnesota [52] are an alternative, reduced inputs were not available for al of the benchmarks at

180
thetime of thiswriting. Also, giventhe bundling of the standardnput setswith the SPECdistri-

bution, availability and stability of the training inputs is assured.

A.1.2 Multiple-input benchmarks

Threeof the integerbenchmarkgeon, per | , andvpr) specifymultiple, independenprogram
runsaspartof thetraininginput. For thesebenchmarksaggregatedata,representinghe consec-
utive executionof the requiredruns, is presented. Where simulationtime constraintsrequired
partial executionof a benchmark{seeSectionA.4.2), someof the runsmay not be representedf

theinstructionlimit occurredprior to the beginningof thatrun. Thereforethe orderof the multi-

ple inputsis important. The orderof the inputsusedfor eon was cook, rushmeierkajiya; for

perl, diffmail, perfect, scrabbl; for vpr, placement (-pl ace_only), routing
(- rout e_onl y). Dueto limitations of the simulatorinfrastructure all microarchitecturastate

(e.g., cache and branch predictor contents) is re-initialized prior to each run.

A.1.3 perl testinput
The evaluationof static predictionin Section3.3.3included profiling datagatheredon the test
input set, which is also distributed by SPEC. Exceptfor perl|, eachbenchmarls testrun
requiresonly asingleinputandwasexecutedto completion. per | 'stestinputis problematicfor
the simulation environmentbecausat forks newv processes.The input consistsof a top-level
scriptt est . pl thatforkstheperlinterpretersequentiallyon eachof 59 testscripts(whichthem-
selvesexecutemultiple independentests). Several of thesescriptsalsoattemptto fork additional
copies of perl or run a system command as part of their test routines.

This processwas modified for the simulation ervironment by eliminating the wrapper
t est. pl scriptandsimply runningthe simulatorconsecutiely on eachof the scripts,similar to
thehandlingof multiple input files describedn SectionA.1.2. Any singletestthatrequiredfork-
ing an &ternal process a&s not gecuted. The follving individual tests were eliminated:
» Tests 12 and 13 inex. t
e Test1limsplit.t
» Test 3ingot 0. t

» Alltestsinscri pt.t (i.e., this script \as not run at all)

181
A.2 Benchmark Compilation
How the individual benchmarks are compiled can have a significant impact on the final behavior
of the benchmark (e.g., see Figure 4.3). This section describes each of the compilers used in the
generation of benchmarks for thiswork as well as the flags used for generating benchmarks at dif-

ferent optimization levels.

A.21 Compilers

The compilers are divided into two suites such that between the two suites, each benchmark is
compiled with a different compiler. The suites consist of vendor compilers, originally written
specifically to support the Alpha architecture, and retargettable, third-party compilers, which sup-
port many different architectures. As such, the vendor compilers offer better optimization and
yield higher-performing benchmarks. Therefore, binaries generated by the vendor compilers are
used in all experiments where the effect of the compiler is not specifically being investigated.

Table A.1 lists the compilers comprising each suite. The version information for each com-
piler comes directly from the compiler itself when executed with - V or - - ver si on as appropri-
ate. Note that the Fortran-77 and Fortran-90 benchmarks were compiled with the same compiler
in each suite.

The flags listed for each compiler were used for all runs of that compiler, independently of
additional flags affecting optimization. Most important is the flag that specifies the binary isto be
statically-linked (- non_shar ed/-stati c/-Bstati c), which is required by the ssimulator

Table A.1: Compiler Suites

Suite| Lang. Compiler Flags
C Compaq C V6.4-214 (dtk) on Digital UNIX V4.0F (Rev. 1229) | -std -arch ev6
_ Compiler Driver V6.4-014 (dtk) cc Driver -non_shared -3
8 [C++ |DIGITAL C++V6.1-027 on DIGITAL UNIX V4.0 (Rev. 1229) | -arch ev6
é -non_shared -g3
Fortran | DIGITAL Fortran 90 VV5.2-705 -arch ev6
-non_shared -g3
C GNU gcc 3.3.3 -mcpu=ev6 -static
Q |C++ |GNUg++3.33 -mcpu=ev6 -static
£ ®
= |Fortran | NAGWare Fortran 95 compiler Release 4.2(513) -Bstatic
-target=ev56

182
(see Section A.4.4). A target implementation is specified for each compiler (- ar ch/- ncpu/

-t ar get), which enables the generation of certain implementation-dependent instructions. In
each case, the latest Alpha implementation supported by each compiler was selected in order to
use the more efficient instructions that these implementations offer. The remaining flags specify
the inclusion of debugging information provided it does not interfere with optimization (- g3) and

the legality of certain source language constructs appearing in the benchmarks (- st d).

A.2.2 Optimization levels

Three different optimization levels were used in the studies on useless instructions presented in
Section 4.1.2. On al compilers, the unoptimized benchmarks were generated with the - Q0 flag,
and the lightly-optimized benchmarks with - OL. The tuned configuration uses per-benchmark
flags that yielded the highest performance on a simulated eight-wide, deeply-pipelined configura-
tion (see Section A.5). The options used for the tuned configuration appear in Table A.2.

In many cases, the best performance was obtained by allowing deviation from IEEE standard
floating-point behavior (e.g., with such options as -fast, -ffast-math, and
-i eee=nonst d). Changes in floating-point behavior frequently result in dlight differences
between the outputs of a benchmark when compiled with different options. SPEC recognizes this
possibility and provides per-benchmark tolerances (absolute and/or relative); any benchmark run
must match the baseline output they provide within these tolerances. This restriction was
observed in the selection of these optimization flags: optimizations that led to differences with the
SPEC-provided benchmark outputs (when executed on a native Alpha machine) were not used.

A bug in the gcc compiler (not the benchmark) required one additional command-line option
to be specified for most of the benchmarks using the - f f ast - mat h option. The implementa-
tion of the - f f ast - mat h option uses a special library, and the bug results in the library being
specified improperly to the linker, resulting in a compile-time error. A modified gcc spec file
(which specifies how the different phases of the compilation are run) was generated with the cor-
rect library ordering; the additional command-line option - specs=specs. mat h tells gcc to
use amodified specfilespecs. mat h. Thisoption does not affect the optimization of the bench-
mark and is therefore not listed in the tables.

183

Table A.2: Tuned-Benchmark Compilation Options

Benchmark | Language Vendor compiler Third-party compiler
anmp C -O4 -fast -om -O3 -funroll-loops -ftracer -ffast-math
art C -fast -inline speed -O2 -funroll-loops -ftracer
bzi p2 C -04 -fast -02 -funroll-loops -ftracer -ffast-math
crafty C -fast -om -03 -ftracer -ffast-math
eon C++ -O2 -fp_reorder -inline speed -O2 -funroll-loops -ftracer
-assume trusted_short_alignment
equake C -O4 -inline speed -om -02 -ffast-math
gap C -fast -inline speed -om -O3 -ffast-math
gcc C -fast -om -02 -ffast-math
gzip C -O3 -inline speed -02 -funroll-loops -ftracer -ffast-math
ncf C -O4 -fast -inline speed -0O3 -funroll-loops -ffast-math
nmesa C -fast -02 -ftracer
par ser C -fast -inline speed -om -03 -funroll-loops -ffast-math
per | C -04 fast -om -02 -ftracer
t wol f C -fast -03 -funroll-loops -ftracer
vortex C -O4 -fast -om -03 -ftracer
vpr C -04 -fast -03 -funroll-loops
appl u Fr7 -05 -fast -04 -Ounsafe
apsi Fr7 |-O4 -fast -O3 -ieee=nonstd
f acerec F90 -O4 -fast -om -O3 -Oassumed -ieee=nonstd
f ma3d F90 -O4 -transform_loops -O3 -Oassumed -ieee=nonstd
gal gel FOO |-O4 -fast -O3 -Ounsafe
| ucas Fo0 -fast -pipeline -O4 -ieee=nonstd
ngrid F77 -O4 -transform_loops -om -O3 -Ounsafe
si xtrack Fr7 -O4 -pipeline -om -O3 -ieee=nonstd
SW m Fr7 -05 -fast -O4 -ieee=nonstd
WUPW Se F77 -O4 -om -O4 -ieee=nonstd

A.3 Binary Dataflow Analyzer

Two experiments required the results of the dataflow analysis described in Section 3.3.1. Besides

the generation of static degree of use predictions used for studies of Section 3.3.3, the analysis

184
was also used in Section 4.1.2 to differentiate dead instructions and dynamically-dead instructions
(both of which only generate useless instances).

For this work, the static dataflow analysis operated on compiled and linked object files.
Because the degree of use dataflow problem pertains to values in architectural registers and would
be performed after both register allocation and code generation, a suitable intermediate represen-
tation can be obtained from an object file. Also, modifying the compilersto perform the degree of
use dataflow analysis during code generation would have been prohibitively time consuming and

limited to the GNU compilers (gcc and g++) for which the compiler source codeis available.

A.3.1 Precision considerations

The use of abinary analyzer does have consequences for the precision of the analysis. The possi-
ble targets of indirect branches and calls are not easily attainable from the object code. The ana-
lyzer instead uses the actual targets observed during an execution of the benchmark as the set of
possible static targets of the indirect branch. Paths through indirect branches not actually exer-
cised during the execution are not included in the analysis, leading to a more precise analysis than
would be possible in a compiler.

Offsetting this advantage, the loss or obfuscation of other information within the binary leads
to reduced precision. For example, statically-known loop counts are lost. Thus, the number of
uses of results used within loop bodies cannot be determined, reducing the precision of the analy-
sis. A similar situation exists with respect to dependent conditional statements wherein the ana-
lyzer does not know that certain paths through multiple conditionals are not actually possible.
These effects reduce the precision of the binary analyzer relative to a compiler performing the

same analysis.

A.3.2 Operation of binary analyzer

The binary analyzer operates as follows:

» Generatecontrol-flow graphs. The disassembled object file is parsed and branch targets are
recorded to determine basic block boundaries. Basic blocks are linked into per-procedure con-
trol-flow graphs.

» Mergeproceduresconnectedby branches. Certain procedures directly branch to other proce-

dures when the implementation can be re-used. These procedures occur within the standard lan-

185
guage libraries when the implementation of the different procedures may be shared (e.g., the C
library functionsmentpy() and menmove()). Such procedures are merged into asingle pro-
cedure to avoid analyzing the same instructions twice under different circumstances.

» Generatean acyclic call graph. The call graph contains one node per procedure and directed
edges correspond to a call from one procedure to another. Strongly-connected components,
which indicate the existence of cycles within the graph resulting from recursion, are detected
using an implementation of Tarjan’s algorithm [82] and collapsed into single nodes.

» Compute @-functions for eachprocedure. A depth-first sort on the call graph orders the pro-
cedures such that all procedures appear before their callers (i.e., leaf procedures are processed
first). @-functions[75] are calculated at the basic block granularity. These functions convert
facts true at the end of the procedure to facts true at the end of a basic block. Thus, the @-func-
tion at the entry block of the procedure summarizes the dataflow effect of the entire procedure.
The order in which procedures are processed ensures that the effects of all called procedures are
known when generating the @-function for the caller. Procedures belonging to strongly-con-
nected components are iterated until the @-functions converge.

» Compute dataflow factsat eachprocedure exit. Inthereverse order that the @-functionswere
generated (i.e., callersfirst), the facts at the end of the procedure are used to determine the facts
true at each procedure call (with the @-functions). For a given procedure, the facts true at the
end of that procedure are just the meet (union) of the facts true after every call to that procedure
within al calling procedures.

» Annotate individual instructions. The exit facts of each procedure together with the ¢@-func-
tion for a basic block within that procedure yield the facts true at the end of each basic block.
Thisinformation is propagated backwards through the block to annotate each value-generating
instruction with the possible degrees of use for that instruction, which is the final output of the

analyzer.

A.4 Simulation

This section describes general attributes of the execution-driven simulation methodology used to
obtain most of the resultsin thiswork. Details of the microarchitectural performance model will
be presented in Section A.5.

186
A.4.1 Execution-driven ssimulation
Execution-driven simulation involves the emulation of each instruction executed on atarget (sim-
ulated machine of interest) by the host (machine running the smulator). Modulo the accuracy of
the emulation, the simulator is able to reproduce the changes in architectural state that would
occur during an actual execution of a program on the target. In this work, the target is a machine
implementing the Alpha instruction set architecture [5], including the BWX, CIX, and FIX, and
MV extensions that were introduced in later hardware implementations [4].

The simulators used in this work were built using components from the SimpleScalar v3.0
toolset [12]. SimpleScalar provided the underlying emulation code for the Alpha | SA and Digital
UNIX system calls (see Section A.4.3), the program loader and memory space management (i.e.,
simulator to host address mapping) code, and some auxiliary niceties such as command-line pars-
ing and basic statistics collection.

Significant changes were made to both the ISA and system call emulation code to fix errors
exposed by the use of different compilation methods. Initially, many of the benchmarks did not
run under the simulator or generated results that fell outside tolerances (see Section A.2.2) where
anative run of the same binary yielded outputs within the tolerances. Asaresult, several new sys-
tem calls and instructions had to be implemented and many existing implementations were cor-
rected or enhanced. Most of these changes pertained to the precision and rounding modes of

emulated floating-point operations.

A.4.2 Functional versustiming simulation
The minimalist execution-driven simulator, a functional simulator, tracks only the architected
state. It models the target machine at the granularity of a single instruction, actually operating
according to the von Neumann one-instruction-at-a-time model of program execution. Such a
simulator is useful for the characterization of programs, such as those appearing in Chapter 2 and
the beginning of Chapter 4, where neither timing information nor the effects of pipelining are of
interest.

A timing or performance simulator models a specific implementation of the target at a much
lower level. It adds a detailed, parameterized microarchitectural model, which simulates not only

the results of executing an instruction, but how the instruction is executed in the modeled microar-

187
chitecture on a cycle granularity. Therefore, a timing ssmulator provides performance data (in

terms of cycle count) as well as information about the behavior of the various components of the
modeled microarchitecture during the execution of a benchmark. All performance evaluations in
thiswork (and accompanying analyses) were performed using atiming simulator. In addition, the
evaluation of the dynamic degree of use predictors of Section 3.4 was performed using timing
simulation; while performance was not relevant to these experiments, the training of the dynamic
predictor is affected by pipelining (see Section 3.4.6). The microarchitectural model assumed by
the timing simulator is described in detail in Section A.5.

Because of the complexity of the timing simulator, it is about ten times slower than the func-
tional simulator. Therefore, while benchmarks were executed to completion when functional sim-
ulation was used, only the first four billion instructions of each benchmark were executed in
timing simulations. This particular sample of the benchmark is almost certainly not representa-
tive of the behavior of the entire benchmark in many cases. However, in no case was the true per-
formance of a particular benchmark important—the goal was not to design a machine that
delivered some level of performance on aworkload based on the programs comprising the SPEC
suite. Rather, the concern was that the benchmarks offer a wide variety of different behaviors
under which the effects of particular microarchitectural adjustments can be evaluated. The data

presented throughout this work indicate that this goal has been achieved.

A.4.3 System call emulation
The execution-driven simulation environment provided by the SimpleScalar toolkit handles asin-
gle user-level processonly. In area machine, system calls (to perform such tasks as 1/0 and sys-
tem memory alocation) involve atransfer of control to the operating system and the execution of
potentially privileged instructions (i.e., only available to the system software). In the single-pro-
cess model of SimpleScalar, system calls are emulated by transferring parameters and (if neces-
sary) data from simulated memory to host memory, executing the equivalent system call on the
host, and transferring the results back to the simulated machine.

Emulating system calls in this manner influences the accuracy of the simulation in several
ways. The entire operation of the system call, which may involve the execution of thousands of

instructions, is condensed into a single atomic operation. From the perspective of the functional

188
simulator, these missing system instructions are the only real effect of system call emulation. For

the types of studies performed with the functional simulator (benchmark characterization), the
omission of system code is not important.

The effect of system call emulation on timing simulation is more profound. Scheduling and
execution of other processes, hardware-generated interrupts, paging, and 1/0O accesses all affect
microarchitectural state, which in turn impacts the performance of the benchmark. Thereis some
evidence that the performance effect can be significant, even for the SPEC benchmarks, which
spend relatively little time in system code [18]. Versus the results presented in this work, areal
system would realize lower degree of use prediction accuracy (due to predictor interference by
other processes) and lower overall performance (dueto interference in other performance-enhanc-
ing structures, such as the caches and branch predictor). The relative performance impact of the
optimizations presented would be correspondingly reduced as the benchmark performance was
more influenced by memory stall time and branch mispredictions. The magnitudes of these vari-
ous effects are difficult to estimate.

The actual handling of the system call by the smulator requires additional explanation. Inthe
functional simulator, the system call is treated as a single instruction which executes to comple-
tioninisolation, like al other instructions. In the timing simulator, the detection of a system call
(at decode) squashes all subsequent instructions and halts fetch. The machine completes al older
in-flight instructions until the system call is the oldest (and only) instruction in the machine. At
this point, the system call is emulated, which may involve the read and/or update of architected
state. From the point of view of use tracking, a system call istreated as asingle use followed by a

new definition of every architected register.T

A.44 Staticlinking
Another consequence of the simulator’s restriction to a single user-level program image is that it
is incapable of calling upon the system’s dynamic linker. As a result, programs are not able to

make use of dynamically-linked shared libraries, such as the ubiquitous language standard librar-

Tt Thisaccounting for system callsis not as arbitrary as it may seem. The Linux kernel [84], for example,
adjusts the stack pointer prior to saving all integer registers to the stack, in effect using each register once
(argument registers may see additional uses). The reverse process occurs on the completion of the system
call resulting in anew definition for each register asits former value isloaded from the stack.

189
ies(eg., | i bc and | i bmfor C programs). Instead, al libraries must be statically-linked into a
simulator executable.

The main consequence of static linking is that the compilers gain some additional visibility
into the libraries and are able to perform inlining of library calls, code re-layout, and a few other
post-link optimizations precluded by normal dynamic linking. More extensive optimizations are
blocked because the libraries have aready been compiled (when most optimization occurs) and

their source code is not available during the benchmark compilation.

A.5 Timing Simulator Microarchitectural Model
Thetiming model used in thiswork was originally written by Craig Zilles of the University of I1li-

nois while he was a graduate student at University of Wisconsin. His goal was the implementa-
tion of a highly-idealized microarchitectural model with which to investigate performance
limitations inherent to programs executing on a superscalar machine (e.g., his work on perfor-
mance-degrading instructions [94]). Over the past few years, most of the core microarchitectural
model has been rewritten to reproduce limitations inherent to real hardware.

A block diagram of the microarchitecture modeled by the timing simulator appears in
Figure A.1. The microarchitecture is representative of a modern out-of-order superscalar proces-
sor. The block diagram is divided into six modules for purposes of discussion. Each of the mod-
ulesis shaded in the figure and |abeled with the section in which that module is discussed.

The specifics of the microarchitecture are controlled by a large number of simulator parame-
ters. Four different configurations of the timing simulator were used in the following evaluations:
(1) dynamic degree of use prediction (Chapter 3), (2) useless instruction elimination (Chapter 4),
(3) use-based register caching in an eight-wide machine (Chapter 5 except for Figure5.11),
(4) use-based register caching in a four-wide machine (Figure 5.11). The first of these was aso
used in the determination of the compiler flags yielding the highest performance (see
Section A.2.2). The values of the simulator parameters are provided for each of these four config-
urations (tagged Ch. 3, Ch. 4, Ch. 5W, and Ch. 5N, respectively) in atable corresponding to each

simulator module.

190

A5.1 AS5.2 A55
Fetch Fetch Decode)
. L Reorder buffer (ROB) Commit
pipeline gqueue pipeline
A.5.4
Branch Rename . Ly _
preds map S Physical
= o register Store
2 S i :
c S file buffer
o (&)
=] e
g & |13
AbB3| & ||
= >
Load, store
A.5.6 queues
L1 I-cache L1 D-cache N
Unified L2 cache < Main memory
Figure A.1. Microarchitecture modeled by thetiming simulator

A.5.1 Fetch pipeline (front end)

The fetch pipelineisresponsible for instruction delivery. Each cyclethat fetch is not stalled (e.g.,
due to a pipeline back-up, an instruction cache miss, or a bad fetch address), the front end injects
a fetch block of instructions into the fetch pipeline, which models the latencies of generating the
fetch address, accessing the instruction cache, and aligning the fetched instructions. A fetch
gueue decouples the fetch pipeline from the remainder of the machine, smoothing out variations
in fetch block size.

The fetch width limits the maximum number of instructionsin afetch block. NOPs are elimi-
nated from the instruction stream here and do not count against the fetch block size (although they
increase the probability that a fetch block will reach a cache line boundary). As in the Alpha
21264, conditional move instructions—the only three-input instructions—are cracked into two

data-dependent, two-input instructions [4]. These are treated independently from fetch through

191
Table A.3: Fetch Pipeline Parameters

Parameter Ch.3 | Ch.4 |Ch.5W | Ch.5N

Non-NOP instructions fetched/cycle (fetch block size) 8 4 8 4
Instruction cache read ports 2 1 2 1
Stages in fetch pipeline (includes I-cache latency) 6 3 5 5
Maximum taken control instructions per fetch block 2 1 2 1
Entriesin fetch queue 56 16 48 24
YAGS branch predictor: history bits (log, PHT entries) 14

YAGS: T/NT exception table entries (each) 4096

YAGS: exception table tag bits (branch_PC[7:2]) 6

Cascaded indirect branch predictor: simple table entries 256

Indirect: exception table entries 1024

Indirect: history path length (see footnote on page 192). 3

Return address stack (RAS) entries 64

retirement (e.g., each one consumes an instruction slot in the fetch block). Only those statistics
based on retired instruction count (e.g., IPC), count the pair as a single instruction.

The fetch block may contain fewer instructions than the fetch width. The total number of
taken control instructions (of any kind) is limited; fetch blocks may include any number of non-
taken conditional branches. Instruction cache access ports are modeled by limiting the number of
cache lines spanned by the fetch block. If the flow of control leaves and returns to a particular
cacheline, the block istreated as anew line.

Conditional branches are predicted serially using a YAGS [27] branch predictor. The global
branch history register is modified speculatively with each branch prediction; it is recovered and
corrected (if necessary) on exceptions. The target addresses of taken conditional branches are
assumed to be available (i.e., a perfect BTB). The target addresses of indirect jumps and calls
(except for returns) are predicted using a cascaded indirect branch predictor [26] with leaky filter-
ing.T Thetarget of a procedure return is obtained by popping areturn address stack [88] on which
each direct and indirect call pushes the address of its subsequent instruction. The top-of-stack

pointer is recovered on exceptions [76].

192
A.5.2 Decode pipeline

Instructions from the fetch queue are renamed and allocated resources in the decode pipeline.
The depth of this pipeline models the latency of these operations, although, as in the front end,
they occur logicaly in thefirst stage. Entry into the decode pipelineis gated by the availability of
the allocated resources, which include instruction window and reorder buffer entries, physical reg-
isters, and load or store queue (LSQ) entries. Except for LSQ entries, the lack of enough of each
resource to handle one cycle of full-width decoding will block any instructions from entering the
decode pipeline; afull load or store queue stalls the decode pipe at the first instruction needing it.

Instructions are renamed by mapping their source architectural registers to physical registers
viaa RAM lookup as in the MIPS R10K [89]. Those instructions that write a register are allo-
cated a free physical register from a stack. The state of the rename map is speculative and is
recovered on a branch misprediction or other exception condition. The microarchitectural model
assumes that the map state prior to the rename of any unretired instruction can be recovered (i.e.,
no limit on the number of in-flight speculative branches). These events are always associated with
are-fetch of instructions from the recovery point, and the map is assumed to be corrected by the
time the first re-fetched instruction reaches the renamer (i.e., no extrarecovery latency).

In the simulator model, the dynamic degree of use predictor logically exists completely within
the first decode stage of the pipeline (together with the rest of the decode pipeline operations),
unlike in the depiction in Figure 3.6. Thus, the predictor is only accessed for instructions reach-
ing the renamer instead of all fetched instructions, and the resulting predictions are available
immediately. This does not affect the accuracy results presented in Chapter 3, since prediction
coverage and accuracy are calculated only on instructions that retire. It does, however, mask a
mismatch between the fetch bandwidth (which corresponds to the predictor access bandwidth)
and the rename bandwidth (which corresponds to the prediction consumption bandwidth) due to

the presence of the fetch queue. An actual implementation could handle this problem

t Thesimpletableisindexed with PC[9:2] O PC[17:10] [0 PC[25:18], where PCistheindirect branch PC.
The exception table isindexed with PC[11:2] O PC[21:12] O PC[31:22] OO compressed_history[9:0].
The compressed history is 0.0.targhist[7:0] O O.targhist[15:8].0 O targhist[23:16].0.0. Each byte of the
(global) target history corresponds to a prior indirect branch target. Thus, three prior indirect branch tar-
gets are used in generating the exception table index. Thetarget history is updated by shifting left one
byte and placing target_PC[9:2] O target_PC[17:10] in the least significant byte. For details on theroles
of the different tables, refer to the paper describing the cascaded indirect predictor [26].

193
Table A.4: Decode Pipeline Parameters

Parameter Ch.3 | Ch.4 |Ch.5W | Ch.5N
Instruction decode bandwidth (decode IPC) 8 4 8 4
Stages in decode pipeline 5 3 5 5
Reorder buffer (ROB) entries 512 256 320 256

by: (1) adding a separate FIFO queue for the degree of use predictions, (2) adding a write port
into the fetch queue for the predictions, or (3) ensuring that the predictions were generated prior

to writing the corresponding instruction into the fetch queue.

A.5.3 Instruction window and scheduler

Instructions pass from the decode pipeline into the instruction window. Each cycle theinstruction
scheduler selects instructions from the window for issue to the execution pipelines. An instruc-
tion is eligible for issue when its input operands are ready, there is an unused issue port available
with the appropriate execution resource, and the issue port’s writeback busisfree in the cycle that
the instruction will complete. Memory instructions have additional requirements: aload or store
requires afree L1 MSHR (in case of a data cache miss), and aload may be delayed until certain
older storesthat could bypassto that load have computed their addresses (see Section A.5.6). The
instruction window selects the oldest eligible instruction until no more instructions are eligible for
issue or the peak issue bandwidth (equal to the number of issue ports) is reached.

The partitioning of the execution resources among issue ports is an important determinant of
the issue behavior. During any given cycle, only one instruction may be issued on a particular
port, which blocks not only the corresponding resource, but all other execution resources bound to
the same port. Each execution resource is assumed to be fully-pipelined (i.e., it can accept a new
operation each cycle).

Aninstruction’s input operand isready if that operand will be available from either the bypass
network or the register file by the time the instruction would need it for execution. If the register
fileis not fully-bypassed, aregister result may become ready on the bypass network upon instruc-
tion completion, then become unready again prior to the completion of the register file write (refer

Figure 5.4(a) and the accompanying discussion).

194
Table A.5: Instruction Window and Scheduler Parameters

Parameter Ch.3 | Ch.4 |Ch.5W | Ch.5N
Instruction window entries 128 64 200 128
Issue port 12 1€ I I
Issue port 2 IM LS IM
Issue port 3 FYDR LS ILS
Issue port 4 b L IF LS

N/A

Issue port 5 SB IF B
Issue port 6 - IMBFYR F
Issue port 7 - IMBFYR| FYDR
Issue port 8 - ILS -

a. Simple (I)nteger, integer (M)ultiply, integer (B)ranch, simple (F)loating-point, FP multipl(Y), FP
(D)ivide and square root, FP b(R)anch, (L)oad, (S)tore.

b. An earlier issue model was used that did not model the binding of execution resources to specific issue
ports. For these studies, any combination of eight instructions could issue each cycle to the following
resources: 6xI, 2xM, 2xB, 3xF/R, 3xY/D, 3xL, 3xS,

¢. Thisissue configuration represents the medium resource model from Chapter 4. See Table 4.4 for
details on other issue configurations used in that chapter.

Operand readiness is speculative: loads are assumed to hit in the L1 data cache and, where a
register cache is used, input operands are assumed to be present in the register cache. A data
cache or register cache miss on an issued instruction implies that the speculative readiness infor-
mation isincorrect and resultsin the reissue (replay) of all instructionsissued after the instruction
causing the replay. Instructions continue to occupy the instruction window after issue until they
are known to be replay-safe. Instructions become replay-safe a fixed latency after issue when the
register or data cache hit-miss status has been determined. This speculative scheduling model is
similar to that implemented by the Alpha 21264 [4, 48].

A.5.4 Register fileand execution

Issued instructions read their input operands from the register file beginning in the cycle after they
areissued. Theregister file read may span multiple cycles (see Figure 5.4(a)) and occurs regard-
less of whether an operand is eventually obtained from the bypass network. A register cache is
simply treated asasingle cycleregister file for purposes of the execution pipeline. Whenamissis
detected, subsequently issued instructions are replayed, and the appropriate penalties are added to

the execution latency of the instruction incurring the miss (see Section 5.2).

195
Table A.6: Register Fileand Execution Parameters

Parameter Ch.3 | Ch.4 |Ch.5W | Ch.5N
Physical register file entries (shared integer & FP) 512 256 320 256
Register file read latency (cycles) 1 1 3 3
Register file write latency (cycles) 1 1 3 3
Bypass network stages 2 2 2 2

Simpleinteger operation latency (cycles) 1
Integer multiply latency (cycles) 4
Branch execution latency (cycles) 2
2
4

Simple floating-point operation latency (cycles)
Floating-point multiply latency (cycles)

Floating-point divide latency (cycles) 16
Floating-point square root latency (cycles) 33
Load-to-use (L1 hit) and L1 miss detect latency 4 3 3 3
Store latency (to detect collisions and bypass to |oads) 3 2 2 2

After completion of the register read, a number of cycles equal to the execution latency is
counted. In the final cycle, the ISA implementation code (shared with the functional simulator)
performs the required operation on the actual input data (which is speculative and may be incor-
rect). Memory operations check the L SQ and data cache as described in Section A.5.6.

A.55 Commit
The commit logic operates as an in-order pipeline decoupled from the rest of the machine. The
oldest in-flight instruction (at the head of the reorder buffer) is checked for retirement eligibility.
An instruction becomes eligible for retirement after it has executed and the writeback of the
instruction’s result into the register file (where necessary) has completed (i.e., the write latency of
theregister file affectsthe earliest commit time). Eligible instructions are retired in program order
up to a maximum retirement bandwidth.

Store retirement is also gated by the availability of a cache write port and a free store buffer
entry. Thus, the maximum number of stores retired per cycle equals the cache write bandwidth.

The use of a store buffer implies that stores need not compl ete the cache write operation to retire

196
Table A.7: Commit Parameters

Parameter Ch.3 | Ch.4 |Ch.5W | Ch.5N
Instruction commit bandwidth (commit 1PC) 8 4 8 4
Maximum stores retired per cycle 3 1-22 3 2

a. Equal to the store execution bandwidth for the issue model used. See Table 4.4 for details.

and allows retirement to proceed past store misses. Stores are drained from the store buffer in

program order as the cache write operations complete.

A5.6 Memory system

Independent load and store queues are responsible for maintaining memory dependences defined
by program order and for communicating memory values among speculative, in-flight instruc-
tions. Entries are allocated to loads and stores in program order in the decode pipeline (see
Section A.5.2). Load entries are freed when the corresponding instruction commits while store
entries are freed after the store data is written to the cache. When a load or store executes, its
physical address is known (a perfect TLB is assumed) and used to probe the opposite queue by
address.

A load searches the store queue for the youngest older store to the same address. If such a
storeisfound, the load result is bypassed from the store data; otherwise, the datais obtained from
the cache. Address matching is performed at a 64-bit granularity. If a matching store supplies
only part of the load data (a partial overlap), older stores may also be included. In the extreme
case, a 64-bit load may bypass from eight 8-bit stores. The ability to perform partial bypassing
was not present in earlier versions of the simulator, which could only handle loads bypassing from
a single store or the cache. In this case, partia overlaps resulted in a load replays (see below).
Store address and store data operations are not distinguished (i.e., store address operations do not
issue independently of store data operations); therefore, a store's datais aways available once its
address is known and aload will never have to wait for the data of a known-matching store.

Each store probes the load queue for a younger load that should have bypassed from the store
but obtained its result from the cache or from an older store than the store under consideration.
This results in a load-dependence replay wherein the load and all younger instructions are
squashed and fetch resumes with the load.

Table A.8: Memory System Parameters

197

Parameter Ch.3 | Ch.4 |Ch.5W | Ch.5N
Load queue entries 128 64 128 128
Store queue entries 128 64 128 128
Partial bypassing no yes yes yes
L oad dependence predictor entries (direct-mapped) 64
L 1 cache® capacity (2-way set assoc.; KB) 32 64 32 32
L1 block size (bytes) 64
L1 MSHRs 64
L1 stream buffers 8
L1 stream buffer size (blocks) 4
L1-L 2 bus bandwidth (bytes/cycle) 16
L 2 cache capacity (unified; 4-way set assoc.; KB) 1024 | 2048 | 2048 | 2048
L2 block size (bytes) 128
L2 MSHRs 64
L2 stream buffers 16
L 2 stream buffer size (blocks) 4
L2-memory bus bandwidth (bytes/cycle) 8
L2 latency (cycles) 12 8 12 12
Memory latency (cycles) 180 100 160 160
Store buffer entries 16

a. L1instruction and data caches are identical and independent.

A load dependence predictor minimizes the occurrence of expensive load replays by delaying

the issue of loads with a history of causing these events. The predictor relies upon atable of col-

lision distances[90], which is written in the event of a load-dependence replay. The table is

indexed and tagged by the PC of the load instruction and contains the number of consecutive older

stores (beginning with the youngest older store) that did not collide with theload. Thisdistanceis

used to determine when subsequent instances of the load should issue. Since stores within this

distance are not expected to bypass to the load, their addresses do not need to be known prior to

issuing the load. Any store further away (older) than the collision distance must have issued and

computed its address before the load can issue.

198
A store buffer queues committed stores until their cache write is complete. The store buffer is

emptied into the L1 data cache in program order. A store miss stalls the processing of storesin
the buffer until the appropriate line is fetched into the L1 data cache. Datais bypassed from the
store buffer on a cache read access such that loads retrieve the most-recently-written data.

The memory hierarchy consists of separate, identical L1 instruction and data caches and a uni-
fied L2 cache over an infinite, fixed-latency main memory. The cache hierarchy is writeback and
inclusive. Each cache has MSHRs that track outstanding misses and prefetches, alowing
accesses to occur in parallel with resolving misses (i.e., the caches are non-blocking [54]). Each
cache also employs an opportunistic stride-based prefetcher [34] that generates hardware
prefetches for multiple, potentially interleaved streams into associated stream buffers [47]. Buses
connecting different levels of the cache hierarchy with each other and memory are modeled and
bandwidth-limited. Writebacks and fills schedule the bus and block its use for an appropriate
number of cyclesto transfer the necessary data. Datatransfer occurs critical-word-first (e.g., for a
fill, the requested word within the line is transferred across the bus first, regardless of its offset
within the line).

