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Abstract

As processor demands quickly outpace memory, the performance of load instructions becomes an
increasingly critical component to good system performance. This thesis contributes four novel load
latency reduction techniques, each targeting a different component of load latency: address calculation,
data cache access, address translation, and data cache misses. The contributed techniques are as

follows:

e Fast Address Calculation employs a stateless set index predictor to allow address calculation to
overlap with data cache access. The design eliminates the latency of address calculation for many

loads.

e Zero-Cycle Loads combine fast address calculation with an early-issue mechanism to produce

pipeline designs capable of hiding the latency of many loads that hit in the data cache.

o High-Bandwidth Address Translation develops address translation mechanisms with better la-
tency and area characteristics than a multi-ported TLB. The new designs provide multiple-issue
processors with effective alternatives for keeping address translation off the critical path of data

cache access.

o Cache-conscious Data Placement is a profile-guided data placement optimization for reducing
the frequency of data cache misses. The approach employs heuristic algorithms to find variable
placement solutions that decrease inter-variable conflict, and increase cache line utilization and

block prefetch.

Detailed design descriptions and experimental evaluations are provided for each approach, confirm-

ing the designs as cost-effective and practical solutions for reducing load latency.
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Chapter 1

Introduction

Memory system design is one of the most challenging aspects of computer architecture. The dynamic
nature of the computer industry limits the lifetime of any cost-effective design solution, forcing designers
to continually re-evaluate the cost-effectiveness of any design in light of changes in implementation
technology, workload, and processor architecture. To further challenge designers, the most cost-effective
solutions will often span the traditional boundary placed between hardware and software designs,
possessing vital components in both domains.

One of the paramount challenges in memory system design is the problem of continually lengthening
load latency. For a large class of important programs, growing load latency dominates all other latencies
during execution, making the performance of load instructions the most important barrier to good
system performance.

The problem of lengthening load latency can be traced to continuing technology, workload, and
architecture trends. Each year, advances in implementation technologies reward processors with faster
clocks, while memory speeds, particularly for DRAM, remain relatively unchanged. The fallout is a
widening gap between the speed of processors and memory. Cache memory has for a long time been an
effective mitigator, providing reduced memory access time through the use of the memory hierarchy.
However, many newer workloads lack the locality necessary to perform well on traditional memory
hierarchies. Familiar examples of this trend can be seen in environments supporting multitasking,
multimedia, compression, and encryption. Finally, architectural changes place increased demands on
the memory system which complicates its design and further aggravates load latency. A timely example
of this trend can be seen in the shift towards instruction-level parallel processors that issue multiple
loads and stores per cycle, resulting in increased bandwidth demands on the memory system.

This thesis contributes four novel techniques for reducing load latency. The work presented takes
a balanced approach to addressing the problem. A full chapter of material is devoted to each of the
four major components of load latency: address calculation, data cache access, address translation, and
data cache misses. Detailed design descriptions are given for each approach. The solutions presented
include a hardware-based and a software-based design as well as two hardware-software codesigns.
The effectiveness of each approach is evaluated using qualitative analyses to assess impacts on pipeline
complexity and cycle-time as well as cycle-timing simulations to gauge impacts on pipeline throughput.

The remainder of this chapter presents the background and motivation necessary to prepare the
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reader for the remaining chapters. Section 1.1 introduces load instructions and describes the com-
ponents of load latency. Section 1.2 explores the impact of load latency on both the performance
of a single load instruction as well as the performance of the entire system. Section 1.3 examines
existing approaches for reducing the impact of load latency. Section 1.4 presents an overview of the

contributions of this thesis, and finally, Section 1.5 details the organization of the remaining chapters.

1.1 Anatomy of a Load

Load instructions move data between the processor and memory. The semantics of a typical load are as
follows: two inputs, a base address and offset, are added together to form an effective address which is
used to access data memory. In most modern architectures, the base is supplied from a processor reg-
ister and the offset is supplied by either an immediate constant, i.e., register+constant addressing, or
via a register, i.e., register+register addressing. Architectures often employ variations of this simple
scheme; for instance, the IBM System 370 combines the two addressing forms, offering an addressing
mode that supports register+register+constant addressing. The VAX and Intel (x86) architectures
eliminate explicit load instructions altogether by permitting any instruction to access operands from
either registers or memory. In this thesis, the discussion is restricted to architectures with explicit load
instructions and register+constant and register+register mode addressing. However, the approaches
presented within should easily extend to other machines as well.

A load, while being a single instruction, is decomposed into several component operations when
mapped onto a processor pipeline. Figure 1.1 illustrates the major component operations of a load and
their order of execution.! A load is first fetched by the processor from instruction memory, possibly
within a group of instructions. Next, the processor must identify the load instruction. After a load
has been identified, it is aligned to the pipe or functional units supporting its execution, base and
index register values are read from the register file, and functional unit resources are secured. Finally,
the effective address is computed and used to access data memory. As shown in the figure, address
translation proceeds in parallel with data memory access.

In a typical pipeline implementation, loads are fetched in the fetch (IF) stage of the pipeline.
Identifying, aligning, and reading the register file occur in the decode (ID) stage of the pipeline. In
designs with very fast clocks and wide issue, these operations are often split across multiple decode
stages. Effective address computation occurs in the execute (EX) stage of the pipeline, and data
memory access and address translation in the memory access (MEM) stage of the pipeline.

Load latency is defined as the time it takes to compute the effective address of the access, access

data memory, and return a result. In the example in Figure 1.1, effective address calculation takes

1Of course, many variations exist upon this basic template; for example, some pipelines require address translation to
complete before accessing the data cache. However, the basic template shown is representative of many modern pipelines.
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Figure 1.1: Anatomy of a Load.

a single cycle, and data memory access takes a single cycle if the access hits in the data cache. If a
load misses in the data cache, its latency is further increased by delays incurred with accessing lower
levels of the data memory hierarchy, e.g., cache misses or page faults. The remaining components, e.g.,
fetch, align, identify, and arbitrate, are not normally considered an integral part of load latency, since
they share few dependencies with earlier instructions and thus can be effectively hidden by overlapping

their execution with earlier instructions.

1.2 The Impact of Load Latency

Figure 1.2 illustrates how load latency affects program execution. The figure shows a traditional
five stage pipeline executing three dependent instructions. Pipelined execution continues without
interruption until the sub instruction attempts to use the result of the previous 1w instruction. In a
traditional five stage pipeline, a load instruction requires the EX stage for effective address calculation
and the MEM stage for data cache access. The result of the load operation is not available until the
end of cycle 5 (assuming a single cycle cache access and the access hits in the data cache), forcing the
pipeline to stall issue one cycle waiting for register rw. As the pipeline stalls, valuable functional unit
resources sit idle, wasting resources that could otherwise be used to improve program performance.
Fortunately, the effect of load latency on program performance is tempered by two factors: 1)
the processor’s ability to tolerate latency, and 2) the relative impact of load latency compared to
other latencies. The workload and execution model both affect the degree to which the processor can
tolerate latency. If the workload contains sufficient parallelism and the execution model provides the
capability to exploit the parallelism, the impact of load latency on overall performance can be reduced

by executing independent instructions on idle processor resources. Execution models with high levels
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of latency tolerating capability include those that support such techniques as out-of-order issue [HP90],
non-blocking loads [FJ94], and speculative execution [HP90]. The extent to which a program accesses
memory (i.e., the dynamic frequency of loads) also affects the degree to which load latency impacts
program performance. Programs that access memory often will need better load performance for good
overall performance.

To gauge the extent to which load latency affects system performance, a simulation case study was
performed on the SPEC ’92 benchmarks. The IPCs of benchmarks compiled with GNU GCC were
examined while executing with varied load latency. Experiments were run on an aggressive 4-way
in-order issue processor timing simulator (described in Section 3.6). The simulator was configured
with a 16k byte dual-ported direct-mapped non-blocking data cache, with 32 byte blocks, and a fixed
6 cycle miss latency. The results of the experiments are shown in Figure 1.3. Baseline shows program
performance with 2 cycle loads and a 6 cycle cache miss latency, 1-Cycle Loads reduces the cache
hit latency to 1 cycle but retains the 6 cycle cache miss penalty, Perfect Cache represents a 2 cycle

load latency and a 0 cycle cache miss penalty, and 1 Cycle+Perfect represents the case where all load
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instructions complete in 1 cycle. In addition, the graph shows the average IPC, weighted by program
run-time (in cycles), for the integer codes (the left group) and the floating point codes.

A number of interesting observations can be made from Figure 1.3. In general, the integer codes saw
more improvement in performance when load latency was reduced. The floating point codes did not fair
as well because their executions are dominated by other long latency operations such as floating point
computations. When comparing the relative impact of the analyzed component latencies, i.e., address
calculation, data cache access, and cache misses, no single component stands out as the dominating
component across all the codes. The integer code performance was affected more by eliminating the
latency of address calculation or data cache access (i.e., 1-Cycle Loads), while the floating point codes
benefited more by eliminating the latency of data cache misses (i.e., Perfect Cache). Clearly, load
latency can have a significant impact on system performance. Optimizations designed to reduce the
impact of load latency, independent of which component of load latency is targeted, stand to gain

much.

1.3 Reducing the Impact of Load Latency

A significant body of work proposes techniques for reducing the impact of load latency. The techniques
can be broadly bisected into two camps: latency tolerating techniques and latency reducing techniques.

Tolerating techniques work by inserting independent instructions into the pipeline delay slots cre-
ated by load latencies. Local instruction scheduling [KE93, PS90, GM86] is a commonly used compile-
time technique to tolerate load latency (it is employed in this work as well). The scheduler attempts
to place independent instructions between loads and their first use, keeping pipeline resources utilized
until loads complete. To make good schedules, the scheduler needs independent work, which is finite
and usually quite small in the basic blocks of control intensive codes, e.g., many integer codes [AS92].
Global scheduling techniques [Fis81, MLC*92, ME92] have been developed as a way to mitigate this
effect; however, these techniques often suffer from ambiguous dependencies, unpredictable latencies,
and safety issues that limit the extent of their effectiveness.

Many of the limitations of compile-time scheduling can be overcome by using a dynamic scheduling
approach. When processor progress is stalled due to a load delay (or other instruction delays), the
dynamic scheduler selects another instruction from a window of available instructions or another in-
dependent thread of control. Examples of execution models that perform dynamic scheduling include
Multiscalar [Fra93], decoupled [Smi82b], dataflow [Vee86], and multi-threaded [LGN92, Smi81].

The best way by far to reduce load latency is to make memory access time zero by moving the
accessed storage into a register. Register allocation is a well developed area and continues to progress.

Current research centers on increasing the number of candidates for register allocation, e.g., register
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allocation for subscripted variables [CCK90], and increasing the utilization of a finite collection of reg-
isters through techniques such as live-range splitting [BCT92] and load/store range analysis [KH92b].
Unfortunately, many program variables are still forced into memory, due to the limited size and ad-
dressability of register files.

Cache misses are often a significant component of load latency, especially in numeric codes where
data locality is low. Much work has been done to reduce both the latency and frequency of data cache
misses. Approaches that work to reduce miss latencies include multi-level caches [JW94, BKW90,
WBL89), victim caches [Jou90], and cache line prefetching [RL92, CBM*92, MLG92]. Non-blocking
caches [FJ94, CB92, Con92, SF91] also help to reduce the impact of cache misses by letting other cache
accesses complete while misses are serviced.

Techniques that work to reduce the frequency of cache misses usually attack the problem of reducing
conflict misses. Approaches along these lines include set-associative caches [KJLH89, Hea86, Smi82a],
column-associative caches [AP93, AHHS88], stride tolerant address mappings [Sez93, IL89, CL89], static
[Kes91, DS91] or dynamic [BLRC94, LBF92, Kes91] page coloring, program restructuring [LRW91,
Wu92, PH90, Fer76], and reference exclusion [McF92, CD89, ASW+93, Hsu94, Con92].

Even with the bevy of work already available to reduce the impacts of load latency, the prob-
lem continues to persist, partly because load latency continues to grow and partly because existing

approaches have limited applicability or effectiveness.

1.4 Contributions of This Thesis

This thesis contributes four novel load latency reduction techniques, each targeting a different com-
ponent of load latency: address calculation, data cache access, address translation, and data cache
misses. Figure 1.4 shows the four contributions of this thesis and the load latency components that
each addresses. The following subsections give a brief overview of each approach and key results of

their evaluation.

1.4.1 Fast Address Calculation

For many programs, especially integer codes, exposed load instruction latencies that hit in the data
cache account for a significant portion of total execution time. For these codes, fast address calculation
is an effective method to reduce load latency.

The approach works to reduce load latency by allowing effective address calculation to proceed in
parallel with data cache access, thereby eliminating the extra cycle required for address calculation.
The technique employs a simple circuit to predict the portion of the effective address needed to read
the data cache. If the address is predicted correctly, the cache access completes without an extra cycle

for address calculation. If the address is mispredicted, the cache is accessed again using the correct
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effective address. The predictor is designed to minimize its impact on cache access time, adding only
a single OR operation before data cache access can commence. Verification of the predicted effective
address is also very fast and decoupled from the cache access critical path, ensuring that pipeline
control logic impacts are minimal.

Detailed timing simulations of a 4-way in-order issue superscalar processor extended to support
fast address calculation show this design is a good one, servicing enough accesses early enough to
result in speedups for all the programs tested. Simulations found an average speedup of 14% for
the integer codes and 6% for the floating point codes. The approach also responds well to software
support. Compiler and linker support for fast address calculation was shown to significantly reduce
the number of mispredictions, in many cases provide better program speedups and reduced cache
bandwidth demand. Simulated performance with software support improved the average speedup to

19% for the integer codes and 7.5% for the floating point codes.

1.4.2 Zero-Cycle Loads

Address calculation is typically one half of the latency for loads that hit in the cache. Zero-cycle loads
extend the latency reduction afforded by fast address calculation by combining it with an early-issue
mechanism. The resulting pipeline designs are capable of completely hiding the latency of many loads
that hit in the cache.

Through the judicious application of instruction predecode, base register caching, and fast address

calculation, it becomes possible to complete load instructions up to two cycles earlier than traditional
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pipeline designs. For a pipeline with one cycle data cache access, loads can complete before reaching
the execute stage of the pipeline, creating what is termed a zero-cycle load. A zero-cycle load allows
subsequent dependent instructions to issue unencumbered by load instruction hazards, resulting in
fewer pipeline stalls and increased overall performance.

Two pipeline designs supporting zero-cycle loads are presented: an aggressive design for pipelines
with a single stage of instruction decode, and a less aggressive design for pipelines with multiple decode
stages. The designs are evaluated in a number of contexts: with and without software support, in-order
vs. out-of-order issue, and on architectures with many and few registers.

Programs running on a 4-way in-order issue processor simulator extended to support zero-cycle
loads found an average speedup of 45% for the integer codes and 26% for the floating point codes. For
the integer codes, program performance was on par with the speedups afforded by an out-of-order issue
processor model. Speedups on an out-of-order issue processor simulator extended to support zero-cycle
loads were less due to the latency tolerating capability of the execution model. On architectures with
few registers, the frequency of loads and their impact of program performance increases significantly.
Providing an 8 register architecture with limited zero-cycle load support resulted in performance com-
parable to a 32 register architecture, suggesting that the approach may be able to negate the impacts

of too few architected registers.

1.4.3 High-Bandwidth Address Translation

Address translation is not generally thought of as a latency component of loads. The usual goal
of address translation design is not to directly minimize load latency, but rather to keep address
translation off the critical path of data cache access. Typically, this task is accomplished by allowing
data cache access and address translation to proceed in parallel using, for example, a virtually-indexed
cache. The address translation mechanism is then constructed to be at least as fast as data cache
access.

However, this design strategy is becoming increasingly more difficult. In an effort to push the
envelope of system performance, microprocessor designs are exploiting continually higher levels of
instruction-level parallelism, resulting in increasing bandwidth demands on the address translation
mechanism. Most current microprocessor designs meet this demand with a multi-ported TLB. While
this design provides an excellent hit rate at each port, its access latency and area grow very quickly as
the number of ports is increased. As bandwidth demands continue to increase, multi-ported designs
may soon impact memory access latency.

To help meet these new demands, four new high-bandwidth address translation mechanisms are
presented that feature latency and area characteristics that scale better than a multi-ported TLB
design. Traditional high-bandwidth memory design techniques are extended to address translation,

developing interleaved and multi-level TLB designs. In addition, two new designs crafted specifically
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for high-bandwidth address translation are introduced. Piggyback ports are proposed as a technique
to exploit spatial locality in simultaneous translation requests, allowing accesses to the same virtual
memory page to combine their requests at the TLB access port. Pretranslation is proposed as a tech-
nique for attaching translations to base register values, making it possible to reuse a single translation
many times.

Extensive simulation-based studies were performed to evaluate the proposed designs. Key system
parameters, such as execution model, page size, and number of architected registers were varied to see
what effects they had on the relative merits of each approach. A number of designs show particular
promise. Multi-level TLBs with as few as eight entries in the upper-level TLB nearly achieve the
performance of a TLB with unlimited bandwidth. Piggyback ports combined with a lesser-ported
TLB structure, e.g., an interleaved or multi-ported TLB, also perform well. Pretranslation over a
single-ported TLB performs almost as well as a same-sized multi-level TLB with the added benefit of

decreased access latency for physically indexed caches.

1.4.4 Cache-Conscious Data Placement

For many codes, the data cache miss component of load latency dominates all other memory access
latencies. These codes often have working sets that are too large or lack the locality necessary for
good data cache performance. In other cases, their reference streams perform poorly on commonly
used cache geometries. Whatever the case may be, these programs spend much of their execution time
waiting for cache misses to be serviced and can benefit greatly from optimizations designed to reduce
the impact of data cache miss latencies.

A software-based variable placement optimization, called cache-conscious data placement, is in-
troduced as a technique for reducing the frequency of data cache misses. To apply the approach, a
program is first profiled to characterize how its variables are used. The profile information then guides
heuristic data placement algorithms in finding a variable placement solution that decreases predicted
inter-variable conflict, and increases predicted cache line utilization and block prefetch. The gener-
ated placement solution is implemented partly at compile-time using a modified linker and partly at
run-time with modified system libraries.

Various placement strategies are developed and compared to the performance of natural placement
(i.e., the layout of variables using the unmodified linker and system libraries). Random placement per-
formed consistently worse than natural placement, revealing natural placement as an effective place-
ment strategy that sets the bar for artificial placement measures. Cache-conscious data placement
improved cache performance for most of the programs tested, with many seeing more than a 10% re-
duction in data cache misses. A simplified and less expensive version of the placement algorithm (i.e.,
with reduced computation and storage requirements) lost the stability of the more complex algorithm,

suggesting that for consistent performance improvements the more capable and expensive algorithm is
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required. Run-time performance impacts were also examined for in-order and out-of-order issue pro-
cessor models. Run-time performance improvements were small, especially for the out-of-order issue
processor, because the processors were able to tolerate much of the data cache miss latency eliminated.
However, the placement optimizations were able to eliminate a large fraction of the exposed data cache

miss latency in many of the experiments.

1.5 Organization of This Thesis

The remainder of thesis is organized as follows. Chapter 2 describes the experimental framework used
throughout this thesis. Chapter 3 develops and analyzes fast address calculation. Chapter 4 examines
and evaluates zero-cycle loads. Chapter 5 introduces new mechanisms for high-bandwidth and low-
latency address translation. Chapter 6 explores the use of cache-conscious data placement as a means
to improve data cache performance. Finally, Chapter 7 gives conclusions and suggests future directions
to explore. The appendices include a detailed description of the SimpleScalar architecture (used by

the experimental framework) and detailed experimental results for Chapter 5.



11

Chapter 2

Experimental Framework

This section details the experimental framework used for all the experiments in this thesis. Figure 2.1

illustrates the structure of the experimental framework.

2.1 Compiler Tools

All experiments were performed with programs compiled for the SimpleScalar architecture. The Sim-
pleScalar architecture is a superset of the MIPS-I instruction set [KH92a] with the following notable

differences:
e There are no architected delay slots for loads, stores, or control transfers.

e Loads and stores support additional addressing modes: indexed, auto-increment, and auto-

decrement, for all data types.
e SQRT implements single- and double-precision floating point square roots.
e The architecture employs a 64-bit instruction encoding.

The entire instruction set is detailed in Appendix A.

As shown in Figure 2.1, C programs are compiled with a version of GNU GCC targeted to the
SimpleScalar architecture. All programs are compiled with maximum optimization (-O3) and loop
unrolling enabled (-funroll-loops). FORTRAN sources are compiled by first converting them to C with
AT&T’s F2C compiler. GNU GCC produces SimpleScalar assembly files which are assembled with a
version of GNU GAS assembler ported to support SimpleScalar assembly. The produced object files are
compatible with the MIPS ECOFF object format. The programs are linked with GNU GLD. Standard
library calls are implemented with a version of GNU GLIBC ported to support the SimpleScalar

instruction set and POSIX Unix system calls.

2.2 Simulation Methodology

The baseline simulator is detailed in Table 2.1. The simulator executes only user-level instructions,

performing a detailed timing simulation of 4-way superscalar processor and the first level of instruction
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Figure 2.1: Experimental Framework.

and data cache memory. Simulation is execution-driven, including execution down any speculative path
until the detection of a fault, TLB miss, or misprediction.

The simulator supports both in-order and out-of-order issue execution models. The in-order issue
model provides no renaming and stalls whenever any data hazard occurs on registers. The out-of-order
issue model employs a reorder buffer to rename registers and hold results of pending instructions.
Loads and stores are placed into a load/store queue. Stores execute when all operands are ready; their
store values, if speculative, are placed into the load/store queue. Loads may execute when all prior
store addresses have been computed; their values come from a matching earlier store in the store queue
or from the data cache. Speculative loads may initiate cache misses if the address hits in the TLB. If
the load is subsequently squashed, the cache miss will still complete. However, speculative TLB misses
are not permitted. That is, if a speculative cache access misses in the TLB, instruction dispatch is
stalled until the instruction that detected the TLB miss is squashed or committed. Each cycle the

reorder buffer commits completed instruction results in-order to the architected register file. When



Fetch Width

4 instructions

Fetch Interface

able to fetch any 4 contiguous instructions per cycle

I-cache

16k direct-mapped, 32 byte blocks, 6 cycle miss latency

Branch Predictor

1024 entry direct-mapped BTB with 2-bit saturating counters, 2 cycle
misprediction penalty

In-Order Issue

in-order issue of up to 4 operations per cycle, out-of-order completion,

Mechanism stalls on first data hazard
Out-of-Order Issue out-of-order issue of up to 4 operations per cycle, 16 entry reorder buffer,
Mechanism 8 entry load/store queue, loads execute when all prior store addresses

are known

Architected Registers

32 integer, 32 floating point

Functional Units

4-integer ALU, 2-load/store units, 2-FP adders, 1-integer MULT/DIV,
1-FP MULT/DIV

Functional Unit
Latency (total/issue)

integer ALU-1/1, load/store-2/1, integer MULT-3/1, integer DIV-12/12,
FP adder-2/1, FP MULT-4/1, FP DIV-12/12

D-cache

16k direct-mapped, write-back, write-allocate, 32 byte blocks, 6 cycle miss
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latency, two read ports, one write port (e.g., dual-ported via replication),
non-blocking interface, one outstanding miss per register, 6 cycle miss
latency via a single-ported fully pipelined bus to main memory

16 elements, non-merging

Store Buffer

Table 2.1: Baseline Simulation Model.

stores are committed, the store value is written into the data cache.

The data cache modeled is dual-ported, direct-mapped, and non-blocking. Data cache bandwidth
is limited, it can only service two loads or stores each cycle, either speculative or otherwise. For the
in-order issue pipeline, cache writes are serviced in two cycles using a non-merging store buffer. The
store buffer retires data written to the data cache during cycles it is unused. If a store executes and
the store buffer is full, the entire pipeline is stalled and oldest entry in the store buffer is retired to the

data cache.

2.3 Analyzed Programs

Table 2.2 details the programs analyzed, the language they are written in, and their inputs and options.
The top group are integer codes, the bottom group are floating point codes. Compress, Go, Perl, and
Vortez are from the SPEC ’95 benchmark suite [SPE95]. Elvis is a VI-compatible text editor performing
textual replacements in batch mode. Ghostscript is a postscript viewer rendering a page with text and
graphics to a PPM-format graphics file. Grep performs regular expression matches in a large text file.
MPEG _play is an MPEG compressed video decoder displaying a 79 frame compressed video file. TFFT
performs real and complex FFTs on a randomly generated data set. YACR-2is a VLSI channel router
routing a channel with 230 terminals. The remaining benchmarks are from the SPEC92 benchmark

suite [SPE91].



Benchmark | Language | Input Options/Modifications
Compress C in

Elvis C unix.c %s/for /forever/g, %s/./& /g
Eqntott C int_pri_3.eqn

Espresso C cps.in

GCC C 1stmt.i

Ghostscript | C fast-addr.ps -dNOPAUSE -sDEVICE=ppm -c quit
Grep C 3x inputs.txt | -E -f regex.in

Perl C tests.pl

MPEG_play | C coil.mpg

Sc C loadal

Xlisp C li-input.lsp Short input (queens 8)
YACR-2 C input2

Alvinn [¢} NUM_EPOCHS=50

Doduc Fortran doducin

Ear C short.m22 args.short

Mdljdp2 Fortran mdlj2.dat MAX_STEPS=150

Mdljsp2 Fortran mdlj2.dat MAX_STEPS=250

Ora Fortran ITER=60800

Spice2g6 Fortran greycode.in tran .7n 8n

Su2cor Fortran su2cor.in Short input

TFFT Fortran MEXPONENT=20, ITER=1
Tomcatv Fortran N=129

Table 2.2: Benchmark Programs.
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Chapter 3

Fast Address Calculation

3.1 Introduction

All load instructions commence execution by computing the effective address of their access, i.e., the
base register value plus the offset or index register value. The latency of this operation, as shown in
Figure 3.1a, is typically a single cycle in modern pipeline designs. For codes with an abundance of
exposed load latency and good cache performance, e.g., many integer codes, effective address calculation
latency can account for a significant portion of total execution time.

This chapter focuses on a pipeline optimization, called fast address calculation, that reduces the
latency of effective address calculation. The basic approach is illustrated in Figure 3.1b. The technique
works by predicting early in the pipeline the effective address of a memory access and using the
predicted address to speculatively access the data cache. A verification circuit determines if the address
prediction is correct. If so, cache access is overlapped with non-speculative effective address calculation.
Otherwise, the cache is accessed again in a later cycle using the correct effective address.

For fast address calculation to work well, the predictor must be both fast and accurate. A fast
predictor minimizes impact on data cache access latency and processor cycle time. An accurate predic-
tor eliminates most address calculation latency. In Section 3.2, analyses of programs reveal reference
characteristics that when combined with properties of on-chip data cache can be exploited to produce
a predictor that is both fast and accurate. Section 3.3 details the predictor design. Section 3.3 also
describes a prediction verification circuit that is both fast and decoupled from the cache access critical
path, ensuring minimal impacts on pipeline control circuitry and processor cycle time. When fast
address calculation does fail, its failure modes are few and easy to identify. Section 3.5 describes how
simple software support can significantly reduce the number of address mispredictions. In Section
Section 3.6 analysis of prediction failure rates and program speedups are presented. Finally, Section

3.7 lists related work, and Section 3.8 summarizes the chapter.
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Figure 3.1: Fast Address Calculation.

3.2 Program Reference Behavior

Fast address calculation is best motivated by examining by examining the reference behavior of pro-
grams. The load instructions of several benchmarks (detailed in Chapter 2) compiled for the Sim-
pleScalar architecture (detailed in Appendix A) were profiled. A number of key observations are made

below.

3.2.1 Reference Type

Three prevalent modes of addressing occur during execution: global, stack, and general pointer ad-
dressing. Table 3.1 details the dynamic number of loads and stores executed by each program and the
dynamic breakdown by reference type for loads.

Global pointer addressing is used to access small global (static) variables. The SimpleScalar (and
MIPS) approach to global pointer addressing uses a reserved immutable register, called the global
pointer, plus a constant offset to access variables in the global region of the program’s data segment
[CCH*87]). The linker constructs the global region such that all variables referenced by name are
grouped together near the target address of the global pointer. As shown in Table 3.1, global pointer
addressing is prevalent in some programs, but not all. The frequency of this mode is highly dependent
on the program structure and style.

Stack pointer addressing is used to access elements of a function’s stack frame. The stack pointer
register holds an address to the base of the stack frame of the currently executing function. Accesses
to frame elements are made using the stack pointer register plus a constant offset. As is the case with
global pointer addressing, stack pointer addressing is also a prevalent, but not an entirely dominating

form of addressing.
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Insts Total Refs Loads

Benchmark || (Mil.) (Millions) % % %

Loads | Stores | Global | Stack | General
Compress 61.5 14.3 7.5 29.23 9.21 61.56
Eqntott 875.7 205.2 12.6 5.08 7.09 87.83
Espresso 474.4 109.1 25.9 3.91 5.26 90.83
Gcee 121.7 25.8 19.7 7.35 | 36.02 56.63
Sc 840.1 217.3 91.8 12.68 | 33.97 53.36
Xlisp 965.2 290.0 172.2 16.78 42.33 40.90
Elvis 249.3 67.7 28.6 1.63 6.33 92.04
Grep 122.2 42.1 1.5 1.13 3.64 95.23
Perl 203.6 50.0 34.2 10.69 | 43.15 46.16
YACR-2 386.8 59.0 7.1 7.61 | 32.72 59.68
Alvinn 1015.4 362.5 125.1 0.73 1.51 97.77
Doduc 1597.2 536.3 195.8 29.33 | 38.44 32.23
Ear 338.4 75.6 43.0 1.04 1.19 97.76
Mdljdp2 729.1 276.9 84.9 2.30 0.23 97.47
Mdljsp2 874.4 219.8 75.6 5.01 1.14 93.86
Ora 1057.1 231.2 98.2 33.19 | 33.14 33.67
Spice 1250.6 443.9 76.5 27.42 21.03 51.55
Su2cor 796.1 333.8 88.8 2.91 3.76 93.32
Tomcatv 464.2 172.8 35.9 4.68 4.07 91.25

Table 3.1: Program Reference Behavior.

The third mode of addressing, general pointer addressing, encompasses all other accesses. These
accesses are the result of pointer and array dereferencing occurring during program execution. Quanti-
tatively, all the benchmarks make heavy use of general pointer addressing with more than half of them

using it for more than 80% of loads.

3.2.2 Offset Distribution

A typical load instruction has two inputs: base and offset. The base is added to the offset during
effective address computation. In the SimpleScalar architecture, the base is supplied by a register
and the offset may be supplied by either a signed 16-bit immediate constant, i.e., register+constant
addressing, or via a register, i.e., register+register addressing.

Figure 3.2 shows the cumulative size distribution of offsets for the global, stack, and general pointer
accesses of four benchmarks. (These curves are representative of the other benchmarks.) The graphs
include loads using register+register addressing, in which case the base and offset of the load are
determined by compiler convention.

The offsets applied to the global pointer are typically quite large, being that they are partial
addresses. As one would expect, there is a strong correlation between the size of the offsets required
and the aggregate size of the global data addressed by the program.

Stack pointer offsets tend to be large as well due to the large size of stack frames. While a stack
frame may have only a few local variables, there are overheads not apparent to high-level language

programmers which can greatly increase its size. These overheads include register save areas, dynamic
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stack allocations, return address storage, among others.

For general pointer accesses, most load offsets are small. In fact, for a number of programs analyzed,
e.g., GCC, zero was the most common offset used. Zero offsets are primarily the product of array
subscript operations where strength reduction [ASU86] of the subscript expression succeeded, pointer
dereferences to basic types (e.g., integers), and pointer dereferences to the first element of a structured
(record) variable.

Non-zero offsets arise from primarily three sources: structure offsets, some array accesses, and array
index constants. Structure offsets are small constants applied to pointers when accessing fields of a
structured variable. Array base addresses are combined with index values to implement array accesses,
e.g., alil. The compiler used in this work, a port of GNU GCC to the SimpleScalar architecture, only
generates this form of addressing when strength reduction of the subscript expression is not possible
or fails. (When strength reduction is successful, a zero offset suffices.) Index constants are generated
when part of an array subscript expression is constant, e.g., array[i+10]. In addition, the compiler
creates many index constants when unrolling loops. Index constants are usually small, although when
in the higher dimension of a multi-dimensional array, they can become large.

For a few of the floating point programs, most notable Spice, there were a significant number
of large offsets. This result indicates strength reduction of array accesses was generally ineffective.
Consequently, the compiler had to rely on the brute force approach of adding the index variable to the
base address of the array for every array access made, creating many large (index register) offsets.

Negative offsets are usually small immediate constants, generated by negative array subscript con-
stants. They occur infrequently for both the integer and floating point intensive programs, e.g. for
GCC they account for 5.7% of the general pointer loads and about 3.2% of all loads.

To summarize how these observations affect the design of an address predictor, it is clear that any
prediction mechanism must: 1) perform well on all reference types, 2) perform well on small offsets,
and 3) perform well on large offsets applied to the stack and global pointers. Secondary goals to good
performance include support for predicting large index register offsets and support for small negative
offsets. The following section presents a fast address calculation mechanism designed to satisfy these

criteria while minimizing cost and pipeline impacts.

3.3 Fast Address Calculation

The fast address calculation mechanism predicts effective addresses early in the pipeline, thereby
allowing loads to commence execution and complete earlier. To accomplish this task, an organizational
property of on-chip data caches is exploited.

To minimize access time, on-chip caches are organized as wide two-dimensional arrays of memory

cells (as shown in Figure 3.3). Each row of the cache array typically contains one or more data blocks
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[WRP92, WJ94]. To access a word in the cache, the set index portion of the effective address is used
to read an entire cache row from the data array and a tag value from the tag array. Late in the
cycle, a multiplexor circuit uses the block offset part of the effective address to select the referenced
word from the cache row. At approximately the same time, the tag portion of the effective address
is compared to the tag value from the tag array to determine if the access hit in the cache. Hence,
on-chip cache organizations require the set index portion of the effective address early in the access
cycle and the block offset and tag portion late — after the cache row and tag have been read. The
address prediction mechanism leverages this property of on-chip caches, allowing part of the address
calculation to proceed in parallel with cache access.

Figure 3.3 shows a straightforward implementation of the effective address prediction mechanism
for an on-chip direct-mapped cache, targeting ease of understanding rather than optimal speed or
integration. The set index portion of the effective address is supplied very early in the cache access
cycle by OR’ing together the set index portion of the base and offset. This operation implements a
faster, carry-free form of addition, since it ignores any carries generated in or propagated into the set

index portion of the address computation.’

Because many offsets are small, the set index portion of
the offset will often be zero, allowing this computation to succeed. For larger offsets, like those applied
to the global or stack pointer, it is possible to employ software support to align pointer values, thereby
increasing the likelihood that the set index portion of the base register value is zero.

In parallel with access of the cache data and tag arrays, full adders are used to compute the block
offset and tag portion of the effective address. Later in the cache access cycle, the block offset is used
by the multiplexor to select the correct word from the cache row, and the tag portion of the effective
address is compared to the tag value read from the tag array.

Special care is taken to accommodate small negative offsets. The set index portion of negative
offsets must be inverted, otherwise address prediction will fail. In addition, the prediction will fail if a
borrow is generated into the set index portion of the effective address computation. The design assumes
that offsets from the register file arrive too late for set index inversion, thus address predictions for
these loads and stores fail if the offset is negative. This conservative design decision has little impact
on the designs performance since negative index register offsets are extremely infrequent.

To complete the hardware design, the cache hit/miss detection logic is augmented with a circuit that
verifies the predicted address. Using the result of this circuit, the cache controller and the instruction
dispatch mechanism can determine if the access needs to be re-executed in the following cycle using
the non-speculative effective address (computed in parallel with the speculative cache access). A
misprediction is detected by looking for carries, either propagated into or generated in the set index

part of the effective address computation. Four failure condition exist: 1) a carry (or borrow) is

I Technically, a carry-free addition requires an XOR function, but use of a simpler inclusive OR suffices here because
the functions only differ when address prediction fails.
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propagated out of the block offset portion of the effective address (signal Overflow in Figure 3.3), 2)
a carry is generated in the set index portion of the effective address (signal GenCarry), 3) a constant
offset is negative and too large (in absolute value) to result in an effective address within the same
cache block as the base register address (signal LargeNegConst), or 4) an offset from the register file is

negative (signal IndezReg<31>).

3.3.1 Further Design Considerations

The address prediction mechanism is designed to have minimal impact on the cache access critical
path. The two typical cache access critical paths are denoted with bold dashed lines in Figure 3.3.
While a much more detailed design would be required to demonstrate the exact impact the prediction
mechanism has on the cache access critical path, it is possible point out a few design features of this
circuit that indicate it should have minimal impact on cycle time. Three paths through the prediction
circuit could affect the cache access cycle time. The first is through the tag adder. The tag portion
of the effective address computation must arrive at the tag comparator before the tag array output
becomes stable. For small addresses and large cache set sizes, this computation will likely complete
before tag comparison. For large addresses and small cache set sizes, this computation may not
complete in time. For these designs, the logical OR operation used to compute the set index could
also be used to compute the tag portion of the address. All the experiments in Section 3.6 were run
with and without full addition capability in the tag portion of the effective address computation and
this capability was found to be of limited value. This result is to be expected considering the relatively
small size of load offsets compared to cache set sizes, and the large alignments required on either the
base or offset for carry-free addition to succeed on the set index portion of the address computation
but fail on the tag portion.

The second path that could affect cycle time runs through the block offset adder. This result must
arrive at the data array multiplexor before the data array produces stable output. For most cache
designs, a 4- or 5-bit adder should suffice for this computation. The complexity of the block offset
adder is small, on the order of the cache row decoders, hence, this part of the design will likely not
impact the cache access critical path.

The third path that could affect cache access cycle time is through the prediction verification
circuit. Since this circuit is completely decoupled from the normal cache access, it cannot affect the
cache access cycle time as long as validation of the predicted effective address completes before the
end of the clock cycle. This prediction verification signal, however, could affect processor cycle time
if it is not available early enough to allow the processor control logic to schedule operations for the
following cycle (a function of the success and failure of memory accesses in the current cycle). Since
the verification circuit is very simple, it should have minimal impact on processor cycle time.

The OR operation used to generate the upper portion of the effective address is, as shown in Figure
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3.3, directly on the critical path of data cache access. The impact of this operation may or may not
impact processor cycle time, depending on the specifics of the pipeline design. In some designs, it may
be possible to integrate the OR operation into the address decoder logic or the execute stage input
latches, possibly reducing cycle time impact to zero. In any event, the predictor is only a single level
of logic and should have minimal impact of cache access latency.

The fast address generation mechanism assumes that data cache access can start as soon as the set
index part of the effective address is available. If this is not the case, e.g., the cache is indexed with a
translated physical address, fast address calculation will not work.

Another important consideration is the handling of stores. If stores execute later in the pipeline
than speculative loads, it becomes possible for memory operations to execute out of order, introducing
the possibility of data dependencies through memory being violated. Many options exist to eliminate
this problem, each with varying degrees of cost, complexity, and performance.

The simplest approach for dealing with stores is to prevent loads from speculatively executing before
than an earlier-issued, unfinished store. This approach, while inexpensive in that it need only track the
existence of unfinished stores in the pipeline, limits performance due to the conservative assumption
that all speculative loads and stores conflict. Many loads will be forced to wait for stores that do not
conflict.

A slightly more aggressive approach is to force loads and stores to execute in order, but permit stores
to also use fast address calculation. Using this strategy, stores will complete earlier in the pipeline as
well, reducing the frequency of stalled loads. Of course, this design must ensure that misspeculated
stores can be undone. For designs employing a store buffer [Jou93] and a two-cycle store sequence,
this may not pose a problem. In the first cycle, cache tags are probed to see if the access hits in the
cache, in the second (possibly much later) cycle, the store is made to the cache. Since the fast address
calculation mechanism determines the correctness of the address after one cycle, the store buffer entry
can simply be reclaimed or invalidated if the effective address is incorrect. A design similar to this one
is adopted in the detailed timing simulator used in Section 3.6.

The most ambitious approach is to check for possible conflicts between loads and stores, and only
stall loads that reference data produced by earlier-issued, unfinished stores. This design will have the
best performance, but also the highest cost and complexity since speculative load addresses must be
compared against all earlier-issued, unfinished stores. When store addresses are not known, loads must

stall or execute with possibility of later recovery if a conflict does arise.

3.4 Working Examples

Figure 3.4 shows a number of example address computations using fast address calculation. Example

(a) shows a pointer dereference. Since the offset is zero, no carry is generated during address calculation
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<--Tag --> <—-Index--> <BO>
load r3, 0(r8)
r8

(@ offset
prediction
actual result

0x0001ac00 000...01 10 10 1100 0000 0000
0x00000000 000...00 00O 00 0OOOCO 0000 0000
0x0001ac00 000...01 10 10 1100 0000 0000
0x0001ac00 000...01 10 10 1100 0000 0000

| oad r3, 2436(gp)
ap = 0x00010000 000...01 00 0O 0000 0000 0000
(b) of f set 0x00000984 000...00 00 00 1001 1000 0100
prediction 0x00010984 000...01 00 00 1001 1000 0100
actual result 0x00010984 000...01 00 00 1001 1000 0100

load r3, 102(sp
sp
() offset

—~

ox7fff5b84 011...11 01 01 1011 1000 0100
0x00000066 000...00 00 OO0 0000 0110 0110
prediction Ox7fff5bea 011...11 01 01 1011 1110 1010
actual result Ox7fff5bea 011...11 01 01 1011 1110 1010

Cener at ed
load r3, 364(sp) Carry
sp = Ox7fff5p84 011...11 01 01 1011 1000 0100

(d) offset 0x0000016¢c 000...00 00 00 0001 0110 1100
prediction Ox7fff5be0 011...11 01 01 1011 1110 0000
actual result = Ox7fff5¢cf0 011...11 01 01 1100 1111 0000

Generated Propagated
Carry Carry

Figure 3.4: Examples of Fast Address Calculation. The address bits are split into the tag, index and block
offset fields corresponding to a 16K byte direct-mapped data cache with 16 byte blocks.

and the predicted address is correct. Example (b) shows an access to a global variable though the global
pointer. In this example, the global pointer is aligned to a large power of two, so carry-free addition is
sufficient to generate the correct address. In example (c), carry-free addition is sufficient to predict the
portion of the address above the block offset, but full addition is required to compute the block offset.
Since a carry in not generated out of the block offset portion of the effective address computation, the
prediction succeeds. Finally, example (d) shows a stack frame access with a larger offset. In this case,
the predicted address is incorrect because a carry is propagated out of the block offset and generated

in the set index portion of the effective address computation.

3.5 Increasing Prediction Performance with Software Support

Software support can increase the prediction accuracy of fast address calculation by reducing the need
for full-strength addition in the set index portion of the effective address calculation. This task is
accomplished by decreasing the size of offset constants and index register values, and by increasing
the alignment of base register pointers. It is important to note, however, that software support is
only used as a mechanism to improve performance, it is not required. As shown in Section 3.6, fast
address calculation is a remarkably resilient mechanism, providing good speedups even without software
support. Software support targets each reference type (i.e., global, stack, and general pointer), ensuring

a high prediction accuracy for each.
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3.5.1 Software Support for Global Pointer Accesses

Since the linker controls the value of the global pointer and offsets applied to it, it is trivial to ensure
all global pointer accesses are correctly predicted. The linker can limit all offsets off the global pointer
to be positive and relocate the global region to an address starting at a power-of-two boundary larger
than the largest offset applied. Using this approach, carry-free addition will suffice for any global

pointer access.

3.5.2 Software Support for Stack Pointer Accesses

As is the case with global pointer addressing, the compiler completely controls the value of the stack
pointer and the organization of stack frames. By aligning the stack pointer and organizing the stack
frame so as to minimize the size of offset constants, it is possible to ensure that all stack pointer
accesses are correctly predicted.

The compiler can enforce a program-wide stack pointer alignment by initially aligning the stack
pointer and then forcing all frame sizes to be a multiple of the alignment. Using this approach, carry-
free addition will suffice for address computations in which the offset is smaller than the alignment of
the stack pointer.

Nearly all stack pointer addressing is performed on scalar variables. By sorting the elements of the
stack frame such that the scalars are located closest to the stack pointer, the compiler can minimize
the size of offsets constants applied to the stack pointer.

A few programs, most notably numeric codes, have functions with very large large stack frames
that benefit little from a fairly small program-wide stack pointer alignment. For stack frames larger
than the program-wide stack pointer alignment, the compiler can employ an alternative approach: the
stack pointer can be explicitly aligned to a larger alignment by AND’ing the stack pointer with the
adjusted power-of-two frame size times a negative one. Since this approach creates variable size stack
frames, a frame pointer will be required for access to incoming arguments not in registers. In addition,
the previous stack pointer value must be saved at function invocation and restored when the function
returns.

The impact of this approach is increased stack memory usage — frame size overheads can grow as
much as 50%. If a program uses more memory, cache and virtual memory performance could suffer.
The compiler should provide programmers with an option to limit stack pointer alignments, thereby

providing a mechanism to control memory overhead.

3.5.3 Software Support for General Pointer Accesses

For general pointer accesses, offsets are typically small and positive, the result of index constants and

structure offsets. The compiler can increase the likelihood of a carry not being generated out of the
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block offset portion of the effective address by aligning variable allocations to a multiple of the target
cache block size.

For global and local variables, alignments can be increased to the next power-of-two larger than the
size of the variable, bounded by the block size of the target cache. For dynamic storage allocations,
alignments can be increased in the same manner by the dynamic storage allocator, i.e., malloc().
Since many languages, e.g., C, employ type-less dynamic storage allocation, the allocator lacks the
type information required to minimize alignment overheads. Aligning any dynamic allocation to the
maximum alignment required, i.e., the block size of the target cache, will ensure any alignments within
the allocation are not perturbed. Alloca() allocations (used heavily by the benchmarks GCC and
Grep) can employ a similar approach for dynamic storage allocation within stack frames.

To encourage proper alignments of interior objects, e.g., array elements, the compiler can increase
the size of array elements to the next larger power of two, bounded by the block size of the target
cache. Since basic types, e.g., integers and floats, are already a power of two in size, overheads will
only be incurred for arrays of structured variables. The compiler need not, however, enforce stricter
alignments on structure fields, as this would serve to spread out elements of a structure. Experimental
results to date have indicated that dense structures is consistently a bigger win than stricter alignments
within structured variables.

As is the case with larger stack frame alignments, these techniques can increase memory usage
by as much as 50%. Hence, a compiler option should be available to limit the alignments placed on
variable addresses and sizes.

In addition to the changes described above, modifications made to existing optimization routines
can also improve the performance of optimized code. Specifically, common subexpression elimination
(CSE) should give preference to aligned pointer subexpressions. In addition, the address cost function
used by the strength-reducer should make register+register addressing seem very expensive. This
change will make the compiler work harder to strength-reduce loop induction variables, resulting in

more zero-offset loads and stores within loops.

3.6 Experimental Evaluation

This section evaluates the effectiveness of fast address calculation by examining the performance of
programs running on a detailed timing simulator of a 4-way in-order issue processor extended to support
fast address calculation. The performance of programs is examined in a number of contexts: with and
without software support, with and without register+register addressing mode speculation, and with

varied cache block sizes.
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3.6.1 Methodology

All experiments were performed on the baseline in-order issue timing simulator detailed in Chapter 2.
The simulator implements a detailed timing model of a 4-way in-order issue superscalar processor and
the first level of instruction and data cache memory. The simulator implements a traditional five stage
pipeline, i.e., all ALU and memory operations begin execution in the third stage of the pipeline (EX),
and non-speculative loads and stores execute in the fourth stage (MEM), resulting in a non-speculative
load latency of 2 cycles. The data cache modeled is a dual-ported 16k direct-mapped non-blocking
cache. Stores are serviced in two cycles using a 16-entry non-merging store buffer.

A number of modifications were made to the simulator to support fast address calculation. Loads
may speculatively access the data cache using fast address calculation given that there are no unfinished
stores in the pipeline. To reduce the number of stalled loads, stores are also allowed to utilize fast
address calculation to speed their execution. When executed speculatively, a store is entered into a
store buffer. If the store address is mispredicted, the store is re-executed and its address in the store
buffer is updated. When fast address calculation fails (in the EX stage of the modified pipeline), the
access can re-execute in the following cycle (in the MEM stage).

All programs were compiled for the SimpleScalar architecture (detailed in Appendix A). Compiler
support for fast address calculation, as described in Section 3.5, was added to GNU GCC, linker
support was added to GNU GLD. The following fast address calculation specific optimization were

applied to both the programs and the system libraries (e.g. libc.a):

Global pointer alignment: The linker, GNU GLD, aligned the global pointer to a power-of-two value
(unbounded) larger than the largest offset applied to it. All global pointer offsets were restricted
to be positive. (Normally, the initial value of the global pointer is dependent on the size of the

data segment and is not aligned.)

Stack pointer alignment: The compiler, GNU GCC, rounded all stack frame sizes up to the next mul-
tiple of 64 bytes, resulting in a program-wide stack pointer alignment of 64 bytes. (Normally,
GCC maintains an 8 byte alignment on the stack pointer.) Frames larger than 64 bytes enforce
larger stack pointer alignments of up to 256 bytes by explicitly aligning the stack pointer on

function invocation and restoring the original value on function return.

Static variable alignments: Static allocations were placed with an alignment equal to the next power-

of-two larger or equal to the size of the variable, not exceeding 32 bytes.

Dynamic variable alignments: malloc() and alloca() allocation alignments were increased from the

default of 8 to 32 bytes.

Structured variable alignments: Internal structure offsets were not changed, however, structure sizes

were increased to the next power-of-two larger than or equal to the normal structure size, with
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Program Insts | Cycles | Loads | Stores Miss Ratio Mem Usage

(Mil.) (Mil.) | (Mil.) | (Mil.) | I-cache | D-cache (K bytes)
Compress 61.5 58.4 14.3 7.5 0.00 15.65 438
Eqntott 875.7 627.4 205.2 12.6 0.00 4.70 2704
Espresso 474.4 374.0 109.1 25.9 0.16 2.54 400
Gcee 121.7 109.5 25.8 19.7 1.63 3.09 1416
Sc 840.1 811.3 217.3 91.8 0.17 7.11 493
Xlisp 965.2 850.6 290.0 172.2 0.71 1.72 115
Elvis 249.3 207.1 67.7 28.6 0.50 0.44 90
Grep 122.2 139.0 42.1 1.5 0.03 3.88 377
Perl 203.5 214.4 50.0 34.2 3.63 4.63 3625
YACR-2 386.9 261.0 59.0 7.1 0.01 0.67 195
Alvinn 1015.4 | 1236.2 362.5 125.1 0.02 4.21 507
Doduc 1597.2 | 1820.5 536.3 195.8 1.55 2.26 144
Ear 338.4 416.5 75.6 43.0 0.00 0.02 208
Mdljdp2 729.1 787.3 276.9 84.9 0.00 1.52 267
Mdljsp2 874.4 | 1110.7 219.8 75.6 0.00 1.52 227
Ora 1057.1 | 1112.9 231.2 98.2 0.00 0.33 50
Spice 1250.6 | 1388.9 443.9 76.5 0.36 10.16 3227
Su2cor 796.1 | 1073.3 333.8 88.8 0.08 23.55 4131
Tomcatv 464.2 431.6 172.8 35.9 0.01 8.63 945

Table 3.2: Program Statistics without Software Support.

the overhead not exceeding 16 bytes.

The analyzed programs include both integer and floating point codes. Table 3.2 lists the programs
analyzed and their baseline execution statistics without software support. The integer codes are in
the top group, the floating point codes in the bottom group. The benchmarks are detailed in Chapter
2. Shown are the number of instructions, execution time in cycles on the baseline simulator (i.e., a
4-way in-order issue superscalar processor without fast address calculation support), total loads and
stores executed, instruction and data cache miss ratios for 16k byte direct-mapped caches with 32 byte

blocks, and total memory size.

3.6.2 Prediction Performance

Figure 3.5 shows the prediction failure rates for loads with a 32 byte cache block size, i.e., the case
where the prediction circuitry is able to perform 5 bits of full addition in the block offset portion of the
effective address computation. The figure shows the failure rates as a percentage of total speculated
accesses when running with only fast address calculation hardware support (i.e., H/W), with hardware
and software support (i.e., H/W+S/W), and with hardware and software support but no speculation
of register+register mode accesses (i.e., H/W+S/W - R+R).

Without any software support, the percentage of incorrect predictions is quite high, suggesting that
many pointers are insufficiently aligned to allow for carry-free addition in the set index part of the
effective address calculation. Some of the programs, however, have very low prediction failure rates,

e.g., Elvis and Alvinn. For these programs, the frequency of zero-offset loads is very high, indicating
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Figure 3.5: Prediction Performance. The cache block size is 32 bytes, i.e., the predictor supports 5 bits of full

addition in the block offset portion of the address computation.

that prediction is working fairly well because effective address computation is not required. Prediction
performance with 16 byte blocks was also examined (detailed results can be found in an earlier paper
on fast address calculation [APS95]). Overall the prediction failure rate decreased slightly when the
block size increased, since misaligned pointers benefited from more full addition capability in the fast
address calculation mechanism.

As Figure 3.5 shows, software support was extremely successful at decreasing the failure rate of
effective address predictions. Compared to the prediction failure rates without software support, the
percentage of loads and stores mispredicted is consistently lower, the prediction failure rate decreasing
by more than 50% in many cases.

Even with software support, a number of the programs, e.g. Spice and Tomcatv, still possessed
notably high address misprediction rates. To better understand their cause, loads and stores were
profiled to determine which were failing most. The two dominating factors leading to address prediction

failures were:

Array index failures: Many loads and stores using register+register addressing resulted in failed pre-
dictions. The compiler only uses this addressing mode for array accesses, and then only when
strength-reduction fails or is not possible, e.g., an array access not in a loop. (If strength-reduction

is successful, a zero-offset load or store suffices.) As one would expect, array index values are
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Insts Cycles Loads Stores Miss Ratio Mem

Benchmark % % % % Change Usage

Change | Change | Change | Change | I-cache | D-cache | %Change
Compress -0.38 +0.50 +0.00 -0.01 -0.00 +0.00 +1.14
Eqntott +0.40 | +0.15 | +1.39 -0.04 -0.00 +0.00 +0.11
Espresso -0.33 -0.59 -0.01 -0.03 -0.00 -0.00 +13.25
Gee +0.86 +1.76 +1.01 +0.90 -0.02 +0.00 +1.20
Sc -0.06 +0.12 -0.01 -0.02 -0.00 +0.00 +1.01
Xlisp -0.09 +0.80 -0.12 -0.08 -0.01 +0.00 +15.65
Elvis -0.17 +0.27 -0.30 -0.36 -0.01 -0.00 +1.11
Grep -0.72 -1.14 -0.95 -24.82 -0.00 -0.00 +3.18
Perl -0.95 +0.22 -0.53 +0.71 -0.04 +0.01 +20.03
YACR-2 +0.42 -0.17 +2.33 -0.01 -0.00 -0.00 +0.00
Alvinn +0.12 -0.03 -0.01 -0.00 -0.00 -0.00 +0.20
Doduc +0.13 +0.21 +0.06 -0.25 -0.02 -0.00 +2.78
Ear +0.04 +0.09 +0.18 -0.02 -0.00 +0.00 +2.40
Mdljdp2 +0.02 -0.34 +0.05 -0.00 -0.00 -0.00 +1.87
Mdljsp2 -0.07 +0.03 +0.10 +0.01 -0.00 +0.00 +0.44
Ora +0.24 +1.51 +0.00 +0.00 -0.00 +0.00 +10.00
Spice -0.13 +0.46 +0.12 +0.01 -0.00 +0.00 +0.28
Su2cor +0.59 +0.54 +0.24 +0.51 -0.00 -0.00 +0.12
Tomcatv +0.00 +0.03 -0.00 +0.00 -0.00 +0.00 +0.32

Table 3.3: Program Statistics with Software Support.

typically larger than the 32 byte alignment placed on arrays, resulting in high prediction failure
rates. The bars labeled “H/W+S/W - R+R” in Figure 3.5 show the prediction failure rate for
all loads and stores except those using register+register mode addressing. For many programs,

array index operations are clearly a major source of mispredicted addresses.

Domain-specific storage allocators: A number of programs, most notably GCC, used their own storage
allocation mechanisms, this led to many pointers with poor alignment and increased prediction

failure rates.

These factors, however, are not without recourse. A strategy for placement of large alignments
could eliminate many array index failures; for example, in the case of Spice aligning a single large
array to its size would eliminate nearly all mispredictions. In addition, program tuning could rectify
many mispredictions due to domain-specific allocators.

Table 3.3 shows the program statistics for the benchmarks compiled with software support. The
table lists the percent change in instruction count, cycle count (on the baseline simulator without fast
address calculation), number of loads and stores, and total memory size with respect to the program
without fast address calculation optimizations (the results in Table 3.2). For the instruction and data
cache (16k byte direct-mapped), the table lists the absolute change in the miss ratio.

Generally, fast address calculation specific optimizations did not adversely affect program perfor-
mance on the baseline simulator. The total instruction count as well as the number of loads and

stores executed are roughly comparable. The cycle count differences (without fast address calculation
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support) were small; the largest difference was 1.76% more cycles for GCC. Cache miss ratios saw
little impact for both the instruction and data caches. Total memory usage was also examined, as
it is an indirect metric of virtual memory performance. The largest increases experienced were for
Perl, Espresso, and Xlisp where memory demand increased by as much as 20%. However, the absolute
change in memory consumption for these programs was reasonably small, much less than a megabyte
for each. In addition, we examined TLB performance running with a 64 entry fully associative ran-
domly replaced data TLB with 4k pages and found the largest absolute difference in the miss ratio
to be less than 0.1% (for Perl). Given these metrics, fast address calculation specific optimizations
are not expected to adversely impact program performance when executing on a machine without fast

address calculation support.

3.6.3 Program Performance

Prediction performance does not translate directly into program run-time improvements. A successful
effective address prediction may or may not improve program performance, depending on whether or
not the access is on the program’s critical path. To gauge the performance of fast address calculation
in the context of a realistic processor model, baseline program performance was compared to the
performance of programs running on the baseline timing simulator extended to support fast address
calculation (detailed in Section 3.6.1).

Figure 3.6 shows execution speedups as a function of three design parameters: with and without
software support, with 16 and 32 byte blocks, and with and without register+register mode specu-
lation. Also shown are the average speedups for the integer and floating point codes, weighted by the
run-time (in cycles) of the program. All speedups are computed with respect to the execution time
(in cycles) of the baseline program (no fast address calculation specific optimizations) running on the
baseline simulator.

On the average, fast address calculation without software support improves the performance of
integer programs by 14%, largely independent of block size or speculation of register+register mode
accesses. The floating point programs show a smaller speedup of 6%. This is a very positive result —
even without software support, one could expect program performance to consistently improve, and
by a sizable margin for integer codes.

The combination of software and hardware manages to give somewhat better performance im-
provements. An average speedup of 19% was found for the integer codes, with no individual program
speedup less than 6%. For the floating point programs, speedups were smaller in magnitude with an
average of 7.5%. The compiler optimizations have a positive effect on most programs, and tend to
assist more where the hardware-only approach is ineffective, (e.g., Compress).

The consistent speedup across all programs is a very important property of fast address calculation

for it allows the designer a trade-off between a longer cycle time and increased performance for integer
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Figure 3.6: Speedups, with and without Software Support. Speedups shown are over baseline model execution
time for a 16K byte data cache with 16 and 32 byte blocks. The dashed bars indicate where there was improvement with
register+register mode speculation.

programs. For example, if fast address calculation increases the cycle time by 5%, the average floating
point performance will still improve slightly while the average integer performance will improve by a
sizable 13.5%.

All simulations were run with both 16 and 32 byte cache blocks, i.e. where the prediction circuitry
is able to perform 4 or 5 bits of full addition in parallel with cache access, respectively. The impact
of increasing the block size was positive but small in magnitude for most programs, resulting in an
overall difference of less than 3% for all experiments. In all cases, the improvement in the average
performance was less than 1%.

Considering the prediction failure rate of register+register mode addressing, program performance
was examined with and without speculation of this mode. The only programs which experienced any
change in performance were Compress, Espresso, and Grep. Grep’s stellar performance improvement is
the result of many register+register accesses to small arrays which benefit from limited full addition
in the block offset portion of address computation. Average speedup increased less than 1% for the
integer codes and was unchanged for the floating point codes. The overall lackluster improvement is
the result of high failure rates when predicting register+register mode addresses. Without a means
to effectively predict register+register mode loads and stores, their speculation appears to have little

overall benefit, especially in light of increased demand on cache bandwidth.
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R+R Speculation No R+R Speculation
Benchmark || H/W only | H/W + S/W | H/W only | H/W + S/W
Compress 24.21 16.47 8.92 +0.00
Eqntott 3.02 1.40 2.95 1.33
Espresso 5.38 3.06 3.95 2.01
Gce 20.85 7.26 20.31 6.65
Sc 13.10 2.71 13.10 2.65
Xlisp 17.43 1.17 17.43 1.17
Elvis 2.49 1.31 2.46 1.04
Grep 2.63 1.10 1.94 0.40
Perl 19.40 7.98 18.55 7.41
YACR-2 5.07 3.87 4.68 3.49
Alvinn 1.33 1.00 1.33 1.00
Doduc 22.68 13.49 17.37 7.28
Ear 8.95 10.32 8.95 10.32
Mdljdp2 21.11 19.56 7.06 3.28
Mdljsp2 18.81 16.32 2.68 +0.00
Ora 24.72 14.03 21.03 10.97
Spice 45.86 32.44 7.46 3.07
Su2cor 19.92 20.33 7.65 5.72
Tomcatv 32.52 33.56 4.22 2.77

Table 3.4: Memory Bandwidth Overhead. The numbers shown are the total failed speculative cache accesses as
a percentage of total references.

Table 3.4 shows the increase in the number of accesses to the data cache (in percent of total
accesses without speculation). These numbers reflect memory accesses that were mispredicted and
actually made during execution; in other words, these results are the overhead in cache accesses due
to speculation. Without compiler support, a large fraction of the speculative memory accesses are
incorrect (as shown in Figure 3.5), requiring more cache bandwidth, as much as 45% for Spice. The
compiler optimizations cut down this extra bandwidth significantly. For most programs the increase in
the required cache bandwidth is less than 10%, and the maximum increase in bandwidth is less than
34%; without registert+register mode speculation the bandwidth increases are at most 11%. Despite
the increase in cache accesses due to speculation, the impact of store buffer stalls was surprisingly small,
typically less than a 1% degradation in the speedups attained with unlimited cache store bandwidth.

(The results in Figure 3.6 include the performance impact of store buffer stalls.)

3.7 Related Work

Golden and Mudge [GM93] explored the use of a load target buffer (LTB) as a means of reducing load
latencies. An LTB, loosely based on a branch target buffer, uses the address of a load instruction to
predict the effective address early in the pipeline. They conclude the cost of the LTB is only justified
when the latency to the first level data cache is at least 5 cycles. Fast address calculation has two
distinct advantages over the LTB. First, it is much cheaper to implement, requiring only a small adder

circuit and a few gates for control logic. Second, it is more accurate at predicting effective addresses
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because it predicts addresses using the operands of the effective address calculation, rather than the
address of the load. In addition, fast address calculation employs compile-time optimization to further
improve performance.

An earlier paper by Steven [Ste88] goes as far as proposing a four stage pipeline that eliminates the
address generation stage and executes both memory accesses and ALU instructions in the same stage.
Steven proposes the use of an OR function for all effective address computation. Steven’s approach
was only intended as a method for speeding up stack accesses, all other accesses require additional
instructions to explicitly compute effective addresses. The performance of this pipeline organization
was not evaluated.

AMD’s K5 processor [Sla94] overlaps a portion of effective address computation with cache access.
The lower 11 bits of the effective address is computed in the cycle prior to cache access. The entire 32
bit effective address is not ready until late into the cache access cycle, just in time for the address tag
check.

The idea of exploiting the two-dimensional structure of memory is being used in several other
contexts, such as paged mode DRAM access [HP90]. Katevenis and Tzartzanis [KT91] proposed a
technique for reducing pipeline branch penalties by rearranging instructions so that both possible
targets of a conditional branch are stored in a single instruction cache line. The high bandwidth of the
cache is used to fetch both targets of a branch instruction. The branch condition is evaluated while
the instruction cache is accessed and the condition outcome is used to late-select the correct target

instruction.

3.8 Chapter Summary

This chapter presented the design and evaluation of fast address calculation, a novel approach to
reducing the latency of load instructions. The approach works by predicting early in the pipeline the
effective address of a memory access and using the predicted address to speculatively access the data
cache. If the prediction is correct, the cache access is overlapped with non-speculative effective address
calculation. Otherwise, the cache is accessed again in the following cycle, this time using the correct
effective address.

The predictor’s impact on the cache access critical path is minimal. The prediction circuitry adds
only a single OR operation before cache access can commence. In addition, verification of the predicted
effective address is fast and completely decoupled from the cache access critical path.

Detailed timing simulations show that without software support the prediction accuracy of the basic
hardware mechanism varies widely. For the programs examined, prediction success rates ranged from
13 to 98%. However, detailed timing simulations of the programs executing on a superscalar processor

resulted in consistent program speedups — an average speedup of 14% for the integer codes and 6%
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for the floating point codes. With the addition of simple compiler and linker support, prediction
accuracy increased significantly, with success rates ranging from 62 to 99%. Simulated performance
with software support increased as well, resulting in average speedup of 19% for the integer codes and
7.5% for the floating point codes. Increases in cache bandwidth demand due to speculation were also
measures found to be generally very low. With software support, speculation required at most 34%
more accesses. By preventing register+register addressing mode speculation, extra cache bandwidth
requirements drop to at most 11% more accesses, with little impact on overall performance.

The consistent performance advantage of fast address calculation coupled with the low cost of its
use, in terms of hardware support, software support, and cache bandwidth demand, should makes the

approach an attractive option for reducing load latency.
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Chapter 4

Zero-Cycle Loads

4.1 Introduction

In the previous chapter, fast address calculation (illustrated in Figure 4.1a) was introduced as a tech-
nique to overlap address calculation with data cache access, thereby eliminating the extra cycle needed
for address calculation. For most pipeline designs, address calculation latency comprises at most half
of the latency of loads that hit in the data cache, leaving one or more cycles of data cache access
latency still exposed to extend execution critical paths or stall instruction issue.

In this chapter, the latency reduction capability of fast address calculation is extended by combining
it with an early-issue mechanism, reducing load latency by yet another cycle. As shown in Figure 4.1b,
the approach allows loads to complete up to two cycles earlier than traditional designs. These loads,
termed zero-cycle loads because they have no visible latency to dependent instructions, produce a
result by the time they reach the execute stage of the pipeline. Subsequent dependent instructions can
enter the execute stage of the pipeline at the same time unencumbered by load instruction hazards.
Programs executing on a processor with support for zero-cycle loads will experience significantly fewer
pipeline stalls due to load instructions and increased overall performance.

Design of the early-issue mechanism is particularly challenging since it must eliminate one cycle
from the time taken to fetch and decode loads and read their register file operands. Instruction cache
predecode is used to speed up fetch and decode, permitting these operations to occur when loads are
placed in the instruction cache. A base register cache provides early access to register file operands.
Even with this support, however, not all loads can execute with zero latency. The early-issue mechanism
introduces new register and memory hazards, and fast address calculation will occasionally fail. To
ensure correct program execution, the design must also include mechanisms to detect and recover from
failed accesses.

The rest of this chapter explores the pipeline support needed to implement zero-cycle loads and
evaluates their effectiveness in reducing the impact of load latency. Section 4.2 proposes two pipeline
designs that support zero-cycle loads: an aggressive design for pipelines with a single stage of instruction
decode, and a less aggressive design for pipelines with multiple decode stages. Section 4.4 presents
results of simulation-based studies of the proposed designs. Program performance is examined in

a number of contexts: with and without software support, in-order vs. out-of-order issue, and on
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Figure 4.1: Zero-Cycle Loads.

architectures with many and few registers. Section 4.5 describes related work, and finally, Section 4.6

summarizes the chapter.

4.2 Zero-Cycle Loads

4.2.1 Implementation with One Decode Stage

Completing a load by the beginning of the execute stage in a pipeline with only one decode stage
is a very challenging task — the load instruction must be fetched, decoded, and executed (including
memory access) in only two pipeline stages. Assuming data cache access takes one cycle, all preceeding
operations must complete in only a single cycle. Figure 4.2 shows one approach to implementing

zero-cycle loads in an in-order issue pipeline with a single decode stage.

Fetch Stage Organization

In the fetch stage of the processor, the instruction cache and base register and index cache (or BRIC)
are accessed in parallel with the address of the current PC.

The instruction cache returns both instructions and predecode information. The predecode in-
formation is generated at instruction cache misses and describes the loads contained in the fetched
instructions. The predecode data is supplied directly to the pipes which execute loads, permitting the
tasks of fetching, identifying, and aligning loads to complete by the end of the fetch stage.

The predecode data for each load consists of three fields: the addressing mode, base register type,
and offset. The addressing mode field specifies either a register+constant or register+register ad-
dressing (if supported in the ISA). The base register type is one of the following: SP, GP, or Other.
SP and GP loads use the stack or global pointer [CCH*87] as a base register, respectively. Loads



38

Fetch Decode Execute
I-Cache
Mode Other
predecode | Type & Operand
Q
g Offset Result
N A
= Operand L
g Ll LJF Forward | | v
2 _ | Forwar
BRIC Base_| P~ C3N By
Base MY _|—> Logic A

k-

Figure 4.2: Pipelined Implementation with One Decode Stage.

marked “Other” use a register other than the stack or global pointer as a base register. The offset field
specifies the offset of the load if it is contained as an immediate value in the instruction.

Predecode costs will vary depending on the specifics of the instruction set, and pipeline and cache
designs. For the pipeline shown in Figure 4.2, the predecode information for a single load is 19 bits
(assuming an offset of 16 bits). The number of predecode packets attached to an instruction in the
data cache depends on the specifics of the pipeline and cache designs. If the necessary network is
available to collect predecode from all instructions fetched, only one packet of predecode information
is required per instruction. This design would have an instruction cache data array overhead of about
60%, although total cache overheads would be lower because the tag array size would not increase.
Without the capability to collect predecode from fetched instructions, predecode for all subsequent
loads (that can issue together) must be attached to each instruction in the cache. For a pipeline that
can issue two loads per cycle, the predecode overhead would double to 120%. With more time to
decode instructions and with more sophisticated pipeline and cache cache designs, predecode costs will
decrease.

The BRIC is a small cache indexed by the address of a load, producing a register pair: the base
register value and the index register value (unused if a register+constant mode load). During execu-
tion, the BRIC builds an association between the address of loads executed and their base and index
register values. This address-to-register value association allows register access to complete by the end
of the fetch stage of the pipeline. If the BRIC misses, an entry is replaced after the base and index
register values have been read from the integer register file.

As shown in Section 3.2, loads that use the stack or global pointers are executed quite frequently.

The effective capacity of the BRIC can be increased by using an alternate means to supply these loads
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with a base register value. As illustrated in Figure 4.2, two registers are used to cache copies of the
global and stack pointer values. When an access is made, the type field of the predecode data is used
to select the correct base register source.

Any cached register value must be updated whenever the corresponding register file value is updated.
Since multiple loads may be using the same base and index registers, a value written into the BRIC
may have to be stored into multiple locations. Consequently, the BRIC is a complex memory structure,
supporting multiple access ports and multi-cast writes. The BRIC will not have to be very large before
its access time impacts processor cycle time, hence, only small BRIC sizes are considered — on the order
of 4-64 elements. It is also possible to implement zero-cycle loads without a BRIC, a configuration

particularly useful to programs with a high frequency of global and stack pointer accesses.

Decode Stage Organization

In the decode stage of the pipeline, the base register and offset pair produced in the fetch stage are
combined using fast address calculation (represented by the box labeled FAC in Figure 4.2), and the
data cache is accessed.

The pipeline organization in Figure 4.2 requires two new data paths (per pipe). A path must be
added to allow forwarding of register values from the BRIC directly to the data cache. This path does
not normally exist on traditional pipeline organizations as all values from the fetch/decode stages of the
pipeline will first pass through the execute stage before arriving at the data cache ports. In addition,
the data path used to write register values to the register file must also be extended to supply register
values to the BRIC. All other data paths used to facilitate zero-cycle loads, i.e., D-cache to ALU, ALU

to D-cache, ALU to ALU, and D-cache to D-cache, already exist in traditional pipeline organizations.

Pipeline Control

As with most pipeline optimizations, the brunt of the complexity is placed on the pipeline control
circuitry. The following logic equation summarizes the condition under which a zero-cycle load will

succeed:

ZCL.Valid + BRIC_Hit N FAC_Valid N Port_Allocated

A DCache_Hit N Reg_Interlock N Mem_Interlock

BRIC_Hit indicates if the load address hit in the BRIC.

F AC _Valid indicates if fast address calculation succeeded. Fast address calculation succeeds when
no carries are propagated into or generated in the set index part of the effective address computation.
(The verification circuit is shown in the lower portion of Figure 3.3 in Chapter 3.)

Port_Allocated indicates if a data cache port is available for the speculative load. This signal is
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required because accessing the data cache from multiple pipeline stages provides more points of access
to the data cache than ports available, necessitating port allocation on a per cycle basis.

DCache_Hit indicates if the load hit in the data cache.

Reg_Interlock indicates whether a data hazard exists between the base and index register values
used by the zero-cycle load and the register results of earlier-issued, unfinished instructions.

Mem _Interlock is analogous to Reg_Interlock, but detects hazards through memory. A hazard
through memory occurs whenever an earlier-issued, unfinished store conflicts with the zero-cycle load.
The approaches proposed in Section 3.3.1 to detect load/store conflicts will work here as well.

If a zero-cycle load is not possible or fails due to a mispredicted effective address, there are a number
of options available for recovery. If the BRIC misses, the register values read in the decode stage of
the pipeline can be used to re-execute the access using fast address calculation in the execute stage
of the pipeline. If successful, the load will complete in one cycle. If fast address calculation fails, a
non-speculative effective address can be computed in the execute stage of the pipeline, with subsequent
data cache access in the memory stage. Alternatively, if an adder is available for use in the decode
stage of the pipeline, non-speculative effective address could be performed on the register values from
the BRIC, and the failed access could be re-executed in the execute stage of the processor. If an
interlock condition exists, the load must stall until it clears, at which point the access can proceed,
possibly employing fast address calculation if the interlock condition clears before address generation
completes. In the worse case, the BRIC will miss, forcing re-execution in the execute stage, where fast
address calculation will fail, resulting in re-execution in the memory stage of the processor — a worse
case latency of two cycles (given that mispredictions can be recovered in the following cycle and there
is sufficient data cache bandwidth).

In some designs, it may be possible to detect a failure condition early enough to prevent a speculative
access. These pipelines will benefit from less wasted data cache bandwidth. For the one decode stage
design, it is assumed a BRIC miss or failure to arbitrate a data cache port are the only conditions that
can elide a data cache access. While conservative, this strategy ensures that failure detection logic is
both simple and fast, resulting in minimal impact on pipeline control critical paths and processor cycle

time.

4.2.2 Implementation with Multiple Decode Stages

The increased complexity of instruction decode created by wide issue and faster clock speeds has forced
many recent designs to increase the number of pipeline stages between instruction fetch and execute.
(Stages collectively referred to as decode stages.) For example, the DEC 21164 [Gwe94a] has three
decode stages and the MIPS R10000 [Gwe94b] has two. Adding more decode stages increases the mis-
predicted branch penalty, however, architects have compensated for this penalty by increasing branch

prediction accuracy through such means as larger branch target buffers or more effective predictors,
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Figure 4.3: Pipelined Implementation with Multiple Decode Stages.

e.g., two-level adaptive [YP93]. Given extra decode stages, the task of implementing zero-cycle loads
becomes markedly easier. Figure 4.3 shows one approach to providing support for zero-cycle loads on
an in-order issue pipeline with two decode stages.

Register access is delayed to the first decode stage of the pipeline. This modification eliminates
the need for a complex address-indexed BRIC in the fetch stage, permitting direct register file access
using register specifiers. In the design shown in Figure 4.3, instructions are arbitrarily assumed to be
fully decoded by the end of the first decode stage, thus only the base and index register specifiers are
supplied by instruction predecode. In some designs, it may be possible to decode the register specifiers
and access the register file in a single cycle, eliminating the need for instruction predecode altogether.

In some pipelines, it may not be possible to access the integer register file in the first decode
stage without supplying more ports (or multiplexing existing ports), which greatly increases the risk
of impacting processor cycle time. A better alternative for these designs may be to adapt the BRIC
as a means for caching register values. Previous studies, e.g., [FP91], have found a significant amount
of temporal locality in base and index register accesses. A small cache, on the order of 4 to 8 entries
should provide the necessary bandwidth to register values without increasing the number of ports on
the existing integer register file. Like the original BRIC, a miss initiates a replacement which is available
for use after the base and index registers have been read from the integer register file. However, unlike
the original BRIC, this storage need not support multi-cast writes, since any register value will reside
in at most one location.

The extra decode stage makes it possible to detect more interlock conditions prior to speculative
data cache access. For this design, it is assumed register interlock conditions are detected early enough
to terminate the speculative access. As a result, a failure in fast address calculation, a memory
interlock condition, or a data cache miss are the only signals that do not provide early termination
of a speculative access. These conditions cannot be detected early because testing for them requires
values that are only available after the start of the data cache access cycle.

By the end of the first decode stage, this design and the single decode stage design converge. In
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the second decode stage, fast address calculation is used to compute the effective address and the data

cache is accessed.

4.2.3 Further Design Considerations

As shown in Section 3.6, fast address calculation fails often when applied to register+register mode
accesses. Speculation overheads and program performance can likely be improved by not speculating
loads using this addressing mode. Instead, accesses using this mode can compute the effective address
during the decode stage of the pipeline and access the data cache in the execute stage. Using this
design, register+register mode accesses that hits in the cache and BRIC and do not have register or
memory conflicts will complete in one cycle.

Other failure conditions may manifest due to speculative data cache access. If a fault occurs, e.g.,
access to an invalid page table entry, it must be masked until the instruction becomes non-speculative.
Once the speculative access is verified as correct, posting the fault proceeds as in the non-speculative
case.

The fast address calculation mechanism assumes that data cache access can start as soon as the
set index part of the effective address is available. If this is not the case, e.g., the cache is indexed
with a translated physical address or cache bank selection uses part of the block offset, fast address

calculation can not be used. (The early-issue mechanism, however, can still be applied.)

4.3 A Working Example

Figure 4.4 illustrates the performance advantage of zero-cycle loads. Figure 4.4a shows a simple C code
fragment which traverses a linked list searching for an element with a matching tag field (often referred
to as “pointer chasing”). Figure 4.4b shows the SimpleScalar assembly output as produced by the
GNU GCC compiler. This code sequence was selected because it is a very common idiom in C codes,
and it is difficult to tolerate the latency of the loads with compile-time scheduling. Moving either load
in the loop would require a global scheduling technique because both are preceded by branches. In
addition, moving the first load into a previous iteration of the loop would require support for masking
faults since a NULL pointer may be dereferenced.

Figure 4.4c and 4.4d depict the code executing on a 4-way in-order issue superscalar processor
with and without support for zero-cycle loads, respectively. In both executions, the example assumes
perfect branch prediction, one cycle data cache access latency, and unlimited functional unit resources.
The stage specifiers contained within brackets, e.g., [ID], denote a data cache access occurred during
that cycle. Arrows indicate where values from memory were forwarded to other instructions. The
shaded stage specifiers indicate that the instruction was stalled in that stage for one cycle. In the

execution with support for zero-cycle loads, all BRIC accesses hit and all fast address calculations
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Figure 4.4: Pointer Chasing Example with and without Zero-Cycle Loads. Figure a) shows a simple C code fragment which traverses a linked list searching
for an element with a matching tag field. Figure b) shows an assembly version of the code for the SimpleScalar architecture. Figure c) and d) depict the code executing
on a 4-way in-order issue superscalar processor with and without support for zero-cycle loads, respectively. @
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succeed. Incorrectly speculated accesses are denoted with an asterisk.

As seen by comparing the two execution examples, support for zero-cycle loads significantly reduces
the number of cycles to execute the code sequence. Without zero-cycle load support, each iteration
requires four cycles to execute; with zero-cycle load support, each iteration requires only a single cycle
to execute, as both load results are available by the time the two branches reach the execute stage
of the processor. Reducing the latency of the load instructions eliminates nearly all stalls. Only one
access is misspeculated (marked with an asterisk). This access must be re-executed in the execute
stage of the processor because the earlier load issued in the same cycle created a value used by the
later load, i.e., a violation of a RAW dependence. (This failure condition would be indicated by the
signal Reg_Interlock.)

Although not shown in the figure, running the same code on a 4-way out-of-order issue processor
without zero-cycle load support requires two cycles to execute each iteration. The out-of-order issue
processor cannot achieve one iteration per cycle because the code segment contains a recurrence re-
quiring two cycles per iteration (one cycle for address calculation followed by one cycle to access the
data cache). On the same out-of-order issue processor with support for zero-cycle loads, the latency
reduction capability of fast address calculation allows each iteration of the recurrence to complete in

one cycle.

4.4 Experimental Evaluation

This section examines the performance of programs running on a detailed timing simulator extended
to support zero-cycle loads. Key system parameters such as processor issue model, level of software
support, and number of architected registers are varied to see what effects these changes had on the

efficacy of zero-cycle loads.

4.4.1 Methodology

All experiments were performed on the baseline issue timing simulators detailed in Chapter 2. The
simulator implements a detailed timing model of a 4-way superscalar processor and the first level of
instruction and data cache memory. The data cache modeled is a dual-ported 16k direct-mapped
non-blocking cache. Stores are serviced in two cycles using a 16-entry non-merging store buffer.

A number of modifications were made to the simulator to support zero-cycle loads. To compensate
for the cost of generating predecode information, instruction cache miss latency was increased by two
cycles. A BRIC was added with a miss latency of three cycles. For the one decode stage designs, the
BRIC is address-indexed and the branch penalty is two cycles. For the two decode stage designs, the
BRIC is register specified-indexed and the branch penalty is 3 cycles. To reduce the impact of branch
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penalties for the two decode stage design, the branch target buffer size was doubled. Speculative zero-
cycle loads stall until all earlier-issued, unfinished stores are guaranteed to not conflict. If a store’s
address is unknown, it is assumed to conflict. To reduce the number of stalled loads, stores also employ
fast address calculation. The simulator does not attempt fast address calculation on register+register
mode loads - it instead performs effective address calculation in the decode stage of the pipeline and
accesses the data cache in the execute stage. For all experiments, there are only two data cache access
ports available each cycle. Data cache ports are arbitrated first to non-speculative loads late in the
pipeline, then to the store buffer, and finally, if any are ports are left over, to speculative zero-cycle
loads.

All programs were compiled for the SimpleScalar architecture (detailed in Appendix A). The
simple software support used to increase the prediction accuracy of fast address calculation (described

in Section 3.5) was used for these experiments as well.

4.4.2 Baseline Performance

Table 4.1 shows the impact of zero-cycle loads on program performance. The table lists the IPCs
for programs running on pipelines with one and two decode stages and various BRIC configurations.
As detailed in Section 4.2, the pipeline implementation with one decode stage (shown in Figure 4.2)
indexes the BRIC with a load address and has a 2 cycle branch penalty. The pipeline implementation
with two decode stages (shown in Figure 4.3), indexes the BRIC with a register specifier and has a
3 cycle branch penalty. All experiments were performed with the in-order issue processor simulator.
The speedups shown are the number of cycles for each program to execute with hardware and software
support for zero-cycle loads divided by the number of cycles to execute without hardware and software
support for zero-cycle loads. In each experiment, the BRIC simulated is fully associative and uses LRU
replacement.

The speedups are quite impressive for both the integer and floating point codes. With an 8 entry
address-indexed BRIC (column BRIC-8), the run-time weighted average speedups found was 1.45 for
the integer codes and 1.26 for the floating point codes. The speedups for the floating point codes
are smaller because their executions are heavily dominated by other long latencies, e.g., cache miss
latencies and floating point computations, which are mostly unaffected by zero-cycle load support.

Performance with even a small address-indexed BRIC is quite good. The 64 entry BRIC (column
BRIC-64) only improves performance slightly over the 8 entry BRIC simulations (column BRIC-8).
This result is very positive, suggesting that keeping the BRIC small to reduce processor cycle time
impacts should not have a significant effect on program performance.

Figure 4.5 shows the hit ratios for both address- and register specifier-indexed BRIC of varied
size. In each experiment, the BRIC is fully associative with LRU replacement. The figures show only

four of the benchmarks, selected as they are representative of the others. The address-indexed BRIC



Benchmark

One Decode Stage

Address-Indexed BRIC

Two Decode Stages

Register Specifier-Indexed BRIC

Base Speedup Base Speedup

IPC | BRIC-8 | BRIC-64 | No GP/SP | GP/SP | Perfect | TPC | BRIC-4 | BRIC-8 | Perfect
Compress 1.01 1.23 1.23 1.22 1.10 1.40 0.99 1.21 1.22 1.38
Eqntott 1.22 1.41 1.42 1.41 1.03 1.42 1.15 1.37 1.37 1.38
Espresso 1.20 1.43 1.44 1.42 1.03 1.45 1.19 1.40 1.40 1.42
GCC 1.04 1.27 1.28 1.24 1.07 1.41 1.02 1.24 1.25 1.37
SC 1.02 1.48 1.49 1.40 1.16 1.52 1.00 1.45 1.45 1.48
Xlisp 0.99 1.54 1.56 1.48 1.23 1.56 0.98 1.47 1.47 1.48
Grep 0.95 1.95 1.98 1.94 1.01 1.98 | 0.95 1.96 1.96 1.97
Perl 0.90 1.27 1.28 1.24 1.10 1.33 0.87 1.28 1.28 1.33
YACR-2 1.62 1.37 1.37 1.37 1.12 1.37 1.59 1.36 1.36 1.36
Int Avg 1.11 1.45 1.47 1.42 1.12 1.49 1.08 1.42 1.42 1.44
Alvinn 1.02 1.44 1.44 1.44 1.02 1.45 1.01 1.44 1.44 1.45
Ear 0.84 1.29 1.30 1.29 1.01 1.33 0.81 1.29 1.30 1.34
Mdljdp2 0.83 1.30 1.31 1.29 1.01 1.35 0.82 1.29 1.30 1.35
Mdljsp2 0.78 1.17 1.17 1.17 1.01 1.25 0.78 1.18 1.18 1.25
Spice2g6 0.86 1.28 1.29 1.27 1.20 1.65 0.85 1.27 1.27 1.63
Su2cor 0.76 1.13 1.14 1.13 1.01 1.15 0.75 1.12 1.13 1.15
Tomcatv 0.97 1.21 1.22 1.20 1.02 1.27 0.97 1.21 1.21 1.27
FP Avg 0.87 1.26 1.27 1.26 1.05 1.37 0.86 1.26 1.27 1.37

Table 4.1: Zero-Cycle Load Baseline Performance.
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Figure 4.5: Hit Rates for Address- and Register Specifier-Indexed BRIC.

performs well for even small sizes. The performance is quite good for programs with a large number of
static loads, e.g., GCC and Spice, and programs with a large number of dynamic loads, e.g., Xlisp and
Spice. The register specifier-indexed BRIC, used in the two decode stage design, also performed well
for all programs. Performance for a even a four entry register specifier-indexed BRIC is very good.
This result is to be expected since register file accesses have a significant amount of temporal locality
[FPI1].

The column labeled No GP/SP shows speedups for an 8 entry address-indexed BRIC without
separate registers available to cache the global and stack pointer. In this design, global and stack
pointer loads reside in the BRIC as well, reducing its effective capacity (i.e., the design in Figure
4.2 without the GP and SP registers). The results suggest that special handling of global and stack
references only yields marginal improvements in overall performance, more for the programs with a

high dynamic frequency of global and stack loads and stores, e.g., Xlisp or Sc. If designs omit this
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option, they may still perform well.

Experiments were also performed to determine the efficacy of the BRIC itself. The column labeled
GP/SP shows the speedups for a configuration without a BRIC, i.e., only global and stack pointer
accesses can execute with zero cycle latency. As expected, only the programs which rely heavily on
global or stack pointer accesses show any notable speedups.

The right half of Table 4.1 gives speedups for a pipeline implementation with two decode stages.
In this configuration, the branch misprediction penalty is increased to three cycles, and the BRIC is
indexed by a register specifier, rather than a load address. Speedups are shown for both a 4 and 8 entry
fully associative BRIC with LRU replacement. As suggested by the hit rates in Figure 4.5, the 8 entry
BRIC only offers marginal improvement over the 4 entry BRIC. Overall, the speedups are comparable
to the one decode stage design. Either of the presented designs should be equally effective at reducing
load latency.

Figure 4.6 shows effective latency for loads executing on the two decode stage design with an 8
entry BRIC. Successful zero-cycle loads (labeled 0-cycle) were most predominant in the integer codes,
although for all experiments a significant fraction of loads completed with zero effective latency. Well
over 50% of all loads were completed in one or less cycles for all the codes. Two-cycle loads were more
common in the floating point codes. When loads could not complete with zero effective latency, the
most common causes for failure were register conflicts and fast address calculation failures, with the
former case being the most predominant.

Table 4.1 also lists program performance with perfect fast address calculation predictions and no
BRIC misses (the columns labeled Perfect). The perfect runs provide only slight increases in program
performance, more so for the floating point codes. The current designs are exploiting much of the
potential performance. Most of the performance loss in each case can be attributed to fast address

calculation failures.

4.4.3 Performance with Out-of-Order Issue

An aggressive out-of-order issue execution model provides a built-in mechanism for tolerating load
latency. Unconstrained by dependencies, the issue mechanism in an out-of-order issue processor is
able to run ahead of executing instructions looking for independent operations with which to tolerate
latencies. If branch prediction performs well and there is sufficient parallelism, other latency tolerating
or reducing techniques should not be required. To determine the effectiveness of this execution model
at negating the benefits of zero-cycle loads, experiments were run on the out-of-order issue simulator
(detailed in Chapter 2) extended to support zero-cycle loads. Results of the experiments are shown in
Table 4.2. All simulations were performed on a pipeline with two decode stages using an 8 entry fully
associative register specifier-indexed BRIC with LRU replacement. All programs are compiled with

software support.
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Benchmark Speedup

In-Order Out-of-Order C?;,rycclizzi (/yCC'ZZCIlngtCL
Compress 1.22 1.02 1.63 1.34
Eqntott 1.37 1.16 1.26 0.91
Espresso 1.40 1.15 1.65 1.14
GCC 1.25 1.04 1.46 1.16
SC 1.45 1.16 1.69 1.13
Xlisp 1.47 1.10 1.54 1.03
Grep 1.96 1.42 1.67 0.84
Perl 1.28 1.07 1.40 1.08
YACR-2 1.36 1.07 1.70 1.23
Int Avg 1.42 1.13 1.53 1.06
Alvinn 1.44 1.09 1.80 1.24
Ear 1.30 1.04 2.10 1.61
Mdljdp2 1.30 1.09 1.85 1.42
Mdljsp2 1.18 1.04 1.55 1.47
Spice2g6 1.27 1.01 1.37 1.36
Su2cor 1.13 1.13 1.68 1.40
Tomcatv 1.21 1.08 1.52 1.41
FP Avg 1.27 1.07 1.66 1.39

Table 4.2: Performance with Out-of-Order Issue.
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The column labeled Out-of-Order in Table 4.1 lists the speedups attained by adding zero-cycle load
support to the out-of-order issue processor (over the performance of the out-of-order issue processor
without zero-cycle load support). As seen by comparing these speedups with those found for the in-
order issue processor (in column In-Order, reproduced from Table 4.1), overall speedups are notably
less for the processor using out-of-order issue. This result confirms that the out-of-order issue model is
tolerating load latency. However, the resulting speedups are not all insignificant, especially for many
of the integer codes. These codes likely have less parallelism available to tolerate load instruction
latencies, thus they benefit from the latency reduction offered by fast address calculation.

The rightmost two columns of Table 4.2 compare the performance of an in-order issue processor
with and without zero-cycle load support to an out-of-order issue processor without zero-cycle load
support. The column labeled Cycler,/Cycleoy: gives the run-time (in cycles) of programs on the
in-order issue processor divided by the run-time on the out-of-order issue processor (neither with zero-
cycle load support). This metric quantifies the cycle count advantage of out-of-order issue. Clearly,
the programs take fewer cycles to run on the out-of-order issue processor than on the in-order issue
processor.

The column labeled Cyclerntzcr/Cycleou: repeats the experiments, except this time the in-order
issue processor has support for zero-cycle loads. For the integer codes, the performance of the two
processors is now much closer — both outperforming each other in some cases, with slightly better
performance on the out-of-order issue processor. This result is striking when one considers the clock
cycle and design time advantages typically afforded to in-order issue processors. It may be the case
that for workloads where exposed latency is dominated by data cache access latencies (as is the case for
the integer benchmarks), an in-order issue design with support for zero-cycle loads may consistently
outperform an out-of-order issue processor. For the floating point codes, the in-order issue processor
with support for zero-cycle loads is still much slower than the out-of-order issue processor. The floating
point codes have many other long latencies, e.g. float point computation and cache misses, which are

effectively tolerated by the out-of-order issue mechanism, but benefit little from zero-cycle load support.

4.4.4 Performance with Fewer Registers

A number of architectures in wide-spread use today have few architected registers, e.g., the x86 or
IBM System/370 architectures. To evaluate the efficacy of zero-cycle loads for these architectures,
the experiments were run again with programs re-compiled to use only 8 integer and 8 floating point
registers (one-quarter the normal supply). The results of the experiments are shown in Table 4.3. All
simulations were performed on a pipeline using in-order issue with two decode stages. All programs
are compiled with software support.

The left side of Table 4.3 shows how a program is affected by reducing the number of architected

registers from 32 to 8. The total number of loads increased by as much as 177%, primarily the result



Benchmark Loads Speedup
Percent | Distribution of Extra Loads
More Loads | Global ‘ Stack ‘ General %y;lleewﬂeg G (l’yde”*”g e %yczeg*”g
8—reg ycleg_reg+GPSP ycleg_regtzCL
Compress 23.34 32.41 44.13 23.45 0.85 1.05 1.32
Eqntott 39.82 92.41 7.59 0.00 0.77 0.86 1.40
Espresso 57.11 9.02 | 47.90 43.08 0.81 0.96 1.45
GCC 24.02 5.74 | 36.26 58.01 0.90 1.01 1.28
SC 4.67 0.00 | 72.46 27.54 0.99 1.13 1.43
Xlisp 0.98 100.00 0.00 0.00 0.99 1.20 1.46
Grep 5.46 0.00 | 48.86 50.96 0.97 1.01 2.03
Perl 26.46 24.26 32.29 43.45 0.86 1.14 1.38
YACR-2 99.06 0.00 | 63.14 36.86 0.87 1.23 1.67
Int Avg 26.02 — — — 0.90 1.07 1.46
Alvinn 31.79 0.76 99.24 0.00 0.95 1.18 1.34
Ear 112.36 16.45 34.15 49.40 0.78 0.94 1.50
Mdljdp2 81.41 7.66 45.52 46.82 0.69 0.94 1.36
Mdljsp2 110.21 30.35 | 69.65 0.00 0.77 0.90 1.33
Spice2gb 9.93 13.96 | 86.04 0.00 0.95 1.16 1.28
Su2cor 47.20 2.26 | 97.74 0.00 0.79 0.86 1.13
Tomcatv 177.22 1.62 98.38 0.00 0.52 0.56 1.16
FP Avg 64.06 — — — 0.82 0.99 1.29

Table 4.3: Performance with Fewer Registers.

16



52

of extra accesses needed to spill and reload temporary variables. The increases are notably larger for
the floating point codes because they typically use more registers for temporary space. Also shown (in
the columns labeled Distribution of Extra Loads) is the breakdown of how much (as a percent of total
extra loads) each form of addressing contributes to the overhead.

The column labeled Cyclesa—req/Cycles—req quantifies the performance impact of fewer architected
registers. It shows the run-time (in cycles) of programs compiled to use 32 registers running on the
baseline in-order issue simulator divided by the run-time of the 8 register version of the program
running on the same processor. For many of the programs, the performance impact of having more
registers is quite large, more so in general for the floating point codes.

Next, the performance of 8 register designs with limited and full support for zero-cycle loads was
examined. The design with limited zero-cycle load support only allows global and stack pointer ac-
cesses to execute with zero cycle latency. Implementing this support is less costly than full support
for zero-cycle loads. (This design is essentially the one in Figure 4.2 without a BRIC.) This design
should perform well considering the predominance of stack and global accesses in the 8 register execu-
tions. The speedups in the column labeled Cyclesa—_rey/Cycles_reg+apsp show this implementation’s
performance with respect to an architecture with 32 registers and no support for zero-cycle loads. For
most programs, limited support for zero-cycle loads more than compensates for the lack of registers in
the architecture. In many cases, the performance of the register-limited architecture is better than its
32 register counterpart. Not only does the zero-cycle load support perform well on the extra accesses
due to spills and reloads, but it also performs well on the stack and global pointer accesses that both
programs execute. For a few of the floating point codes, e.g., Tomcatv, the improvements rendered still
do not approach the performance of the 32 register architecture. These codes suffer from an excessive
number of dynamic loads and stores which saturate available data cache bandwidth and limit overall
performance improvements.

The experiments in column Cycleg_req/Cycles_reg+zcr show the performance found with full
support for zero-cycle loads on the register-limited architecture. The speedups are shown with respect
to the program running on the register-limited architecture without support for zero-cycle loads. As
expected, the speedups are better than those found on the 32 register architecture due to the excellent

performance of the many extra stack and global accesses.

4.5 Related Work

The application of early issue as a means of reducing load latency has been gainfully applied in a
number of previous works [BC91, EV93, GM93]. All use an address predictor mechanism, which is a
variant of the load delta table [EV93], to generate addresses early in the pipeline, allowing loads to be

initiated earlier than the execute stage. The load delta table tracks both the previous address accessed
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by a particular load and one or more computed stride values used to predict a load’s next effective
address. Considering the frequency of strided accesses and accesses with no (zero) stride, the load delta
table is an effective approach to predicting load addresses. The approach described in this chapter uses
a stateless address predictor, eliminating the cost and complexity of the load delta table. Compared
to the other approaches, zero-cycle loads features the tightest level of pipeline integration, yielding
fewer register and memory interlocks and better potential performance. Tighter pipeline integration,
however, does limit the extent to which load latency can be reduced (two cycles in the proposed
designs). To have an effect on longer load latencies, like those occurring during data cache misses, a
load delta table approach may be more effective if used instead or in conjunction with zero-cycle loads.
This observation is further supported by the possibility that the load delta table may perform better
on codes where fast address calculation performs poorly (e.g., poorly structured numeric codes).

Instruction scheduling [KE93, PS90, GM86] is essentially the software dual of the early-issue mech-
anism, as both work to increase distance between loads and their first use. There are tradeoffs to
using either approach. With compile-time scheduling, it is possible for the compiler to hoist loads
much further than possible with hardware-based early-issue mechanisms. Hardware-based early-issue
of loads, on the other hand, benefits from run-time information and the ability to dynamically mask
faults, making it possible to hoist loads past stores and branches that would otherwise form barriers
for the compiler.

The C Machine [DM82] used a novel approach to implement zero-cycle access to stack frame
variables. At cache misses, memory operand specifiers within instructions were replaced with direct
stack cache addresses. When the partially decoded instructions were executed, operands in the stack
cache could be accessed as quickly as registers.

The knapsack memory [AVS93] component included support for zero-cycle loads. Software support
was used to place data into the power-of-two aligned knapsack region, providing zero-cycle access to
these variables when made with the architecturally-defined knapsack pointer. This optimization was
limited primarily to global data.

Jouppi [Jou89] proposed a pipeline that performed ALU operations and memory access in the same
stage. The pipeline employs a separate address generation pipeline stage, pushing the execution of ALU
instructions and cache access to the same pipeline stage. This organization increases the mispredicted
branch penalty by one cycle. It also removes the load-use hazard that occurs in traditional five stage
pipelines, instead introducing an address-use hazard. The address-use hazard stalls the pipeline for
one cycle if the computation of the base register value is immediately followed by a dependent load or
store. The R8000 (TFP) processor [Hsu94] uses a similar approach. Zero-cycle loads can be viewed
as essentially a variation on this pipeline design — employing early issue rather than late execute. In
the designs presented in this chapter, early issue does not aggravate branch penalty, and fast address

calculation allows memory access to execute one stage earlier, thereby eliminating more load latency
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without incurring any more exposure to hazards.

Comparing the baseline results of this chapter with those in Chapter 3 reveals roughly a two-fold
improvement in performance for the integer codes, and nearly a four-fold improvement for the floating
point codes. These performance improvements follow from the increased latency reduction afforded by
zero-cycle loads (i.e., from one cycle with fast address calculation alone to zero cycles) in combination
with better overall support for speeding up register+register mode accesses, an addressing mode

which the floating point codes rely on more heavily.

4.6 Chapter Summary

Two pipeline designs supporting zero-cycle loads were presented: an aggressive design for pipelines
with a single stage of decode and a less aggressive design for pipelines with multiple decode stages.
The designs make judicious use of instruction cache predecode, base register caching, and fast address
calculation to produce load results two cycles earlier than traditional pipeline designs. The design
with multiple decode stages was markedly simpler because more of the component operations of a load
could be performed after fetching the load instruction.

The proposed designs were evaluated in a number of contexts: with and without software support,
in-order vs. out-of-order issue, and on architectures with many and few registers.

Overall, the speedups afforded by zero-cycle loads, for either pipeline design, were excellent. For
the one decode stage design with in-order issue, simulations showed a cycle-weighted speedup of 1.45
for the integer codes and 1.26 for the floating point codes. Good speedups were found for even small
BRIC sizes. Software support was generally effective, more so on the integer codes, but even without
software support speedups were still quite good.

Speedups on the out-of-order issue processor were significantly less due to the latency tolerating
capability of the execution model. However, some programs still showed notable speedups, likely
because the executions lacked sufficient parallelism to tolerate all load latency, and thus benefited from
the latency reduction capability of fast address calculation. An in-order issue processor with zero-cycle
load support compared favorably in performance to an out-of-order issue processor for programs with
good cache performance and significant exposed load instruction latency.

With fewer registers, the frequency of loads and their impact of program performance increases
significantly, especially for floating point codes. Providing an 8 register architecture with zero-cycle
load support for only global and stack pointer references, resulted in performance comparable to a 32
register architecture. This result suggests limited support for zero-cycle loads is one avenue available to
improving the performance of legacy architectures with few registers. With full support for zero-cycle
loads, speedups were quite good, slightly better than for the 32 register architecture due to excellent

prediction performance for the many extra global and stack accesses present.
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Chapter 5

High-Bandwidth
Address Translation

5.1 Introduction

In support of the proposed cache hit optimizations, this chapter examines four new high-bandwidth and
low-latency address translation mechanisms. These new mechanisms feature better latency and area
characteristics than current TLB designs, providing architects with effective alternatives for keeping
address translation off the critical path of loads.

Address translation is a vital mechanism in modern computer systems. The process provides
the operating system with the mapping and protection mechanisms necessary to manage multiple
large and private address spaces in a single, limited size physical memory [HP90]. In practice, most
microprocessors implement low-latency address translation with a translation lookaside buffer (TLB).
A TLB is a cache, typically highly-associative, containing virtual memory page table entries which
describe the physical address of a virtual memory page as well as its access permissions and reference
status (i.e., reference and dirty bits). The virtual page address of a memory access is used to index the
TLB; if the virtual page address hits in the TLB, a translation is quickly returned. On a TLB miss, a
hardware- or software-based miss handler is invoked which “walks” the virtual memory page tables to
determine the correct translation to load into the TLB.

The latency of address translation is generally not thought of as a latency component of loads. The
usual goal of address translation design is not to minimize load latency, but rather to keep address
translation off the critical path of data cache access. Typically, this task is accomplished by allowing
data cache access and address translation to proceed in parallel using, for example, a virtually-indexed
cache. The address translation mechanism is then constructed to be at least as fast as the data cache.

Today, however, architectural and workload trends are placing increased demands on the address
translation mechanism, making it increasing difficult to keep address translation off the critical path
of data cache access. Processor designs are continually exploiting higher levels of instruction-level
parallelism (ILP), which increases the bandwidth demand on TLB designs. The nature of workloads is

also changing. There is a strong shift towards codes with large data sets and less locality, resulting in
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poor TLB hit rates. Notable examples of this trend include environments that support multitasking,
threaded programming, and multimedia applications.

Together, architectural and workload trends are pushing architects to look for TLB designs that
possess low-latency and high-bandwidth access characteristics while being capable of mapping a large
portion of the address space. The current approach used in most multiple-issue processors is a large
multi-ported TLB, typically dual-ported with 64-128 entries. A multi-ported TLB provides multiple
access paths to all cells of the TLB, allowing multiple translations in a single cycle. The relatively
small size of current TLBs along with the layout of the highly-associative storage lends itself well to
multi-porting at the cells [WES88].

Although a multi-ported TLB design provides an excellent hit rate at each access port, its latency
and area increase sharply as the number of ports or entries is increased. While this design meets the
latency and bandwidth requirements of many current designs, continued demands may soon render
it impractical, forcing tomorrow’s designs to find alternative translation mechanisms. Already, some
processor designs have turned to alternative TLB organizations with better latency and bandwidth
characteristics; for example, Hal’'s SPARC64 [Gwe95] and IBM’s AS/400 64-bit PowerPC [BHIL94]
processor both implement multi-level TLBs. Many processors implement multi-level TLBs for instruc-
tion fetch translation as well [CBJ92].

This chapter extends the work in high-bandwidth address translation design by introducing four
designs with better latency and area characteristics than a multi-ported TLB. Using detailed timing
simulation, the performance of the proposed high-bandwidth designs was compared to the performance
of a TLB with unlimited bandwidth. A number of designs are clear winners — their use results in almost
no impact on system performance. Any latency and area benefits these designs may afford will serve
to improve system performance through increased clock speeds and/or better die space utilization.

The scope of this work is limited to address translation for physically tagged data caches. Instruction
fetch translation is a markedly easier problem, since instruction fetch mechanisms typically restrict all
instructions fetched in a single cycle to be within the same virtual memory page, requiring at most one
translation per cycle. Instruction fetch translation is well served by a single-ported instruction TLB
or by a small micro-TLB implemented over a unified instruction and data TLB [CBJ92].

The remainder of this chapter is organized as follows. Section 5.2 describes a performance model for
address translation and qualitatively explores the impact of address translation latency and bandwidth
on system performance. Section 5.3 details the proposed mechanisms for high-bandwidth address trans-
lation, and Section 5.4 presents extensive simulation-based performance studies of address translation

designs using the proposed mechanisms. Finally, Section 5.5 summarizes the chapter.
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Figure 5.1: A System Model of Address Translation Performance. VPN is the virtual page number, PPN is
the physical page number.

5.2 Impact of Address Translation on System Performance

Before delving into the details of the proposed high-bandwidth designs or their evaluation, it is prudent
to first develop a performance model for address translation. The model presented in this section is
strictly qualitative in nature. It is not used to derive the performance of a particular address translation
mechanism; this is done empirically with detailed timing simulations in Section 5.4. Instead, the model
serves as a framework for address translation. By casting the proposed designs into this framework, one
can readily see which features affect address translation performance, and consequently, how address
translation performance affects system performance.

Figure 5.1 illustrates the performance model for address translation. At the highest level, a pro-
cessor core executes a program in which a fraction fargar of all instructions access memory. Each
cycle, the processor core makes as many as M address translation requests. A fraction fspiergeq Of
these requests are serviced by a shielding mechanism. A shielding mechanism is a high-bandwidth and
low-latency translation device that can satisfy a translation request without: 1) impacting the latency
of memory access, or 2) forwarding the request to the base TLB mechanism. Hence, the shielding
mechanism acts as a shield for the base TLB mechanism, filtering out fspierdeq Of all translation re-
quests. An effective shielding mechanism can significantly reduce the bandwidth demands on the base
TLB mechanism; three shielding mechanisms are examined in detail: L1 TLBs, piggyback ports, and
pretranslation.

Requests not handled by the shielding mechanism are directed to the base TLB mechanism which

can service up to NV requests per translation cycle. The base TLB mechanism functions identically to
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a traditional TLB, providing fast access to page table entries using a low-latency caching structure.
However, the organization used in this work may be non-traditional, e.g., interleaved, for the purpose of
providing increased bandwidth. If a base TLB port is immediately available, the translation proceeds
immediately. If a port is not available, the request is queued until a port becomes available, at which
time it may proceed. The queuing mechanism employed is dependent on the processor model, e.g.,
an out-of-order issue processor queues requests in a memory reorder buffer, while an in-order issue
processor queues requests by stalling the pipeline. Requests are queued waiting for a port for an
average latency of tsiqieq- The magnitude of 51104 18 determined by the bandwidth of the address
translation mechanism — with unlimited bandwidth %s417.4 Will be zero, with limited bandwidth it
may be non-zero. How bandwidth affects queueing latency in the processor is very complex, since it
depends on the frequency and distribution of requests to the translation device. This relationship is
not derived analytically; instead, it is measured precisely with detailed timing simulations in Section
5.4. Once a request is serviced by the base TLB mechanism, (1 — My g) requests will hit in the TLB
and be serviced with latency t7ppri:. The remaining My p of all requests will miss in the TLB and
be serviced with latency t1rBmiss-

Under this model of address translation, the average latency of a translation request (as seen by

the processor core), tar, is:

tar = (1 — fshielded) * (tstalled + tTLBRit + MTLB * tTLBmiss)

The impact of address translation latency on system performance is tempered by two factors: 1) the
processor’s ability to tolerate latency, and 2) the relative impact of memory access latency compared
to other latencies. The impact of address translation on system performance, measured as the average

latency for address translation per instruction, T P14y, is:

TPIar = fuem * (1 — fror) *tar

fror is the fraction of address translation latency that is tolerated by the processor core. The
workload and processor model both affect the degree to which the processor core can tolerate latency.
If the workload exhibits sufficient parallelism and the execution model provides latency tolerating
support, the impact of address translation latency on overall performance will decrease. Processor
models with high levels of latency tolerating capability include those that support out-of-order issue,
non-blocking memory access, and speculative execution.

Finally, faren is the dynamic fraction of all instructions that access memory. This factor is affected
by the workload, the number of architected registers, and the compiler’s ability to effectively utilize
registers. Programs that access memory often will need better address translation performance for

good system performance.
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In summary, the performance of the address translation mechanism is affected: 1) by its ability
to shield requests from the base translation mechanism, and 2) by the latency and bandwidth of the
base translation device. The impact address translation on system performance is affected: 1) by the
processor’s ability to tolerate translation latency, and 2) by the relative impact of address translation

latency compared to other latencies.

5.3 High-Bandwidth Address Translation

This section presents new mechanisms for high-bandwidth address translation. The proposed designs
fall into two categories: designs that extend traditional high-bandwidth memory design to the domain
of address translation, and designs crafted specifically for high-bandwidth address translation.

Techniques for delivering high-bandwidth memory access are well developed, both in the literature
and in practice. The common approaches are multi-ported [SF91], interleaved [Rau91], and multi-
level [JW94] memory structures. Multi-ported TLBs are already widely used; this work develops
and evaluates interleaved and multi-level TLBs as well. In addition, piggyback ports are introduced
as a technique to exploit the high level of spatial locality in simultaneous translation requests. This
approach allows simultaneous accesses to the same virtual memory page to combine their requests at
the TLB access port. Pretranslation is introduced as a technique for attaching translations to base
register values, making it possible to reuse a single translation many times.

All of the proposed high-bandwidth address translation designs are targeted towards systems with
physically tagged caches, i.e., those which require a translation for each memory access. Virtual-
address caches, on the other hand, do not require a translation for each memory access. Because there
are no physical addresses in the cache, address translation can be pushed off until data is fetched from
physical storage, e.g., when a physically addressed second-level cache or main memory is accessed.
Such a design eliminates both bandwidth and latency concerns. Virtual-address caches have, however,
two significant drawbacks which discourage their use in real systems: 1) synonyms, and 2) lack of
support for protection.

Synonyms can occur in virtually-indexed caches when storage is manipulated under multiple virtual
addresses. In a multiprogrammed environment, shared physical storage can end up in multiple lines of
a virtually-indexed cache, creating a potential coherence problem. In a multiprocessing environment,
cache coherence operations must first be reverse-translated to remote virtual addresses before data can
be located in the remote cache. Many solutions have been devised to eliminate synonyms, including
alignment restrictions on shared data [Che87], selective invalidation [WBL&89], and single address space
operating systems [KCE92]. However, these approaches have yet to come into widespread use due to
performance and/or implementation impacts on application and system software. Moreover, these solu-

tions do not solve the second problem that arises with virtual-address caches, efficient implementation
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of protection.

Traditionally, protection information has been logically attached to virtual memory pages. As
a result, their implementation has been naturally integrated into the TLB. If the TLB is eliminated
through use of a virtual-address cache, the problem of implementing protection still remains. One solu-
tion is to integrate protection information into cache blocks [WEG*86]. However, the page-granularity
of protection information makes managing these fields both complicated and expensive. Another solu-
tion is to implement a TLB minus the physical page address information, called a protection lookaside
buffer (PLB) [KCE92]. This TLB-like structure, however, still requires high-bandwidth and low-latency
access (although, latency requirements are somewhat relaxed).

In light of these drawbacks, virtual-address caches have seen little use in real systems. In addi-
tion, it is likely that if virtual-address caches are adopted they may still employ TLB-like structures
to implement protection, which requires a high-bandwidth mechanism like the ones describe here.

Consequently, virtual-address caches are not considered further.

5.3.1 Multi-ported TLB

A multi-ported TLB, shown in Figure 5.2a, provides high-bandwidth access using a brute force ap-
proach. Each port is provided its own data path to every entry in the TLB, implemented by either
replicating the entire TLB structure (one single-ported TLB for each port) or multi-porting the indi-
vidual TLB cells. Since every entry of the TLB is accessible from each port of the device, this design
provides a good hit rate for each port (low Mypp). However, the capacitance and resistance load on
each access path increases as the number of ports or entries is increased [WESg], resulting in longer
access latency (trrprit). In addition, this design has a large area due to the many wires and com-
parators needed to implement each port. (In CMOS technology, the area of a multi-ported device is
proportional to the square of the number of ports [Jol91].)

Independent of access latency and implementation area considerations, this design provides the
best bandwidth and hit rate of all the designs, hence, it provides a convenient standard for gauging

the performance of the other proposed designs.

5.3.2 Interleaved TLB

An interleaved TLB, shown in Figure 5.2b, employs an interconnect to distribute the address stream
among multiple TLB banks. Each TLB bank can independently service one request per translation
cycle. This design provides high-bandwidth access as long as simultaneous accesses map to different
banks.

The mapping between virtual page addresses and the TLB banks is defined by the bank selection
function. This function influences the distribution of the accesses to the banks, and hence, the band-

width delivered by the device. The experimental evaluations consider both bit selection, which uses a
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Figure 5.2: Traditional High-Bandwidth Memory Designs: a) multi-ported, b) interleaved, and c) multi-level.
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portion of the virtual page address to select the bank, as well as an XOR-folding scheme, which ran-
domizes the bank assignment by XOR’ing together portions of the virtual page address. (XOR-folding
functions have been shown to provide better bank distribution [KJLH89].)

By its construction, an interleaved TLB cannot be fully-associative, since any particular page can
reside in only one bank. It must have at least as many sets as banks. As a result, Myrp for this
design may be higher than a same-size design with a more associative organization, possibly resulting
in longer average translation latency. The impact should be minimal, however, if the interleaved TLB
remains highly-associative.

This design will likely have better latency and area characteristics than a multi-ported TLB, es-
pecially for large TLBs. While the interconnect, typically a full crossbar, adds some latency to the
access path, this latency is mitigated by the shorter access latency of the smaller, single-ported banks.
The area overhead is concentrated in the interconnect; for a full crossbar, the implementation area is
proportional to the square of number of access ports. For small numbers of ports, sizes should not be

prohibitively large.

5.3.3 Multi-level TLB

A multi-level TLB, shown in Figure 5.2¢, provides high-bandwidth and low-latency address translation
by exploiting locality in program references. When an entry from the base TLB mechanism (L2 TLB)
is referenced, it is placed into in a small upper-level TLB (L1 TLB). An L1 TLB acts as a shielding
mechanism; if it offers a good hit rate, it will shield the L2 TLB from all accesses that hit in the L1
TLB, significantly reducing the bandwidth demand on the L2 TLB.

When an access misses in the L1 TLB, it must forward the request to the L2 TLB, where L2 TLB
access port contention, L2 TLB access latency, and L2 TLB miss latency may increase the latency of
the access. Since the L1 TLB is small, it may be possible to use a more effective replacement policy
(e.g., LRU replacement in the L1 TLB vs. random replacement in the L2 TLB), which should improve
the hit rate of the L1 TLB.

If the processor supports hardware-based TLB consistency operations [BRGT89], multi-level inclu-
sion should be enforced in the L1 TLB during L2 TLB replacements or invalidations, i.e., the entries
in the L1 TLB should be a subset of the entries in the L2 TLB. This implementation strategy will
eliminate the need for consistency operations to probe the L1 TLB, which may be expensive if it is
tightly integrated into the processor pipeline.

The L1 TLB is a multi-ported TLB with enough ports to handle all simultaneous requests from
the processor core. By keeping the L1 TLB small, it is possible to provide both high-bandwidth and
low-latency access to all its entries. The additional area overhead of this design is concentrated in the
implementation of the L1 TLB, which for small sizes and few ports should be much smaller than the

L2 TLB.
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At least two commercial processors have explored the use of multi-level TLBs; Hal’s SPARC64
[Gwe95] and IBM’s AS/400 64-bit PowerPC [BHIL94] processors both implement multi-level TLBs to
meet the latency and bandwidth needs of their respective designs. Multi-level TLB designs have long

been used for reducing the latency of instruction fetch translations [CBJ92].

5.3.4 Piggyback Ports

Piggyback ports, shown in Figure 5.3, exploit spatial locality in simultaneous address translation
requests. When simultaneous requests arrive at a TLB port, requests with identical virtual page
addresses may be satisfied by the same TLB access.

To implement piggybacking, the virtual page addresses of blocked requests are compared to the
virtual page addresses of requests in progress. A blocked request may use the result of a translation in
progress if their virtual page addresses match. If both requests are executing under the same protection
domain, the other fields of the translation request, i.e., protection and page status information, may be
shared as well. The approach is similar to read combining in multiprocessor interconnection networks
[LS94, GGK™*83].

Piggyback ports have minimal impact on translation latency. Once a request is submitted to the
TLB, all other requesters can compare their virtual addresses in parallel with TLB access. As a result,
the impact on translation latency is limited to a single gate on the TLB hit signal. Area costs are also

small, being limited to a single comparator and hit signal gate per piggyback port.
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Figure 5.4: The Life of a (Register) Pointer. Figure a) shows a C code fragment in which pointer p strides
through an array. Figure b) illustrates the operations that occur over the lifetime of pointer p.

5.3.5 Pretranslation

Pretranslation is a shielding mechanism that allows a single translation request to be used for multiple
memory accesses. Figure 5.4 illustrates the basis for this approach. Loads and stores access memory
through register pointers: global accesses through the global pointer [CCH'87], stack accesses through
the stack pointer, and all other references through general purpose register pointers. Pointers are
created whenever a variable is referenced, its address is taken, or when dynamic storage is allocated.
During the lifetime of a pointer, it is dereferenced at loads and stores, and manipulated using integer
arithmetic. Over the lifetime of the pointer, it may be dereferenced and manipulated many times.

Studies have shown, e.g., Eickemeyer and Vassiliadis’ work [EV93], that when pointers are manip-
ulated, it is often the case that small constant values are added to or subtracted from the pointer. The
end result, which this design exploits, is that successive dereferences of a pointer often yield accesses
to the same virtual memory page.

In traditional TLB-based address translation mechanisms, an address translation request is made
to the TLB each time a pointer is dereferenced, often requesting the same translation on subsequent
requests. With pretranslation, a translation is attached to a register value at the first dereference of
the value, i.e., at the first load or store to use the register value as a base address. On subsequent
dereferences, loads and stores may use the translation (termed a pretranslation) attached to the register
value provided that the virtual page address of the memory access matches the virtual page address
of the attached translation. When pointers are manipulated with arithmetic operations, any attached
translation is propagated to the destination register value. Pretranslation yields high bandwidth as
long as register pointers are reused often and point to the same virtual memory page.

Figure 5.5 illustrates how to integrate pretranslation into a processor pipeline. Pretranslations are
accessed in parallel with register file access in the decode stage of the pipeline, making the pretranslation
available by the start of instruction execution. If the instruction is an arithmetic operation, the

pretranslation is attached to the result register value. For loads and stores, the pretranslation, if
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Figure 5.5: Pipeline Support for Pretranslation.

available, is used to elide TLB access if the virtual page addresses match. If the virtual page addresses
do not match, a translation request is forwarded to the base translation mechanism. The result of the
translation is attached to the base register value.

Two important considerations affect the design of the mechanism used to attach pretranslations to
register values. First, a single base register value may be combined with multiple offsets, allowing it to
reference multiple pages. A suitable mechanism to attach multiple translations to a single register may
improve performance, e.g., a few bits from the offset could be combined with the base register identifier
to form the identifier of a pretranslation. Second, only a fraction of all registers will be pointer values
at any one time, thus, storage need not be allocated for each register. It suffices to use a small cache,
called the pretranslation cache, to hold pretranslations. If this cache is kept small, it will facilitate
high-bandwidth and low-latency access to pretranslations.

Any changes in virtual memory state, e.g., address mapping, page size, or access permission, must
be reflected in the pretranslation cache, otherwise, invalid accesses may go undetected. If virtual
memory state changes are infrequent, it may be sufficient to simply flush the pretranslation cache
whenever changes occur.

The VAX IPA register used a similar technique to reuse translations during instruction fetch [LE89).
The current PC physical address translation is stored in the Instruction Physical Address (IPA) register,

and this translation is used to access the cache until: 1) the PC crosses a page boundary, or 2) a
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branch is taken. On either of these events, the previous translation is invalidated and another address
translation of the PC is initiated. The translation hit buffer (THB) [BF92] further extends this idea
to include a prediction of the next translation as well.

Pretranslation can be viewed as an extension of Chiueh and Katz’s branch address cache (BAC)
[CK92], which was applied as a mechanism to reduce access latency of physically indexed caches.
(A similar mechanism was proposed in an earlier paper [HHLT90].) The proposed pretranslation
design includes a number of modifications to the original BAC mechanism. High-bandwidth address
translation is accommodated by attaching the virtual page address to register values. Using this
approach, the base TLB mechanism does not have to be accessed to validate use of an attached
physical page address. In addition, instructions that create pointer values propagate any attached
pretranslation to the result register value. This optimization is important for good performance on
optimized code where register copies occur often, for example, during instruction scheduling or loop
unrolling. Finally, pretranslations are stored in a small cache, instead of the larger BAC. Since only a
fraction of all registers contain pointer values at any one time, the small pretranslation cache provides
an excellent hit rate. Like the BAC, pretranslation provides the physical page address by the end
of instruction decode. Thus, it may be used to access a physically indexed cache without an added

latency for address translation.

5.4 Experimental Evaluation

This section examines the performance of programs running on a detailed timing simulator extended
to support high-bandwidth translation designs. Key system parameters such as page size, processor
issue model, and number of architected registers are varied to see what effect these changes have on
the performance of the designs. All the results presented in this section are run-time weighted averages

across all the benchmarks. Individual results for all experiments are included in Appendix B.

5.4.1 Methodology

All experiments were performed on the baseline out-of-order issue timing simulator detailed in Chapter
2. The simulator executes only user-level instructions, performing a detailed timing simulation of an
superscalar processor and the first level of instruction and data cache memory. To increase instruction
issue rates and accordingly the bandwidth demand on the address translation mechanism, the issue
width of the baseline simulator was extended to 8-way issue with a a 64 entry reorder buffer and 32
entry load/store queue. The branch predictor was changed to a 2-level adaptive predictor with an 8 bit
global history pattern indexing a 4096 entry pattern history table (i.e. the GAp method from [YP93])
with 2-bit saturating counters. In addition, a limited variant of the collapsing buffer (described in

[CMMP95]) was added to increase fetch bandwidth. The data cache modeled is a four-ported 32k
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Mnemonic | Description |

T4 4-ported fully-associative TLB, 128 entries, random replacement

T2 2-ported fully-associative TLB, 128 entries, random replacement

T1 1-ported fully-associative TLB, 128 entries, random replacement

18 8-way bit-select interleaved TLB, 128 entries (16 entry fully-associative bank),
random replacement in bank

14 4-way bit-select interleaved TLB, 128 entries (32 entry fully-associative bank),
random replacement in bank

X4 4-way XOR-select interleaved TLB, 128 entries (32 entry fully-associative bank),
random replacement in bank

M16 4-ported 16-entry fully-associative L1 TLB w/LRU replacement,
128-entry fully-associative L2 TLB, random replacement

M8 4-ported 8-entry fully-associative L1 TLB w/LRU replacement,
128-entry fully-associative L2 TLB, random replacement

M4 4-ported 4-entry fully-associative L1 TLB w/LRU replacement,
128-entry fully-associative L2 TLB, random replacement

P8 4-ported 8-entry fully-associative pretranslation cache w/LRU replacement,
128-entry fully-associative L2 TLB, random replacement

PB2 2-ported fully-associative TLB w/2 piggyback ports, 128 entries,
random replacement

PB1 1-ported fully-associative TLB w/3 piggyback ports, 128 entries, random replacement

14/PB 4-way bit-select interleaved TLB w/4 piggybacked banks (32 cells/bank),
random replacement in bank

Table 5.1: Analyzed Address Translation Designs.

2-way set-associative non-blocking cache.

A number of changes were made to the simulator to support the proposed high-bandwidth address
translation mechanisms. Table 5.1 lists the designs examined, with their mnemonic designations.

For all configurations, TLB access is assumed to be fully overlapped with data cache access. Thus,
address translation does not create a visible latency unless the translation mechanism cannot imme-
diately service a translation request, i.e., due to insufficient TLB bandwidth or a TLB miss. When
multiple requests meet at a single TLB port, the port is allocated first to the earliest issued instruction.
For all designs, the base TLB mechanism has 128 entries. TLB misses are serviced in 30 cycles after
the processor pipeline has completely drained. The baseline page size is 4k bytes.

The interleaved schemes, i.e., I8 and 14, use bit selection to select the TLB bank; the three or two
address bits immediately above the page offset portion of the virtual address are used to select the
proper TLB bank. The configuration X4 uses an XOR-folding of the three least significant groups of
two address bits immediately above the page offset portion of the virtual address. In the two-level
designs, i.e., M16, M8, and M4, the L.L1 TLB can service up to four hits per cycle. L1 TLB misses are
sent in the following cycle to the L2 TLB, where they may queue if other requests are being serviced
by the L2 TLB. The minimum latency for an L1 TLB miss is 2 cycles. The pretranslation cache design
(P8) has a hit latency of one cycle; misses are not detected until the cycle immediately following address
generation, resulting in at least one more cycle latency for access to the single-ported base TLB. Like
the multi-level TLB designs, requests to the single-ported base TLB may have to queue waiting for the

port. The pretranslation cache tags are composed of the register identifier (5 bits) concatenated with



68

Program Insts | Loads | Stores Inst/Cycle (Ld+St)/Cycle Br Pred

(Mil.) | (Mil.) | (Mil.) | Tssue | C’mit | Issue | C’mit | Rate (%)
Compress 62.0 15.8 6.1 3.65 1.96 1.30 0.69 89.7
Doduc 1,375.1 330.4 130.2 2.16 1.76 0.71 0.59 86.6
Espresso 517.5 116.5 32.7 4.48 2.90 1.32 0.84 90.2
GCC 110.6 26.4 16.5 3.56 1.87 1.32 0.72 80.2
Ghostscript 625.2 109.1 53.3 2.76 2.18 0.73 0.55 93.3
MPEG_play 529.6 114.9 47.9 4.10 2.82 1.19 0.87 85.9
Perl 231.5 57.7 37.2 2.85 1.43 1.10 0.57 81.2
TFFT 959.8 136.6 89.4 2.69 1.79 0.62 0.42 79.9
Tomcatv 359.7 90.9 18.3 3.64 2.72 1.00 0.83 86.6
Xlisp 962.7 289.2 171.6 4.17 2.52 1.86 1.21 87.9

Table 5.2: Program Execution Performance. Instruction, load, and store counts include only non-speculative
operations. The columns labeled Issue and C’mit indicate the average number of operations issued and committed per
cycle, respectively, on the baseline 8-way out-of-order issue processor simulator.

the upper 4 bits of the offset of a load or zero for any other instruction. In the piggybacked designs, i.e.,
PB2 and PB1, requests that do not receive a translation port may piggyback off any other translation
performed in the same cycle. For the 14/PB configuration, piggyback ports are provided at each bank
of the TLB, thus, simultaneous requests that meet at the same bank may be serviced at the same time
if their virtual page addresses match.

In the multi-level TLBs and pretranslation design, i.e., M16, M8, M4, and P8, page status infor-
mation (i.e., reference and dirty bits) is propagated into the upper-level caching structures. However,
when a change must be made to the page status (e.g., first reference or write to a page), the change
is immediately sent to the base TLB, where the access may be queued if a port is not available imme-
diately. This write-through strategy for page status information simplifies flushing of the upper-level
TLB structure, since any status in the upper-level cache structure is fully replicated in the base TLB.
Immediately propagating page status changes to the base TLB has little impact on performance, be-
cause page status changes require little bandwidth. Multi-level inclusion is enforced in the L1 TLBs,
i.e., M16, M8, and M4, by loading TLB misses into both the L1 TLB and the L2 TLB, and by selec-
tively invalidating from the L1 TLB any entry replaced in the L2 TLB. Coherence is enforced in the
pretranslation cache by flushing it whenever an entry in the base TLB is replaced.

The selected benchmarks include programs with varied memory system performance, i.e., programs
with large and small data sets as well as high and low reference locality. Table 5.2 details the programs
analyzed and their execution statistics. The programs are described in Chapter 2. Ghostscript and
TFFT have the largest data sets, roughly 10 and 40 Mbytes, respectively. Compress, MPEG _play, and
TFFT have notably little locality in their reference streams; small data caches and TLBs perform very

poorly for these three programs.
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Figure 5.6: Relative Performance on Baseline Simulator. All results are run-time weighted average IPCs
normalized to the performance of design T4.

5.4.2 Baseline Performance

Figure 5.6 shows the performance of all the designs running on the baseline processor model, an
aggressive 8-way out-of-order issue processor with 32 registers and 4k virtual memory pages. The
run-time weighted average IPC (weighted by the run-time of T4 in cycles) is shown for each design.
The IPCs are normalized to the IPC of the four-ported TLB design (T4). The T4 design provides a
convenient benchmark, since it can service up to four translation requests per cycle, thus no latency
is introduced into the results due to insufficient translation bandwidth. (The baseline simulator has a
four-ported data cache, so cache bandwidth is never a bottleneck.) Since the timing simulations only
count cycles, any clock cycle effects that a poorly scalable design (such as T4) might introduce are
ignored. On this common ground, the relative performance of a particular design indicates the cycle
time improvement required to make the design worth implementing. For example, the average IPC of
the 2-ported TLB design (T2) is 94.1% of the 4-ported design (T4), as a result, for a T2-based design
to be a win, the average time per instruction must be at least 0.941 times that of the T4 design.

The leftmost group of bars in Figure 5.6 are the multi-ported TLB designs, i.e., T4, T2, and T1,
with 4, 2, and 1 port(s), respectively. These results demonstrate how sensitive the simulated system is
to address translation bandwidth. Since the four-ported TLB design (T4) provides all the translation

bandwidth the processor needs, its performance is always the best. With half as much translation
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Figure 5.7: TLB Miss Rates. All values shown indicate percent of all references that miss in a fully-associative
TLB. The line labeled RTW Avg is the run-time weighted average miss rate over all the benchmarks.

bandwidth, i.e., the dual-ported TLB (T2), the average IPC drops by 6%. With a single-ported TLB
(T1), performance drops off sharply to 76% of the performance of the four-ported TLB (T4) design.
Clearly, to not impact system performance, a translation device will have to provide at least two
translations per cycle.

The second group of bars in Figure 5.6 are the multi-level (e.g., M16, M8, and M4) and pretrans-
lation (P8) designs. The performance of multi-level TLBs is quite good. An L1 TLB with as few as
four entries over a single-ported L2 TLB suffers less than a 4% degradation in average IPC. Figure 5.7
indicates why the multi-level designs perform so well. This figure shows the run-time weighted average
miss rates (labeled RTW Avg) for fully-associative TLBs from 4 to 128 entries. The 4, 8, and 16 entry
TLBs use LRU replacement (as done for the 4, 8, and 16 entry L1 TLBs), while the 32, 64, and 128
entry TLBs employ random replacement (as done for the 128 entry base TLB mechanisms). A four
entry L1 TLB with LRU replacement shields all but 13.8% of the translation requests from reaching
the L2 TLB. This shielding effect significantly reduces the bandwidth demand on the L2 TLB. The
few references that do reach the L2 TLB have only slightly longer latency which is effectively tolerated
by the out-of-order issue processor. A few of the programs, most notably Compress, MPEG_play, and
TFFT, have poor performance on the multi-level designs. These programs have very low locality in
the data reference stream, as can be seen by their large TLB miss rates in Figure 5.7.

While the pretranslation design (P8) performs well, i.e., less than a 3% degradation in average
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IPC, its overall performance is worse than a same-sized L1 TLB. The reason for this difference lies
in the mechanism by which each design reuses translations. The pretranslation design is only able to
reuse a translation whenever a register pointer is reused. The multi-level TLB design, on the other
hand, is able to reuse a translation whenever an address is reused. The latter case is more common;
when a new register pointer is first used on the pretranslation designs it must be translated, while
on the multi-level designs, a new pointer address may already be in the L1 TLB. It is interesting to
note that reference locality and register reuse are sometimes orthogonal. In a few specific instances,
e.g., Compress and GCC, the pretranslation designs performed better than a same-sized L.1 TLB. This
contradictory behavior is likely due to better cache management for the pretranslation design. When
new pointer values are created, they are re-inserted into the pretranslation cache, which places the entry
on the tail of the LRU queue. Other benefits of the pretranslation cache, such as early presentation of
the physical page address should further motivate the use of this design. (The simulations presented
do not take advantage of early presentation of the physical page address.)

The interleaved designs did not perform as well as the multi-level designs, providing on the average
less bandwidth than a dual-ported TLB (T2). This rather lackluster performance was not due to
the set-associative organization required by the interleaved configurations. All of the configurations
analyzed were at least 16-way set-associative and possessed excellent hit rates. Poor performance was
due to bank conflicts which delayed requests. Increasing the number of banks (I8) or use of an XOR-
folding bank selection function (X4) provided only marginal benefit, suggesting that many simultaneous
accesses were to the same page, thus no increase in interleaving or change in bank selection function
could eliminate conflicts.

The piggybacked designs, i.e., PB2 and PB1, performed better than the interleaved designs. Pig-
gybacking a single-ported TLB (PB1) resulted in only a 6% worse average IPC than the four-ported
TLB design (T4). Clearly, many simultaneous accesses are to the same virtual page. However, not all
concurrent accesses reference the same page as seen in the improved performance of the piggybacked
dual-ported TLB design (PB2). This design can perform two independent translations per cycle, all
other requests may use the result of either translation. The piggybacked dual-ported TLB design
(PB2) performs nearly as well as the four-ported TLB design (T4).

Design 14/PB is an interleaved TLB with piggyback ports at each bank. This design leverages off
the complementary benefits of the interleaved and piggybacked approaches. For an address stream
with little spatial locality, requests will be steered to different banks and be serviced in parallel. For
an address stream with good spatial locality, requests to the same page will be steered to the same
bank and can share the translation result using the piggyback ports. As shown in the Figure 5.6, this

design performs very well, resulting in only a 1% degradation in average IPC.
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Figure 5.8: Relative Performance with In-order Issue.

5.4.3 Performance with In-Order Issue

Figure 5.8 shows the performance of the designs under the same conditions as Figure 5.6 except the
processor is constrained to use an in-order issue model. This modification has two competing effects
on the results. First, the average IPC of the in-order issue processor is markedly lower than that of the
out-of-order issue processor, i.e., 1.156 vs. 2.094, respectively. Consequently, the bandwidth demand
on the address translation mechanism is reduced. Second, the in-order issue processor model cannot
tolerate latency as effectively as the out-of-order issue processor. Thus, it is much more sensitive to
address translation latency introduced by insufficient bandwidth.

Figure 5.8 shows the results of the experiments running on the 8way in-order issue processor.
The multi-ported TLB designs, i.e., T4, T2, and T1, demonstrate the reduced bandwidth demand on
the address translation. With only a single-ported TLB (T1), performance only degrades 6% below
performance with a four-ported TLB (T4). The multi-level designs still perform well, although the
performance of the 4 entry L1 TLB (M4) was affected more by the in-order issue model than the 8
(M8) and 16 (M16) entry designs. This result is likely due to the reduced latency tolerating capabilities
of the in-order issue model, which cannot tolerate the 2 or more cycle latency incurred for the 13.8% of
all memory accesses that must be serviced by the L2 TLB. The out-of-order issue model tolerates this
latency much better than the in-order model, resulting in better overall performance. The interleaved

designs perform much better on the in-order issue model. The degradation in IPC dropped from 10% to
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about 5% for these experiments. The reduced bandwidth demands on the interleaved designs reduces
the number of bank conflicts. The piggybacked designs all perform better, with the PB2 and 14/PB

designs experiencing virtually no degradation in average IPC.

5.4.4 Performance with Increased Page Size

A recent trend in TLB design has been to increase page sizes [TH94]. This trend is prompted by
workloads with large data sets and/or little locality. Increased page size has a number of effects on
the performance of the designs. With the same number of TLB entries, more memory can be mapped,
which can reduce the number of TLB misses for both the base and L1 TLBs. Increased page size
will increase the lifetime of pretranslations, allowing a pointer to stride further before leaving a page.
Larger pages will also affect bank selection in the interleaved TLB designs, address bits formerly used
to select the bank will become part of the page offset of the larger page. Changing the bank selection
function will affect the distribution of accesses to the TLB banks.

If the system supports variable page sizes [TH94], there are implications on the proposed designs.
For the interleaved design, bank selection must be a function of only the virtual page address; as a
result, changes in the page size could require a change in the bank selection function. All TLB entries
that are no longer in the correct bank would have to be invalidated or moved to the correct bank. Page
size changes in the multi-level and pretranslation designs must be kept coherent with the base TLB
mechanism. Variable page sizes should not affect piggybacking as long as all requests are in the same
virtual address space.

Figure 5.9 shows the performance of the translation mechanisms running on the baseline 8-way
out-of-order issue processor, except with 8k pages instead of 4k pages. The performance of the multi-
ported designs is mostly unchanged, because the TLB miss rates were unchanged. The miss rates
with a 128 entry TLB with 4k pages are already very low. The multi-level and pretranslation designs
benefited from the larger page size. The L1 TLBs can map more memory and hence have better hit
ratios, while the pretranslation cache benefited from longer pretranslation lifetimes. The interleaved
designs performed roughly the same as with 4k pages, although there were some large variations in
individual program performance due to changes in the bit selection function. As expected, the larger
page size improved the performance of the piggybacked designs, i.e., PB2 and PB1 and 14/PB, since

the larger page size provides more opportunity to piggyback requests.

5.4.5 Performance with Fewer Registers

A number of architectures in wide-spread use today have few architected registers, e.g., the Intel x86
or IBM System/370 architectures. To evaluate the efficacy of the proposed translation mechanisms for
these architectures, the benchmarks were recompiled to use only 8 integer and 8 floating point registers

(one-quarter the normal supply), and the experiments were run again. The primary effect of reducing
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Figure 5.9: Relative Performance with 8k Pages.

the number of registers is an increased number of loads and stores executed. Most of these references
are directed to the stack and global regions of memory with a high degree of spatial and temporal
locality. The results of the experiments are shown in Figure 5.10. All simulations were performed on
the baseline 8-way out-of-order issue processor with 4k pages.

Even with the many extra memory accesses, the multi-level designs performed well. The pretrans-
lation design (P8) performance suffered because (with few registers) pointer register value lifetimes
were severely shortened due to many extra spills. When a pointer is spilled to the stack its pretransla-
tion is lost, thus, another translation request must be made to the single-ported base TLB when it is
reloaded. The performance of the interleaved designs was impacted significantly, dropping nearly 10%
overall. Comparing the multi-level performance to the interleaved designs supports the conclusion that
the many extra references have a high degree of locality. However, as shown by the poor performance
of the piggybacked single-ported TLB designs (PB1), the locality is not always to the same virtual
memory page. The interleaved and piggybacked design (I14/PB) performed slightly worse, suggesting
that the extra accesses may have spatial locality spanning a page, which could occur for very large

stack frames or many extra accesses directed to a large global region.
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5.5 Chapter Summary

Four new mechanisms for high-bandwidth address translation were presented: interleaved TLBs, multi-
level TLBs, piggyback ports, and pretranslation. These address translation mechanisms have better la-
tency and area characteristics than a multi-ported TLB. Various designs using the proposed translation
mechanisms were developed and evaluated with detailed timing simulations. Key system parameters
such as processor issue model, page size, and number of architected registers were varied to see their
effects on the performance of the proposed designs.

Overall, several several designs performed on par with a four-ported TLB. The multi-level TLB de-
signs performed well except for programs with poor reference locality. The interleaved and piggybacked
designs complement each other; an interleaved TLB with piggybacking at each bank performed well for
all programs. Alone, the interleaved designs performed poorly due to many simultaneous accesses to
the same bank, which without support for piggybacking are serialized at the bank. Piggybacking alone
also performed poorly over a single-ported TLB due to many accesses occurring simultaneously to dif-
ferent pages. A piggybacked dual-ported TLB appears to be an adequate substitute for a four-ported
TLB.

The pretranslation design also performed well, although its performance was slightly worse than a
same-sized multi-level TLB design. Other benefits of this design should motivate its use. Pretransla-

tions are available early in the pipeline, facilitating the use of upper-level physically indexed caches.
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In addition, attaching address information to physical registers prior to reception of their results could
have other benefits, e.g., classifying computation as access or execute.

With in-order issue, bandwidth demand on the translation mechanism is reduced, but it still must
perform well to provide good system performance due to the reduced latency tolerating capability of
the in-order issue processor. The reduced bandwidth appears to be the stronger force, resulting in
better overall performance for all the translation designs.

With larger pages (i.e., 8k vs. 4k), the multi-level, pretranslation, and piggybacked designs per-
formed better. The L1 TLBs can map more memory, resulting in a higher hit rate. Pretranslations
performed better because pointers can stride further before their pretranslations are invalidated. With
a larger page, piggybacking has more opportunity to combine requests.

With few registers (i.e., 8 int/8 fp vs. 32 int/32 fp), bandwidth demands on the translation mech-
anism rose sharply. All but the multi-level designs suffered worse performance. The high degree of
reference locality in the extra references generated allowed a small L1 TLB to service most of the load.
Pretranslation performed worse with fewer registers due to shorter register lifetimes.

Clearly, there exist many effective alternatives to the brute force approach of multi-porting the
TLB. The designs presented in this chapter should give architects plenty of choices when multi-ported

TLB designs become impractical.
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Chapter 6

Cache-Conscious Data Placement

6.1 Introduction

In the previous chapters, techniques were examined for reducing cache hit latencies. Cache hit opti-
mizations provide the most benefit to codes with good cache performance. Many workloads, however,
have working sets that are too large or lack the locality necessary for good data cache performance. In
other cases, their reference streams perform poorly on commonly used cache geometries. Whatever the
case may be, these programs see little benefit from cache hit optimizations since they spend much of
their execution time waiting for cache misses to be serviced. For these codes, cache miss optimizations
will have a much greater impact on program performance.

Much effort has been invested in reducing the impact of cache misses on program performance.
As with any other latency, cache miss latency can be tolerated using compile-time techniques such
as instruction scheduling [KE93, PS90, GM86], or run-time techniques including out-of-order issue,
decoupled execution [Smi8&2b], or non-blocking loads [FJ94]. It is also possible to reduce the latency
of cache misses using techniques that include multi-level caches [JW94, BKW90, WBL&9], victim
caches [Jou90], and prefetching [RL92, CBM*92, MLG92]. Reducing the frequency of cache misses
also works to reduce the performance impact of cache misses; approaches along these lines include
set-associative caches [KJLH89, Hea86], column-associative caches [AP93], stride tolerant address
mappings [Gao93, SLI3, Sez93], page coloring [Kes91, DS91, BLRC94], and program restructuring
to improve data [CMT94, LRW91] or instruction cache performance [Wu92, PH90, McF89].

In this chapter, a novel software-based variable placement optimization, called cache-conscious
data placement, is introduced as a technique for reducing the frequency of data cache misses. To
apply the approach, a program is first profiled to characterize how its variables are used. The profile
information then guides heuristic variable placement algorithms in finding a variable placement solution
that decreases predicted inter-variable conflict, and increases predicted cache line utilization and block
prefetch. The generated placement solution specifies the location of global, stack, and heap variables.
Placement of global variables is implemented at compile time using a modified linker, stack and heap
variable placement is implemented at run time using modified system libraries, e.g., malloc().

The remainder of this chapter details the design, implementation, and analysis of cache-conscious

data placement. Section 6.2 motivates the approach by demonstrating how variable placement can
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affect data cache performance. Section 6.3 presents an overview of the cache-conscious data placement
framework. Section 6.4 describes the implementation of the experimental framework, including details
on the profiling methodologies, variable placement heuristics and placement mechanisms. Section 6.5
presents analyses of programs optimized with cache-conscious data placement, and Section 6.6 details

related work. Finally, Section 6.7 summarizes the chapter.

6.2 How Variable Placement Affects Data Cache Performance

Variable placement is simply the process of assigning (virtual) addresses to variables. In the context
of this work, a variable is any region of memory that the program views as a single contiguous space,
e.g., scalars or entire arrays in the global, stack, and heap segments. A variable is assigned an address
when it is created. For global variables, addresses are assigned at compile time, typically when the
program is linked; for stack and heap variables, addresses are assigned at run time, when the dynamic
storage is allocated.

The address assigned to a variable affects its location in the data cache. A variable’s address modulo
the data cache block size determines its location within a cache block. For a virtually-indexed cache,
a variable’s address modulo the data cache set size determines the cache set into which the variable
will reside.! Consequently, variable placement can be used as a mechanism to control which variable’s
reside in a cache block, and for virtually-indexed caches, which variables map to a cache set.

With variable placement to control the contents of data cache blocks, it becomes possible to influence
the performance of the data cache. To see how this is possible, consider how changing a variables

placement affects a data cache miss from each of the three miss classes [HS89):

Conflict Misses: Conflict misses occur when the number of frequently referenced blocks mapping to
the same cache set is greater than the associativity of the cache. Blocks that do not fit into
the cache set will displace other blocks each time they are referenced. By placing frequently
referenced variables into the same cache block or blocks that map to different sets of the cache,

inter-variable conflict misses may be eliminated.

Capacity Misses: Capacity misses result when the working set of the program does not fit in the cache.
Referenced cache blocks will displace other blocks because there is simply not enough space in the
cache to contain all the frequently accessed blocks. By moving infrequently referenced variables
out of cache blocks and replacing them with more frequently referenced variables, cache line
utilization can be increased. With better utilization of cache lines, the working set of the cache

(in cache blocks) may be decreased, and capacity misses may be eliminated.

I The address assigned to a variable affects its location in a physically index cache as well, but only to the extent that
the cache is indexed with the page offset portion of addresses.
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Compulsory Misses: Compulsory misses occur the first time a variable is referenced. If the variable’s
cache block has not been previously fetched into the cache, a miss will occur. By grouping
variables that are used at roughly the same time into the same cache block, cache block prefetches

will be used more effectively, and compulsory misses may be eliminated.

Of course, changes in variable placement can either improve or degrade cache performance. The
challenge addressed in this work is: How can variable placement be used to consistently improve data
cache performance? In the following section, cache-conscious data placement is developed as a variable

placement approach that will be shown to consistently improve data cache performance.

6.3 Cache-Conscious Data Placement

Early on in this work, it became apparent that there were a vast number of options available when
designing the optimization framework. With little previous work to cull the design space, limits had
to be placed on the scope of this work.

First, all variable placement decisions are made at compile time. This restriction made the opti-
mization framework fairly simple to implement and debug. In addition, this approach possesses the
lowest, variable placement overheads. Global variables are placed by a modified linker with zero run-
time cost; stack and heap variables are placed by modified system routines with very low run-time
costs. With low run-time overheads, any reduction in the data cache miss ratio afforded by better
variable placement is likely to yield program speedups. Compile-time placement, however, has its
drawbacks. Since a variable’s placement is decided only once at compile time, the approach lacks the
ability to adapt to any particular run of a program. This inflexibility may limit the overall impact of
the approach. In addition, the approach requires that profile information collected in one run of the
program be used to direct variable placement in another run of the program. Heap variables lack a
convenient name to implement this binding, necessitating development of a heap naming strategy.

Second, all placement decisions are directed with profile information. Profile information constitutes
the best information available to direct placement decisions, thereby eliminating any questions as to
the quality of the analyses used to direct variable placement. In the future, studies should consider
other possibly more convenient and less expensive methods for characterizing variable usage.

Finally, the designed heuristic placement strategy works to find variable placement solutions opti-
mized for small and low-associativity virtually-indexed data caches. These cache geometries are typical
of those found in the first level of the data memory hierarchy of current generation microprocessors.
Limiting the study to virtually-indexed caches ensures that the compiler has complete control over the
placement of variables in the data cache. Future studies might examine variable placement optimiza-
tions for other levels of the memory hierarchy, e.g., L2 caches or main memory. These levels, however,

have distinctly different miss frequencies and latencies, indexing strategies, and caching geometries,
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Figure 6.1: Cache-Conscious Data Placement.

thus, they will likely benefit from modifications to the proposed placement strategy.
The following subsections give an overview of the cache-conscious data placement framework. The
current implementation of the framework is detailed in Section 6.4. The related work section (Section

6.6) includes a chronology of the framework’s development.

6.3.1 Optimization Framework

Figure 6.1 illustrates the cache-conscious data placement optimization framework. A program to be
optimized is first profiled to gather information characterizing its variable usage. The variable profiler,
DPROF, monitors the execution of the program, tracking the location of all variables and any accesses
made to them, producing a reference profile for each variable. A reference profile indicates how often,
when, and where a variable was accessed during an execution of the program. The profiler is run multi-
ple times on representative inputs, and the summary profile generator, MERGETOOQL, then aggregates
the collected profiles into a summary profile. The placement tool, PLACETOOL, uses the summary
profile to guide heuristic variable placement algorithms in finding a variable placement solution that
decreases predicted inter-variable cache conflicts, and increases predicted cache line utilization and
block prefetch. When the placement tool finds an acceptable placement solution, a placement map is
generated. The placement map specifies where each variable should reside in the virtual address space.
It is used at compile time by a special linker, KLINK, to place global variables, and at run time by
modified system libraries to place stack and heap variables.

The implemented optimization framework can accommodate placement of global, stack, and heap

variables. Global variables are placed at an absolute address. Stack and heap variables, on the other
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hand, lack absolute addresses until run time, thus, their placement is specified as a preferred location in
the data cache. Modified system codes enforce their placement at run-time by aligning the allocations

to the specified point in the cache.

6.3.2 Heuristic Placement Algorithm

At the heart of cache-conscious data placement is the variable placement algorithm. The algorithm,
illustrated with examples in Figures 6.2, 6.3, and 6.4, searches for variable placement solutions that
optimize predicted cache performance for a user-specified target cache geometry. This is a challenging
task, for even with perfect and complete profile information, finding a variable placement solution
with optimal predicted performance is an intractable problem. The search space has at least N,q..!
possible solutions, where N, is the number of variables in the program. As a result, a heuristic search
technique is used to locate near optimal solutions.

The heuristic placement algorithm employs three phases of operation, executed in the order shown
in the examples. Each of the three phases improves a different aspect of cache performance by: 1)
increasing cache line utilization, 2) increasing block prefetch utility, and 3) decreasing inter-variable
conflict.

The first phase of operation, active/inactive variable partitioning, works to increase cache line uti-
lization by splitting frequently and infrequently referenced variables into separate regions of memory.
The partitioned variable placement concentrates more references to a smaller region of memory, result-
ing in a smaller working set for the program. A frequently referenced, or active, variable is any variable
with an average reference density (i.e., references/byte over the entire program execution) larger than
a user-specified parameter. The partitioning process is illustrated in the example in Figure 6.2. The
two variables Y and R have no profiled references, thus, they are relocated to a region of memory after
the frequently referenced variables. After the transformation, the new variable placement needs only
three cache blocks to hold the referenced variables, whereas previously four cache blocks were required.

In the second phase of placement, temporal affinity set generation, variables are grouped into
temporal affinity sets. A temporal affinity set is a collection of variables that share common reference
characteristics over time. By grouping these variables such that they are placed in the same cache block,
it is possible to increase the effectiveness of cache block prefetch. The grouping process is illustrated in
the example in Figure 6.3. The variables pairs X and W, and Z and U share common reference patterns
over time. As a result, they are placed into the same temporal affinity set (shown by the dark boxes),
and the necessary relocations are made to place the variables in the same cache block.

In the final placement phase, address assignment, variables are sorted to minimize inter-variable
conflicts for the target cache geometry. Since variable placement occurs only once at compile time, the
target cache geometry should be selected as the smallest cache size on which the developer expects

to attain good (or tolerable) performance for the program being optimized. If the target cache size
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Figure 6.4: Address Assignment.

selected is too small, the resulting placement will be so strapped by conflict that the placement algo-
rithm will probably not find a good placement solution. If the target cache size selected is too large,
the placement algorithm may produce a variable placement solution without considering potentially
expensive conflicts in smaller cache sizes.

The conflict between two variables is computed by mapping the variables onto the target cache and
computing the fraction of time both variables are resident in the same cache sets at the same time (as
predicted by their reference profiles). As shown in the example in Figure 6.4, the profiles for variable
group X/W and variable Q indicate they conflict over two time intervals. The assignment phase attempts
to minimize predicted conflict by sorting variables into cache sets containing variables with which they
have little predicted conflict. The conflict reduction process is illustrated in the example in Figure
6.4. After detecting the conflict between the variable group X/w and Q, Q and Y are swapped with the
variable group z/U, thereby eliminating the predicted conflicts.

The last placement transformation demonstrates a phase interaction problem endemic to phasic
heuristic search algorithms. In trying eliminate a cache conflict, the assignment algorithm used an
inactive variable (i.e., variable Y) to fill a hole in the placement. As a result, the capacity reduction
afforded by the first placement phase was lost. In addition to phase interactions, phasic heuristic search
algorithms also have phase ordering issues. The phases described above could be performed in any
order. They are run in the order described because this ordering has to date performed best for the

target workload and cache geometries.
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6.4 Detailed Methodology

This section details the implementation of the cache-conscious data placement framework. The follow-
ing subsections detail variable profiling, variable placement, and the placement mechanisms used to

enforce variable placement decisions.

6.4.1 Variable Profiling
Variable Reference Profiles

Variable reference profiles track how often, when, and where variables are accessed during execution of a
program. As shown in Figure 6.5, profiles track reference density over time and space, yielding reference
counts for a particular location in a variable over a specific period of time. A convenient implementation
for profiles is a two-dimensional array. Since profiler memory is limited, any implementation should
make available options to limit the number and size of profile buckets in either dimension, permitting

users to locate a suitable balance between profile accuracy and memory overheads.

Variable Profiling

The profiler monitors the execution of the program, tracking all storage management and memory
access events. Any profiler implementation will require: 1) a mechanism to monitor program memory
accesses, and 2) an efficient technique to bind an accesses to variable reference profiles. Figure 6.6
illustrates the variable profiling methodology implemented in the data profiler, DPROF.

In this work, execution event monitoring is implemented using a modified functional simulator.
In the main loop of the simulator, the necessary “hooks” were added to detect storage management
and memory accesses. A simulator-based profiler, while simple to extend for event monitoring, results
in poor execution performance. In a production environment, performance could be significantly im-

proved using some form of monitoring that supports direct execution of the profiled program. Suitable
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approaches along these lines include dynamic compilation [CK93] and executable editing [LS95].

Efficient binding of memory reference addresses to variable profiles is implemented though the use
of the instance map. The instance map shadows the entire virtual address space, providing a pointer
to a profile for each allocated address in the virtual address space. When the profiler detects a memory
access event, the instance map is indexed with the address of the reference, which returns a pointer to
a variable profile that is then updated.

The instance map is updated by the profiler at storage management events. When storage is
allocated, the profiler locates the profile associated with the allocated variable (possibly allocating a
new profile) and updates all entries in the instance map within the address range of the variable to
point to the profile. Instance map entries for global variables are initialized by the profiler at program
startup.

To correctly update variable profiles, the profiler needs an indication of elapsed program time.
The implemented profiler tracks time using a program cycle counter maintained by the functional
simulator. In environments where a cycle counter is not available, a real-time clock or a timer interrupt-

incremented counter will suffice.

Variable Naming Strategy

The optimization framework requires that profile information collected in one run of the program be
used to direct variable placement in another run of the program. To implement this binding, profile
and placement tools must assign names to all variables. Design of the variable naming strategy is an
important consideration because it has a profound effect on the quality of profile information and the
effectiveness of variable placement. There are many strategies to choose from, e.g., variable address.
The one chosen should best meet the following two constraints: 1) variable names should not change
between runs of a program, and 2) computing variable names should incur minimal run-time overheads.

In the implemented framework, global variables are named using their address. This approach
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dashed lines signify function call paths leading to an allocation request at the call to the function malloc.

works well to satisfy the above listed constraints. A variable at address X in one run of the program
is the same variable at address X in another run, provided the program is not recompiled between
runs. In addition, global variable names can be computed at compile time with no run-time cost. A
similar naming strategy is used for naming stack variables. Stack variables are not named individually,
instead, the entire stack is assigned a single name, and it is profiled and placed as a single variable.
Since most programs have excellent temporal and spatial locality in stack references, this approach has
worked well.

Generating names for heap variables is a much more challenging task. Heap variable addresses
change between runs of the program, making their address an unsuitable name. The approach im-
plemented in this work is illustrated in Figure 6.7. Heap variables are named when they are created
(e.g., at calls to malloc()) using the address of the call site to malloc() combined (with XOR-folding)
with a few return addresses from the stack. (Similar heap naming schemes were employed by Lebeck
and Wood [LW94] and Barrett and Zorn [BZ93].) This naming approach does a reasonably good job
of satisfying the constraints listed above. Since the addresses of calls sites and function returns do
not change between runs of a program (provided the program is not recompiled), heap variable names
do not change between runs. Computing heap allocation names is very efficient, requiring only a few
instructions. (The code to compute heap names is listed in Figure 6.14.) This approach does, however,
have complications that do not arise with global variables. It is possible for concurrently live heap
variables to possess the same name. The placement algorithms recognize this possibility and limit the

placements on these variables to prevent possibly expensive cache conflicts.

Summary Profile Generation

Collected profile information should be representative of “typical” program variable usage, otherwise

the placement algorithm may make poor placement decisions. In this work, this task is accomplished
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Input: summary profiles
Output: placement map
Method: /* read inputs */

read_summary profiles();

/* PHASE 1: split into active and inactive groups */
split_active_inactive();

/* PHASE 2: group global variables with similar temporal characteristics */
group_globals();

/* PHASE 3: place stack, global, and heap variables to minimize conflict */
stack.alignment = 0;

merge(conflict_map.profile, stack.profile, 0);

assign_global_addresses();

assign_heap_alignments();

/* finished placing variables, write placement map */
write_placement_map();

Figure 6.8: Variable Placement Algorithm (PLACETOOL). Function merge(A, B, N) combines profile A

and B starting at index N within the space dimension of A and returns the combined profile in A.

through the use of summary profiles. The summary profile generator, MERGETOOL, constructs

summary profiles by simply summing together the collected reference profiles for each variable.

6.4.2 Variable Placement Algorithm

Figure 6.8 lists the variable placement algorithm, implemented in PLACETOOL. The placement al-
gorithm reads the summary profiles created during profiling, and then performs variable placement
using a three-phase heuristic search algorithm. After a suitable variable placement is found, a variable

placement map is created. The following subsections detail the three placement phases.

Active/Inactive Variable Partitioning

In the first phase of placement, the function split_active_inactive(), shown in Figure 6.9, performs
active/inactive variable partitioning. Variables are split into global and heap sets, and within these
groups variables are split into active and inactive sets. A variable is considered active if it has an average
reference density (i.e., total references/bytes) of at least ACTIVE_THRESHOLD. After completion,
all inactive variables have been relocated away from the active variables, possibly resulting in better

cache line utilization for the active variables.

Temporal Affinity Set Generation

After partitioning active and inactive variables, the active global variables are grouped by the function

group_globals () into temporal affinity sets. Figure 6.10 shows the algorithm used to generated temporal
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Procedure:  split_active_inactive()

Input: all_variables
Output: active_global, inactive_global, active_heap, inactive_heap
Method: for var € all_variables {

if (var.ref_density > ACTIVE_THRESHOLD) {
if (var.type == GLOBAL)
active_globals = active_globals U var;
else
active_heap = active_heap U var;
}

else {
if (var.type == GLOBAL)
inactive_globals = inactive_globals U var;
else
inactive_heap = inactive_heap U var;

Figure 6.9: Active/Inactive Variable Partitioning.

Procedure:  group_globals()

Input: active_globals
Output: active_globals, grouped into temporal affinity sets
Method: for varl € active_globals {

for var2 € active_globals {
if (temporal_affinity(varl, var2) > AFFINITY_THRESHOLD) {
active_globals = active_globals - var2;
varl.group = varl.group U var2;
merge(varl.profile, var2.profile, 0);

Figure 6.10: Temporal Affinity Set Generation. Function temporal_affinity(A, B) returns the temporal
affinity of A to B, defined to be the fraction of execution time in which both variables were active at the same time.

affinity sets. The algorithm selects a global variable and scans all other global variables looking for
others with a high temporal affinity. Temporal affinity is computed as the fraction of execution time in
which both variables were active at the same time. If two variables have temporal affinity greater than
AFFINITY _THRESHOLD, they are placed in the same temporal affinity set. This process continues
until all variables have been grouped into temporal affinity sets. By grouping variables with similar
reference characteristics into the same same cache block, cache block prefetch utility may increase.
Only global variables are grouped into temporal affinity sets. Heap variables cannot be grouped
because the heap allocator used has a minimum allocation size comparable to the target cache block
sizes, leaving insufficient space within cache blocks for multiple heap allocations. For target caches or
levels of the memory hierarchy with larger blocks, this algorithm should be applied to heap variables

as well.
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Address Assignment

After all active variables have been grouped into temporal affinity sets, the process of address assign-
ment begins. Address assignment determines the final address for variables while trying to minimize
inter-variable conflict. During address assignment, global variables are assigned an absolute address.
Stack and heap variables are assigned a preferred alignment in the data cache, which is later enforced
at run time by the modified system libraries. As shown in Figure 6.8, the entire stack is placed first,
aligned to the first set of the cache. After the stack is placed, global variables are assigned addresses
by the function assign global addresses(), and finally heap variables are assigned cache alignments
by the function assign heap_alignments().

The global variable assignment algorithm is shown in Figure 6.11. The global variables are scanned
in descending order of reference density (i.e., most frequently used variable first) for the variable that
if placed at the next available address in the data segment will induce the least number of predicted
conflict misses. Conflict misses are predicted with the conflict map. The conflict map is a reference
profile for the target cache, updated after variables are placed to show how many profiled references
are being made to a particular cache set at a particular time. With this information, the placement
algorithms can predict the conflict induced by any variable placement.

The function conflict(A, B, C) computes the conflict between profiles A and B by first projecting
profile B onto profile A starting at index C in the space dimension of profile A. The function then
computes the product of the reference counts that overlap in both the time and space dimensions.

Using this approach, the estimated conflict will be small if the variable is placed into the cache
and the cache in infrequently reference when the variable is frequently referenced. Conversely, when
the variable projects onto an frequently referenced portion of the cache, the estimated conflict will be
higher.

The conflict map is updated with the reference profiles of placed variables only after an entire pass
through the data cache. This strategy ensures that variables from the same image of the cache (in
memory) do not conflict with each other during placement. In the assignment algorithm, the variable
pass_var tracks which variables have been placed but are awaiting integration into the conflict map.

The heap allocation placement algorithm, shown in Figure 6.12, determines the preferred cache
alignments for heap allocations. Unlike global variables, heap allocations may be aligned to any set in
the cache. Accordingly, the algorithm scans the entire conflict map looking for the point of minimum
estimated conflict, and places the heap variable at that point. (If the algorithm determines the variable
should not be aligned, it is assigned an alignment of -1.)

While the algorithm computes the preferred alignment for all heap variables, the heap allocation
placement algorithm only forces cache alignments (by setting the variable property force alignment to

TRUE) on heap variables with the following characteristics:
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Procedure  assign_global_addresses()
Input: conflict_map, active_globals, inactive_globals
Output: active_globals, inactive_globals, with all variables assigned an address

Method: addr = DATA_BASE;
pass = addr / BASE_CACHE_SIZE;
for 1 to |active_globals| {
min_conflict = MAX_INT;
for var € active_globals in descending ref_density {
¢ = conflict(conflict_map.profile, var.profile, addr % BASE_CACHE_SIZE);
if (¢ < min_conflict) {
min_conflict = ¢;
min_var = var;

}

min_var.addr = addr;

addr = addr + min_var.size;

active_globals = active_globals - min_var;

pass_vars = pass_vars U min_var.group;

if ((addr / BASE_CACHE SIZE) != pass) {

for var € pass_vars {

merge(conflict_map, var.profile, var.addr % BASE_CACHE_SIZE);
pass_vars = pass_vars - var;

pass = addr / BASE_CACHE_SIZE;

}

/* place inactive global variables */
for var € inactive_globals {
var.addr = addr;
addr = addr + var.size;

}

Figure 6.11: Global Variable Address Assignment. DATA_BASE is the base address of the data segment. The
function conflict (A,B,C) computes the conflict between A and B starting at index C in the space dimension A.

e The heap variable’s name cannot have more than INSTANCE_THRESHOLD concurrent in-

stances during any profiled execution.

e The heap variable must have a reference density (as indicated in the summary profile) of at least
HEAP_THRESHOLD.

The first requirement ensures that alignments are not placed on heap variable names with many con-
current instances, which could induce many intra-variable conflict misses. The profiler tracks the
maximum number of concurrent instances created for any variable name. If the value is greater than
INSTANCE_THRESHOLD, the allocation is never aligned. The second condition reduces variable
alignment memory overhead (incurred during placement of heap variable) by only forcing alignment
on variables that are frequently referenced. These variables have the best chance of negating any per-
formance penalties due to increased memory usage incurred when aligning heap allocations. Variables
not marked with forced alignment may also be allocated with the correct alignment, however, this will

occur only if no extra memory overheads are incurred.
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Procedure:  assign_heap_alignments()

Input: conflict_map, active_heap, inactive_heap
Output: active_heap, inactive_heap, with all variables assigned an alignment
Method: for var € active_heap in descending ref_density {

min_conflict = MAX_INT;
for i = 0 to BASE_CACHE_SIZE-1 {
¢ = conflict(conflict_map.profile, var.profile, i);
if (¢ < min_conflict) {
min_conflict = ¢;
min_index = i;
}
if (var.max_instance < INSTANCE_THRESHOLD) {
if (var.ref_density >= HEAP_THRESHOLD)
var.force_alignment = TRUE;
var.alignment = min_index;
merge(conflict_map, var.profile, var.alignment);

else
var.alignment = -1;
}

/* place inactive heap allocations */
for var € inactive_heap
var.alignment = -1;

Figure 6.12: Heap Variable Address Assignment.

Before completion, both placement algorithms place the inactive variables. The placement algo-
rithm does not attempt to minimize conflicts when placing inactive variables. Since inactive variables
have few accesses, they induce few conflict misses irregardless of their placements. To preserve any
spatial locality that existed in the original program, inactive global variables are placed in the same
order as found in the original program. Inactive heap variables are marked as not requiring a cache
alignment.

The order of placement, i.e., first stack, then global, and finally heap, is important for good
placement performance. The stack typically has a large area of active use and would be difficult to
place effectively after the global or heap variables. Heap allocations are best placed after the global
variables because they may be placed anywhere in the cache, whereas global variables must be placed
sequentially in the data segment. Placing variable candidates with the most placement freedom last
appears to produce better placement solutions.

The running time of the placement algorithms can be very long. The global assignment routine,
i.e., place_global_variables(), is the most expensive algorithm with a running time O(G?ST), where
G is the number of global variables, S is the set size of the cache, and T is the number of buckets in the
time dimension of profiles. To reduce running time, a branch and bound variation of the assignment
algorithms was employed in the implementation of the placement algorithms. While searching for
variables with minimal conflict, the minimum conflict yet found is tracked and passed to the function

that estimates conflict, i.e., conflict(). If the current call to conflict() computes a conflict value
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Input: executable, with symbol table including variable addresses and size,
reference relocations, and variable placement map

Output: executable, with relocated data segment and modified system libraries

Method: /* read inputs */

read_executable_segments();
read_symbol_table();
read_relocation_table();
read_placement_map();

/* attach each relocation to variable it references */
bind_relocations_to_symbols();

/* do the placement */
update_variable_placement();

/* fix up images */
fixup_relocations();
rearrange_data_segment();
replace_startup()
replace_malloc()
link_dynamic_map();

/* write output */
write_executable_segments();

Figure 6.13: Post-pass Link Algorithm (KLINK).

higher than the passed minimum conflict, conflict evaluation is immediately terminated, and the search
continues with another variable. This modification significantly improved the running time of the
placement algorithm, e.g., placement for GCC dropped from a running time of 20 minutes to less than

30 seconds.

6.4.3 Placement Mechanisms

The placement mechanisms enforce the placement decisions made by the placement tool. For global
variables, placement can be enforced at link time; for stack and heap variables, placement must be
enforced at run time with modified system codes, e.g., malloc(). In the implemented framework,
global variable placement is performed by a modified linker, and stack and heap variable placement is
performed by modified system libraries.

Figure 6.13 lists the algorithm used by the modified linker KLINK. The modified linker places global
variables as specified by the placement map (generated by PLACETOOL), and replaces the startup
module (i.e., crt0.0) and heap allocation routines (i.e., malloc.o) with versions capable of enforcing
stack and heap allocation alignments. KLINK is implemented as a post-pass link phase within GNU
GLD.

To place global variables, KLINK first binds relocations (i.e., references to variables in the text
and data segments) to the global variables they reference. Global variables are then relocated to their

new addresses and all relocations affected are fixed. Finally, the data segment is shuffled to match the
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new placement map, and the updated segments are written to the executable.

The standard ECOFF object file format used in the SimpleScalar tool set (detailed in Chapter 2)
was unable to accommodate global variable placement in its current form. First, the symbol tables have
no complete record of the start and ending addresses of each variable. Moreover, many global variables
are not even listed in the symbol table. To reduce the size of object files, any variable that is not
externally referenced (e.g., local labels, static variables, private literals) is not recorded in the symbol
table. Any references to these variables are converted to a more compact segment-relative reference
format. Finally, reordering can mix initialized and uninitialized variables, forcing some uninitialized
variables to be initialized if they are placed amid initialized variables.

After much judicious modification of the compiler, assembler, and linker, all these problems were
overcome. All variable symbols were extended to include variable size information, and all variable
references were required to be symbol-relative, rather than segment-relative. In addition, all variables
up to and including the last initialized variable in the data segment are initialized. These changes
did increase executable sizes, sometimes more than 100%. However, this effect results from the lim-
ited extensibility of ECOFF object files; most executable overheads could be eliminated with a more
accommodating object file design.

Heap allocation placement is implemented at run time using the modified malloc() implementation
shown in Figure 6.14. The modified malloc() first computes the heap allocation name, an integer
value, by XOR~folding NAME DEPTH return addresses from the stack (returned by the function
return_address()) and truncating the value to be smaller than MAX NAME. The name generated
is used to index the placement map (generated by PLACETOOL), which indicates the alignment
requirements for this particular allocation. If the requested alignment is greater than or equal to zero,
the allocation is forced to the specified alignment using forced aligned malloc(). The modified heap
allocator is based on a power-of-two heap allocator, thus, it is often the case that sufficient internal
fragmentation exists in an allocation to accommodate a requested alignment without incurring memory
overheads. Since an aligned allocation may begin anywhere within the power-of-two size allocation
block, a back pointer is required immediately preceding the aligned block to indicate the start of the

allocation block.

6.5 Experimental Evaluation

This section evaluates the performance of cache-conscious data placement by examining the cache

performance and run-times of programs compiled with various placement strategies.
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Input: allocation request size, heap allocation map
Output: heap allocation, possibly aligned to requested cache alignment
Method: /* compute heap allocation name */

name = 0;

for (i=0; i < NAME_DEPTH; i++)
name = hash(name, return_address(i));
name = name % MAX_NAME;

/* determine allocation priority, force alignment, if needed */
if (place_map[name].force) {
p = forced_aligned _malloc(place_map[name].alignment, place_map[name].set_size);
else
p = aligned_malloc(place_map[name].alignment, place_map[name].set_size);
q = align_to(p, size, heap_map[name].alignment);
update_backpointers(p, q);
return q;

Figure 6.14: Modified Heap Allocator. The function return_address(i) returns the return address in the ith
stack frame up the stack. The functions forced_aligned malloc() and aligned malloc() allocate storage with the

requested cache alignment. The former always returns aligned storage, increasing the allocation size if needed.

6.5.1 Methodology

All profiling and placement tools were implemented within the SimpleScalar tool set (described in
Chapter 2). The implementation, while challenging due to the many system components impacted,
was manageable by a single person in only four months time, totaling less than 6000 lines of code
including comments.

All experiments were performed with compilers and simulators described in Chapter 2. For each

program, five executables were generated using the following placement strategies:

Natural: Natural placement is the variable placement resulting from use of the standard compiler,

linker, and system libraries.

Random: Random placement shuffles all global variables in the data segment, and aligns the stack

and heap allocations to a randomly selected cache block.

CCDP Real: Cache-conscious data placement (CCDP) employs the data placement algorithms and
mechanisms detailed in Section 6.4 with the placement parameters specified in Table 6.1. The
placement parameters were chosen after an extended period of tuning the placement algorithms.
Variable placement is directed with summary profiles generated with the profile inputs listed in

Table 6.2. A different input, also listed in Table 6.2, is used during program analysis.

CCDP Ideal: This placement strategy is identical to CCDP Real placement, with the exception that
profiling and analysis occur on the same input, i.e., the analyzed inputs listed in Table 6.2.
(Note, ideal is not intended to imply optimal placement, rather it is the case where the heuristic

placement algorithms are directed with perfect profile information.)



95

[ Parameter | Value
NAME_DEPTH 4 frames
MAX_NAME 256
HEAP_THRESHOLD 0.25 refs/byte
ACTIVE_THRESHOLD 0.25 refs/byte
AFFINITY_THRESHOLD 90%
BASE_CACHE_SIZE 8192 bytes (direct-mapped)
INSTANCE_THRESHOLD | 1
LOW_THRESHOLD 2.344E-4 refs/byte-cycle
MID_THRESHOLD 4.688E-4 refs/byte-cycle
PROFILE_ARRAY _SIZE 256 buckets
PROFILE_BUCKET_SIZE 32 bytes

Table 6.1: Placement Algorithm Parameters. LOW_THRESHOLD and MID_THRESHOLD are the reference
densities used by the data profiler (DPROF) to compress data profiles, i.e., each profile bucket is reduced to the two-bit
values NONE, LOW, MID, and HIGH. PROFILE_ARRAY SIZE and PROFILE_BUCKET _SIZE specify profile array
sizes (number of profile buckets) and bucket sizes (in bytes) for the time and space dimension of all variable profiles,

respectively.

Program Arguments and Inputs
Analyzed | Profiled

Compress in compress, in.Z

Doduc doducin smallin, tinyin

GCC 1stmt.i 1toplev.i, 1varasm.i

Ghostscript | FAC-page-4.ps | FAC-page-1.ps, FAC-page-10.ps

Go 50 9 2stone9.in | 2 21 5stone.in, 40 8

MPEG._play | coil.mpg ts2.mpg, moonland.mpg

Perl tests.pl sort.pl, grep.pl

Vortex vortex25.in vortex25a.in, vortex25b.in

YACR-2 input2.in inputl.in, input3.in

Table 6.2: Analyzed and Profiled Inputs.

Simple: Simple placement employs a simpler, less expensive data placement algorithm. Profile in-
formation is limited to a single reference density for each variable. During placement, only
active/inactive partitioning is applied, and variables within a partition are placed in natural

order. Stack and heap allocations employ natural placement.

Nine programs were analyzed, selected because they exhibit moderately high data cache miss rates
for cache geometries found in current-generation microprocessors. The programs are described in
Chapter 2. Table 6.2 lists their inputs and arguments used for profiling and analysis. Table 6.3 gives
the baseline execution statistics for programs compiled with natural placement. All execution statistics
were collected using the baseline simulators described in Section 2.

Figure 6.15 shows the cache performance of the programs with natural placement for 2k, 8k, and
32k direct-mapped data caches. The benchmarks have relatively high data cache miss rates on small
caches, with a few performing poorly on caches as large as 32k bytes. The bars show the breakdown
of inter- and intra-variable misses. An intra-variable miss is defined as any miss where the replaced

and fetched data both come from the same variable. These misses represent a special class of misses
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Program Insts | Loads | Stores Miss Rate (% of refs) Mem Usage

(Mil.) | (Mil.) | (Mil.) | T-cache | D-cache | D-TLB (K bytes)
Compress 62.4 15.0 7.6 +0.00 16.22 4.241 442
Doduc 1,599.9 544.0 196.2 3.90 4.12 | 40.000 148
GCC 123.3 29.1 20.2 3.26 4.93 0.013 1,223
Ghostscript 306.3 73.6 38.7 0.93 3.10 0.030 5,166
Go 315.3 84.9 30.0 3.65 7.95 0.019 591
MPEG_play 529.5 119.9 47.4 1.77 18.35 0.132 3,032
Perl 200.9 53.1 34.7 5.48 7.52 0.189 3,810
Vortex 688.7 182.9 156.0 5.11 6.51 0.222 13,016
YACR-2 429.7 59.3 19.0 +0.00 4.11 | +0.000 199

Table 6.3: Program Statistics before Cache-Conscious Data Placement.

for this study, since they cannot be eliminated through variable placement.? The remaining miss
component, the inter-variable misses, are the result of interactions between variables, and represent
an upper bound on the performance improvements that could be achieved with cache-conscious data
placement. Clearly, inter-variable interactions account for a significant fraction of data cache misses.
As cache size increases, the fraction of misses due to inter-variable interactions grows as well.

Figure 6.16 also shows baseline program cache performance on 2k, 8k, and 32k direct-mapped
data caches. The bars in this graph show miss rates broken down by the three miss classes: conflict,
capacity, and compulsory misses.® Conflict and capacity misses dominate the misses, both decreasing

when cache sizes increase. The compulsory miss component is very small for all programs.

6.5.2 Cache Performance

Figure 6.17 shows the miss rates found with an 8k direct-mapped data cache for each of the five
placement strategies. The first bar, labeled Natural, is the cache performance of the baseline programs
using natural placement. Comparing natural placement to random placement (i.e., the bars labeled
Random) reveals natural placement to be a consistently better placement strategy.

Figure 6.18 gives insights into why this may be. The graph shows the percent change in the miss
ratio when going from natural to random placement (a positive change means more misses for random
placement). The change in miss rates is also broken down by the three miss class, i.e., conflict, capacity,
and compulsory misses. As shown in the graph, random placement increases both the conflict and
capacity misses for most of the programs. The compulsory miss component is also increased, although

this is difficult to see because the component is very small. Clearly, properties of natural placement

2This may not the case when the last block of a variable is interacting with itself and the variable does not completely
fill either cache block. In this case, it may be possible to remove the interaction by relocating the variable. However,
this anomaly is limited to at most one pair of cache blocks in variables with sizes close to a multiple of the cache set
size, making this case very infrequent.

3Conflict misses are computed as the difference between the miss rate of the target cache and a fully-associative cache
of the same size. Compulsory misses are computed by tracking the frequency storage is first touched. The remaining
misses are classified as capacity misses.



97

Miss Rate (% refs)

w
al

L R

20— ----=-++ B ERCCCRRTTLURTETTRFELURPRTRRPETLRRREE || EEERRE

L

i e ] R 1| IS

[ PECE. IR R R | S 1 0

T T 1T
2k 32k 8k 2k 32k 8k 2k 32k

0
1T T 1T T 17T 17T 17T 17T 17777

T 1
8k 2k 32k 8k 2k 32k

8k 2k 32k 8k 2k 32k 8k 2k 32k 8k 2k 32k 8k

Comp Doduc GCC GS Go

MPEG Perl Vortex YACR

||:| Inter-variable [__] Intra-variable |

Figure 6.15: Program Miss Rates Broken Down by Variable Interaction.
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Figure 6.17: Performance of Placement Algorithms — 8k Direct-Mapped Cache.

work to reduce all classes of misses.

The better performance of natural placement appears to be the result of how programmers write
programs. Logically related global and stack variables are often defined next each other in the program
source. Logically related heap allocations are often allocated near each other in time. Both these actions
work to keep logically related variables close to each other in memory. This simple process of grouping
related variables serves to reduce all classes of misses. Conflict misses are reduced because the grouped
variables are close enough that they do not conflict with each other. Capacity misses are reduced
because the grouped variables have significant temporal locality which serves to increase cache line
utilization. Compulsory misses are reduced because grouped variables are often placed in the same
cache block which more effectively utilizes cache line prefetch. The performance of natural placement
clearly sets the bar high for any artificial placement scheme.

The bars labeled CCDP Real in Figure 6.17 shows the performance of programs compiled with
cache-conscious data placement. For these experiments, different inputs were used for profiling and
analysis. Cache performance improvements over natural placement were fairly good, with many of the
experiments resulting in more than a 10% reduction in total cache misses. The best improvement was
a 25% reduction in data cache misses for YACR-2. The only program that suffered from more misses
was Go, although the increase was very small. Many of the misses in Go are the result of accesses to

the playing board array. The summary profiles did not do a good job of capturing typical accesses to



99

124

70
O e

£ 1 1 5

e 1

T T T T T T T T
Comp Doduc GCC GS Go MPEG Perl Vortex YACR

Percent Change in Miss Rate
w
o

[ Miss Rate (Total) ] Conflict I Capacity [ Compulsory

Figure 6.18: Impact of Random Placement for 8k Direct-Mapped Cache.

this variable. When optimized and run with the same input, shown by the bars labeled CCDP Ideal
in Figure 6.17, the placement optimizations were able to improve cache performance.

Figure 6.19 shows the percent change in miss ratio broken down by miss class when going from
natural to cache-conscious data placement. The placement optimizations removed a significant fraction
of misses for many of the programs. As shown by the results for Doduc and MPEG_play, the heuristic
placement algorithm appears to be favoring placement solutions that minimize conflict misses, some-
times at the expense of capacity misses. This effect is likely the result of the conflict minimization
phase of placement running last, thereby giving preference to placements with low inter-variable con-
flict. The heuristic placement algorithm would likely benefit from modifications that limit interactions
between placement phases.

Overall, summary profiles appear to working well. As the bars labeled CCDP Ideal in Figure
6.17 show, placement with perfect profile information only results in small improvements in cache
performance. With YACR-2, cache performance is actually degraded with perfect profile information
— this anomaly is due to the heuristic search algorithms. Since the heuristic placement algorithm works
to find good placement solutions, not optimal ones, it is entirely possible for a summary profile input
to produce a better placement solution than a perfect profile input.

Table 6.4 quantifies the instruction count and memory overheads for cache-conscious data place-

ment. All overheads are expressed as a percent change in the baseline execution statistics given in in



100

B | (I SUEEESE | [ [EEPRENY | N TUTFSTCPRSRETRERRRRRELPRRREY || EECRERTT [ B SRRRRRE | [ SESCREReEeRrs

I 10§ SLGGRECEECCEEETERETRS B ) EERCERRUERELERERS! | (N EERRCRRSLERTTESUREEERRCEREURRCERRCRREE (N () SRCEREE B [N ERCPRECRRCRRES

B -5 SITTCECURITUSTEIITUREECSTLRITURELCRtURITES] || EURELRITUERTURTERTLUREEERERRIIURELRICEREEURCLRRLY. || EECPSTUEELORE

Percent Change in Miss Rate

105 GRCCRCURTICRTTIRTURERCSTLRITURELCRTURILES | (ETURELPITUESTRRTTEITUTSEERERRIUELRTUREERRELRRtY || EECPETUEELORE

-25 T T T T T T T T
Comp Doduc GCC GS Go MPEG Perl Vortex YACR

[ Miss Rate (Total) ] Conflict I Capacity [ Compulsory

Figure 6.19: Impact of CCDP Placement for 8k Direct-Mapped Cache.

Table 6.3. Execution overheads are the result of extra instructions and memory usage needed to im-
plement stack and heap variable placement. Instruction execution overheads are very small. Memory
overheads are much larger. These large overheads are the result of many small, frequently accessed
storage allocations being aligned to a specific point in the cache. To place these allocations, the mod-
ified storage allocator (detailed in Section 6.4) can increase their size up to the set size of the cache.
Data TLB miss rates rates, however, suggest that while the programs are mapping more memory to
align dynamic allocations, little of the actual memory is being touched. In most experiments, the data
TLB miss rates decreased. Other virtual memory impacts, e.g., page fault rates, were not measured,
but given the small absolute increases in program memory usage and the good performance of the data
TLB, they are expected to be small.

The last set of bars in Figure 6.17 labeled Simple, show the performance of the simple placement
algorithm. Simple placement employs a less complex, less expensive version of the cache-conscious
data placement algorithm. It performs active/inactive partitioning, placing all global variables within
a partition in natural order. Heap and stack variable allocations employ natural placement. As shown
in Figure 6.17, this placement strategy has significantly less stability than the more complex cache-
conscious data placement algorithm. The reduced performance is primarily due to increased conflict
misses. It appears that for consistent cache performance improvements on a direct-mapped cache, the

placement algorithm needs to consider how placement decisions affect inter-variable conflict.
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Program Insts | Loads | Stores Miss Ratio Mem Usage
I-cache | D-cache | D-TLB
Compress +0.00 | +0.00 | +0.00 +0.00 -1.97 -0.06 +8.14
Doduc +0.00 | +0.00 | +0.00 +0.00 -10.19 0.00 0.00
GCC +0.04 | +0.04 | +0.00 +0.00 -8.72 -0.02 +24.20
Ghostscript | +0.00 | +0.00 | +0.00 +0.00 -22.58 -0.06 +1.86
Go +0.08 | +0.05 | +0.01 +0.00 +1.76 -0.03 +4.74
MPEG_play | +0.00 | 40.02 | +0.00 +0.00 -0.27 -0.00 +1.85
Perl +0.16 | +0.14 | +0.15 +0.09 -5.59 -0.03 +7.14
Vortex +0.01 | 40.02 | +0.00 +0.01 -14.29 +0.01 40.03
YACR-2 +0.01 | +0.00 | +0.00 +0.00 -24.57 +0.00 +70.35

Table 6.4: Percent Change in Program Statistics after Cache-Conscious Data Placement.

6.5.3 Impact of Varied Cache Geometry

Since variable placement optimizations occur at compile time, the placement algorithm must optimize
cache performance for a single target cache geometry. This section examines the performance of
programs running on cache geometries other than the target cache geometry.

Figure 6.20 shows the performance of each program (optimized for execution on an 8k direct-
mapped cache) running on an 8k 2-way set-associative data cache. This configuration eliminates
many conflicts found in the direct-mapped cache of the experiments in Figure 6.17. Performance
improvements afforded by placement optimization is smaller than for the direct-mapped cache since
many of the conflict misses eliminated by cache-conscious data placement no longer exist in the set-
associative cache geometry. Simple placement fairs notably better in this configuration, performing
nearly as well as cache-conscious data placement for all programs, since the approach is no longer
strapped with conflict misses.

Figures 6.21 and 6.22 show the performance of the programs running on 2k and 32k direct-mapped
caches, respectively. Performance improvements vary more so the smaller cache configuration; perfor-
mance improvements for Doduc and Perl are lost, while the performance improvements for Ghostscript
and Go increased. This variation is likely due to conflict misses induced in the smaller cache sizes that
were not considered during variable placement. With a larger cache configuration, i.e., 32k, cache-
conscious data placement still improved cache performance for most programs, although improvements
were small due to better overall cache performance. The performance of Perl degraded on the larger
direct-mapped cache. This case may be the result of more conflict being eliminated (when increasing
the cache size) for natural placement than for cache-conscious data placement; the exact cause is still

under investigation.

6.5.4 Program Performance

Improvements in cache miss rate do not translate directly into program run-time improvements. The

impact the placement optimizations have on program performance is affected by the program’s overall
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Figure 6.20: Performance of Placement Algorithms — 8k 2-Way Set-Assoc. Cache.
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Figure 6.22: Performance of Placement Algorithms — 32k Direct-Mapped Cache.

cache performance and the processor’s ability to tolerate cache miss latency. A better measure of
program performance impacts requires a more detailed analysis. To gauge the performance of cache-
conscious data placement in the context of a realistic processor model and memory system, program
performance was examined running on the baseline in-order and out-of-order superscalar timing sim-
ulators detailed in Chapter 2.

Table 6.5 lists the baseline program performance (i.e., compiled with natural placement) on the
in-order and out-of-order issue simulators. The column, labeled Total Miss CPI, shows the total data
cache miss latency per instruction, tolerated or otherwise. For each processor model, the table gives the
CPI, and for the data cache miss latency the total exposed latency per instruction, the percent it is of
total CPI, and the percent of total miss latency CPI tolerated by the processor model. While the total
miss latency CPI is a sizeable fraction of the CPI for many of the programs, both processor models do
a fairly good job of tolerating the latency, with the out-of-order issue processor model tolerating more
cache miss latency for all the programs.

Figure 6.23 shows program speedups while running on the baseline in-order and out-of-order timing
simulators. Performance impacts are small for both models. All speedups were less than 6% for the
in-order issue processor, all less than 2% for the out-of-order issue processor. Performance for Go was
worse due to its poorer cache performance after cache-conscious data placement. Performance impacts

were small because both processors are tolerating much of the cache miss latency eliminated. Since



Program Total In-order Out-of-order
Miss CPI CPI Miss CPI CPI Miss CPI

Exposed | % CPI | % Tolerated Exposed | % CPI | % Tolerated
Compress 0.358 | 0.889 0.221 24.84 38.31 | 0.655 0.118 18.00 67.07
Doduc 0.113 | 1.131 0.041 3.60 63.97 | 0.905 0.015 1.60 87.19
GCC 0.112 | 0.901 0.050 5.53 55.51 | 0.763 0.034 4.45 69.68
Ghostscript 0.066 | 0.864 0.042 4.85 36.51 | 0.633 0.028 4.41 57.70
Go 0.162 | 1.153 0.087 7.57 46.12 | 0.954 0.059 6.20 63.49
MPEG_play 0.330 | 1.021 0.188 18.42 43.01 | 0.729 0.136 18.62 58.87
Perl 0.181 1.091 0.068 6.24 62.39 | 0.944 0.043 4.59 76.06
Vortex 0.186 | 0.927 0.111 11.99 40.24 | 0.805 0.079 9.80 57.59
YACR-2 0.043 | 0.637 0.030 4.67 30.82 | 0.427 0.020 4.73 53.03

Table 6.5: Baseline

Program Performance.

0T
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the out-of-order issue processor has better latency tolerating capabilities, speedups are smaller. Figure
6.24 shows the percent reduction in the exposed data cache miss latency component. In this light,
performance impacts are much larger. The placement optimizations were able to eliminate much of
the exposed cache miss latency. For the in-order issue processor, many of the programs saw more
than a 30% reduction in exposed cache miss latency; reductions were less for the out-of-order issue

processor.

6.6 Related Work

Many parallels to this work can be found in software techniques developed for improving instruction
cache performance. Techniques such as basic block re-ordering [Dav95, Wu92, PH90], function grouping
[Wu92, PH90, Fer76, Fer74, HG71], and text ordering based on control structure [McF91] have all been
shown to significantly improve instruction cache performance. Like this work, the approaches usually
rely on profile information to guide heuristic algorithms in placing instructions to minimize instruction
cache conflicts, and maximize cache line utilization and block prefetch. Unlike this work, some of the
studies concentrate on virtual memory system performance, i.e. TLB miss and page fault rates. The
approaches presented in this paper would certainly extend to lower levels of the memory hierarchy as
well; this is a potential area for future exploration.

A number of peripheral works employ data relocation to improve data cache performance. Page
coloring [BLRC94, LBF92, Kes91] techniques have leveraged the memory mapping capability of virtual
memory to reduce conflicts in physically indexed caches. User-programmable cache set mappings [DS91]
have been proposed to provide the same benefits. Compiler-directed dimension extension [CL89] works
to relocate data within large arrays, giving opportunity to improve data cache performance when a
large array conflicts with itself. Data placement optimizations have been used to reduce false sharing in
shared memory multiprocessors [JE95]. Compiler-directed variable partitioning has been proposed as
an approach to reduce inter-variable interactions [Mue95] for the purpose of improving the predictability
of cache access latencies in real-time systems. The Scout operating system [MMO194] employs data
placement to reduce data cache conflict between active protocol stacks.

The approach used to name heap variables was adopted from [BZ93].

The history of the development of this work is relevant related work. The initial placement strategy
tried to fill the padding space created by variable alignment with other variables. By packing variables,
the data segment size could be reduced, sometimes by as much as 10%, with the thought that cache
blocks would be better utilized and cache performance would improve. It quickly became evident this
was a poor placement strategy, nearly all experiments resulted in an increase in cache misses. This
result led to the development and evaluation of random placement and the observation that natural

placement performs very well. Next, the active/inactive variable partitioning algorithm (i.e., the simple
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placement strategy in Section 6.5) was tried. This algorithm used profile information to improve cache
line utilization. While this algorithm performed well for some programs, others performed very poorly,
especially on direct-mapped caches due to increased inter-variable conflicts. It soon became evident
that any effective approach must also work to minimize conflict misses. This observation led to the
cache-conscious data placement algorithm described in this chapter. Initially, only global variable
placement was optimized, but this approach also lacked good stability due to occasional conflicts that
arose with stack and heap variables. The algorithms were then expanded to accommodate placement
of stack and heap variables as well, this produced the current generation algorithms which have been

shown to consistently improve cache performance for the targeted workloads and cache geometries.

6.7 Chapter Summary

Cache-conscious data placement was introduced as a software-based technique to improve data cache
performance by relocating variables in the virtual memory space. The approach employs data profiling
to characterize variable usage. Profile information then guides heuristic variable placement algorithms
in finding a variable placement solution that decreases predicted inter-variable conflict, and increases
predicted cache line utilization and block prefetch. The generated placement solution is implemented
using a modified linker and system libraries.

Four placement strategies were examined in detail using detailed timing simulation: natural, ran-
dom, cache-conscious data placement, and simple. Natural placement sets the bar high for artificial
placement measures. Compared to random placement, natural placement was found to have consis-
tently better cache performance. Programmers group logically related variables which results in natural
placements with good temporal and spatial locality between variables.

Cache-conscious data placement effectively improved data cache performance, eliminating more
than 10% of all misses for many of the programs tested. Cache performance degraded for only one
of the tested program, the result of poor summary profile information. Overall, summary profile
performance was excellent, with only slight improvements in placement performance when programs
were optimized and analyzed with the same input.

A simplified version of the placement algorithms was also evaluated. The simpler algorithm used
only reference densities (instead of profiles) and performed only active/inactive variable partitioning.
This placement strategy, while performing well for some programs, lost the consistent performance
improvements found with the more complex placement algorithm. The degradation for some programs
was due to lack of consideration during placement for conflict misses, suggesting that detailed profile
information and conflict-miss sensitive placement algorithms will be required for consistent performance
improvements, especially for direct-mapped caches.

Cache geometries were also varied to see what effect this had on a program that was optimized for
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another cache geometry. With the addition of associativity, much of the performance improvements
found with cache-conscious data placement were lost because conflict miss reductions were no longer
eliminated. With smaller cache sizes, cache performance often degraded due to conflict misses induced
but not considered by the placement algorithms. Larger cache sizes still saw consistent performance
improvements, although impacts were smaller due to the decreased miss rates for the larger caches.
Finally, the impact cache-conscious data placement had on exposed load latency was explored
through detailed timing simulation. Programs were simulated running on a 4-way superscalar processor
with one level of instruction and data cache memory. The latency tolerating capability of the processor
was varied by examining performance on simulators supporting in-order and out-of-order instruction
issue. Cache-conscious data placement was able to remove a large fraction of exposed miss latency
for many of the programs tested. However, program speedups were generally small, especially for the
out-of-order issue processor, since the processors were already tolerating a large fraction of data cache

miss latency.



109

Chapter 7

Conclusion

As processor demands quickly outpace memory, the performance of load instructions becomes an
increasingly critical component to good system performance. This thesis contributes four novel load
latency reduction techniques, each targeting a different component of load latency: address calculation,

data cache access, address translation, and data cache misses.

7.1 Thesis Summary

For many codes, especially integer codes with good cache performance, exposed address calculation
latencies account for a significant fraction of total execution time. This thesis introduces a pipeline
optimization, called fast address calculation, that permits effective address calculation to proceed in
parallel with data cache access, thereby eliminating the extra cycle required for address calculation.
The technique employs a simple circuit to quickly predict the portion of the effective address needed
to speculatively access the data cache. If the address is predicted correctly, the cache access completes
without an extra cycle for address calculation. If the address is mispredicted, the cache is accessed
again using the correct effective address. The predictor has minimal impact on cache access latency,
adding only a single OR operation before data cache access can commence. Prediction verification is
also very fast and decoupled from the cache access critical path, ensuring that pipeline control logic
impacts are minimal.

Detailed timing simulations of a 4-way in-order issue superscalar processor extended to support
fast address calculation found good speedups for all the programs tested. The experiments showed an
average speedup of 14% for the integer codes and 6% for the floating point codes. Simple software
support was also developed to improve prediction accuracy. Simulated performance with software
support improved the average speedup to 19% for the integer codes and 7.5% for the floating point
codes.

Address calculation latency, however, is at most one half of the latency of loads, leaving one or more
cycles of cache access latency exposed to extend execution critical paths and stall instruction issue.
This thesis further extends the latency reduction capability of fast address calculation by combining
it with an early-issue mechanism. The resulting pipeline designs are capable of reducing the latency

of load instructions by up to two cycles. For a pipeline with one cycle data cache access, loads can
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complete before reaching the execute stage of the pipeline, creating what is termed a zero-cycle load.
A zero-cycle load allows subsequent dependent instructions to issue unencumbered by load instruction
hazards, resulting in fewer pipeline stalls and increased overall performance.

Detailed evaluations using a 4-way in-order issue processor simulator extended to support zero-
cycle loads found an average speedup of 45% for the integer codes and 26% for the floating point
codes. Performance for the integer codes was nearly on par with programs running on an out-of-order
issue processor (without support for zero-cycle loads). Speedups on an out-of-order issue processor
simulator extended to support zero-cycle loads were less due to the latency tolerating capability of
the execution model. On architectures with few registers, the frequency of loads and their impact of
program performance increases significantly. Providing an 8 register architecture with limited zero-
cycle load support resulted in performance comparable to a 32 register architecture, suggesting that
the approach may be able to negate the impacts of too few architected registers.

In support of the proposed cache hit optimizations, this thesis presents four new high-bandwidth
address translation mechanisms. These new mechanisms feature better latency and area characteristics
than current TLB designs, providing architects with effective alternatives for keeping address transla-
tion off the critical path of loads. Two designs are borrowed from traditional high-bandwidth memory
design techniques, creating interleaved and multi-level TLB designs. In addition, two more designs
crafted specifically for high-bandwidth address translation are introduced. Piggyback ports are pro-
posed as a technique to exploit spatial locality in simultaneous translation requests, allowing accesses
to the same virtual memory page to combine their requests at the TLB access port. Pretranslation is
proposed as a technique for attaching translations to base register values, making it possible to reuse
a single translation many times.

Extensive simulation-based studies were performed to evaluate address translation designs using
the proposed high-bandwidth mechanisms. A number of designs show particular promise. Multi-level
TLBs with as few as eight entries in the upper-level TLB nearly achieve the performance of a TLB
with unlimited bandwidth. Piggyback ports combined with a lesser-ported TLB structure, e.g., an
interleaved or multi-ported TLB, also perform well. Pretranslation over a single-ported TLB performs
almost as well as a same-sized multi-level TLB with the added benefit of decreased access latency for
physically indexed caches.

Finally, this thesis examines a software-based variable placement optimization for reducing the
frequency of data cache misses. The approach, called cache-conscious data placement, uses profile-
guided heuristics to find variable placement solutions that decrease predicted inter-variable conflict,
and increase predicted cache line utilization and block prefetch. The generated placement solutions
are implemented partly at compile-time using a modified linker and partly at run-time with modified

system libraries.
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Various placement strategies were developed and compared to the performance of natural place-
ment (i.e., the naturally occurring layout of variables). Random placement performed consistently
worse than natural placement, revealing natural placement as an effective placement strategy that sets
the bar high for artificial placement measures. Cache-conscious data placement effectively improved
data cache performance, eliminating more than 10% of all misses for many of the programs tested.
A simplified and less expensive version of the placement algorithm (i.e., with reduced computation
and storage requirements) lost the stability of the more complex algorithm, suggesting that for con-
sistent performance improvements the more capable and expensive algorithm is required. Run-time
performance impacts were also examined for in-order and out-of-order issue processor models. Cache-
conscious data placement was able to remove a large fraction of exposed miss latency for many of the
programs tested. However, program speedups were generally small, especially for the out-of-order issue

processor, since the processors were already tolerating a large fraction of cache miss latency.

7.2 Future Directions

The work in this thesis could be extended in many ways. The following sections suggest a number of

promising directions to pursue.

7.2.1 Less-Speculative Fast Address Calculation

Fast address calculation uses carry-free addition to compute the set index portion of the effective
address computation. In some designs, it may be possible to account for some carries in the set index
computation after data cache access begins by steering the row decoders after cache access starts or
late-selecting the correct word from multiple cache rows.

Consider a simple example that highlights the first possibility: If a carry is generated into the set
index portion of the effective address computation, the resulting data cache row selection will be off by
at most one row. If the carry output of the block offset computation were used to steer the last level
of row decode, row selection and block offset carry generation could proceed in parallel. The design
would no longer incorrectly predict the wrong cache row if a carry were generated out of the block
offset computation. It may be possible to compute other carries in the set index computation and use
these carries to steer row decoding as well. The degree of which this may be done depends on the
specifics of the data cache design and implementation.

The second approach works by increasing the opportunities to late-select cache data. If a carry
cannot be computed prior to data cache row access, it may be possible to compute both possible
outcomes of the address computation, read both data cache rows, and late-select the data in the
column select logic using the outcome of the carry computation. A similar approach is employed in

carry-select adders [HP90].
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7.2.2 Combining Stateful and Stateless Address Predictors

Fast address calculation has a very predictable and easy to identify failure mode, i.e., loads that use
register+register mode addressing constitute nearly all of the prediction failures. These accesses are
the result of array accesses that the compiler cannot strength-reduce. Stateful address predictors, like
the load delta table [EV93], have been shown to work well on array accesses. It seems likely that
combining the two approaches could produce more accurate, albeit more expensive, predictor designs.

Similar hybrid approaches have worked well for branch prediction [ECP96].

7.2.3 Leveraging Address Prediction Information

A common mechanism used repeatedly in this thesis is address prediction. Fast address calculation
employs a stateless set index predictor, as do zero-cycle loads. Pretranslation predicts the next virtual
page address a base register will access. Reliable address prediction information could be used as
mechanism to improve the performance of a number of other pipeline processes, including cache block

prefetch, access/execute computation decomposition, and load/store disambiguation.

7.2.4 Additional Compiler Support for Zero-Cycle Loads

The two most common failure modes for zero-cycle loads are failed fast address calculations and reg-
ister conflicts (i.e., data hazards between unfinished instructions and the inputs of the zero-cycle
load). While software support was employed to improve the performance of fast address calculation,
no software support was available to reduce register conflicts. By increasing the apparent latency of
instructions that produce pointer values, the instruction scheduler would work to insert more instruc-
tions between generation of a pointer value and its first use by a load, thereby reducing the load’s
exposure to register conflicts. Similar approaches have been shown to work well for “AGI” (or late

execute) style pipelines [GM94].

7.2.5 Exposing Address Translation to the Compiler

The pretranslation technique described in Chapter 5 performed well, but overall worse than a same-
sized L1 TLB. The primary reason for this difference lies in the mechanism by which each design reuses
translations. The pretranslation design is only able to reuse a translation whenever a register pointer
is reused, whereas the multi-level TLB design is able to reuse a translation whenever an address is
reused. Since the latter case is more frequent, the L1 TLBs generally perform better than same-sized
pretranslation designs.

By exposing the inefficiencies of the pretranslation mechanism to the compiler, it should be able
to improve the performance of the approach. The compiler could mark instructions which create new

register pointers, allowing the processor to initiate pointer value translation when a new pointer value
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is created, rather than when it is first used by a load or store. In addition, simple modifications to the
compiler’s register allocation priorities (e.g., make pointer value spills more expensive than non-pointer

spills) would work to increase the lifetime of register pointers.

7.2.6 Improving Cache-Conscious Data Placement

While cache-conscious data placement gave fairly good performance improvements, it was shown that
a large portion of the misses caused by inter-variable interactions were unaffected. The following list
details modifications to the current approach that may improve the impact of cache-conscious data

placement:

e The current optimization framework favors conflict miss reduction, even at the expense of in-
troducing capacity misses. This effect appears to be the result of the ordering of the placement
algorithm phases. While the current phase ordering provided the best performance for this
framework, modifications to the algorithms to control phase interactions would likely result in
better performance. Phase interactions between register allocation and instruction scheduling

algorithms have been effectively controlled with heuristic methods [BEH91].

e The current optimization framework places all variables at compile time. While inexpensive and
simple to implement, the approach lacks the ability to adapt to a particular run of the program. A
challenging area of future exploration is run-time variable placement. The approach will require
a reliable and inexpensive mechanism to gauge whether a variable placement is a good one. Any
implementation would likely benefit from novel hardware and/or software support for profiling
and placing variables. Run-time placement techniques have already been shown to work well for

virtual memory page placement [BLRC94].

e The current placement algorithms targeted performance improvements for a user-specified fixed-
size target cache geometry. Performance improvements on other cache geometries were not as
impressive and in many cases stability was lost. Methods have been developed for virtual page
placement that optimize for multiple target cache geometries, e.g., Kessler’s hierarchical page
placement algorithm. Incorporating these approaches into the variable placement algorithm

would likely improve program performance over a range of cache geometries.

e The partitioning and grouping phases of variable placement could not be applied to heap variables,
resulting in many missed opportunities to improve the cache performance of heap variables. If
the placement optimizations were instead directed at the virtual memory system, the larger size
of virtual memory pages would permit heap variables to be candidates for all phases of variable

placement optimization.
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e The current profiling strategy uses profiles with fixed array and bucket sizes. While this approach
is simple to implement, memory limitations usually require profiles to be small, resulting in low
resolution profiles and poor quality profile information. Profile precision and memory demands
could both be improved through the use of P-quantile profiles. A P-quantile profile is a profile
with variable-size buckets which track the start and end points of where each 1/P of the samples
lie. One disadvantage of P-quantile profiles is that they require two passes over the sample
stream, however, P-quantile estimators [BZ93, JC85] have been shown to work well with only a
single pass. Alternatively, profiles could support progressively increasing buckets sizes like those

employed in the Paradyn parallel performance measurement tools [MCC*95].
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Appendix A

The SimpleScalar Architecture

Architecture Overview

The SimpleScalar architecture is derived from the MIPS-I ISA [KH92a]. The semantics are a superset

with the following notable differences:

e There are no architected delay slots, i.e., loads, stores, and control transfers do not execute the

following instruction.

e Loads and stores support two more addressing modes: indexed and auto-increment and auto-

decrement, for all data types.
e SQRT implements single- and double-precision floating point square roots.
e An extended 64-bit instruction encoding.

Table A.1 lists the architected registers in the SimpleScalar architecture, their hardware and soft-
ware (recognized by the assembler) names, and their description. The quantity and semantics of the
registers are identical to the MIPS-IV ISA.

Figure A.1 details the three instruction encodings. All instructions are 64-bits in length. The
register format is used for computational instructions. The immediate format supports the inclusion of
a 16-bit constant. The jump format supports specification of 24-bit jump targets. The register fields
are all 8 bits, supporting future extension of the register set to 256 integer and floating point registers.
Each instruction format has a fixed-location, 16-bit opcode field designed for fast instruction decoding.

The annote field is a 16-bit field that is written using annotations to instructions in the assembly
files. The annotation interface is useful for synthesizing new instructions without having to change
and recompile the assembler. Annotations are attached to the opcode, and come in two flavors: bit

and field annotations. A bit annotation, written as follows:
1lw/a $4,4($5)

The annotation /a specifies that the first bit of the annotation field should be set. Bit annotations /a

through /p are supported to set bits 0 through 15. Field annotations are written in the form:

1w/6:4(7) $4,4($5)
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Hardware Name | Software Name | Description

$0 $zero zero-valued source/sink
$1 $at reserved by assembler
$2-$3 $v0-$v1 fn return result regs
$4-87 $a0-$a3 fn argument value regs
$8-$15 $60-$t7 temp regs, caller saved
$16-$23 $s0-$s7 saved regs, callee saved
$25-$25 $t8-$t9 temp regs, caller saved
$26-$27 $k0-$k1 reserved by OS

$28 $gp global pointer

$29 $sp stack pointer

$30 $s8 saved regs, callee saved
$31 $ra return address reg

$hi $hi high result register

$lo $lo low result register
$£0-$£31 $£0-$£31 floating point registers
$fcc $fcc floating point condition code

Table A.1: SimpleScalar Architecture Register Definitions

16—annote 16-opcode 8-rs 8-rt  8-rd 8-ru/shamt

R - Register Format:

63 32 31 0
16—annote 16-opcode 8-rs 8-rt 16-imm
| — Immediate Format:
63 32 31 0
16—annote 16—-opcode 6—-unused 24—target
J = Jump Format:
63 32 31 0

Figure A.1: SimpleScalar Architecture Instruction Formats

This annotation sets the 3-bit field starting at bit 4 to bit 6 within the 16-bit annotation field to the

value 7.

Instruction Set Definition

This section lists all SimpleScalar instructions with their opcode, instruction and assembler formats,
and semantics. The semantics are expressed as a C-style expression utilizing the extended operators
and operands described in Table A.2. Operands not listed in Table A.2 refer to actual instruction fields
described in Figure A.1. For each instruction, the next PC value (NPC) defaults to the current PC

value plus 8 (CPC + 8) unless otherwise specified.



Operator/Operand Semantics

FS same as field RS

FT same as field RT

FD same as field RD

UIMM IMM field unsigned-extended to word value
IMM IMM field sign-extended to word value
OFFSET IMM field sign-extended to word value

CPC PC value of executing instruction

NPC next PC value

SET_NPC(V) Set next PC to value V

GPR(N) General purpose register N

SET_GPR(N,V) Set general purpose register N to value V
FPR_F(N) Floating point register N single-precision value
SET_FPR_F(N,V) Set floating point register N to single-precision value V
FPR_D(N) Floating point register N double-precision value
SET_FPR_D(N,V) Set floating point register N to double-precision value V
FPRL(N) Floating point register N literal word value
SET_FPR_L(N,V) Set floating point register N to literal word value V
HI High result register value

SET_HI(V) Set high result register to value V

LO Low result register value

SET_LO(V) Set low result register to value V
READ_SIGNED_BYTE(A) Read signed byte from address A
READ_UNSIGNED_BYTE(A) | Read unsigned byte from address A
WRITE_BYTE(V,A) Write byte value V at address A
READ_SIGNED_HALF(A) Read signed half from address A
READ_UNSIGNED_HALF(A) | Read unsigned half from address A
WRITE_HALF(V,A) Write half value V at address A
READ_WORD(A) Read word from address A
WRITE_-WORD(V,A) Write word value V at address A

TALIGN(T) Check target T is aligned to 8 byte boundary
FPALIGN(N) Check register N is wholly divisible by 2
OVER(X,Y) Check for overflow when adding X to Y
UNDER(X,Y) Check for overflow when subtraction Y from X
DIVO(V) Check for division by zero error with divisor V

Table A.2: Operator/Operand Semantics

Control Instructions

J: Jump to absolute address.
Opcode: 0x01
Instruction Format: J
Assembler Format: J target
Semantics: SET_NPC( (CPC&0x£0000000) | (TARGET<<2)))
JAL: Jump to absolute address and link.
Opcode: 0x02
Instruction Format: J
Assembler Format: JAL target
Semantics: SET_NPC ( (CPC&0x£0000000) | (TARGET<<2))
SET_GPR(31, CPC + 8))
JR: Jump to register address.
Opcode: 0x03
Instruction Format: R
Assembler Format: JR rs
Semantics: TALIGN(GPR(RS))
SET_NPC(GPR(RS))
JALR: Jump to register address and link.
Opcode: 0x04
Instruction Format: R
Assembler Format: JALR rs
Semantics: TALIGN(GPR(RS))

SET_GPR(RD, CPC + 8)
SET_NPC (GPR(RS))
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BEQ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BNE:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BLEZ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BGTZ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BLTZ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BGEZ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BC1F:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BC1T:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

Branch if equal.

0x05

I

BEQ rs,rt,offset

if (GPR(RS) == GPR(RT))
SET_NPC(CPC + 8 + (OFFSET << 2))

else
SET_NPC(CPC + 8)

Branch if not equal.

0x06

I

BEQ rs,rt,0ffset

if (GPR(RS) != GPR(RT))
SET_NPC(CPC + 8 + (OFFSET << 2))

else
SET_NPC(CPC + 8)

Branch if less than or equal to zero.
0x07
I
BLEZ rs,offset
if (GPR(RS) <= 0)

SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)

Branch if greater than zero.
0x08
I
BGTZ rs,offset
if (GPR(RS) > 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if less than zero.
0x09
I
BLTZ rs,offset
if (GPR(RS) < 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch if greater than or equal to zero.

0x0a
I
BGEZ rs,offset
if (GPR(RS) >= 0)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch on floating point compare false.

0x0b
I
BCIF offset
if ('FCC)
SET_NPC(CPC + 8 + (OFFSET << 2))
else
SET_NPC(CPC + 8)

Branch on floating point compare true.

0x0c
I
BCIT offset
if (FCC)
SET_NPC(CPC + 8 + (OFFSET << 2))
else

SET_NPC(CPC + 8)
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Load/Store Instructions

LB:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LB:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LBU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LBU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LH
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LH:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LHU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LHU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DLW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DLW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

L.S:
Opcode:

Instruction Format:

Load byte signed, displaced addressing.
0x20

I

LB rt,offset(rs) inc_dec

SET_GPR(RT, READ_SIGNED_BYTE (GPR (RS)+0FFSET))

Load byte signed, indexed addressing.

0xc0

R

LB rt,(rs+rd) inc_dec

SET_GPR(RT, READ_SIGNED_BYTE(GPR(RS)+GPR(RD)))

Load byte unsigned, displaced addressing.
0x22

I

LBU rt,offset(rs) inc_dec

SET.GPR(RT, READ_UNSIGNED _BYTE(GPR(RS)+0FFSET))

Load byte unsigned, indexed addressing.

Oxcl

R

LBU rt,(rs+rd) inc_dec

SET_GPR(RT, READ_UNSIGNED BYTE(GPR(RS)+GPR(RD)))

Load half signed, displaced addressing.
0x24

I

LH rt,offset(rs) inc_dec

SET_GPR(RT, READ_SIGNED_HALF (GPR (RS)+0FFSET))

Load half signed, indexed addressing.
0xc2

R
LH rt,(rs+rd) inc_dec
SET_GPR(RT, READ_SIGNED_HALF (GPR (RS)+GPR(RD)))

Load half unsigned, displaced addressing.
0x26

I

LHU rt,offset(rs) inc_dec

SET_GPR(RT, READ_UNSIGNED_HALF (GPR(RS)+0FFSET))

Load half unsigned, indexed addressing.

0xc3

R

LHU rt,(rs+rd) inc_dec

SET_GPR(RT, READ_UNSIGNED_HALF (GPR(RS)+GPR(RD)))

Load word, displaced addressing.
0x28

I

LW rt,offset(rs) inc_dec

SET_GPR(RT, READ_WORD(GPR(RS)+OFFSET))

Load word, indexed addressing.

Oxc4

R

LW rt,(rs+rd) inc_dec

SET_GPR(RT, READ_WORD(GPR(RS)+GPR(RD)))

Double load word, displaced addressing.
0x29

I

DLW rt,offset(rs) inc_dec

SET_GPR(RT, READ_WORD(GPR(RS)+OFFSET))
SET_GPR(RT+1, READ_WORD(GPR(RS)+0FFSET+4))

Double load word, indexed addressing.
Oxce

R

DLW rt,(rs+rd) inc_dec

SET_GPR(RT, READ_WORD(GPR(RS)+GPR(RD)))
SET_GPR(RT+1, READ_WORD(GPR(RS)+GPR(RD)+4))

Load word into floating point register file, displaced addressing.
0x2a
I



Assembler Format:
Semantics:

L.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

L.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

L.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LWL:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LWR:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SB:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SB:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SH:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SH:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DSW:
Opcode:

Instruction Format:

Assembler Format:

L.S ft,offset(rs) inc_dec
SET_FPR_L(FT, READ_WORD(GPR (RS)+0FFSET))

Load word into floating point register file, indexed addressing.
0xc5

R

L.S ft,(rs+rd) inc_dec

SET_FPR_L(RT, READ_WORD(GPR(RS)+GPR(RD)))

Load double word into floating point register file, displaced addressing.
0x2b

I

L.D ft,offset(rs) inc_dec

SET_FPR_L(FT, READ_WORD(GPR(RS)+OFFSET))

SET_FPR_L(FT+1, READ_WORD(GPR(RS)+OFFSET+4))

Load double word into floating point register file, indexed addressing.
Oxcf

R

L.D ft,(rs+rd) inc_dec

SET_FPR_L(RT, READ_WORD(GPR(RS)+GPR(RD)))

SET_FPR_L(RT+1, READ_WORD(GPR(RS)+GPR(RD)+4))

Load word left, displaced addressing.
0x2c

I

LWL offset(rs)

See ss.def or [KH92a| for a detailed description of this instruction’s semantics.

not support pre-/post- inc/dec.

Load word right, displaced addressing.
0x2d

I

LWR offset(rs)

See ss.def or [KH92a] for a detailed description of this instruction’s semantics.

not support pre-/post- inc/dec.

Store byte, displaced addressing.
0x30

I

SB rt,offset(rs) inc_dec
WRITE_BYTE(GPR(RT), GPR(RS)+OFFSET)

Store byte, indexed addressing.
0xc6

R

SB rt,(rs+rd) inc_dec

WRITE BYTE(GPR(RT), GPR(RS)+GPR(RD))

Store half, displaced addressing.
0x32

I

SH rt,offset(rs) inc_dec
WRITE_HALF(GPR(RT), GPR(RS)+OFFSET)

Store half, indexed addressing.
Oxc7

R

SH rt,(rs+rd) inc_dec
WRITE HALF (GPR(RT), GPR(RS)+GPR(RD))

Store word, displaced addressing.
0x34

1

SW rt,offset(rs) inc_dec
WRITE_WORD(GPR(RT), GPR(RS)+OFFSET)

Store word, indexed addressing.
0xc8

R

SW rt,(rs+rd) inc_dec
WRITE.WORD(GPR(RT), GPR(RS)+GPR(RD))

Double store word, displaced addressing.
0x35

I

DSW rt,offset(rs) inc_dec

127

NOTE: LWL does

NOTE: LWR does



Semantics:

DSW:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DSZ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DSZ:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

S.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

S.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

S.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

S.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SWL:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SWR:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

WRITE_WORD(GPR(RT), GPR(RS)+OFFSET)
WRITE_WORD(GPR(RT+1), GPR(RS)+0FFSET+4)

Double store word, indexed addressing.
0xd0

R

DSW rt,(rs+rd) inc_dec
WRITE_WORD(GPR(RT), GPR(RS)+GPR(RD))
WRITE_WORD(GPR(RT+1), GPR(RS)+GPR(RD)+4)

Double store zero, displaced addressing.
0x38

I

DSW rt,offset(rs) inc_dec

WRITE_WORD(O, GPR(RS)+OFFSET)
WRITE_WORD(O, GPR(RS)+0FFSET+4)

Double store zero, indexed addressing.
0xd1

R

DSW rt,(rs+rd) inc_dec

WRITE_WORD(QO, GPR(RS)+GPR(RD))
WRITE_WORD(O, GPR(RS)+GPR(RD)+4)

Store word from floating point register file, displaced addressing.
0x36

1

S.S ft,offset(rs) inc_dec

WRITE_WORD(FPRL(FT), GPR(RS)+0FFSET)

Store word from floating point register file, indexed addressing.
0xc9

R

S.S ft,(rs+rd) inc_dec

WRITE_WORD(FPR_L(FT), GPR(RS)+GPR(RD))

Store double word from floating point register file, displaced addressing.
0x37

I

S.D ft,offset(rs) inc_dec

WRITE_WORD(FPR_L(FT), GPR(RS)+0FFSET)

WRITE_WORD(FPR.L(FT+1), GPR(RS)+0FFSET+4)

Store double word from floating point register file, indexed addressing.
0xd2

R

S.D ft,(rs+rd) inc_dec

WRITE_WORD(FPR_L(FT), GPR(RS)+GPR(RD))

WRITE_WORD(FPR_L(FT+1), GPR(RS)+GPR(RD)+4)

Store word left, displaced addressing.
0x39

I

SWL rt,offset(rs)

See ss.def or [KH92a] for a detailed description of this instruction’s semantics.

not support pre-/post- inc/dec.

Store word right, displaced addressing.
0x3a

I

SWR rt,offset(rs)

See ss.def or [KH92a] for a detailed description of this instruction’s semantics.

not support pre-/post- inc/dec.

Integer Instructions

ADD:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ADDI:
Opcode:

Instruction Format:

Add signed (with overflow check).
0x40

R

ADD rd,rs,rt

OVER(GPR(RT) , GPR(RT))

SET_GPR(RD, GPR(RS) + GPR(RT))

Add immediate signed (with overflow check).
0x41
I

NOTE: SWL does

NOTE: SWR does



Assembler Format:
Semantics:

ADDU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ADDIU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SUB:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SUBU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MULT:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MULTU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DIV:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DIVU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MFHI:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MTHI:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MFLO:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MTLO:

ADDI rd,rs,rt
OVER (GPR(RS) , IMM)
SET_GPR(RT, GPR(RS) + IMM)

Add unsigned (no overflow check).
0x42

R

ADDU rd,rs,rt

SET_GPR(RD, GPR(RS) + GPR(RT))

Add immediate unsigned (no overflow check).

0x43

I
ADDIU rd,rs,rt
SET_GPR(RT, GPR(RS) + IMM)

Subtract signed (with underflow check).
0x44

R

SUB rd,rs,rt

UNDER (GPR(RS) ,GPR(RT))

SET_GPR(RD, GPR(RS) - GPR(RT))

Subtract unsigned (without underflow check).

0x45

R
SUBU rd,rs,rt
SET_GPR(RD, GPR(RS) - GPR(RT))

Multiply signed.

0x46

R

MULT rs,rt

SET_HI((RS * RT) / (1<<32))
SET_LO((RS #* RT) % (1<<32))

Multiply unsigned.
0x47

R

MULTU rs,rt
SET_HI(((unsigned)RS*(unsigned)RT)/(1<<32))
SET_LO(((unsigned)RS* (unsigned)RT)%(1<<32))

Divide signed.

0x48

R

DIV rs,rt

DIVO(GPR(RT))
SET_LO(GPR(RS) / GPR(RT))
SET_HI(GPR(RS) % GPR(RT))

Divide unsigned.

0x49

R

DIVU rs,rt

DIVO(GPR(RT))
SET_LO((unsigned)GPR(RS)/(unsigned)GPR(RT))
SET_HI((unsigned)GPR(RS)%(unsigned)GPR(RT))

Move from HI register.
Ox4a

R

MFHI rd

SET_GPR(RD, HI)

Move to HI register.
0x4b

R

MTHI rs
SET_HI(GPR(RS))

Move from LO register.
Ox4c

R
MFLO rd
SET.GPR(RD, LO)

Move to LO register.



Opcode:

Instruction Format:

Assembler Format:
Semantics:

AND:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ANDI:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

OR:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ORI
Opcode:

Instruction Format:

Assembler Format:
Semantics:

XOR:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

XORI:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

NOR:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SLL:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SLLV:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SRL:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SRLV:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SRA:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SRAV:
Opcode:

0x4d
R
MTLO rs

SET_LO(GPR(RS))

Logical AND
Ox4e

R

AND rd,rs,rt

SET_GPR(RD, GPR(RS) & GPR(RT))

Logical AND
0x4f
I

immediate.

ANDI rd,rt,imm
SET_GPR(RT, GPR(RS) & UIMM)

Logical OR.
0x50

R
OR rd,rs,rt

SET_GPR(RD, GPR(RS) | GPR(RT))

Logical OR immediate.

0x51
1

ORI rd,rt,imm
SET_GPR(RT, GPR(RS) | UIMM)

Logical XOR.

0x52
R
XOR rd,rs,rt

SET_GPR(RD, GPR(RS) ~ GPR(RT))

Logical XOR immediate.

0x53
I

ORI rd,rt,uimm
SET_GPR(RT, GPR(RS) ~ UIMM)

Logical NOR.

0x54

R

NOR rd,rs,rt
SET_GPR(RD,

(GPR(RS) | GPR(RT)))

Shift left logical.

0x55
R

SLL rd,rt,shamt
SET_GPR(RD, GPR(RT) << SHAMT)

Shift left logical variable.

0x56
R

SLLV rd,rt,rs

SET_GPR(RD, GPR(RT) << (GPR(RS) & Ox1f))

Shift right logical.

0x57
R

SRL rd,rt,shamt
SET_GPR(RD, GPR(RT) >> SHAMT)

Shift right logical variable.

0x58
R

SRLV rd,rt,rs

SET_GPR(RD, GPR(RT) << (GPR(RS) & Ox1f))

Shift right arithmetic.

0x59
R

SRA rd,rt,shamt

SET_GPR(RD, SEX(GPR(RT) >> SHAMT, 31 - SHAMT))

Shift right arithmetic variable.

0x59

130



Instruction Format:

Assembler Format:
Semantics:

SLT:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SLTI:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SLTU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SLTIU:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

Floating Point

ADD.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ADD.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SUB.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SUB.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MUL.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

R
SRAV rd,rt,rs

SET_GPR(RD, SEX(GPR(RT) >> SHAMT, 31 - (GPR(RD) & Ox1f)))

Set register if less than.

0x5b

R

SLT rd,rs,rt

SET_GPR(RD, (GPR(RS) < GPR(RT)) 7 1 : 0)

Set register if less than immediate.
0x5c¢

I

SLTI rd,rs,imm

SET_GPR(RD, (GPR(RS) < IMM) ? 1 : O0)

Set register if less than unsigned.
0x5d

R

SLTU rd,rs,rt

SET_GPR(RD, ((unsigned)GPR(RS)<(unsigned)GPR(RT)) 7 1 :

Set register if less than unsigned immediate.
0x5d

I

SLTIU rd,rs,imm

SET_GPR(RD, ((unsigned)GPR(RS)<(unsigned)GPR(RT)) 7 1 :

Instructions

Add floating point, single precision.
0x70

R

ADD.S fd,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

SET_FPR_F(FD, FPR_F(FS) + FPRF(FT)))

Add floating point, double-precision.
0x71

R

ADD.D f{d,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

SET_FPR.D(FD, FPRD(FS) + FPRD(FT)))

Subtract floating point, single precision.
0x72

R
SUB.S fd,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

SET_FPR_F(FD, FPR_F(FS) — FPR_F(FT)))

Subtract floating point, double precision.
0x73

R

SUB.D f{d,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

SET_FPR.D(FD, FPRD(FS) - FPRD(FT)))

Multiply floating point, single precision.
0x74

R

MUL.S fd,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

SET_FPR_F(FD, FPRF(FS) * FPRF(FT)))

0)

0)



MUL.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DIV.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

DIV.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ABS.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

ABS.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MOV.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MOV.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

NEG.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

NEG.D:
Opcode:

Instruction Format:

Assembler Format:

Multiply floating point, double precision.
0x75

R

MUL.D fd,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

SET_FPR.D(FD, FPRD(FS) * FPRD(FT)))

Divide floating point, single precision.
0x76

R

DIV.S fd,fs,ft

FPALIGN(FD)

FPALIGN(FS)

FPALIGN(FT)

DIVO(FPR_F(FT))

SET_FPR_F(FD, FPR_F(FS) / FPRF(FT)))

Divide floating point, double precision.
0x77

R

DIV.D fd,fs,ft

FPALIGN (FD)

FPALIGN(FS)

FPALIGN (FT)

DIVO(FPRD(FT))

SET_FPRD(FD, FPRD(FS) / FPRD(FT)))

Absolute value, single precision.
0x78

R

ABS.S fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_F(FD, fabs((double)FPR.F(FS))))

Absolute value, double precision.
0x79

R

ABS.D fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_ D(FD, fabs(FPRD(FS))))

Move floating point value, single precision.
0x7a

R

MOV.S fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_F(FD, FPR_F(FS))

Move floating point value, double precision.

0x7b

R

MOV.D fd,fs
FPALIGN(FD)

FPALIGN(FS)
SET_FPR.D(FD, FPRD(FS))

Negate floating point value, single precistion.

0x7c

R

NEG.S fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_F(FD, —-FPR_F(FS))

Negate floating point value, double precistion.

0x7d
R
NEG.D fd,fs

132



Semantics:

CVT.S.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

CVT.S.W:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

CVT.D.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

CVT.D.W:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

CVT.W.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

CVT.W.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

C.EQ.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

C.EQ.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

C.LT.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

FPALIGN(FD)
FPALIGN(FS)
SET_FPRD(FD, -FPRD(FS))

Convert double precision to single precision.

0x80

R

CVT.S.D fd,fs
FPALIGN(FD)

FPALIGN(FS)

SET_FPR.D(FD, -FPR.D(FS))

Convert integer to single precision.
0x81

R

CVT.S.W f{d,fs

FPALIGN (FD)

FPALIGN(FS)

SET_FPR_F(FD, (float)FPR.L(FS))

Convert single precision to double precision.

0x82

R

CVT.D.S fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR.D(FD, (double)FPR.F(FS))

Convert integer to double precision.

0x83

R

CVT.D.W fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_D(FD, (double)FPR_L(FS))

Convert single precision to integer.
0x84

R

CVT.W.S fd,fs

FPALIGN (FD)

FPALIGN(FS)

SET_FPR_L(FD, (long)FPR.F(FS))

Convert double precision to integer.

0x85

R

CVT.W.D fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_L(FD, (long)FPRD(FS))

Test if equal, single precision.
0x90

R

C.EQ.S fs,ft

FPALIGN(FS)

FPALIGN(FT)

SET_FCC(FPR_F(FS) == FPRF(FT))

Test if equal, double precision.
0x91

R

C.EQ.D fs,ft

FPALIGN(FS)

FPALIGN(FT)

SET_FCC(FPR_D(FS) == FPRD(FT))

Test if less than, single precision.
0x92

R

C.LT.S fs,ft

FPALIGN(FS)

FPALIGN(FT)

SET_FCC(FPR_F(FS) < FPR_F(FT))

133



C.LT.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

C.LE.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

C.LE.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SQRT.S:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SQRT.D:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

Miscellaneous

NOP:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

SYSCALL:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

BREAK:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

LUI:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MFC1:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

MTC1:
Opcode:

Instruction Format:

Assembler Format:
Semantics:

Test if less than, double precision.
0x93

R

C.LT.D fs,ft

FPALIGN(FS)

FPALIGN(FT)

SET_FCC(FPR_D(FS) < FPRD(FT))

Test if less than or equal, single precision.
0x94

R

C.LE.S fs,ft

FPALIGN(FS)

FPALIGN(FT)

SET_FCC(FPR_F(FS) <= FPRF(FT))

Test if less than or equal, double precision.
0x95

R

C.LE.D fs,ft

FPALIGN(FS)

FPALIGN(FT)

SET_FCC(FPR_D(FS) <= FPRD(FT))

Square root, single precision.
0x96

R

SQRT'.S fd,fs

FPALIGN(FD)

FPALIGN(FS)

SET_FPR_F(FD, sqrt((double)FPRF(FS)))

Square root, double precision.
0x97

R

SQRT.D fd,fs

FPALIGN (FD)

FPALIGN(FS)

SET_FPR.D(FD, sqrt(FPR.D(FS)))

Instructions

No operation.
0x00

R

NOP

System call.
0xa0

R
SYSCALL
See Section A.

Declare a program error.
Oxal

I

BREAK uimm

Actions are simulator-dependent. Typically, an error message is printed and abort() is called.

Load upper immediate.
Oxa2

I

LUI uimm

SET_GPR(RT, UIMM << 16)

Move from floating point to integer register file.
Oxa3

R

MFC1 rt,fs

SET.GPR(RT, FPR.L(FS))

Move from integer to floating point register file.
Oxab

R
MTC1 rt,fs
SET FPR_L(FS, GPR(RT))



135
System Call Definitions

This section lists all system calls supported by the simulators with their system call code (syscode),
interface specification, and appropriate POSIX Unix reference. Systems calls are initiated with the
SYSCALL instruction. Prior to execution of a SYSCALL instruction, register $v0 should be loaded
with the system call code. The arguments of the system call interface should be loaded into registers
$a0 — $a3 in the order specified by the system call interface prototype, e.g., for read(int fd, char *buf,

int nbyte), 0x03 is loaded into $v0, £d is loaded into $a0, buf into $al, and nbyte into $a2.

EXIT: Exit process.
Syscode: 0x01
Interface: void exit(int status);
Semantics: See exit(2).

READ: Read from file to buffer.
Syscode: 0x03
Interface: int read(int fd, char *buf, int nbyte);
Semantics: See read(2).

WRITE: Write from a buffer to a file.
Syscode: 0x04
Interface: int write(int fd, char *buf, int nbyte);
Semantics: See write(2).

OPEN: Open a file.
Syscode: 0x05
Interface: int open(char *fname, int flags, int mode);
Semantics: See open(2).

CLOSE: Close a file.
Syscode: 0x06
Interface: int close(int fd);
Semantics: See close(2).

CREAT: Create a file.
Syscode: 0x08
Interface: int creat(char *fname, int mode);
Semantics: See creat(2).

UNLINK: Delete a file.
Syscode: 0x0a
Interface: int unlink(char *fname);
Semantics: See unlink(2).

CHDIR: Change process directory.
Syscode: 0x0c
Interface: int chdir(char #*path);
Semantics: See chdir(2).

CHMOD: Change file permissions.
Syscode: 0x0f
Interface: int chmod(int *fname, int mode);
Semantics: See chmod(2).

CHOWN: Change file owner and group.
Syscode: 0x10
Interface: int chown(char *fname, int owner, int group);
Semantics: See chown(2).

BRK: Change process break address.
Syscode: 0x11
Interface: int brk(long addr);
Semantics: See brk(2).

LSEEK: Move file pointer.
Syscode: 0x13
Interface: long lseek(int fd, long offset, int whence);
Semantics: See lseek(2).

GETPID: Get process identifier.
Syscode: 0x14
Interface: int getpid(void);



Semantics:

GETUID:
Syscode:
Interface:
Semantics:

ACCESS:
Syscode:
Interface:
Semantics:

STAT:

Syscode:
Interface:

Semantics:

LSTAT:
Syscode:
Interface:
Semantics:

DUP:
Syscode:
Interface:
Semantics:

PIPE:
Syscode:
Interface:
Semantics:

GETGID:
Syscode:
Interface:
Semantics:

IOCTL:
Syscode:
Interface:
Semantics:

FSTAT:
Syscode:
Interface:
Semantics:

See getpid(2).

Get user identifier.
0x18

int getuid(void);
See getuid(2).

Determine accessibility of a file.
0x21

int access(char *fname, int mode);
See access(2).

Get file status.

0x26

struct stat

{
short st_dev;
long st_ino;
unsigned short st_mode;
short stnlink;
short st_uid;
short st_gid;
short st _rdev;
int st_size;
int st_atime;
int st_sparel;
int stmtime;
int st_spare2;
int st_ctime;
int st_spare3;
long st _blksize;
long st_blocks;
long st_gennum;
long st_spared;

}s

int stat(char *fname, struct stat *buf);

See stat(2).

Get file status (and don’t dereference links).
0x28
int lstat(char *fname, struct stat *buf);

See Istat(2).

Duplicate a file descriptor.
0x29

int dup(int fd);

See dup(2).

Create an interprocess communication channel.

0x2a
int pipe(int £d[2]);
See pipe(2).

Get group identifier.
0x2f

int getgid(void);
See getgid(2).

Device control interface.
0x36
int ioctl(int fd, int request, char *arg);

See ioctl(2).

Get file descriptor status.

0x3e

int fstat(int fd, struct stat *buf);
See fstat(2).

GETPAGESIZE: Get page size.

Syscode:
Interface:
Semantics:

0x40
int getpagesize(void);

See getpagesize(2).

GETDTABLESIZE: Get file descriptor table size.

Syscode:
Interface:
Semantics:

DUP2:
Syscode:

0x59
int getdtablesize(void);
See getdtablesize(2).

Duplicate a file descriptor.
0x5a
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Interface: int dup2(int fdi, int £d2);
Semantics: See dup2(2).

FCNTL: File control.
Syscode: 0x5¢
Interface: int fcntl(int fd, int cmd, int arg);
Semantics: See fcntl(2).

SELECT: Synchronous I/O multiplexing.
Syscode: 0x5d
Interface: int select (int width, fd_set *readfds,
fd_set *writefds, fd set *exceptfds,
struct timeval *timeout);
Semantics: See select(2).

GETTIMEOFDAY: Get the date and time.
Syscode: 0x74
Interface: struct timeval {
long tv_sec;
long tv_usec;
+s
struct int {
timezone tz_minuteswest;
int tz_dsttime;
}s
int gettimeofday(struct timeval *tp,
struct timezone *tzp);
Semantics: See gettimeofday(2).

WRITEV: Write output, vectored.
Syscode: 0x79

Interface: int writev(int fd, struct iovec *iov, int cnt);

Semantics: See writev(2).

UTIMES: Set file times.
Syscode: 0x8a
Interface: int utimes(char *file, struct timeval *tvp);
Semantics: See utimes(2).

GETRLIMIT: Get maximum resource consumption.
Syscode: 0x90
Interface: int getrlimit(int res, struct rlimit *rlp);
Semantics: See getrlimit(2).

SETRLIMIT: Set maximum resource consumption.
Syscode: 0x91
Interface: int setrlimit(int res, struct rlimit *rlp);
Semantics: See setrlimit(2).
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Appendix B

Detailed Results

Continued on next page.



Multi-ported Multi-level /Pretranslated Interleaved Piggybacked

[ Program T4IPC| T4] T2] T1 Mi6 [ MB8][] M4] P8 I8 | 4] X4]| PB2 ]| PBl | I4/PB
Compress 1.962 | 1.000 | 0.941 | 0.683 | 0.908 | 0.891 | 0.871 | 0.953 | 0.879 | 0.861 | 0.862 | 0.998 | 0.943 0.994
Doduc 1.757 | 1.000 | 0.962 | 0.848 | 1.000 | 0.994 | 0.985 | 0.984 | 0.935 | 0.929 | 0.934 | 0.997 | 0.974 0.996
Espresso 2.900 | 1.000 | 0.934 | 0.699 | 1.000 | 1.000 | 0.981 | 0.983 | 0.893 | 0.868 | 0.874 | 0.994 | 0.916 0.986
GCC 1.869 | 1.000 | 0.910 | 0.660 | 1.000 | 0.977 | 0.925 | 0.990 | 0.883 | 0.857 | 0.851 | 0.990 | 0.888 0.984
Ghostscript 2.178 | 1.000 | 0.959 | 0.819 | 0.999 | 0.990 | 0.972 | 0.943 | 0.931 | 0.921 | 0.954 | 0.999 | 0.974 0.989
MPEG _play 2.822 | 1.000 | 0.908 | 0.692 | 0.958 | 0.937 | 0.850 | 0.880 | 0.876 | 0.846 | 0.843 | 0.972 | 0.865 0.980
Perl 1.434 | 1.000 | 0.937 | 0.734 | 0.997 | 0.972 | 0.925 | 0.976 | 0.939 | 0.905 | 0.906 | 0.992 | 0.904 0.983
TFFT 1.790 | 1.000 | 0.957 | 0.847 | 0.991 | 0.989 | 0.986 | 1.000 | 0.954 | 0.950 | 0.946 | 0.990 | 0.969 0.989
Tomcatv 2.721 | 1.000 | 0.960 | 0.787 | 1.000 | 0.994 | 0.955 | 0.908 | 0.935 | 0.934 | 0.974 | 0.998 | 0.965 0.996
Xlisp 2.523 | 1.000 | 0.876 | 0.551 | 0.999 | 1.000 | 0.972 | 0.987 | 0.834 | 0.806 | 0.815 | 0.992 | 0.861 0.986
[ RTW Avg |  2.094 | 1.000 | 0.940 | 0.767 [ 0.994 | 0.988 | 0.965 | 0.972 [ 0.916 [ 0.902 | 0.909 [ 0.993 [ 0.939 | 0.990 |

Table B.1: Relative Performance on Baseline Simulator. Results shown are run-time weighted average IPCs normalized to the performance of design
T4. All experiments were run on an 8-way out-of-order issue processor simulator with 32 registers and 4k pages.
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Fully-Associative Set-Associative (128 entries)

[ Program 4 entries | 8 entries | 16 entries | 32 entries | 64 entries | 128 entries | 8-way | 16-way | 32-way | 64-way
Compress 18.8 16.0 13.4 9.8 4.0 0.0 0.0 0.0 0.0 0.0
Doduc 7.7 3.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Espresso 3.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GCC 11.5 3.7 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Ghostscript 8.0 3.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0
MPEG _play 37.7 14.4 12.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Perl 12.8 5.4 1.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0
TFFT 23.3 5.3 0.1 0.1 0.1 0.1 2.7 0.1 0.1 0.1
Tomcatv 15.8 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Xlisp 4.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

[ RTW Avg | 13.8 | 4.6 ] 1.4 ] 0.2 ] 0.1 ] 00] 06 ] 0.0 | 0.0 ] 0.0 |

Table B.2: TLB miss rates. All values shown indicate percent of all references that miss. The row labeled RTW Avg is the run-time weighted average miss
rate over all the benchmarks (weighted by the run-time of configuration T4). The 4, 8, and 16 entry TLBs are managed with LRU replacement, and the 32, 64,
and 128 entry TLBs are managed with random replacement.
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8-Way In-order Issue, 4k page 8-Way Out-of-Order Issue, 8k page

Insts | Loads | Stores Inst/Cycle (Ld+St)/Cycle Br Pred Inst/Cycle (Ld+St)/Cycle Br Pred

[ Program | (Mil) | (Mil.) | (Mil.) [Tssue | C’mit | Issue | C’mit | Rate (%) [ Issue [ C’mit | Issue | C’mit | Rate (%)
Compress 62.0 15.8 6.1 1.31 1.23 0.45 0.43 89.4 3.65 1.96 1.30 0.69 89.7
Doduc 1,375.1 330.4 130.2 1.01 0.97 0.33 0.32 86.4 2.16 1.76 0.71 0.59 86.7
Espresso 517.5 116.5 32.7 1.50 1.41 0.43 0.41 88.8 4.48 2.90 1.32 0.84 90.2
GCC 110.6 26.4 16.5 1.55 1.27 0.56 0.49 78.8 3.56 1.87 1.32 0.72 80.2
Ghostscript 625.2 109.1 53.3 1.36 1.30 0.35 0.33 94.3 2.76 2.18 0.73 0.55 93.3
MPEG_play 529.6 114.9 47.9 1.36 1.29 0.42 0.40 84.6 4.11 2.83 1.17 0.86 86.0
Perl 231.5 57.7 37.2 1.32 1.10 0.52 0.44 79.4 2.85 1.43 1.10 0.57 81.2
TFFT 959.8 136.6 89.4 1.17 1.04 0.27 0.24 84.5 2.70 1.79 0.62 0.42 79.0
Tomcatv 359.7 90.9 18.3 1.12 1.09 0.34 0.33 86.0 3.67 2.73 1.00 0.83 86.6
Xlisp 962.7 289.2 171.6 1.55 1.42 0.73 0.68 87.2 4.17 2.52 1.86 1.21 88.0

Table B.3: Program Execution Performance. Instruction, load, and store counts include only non-speculative operations. The columns labeled Issue and
C’mit indicate the average number of operations issued and committed per cycle, respectively.
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Multi-ported Multi-level /Pretranslated Interleaved Piggybacked
[ Program T4IPC| T4] T2] Ti Mi6 | M8[] M4] P8 I8 | ] X4 PB2 | PB1 | I4/PB
Compress 1.230 | 1.000 | 0.985 | 0.924 | 0.981 | 0.975 | 0.959 | 0.967 | 0.930 | 0.930 | 0.931 | 1.000 | 1.000 1.000
Doduc 0.966 | 1.000 | 0.992 | 0.945 | 0.997 | 0.981 | 0.937 | 0.960 | 0.964 | 0.963 | 0.974 | 0.996 | 0.994 0.995
Espresso 1.412 | 1.000 | 0.975 | 0.897 | 1.000 | 0.998 | 0.981 | 0.922 | 0.952 | 0.942 | 0.948 | 0.999 | 0.946 0.988
GCC 1.273 | 1.000 | 0.980 | 0.902 | 0.995 | 0.975 | 0.928 | 0.946 | 0.936 | 0.931 | 0.934 | 0.999 | 0.985 0.996
Ghostscript 1.303 | 1.000 | 0.992 | 0.952 | 0.998 | 0.984 | 0.961 | 0.964 | 0.961 | 0.959 | 0.961 | 1.000 | 0.993 0.995
MPEG _play 1.286 | 1.000 | 0.984 | 0.885 | 0.951 | 0.937 | 0.859 | 0.941 | 0.958 | 0.949 | 0.957 | 0.992 | 0.919 0.998
Perl 1.098 | 1.000 | 0.986 | 0.929 | 0.992 | 0.972 | 0.936 | 0.958 | 0.959 | 0.949 | 0.966 | 0.999 | 0.987 0.994
TFFT 1.040 | 1.000 | 0.991 | 0.983 | 0.999 | 0.996 | 0.968 | 0.984 | 0.984 | 0.977 | 0.982 | 1.000 | 0.992 1.000
Tomcatv 1.094 | 1.000 | 1.000 | 0.972 | 1.000 | 1.000 | 0.931 | 0.951 | 0.995 | 0.994 | 0.904 | 1.000 | 0.976 0.999
Xlisp 1.419 | 1.000 | 0.975 | 0.893 | 1.000 | 0.992 | 0.936 | 0.988 | 0.937 | 0.937 | 0.941 | 0.999 | 0.994 1.000
RTW Avg | 1.156 | 1.000 | 0.988 | 0.937 [ 0.994 [ 0.984 | 0.935 | 0.959 [ 0.963 [ 0.959 | 0.960 | 0.998 [ 0.982 [ 0.997

Table B.4: Relative Performance with In-order Issue.
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Multi-ported Multi-level/Pretranslated Interleaved Piggybacked
| Program T4-TPC | T4 | T2 | T1 M16 | M8 | M4 | P8 18 | 14 | X4 PB2 | PB1 | I4/PB
Compress 1.962 | 1.000 | 0.941 | 0.682 | 0.928 | 0.900 | 0.874 | 0.955 | 0.879 | 0.833 | 0.805 | 0.998 | 0.944 0.992
Doduc 1.756 | 1.000 | 0.991 | 0.867 | 1.000 | 1.000 | 1.000 | 0.997 | 0.959 | 0.944 | 0.944 | 1.000 | 0.996 0.997
Espresso 2.899 | 1.000 | 0.934 | 0.699 | 0.997 | 1.000 | 1.000 | 0.984 | 0.885 | 0.863 | 0.868 | 1.000 | 0.952 0.996
GCC 1.868 | 1.000 | 0.911 | 0.660 | 1.000 | 0.990 | 0.939 | 0.992 | 0.873 | 0.847 | 0.844 | 0.992 | 0.891 0.982
Ghostscript 2.179 1.000 | 0.959 | 0.819 | 0.999 | 0.994 | 0.978 | 0.970 | 0.941 0.925 | 0.935 | 0.999 | 0.987 0.997
MPEG_play 2.827 | 1.000 | 0.907 | 0.691 | 0.978 | 0.974 | 0.872 | 0.898 | 0.875 | 0.852 | 0.849 | 0.994 | 0.886 1.000
Perl 1.435 1.000 | 0.936 | 0.733 1.000 | 0.980 | 0.933 | 0.990 | 0.939 | 0.914 | 0.921 | 0.993 | 0.907 0.981
TFFT 1.792 | 1.000 | 0.957 | 0.846 | 0.991 | 0.988 | 0.987 | 1.000 | 0.953 | 0.934 | 0.933 | 0.990 | 0.968 0.996
Tomcatv 2.734 | 1.000 | 0.958 | 0.783 | 1.000 | 0.992 | 0.959 | 0.943 | 0.939 | 0.937 | 0.972 | 0.994 | 0.987 0.997
Xlisp 2.523 | 1.000 | 0.875 | 0.551 | 0.999 | 0.999 | 0.977 | 0.989 | 0.839 | 0.707 | 0.707 | 0.992 | 0.862 0.969
[RTW Avg | 2.095 | 1.000 | 0.948 | 0.772 | 0.996 | 0.992 | 0.975 | 0.982 | 0.924 | 0.890 | 0.893 | 0.996 [ 0.952 | 0.992
Table B.5: Relative Performance with 8k Pages.
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8-Way Out-of-order Issue, 8 int/8 fp registers

Insts | Loads | Stores Inst/Cycle (Ld+St)/Cycle Br Pred
Program (Mil.) | (Mil.) | (Mil.) [ Issue | C’mit | Issue [ C’mit [ Rate (%)
Compress 72.9 18.6 6.1 3.64 2.12 1.22 0.72 90.2
Doduc 1,616.4 457.1 227.0 2.35 1.93 0.97 0.82 86.4
Espresso 621.1 182.2 65.1 4.46 3.38 1.78 1.33 92.5
GCC 119.5 33.1 19.8 3.64 1.96 1.57 0.87 80.8
Ghostscript 651.5 126.9 59.1 3.05 1.96 0.96 0.56 89.5
MPEG_play 704.3 225.1 101.6 4.31 2.80 1.83 1.30 81.1
Perl 241.0 61.6 42.4 2.86 1.46 1.23 0.63 81.4
TFFT 1,350.0 402.4 181.6 3.04 2.24 1.15 0.97 79.4
Tomcatv 1,969.8 355.3 131.7 5.47 5.44 1.35 1.35 89.3
Xlisp 946.6 280.0 165.3 4.22 2.59 1.87 1.20 89.3

Table B.6: Program Execution Performance.
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Multi-ported Multi-level /Pretranslated Interleaved Piggybacked
[ Program T4IPC|] T4] T2] Ti| Mi6] M8] M4] P8 8] 14] X4a| PB2] PBI [ 4/PB
Compress 2.120 [ 1.000 | 0.947 ] 0.698 | 0.932 [ 0.913 [ 0.887 [ 0.967 [ 0.900 [ 0.883 [ 0.888 ] 0.997 | 0.929 | 0.994
Doduc 1.930 [ 1.000 [ 0.948 [ 0.759 [ 0.999 [ 0.994 | 0.986 | 0.980 | 0.893 | 0.878 | 0.883 [ 0.997 [ 0.949 | 0.993
Espresso 3.383 | 1.000 | 0.841 | 0.540 | 1.000 | 0.997 [ 0.949 [ 0.815 | 0.814 | 0.728 | 0.731 | 0.964 | 0.799 | 0.946
GCC 1.956 | 1.000 | 0.885 [ 0.610 [ 1.000 | 0.979 | 0.924 | 0.890 | 0.855 | 0.827 | 0.819 [ 0.985 [ 0.857 | 0.980
Ghostscript 1.959 | 1.000 | 0.938 | 0.800 | 1.000 | 0.988 | 0.967 | 0.959 | 0.904 | 0.893 | 0.910 | 0.996 [ 0.938 | 0.983
MPEG _play 2.796 | 1.000 | 0.854 | 0.566 | 0.984 | 0.971 [ 0.922 | 0.910 [ 0.811 [ 0.749 | 0.742 [ 0.962 | 0.811 | 0.961
Perl 1.455 | 1.000 [ 0.927 [ 0.708 [ 1.000 | 0.977 | 0.936 | 0.941 | 0.938 | 0.896 | 0.893 [ 0.991 [ 0.897 | 0.983
TFFT 2.240 | 1.000 | 0.901 | 0.652 | 1.000 | 0.998 | 0.977 | 0.996 | 0.773 [ 0.754 | 0.759 | 1.000 | 0.874 | 0.958
Tomcatv 5.445 | 1.000 | 0.940 | 0.631 [ 1.000 | 0.998 [ 0.984 | 0.677 [ 0.723 | 0.710 | 0.713 | 0.998 | 0.879 | 0.974
Xlisp 2.590 | 1.000 | 0.869 | 0.543 [ 1.000 | 0.999 [ 0.964 | 0.890 [ 0.842 | 0.815 | 0.822 | 0.981 | 0.862 | 0.974
[ RTW Avg | 2.594 [ 1.000 | 0.912 [ 0.670 [ 0.998 | 0.992 [ 0.967 | 0.917 [ 0.837 | 0.811 [ 0.816 | 0.992 [ 0.892 | 0.975

Table B.7: Relative Performance with Fewer Registers (8 int/8 fp).
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