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Abstract

This dissertation introduces pre-execution, a novel technique for accelerating

sequential programs. Pre-execution directly attacks the instructions that cause

performance problems—mis-predicted branches and cache missing loads. In pre-

execution, future branch outcomes and load addresses are computed on the side

and the results are fed to the main program. In doing so, the main program is

spared from having to incur the full computation latencies of these instructions.

Pre-execution exploits out-of-order fetch and decoupling. Fetching and executing

only critical load and branch computations while skipping over all unrelated

instructions allows pre-execution to compute values faster than the main pro-

gram. Decoupling, doing so in a separate thread, isolates stalls that occur in these

computations so that they do not directly impact the main program thread.

This dissertation describes speculative data-driven multithreading (DDMT),

an implementation of pre-execution. DDMT implements the runtime component

of pre-execution—responsible for pre-executing computations and communicating

the results to the main program—as an extension to a superscalar processor. In

addition to using the single cache hierarchy to allow pre-executing computations

to prefetch for the main program, DDMT stores individual pre-executed instruc-

tion results in the shared physical register and then passes them one-by-one to



ii
the main program via a novel modification to register renaming called register

integration.

For DDMT’s setup component—responsible for finding load and branch com-

putations and conveying them to the runtime component—this dissertation intro-

duces an algorithm for automatically extracting performance-enhancing

computations from program traces. The algorithm evaluates a benefit-cost func-

tion over all candidate computations in a trace and chooses those that maximize

benefit (latency tolerance) while minimizing cost (execution overhead). The algo-

rithm is formulated to permit software, hardware, and hybrid implementations.

The dissertation includes a simulation-driven performance evaluation of

DDMT. Our results show that DDMT achieves 10% to 15% performance improve-

ments for general-purpose integer programs running on an aggressive baseline

processor with large caches, with the potential for greater improvements on likely

future processor designs. We conclude that pre-execution and DDMT are promis-

ing technologies that merit consideration for inclusion in future machines.
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Chapter 1

Introduction

This dissertation introduces pre-execution, a new paradigm for improving the

performance of sequential programs. It also introduces speculative data-driven

multithreading (DDMT), an implementation of pre-execution.

Performance degradation in sequential programs is primarily due to value

latency, the late availability of a value that directly or indirectly causes program

execution to stall. In the natural course of execution, all needed values are ulti-

mately computed. However, certain important values like branch outcomes and

the addresses of soon-to-be referenced but uncached data blocks are often needed

earlier than execution can supply them. Techniques for providing these values

quickly by predicting them from previous values are extremely useful [7, 11, 13,

17, 16, 27, 28, 33, 47, 51, 57, 61, 62, 64, 77]. However, their accuracies and cover-

ages are only about 95% and are unlikely to get much closer to 100% [34, 47]. The

approximately 5% of dynamic branches and loads whose outcomes and addresses

defy prediction are called performance degrading instances (PDIs). PDIs account
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for up to 50% of execution times of many sequential programs [104, 106]. The few

static instructions that are responsible for the majority of PDIs [1] are called

problem instructions (PIs) [106].

Pre-execution is a way of using actual program execution to obtain PDI values

in a timely manner. Pre-execution is motivated by the observation that only a

fraction of the program is required to generate any particular value. If this frac-

tion is small enough and if enough execution bandwidth is available, then the

latency of computing this value can be effectively hidden from the complete pro-

gram by executing—actually pre-executing—a parallel copy of this computation.

Because it executes fewer instructions, the copy initiates the high latency compo-

nent of the computation earlier than the complete program is able to. Because the

parallel copy and the main program are decoupled from one another, long laten-

cies in one do not induce stalls in the other. A pre-executing copy acts as a “perfor-

mance troubleshooter,” absorbing latencies so that they do not stall the complete

program whose performance is externally visible.

In addition to introducing and defining pre-execution, this dissertation also

describes an implementation of pre-execution called speculative data-driven mul-

tithreading (DDMT). DDMT implements pre-execution as a set of small exten-

sions to a dynamically scheduled superscalar processor.

This dissertation is organized into seven chapters. The goal of this chapter is

to motivate, introduce, and define both pre-execution and DDMT. We begin with a

brief argument for the need for the kind of parallelism pre-execution enhances:

instruction-level parallelism (ILP). We continue with a description of the incum-
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bent model for extracting ILP, the superscalar model, and its limitations. We then

introduce pre-execution as a technique for overcoming the limitations of the

superscalar model and its satellite technologies in fundamental ways. Finally, we

provide a high level overview of DDMT, our proposed implementation of pre-exe-

cution, pointing out its novel aspects. The last section of this chapter summarizes

the contributions of the dissertation and outlines the remaining chapters.

1.1  The Need for Implicit Instruction Level Parallelism (ILP)

The central role played by computers in every aspect of society has been

driven by the rapidly increasing performance of general purpose microprocessors.

Successive order-of-magnitude increases in processor performance—which

recently have occurred every six years or so—have enabled leaps in software

functionality and made the microprocessor into a ubiquitous commodity. The

charter of computer engineers is to ensure that performance continues to grow at

an adequate pace.

Microprocessor performance is a product of two factors: clock frequency and

parallelism—the execution of multiple useful operations per clock cycle. Semicon-

ductor technology—the continued miniaturization of CMOS devices—has driven

both. Device scaling produces faster individual transistors and more of them,

enabling higher clock frequencies and providing computer architects with more

raw materials with which to extract parallelism. Continued growth necessitates

an increased contribution from parallelism. Even at today’s frequencies, proces-

sors spend a significant fraction of their time waiting for data from memory.
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Increasing processor frequency will increase performance, but at a sublinear and

shrinking rate of return as the memory waiting time is not reduced. Parallelism

is needed both to make up for this decreased efficiency, by providing useful work

that may be overlapped with memory latency, and to further boost the perfor-

mance in its own right.

Parallelism can take many forms. An important form is the instruction level

parallelism (ILP) available in varying degrees in every sequential—not explicitly

parallel—piece of code. Enhanced ILP complements other granularities of paral-

lelism and is the primary way to improve the parallelism of sequential code. It is

the function of the microprocessor—potentially with help from software—to dis-

cover and exploit ILP, while giving the external appearance of sequential execu-

tion.

Parallelism and performance are not the only goals. Tightening constraints on

power consumption, area, design and verification complexity, and reliability have

shifted the research emphasis from ILP techniques that provide diminishing

returns or use special purpose hardware, to innovative solutions that enhance

ILP in fundamentally new ways while leveraging existing components. It is my

belief that pre-execution is such a technique.

1.2  Obstacles to Instruction Level Parallelism

Limit studies of sequential programs have shown that, theoretically, most

have sufficient inherent concurrency to sustain the parallel execution of over 20

instructions per cycle, even accounting for 100 cycle execution latencies that
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result from the use of realistic memory systems [90, 99]. However, for almost all

of these programs, most modern microprocessors cannot sustain useful levels of

parallelism that approach even one tenth of that amount.

This discrepancy is ultimately due to the von Neumann sequential program-

ming model. The structure of computations in a program imposes a partial order

on its instructions called the data-flow order. It is this partial order that defines

maximum concurrency. The sequential programming model imposes a total order,

called the control-flow order, on top of this partial order. The total-order of con-

trol-flow defines program state unambiguously at every instruction boundary,

giving the programmer an interface that supports repeatable executions and

allows him/her to reason about program behavior. Moreover, total-order (control-

flow) is often the only way to specify the partial order, which for non-functional

languages (most languages) is statically ambiguous. While the total order makes

for a convenient programming interface, its implementation restricts concur-

rency.

1.2.1  The Incumbent: The Dynamically-Scheduled Superscalar Model

Dynamic scheduling or out-of-order execution is the standard technique for

maximizing concurrency while implementing a sequential interface. An abstract

dynamically scheduled superscalar processor is shown in Figure 1.1. The proces-

sor slides a fixed-size window over a program’s dynamic instruction stream.

Instructions are sequenced (flow into the window) and retired (flow out of the

window) in program order. In-order retirement provides the external appearance
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of sequential execution. In-order sequencing establishes the correct data depen-

dences between instructions required to implement the meaning of the program.

Result buffering within the window allows instructions to execute out of program

order. Precise knowledge of data-dependence information facilitates the exploita-

tion of concurrency. Instructions that are known to be data-independent may exe-

cute in parallel. The earliest possible execution time of any instruction may be

determined precisely by simply monitoring the availability status of its input

dependence values. This same buffering even allows for renaming, a form of ver-

sioning that removes false dependences that are artifacts of the architectural

name spaces, exposing even more parallelism.

1.2.2  Limitations of the Superscalar Model

Processor performance is measured by retirement (outflow) throughput. A

processor can achieve peak performance if it can execute useful instructions—i.e.,

instructions that will ultimately be retired—at peak bandwidth every cycle. Per-

formance degrades when not enough ready-to-execute useful instructions are

Figure 1.1 Abstract dynamically-scheduled superscalar processor.

in-order retirementin-order sequencing
(inflow) (outflow)

out-of-order execution

instruction window (finite buffering)

oldest instruction
(head)

youngest instruction
(tail)

externally visible
instruction stream



7

available in a given cycle. The number of ready-to-execute useful instructions can

drop to sub-peak levels due to interruptions in the inflow of useful instructions.

There are two kinds of inflow interruptions and both are due to the sequential

programming model. Direct interruptions are caused by events that occur at the

sequencing end of the processor. The primary causes of direct interruptions are

instruction cache misses and branch mis-predictions. Instruction cache misses

stall inflow completely, while branch mis-predictions stall the inflow of useful

instructions. Branch mis-predictions are an artifact of the sequential pipeline

which implies that instructions be sequenced speculatively (i.e., before all prior

branches have executed and determined the actual dynamic path). The sequen-

tial data-dependence model means that any instruction sequenced after a mispre-

dicted branch is useless.

Indirect interruptions are caused by events that occur at the retirement end of

the processor. Indirect interruptions directly stall outflow. The finite size of the

window propagates the outflow stall backwards via back-pressure to create an

inflow stall. The primary cause of indirect interruptions are instructions with

long execution latencies, most commonly loads that miss in the data cache. In this

dissertation, we deal only with branch mis-predictions and data cache misses. We

ignore instruction cache misses as they are both infrequent in the programs we

study and not easily handled by our technique.

In-order sequencing poses another difficult problem. Ideally, execution should

take place in global data-driven order. However, execution order is constrained by

sequencing order, and sequencing order and global data-driven order rarely
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match. Since both sequencing and execution can only be performed with certain

bandwidth, the result is a window-restricted execution schedule which under-uti-

lizes execution bandwidth. In other words, in-order sequencing is not conducive

to high processor utilization. It delays some instructions that—for data-indepen-

dence reasons—could have been executed right away, while inserting others into

the window that—for data-dependence reasons—will not be executed for a long

time.

There are two apparent solutions. One is to create a machine with a very large

window. Such a machine would smooth temporary inflow stalls and dampen out-

flow stalls by removing back-pressure. There are several problems with this

approach. First, superscalar execution requires the implementation of several

highly-parallel search algorithms whose purpose is to find independent instruc-

tions to execute every cycle. The complexity and performance of these algorithms

degrades when they must examine many instructions in parallel. Second, and

more fundamentally, there is no point in filling a large window with useless

instructions. Larger windows necessitate speculating across more unexecuted

branches in order for sequencing to proceed. The sequential nature of control flow

speculation creates a geometrically decreasing probability that the instructions

sequenced using accumulated guesses are useful.

With the physical size of a superscalar processor apparently limited, a second

approach is to statically schedule instructions in a program to take full advan-

tage of whatever buffering and latency tolerance the window does provide. This

approach is useful and extremely important, but static instruction scheduling is
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limited by dependence analysis and no amount of scheduling can prevent stalls if

latencies are sufficiently long.

To summarize, processor performance degrades whenever the number of

unexecuted, ready-to-execute useful instructions drops below peak execution

bandwidth. Instances of this scenario are due to a combination of five factors. We

take the first three as given: (1) the von Neumann in-order retirement constraint,

(2) engineering constraints and diminishing control-speculation utility that

restrict the size of a practical window, and (3) fundamental limitations on com-

piler scheduling. We turn our attention to the last two: (4) inflow interruptions

due either directly to control mis-speculations or indirectly to long latencies of

realistic memory systems, and (5) low execution utilization due to the ordering

mismatch between data-driven execution and control-driven (in-order) sequenc-

ing.

1.2.3  Value Analytical Predictors and Problem Instructions

Inflow interruptions are due to value latency. Execution is the primary, golden

method for generating values. However, execution cannot generate certain val-

ues—branch outcomes and the addresses of needed data blocks that are not in

the cache—quickly enough to prevent the need for those values from causing

stalls.

Control-speculation and proactive management of the memory hierarchy

(prefetching) are popular techniques for hiding the two most common sources of

value latency—the pipeline and the memory system. The workhorses of control-
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speculation and prefetching are branch and address predictors, whose fundamen-

tal functions are to reduce the latency of branch outcomes and data addresses,

providing them faster than conventional execution is able to. Branch and address

prediction have been active subjects of research for a long time [7,11, 13, 16, 17,

27, 28, 33, 47, 51, 57, 61, 62, 64, 77]. Both have advanced to the point where val-

ues can be correctly predicted (and no performance penalty is incurred) for

upwards of 95% of dynamic instances [33, 47]. However, the possibility for taking

either technique to a 100% coverage and accuracy limit appears slim [34].

Before we proceed, we should mention that another possibility for tolerating

load latency is to use load value prediction [39, 52, 53, 76] to generate load values

that can be speculatively used in downstream computation. The predicted

value—and the speculative computation—is then verified when the actual load

completes. We do not consider load value prediction in this dissertation for two

reasons. First, load value prediction accuracies are low—60% to 80%—relative to

address prediction accuracies. Second, even if perfectly accurate, load value spec-

ulation may not improve performance significantly due to long verification laten-

cies.

Providing accurate branch outcomes and prefetch addresses in a timely man-

ner requires a mechanism that is faster than execution, but that can mimic exe-

cution results with high accuracy. The basis for such a mechanism lies in the

regularity of addresses and branch outcomes produced by programs. Branch and

address predictors study streams of addresses and branch outcomes and learn

patterns that repeat in those streams. Patterns are associated with the program
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contexts in which they occur. When a context repeats, the associated pattern is

used to generate a guessed value for a branch or address—usually with high

accuracy. We call this approach value analytical. The value analytical approach

works because programs are repetitive and because common programming idi-

oms—i.e., program structures—produce common and repetitive branch outcome

and address patterns. The problem is that some program idioms produce patterns

which externally do not appear regular or repetitive (e.g., a branch that tests a

data element obtained from external input). Other idioms produce repetitive pat-

terns, but do so over such a large and incompressible context that simply storing

this context becomes impractical (e.g., a traversal of a very large pointer-based

data structure [11]). Still other idioms produce value streams with small and

finite contexts that simply do not repeat, so that learning the requisite patterns

on the first pass over the stream does not accelerate the handling of future passes

over the stream, as no future passes will be made [11]. These are fundamental

problems with value analytical approaches that do not appear surmountable from

within.

The instructions that, for program-structural reasons, expose the limitations

of value-analytical mechanisms have been called problem instructions (PIs) [104,

106]. Informally, a PI is any static instruction whose dynamic instances account

for a disproportionate amount of a program’s execution time, both on a per-static

and a per-dynamic instruction basis. In other words, a problem instruction has

many long latency instances. In practice, instructions that have a large fraction of

long latency instances are pathologic in some way and, in particular, they are
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loads and branches whose behavior cannot be reproduced by value-analytical pre-

dictors. Problem instructions cause problems for value-analytical predictors and,

as a result, for performance.

1.3  Pre-Execution

The limitations of conventional branch and address prediction lead to the fol-

lowing hypothesis: the values associated with problem instructions can only be

obtained reliably via execution. However, this leaves us with a dilemma. On the

one hand, we must obtain these values in a way that is faster than execution. On

the other, the only reliable tool we have is execution. In essence, we must use exe-

cution in a way that is somehow faster and more streamlined than normal execu-

tion. The observation that motivates pre-execution is that, while the program is

the source of all values, only a small subset of the program is needed to compute

any particular value. Provided its computation is a small enough subset of the

program and provided resources exist to execute this computation, any value can

be made available in a timely fashion to the main program simply by expediting

its computation. We call this kind of execution pre-execution because it executes

pieces of the original program before a control-driven processor would be able to

execute them via the conventional route.

This dissertation explores the use of pre-execution in the role of providing

timely values for problem branches and loads. We propose to create copies of

problem computations—computations of problem loads and branches—and to

pre-execute these computations in parallel with, and decoupled from, the main
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program. The pre-executing copies compute problem instruction values faster

than the complete program by virtue of their smaller sizes. Pre-executed compu-

tations act as “branch oracles” for the complete program, supplying it with pre-

computed branch outcomes. In addition, the demand-driven cache management

performed by pre-executing computations looks like proactive oracle cache man-

agement to the complete program. In essence, pre-executed computations

“absorb” value latencies and their associated stalls on behalf of the complete pro-

gram.

1.3.1  Example

Figure 1.2 shows an abstract example of pre-execution. An unoptimized exe-

cution is on the left, showing both fetch and execution schedules. Each box repre-

sents a dynamic instruction. Boxes in dark gray are instances of problem

instructions (PIs). Boxes in lighter gray are instructions that participate in a PI

computation. Empty white boxes are instructions that do not contribute to a PI

computation. We will follow this convention in the rest of the dissertation. The

abstract pipeline depth is three cycles from fetch to execute. Two sources of delay

are shown. Memory latency delays the execution of a problem load that misses in

the cache. Branch resolution latency exposes the depth of the pipeline on a

mispredicted problem branch. Our convention is to use arrows to represent

delays. A branch delay arrow appears after the corresponding branch signifying

that delay “starts” once the branch completes. A load delay arrows is shown

before the corresponding load, signifying that load latency “ends” when the load
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completes.

The right side of the figure shows how pre-execution hides these two latencies.

The original (master) thread is again on the left. On the right is a pre-execution

thread that fetches and executes the problem load and branch (in dark gray) and

their computation (in lighter gray). The pre-execution thread is forked by the

Figure 1.2 Abstract example of pre-execution.
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main thread after the first instruction in the problem computation is encoun-

tered. Because it executes fewer instruction, the pre-executing computation ini-

tiates the memory request for the problem load earlier than the master thread is

able to on its own. By the time the master thread arrives at the problem load, the

response from memory has already arrived and its latency has been effectively

absorbed by the pre-execution thread. The pre-execution thread also hides the

branch resolution latency from the master thread by sending the branch result to

the fetch stage of the master thread. Pre-execution can hide pipeline latencies by

sending pre-computed results to pipeline stages that occur before execution.

1.3.2  Aspects of Pre-Execution

Pre-execution is a simple idea. However, it has several aspects that may not be

initially obvious. We make those explicit here.

The process of reducing master thread value latency is composed of two tasks.

First, the desired value must be computed before the master thread needs it. Sec-

ond, the value must be communicated to the master thread. The communication

mechanism is specific to the implementation of pre-execution. It may be some-

thing as simple as the data cache which communicates pre-executed load values

to the master thread implicitly via the prefetching effect, a branch predictor

interface for communicating pre-executed branch outcomes, or something else

entirely. The conceptual center of pre-execution lies in the much harder task of

computing a given value faster than the master thread is able to.

Producing a value faster than the master thread requires that the value’s
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entire computation is executed ahead of its master thread schedule. However,

because the execution schedule is constrained by the sequencing schedule, simply

“compressing” a computation’s execution schedule will not significantly hoist

(move up) its execution latency, unless its sequencing schedule is similarly com-

pressed. We call the compressed sequencing of a computation—i.e., a sequencing

that skips over unrelated master thread instructions—data-driven sequencing.

Data-driven sequencing is a key component of pre-execution.

While data-driven sequencing allows long latencies to be initiated earlier dur-

ing the execution of a program, decoupling is needed to allow these latencies to be

tolerated. Latencies are “exposed” when the processor runs out of useful instruc-

tions to execute in parallel with them. A long latency instruction stalls the thread

in which it executes, limiting the number of useful instructions whose execution

can be overlapped with its own to the size of the window. By pre-executing

instructions in a separate, decoupled context, we effectively move their latencies

to a different thread. Now, when the latency is incurred, only the pre-execution

thread stalls. The main thread can keep fetching, executing, and retiring arbi-

trary numbers of instructions. Performance does not visibly degrade until the

main thread itself experiences a stall.

Data-driven sequencing powers pre-execution, but it also casts it in a comple-

mentary role. In-order sequencing of the complete program unambiguously estab-

lishes the data dependences that produce the program’s intended outcome. There

is only one currently known way of determining whether a data-driven sequenc-

ing of a computation produces data dependences that precisely correspond to
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those established by in-order sequencing of the complete program: executing the

two sequences and comparing the results. This fact has two implications. First,

any data-driven sequencing activity—and consequently pre-execution—must be

performed redundantly with the in-order sequencing of the complete master

thread. Second, a pre-executed result can only be used speculatively by the mas-

ter thread—i.e., it must verified via re-execution. Now, redundant execution can

be avoided if a pre-executed result can be proven to be correct via some sequenc-

ing-based invariant. In fact, we later introduce a mechanism for doing just that.

However, redundant sequencing is unavoidable. Since a processor does not con-

tain nearly enough bandwidth to redundantly sequence the computation of every

branch and every load (even if this bandwidth did exist, it would very likely be

better used to sequence other programs), pre-execution must be staged as a

rarely-used complement to a second, lower cost technique that can perform the

bulk of the heavy lifting with satisfactory results. Fortunately, value-analytical

prediction is such a technique.

Despite its relatively high cost, complementary-technique status and “merely

speculative” nature, pre-execution is a powerful general mechanism. Pre-execu-

tion fundamentally overcomes the basic limitations of superscalar processors to

provide timely values for problem instructions when these cannot be supplied

early enough and accurately enough by any other means. When used judiciously,

pre-execution can provide a significant performance benefit.
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1.3.3  A Definition of Pre-Execution

To help understand the important aspects of pre-execution as well as its con-

text in the realm of high-performance sequential processing, we provide a formal

definition. Pre-execution is characterized by three properties:

• Proactive, out-of-order sequencing of problem computations. If master thread

stalls are to be avoided, then problem instruction (PI) value latency must be

overlapped with instructions that are older than the PI instance itself. Doing

so requires both foreknowledge of the downstream existence of the PI instance

(proactive) and the ability to get to it faster than the master thread (out-of-

order sequencing). Proactive, out-of-order sequencing removes the in-order

sequencing constraint from PI computations, allowing them to be hoisted arbi-

trary distances with respect to the master thread.

• Decoupling of problem computations from the master thread. Decoupling

enables arbitrary degrees of overlapping and latency hiding. Decoupling a

problem computation from the master thread—e.g.., executing it in a different

thread—effectively “moves” the latencies and stalls associated with that com-

putation to that thread. Since stalls incurred within one thread do not effect

the other thread, long latencies moved to a pre-execution thread may be over-

lapped with an arbitrary number of useful master thread instructions. In par-

allel with a stall in a pre-execution thread, the master thread can keep

retiring instructions out of the window, sequencing new instructions into the

window, and generally doing useful work for an arbitrary number of cycles.
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• Applicability to ordinary, unmodified, sequential programs. There are systems

that naturally support proactive out-of-order sequencing and decoupling.

However, these do not also support arbitrary sequential programs. To be

applied to sequential programs, pre-execution is cast in a way that relieves it

from architectural correctness obligations, leaving it only with statistical cor-

rectness obligations—i.e., pre-execution must do the right thing often enough

so that overall performance improves.

There have been several proposed pre-execution implementations [14, 20, 36,

68, 69, 72, 71, 73, 85, 106]. Speculative data-driven multithreading (DDMT) [73]

is the subject of this dissertation, all the rest will be discussed in Chapter 6. All of

these implementations share the above three properties which do not specify (a)

whether pre-executed computations are copied from the program or created from

scratch to mimic computations within the program, (b) whether the computation

selection process is manual or automatic, or (c) how pre-executed results are com-

municated to the master thread. It is the implementation details of these aspects

that differentiate pre-execution systems from one another.

These properties also serve to distinguish pre-execution implementations

from systems that use performance enhancing execution modes other than pre-

execution. Systems that redundantly sequence pieces of the program in a control-

driven manner (i.e., sequence more instructions than are necessary to execute

specific computations) [4, 8, 54] are not pre-execution systems. Neither are sys-

tems that divide a sequential program along dynamic control boundaries [2, 29,

38, 83]. Systems that redundantly sequence computations but do not decouple
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them from the main program—i.e., duplicate computations in line with the main

program—are not considered to perform pre-execution. Finally, systems that

require changes to the basic representation and externally visible execution

model of the program [5, 24, 42, 46, 63, 74, 75, 78, 89, 91, 98] are also excluded by

this definition. Chapter 6 will discuss several of these systems as well.

1.3.4  Implementation: Speculative Data-Driven Multithreading (DDMT)

A pre-execution implementation has two groups of components. The first

group contains pre-execution setup tasks—tasks that are not fundamentally cou-

pled to the runtime mechanics of pre-execution. These tasks are certainly crucial,

but their completion sets up pre-execution rather than actively participating in

every pre-execution instance. These tasks may be performed once, potentially

statically, and their cost may be amortized over many dynamic executions. These

tasks include identification of static problem instructions, selection of computa-

tions for problem instructions, and communication of problem computations to

the processor.

The second group of components implement pre-execution runtime tasks—

tasks that are performed every time a pre-execution instance takes place. Runt-

ime tasks are initiation and initialization of problem computations, pre-execution

of problem computations, and communication of pre-executed results to the mas-

ter thread. The cost of these tasks is dynamic and any inefficiency in their imple-

mentation directly detracts from the performance impact of pre-execution.

Speculative data-driven multithreading (DDMT) is an implementation of pre-
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execution as it is defined above. DDMT’s runtime component is built as a microar-

chitectural extension to a dynamically-scheduled superscalar processor that uses

a physical-register-style out-of-order execution core. The proposed implementa-

tion can also leverage some of the microarchitectural components that would be

present in a processor that supports simultaneous multithreading (SMT) [22, 26,

94, 95, 102]. The choice of processor substrate is motivated by the advantages

that a centralized pipeline organization and a shared memory system provide for

pre-execution.

Like most other pre-execution proposals, DDMT uses the shared memory hier-

archy to allows a pre-executing computation to perform de facto cache-prefetch-

ing for a master thread. However, unlike all other proposals, DDMT implements

a second, very aggressive channel for communicating pre-executed results to the

master thread. Specifically, it stores individual pre-executed instruction results

in the shared physical register file and then passes them one-by-one to the mas-

ter thread via a modification to register renaming called register integration.

To complement the proposed implementation of the runtime component, this

dissertation presents a framework for automated selection of pre-execution com-

putations which may be used as the basis for a future implementation. The actual

implementation of the setup component of DDMT is left open, although several

implementations are considered and discussed at the end of Chapter 3.

This dissertation includes a simulation-driven performance evaluation of

DDMT. The baseline for this evaluation is an aggressive 8-wide superscalar pro-

cessor with large caches and a large branch predictor. Despite high baseline per-
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formance, we find that DDMT achieves speedups of 10% to 15% on general

purpose integer programs. Performance improves as DDMT successfully reduces

both the average load latency and the average branch mis-prediction resolution

latency in these programs.

1.4  Dissertation Contributions and Outline

This dissertation’s thesis comprises the following two assertions:

• Pre-execution is a good method of extracting additional ILP from

sequential programs.

• Speculative data-driven multithreading (DDMT) is a good instantian-

tion of pre-execution, supporting an evolutionary implementation of

its runtime component and automation of its setup component.

In this dissertation, I make the following contributions:

• I introduce and define pre-execution.

• I characterize data-driven threads (DDTs) and describe an algorithm for auto-

matically extracting and selecting useful DDTs from program traces.

• I introduce and describe speculative data-driven multithreading (DDMT), an

implementation of pre-execution, as a set of extensions to a dynamically

scheduled superscalar processor.

• I present an empirical evaluation of DDMT in support of my thesis.

The remainder of the dissertation is organized into six chapters. Chapter 2

presents the DDMT pre-execution model—i.e., the way in which DDMT imple-

ments pre-execution. The use of register integration has many implications which
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make DDMT’s interpretation of pre-execution rather distinctive. Chapter 3

describes the metrics and algorithms used in the process of automatic extraction

and selection of candidate pre-execution computations. Chapter 4 presents the

DDMT microarchitecture, focusing on the extensions and modifications required

to implement DDMT on top of a conventional superscalar design. A large fraction

of the chapter deals with the implementation of register integration, a new tech-

nique with several interesting aspects. Chapter 5 presents an empirical, simula-

tion-driven evaluation of DDMT. The chapter contains both limit studies and

characterizations that are of general interest to pre-execution, as well as a

focused design-space exploration of the effects and interactions of the various

DDMT components, including the DDT selection algorithm. Chapter 6 provides

context for pre-execution and DDMT by discussing prior and contemporaneous

related work by both myself and others. Chapter 7 summarizes the dissertation

and concludes.
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Chapter 2

Pre-Execution via Speculative Data Driven Multithreading

Speculative data-driven multithreading (DDMT) is our proposed implementa-

tions of the runtime component of pre-execution. DDMT consists of a small set of

modifications to a dynamically scheduled superscalar processor.

What separates DDMT from other proposed implementations is its mecha-

nism for communicating pre-executed results to the master thread. A description

of this new mechanism, which we call register integration, occupies a large frac-

tion of this dissertation. Register integration implements direct, instantaneous

communication via a modification to register renaming that effectively allows a

master thread and pre-executing threads to share physical registers. In DDMT,

pre-executed operations are often not re-executed by the master thread. Register

integration enables DDMT to implement pre-execution in the truest sense. Pre-

executed instructions are actually instructions from the original complete pro-

gram whose execution has been time-shifted ahead of (i.e., pre) its “natural” place

in the program.
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DDMT’s unit of pre-execution is the data-driven thread (DDT). A DDT is a

sequence of instructions that encodes the computations of one or more problem

load or branch instances. Each static DDT is associated with a static trigger

instruction. Whenever the master thread encounters an instance of a trigger

instruction, the processor forks a copy of the corresponding DDT. At this point,

the two threads—the master thread and the DDT—begin executing in parallel. A

DDT implements pre-execution—rather than post-execution or redundant paral-

lel execution—because it is even with the master thread at the point of the fork

and from that point forward, sequences and executes a small subset of the

instructions processed by the master thread.

To sequence a DDT, the processor steals some sequencing bandwidth away

from the master thread. Once in the execution core, DDT instructions are dynam-

ically and transparently interleaved with instructions from the master thread.

When a DDT completes execution, its hardware context is reclaimed but the

results it computed are still “alive” in physical registers. The master thread uses

register integration to locate these pre-computed values, associate them with the

proper corresponding instructions in its own sequential stream and claim them

as its own.

The use of register integration conveys many benefits—both performance and

otherwise—but also imposes many constraints on DDMT. The most stringent con-

straint prevents DDTs from interpreting control-transfers of any kind—both

implicit and explicit—and hence from using control-flow for sequencing. The

inability to use control-flow restricts the kinds of DDTs that can be pre-executed.
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However, this restriction is not fatal as DDMT can use various techniques to

“simulate” control-flow. A second constraint imposed by register integration is

that DDTs must match dynamic program dataflow graphs precisely, instruction

for instruction, and may not be optimized beyond those graphs. The inability to

optimize DDTs hurts performance. Ironically enough, however, it also restricts

DDT structure sufficiently to allow the DDT selection process to be automated.

Automatic DDT selection and the details of the DDMT microarchitecture are

the subjects of chapters 3 and 4, respectively. In this chapter we describe DDMT’s

implementation of pre-execution. We briefly introduce the microarchitecture and

walk through a “day in the life of a DDT.” We also introduce some key concepts of

register integration. These are needed to motivate the control-flow and optimiza-

tion restrictions. The bulk of the chapter describes the DDMT pre-execution

model the collection of unique constructs employed by DDMT to circumvent, but

sometimes to actively exploit, the constraints imposed on it by register integra-

tion.

2.1  DDMT Primer

A description of the DDT execution model requires a basic understanding of

the mechanics of DDMT. This section presents a brief introduction to the DDMT

microarchitecture, describes its basic operation, and introduces the function of

register integration.
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2.1.1  Terminology

To help with the rest of the chapter, we begin by establishing some terminol-

ogy. We may have used some of this terminology loosely already. At this point we

would like to formalize it using Figure 2.1 as an aid.

The sequential, control-driven program thread is referred to as the master

thread. A pre-executing computation is called a data-driven thread or a DDT. We

use the term DDT in both a static and a dynamic sense. A DDT is both the static

description of a problem computation and a pre-executing dynamic instance of

that computation. We most commonly use the term in its dynamic sense. When

speaking of the static representation of a DDT, we will use the term static DDT.

A DDT has several components. The body of a DDT is the sequence of instruc-

tions that DDT pre-executes. The DDT target(s) are the problem instruction

instances the DDT is ultimately attacking. An important component of a DDT

and a term we will use frequently is the DDT trigger. The DDT trigger is an

Figure 2.1 DDMT terminology.
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instruction in the master thread that “triggers” the forking of the DDT. The DDT

trigger is not a part of the DDT body as it is not pre-executed. Like a DDT, the

DDT trigger is also both a static and a dynamic term. A static DDT trigger is

associated with a static DDT. A dynamic instance of a static DDT trigger triggers

the forking of a dynamic instance of the corresponding static DDT.

Each dynamic DDT instruction has (hopefully) a corresponding instruction

within the master thread. Collectively, a dynamic DDT has (again, hopefully) a

corresponding computation within the master thread.

When speaking of a DDT instruction—especially in the context of calculating

how much faster a DDT can sequence to a given instruction than the master

thread can sequence to its corresponding instruction—we will refer to the

instruction’s trigger distance. An instruction’s trigger distance is the number of

dynamic instructions between itself and its DDT’s trigger instruction. A DDT

instruction actually has two trigger distances. The data-driven trigger distance is

its trigger distance from within the DDT. Its control-driven trigger distance is the

trigger distance of its corresponding instruction within the master thread. The

data-driven trigger distances of the instructions in a DDT are consecutive and

start from zero. The control-driven trigger distances of the same instructions are

not consecutive reflecting the fact that the corresponding master thread instruc-

tions are separated by other unrelated instructions. An instruction’s data-driven

trigger distance is always smaller than or equal to its control-driven trigger dis-

tance.

When discussing DDT pre-execution, we will speak of values and data-depen-
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dences. In doing so, we distinguish between two kinds. A value or a data-depen-

dence is DDT-internal if both producer and consumer of the value are DDT

instructions. A value or a data-dependence is DDT-external if the consumer is a

DDT instruction and the producer is a master thread instruction outside the

DDT. The producer of a DDT-external value may be the trigger instruction or any

instruction older than the trigger. However, it cannot be any instruction younger

than the trigger. Note, there is no explicit flow of values from a DDT to the master

thread. In other words, master thread instructions do not read values written by

DDT instructions. The only way for DDT values to flow back to the master thread

is via register integration and once integrated a DDT value effectively “becomes”

a master thread value.

Finally, we also need some terminology in order to effectively discuss problem

instructions. A problem instruction (PI) is a static instruction that meets some

performance criteria. The precise criteria are unimportant right now, only the

term is important. The dynamic instances of a problem instruction are collec-

tively called problem instruction instances (PIIs). We distinguish between two

kinds of PIIs. The PIIs that dynamically exhibit problems—i.e., the particular

dynamic instances of a load which miss in the cache and the particular dynamic

instances of a branch which are mispredicted—are called performance-degrading

instances (PDIs). The PIIs that do not exhibit problems are called non-perfor-

mance-degrading instances (NPDIs).
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2.1.2  DDMT Microarchitecture Overview

DDMT is implemented as a set of localized extensions and modifications to a

dynamically scheduled superscalar processor with a physical register file style

execution core microarchitecture. Figure 2.3 shows a block diagram of the DDMT

microarchitecture. The DDMT-specific components are emphasized.

DDMT extensions come in three groups. The first group (marker #1) is the

DDT-specific front end. The major components in this group are the data-driven

thread cache (DDTC) and the combined context manager/injection scheduler

(CMIS). The DDTC stores static DDTs. The CMIS is responsible for forking

DDTs, allocating and deallocating hardware register contexts, and scheduling

active DDTs for “injection” into the execution core. The second group (marker #2)

comprises a single extension to the out-of-order execution core, the data-driven

Figure 2.2 DDMT microarchitecture.
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store queue (DDSQ). The DDSQ is the DDT analog of the conventional store

queue (SQ). It is required because DDT stores must be handled differently than

conventional stores. The final group of extensions is the implementation of regis-

ter integration. The major components in this group are the integration table (IT)

and integration logic which act during the register renaming stage (marker #3a)

and a load re-execution mechanism (marker #3b) which acts at the retirement

stage.

2.1.3  The Life of a DDT

With a basic understanding of the DDMT microarchitecture, we turn to its

mechanics. Figure 2.3 reprises the microarchitecture and augments it with a dual

pipeline diagram. The top pipeline shows the processing stages of control-

driven—i.e., master thread—instructions. The bottom pipeline shows the process-

ing stages of data-driven DDT instructions. Stages that straddle both pipelines

are common to both types of instructions. The matching numbered markers on

the figure represent the important events in the life of a DDT.

A DDT is born when the master thread renames its trigger instruction. The

CMIS observes the master thread’s renaming stream and forks the corresponding

DDT if any instruction matches a trigger (marker #1). Forking a DDT consists of

allocating a free hardware register context (map table) for it, initializing this con-

text with a copy of the master thread’s context and scheduling the DDT for injec-

tion into the renaming stage. Since DDTs are purely speculative, the CMIS may

ignore a trigger sighting if, for instance, no free register context is available.
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In an injection cycle, the next uninjected DDT segment is extracted from the

DDTC (marker #2) and the corresponding instructions are injected into the regis-

ter renaming stage (marker #3). If the renaming of a DDT is complete, the CMIS

reclaims its hardware register context. If a DDT cannot be fully injected in one

cycle—and most cannot be—the CMIS schedules its next uninjected portion for

injection in some later cycle. There are several possible policies for scheduling the

injection of a DDT vis-a-vis the master thread and other active DDTs. DDT

instructions are renamed using the register map table that belongs to their allo-

Figure 2.3 Events in the life of a DDT.
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cated context. A DDT instruction’s result is allocated a free physical register and

a corresponding entry entered into the IT.

All instructions injected into the DDMT execution core are marked with three

additional bits. The data-driven bit distinguishes DDT instructions from conven-

tional instructions. The internal communication bit is set only for DDT stores and

some DDT loads. The integrating bit distinguishes instructions which have inte-

grated a physical register allocated by another instruction from those that have

not. The data-driven and internal communication bits are statically generated

and tag each instruction in the DDTC. The integrating bit is dynamically gener-

ated by the integration circuit. On entry to the execution core, DDT instructions

(recognized by their set data-driven bits) are allocated reservation station (RS)

entries but are not allocated entries in the ROB, LQ or SQ. The ROB, LQ and SQ

are structures whose function is the implementation of externally visible sequen-

tial semantics. Since DDT instructions are not externally visible and do not obey

sequential semantics per-se, they have no use for entries in these structures.

DDT instructions execute exactly like control-driven instructions. The map

copy operation and subsequent renaming make sure that data-driven instruc-

tions are woken when corresponding inputs from either the master thread or

from older instructions within the same DDT become available. DDT operations

read ordinary physical registers (marker #5) issue to ordinary functional units

(marker #6) and write their results into the ordinary physical register file upon

completion (marker #7). The lone execution difference between DDT and control-

driven instructions manifests for all stores and for loads marked with the inter-
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nal-communication bit. These are routed to the DDSQ (marker #8). DDT loads

whose internal communication bit is clear are treated as conventional loads.

On completion and writeback, the first stage in the life of a DDT instruction

ends rather uneventfully. DDT instructions do not retire or free any physical reg-

isters. They have no ROB, LQ or SQ entries that need to be freed. DDT store val-

ues are not written into the data cache. When a DDT instruction completes, the

only record that remains of its existence is the cache block it potentially

prefetched, the physical register into which it computed its result and the IT

entry that allows the master thread to locate this physical register (marker #9).

The second phase in a DDT’s life begins when the physical registers it allo-

cated are integrated by instructions from the master thread (marker #10). A

data-driven result may be integrated in any state: after completion, mid-flight

(i.e., during execution), or while sitting in a reservation station waiting for input

operands to become available. If the integrating instruction is a mis-predicted

branch or jump and the integrated result is complete, the DDMT processor may

initiate recovery immediately, during the rename stage. This effect is called

instantaneous branch resolution and is the effect we strive for when pre-execut-

ing problem branches. Since it operates during register renaming, register inte-

gration cannot help the master thread avoid a branch mis-prediction entirely. To

avoid branch mis-predictions completely, a mechanism that sends pre-executed

branch outcomes to the fetch stage is required. Several such mechanisms have

been explored [14, 36, 69, 106].

Regardless of result status, the integrating instruction performs the comple-
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mentary steps to those performed by the corresponding DDT instruction. Recall,

DDT instructions are allocated RS entries but not ROB, LQ or SQ entries. Inte-

grating instructions are allocated ROB, LQ and SQ entries but not RS entries. An

integrating instruction does not need a new RS entry because the integrated

result is either already sitting in some appropriately-tagged RS entry or has

already been issued (and perhaps completed), in which case there is no need to

schedule it for a second execution. The one exception to this rule is if the inte-

grated instruction is a completed store. In this case, the store must be re-issued to

the store queue to allow subsequent loads to retrieve values from it. Once inte-

grated, a DDT result is identical to a control-driven physical register for all

intents and purposes. An integrating instruction completes only the unfinished

phases of its processing. If the integrated result is already computed, the inte-

grating instruction may retire immediately (marker #11). Integrated loads are re-

executed just before retirement to verify that their integration was correct

(marker #12).

2.1.4  Pre-Execution Reuse via Register Integration

One of the most important, interesting and internally influential microarchi-

tectural components of DDMT is register integration. Register integration

exploits a unified physical register file to implement true result sharing between

instructions from different speculation contexts of the same architectural thread.

Result sharing is implemented as a modification to register renaming. An

instruction shares a result already computed by another instruction by mapping
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its output to the appropriate already-written physical register rather than by

computing a new value and writing it to a newly allocated physical register.

The interesting component of register integration is the facility that allows

instructions to find physical registers that contain the values they themselves

will compute and do so at register rename time. Register integration accom-

plishes this by maintaining a second index—called the integration table (IT)—

over the physical register file. The IT indexes each physical register (preg) using

the PC and input physical register numbers (pin#) of the instruction instance

that initially created the value. The reason for this choice of indexing information

is that it both completely specifies the computation and is available at register

rename time. We use the PC rather than the opcode—which really specifies the

computation—because we would like to distinguish between different static

instructions that have the same opcode (we will explain why shortly). While

renaming an instruction, the processor uses this index to locate the value that

was generated using exactly the same computation the current instruction is

about to perform—i.e., an older instance of the same instruction with the same

physical register inputs. The argument for reuse is that the same computation

will yield the same result. Notice, register integration only manipulates register

mappings, reuse is implemented without reading or writing the physical registers

themselves.

To use register integration for pre-execution reuse—master thread reuse of

pre-executed results—we must deliberately manufacture a scenario in which

DDT instructions have the same PCs and the same physical register inputs as
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their corresponding master thread instructions. Figure 2.4 shows a register inte-

gration implementation of pre-execution reuse. The matching PC requirement is

satisfied in a straightforward manner (markers #1). This is not to say that this

executing DDTs with PCs that match those in the master thread is simple. In

fact, we will see shortly that it is not. However, the basics of the solution are

clear—DDT instructions have to be exact copies (down to the PC) of instructions

from the master thread. A PC match is required for two reasons. One reason is

that it is a good way of signalling that the instruction is an exact copy. We hold off

on explaining the second reason until we have a little more background.

The matching physical register input requirement is satisfied recursively. To

form the base of the recursion, we initialize a forked DDT with a copy of the mas-

ter thread’s register map (marker #2). This ensures that the initial DDT instruc-

tions—those that depend only on inputs from the master thread—will have the

same input physical registers as their master thread counterparts. The inductive

Figure 2.4 Pre-execution reuse using register integration.
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step is provided by integration itself. By integrating a particular instruction, we

set its master physical register output to equal that of its DDT counterpart. In

doing so, we are also setting the inputs of its dependent instructions to match

those of their DDT counterparts.

We walk through Figure 2.4 as a working example. The DDT in the figure con-

tains only one external input, R1 of instruction 0x18. The register context copy

operation (marker #2) initializes the DDT’s physical register mapping of R1 to

p10, its post-fork value from the master thread. The DDT renames instructions

within its own context in the usual manner, allocating physical registers for new

results. The DDT executes a second copy of instruction 0x18 using p10 as its

input and allocates p30 as its output (marker #3). It then executes the dependent

instruction 0x1c with p30 as its input and a newly allocated p31 as its output

(marker #4). Finally, it executes a dependent instruction 0x20 with p31 as its

input (marker #5).

The master thread is able to integrate all three DDT instructions. We ignore

the PC matches that facilitated integration and concentrate on the requisite

physical register matches. The physical register match, p10, that enabled the ini-

tial integration of register p30 by instruction 0x18 was enabled by the context ini-

tialization procedure (marker #2). After integration, p30 is set as the master

thread mapping of R1 (marker #6). This in turn makes it the master thread’s

input physical register for instruction 0x1c (marker #7) creating the input match

that allows register p31 to be integrated. Repeating the process for p31 allows

0x20 to integrate the pre-computed branch outcome.
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We now have the necessary background to quickly explain the second reason

why integration uses PC matches to distinguish between different but operation-

ally identical static instructions—i.e., instructions with the same opcode and

input logical registers. Figure 2.5 shows an integration scenario similar to the

one in Figure 2.4, the difference is that the IT contains entries for two physical

registers —p30 and p60—created by different but operationally identical instruc-

tions 0x18 (marker #1) and 0x44 (marker #2). For the purposes of integrating the

current instruction 0x18 (marker #3), it does not matter which one we integrate.

However, if we integrate the physical register created by the “wrong” static

instruction as we are in this example, we forfeit the ability to integrate the

instructions that depend on it (marker #4).

As shown in Figure 2.4, register integration relieves the master thread from

having to re-execute instructions that have already been executed on its behalf in

DDTs. Of course, since it takes place during register renaming, register integra-

tion cannot relieve the master thread from re-sequencing DDT instructions (we

Figure 2.5 Problem with use of opcode matching in register integration.
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already knew that control-driven sequencing could not be avoided). When intro-

ducing pre-execution, we stated that pre-executed results must be treated as

speculative, that in order to be used they must somehow be “checked” by the mas-

ter thread. In addition to the mechanism for locating pre-executed results, regis-

ter integration can be thought of as a mechanism that uses control-driven data-

dependence information to “check” pre-executed results.

Register integration implements pre-execution by design. As it turns out,

there is another reuse scenario that it implements naturally: squash reuse, the

reuse of instructions that have been squashed due to a sequential control mis-

speculation and subsequently re-executed. Squash and pre-execution reuse are

each effective in its own right, and the two forms exhibit interesting synergy as

well. A more detailed description of squash reuse and its interactions with pre-

execution reuse is saved for Chapter 4.

2.2  Control Flow in DDMT

Data-driven sequencing—sequencing only those instructions that contribute

to a problem computation and skipping over unrelated instructions—is one of the

pillars of pre-execution and the mechanism that allows DDTs to get to and exe-

cute problem instructions faster than the complete program. Register integra-

tion’s requirement that DDT instructions match their master thread

counterparts PC for PC is significant. A DDT is data-driven not only in the sense

that its instructions are all related via data-dependences. A DDT is also data-

driven in the sense that it is not control-driven—i.e., its instructions’ PCs are not
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sequential or related via explicit or sequentially implicit control transfers.

A discontinuous PC structure makes control transfers—both explicit transfers

(branches and jumps) and the implicit transfers that take place from an instruc-

tion to the next sequential instruction—meaningless in DDTs and control useless

as a sequencing mechanism. It is impossible to generate the instructions in a

DDT and only those instructions using a combination of explicit and implicit con-

trol transfers from its first instruction.

The inability to use control flow leaves us with two problems. First, we must

find some mechanism other than control flow for sequencing even the simplest

DDTs. Second, we must find a way of achieving the effects of control flow within

DDTs. There are two kinds of control structures whose effects we would like to

simulate. Conditional structures—i.e., if statements—are used in DDTs to ensure

that the pre-executed computation contains instructions from the path that

matches the one the complete program will actually take. Loop structures

enhance a DDT’s ability to run ahead of the master thread, improving its latency

tolerance capabilities. Many of the idiosyncrasies of DDMT and its unique pre-

execution idioms are a product of dealing with this constraint.

2.2.1  Implicit Data-Driven Sequencing

In lieu of control, the model and mechanism used by DDMT to sequence DDTs

is called implicit data-driven sequencing. In DDMT, the static representation of a

DDT is a list of all of its instructions. To sequence a DDT, the CMIS injects this

list into the pipeline in order and in its entirety. The execution core then executes
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all the instructions in the list, again in its entirety. A DDT may certainly contain

conditional branches—a good thing since an important use of DDMT is the pre-

execution and mis-prediction latency reduction of problem branches. However,

the processor does not “interpret” branches within DDTs. The sole purpose of a

branch in a DDT is so that its pre-executed outcome can be integrated by the

master thread. A DDMT processor will continue executing all instructions within

a DDT, regardless of the outcome of any branch.

In addition to providing the basis for a sequencing mechanism, implicit

sequencing also supplies the vehicle for achieving the effects of control flow

within DDTs. Specifically, we can exploit the fact that a DDMT processor will

blindly execute any instruction sequence we give it, to “simulate” any control flow

we wish, even control flow that is dynamically impossible. We can even “trick” the

processor into executing control flow that is dynamically impossible, by including

instructions in a single DDT that dynamically lie along disjoint paths. The next

sections—Section 2.2.2 and Section 2.2.3—discuss some of the tricks used to sim-

ulate conditional control and loop control, respectively, within DDTs.

An alternative to the list representation would be a static data-flow represen-

tation in which each instruction explicitly names its data-flow successors. This is

the kind of representation used in dataflow architectures [24, 42, 5, 63] and used

in an earlier version of DDMT called speculative dataflow [72]. As far as sequenc-

ing goes, a static dataflow representation has some advantages including the

ability to simulate loop control. In fact, in our concluding remarks in Chapter 7,

we propose to adapt this particular feature into our list representation using a
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technique called injector-based loop control. However, in order to take advantage

of register integration we need to rename a DDT in the conventional way and to

do so requires that we impose a total order on its instructions. Once a total order

is imposed on a static dataflow representation, it becomes equivalent to—but no

simpler than—our list representation.

2.2.2  Simulating Conditional Control in DDMT

The answer to coping with the lack of conditional control in DDTs has three

parts. First, in modern architectures many conditional control structures are

replaced by predication which—being a data-flow representation control-flow—is

something DDTs can deal with easily. Second, for unpredicated cases that are

statistically biased, conditional control flow is accounted for implicitly within

DDTs. Finally, when statistical bias cannot be exploited, a control-less greedy

approach suffices. Including predicated instructions in DDTs is straightforward

and does not require further explanation. We explain the other two.

2.2.2.1  Implicit Conditional Control

By virtue of containing a given list of instructions, a DDT implicitly encodes

the path that list of instructions lies along. There is no need to execute the control

transfers that in a control-driven world unrolls this particular path. The purpose

of unrolling the path is to expose the instructions that contribute to the computa-

tion. If those instructions are exposed in some other way—e.g., via implicit data-

driven sequencing—then explicit control is unnecessary. An example of implicit
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control is shown in Figure 2.6. On the left is a static control flow graph that con-

tains a problem load (marker #1). Again, unimportant instructions are repre-

sented by empty boxes. The identity of a particular instruction in the

computation of the load (marker #2a or marker #2b) depends on the outcome of a

branch (marker #3). We use implicit control if the path is highly biased. Specifi-

cally, we construct the DDT to contain instructions only from the biased path

(marker #4 and marker #2b). Register integration ensures that the DDT will not

be integrated should the program actually take the less frequent path. The data-

dependence arcs super-imposed on the control-flow graph are those represented

in the DDT.

We should mention that a pre-execution bias is not the same as a conventional

branch bias. Pre-execution is biased toward the path along which most of the

dynamic problem instances occur. A branch may be completely unbiased in the

conventional sense, but if problem instances occur only along one conditional arm

Figure 2.6 Implicit conditional control in a DDT.
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then the same branch is completely biased from a pre-execution sense. The 90%

bias in the figure does not imply that the branch is 90% biased to the right.

Rather, it means that 90% of the problem load (marker #1) instances that

resulted in a cache miss took place when the path on the right was followed.

2.2.2.2  Greedy Conditional Control

A strong pre-execution bias may not always exist. In these cases, choosing one

particular path via implicit control means sacrificing problem coverage. Fortu-

nately, we don’t have to choose. We can execute both paths in the same DDT! This

pre-execution idiom is called greedy control and is an example of a control flow

that is possible in DDMT, but impossible in conventional execution.

The top of Figure 2.7 shows a use of greedy control. Of course, once instruc-

tions from divergent paths are included within the same DDT, instructions along

downstream reconvergent paths must be duplicated. As long as the dataflow

graphs along each represented path are intact, integration will naturally reuse

the instructions along the pre-executed path that matches the one eventually

taken by the master thread. Instructions pre-executed along the other path will

not be integrated and will eventually be recycled. In the figure, the problem load

(marker #1) must be duplicated along each path encoded within the DDT (mark-

ers #1a and #1b). Note, although multiple paths are encoded within the DDT,

each DDT instruction actually “observes” the dataflow along one path—its own.

As we foreshadowed in the previous paragraph, it is not always possible to use

greedy control. Due to logical register name conflicts in both paths, it may be
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impossible to create a DDT in which data-dependences for all included paths are

faithfully conveyed. An instance of such a scenario is shown at the bottom of the

figure. Instructions along separate paths both depend on a pre-branch instruction

(marker #3). However, since their output register names also match this depen-

dence, if both are included within the same DDT, the first one would mask the

true dependence (marker #3) for the second one. Both greedy DDTs shown on the

right (DDT1+2 and DDT2+1) are incorrect. When greedy control is impossible, we

are simply forced to choose one path over the other—i.e., revert to using implicit

Figure 2.7 Greedy conditional control in a DDT.
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control.

Implicit and greedy conditional control are used in DDMT because there is no

other choice. Ironically, however, their use has also been advocated in pre-execu-

tion systems that allow control-flow in pre-executing threads [104]. The argu-

ment is based on the assumption that most of the cost of a pre-executing thread is

in its sequencing bandwidth consumption. Empirically [104], a typical control

computation comprises more instructions than the computation it is gating. It is

more profitable to sequence a computation and occasionally throw it away than to

sequence the computation that decides whether the targeted computation should

be executed. Similarly, it is more profitable to sequence two versions of a compu-

tation and throw one away, rather than sequence an auxiliary computation that

decides which of the two should be executed.

2.2.3  Simulating Loop Control in DDTs

The loop is (by far) the most important pre-execution control idiom. Looping

enables a DDT to advance several iterations ahead of the master thread and

thereby tolerate longer latencies. An inability to execute loops not only restricts

latency tolerance, but also precludes the amortization of DDT startup. Admit-

tedly this last concern is less significant if the microarchitecture supports fast

DDT creation, which our proposed implementation does. However, while startup

overhead may not be a big issue, limited latency tolerance certainly is.

Before we proceed, we should mention that an inability to execute loops is not

a completely bad thing. Along with that limitation comes the inability to execute
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infinite loops, or at least very long useless loops. DDTs of finite size make for nat-

ural and extremely effective overhead control.

2.2.3.1  Overlapped Full Unrolling

A DDMT processor can be tricked into pre-executing a loop by unrolling the

loop within a DDT. DDMT can exploit three kinds of unrolling, although only two

are used in practice. We begin by discussing the unused idiom, overlapped full

unrolling, since its shortcomings motivate the other two.

Full unrolling is DDMT’s analog of the loop unrolling performed by compilers.

In full unrolling, a DDT contains full problem computations from two or more

successive loop iterations. Shown in Figure 2.8, overlapped full unrolling is a

variant in which a fully unrolled DDT is triggered from within a loop by each iter-

ation’s induction instruction (markers #1a, #2a, #3a and #4a). In the figure, each

DDT contains computations from two successive iterations. DDT1, triggered by

the induction instruction of iteration 1 (marker #1a), contains computations from

iterations 2 (markers #2a, #2b and #2c) and 3 (markers #3a, #3b and #3c). DDT2,

triggered by the induction instruction of iteration 2 (marker #2a), contains com-

putations from iterations 3 and 4. We define the unrolling degree of a DDT as the

number of times a copy of the trigger instruction appears in the DDT body. The

importance of this definition will become clear in Section 2.2.3.2 and in the next

chapter, which describes DDT selection. The unrolling degree of the DDTs in the

figure is two.

DDMT as described in this dissertation does not support trigger chaining—the
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forking of DDTs by other DDTs. In DDMT, only the master thread can trigger

DDT forks. The reason behind this design choice will become evident in

Section 2.2.3.4. Still, if a fully unrolled DDT is forked by every master thread

iteration then every pre-executed master thread instruction will be sequenced by

a number of DDTs equal to the degree of unrolling. In the figure, the computation

from iteration 3 (markers #3a, #3b and #3c) is included in both DDT1 and DDT2.

Similarly, the computation from iteration 4 is included in both DDT2 and DDT3.

Overlapped full unrolling can exploit DDT-to-DDT register integration to limit

Figure 2.8 Overlapped full unrolling.
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each pre-executed master thread instruction to being executed by only one DDT.

In the figure, the computation from iteration 3 (markers #3a, #3b and #3c) is only

executed by DDT1. These instructions are integrated and not re-executed by

DDT2. DDT-to-DDT integration of the induction sequence also increases the

latency tolerance of each DDT, since by integrating the induction sequences com-

puted by previous DDTs, a DDT effectively executes those induction steps in zero

time catapulting itself forward.

The problem with overlapped full unrolling is that its sequencing overhead—

the number of instructions per DDT that are sequenced but not executed—is (U-

1) * (I + C), where U is the degree of unrolling, I is the number of instructions in

each inductive step and C is the number of instruction in each single-iteration

problem computation. This represents an unacceptably high level of overhead if C

is large.

2.2.3.2  Unoverlapped Full Unrolling

A variant of full unrolling that is used in DDMT is unoverlapped full unroll-

ing, in which a fully unrolled DDT is forked once by an instruction outside the

loop. An example of unoverlapped unrolling is shown in Figure 2.9. Unlike its

overlapped cousin, the sequencing overhead of unoverlapped unrolling is always

the minimum—zero. Notice, according to our definition of unrolling degree, the

unrolling degree of an unoverlapped fully unrolled DDT is always zero since the

instruction that is replicated within the DDT is not the trigger instruction. It is

this definition that allows us to distinguish the two kinds of fully unrolled DDTs
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from one another.

Unoverlapped full unrolling is a powerful pre-execution idiom because it has

the potential to tolerate dependent latencies that are too long to be fully over-

lapped by the work of a single iteration. Although they are shown as sequential,

the latencies of the loads on the left side of the figure (marker #1) and on all prior

figures have, in fact, been parallel. Although inefficient, overlapped full unrolling

can tolerate these latencies fully regardless of the amount of work in each itera-

tion, simply by unrolling a sufficient number of iterations ahead. The loads on the

Figure 2.9 Two examples of unoverlapped full unrolling.
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right side of the figure (marker #2) are dependent —i.e., they are pointer-chases—

and their latencies must be taken sequentially, even by a DDT. If the work within

a single iteration does not suffice to overlap one of these latencies, then neither

will any amount of overlapped unrolling. Essentially, a DDTs latency tolerance

over one iteration is negative and any degree of unrolling will just make it more

so. However, with unoverlapped full unrolling, pre-loop work can be harnessed to

tolerate this latency provided the DDT can be triggered sufficiently early.

Due to the finite size of DDTs, unoverlapped full unrolling is effective only on

the first few iterations of a loop. As we will see in the next chapter, our DDT selec-

tion framework cannot even recognize an instance of unoverlapped full unrolling

unless the loop typically executes only a few iterations. Consequently, the occa-

sion to use unoverlapped full unrolling is limited in DDMT to idioms like hash

table searches. The restricted applicability of unoverlapped full unrolling is per-

haps DDMT’s greatest performance shortcoming.

2.2.3.3  Induction Unrolling

Overlapped full unrolling can be used to hide long latencies in loops as long as

these latencies are parallel. The problem with overlapped full unrolling is

sequencing overhead as the problem computation of each iteration is sequenced

multiple times. Induction unrolling attacks this problem directly. In induction

unrolling, only the induction sequence itself is unrolled and only one non-induc-

tion copy of the problem computation instruction exists in the DDT. Conse-

quently, the sequencing overhead of induction unrolling is (U-1) * I, certainly
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acceptable as the induction step is typically a simple instruction sequence—a

variable increment or pointer dereference, with a possible save/restore pair and

stack pointer manipulation. There is no conventional compiler-based counterpart

of induction unrolling, which is shown in Figure 2.10. Notice, only the induction

instructions (markers #1a, #2b, #3a and #4a) appear in more than one DDT. The

computation from each iteration (markers #Xb and #Xc) is pre-executed by a only

one DDT.

Figure 2.10 Induction unrolling.
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Like overlapped full unrolling, induction unrolling can exploit the latency-tol-

erance enhancing “catapult” effect that comes with the integration by one DDT of

previous induction steps completed by older DDTs. However, induction unrolling

has another advantage. Because only the induction sequence is unrolled, an

induction-unrolled DDT can sequence multiple iterations ahead of the master

thread very quickly as bandwidth is not wasted sequencing the problem computa-

tion at every iteration (as it is in overlapped full unrolling). It should now be clear

why overlapped full unrolling is never used. If the trigger can be placed outside

the loop, unoverlapped unrolling is used, otherwise induction unrolling is used.

Induction unrolling and unoverlapped full unrolling can be used together to

pre-execute computations within nested loops. Induction unrolling is used to

advance multiple outer-loop iterations ahead. The inner-loop iterations are then

unoverlapped fully unrolled.

2.2.3.4  Alternative: Trigger Chaining

One possibility for implementing unoverlapped full unrolling using finite

sized DDTs is via trigger chaining—i.e., allowing DDTs to trigger the fork of

other DDTs. If DDT startup overhead is indeed low, chaining should be roughly

equivalent to true unoverlapped unrolling.

The theoretical problem with chaining is overhead in the form of redundant

forking. In general, it is difficult to detect and hence prevent the situation of both

the master thread and a DDT—or two different DDTs—from triggering what is

essentially the same DDT instance. This problem is illustrated on the left side of
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Figure 2.11 (marker #1) which shows both the master thread and DDT1 forking

an instance of DDT2. Redundant forking is not a problem if we restrict forking to

the master thread only. This is the default DDMT behavior.

That said, DDMT contains a natural redundancy detector—register integra-

tion. Redundant forking can be reliably and absolutely eliminated by following

one simple rule, namely not forking DDTs from integrating instructions. The

obvious reason for this rule is that the instruction that initially computed the

integrated result already triggered the fork. In fact, this policy is already used in

DDMT to avoid redundant forking by instructions that are squashed and subse-

quently integrated. The combination of trigger chaining and register integration

as a redundancy suppression mechanism is shown on the right of the figure

(marker #2).

Figure 2.11 Trigger chaining.
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Recent follow-on work [20] has shown chaining to be beneficial even with

crude redundancy control mechanisms. However, chaining is not implemented in

DDMT as described in this dissertation. The reason for this is twofold. Chaining

can be used to simulate both induction unrolling and unoverlapped full unrolling.

Induction unrolling actually performs better than chaining, as we will show in

Chapter 5. At the same time, chaining’s only advantage over DDMT’s unover-

lapped full unrolling is its ability to handle loops with many iterations. However,

our automated DDT selection process cannot capture that case anyway. A static

framework that can actually analyze looping behavior explicitly is probably

needed to recognize this behavior. Both chaining and static frameworks for DDT

construction are important directions for future research.

2.3  DDT Dataflow Structure

The requirements of pre-execution reuse are stronger than simply that DDT

instructions must have the same PCs as their corresponding master thread

instructions. Pre-execution reuse requires that a DDT match its corresponding

computation master thread precisely, instruction for instruction. In other words,

for integration to succeed not only must individual instructions of the computa-

tion’s dataflow graph match precisely, but the entire dataflow connectivity of the

graph must precisely match piece-wise as well. This is the dataflow correspon-

dence requirement.

The dataflow correspondence requirement implies that DDTs cannot be opti-

mized in any way, even in trivial ways that will not change the outcome of the



57
computation. Even a simple register move instruction, which contributes nothing

other than bandwidth consumption to the pre-executed result, may not be

removed. Think of register integration as an inductive proof of the correctness of

the pre-executed computation with precise dataflow edge matches as the induc-

tive engines. As soon as a single dataflow edge is not a precise match—and any

optimization will disturb at least one edge—the induction fails and the ability to

prove the correctness of all downstream edges is lost.

An inability to optimize DDTs detracts from DDMT’s performance impact, to

be sure. However, it has other negative effects as well. Specifically, the inability to

“register allocate” memory communication pairs—i.e., save/restore pairs—within

DDTs forces the DDMT microarchitecture to support stores and memory commu-

nication within DDTs. Although there are straightforward, localized ways of

accomplishing this—as Chapter 4 will demonstrate—it is an added complexity

that without register integration could be avoided.

This section will address the role of stores and memory communication within

DDTs. A discussion of the potential for marrying DDT optimization with register

integration is left for the future directions section of the concluding chapter.

2.3.1  Stores and Memory Communication in DDTs

There is only one reason for a DDT to contain a store. Namely, that store was

found to supply a value—via memory—to a younger load whose presence in the

DDT has already been determined. Stores only exist in DDTs as part of store-load

communication pairs. A store-load pair within a DDT performs DDT-internal
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memory communication. The left side of Figure 2.12 (marker #1) shows an inter-

nal memory communication.

Like all other DDT pre-execution constructs—implicit conditional control, for

instance—DDT-internal memory communication is statistical. The particular

communication need not happen with certainty all of the time. All that is

required to justify its insertion into the DDT is that it happens most of the time,

or frequently enough so that the resulting pre-execution improves performance.

The two other forms of memory communication shown in Figure 2.12 are

instances of DDT-external memory communication—in which a DDT load reads a

value from either a pre-trigger DDT store (marker #2) or the data-cache (marker

#3). DDT-external memory communication is not problematic per se. A DDT-

Figure 2.12 DDT-internal and DDT-external memory communication.
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external communication cannot be optimized by “register allocation”. At the same

time, no special microarchitectural support is required to implement DDT-exter-

nal communication. An externally-communicating DDT load reads its value from

either the data cache or the store queue. In other words, it behaves just like a con-

ventional load from the master thread.

Special hardware support is needed, however, to implement DDT-internal

memory communication correctly. DDT-internal memory communication cannot

take place through the data cache. DDT instructions are speculative and the data

cache (as currently defined) holds only non-speculative state. DDT-internal mem-

ory communication also cannot take place via the conventional store queue, since

the backing store for that structure is, again, the data cache. DDT-internal mem-

ory communication, therefore, takes place using a separate structure—the data-

driven store queue (DDSQ). Notice, whether or not a given DDT load participates

in internal or external communication is statically known. This static knowledge

can be conveyed to the processor to allow DDT loads to be properly steered to

either the conventional memory system or to the DDSQ. That is the function of

the internal-communication bit we spoke of in a previous section.

2.4  Chapter Summary

This chapter described DDMT’s pre-execution model. DDMT is unique in the

realm of proposed pre-execution implementations, because its choice of a result

communication mechanism—register integration—precludes the use of control

flow to sequence DDTs. This, in turn, prevents DDTs from using conditional con-
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trol to ensure that path sensitive computations are pre-executed correctly and

more importantly from using loops to run further ahead of the master thread and

tolerate longer latencies. DDMT’s pre-execution model consists of a set of “tricks”

which are used to “simulate” control flow. Implicit data-driven sequencing

replaces the control-driven sequencing mechanism. Within this sequencing

model, implicit and greedy control take the place of conditional control struc-

tures. Full and induction unrolling replace loop structures.

Register integration also disallows the dataflow graph encoded by DDTs from

being optimized in any way, requiring the DDMT microarchitecture to support

stores and memory communication within DDTs.
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Chapter 3

DDT Selection

A data-driven thread (DDT) is a computation copied from the main program

that pre-executes one or several problem instruction instances (PIIs). DDT selec-

tion is the most significant factor in determining the performance impact of

DDMT. Good DDTs pre-execute performance-degrading instances (PDIs) using

minimal additional sequencing and execution bandwidth. Bad DDTs pre-execute

non-performance degrading instances (NPDIs), do so no faster than the master

thread, and slow the total system down by consuming too many resources. The

goal of DDT selection is to maximize DDT latency tolerance—the expected

amount of microarchitectural latency (memory hierarchy latency for loads or

pipeline latency for branches) that is moved from the main thread to DDTs—and

to minimize DDT overhead—the expected number of sequenced and executed

DDT instructions—required to achieve this latency tolerance. This chapter intro-

duces the problem of DDT selection, describes metrics for estimating the utility of

candidate DDTs, and presents an algorithm that uses these metrics to automati-
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cally extract promising DDTs from program traces.

The restrictions placed on DDTs by register integration—specifically the data-

flow graph correspondence requirement—constrain the space of DDTs we may

consider to those that occur as (sub-) computations within dynamic program exe-

cutions. These restrictions turn the completely open problem of constructing

DDTs from scratch into the more bounded problem of enumerating all possible

DDTs and choosing from among them. The enumeration portion of the task can

be automated by examining program traces.

Just because DDT selection is a search over an automatically generated

bounded space, does not mean that finding an optimal solution—a set of DDTs

that, when pre-executed, will yield the shortest master thread execution time—is

easy. In fact, we do not even know how to approach this problem globally. Our

approach is to decompose the problem into smaller subproblems we think we can

approximately solve. Then, we ignore potential interactions and assume that

“optimal” subproblem solutions collectively yield a global optimum. Concretely,

we assume that DDTs are independent of one another—or if they interact, they

do so constructively—and channel our efforts towards optimizing individual

DDTs with respect to individual problem instruction instances. In this enterprise,

we take into account a number of factors including latency tolerance, bandwidth

consumption, and likelihood of eventual integration. Even here, we use the word

optimize in the same sense in which it is used when talking about compilers—i.e.,

we have only approximate ways of telling whether one DDT is better than

another and absolutely no way of telling whether a particular DDT is optimal.
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The rest of the chapter is organized as follows. We describe the DDT selection

algorithm which is composed of three phases. Each phase is described in detail,

with a focus on the appropriate metrics that must be optimized at each step. The

end of the chapter discusses issues regarding implementation of the algorithm in

real world scenarios. However, we stress that it is the collection of metrics and

the DDT “optimization” framework that is the real contribution of this work, not

any real world implementation.

3.1  Algorithm Overview

All DDTs are dynamic, backward data-dependence slices of problem instances.

We explain this composite term. A backward slice is another term for a “computa-

tion”. A backward slice is trivially constructed by starting with the targeted

instruction, walking backwards through a given program representation and

adding any instruction that satisfies an unsatisfied input dependence for an

instruction already in the slice. A backward data-dependence slice is simply a

backwards slice that includes only instructions that—transitively—satisfy the

target PII’s data dependences. Instructions that satisfy control dependences are

not included in DDTs because, as we have seen, a DDT cannot interpret control

decisions. A DDT can contain branches, but only as target PIIs—i.e., computation

endpoints. Finally, a dynamic backward data-dependence slice is a slice extracted

from a dynamic program graph—i.e., a program trace—rather than a static pro-

gram graph. Our DDTs are dynamic slices because, to be integrated, they must

match dynamic program dataflow graphs. Even if we were to construct DDTs
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using static program graphs, it would be with the sole purpose of unrolling these

into dynamic graphs. Doing this without control-flow is difficult.

The selection algorithm we present is trace-driven—it extracts DDTs by

examining program traces. A trace-driven approach is natural for performing the

dynamic backward-slicing required to find the kind of DDTs we need. Input to the

algorithm is a program trace which is annotated with the execution latency of

every instruction. In addition, all load and store addresses are annotated in the

trace, allowing us to establish memory dependences. The trace is also annotated

with all PDIs—load instances that actually miss in the cache and branch

instances that are actually mispredicted.

The reason for distinguishing PDIs from NPDIs—loads that hit in the cache

and correctly predicted branches—is an important and recurring theme through-

out the chapter, so we will state it officially here. We are only interested in pre-

executing PDIs. Since an NPDI has no extra latency to tolerate, pre-executing it

only introduces overhead but does not improve performance. Of course, there is

no guarantee that the PII pre-executed by a given DDT will be a PDI. In fact,

there is no guarantee that for a given PII pre-executed by a DDT, a corresponding

master thread PII even exists. However, selecting DDTs using only backward

slices of PDIs helps reduce the probability that a pre-executed PII will be an

NPDI.

The traces used by our algorithm contain microarchitectural information—

execution latencies, the identities of all mis-predicted branch instances, etc.—

that is not generated by typical architectural tracing tools [9, 86]. The traces we
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use are generated by a timing simulator. In practice, traces annotated with the

appropriate information may be generated in different ways. A microarchitec-

tural simulator is a practical option, especially if DDT selection is performed

offline. Alternatively, hardware performance counters [3, 23] or performance-

monitoring instructions like informing loads [45] may be used to augment archi-

tectural traces. Finally, if DDT selection is implemented in hardware, this

microarchitectural information would be naturally available to it.

Our algorithm consists of three sequential phases:

• Selection of problem instructions (PIs). We identify the static instructions

whose dynamic instances we want to target with DDTs.

• Selection of single-performance-degrading-instance (PDI) DDTs. We select

DDTs that each attack a single PDI of a particular PI that occur along a par-

ticular (but hopefully recurring) path in the program. This is the phase in

which we perform the actual backward slicing.

• Selection of multiple-performance-degrading-instance (PII) DDTs. We con-

struct DDTs that attack multiple PDIs by essentially merging all sets of sin-

gle-PDI DDTs with partially overlapping prefixes produced by the previous

phase.

The rest of the section will describe each phase and the metrics and analysis it

employs in detail.

3.2  Phase I: Selecting Problem Instructions

The first phase in DDT selection is the identification of problem instructions
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(PIs)—static loads and branches whose performance-degrading instances (PDIs)

DDTs will pre-execute. That PIs can be identified via profiling is obvious. What

concerns us is the precise definition of what constitutes a PI—i.e., what puts the

P in PI.

Ultimately, we are interested in all static instructions for which pre-execution

may be profitable. One possibility is to try and construct DDTs for every static

load and branch with at least one dynamic PDI and decide on a final set of DDTs

using the cumulative latency tolerance and overhead metrics calculated for each

DDT candidate. However, the second phase of DDT selection is computationally

quite expensive and it is wise to restrict the definition of a PI a priori using rough

profitability metrics. Our algorithm uses a combination of three metrics.

3.2.1  Metric: Problem Ratio

A static instruction’s problem ratio is the ratio of its performance-degrading

instances (PDIs) to its total dynamic instances (PIIs). In other words, a static

load’s problem ratio is its miss rate and a static branch’s problem ratio is its mis-

prediction rate. Since pre-execution benefits only PDIs pre-executed but incurs

overhead for all PIIs pre-executed, the PI definition should include some informa-

tion about the expected fraction of PIIs that are actually PDIs. A static instruc-

tion with a low problem ratio is likely not to be a good candidate for pre-

execution. Pre-executing instances of such instructions may cover many PDIs.

However, the number of DDTs executed will be far greater than the number of

PDIs covered, and the increased overhead may result in an overall slowdown.
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problem-ratioA = #PDIA / #PIIA EQ 1.

The problem ratio is one metric that should not be overly restrictive in the PI

identification stage. It is possible that an instruction’s PDIs and its NPDIs may

occur along distinct sets of execution paths, and that DDTs can be constructed

that will be triggered only along the PDI paths. In this case, a DDT would only be

pre-executed when the corresponding PII is highly likely to be a PDI. Thus, the

problem ratio is not always the best metric, since it does not accurately reflect the

metric we care about—PDIs covered to PIIs pre-executed. Unfortunately, using

path information to separate PDIs from NPDIs is difficult at this point in the pro-

cess and so this refined metric cannot actually be used.

3.2.2  Metric: Problem Contribution

A static instruction’s problem contribution is the ratio of its own PDIs to all

PDIs of all static instructions—i.e., the fraction of PDIs it contributes to the exe-

cution of a program. Problem contribution and problem ratio are complementary

metrics. Each on its own is useful but insufficient. An instruction may have a

high problem ratio—e.g., ten PIIs, nine of which are PDIs—and be a worse pre-

execution candidate than an instruction with a low problem ratio—e.g., one mil-

lion PDIs out of five million PIIs. Similarly, an instruction may have a higher

problem contribution than another and be a worse pre-execution candidate. How-

ever, an instruction that has both a higher problem ratio and problem contribu-

tion than another is almost certain to be the better pre-execution target.

problem-contributionA = #PDIA/#PDIall instructions EQ 2.
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3.2.3  Metric: Problem Penalty (Desired Latency Tolerance)

A final metric that may be applied to a static instruction is its average prob-

lem penalty—the average penalty of its PDIs. The logic behind this criterion is as

follows. Even if a branch has a high problem ratio and contribution, do we still

want to pre-execute it if its natural (unoptimized) resolution latency is only one

cycle—i.e., the branch executes immediately as it enters the window? The answer

is no, as it will take at least that one cycle to sequence the DDT itself.

Problem ratio and problem contribution are used to narrow the PI definition—

and hence the scope of search—for the subsequent DDT selection phases, but are

discarded at that point. In contrast, the problem penalty is relayed to the subse-

quent phases to let the DDT selection algorithm know how much latency a given

DDT should attempt to tolerate for a given PI. This information is important,

because creating DDTs that attempt to blindly maximize latency tolerance is

unwise. There is no sense in creating a DDT that will initiate a 10-cycle L1 cache

miss 1000 cycles before the master thread executes the corresponding load.

Achieving the 990 additional cycles of latency tolerance will not improve master

thread performance and will likely result in a longer DDT that will consume

more sequencing bandwidth than absolutely necessary. The “early prefetching”

effect, in which prefetched data is evicted before it is used by the master thread,

could also become a problem. For DDMT, the early prefetching effect can actually

manifest in the physical register file as well as a computed result may be evicted

from the IT and its physical register freed before the master thread has a chance

to integrate it. Because of this second role, the problem penalty is also called the
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average desired latency tolerance (LTdes). It is this second use that motivates our

particular definition of the metric.

Our definition of LTdes differs for branches and loads. A branch is pre-exe-

cuted in the hope that its outcome can be integrated, resolving a misprediction.

We define LTdes for a branch such that achieving that level of latency tolerance

will result in the branch being integrated in the completed state, and immedi-

ately resolved, providing the full benefit of instantaneous misprediction resolu-

tion. Since mis-predictions are resolved at the register renaming stage, LTdes for

a branch is the original branch resolution latency (in cycles) measured from regis-

ter renaming—i.e., the difference between the cycle at which the branch was

renamed and the cycle at which it was finally resolved. Equation 3 shows the cal-

culation for the average problem penalty of a given static branch.

problem-penaltyBR = LTdes-BR = SUMPDI-BR(Tcomplete-Trename) / #PDIBR EQ 3.

LTdes for a load is its execution latency. Instantaneous completion for problem

loads would be nice to have, but enough latency tolerance to make problem loads

hit in the L1 cache will still provide a significant ILP boost. The additional

latency tolerance needed to provide instantaneous completion—which may also

require tolerating the latency of a large portion of the load’s computation—may

be too costly in terms of additional DDT instructions. Equation 4 shows the prob-

lem-penalty/LTdes calculation for a given static load.

problem-penaltyLD = LTdes-LD = SUMPDI-LD(Tcomplete-Tissue)/#PDILD EQ 4.

The load problem-penalty threshold can be used to target DDT selection
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either broadly to loads that cause L1 misses, or more narrowly to more expensive

loads that miss in both the L1 and the L2 cache. Setting the load problem-penalty

threshold to the minimum L1 miss latency means that even loads that only miss

in the L1 cache can be considered PIs. Setting the load problem-penalty threshold

to be higher than the minimum L1 miss latency means that in order to be consid-

ered a PI, a static load must cause some number of L2 misses. The higher the

threshold, the more L2 misses are required. Of course, setting the problem-pen-

alty threshold above the maximum load latency means that no load—even one

that always goes to memory—will be considered a PI.

Notice, in both Equation 3 and Equation 4, problem-penalty/LTdes is computed

as the average latency over all PDIs of a static instruction. The latencies of

NPDIs—i.e., correctly predicted branch instances and load instances that natu-

rally hit in the cache—are not entered into this calculation. We want DDTs that

tolerate the full latency of PDIs. We would like to minimize the pre-execution of

DDTs for NPDIs, but once such a DDT executes we do not care about its latency

tolerance properties. Entering NPDI latencies into the calculation, artificially

lowers LTdes and will cause us to select DDTs that don’t tolerate enough latency

when they do pre-execute for PDIs.

Note, our definition of problem penalty is based on latency metrics only. It

does not account for the impact of that latency on end performance. For instance,

the PDIs of a given static load may have an average execution latency that

exceeds the problem penalty threshold and yet not adversely impact performance

due to an abundance of nearby parallelism. There is no need to pre-execute for
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these PDIs, yet no way to know within our framework that such pre-execution is

useless. In a similar case, the PDIs of a given PI may have an average problem

latency of 40 cycles, yet only contribute an average of 10 cycles to execution time,

again due to nearby parallelism. Our algorithm would search for DDTs to tolerate

40 cycles per PDI, not realizing that shorter DDTs that tolerate only 10 cycles per

PDI are sufficient. A critical-path framework [37] that is able to compute how

much each PDI contributes to execution time, and hence what its real problem

penalty—and desired latency tolerance—is, can potentially refine the DDT selec-

tion process and improve end DDMT performance.

3.3  Phase II: Selecting Single-Problem-Instance DDTs

The problem instruction selection phase produces a list of static problem loads

and branches for which DDTs should be created. This list is the input to the sec-

ond phase, which analyzes program traces to construct very simple DDTs that

attack a single dynamic instance of a problem instruction along a single

(although hopefully frequently recurring) execution path.

The sequence of instructions that comprises a dynamic backwards slice is

unambiguous. Our task is to pick the slice suffix (backwards sub-slice) we think

will make the best DDT. In this section we describe metrics that help us make

this decision. Note, a perfectly valid outcome of this process may be the decision

that no sub-slice makes an acceptable DDT.

This phase of DDT selection is the most time consuming and delicate of the

three. Actually, we decompose this phase into two sub-phases, one of which is



72
time consuming and the other delicate. The time consuming portion involves pro-

cessing a program trace and collecting a database of raw statistics about all

potential DDT candidates for all problem instructions. The delicate portion

involves optimizing carefully chosen metrics over this database to come up with

the “best” DDTs, this is the portion in which actual DDT selection takes place—

the interesting portion. The two sub-phase split is practically motivated. Statisti-

cal database construction is both much more expensive and almost completely

independent of the parameters of DDT selection. The database can be built once,

stored, and subsequently post-processed with different sets of parameters to pro-

duce different sets of DDTs.

3.3.1  Building the Raw Statistical Database: the Time-Consuming Part

A statistical database of slices is constructed using a list of PIs for which

DDTs need to be constructed and a program trace annotated with all load and

store addresses, the identities of all PDIs, and the execution latencies of every

instruction. The process is illustrated in Figure 3.1. The slicer reads the trace,

always remembering the most recent N instructions. These comprise the slicing

window. When the youngest instruction in the trace is an instance of a PI that is

also a PDI, the slicing algorithm walks backwards through the window building a

backwards slice for the PDI. Every instruction added to the slice is annotated

with its execution latency (LE) and its distance—in dynamic instructions—from

the target PDI (DISTPDI). Note, DISTPDI is an architectural measure—it mea-

sures distances in terms of the dynamic retirement stream and is agnostic of out-
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of-order execution. When the oldest instruction in the slicing window is reached,

the resulting slice is entered into the slice database. Of course, the slicer is not

invoked for NPDIs. The reason for this is simple, but deserves a second mention.

We have no interest in selecting DDTs that will pre-execute NPDIs!

The database represents slices as trees with static PIs at the roots. A slice tree

is not a dependence graph. All nodes in a dependence graph belong to the same

computation. The nodes in a slice tree belong to different, but partially overlap-

ping, computations. Each node in a slice tree explicitly represents a single

instruction but implicitly represents an entire slice whose trigger is that instruc-

tion. The slice is constructed by walking from that node up the tree to the prob-

lem instruction root. We use a tree representation because it naturally represents

the very important notion of common slice suffixes. In a slice tree, every slice is a

suffix sub-slice of all of its child slices.

Figure 3.1 Slicer and slicing window.
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Figure 3.2 illustrates the structure of the database. The top of the figure

shows two separate slices, A and B, with a common suffix. The representation of

these two slices in the slice tree is shown at the bottom of the figure. In the slice

tree, slice A is represented by the instruction at marker #A, slice B is represented

by the instruction at marker #B, and their shared sub-slice is represented by the

Figure 3.2 Statistical backward slice database.
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instruction at marker #S. Again, a slice is constructed by walking from its repre-

sentative instruction (trigger) to the problem head of the tree (marker #P). For

instance, if we walk from instruction #A to the head of the tree at instruction #P,

we recover slice A.

In addition to representing slices compactly, the slice database also collects

statistics that help in the DDT selection process. Statistics fall into two groups.

The first group comprises a static instruction’s dynamic instance count (DCinst),

the number of times that an instruction appears in a given dynamic program

sample (trace). An instruction’s dynamic instance count has nothing to do with it

being any part of a slice or DDT. Every static instruction has a dynamic instance

count.

The second group of statistics apply only to static instructions that are part of

slices and are slice-sensitive—they are kept separately for each static instruction

in each position of every slice. For instance, a static instruction’s dynamic slice

count (DCslice) is the number of times that instruction appears in a particular

position in a particular dynamic slice. If an instruction appears multiple times

within a given slice, each instance has its own dynamic slice count. Similarly, if

an instruction appears in multiple slices, each of those instances also has its own

DCslice. The DCslice of a DDT’s trigger instruction is equal to the number of times

that particular slice appeared as the computation of a PDI. An instruction’s DCs-

lice is always equal to or less than its DCinst. Note, the tree structure of our repre-

sentation allows us to correctly count DCinst for shared slice suffixes. In the

figure, slice A was observed 35 times and slice B 5 times. In the tree representa-
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tion, their shared suffix is marked as having been observed a total of 40 times.

Two other slice-sensitive statistics of interest are an instruction’s average exe-

cution latency (LE) and its average trigger distances (DISTtrig) for both the con-

trol- and data- driven settings. Average execution latency is self explanatory.

However, the backward structure of the slice tree and the fact that any instruc-

tion in the tree is a potential trigger means that every instruction may need to

track multiple average trigger distances. To deal with this information compactly,

a slice tree actually store in each entry an instruction’s average problem distance

(DISTprob)—its distance from the problem root of the tree. An instruction’s trig-

ger distance from any trigger can then be calculated as the triggers DISTprob

minus its own. Notice, by this calculation a trigger’s distance from itself is always

zero. Also notice, an instruction’s problem distance in the data-driven setting

does not need to be represented explicitly. This number is always the depth of the

path from the given instruction to the problem root. Again, we use Figure 3.2 as

an example. We compute the control- and data- driven trigger distances for

instruction at marker #S in the DDT with trigger at marker #A. Instruction #S’s

control-driven trigger distance (24) is computed by subtracting its DISTprob (15)

from #A’s (39). Its data-driven trigger distance (3) is obtained by subtracting its

tree depth (3) from #A’s (6).

3.3.2  Algorithm Structure and Hard Termination Conditions

Once the database is constructed, the actual single-PDI DDT selection algo-

rithm traverses slice trees in pre-order—considering increasingly larger slices—
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to find the best DDTs. For a given static PI—i.e., a given slice tree—the algorithm

may find any number of acceptable DDTs. These DDTs are not mutually exclu-

sive and even if they are, the choice among them will be made by the next and

final selection phase.

The traversal algorithm has two hard (as opposed to soft) termination condi-

tions. These conditions only terminate search along a particular sub-tree, not

altogether for the entire slice tree, and both signal failure. The first condition is

enforced when the current DDT candidate under consideration exceeds a certain

length. The length constraint is a concession to the finite size of the DDT cache

(DDTC). The second condition is activated when the trigger instruction of the cur-

rent DDT candidate exceeds a certain control-driven distance from the target

problem instruction. This scope constraint is a concession to the finite slicing win-

dow of the slice collector shown in Figure 3.1.

The length and scope constraints are externally tunable parameters that

allow us to roughly control the size of DDTs. Longer DDTs typically tolerate more

latency per PDI covered, but obviously incur a higher overhead. They typically

also cover fewer PDIs.

Within the hard length and scope constraints, the traversal algorithm tries to

maximize the cumulative latency tolerance a DDT will have over all of its pro-

jected pre-executions while minimizing cumulative overhead. The next subsec-

tions—Section 3.3.3 through Section 3.3.7—will formalize these notions in

statistical metrics and provide a working example.
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3.3.3  Metric: Estimating Execution Times using SCDH

To estimate the latency tolerance of a DDT, we must be able to estimate a pri-

ori the difference in execution times between a given computation executing in

the master thread and that same computation executing as a DDT. To estimate

execution time differences, we need the ability to estimate execution times.

Our execution time estimate is a new metric called sequencing-constrained

data-flow-height (SCDH), a composite metric that captures the effects of both

data-dependences and limited sequencing bandwidth. For conventional data-flow

height calculations, the input height (DHin) of an instruction represents the time

at which the instruction becomes data-ready and is computed as the maximum of

the output heights (DHout) of those instructions on which it is data dependent.

DHout—the time at which the instruction completes—is computed by adding the

instruction’s execution latency (LE) to its DHin.

DHin = MAXdataflow-predecessors(DHout) EQ 5.

DHout = DHin + LE EQ 6.

SCDH takes sequencing into account by including a sequencing constraint

(SC) in the input height calculation. SCDHin is the maximum of the output

heights (SCDHout) of an instruction’s dataflow predecessors and this sequencing

constraint—it represents the earliest time at which the instruction is both data-

ready and sequenced. SCDHout is computed in the same way as DHout—by add-

ing the instruction’s latency to its SCDHin. The SCDH of a single-problem-

instance DDT is the SCDHout of its targeted problem instruction. The sequencing
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constraint (SC) can be calculated in several ways; the simple one we use divides

the instruction’s trigger distance (DISTtrigger) by the available sequencing band-

width (BWseq).

SC = DISTtrigger / BWseq EQ 7.

SCDHin = MAX(SC, MAXdataflow-predecessors(SCDHout)) EQ 8.

SCDHout = SCDHin + LE EQ 9.

The SCDH can be used to calculate execution times in both a control-driven

(master thread) setting, SCDHcontrol-driven, and a data-driven (DDT) setting,

SCDHdata-driven. The dataflow relationships and execution latencies are the same

in both settings, but the trigger distances (DISTtrigger) and available sequencing

bandwidths (BWseq) are different. In the control-driven setting, trigger distances

are non-consecutive while the available sequencing bandwidth is equal to the

sequencing bandwidth consumption of the master thread. In a data-driven set-

ting, trigger distances are dense and the available sequencing bandwidth is as

much as we decide to give the DDT.

The differences in trigger distances are straightforward. However, the differ-

ences in available sequencing bandwidths deserver further treatment. In the con-

trol-driven setting, the available sequencing bandwidth is equal to the rate at

which the master thread actually sequences instructions. In the global limit, this

is the master thread’s IPC. However, we have found that simply plugging the

master thread’s base IPC as BWseq produces poor DDTs. As it turns out, the mas-

ter thread sequences instructions at a higher bandwidth than its IPC. Not only
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does it sequence wrong-path instructions as well as the retired instructions which

are counted in IPC, but its retired-instruction sequencing rate will hopefully

increase with the addition of DDMT. After a brief search, we have decided to com-

pute the available sequencing bandwidth for the control-driven master thread as

the average of the master thread’s IPC and the width of the processor, weighted

2-to-1 in favor of the IPC. Equation 10 gives the precise formula. By using this

formula, we guarantee that for a machine of width greater than or equal to three,

the control-driven BWseq will never be less than one, leading the master thread to

believe that it could sequence the entire program faster than the master thread.

BWseq-CD = (2 * IPCCD + WIDTHseq) / 3 EQ 10.

As for data-driven BWseq, we choose the constant 1—i.e., we allocate a DDT

sequencing bandwidth equal to 1 instruction per cycle. We will address this

choice in greater detail in the following chapter in Section 4.2.5.

Ultimately, what interests us are not the absolute execution time estimates,

but the difference between them. This difference, SCDHdiff quantifies how much

faster a given computation will execute as a DDT than it will execute within the

master thread.

SCDHdiff = SCDHcontrol-driven - SCDHdata-driven EQ 11.

In Figure 3.3 shows an SCDHdiff calculation for the DDT from our running

example. We assume that the integer operations have unit latencies and the load

has a latency of 3 cycles. The SCDHcontrol-driven and SCDHdata-driven calculations

are each represented by four columns—DISTtrig is the instruction’s dynamic trig-
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ger distance within its execution context, SC is computed by dividing DISTtrig by

the available sequencing width (BWseq), SCDHin and SCDHout is computed using

dataflow-rules, SC and the corresponding latencies. The calculation is for an 8-

wide machine. However, we assume that the master thread has a base IPC of 2,

so, for the control-driven calculation, we use a sequencing width of 4—(2*2 + 8) / 3

via Equation 10. Since a DDT does not get full sequencing bandwidth but must

siphon bandwidth from the master thread, its sequencing bandwidth should be

lower. In the calculation, we set BWseq for the data-driven calculation to 1, to sim-

ulate the DDT getting to sequence a single instruction every cycle. Our DDMT

implementation uses a variant of this policy: on an 8-wide processor a DDT gets

to sequence 8 instructions once every 8 cycles. Note, allocating DDTs sequencing

bandwidth of 1 instruction per cycle is a design choice, one that will be discussed

in Chapter 4.

Figure 3.3 shows where a DDT gets its performance advantage. At DDT fork,

the complete program and the DDT both begin executing from the trigger instruc-

Figure 3.3 Sample SCDH diff  calculation.
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tion. However, corresponding instructions are always further away from the trig-

ger in the master thread context. Although it has less sequencing bandwidth at

its disposal, the DDT manages to sequence the entire computation in 4 cycles,

while the complete program takes 7 cycles to sequence it. Combined with data-

dependences, this 3 cycle fetch advantage the DDT has over the main thread

translates into a 4 cycle execution time advantage. On this particular sequencing

configuration, the DDT will cover 4 cycles of latency per mis-predicted instance of

the problem branch.

SCDH is an intuitive metric. However, it oversimplifies both the control- and

data- driven execution models in ways that typically result in under-estimation of

execution times. Since the metric that concerns us is SCDHdiff, an under-estima-

tion of SCDHcontrol-driven is conservative, whereas an under-estimation of SCDH-

data-driven is aggressive. Under-estimation of SCDHcontrol-driven occurs because

SCDH ignores sources of control-driven sequencing under-utilization—most sig-

nificantly unrelated branch mis-predictions, but also instruction cache misses,

cache block mis-alignments, and other issues—as well the nature of the other

work in the main thread. Under-estimation of SCDHdata-driven is a result of the

SCDH ignoring contentious parallel execution. Unfortunately, more accurate esti-

mates probably require detail equivalent to full simulation.

3.3.4  Metric: Aggregate Latency Tolerance

SCDHdiff is not a measure of latency tolerance per se. Latency tolerance is

bounded by the amount of latency present to tolerate. SCDHdiff is an unbounded
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measure of the execution time difference between the DDT and the master thread

contexts. To calculate the effective latency tolerance (LTeff) of a given DDT, we

bound its execution time advantage with the latency it is required to tolerate: the

desired latency tolerance (LTdes) of its target PI.

However, the metric we wish to optimize is not the latency tolerance of an

individual DDT but rather its aggregate latency tolerance (LTagg) accumulated

over all PDIs tackled via its pre-executions. Just as the effective latency tolerance

metric does not count latency that needs no tolerance, aggregate latency toler-

ance does not count latency tolerance if the targeted instance was an NPDI (had

no latency to tolerate). The aggregate latency tolerance of a static DDT is there-

fore its effective latency tolerance per execution multiplied by the number of PDIs

attacked (DCslice), not its total number of executions (DCinst).

LTeff = MIN(SCDHdiff, LTdes) EQ 12.

LTagg = LTeff * DCslice EQ 13.

LTdes tells the selection algorithm the desired latency tolerance for the PDIs of

each PI. What is not set is how much of this desired latency tolerance must be

achieved for a DDT to be considered acceptable. Certainly, if a load has an LTdes

of 40 cycles we would accept a DDT that tolerated 35 cycles per PDI if that was

the best DDT we could find. We may or may not want to accept a DDT that toler-

ates only 5 cycles per PDI covered, however. This behavior can be tuned via an

external parameter, the latency coverage acceptability factor (LCAF). An LCAF of

100% means that the LTdes must be achieved in full for a DDT to be accepted. An
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LCAF of 50% means that even DDTs that cover half the desired latency per PDI

are acceptable. Although not a component in any of our metrics, the LCAF allows

us to tune DDT selection externally by setting a lower bound on the “quality” of

DDTs we are willing to accept.

3.3.5  Metric: Aggregate Overhead

No amount of latency tolerance is desirable if the cost of executing the DDT is

greater than the latency tolerated. More concretely, given a choice between a 30-

instruction DDT that can hide 5 cycles of latency and a 6 instruction DDT that

can hide 4 cycles of latency for the same set of dynamic problem instances, we

cannot clearly choose the first over the second. Sequencing 24 extra instructions

in the longer DDT is likely to slow the program down by more than the lone cycle

that DDT will gain in latency tolerance over its shorter counterpart.

We define the overhead (OH) of a DDT as the number of cycles it takes to

sequence the DDT. This is the number of sequencing cycles effectively stolen from

the master thread by the DDT, and is the most direct and effective way of mea-

suring overhead. Since bandwidth consumption decreases along the pipe—more

instructions are sequenced than are executed, more instructions are executed

than are retired, and so on—all other forms of contention will be either less than

this one or, as in the case of bus bandwidth utilization, not easily estimated.

Since overhead is mostly a matter of opportunity cost, a DDT should only be

penalized for stealing bandwidth the master thread was going to consume. For

instance, if on an 8-wide processor, we expect the master thread to sequence at
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half peak bandwidth (i.e., at a sustained rate of 4 instructions per cycle) then a

DDT should only be penalized for half of its aggregate bandwidth consumption.

One in every two sequencing slots taken by the DDT was not going to be taken by

the master thread anyway. We discount the overhead for a given DDT by the

expected master thread sequencing utilization which we compute as the ratio of

its effective sequencing bandwidth to the processor’s peak sequencing bandwidth

(BWseq-CD / WIDTHseq). Note, we also use the master thread’s IPC when comput-

ing SCDHcontrol-driven in our latency tolerance calculation.

Unlike a DDT’s positive impact which is expressed only when that DDT pre-

executes a PDI, a DDT’s overhead is felt every time it executes, regardless of

whether the target PII is a PDI or an NPDI and even if a corresponding PII does

not exist at all. A DDT’s aggregate overhead (OHagg) is its per-instance overhead

times the number of times it executes—the number of times its trigger is dynam-

ically observed (DCinst).

OH = (SIZEDDT / WIDTHseq) * (BWseq-CD / WIDTHseq) EQ 14.

OHagg = DCinst * OH EQ 15.

3.3.6  Ultimate Metric: Aggregate Advantage

The ultimate utility metric for a DDT is its aggregate advantage (ADVagg), the

difference of the aggregate latency tolerance and the aggregate overhead.

ADVagg = LTagg - OHagg EQ 16.

3.3.7  Working Example

To illustrate the function of the metrics within the algorithm, we walk an
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example traversal in Figure 3.4. The traversal corresponds to the left-hand tree

(chain) of sub-slices from Figure 3.2. For each successively longer DDT candidate

we show the ADVagg calculation, describe why this calculation corresponds to our

intuition, and show the decision made by the algorithm at each stage. For the

purpose of this example, we assume that LTdes of the problem branch is 4 cycles,

the sequencing bandwidth available to the DDT (BWseq) is 1, that sequencing

bandwidth available to the master thread is 8, and that the master thread’s base

IPC is 2. Again, the master thread’s effective sequencing bandwidth consump-

tion, BWseq-CD, is 4.

The shortest possible DDT has its trigger as the instruction at marker #1. The

problem instruction itself is not evaluated as a trigger because its DDT is empty.

At the top of each iteration, we show the SCDHdiff calculation. SCDHcontrol-driven

is on the left, SCDHdata-driven is on the right. Trigger distances are obtained from

the slice tree in the control-driven calculation and are, of course, sequential in the

data-driven calculation. The sequencing constraint (SC) at each instruction is

obtained by dividing DISTtrig by the available sequencing bandwidth (BWseq-

CD)—4 in the control-driven setting, 1 in the DDT setting. SCDHin’s and SCD-

Hout’s are computed using data-flow rules, SC, and the average execution laten-

cies (LE) from the statistical database. Since the DDT is sequential in both

realms, SCDHdiff is 0. Consequently, the effective latency tolerance (LTeff) and the

aggregate latency tolerance (LTagg) are also 0. However, the DDT does have some

overhead. The DDT is of size 1 (SIZE) and is executed 100 times (DCinst). The
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Figure 3.4 Working example of single-PDI DDT selection algorithm.
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aggregate overhead (OHagg) is computed by taking the total number of DDT

instructions sequenced (100) dividing by the processor’s sequencing bandwidth

(8) and discounting by the master thread’s sequencing utilization factor (4 / 8).

(100 / 8) * (4 / 8) is 6.25 which we round to 6. The aggregate advantage (ADVagg)

therefore is -6. Executing this DDT will actually slow the entire system down.

This is obviously not an acceptable DDT.

Moving to the next longer DDT in iteration 2 makes things temporarily worse.

Dynamically, the DDT instructions are still too close to the trigger to allow com-

pressed data-driven sequencing to achieve an execution advantage—i.e., a posi-

tive SCDHdiff—over the complete program. Consequently, LTagg is still 0. At the

same time, we have doubled SIZE, doubling OHagg from 6 to 12. Since the ADVagg

is -12, we must continue. We do not know for sure that the situation will improve,

but we have nothing to lose by looking.

Things do improve in iteration 3. The trigger is now a full loop iteration away

from the rest of the DDT, allowing data-driven sequencing to accelerate execu-

tion. This DDT has an SCDHdiff of 2 cycles per pre-executed instance. Since this

is lower than LTdes of 4, the LTeff is equal to SCDHdiff. With slice executions (DCs-

lice) expected to attack 40 problem instances, LTagg is 80. Again, the DDT grows in

size by one instruction per executed instance, bringing OHagg to 19. However,

ADVagg is now positive meaning that executing this DDT will improve perfor-

mance. At this point, we can stop or choose to go on in search of a DDT with an

even higher ADVagg. We choose the latter path.

The situation improves further in iteration 4 as we implicitly begin to use
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induction unrolling. The DDT now contains two induction instances providing the

latency tolerance of two loop iterations. SCDHdiff (4) now matches LTdes (4) giving

an LTeff of 4. Although LTeff doubles, the number of problem instances attacked

drops from 40 to 35. Hence, LTagg goes to 160. OHagg increases linearly (with

SIZE) to 25. ADVagg for this DDT is 115 cycles, bettering the 61 cycles of the pre-

vious DDT and confirming our decision to proceed. Notice, although it attacks

fewer problem instances than its predecessor (35 to 40), this DDT is better

because it tolerates twice the latency for the problem instances it does attack.

If the DCinst of both the slice and its trigger remain the same, then there is lit-

tle point in searching any further. Our current DDT already tolerates LTdes, any

longer DDT will simply consume more overhead. However, we should still pro-

ceed because there is always the chance that the longer DDT will cover the same

number of dynamic problem instances (DCslice), but execute fewer times (DCinst)

to do so. That is not the case in iteration 5. As we explained, the increased SCDH-

diff does not translate into increased LTeff as there is no more latency to tolerate.

At the same time, the increased SIZE increases OHagg, reducing the ADVagg.

The search ends when one of the hard termination conditions—maximum

DDT length or maximum slicing scope—is reached. The final DDT is the best one

seen to that point. The final DDT chosen for our example sub-tree is the one con-

sidered in iteration 4.

3.3.8  Another Metric: Integrability

When pre-executing a given computation, the hope is that ultimately this
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computation will be integrated by the master thread. Eventual integration is less

important for computations that target loads since the cache prefetching effect

itself is enough to improve performance. However, it is extremely important for

computations that target mis-predicted branches and for supporting induction

unrolling. It makes sense that our criteria for a good DDT include metrics that

reflect its likelihood, or ease, of eventual integration. If a DDT has a certain

shape that makes it difficult to integrate, and that DDT attacks a branch or uses

induction unrolling, we may want to reject it.

Recall, in Section 2.1.4 (Figure 2.5) we showed why PC matches are used to

differentiate between operationally identical instructions. The reason is that

given a choice between integrating the results of two operationally identical

instructions, choosing the wrong one means forfeiting the integration of depen-

dent computations. Unfortunately, this scenario can happen even when we use

PC matching for integration. Specifically, two instances of the same static

instruction may look identical to the integration circuit, but choosing the wrong

one will mean forfeiting the ability to integrate downstream computation. It is

the potential for this scenario which degrades a DDT’s integrability.

Figure 3.5 shows an example. An unrolled computation contains two instances

of instruction 0x14, R4 = ld[GP] (markers #1 and #2). Since GP is the only input

to these two instances and GP is unchanged, their IT tags {PC=0x14, pin1=p80,

pin2=-} look identical. However, it certainly makes a difference which one is inte-

grated by the master thread. If the master thread integrates p6 (marker #3), then
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subsequent integration of the rest of the computation will be lost. The next

instruction has p8 as one external input and the output of the integrated instruc-

tion as the other input. However, there is no instruction 0x18 with inputs p8 and

p6. This isn’t to say that the processor will always choose the wrong physical reg-

ister, but the probability that it will is high as without any more information the

choice must be made randomly.

The DDT selection algorithm can recognize these scenarios. The question is

what should it do when it does recognize one? One of three things can be done.

The first two options are trivial. The selection algorithm can either err on the side

of caution and discard the DDT or throw caution to the wind and select the DDT

anyway hoping that correct integration will take place most of the time. There is

a third option.

The problem in this scenario—and the basic problem in all such scenarios—is

that the inputs of the two instances are both DDT-external—i.e., unchanged by

older instructions within the DDT—and hence necessarily identical. We can fix

this problem by giving each instance of such an instruction a false register depen-

Figure 3.5 A DDT that is difficult to integrate.
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dence which will be used to distinguish instances of the instruction during regis-

ter integration. To do this we add a third input register dependence to each IT

entry and annotate DDT instructions with an additional logical register name—

the integration disambiguation register (IDR)—that will implement this false

dependence.

The solution is illustrated in Figure 3.6. We use R1 as the IDR for the two

instances of 0x14. When creating the IT entries for these instructions, we add to

the entries in the new pIDR field, the mapping of R1 at the time—p8 and p5

respectively. Now, when the master thread attempts to integrate the first

instance of 0x14 (marker #1), the tags for the two 0x14 IT entries no longer look

identical. During integration, the current mapping of R1 is read and compared to

the pIDR field of both entries. As the mapping of R1 is p8, the first IT entry corre-

sponding to output register p4 is properly chosen for integration.

Integration disambiguation is effective, but does require the integration cir-

cuit to potentially read an extra input register for every instruction. Note, this is

not an ISA change. An IDR is encoded with each DDT instruction in the DDTC,

Figure 3.6 Integration disambiguation mechanism for difficult-to-integrate DDTs.
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but is not added to instructions from the main program text.

3.3.9  Unrolling and Single-PDI DDTs

This phase of the DDT selection process—the selection of single-PDI DDTs—

makes no explicit provisions for unrolling, either of the full or the induction vari-

ety. Unoverlapped full unrolling is meaningless in this phase because it requires

the presence of multiple PDIs per DDT. As shown in the example, induction

unrolling falls out naturally from the DDT selection process. The process as we

have defined it is—at this point—blind to the degree of unrolling within the DDT.

Because the DDTs are created by dynamic backward slicing, induction unrolling

is automatically performed to the level dictated by LTdes and the external param-

eter LCAF.

3.4  Phase III: Multiple-PDI DDTs

Per its name, a multiple-PDI DDT is a DDT that attacks multiple PDIs in a

single execution. These PDIs may be multiple instances of the same PI as in a

fully unrolled DDT, or instances of different PIs. At first, it may appear that the

idea of a multiple-PDI DDT runs counter to the pre-execution philosophy. After

all, by inserting instructions unrelated to a given PDI into a DDT, we are poten-

tially introducing sequencing delays with respect to that PDI. This is true in the-

ory. In practice, PDIs tend to be clustered—e.g., a frequently mis-predicted

branch that depends on a frequently cache missing load is a common idiom—and

to share large portions of their dataflow graphs. A single DDT in which these
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overlapping sub-graphs are shared and sequenced only once is more efficient

than separate DDTs for each PDI which would require the shared portion to be

sequenced multiple times.

Phase three of DDT selection involves creating multiple-PDI DDTs by merg-

ing single-PDI DDTs with common data-flow prefixes. A DDT’s data-flow prefix is

its trigger instruction plus any contiguous chunk of data-flow sub-graph con-

nected either directly to the trigger instruction or to any other instruction exter-

nal to the DDT. Input to this phase is a set of DDTs represented as lists of

instructions. The component DDTs need not be of the single-PDI variety. The

merge algorithm can handle groups of multiple-PDI DDTs as well.

3.4.1  Alternatives to Merging and Their Limitations

The fusion of data-flow prefix-overlapping DDTs is somewhat tricky to per-

form automatically. Before we describe how it is done, we want to say why we do

it at all—i.e., why we don’t just extract DDTs that attack multiple PDIs to begin

with. In truth, this is an option and one we have explored. However, while it

avoids merging, this approach makes the previous phase much more convoluted

and more likely to result in sub-optimal DDT selection.

First, just because two PDIs are nearby in the dynamic instruction stream,

does not mean that they should be pre-executed by a single DDT. For instance, it

may be that both are simultaneously problematic only very rarely. Second, trying

to satisfy the latency tolerance criteria of multiple PDIs simultaneously is diffi-

cult, especially if these are not compatible—i.e., one would require a very much
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longer DDT than the other. Finally, since we are constructing DDTs only for PDIs,

not for NPDIs, if we were to initially include multiple PDIs in each DDT, the

number of DDTs we would need to consider would explode combinatorially. Con-

structing DDTs for three static PIs simultaneously will result in seven rather

than three sets of DDTs—three for attacking each individually, three for attack-

ing any combination of two of the three and one for attacking all three simulta-

neously.

3.4.2  Merging Algorithm

Merging a general set of arbitrarily shaped DDTs with differing degrees of

overlap in their data-flow prefixes is a very complex task. In fact, depending on

the shape and exact content of the individual DDT dataflow graphs, a merge may

be impossible (we have already seen an example of an impossible merge resulting

from greedy control flow in Chapter 2). What our algorithm actually does is per-

form a simple, heuristic merge and then check to see that the register dependence

graph of each of the original DDTs is still intact. If the merged DDT passes the

register-dependence test, it is accepted. Otherwise, the merge algorithm removes

the component DDT whose register dependence graph was violated from consid-

eration and attempts to perform the merge on the remaining component DDTs.

The failure and retrial process repeats until, eventually, a single DDT remains

and a trivial merge takes place. Component DDTs are a priori sorted by decreas-

ing aggregate advantage so that less advantageous DDTs are removed from con-

sideration first.
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The heuristic merging algorithm is based on control-driven distances from the

trigger instruction. These are the same distances (DISTtrig) used to calculate the

input sequencing constraints for our execution time estimator—the SCDHcontrol-

driven. Quite simply, instructions from individual DDTs are added to the merged

DDT in order of increasing DISTtrig with the algorithm proceeding as long as any

of the component DDTs have instructions to add to the merged DDT.

Adding an instruction proceeds in three stages. Initially, the first unadded

instruction in each DDT is examined, and the one with the lowest DISTtrig is

selected for addition. Next, all the component DDTs are again scanned. If the first

unadded instruction of any component DDT matches—by PC—the selected

instruction, then we assume that this instruction and the added instruction are

one and the same—i.e., this instruction is shared between two or more component

DDTs—and advance the first unadded instruction pointer for that component.

Then, the selected instruction is added to the merged DDT. Finally, the trigger

distances of all unadded instructions are adjusted to pretend as if the most

recently added instruction is the new trigger. This is a normalization step that

eliminates trigger distance artifacts that can subvert a successful merge.

An important component of the heuristic merge is a mechanism for checking

that the interleaving of instructions from different DDTs has left the register

dependences of each of the original component DDTs intact. In other words, we

want to make sure that the merge process does not create any false register

dependences within the DDT. We use a dependence tracking mechanism that is

essentially a simulated form of register renaming to accomplish this. Each com-
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ponent DDT as well as the blank merged DDT starts with an empty simulated

register map table in which each logical register name is mapped to a sequence

number. At the outset, all map tables are identical. The register dependence

check is made during the second stage, as we match the first unadded instruction

in each component DDT with the instruction we have selected to add. If the PCs

of the instructions match, we perform a mock “renaming” of the instruction using

both the map table of its component DDT and the one of the merged DDT. In

order for register dependences to be preserved, the sequence numbers obtained

by each of these renamings must match pair-wise. A mismatch signals that—in

this particular merge—an original register dependence has been permanently

violated. When the new instruction is added to the merged DDT, we allocate a

new sequence number for its output logical register and update the merged

DDT’s map table, and the tables of all DDT’s whose first unadded instruction

pointer we advanced. A working example in the next subsection will clarify this

process.

Note, just because a register dependence is violated in the naive merge, does

not mean that there is no merge under which all original register dependences

are valid. After all, the trigger distances that guide the heuristic merge are sta-

tistical. Theoretically, it is possible to serially perform all possible merges combi-

natorially and pick the first one that preserves register dependences. However,

this is potentially very slow. The heuristic algorithm is quite fast and, as our

experience shows, rarely fails to perform a merge when one is indeed possible.
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3.4.3  Working Example

We work through an example of the merge process in Figure 3.7. In the figure,

we merge a pair of three-instruction DDTs (each DDT has a trigger instruction as

well, of course). The DDTs share their trigger and first instruction. The merged

DDT has five instructions and a trigger for a total of 6 merge steps. The figure

shows the first 5 steps. The sixth step follows trivially from the last step shown

and needs no illustration. At each step the participating instructions and struc-

tures are highlighted and the important events are marked.

The first step involves merging the two triggers (markers #1a and #1b)

together (marker #1). Matching triggers are a requirement of all DDT merges. No

dependence violation checks are performed at this point since the trigger does not

read any value written by a merged DDT instruction. However, we do track the

trigger’s own output value via mock renaming for the detection of future viola-

tions (markers #2a, #2b and 2). The first unadded instruction for each component

DDT is set to the first instruction. There is no need for distance adjustment at

this point, as the trigger’s distance from itself is zero.

Proceeding to the second iteration, the next instruction that must be added to

the merged DDT is the one with the lowest remaining trigger distance. This is the

first unadded instruction of DDTb (marker #3b). However, a second scan indi-

cates that this instruction matches the first unadded instruction of DDTa

(marker #3a), thus we assume that these two instructions are in fact one and the

same. Now that we have decided which instruction to add we must check for reg-
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Figure 3.7 Working example of single-PDI DDT merging algorithm.
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ister dependence violations. We rename the input register (R1) of the new

instruction using the component and merged mock map tables. All three values

(marker #2a, #2b and #2) written in the previous iteration match, confirming that

all dependences are intact and merging can proceed. The final steps are to add a

copy of the instruction to the merged DDT, advance the first-unadded-instruction

pointers in both component DDTs, update the mock rename tables, and adjust

the trigger distances of all downstream instructions in both DDTs. To perform the

adjustment, we subtract the trigger distance of the added instruction from the

distances of the remaining instructions (markers #4a and #4b).

Moving to iteration 3, the remaining instruction with the lowest trigger dis-

tance is the second instruction of DDTa (marker #5a). Unlike the previous itera-

tion, this instruction does not match the first unadded instruction from DDTb. At

this point, we correctly deduce, that the two DDTs are no longer sharing instruc-

tions and their remaining graphs must be interleaved in some way. Performing

the dependence check again signals no violations. We add the instruction to the

merged DDT (marker #5), but advance the next-unadded-instruction pointer,

adjust the trigger distances and update the mock renaming table only in DDTa

(marker #6a). Of course, we must update the mock renaming table in the merged

DDT as well (marker #6). DDTb, which did not contribute an instruction to the

merge in this round is untouched.

In iteration 4, the remaining instruction with the lowest trigger distance from

the previous iteration is the last instruction of DDTa (marker #7a). Again, it does

not match the first unadded instruction of DDTb. We repeat the steps of the pre-
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vious iteration, adding the instruction to the merged DDT (marker #7) and

updating the proper mock renaming tables. The next-unadded-instruction

pointer of DDTa is advanced past its end. From this point forward, only DDTb

instructions are left to add.

The final two iterations are summarized in a single snapshot and their steps

are mechanically similar to the ones we have seen. The only point of note is the

register dependence violation detection procedure which must verify that by

inserting instructions from DDTa, the dependences of DDTb have not been vio-

lated. We check the input dependence (R1) of the first unadded instruction

(marker #8a) in the map tables for DDTb (marker #9a) and the merged DDT

(marker #9). Both entries—2—match, meaning that the merge is still valid. This

meshes with our intuition. The current instruction reads R1. However, of the two

exclusively DDTa instructions that were added before it, neither wrote to R1.

Hence, no name interference takes place between the two DDTs and a successful

merge is possible. The instruction is added (marker #8), the next-to-add pointer of

DDTb is advanced, and the final instruction in DDTb is added to the merged DDT

by passing checks we have already discussed.

3.4.4  Multiple-PDI DDTs and Unrolling

The merging process is the only phase of DDT selection that is explicitly

aware of unrolling. In fact, a DDT that employs unoverlapped full unrolling can

only be created by merging component DDTs together. As far as unrolling is con-

cerned, the task of the merging phase is to merge as many DDTs together as pos-
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sible while not creating any overlapped fully unrolled DDTs.

There is a simple way of accomplishing this. Recall, in Chapter 2, we defined

the unrolling degree of a DDT to be number of times its trigger instruction

appears within its body. We also explained that, under this definition, the unroll-

ing degree of an unoverlapped fully unrolled DDT is zero. The purpose of that def-

inition was to help us with the task of merging unrolled DDTs. If we adhere to

this definition, then proper merging of unrolled DDTs can be performed by follow-

ing one simple rule—only DDTs of equal unrolling degrees may be merged.

Figure 3.8 shows how this definition works in the three different unrolling

scenarios. Recall, the first instruction in each DDT is its trigger. The scenario on

the left (marker #1) is a case of unoverlapped full unrolling. In this case, the

Figure 3.8 Merging unrolled DDTs.

R1 = ld [GP]

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1
R2 = ld [R1]

R1 = ld [GP]

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1

R2 = ld [R1]
R1 = R1 + 1

R1 = ld [GP]

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1

R2 = ld [R1]
R1 = R1 + 1
bz R2, 0x2c
R2 = ld [R1]

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1
R2 = ld [R1] R3 = ld [R1+8]

R1 = R1 + 1
R1 = R1 + 1
R1 = R1 + 1

R1 = R1 + 1

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1
R2 = ld [R1]

R1 = R1 + 1

R3 = ld [R1+8]

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1
R2 = ld [R1]

R1 = R1 + 1

bz R2, 0x2c

R1 = R1 + 1
R1 = R1 + 1
R2 = ld [R1]

bz R2, 0x2c

R1 = R1 + 1
R2 = ld [R1]

R1 = R1 + 1

bz R2, 0x2c

R1 = R1 + 1
R2 = ld [R1]

1 2 3UD = 0 UD = 0 UD = 2 UD = 2 UD = 2 UD = 1



103
unrolling degree (UD) of each of the component DDTs is zero and merging can

take place. In the second scenario (marker #2) the unrolling degrees are again

equal, but this time they are non-zero. This merge is also legal as it yields an

induction unrolled DDT. Note, although there are two separate PDI computa-

tions, they are both from the same loop iteration. The final scenario (marker #3)

shows the would-be creation of an undesirable overlapped fully unrolled DDT—

PDI computations from multiple loop iterations in one DDT. The merge algorithm

avoids merging these two DDTs as they have different unrolling degrees under

our definition.

Ultimately, since only one DDT per static trigger instruction is allowed, only a

single unrolling degree per trigger is allowed. If a set of component DDTs con-

tains DDTs with multiple unrolling degrees, then equal-unrolling-degree subset

with the highest total aggregate advantage (ADVagg) is chosen for merging. DDTs

with other unrolling degrees are cast out.

3.5  Implementing the Algorithm in the Real World

Finding good DDTs is a non-trivial, time-consuming task that requires

detailed information about the program, and in particular, dynamic executions of

the program. These execution costs, algorithmic complexities and information

requirements place practical constraints on its implementation. We envision

three potential implementations for DDT selection: (1) a static, offline implemen-

tation that relies on executable extensions, (2) a purely microarchitectural hard-

ware implementation, and (3) a virtual machine (VM) implementation that is
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executed in software but below the architectural interface. We briefly discuss

each possibility.

3.5.1  Static, Off-line Implementation

In a static implementation, the DDT selection algorithm executes off-line

using profile information and communicates the structure of the selected DDTs to

the processor via the executable. The off-line entity that performs DDT selection

is not the compiler, but rather a post-processing executable-editing tool. DDTs

must correspond PC for PC with program instructions which implies that slicing

must be done post-assembly. In addition, the executable itself is probably needed

to generate problem instruction profiles.

A static implementation is attractive because—at least in its current, prelimi-

nary formulation—the DDT selection algorithm must be implemented in soft-

ware and executed infrequently. The kinds of operations and statistical analysis

required are simply too complex for implementation in dedicated hardware, and

too expensive in terms of execution time to execute online. However, an offline

static implementation must cope with a few issues.

The primary issue is the set of changes required to add DDTs to an execut-

able. Certainly, additional code segments will have to be added in which DDTs

can be written. However, the per-instruction format of these additional segments

will have to differ from that of the main control-driven code segment. Specifically,

PCs of DDT instructions will have to be made explicit. There is also a need for

per-DDT instruction annotations, as the conventional instruction format does not
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have room for the data-driven bit or the integration disambiguation register

(IDR). These changes can be formulated as additions external to the instruction

set architecture (ISA), rather than as ISA changes. Again, the format of the con-

trol-driven code segments does not need to be changed.

A second issue concerns the interface between the encoded DDT information,

the processor and the operating system. Specifically, there must be a system sanc-

tioned way of loading DDTs from the executable into the DDTC. What is needed

here is a handle to an event that will break the circular dependence between

demand-loading the DDTC and trigger detection which requires a loaded DDTC.

One possibility is to expose the DDTC to the operating system via privileged

instructions, then overload the instruction TLB miss handler to load DDTs whose

trigger instructions lie within the translated page. With a large enough DDTC,

DDTC management could be performed in parallel with instruction TLB manage-

ment [106].

A final, more theoretical issue deals with the kind of profiling information

required to generate DDTs using our algorithm. Generating DDTs that corre-

spond to dynamic backward slices is most easily accomplished using dynamic

backward slicing which itself requires program traces. Trace collection is possi-

ble, but inconvenient and rarely done. It would be more convenient to generate

DDTs using summary profiles and static information. We may be able to generate

good dynamic DDTs from accurately synthesized dynamic traces. Useful sum-

mary profiles are ones that help in synthesizing such traces. A path profile [10]

allows accurate dynamic paths to be re-generated. Given a path profile, a natural
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extension would be to couple it with path-sensitive cache miss and branch

misprediction profiles that tell us not only which static problem instructions to

attempt to cover with DDTs, but which paths contain the instances that cause

most of the dynamic problems. Prior work has demonstrated that most cache

misses lie along a certain subset of paths [3]. Dynamic slicing using a path-sensi-

tive problem profile may, in fact, be a more efficient way of doing the same analy-

sis the trace-based algorithm performs. The trace-based approach collects

statistics for all slices and then implicitly chooses the ones that execute along the

most frequent program paths. The static approach reverses the process, finding

frequently executed paths first.

3.5.2  Dedicated Hardware Implementation

In a hardware implementation, the DDT selection algorithm executes on a

dedicated engine. The interface between the selected DDTs and the DDTC is

purely microarchitectural and the operating system is not involved.

Although complex and slow in its current form, the DDT selection algorithm

we described does not fundamentally preclude a hardware implementation. Its

formulation uses dynamically available information exclusively. Selection of prob-

lem instructions can be done via a hardware profiler in a straightforward manner.

The main operation performed by the second phase—backward-slicing—can also

be implemented in silicon. Relatively simple hardware has been proposed for

incrementally extracting threads that execute under more restricted models [68,

69]. Incremental extraction is sufficient if multiple-input instructions are
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included in DDTs. A difficulty with incremental backward slicing is ensuring that

slicing proceeds from both input operands along the same dynamic path. Hard-

ware mechanisms for extracting general threads—which include multi-input

instructions—by monolithically slicing backwards in a hardware instruction

buffer are currently being investigated [4, 58]. Dedicated programmable instruc-

tion stream co-processors, like the instruction path co-processor (I-COP) [18, 19]

or the programmable profiling co-processor [105] may also be adapted to perform

backward slicing. Slicing is a good match for these co-processors because they are

optimized for processing the retirement stream. Merging common dataflow prefix

slices may be difficult to do in hardware. However, this is also a largely incremen-

tal step that can be ignored if the main processor core supports the forking of

multiple DDTs from a single static trigger instruction.

The component of the algorithm which absolutely must be radically stream-

lined is the second phase analysis which optimizes the difference of expected

latency tolerance and projected sequencing overhead. There are two major

aspects that must be simplified. One is the estimation of individual DDT latency

tolerance—i.e., the calculated SCDH difference. This is a crucial component.

However, the SCDH is computed using a modified form of register renaming

where accumulated sequencing and execution latencies replace physical register

numbers. It may be possible to implement a simple version of SCDH in some

sequential circuit and use it to post-process slices. The other is the estimation of

the ratio between DDT activations and dynamic trigger instances. Performing

this computation faithfully requires multiple slicings and subsequent slice com-



108
parison. One obvious simplification is to assume a fixed ratio, say 1 to 3. Given a

dedicated retirement stream post-processor, dedicated quasi-renamers for per-

forming SCDH approximations and the statistical simplifications, a full hardware

implementation of DDT selection is not implausible.

3.5.3  Co-Designed Virtual Machine Implementation

A co-designed virtual machine (VM) [80] implementation combines the favor-

able aspects of both software only and hardware only implementations. A VM

provides a variable-width—and potentially varying—software layer that sits

between traditional hardware and software. This layer allows system software to

see a consistent architectural interface while the actual hardware/software

boundary between the processor and the VM changes. A VM is an attractive envi-

ronment for DDMT. It allows DDT selection to be performed in software and the

resulting information to be communicated to the processor using hooks and

extensions that are architecturally inaccessible. This arrangement eliminates

any forward or backward compatibility problems that would arise if the instruc-

tion set architecture (ISA), or the executable format were expanded to support

DDMT. Also, as DDT selection features become available in hardware, VM sec-

tions can be rewritten to take advantage of them. Again, these hardware features

need not be exposed at the system architecture level. In this respect, a VM pro-

vides an easy evolutionary path for pre-execution and DDMT. Early implementa-

tions can use software exclusively. Subsequent, higher-performance

implementations can take advantage of some dedicated profiling and slicing fea-
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tures to ease software overhead and expand the applicability of pre-execution.

Very few changes to the given formulation are required for a VM implementa-

tion. The input to the thread selection flow is some summary problem informa-

tion and dynamic program traces, both of which are available to a VM. One

concern may be the efficiency and complexity of the extraction algorithms them-

selves. These must be extremely efficient if they are to run on-line and in parallel

with the program whose execution they are trying to optimize. Various statistical

approximations can be used to streamline the selection process. Special microar-

chitectural support can also be provided to move some of the simpler, but more

tedious functions to hardware.

3.6  Chapter Summary

Pre-executed computation selection is the most difficult and important prob-

lem in pre-execution. An efficient implementation of the runtime component of

pre-execution is worthless unless the proper low-overhead, high latency-tolerance

computations are selected for pre-execution. An important requirement of any

pre-execution implementation is an automated way of finding good computations.

In DDMT, the restrictions placed by register integration on the structure of

DDTs simplify the process of automated DDT selection. With DDTs required to

match dynamic dataflow graphs instruction for instruction, a simple way of

obtaining DDTs is to examine dynamic traces of the program and slice backwards

along data-dependence edges from problem instruction instances.

The challenge of DDT selection is not in the mechanical part of backward slic-



110
ing. The challenge is knowing where to stop a slice. The criteria for a good DDT

are obvious. A good DDT should tolerate as much of the microarchitectural

latency of its target problem instance and consume as little sequencing band-

width as possible. Cumulatively, over all of its invocations, a DDT should hide

more latency by pre-execution than it adds via bandwidth contention. Much sta-

tistical and dataflow analysis is required to quantitatively estimate both latency

tolerance and overhead and to judge the cumulative effects of DDTs. This chapter

tries to formalize the problem of DDT selection by presenting metrics for estimat-

ing DDT benefit and cost and methods for calculating these metrics from raw exe-

cution statistics.

The end result is a three phase algorithm that identifies static problem

instructions, creates DDTs for those problem instructions by optimizing certain

formal criteria over backward slices, and finally merges partially overlapping

DDTs together to reduce dynamic sequencing overhead. The algorithm is tunable

using parameters that allow us to control the number of PDIs attacked, DDT size

and the desired level of latency tolerance.
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Chapter 4

DDMT Microarchitecture

This chapter describes a proposed implementation of the DDMT runtime com-

ponent, focusing on its novel aspects. We propose to implement DDMT on a some-

what modified dynamically-scheduled superscalar processor. The scope of the

modifications is even smaller if the processor also supports simultaneous multi-

threading (SMT) [22, 26, 94, 95, 102]. When designing this implementation, the

goal of minimization of the number and scope of the required modifications

ranked just below performance in importance. Where modifications are required,

we strive to formulate them in such a way that simplification or omission will

result in graceful loss of performance improvement, not complete loss of function,

or incorrect execution.

The chapter is organized as follows. We open with a description of the base

processor assumed by our DDMT implementation, and point out—at a high

level—the required modifications. We proceed with a short overview of the impor-

tant events in the life cycle of a DDT, and point out the novel microarchitectural
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aspects (if any) required at each stage. The chapter concludes with a detailed

description of the structure, function, and management policies of every new or

modified mechanism. The most important mechanism we introduce is register

integration—a general facility that allows different execution contexts within a

single sequential program to share results. Within the context of DDMT, register

integration implements the passing of pre-executed results from DDTs to the

master thread. In addition to register integration, we discuss the microarchitec-

tural aspects of DDT storage, DDT triggering and initialization, DDT sequencing

and execution, and the main thread handling of integrated DDT instructions.

The microarchitecture described here is just one possible implementation for

DDMT. For one thing, there are multiple possible implementations of the under-

lying processor, and these effect choices made for DDMT. In addition, there are

multiple implementation choices for different components of DDMT regardless of

the base implementation.

4.1  Underlying Processor and DDMT

Our proposed implementation assumes an out-of-order execution core that is

implemented in a particular popular microarchitecture style. The preferred style

is the physical register file style used by the MIPS R10000 [103], the Alpha 21264

[49], and the Pentium 4 [41]. In this style, all register state—speculative and non-

speculative—is located in a centralized physical register file. The processor maps

logical registers to physical registers, and inside the core all values are referred

to by a physical register number (i.e., a pointer to the value). The alternative
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style is the register update unit (RUU) style used in the PentiumPro [43], AMD’s

K7 [25], and IBM’s Power microprocessors [84] in which speculative register state

lives outside the register file in an expanded ROB called an RUU. In an RUU

style processor, speculative results are “attached” to the in-flight master thread

instructions. We prefer the physical register file organization because it allows a

speculative result to persist beyond the lifetime of the instruction which creates it

and because it more easily supports result sharing via register integration.

We mention optional support for SMT because our implementation requires

the presence of multiple active physical register contexts—i.e., multiple tagged

copies of the register map table. DDMT also performs better with larger physical

register files, which SMT processors have. However, these are the only SMT-spe-

cific features used by our proposed implementation. We do not use SMT’s other

features such as multiple fetch sequencers, a fetch thread-scheduler, a tagged

branch predictor, or tagged/replicated sequential core structures like the ROB,

and load and store queues. If SMT is implemented, an alternative organization to

the one we propose may leverage some of its front-end machinery rather than

introducing specialized DDMT machinery.

4.1.1  The Role of a Centralized Underlying Organization

Both a superscalar processor and an SMT processor have centralized execu-

tion cores which instructions from multiple threads—in our case the master

thread and DDTs—share at a fine granularity. A centralized organization is

important to DDMT for several reasons. From an implementation standpoint, it
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facilitates result sharing between threads. A shared first level data cache allows

DDTs to prefetch for the master thread simply by executing the appropriate

loads. A shared physical register file enables the implementation of pre-executed

result reuse via register integration. From an applicability standpoint, band-

width and resource sharing means that resources can be diverted to DDTs in a

fine grained fashion and on a demand basis. It also implies that full processor uti-

lization is possible even when DDMT is not active. Finally, from a pedagogic

standpoint, a centralized organization is attractive because it enables a fair com-

parison of DDMT-enabled and DDMT-less systems that are very nearly identical

from a resource standpoint.

4.1.2  DDMT Modifications

Figure 4.1 shows the DDMT microarchitecture with DDMT-specific additions

emphasized. Most of the modifications are small, straightforward, and highly

localized. There are three main groups of modifications.

The first group of modifications deals with DDT storage, DDT forking, and the

injection of DDT instructions into the pipeline. These changes are restricted to

the front end of the machine and will be discussed in Section 4.2. New structures

include the data-driven thread cache (DDTC) and the combined context-man-

ager/injection scheduler (CMIS). The DDTC is a small instruction memory struc-

ture which contains static descriptions—i.e., the static code— of DDTs. The CMIS

controls DDT forking, register context allocation, initialization and deallocation,

and DDT injection scheduling. In our organization, the DDTC sits in parallel
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with the instruction fetch queue (IFQ) at the entrance of the register renaming

stage. The DDT instructions are injected directly from the DDTC to the register

renaming unit.

A second group of changes deals with modifications to the out-of-order execu-

tion engine. These are described in Section 4.3. Except for one, these changes are

all modifications to the resource allocation and deallocation policies. Although the

out-of-order core itself is largely undisturbed, execution resources are allocated

differently to DDT instructions as well as to integrating instructions—DDT or

master thread instructions that have integrated the result of a previous instruc-

tion and need not recompute a fresh value. The one change to the execution core

itself is the addition of a small data-memory structure, the data-driven store

queue (DDSQ), which implements DDT-internal memory communication. The

DDSQ sits in parallel with the data cache and conventional store queue (SQ). A

Figure 4.1 DDMT microarchitecture.
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given load accesses either the conventional structures or the DDSQ, but not both.

The last and largest group of changes implements register integration. These

changes, localized to the register renaming and retirement stages, will be dealt

with in Section 4.4. The implementation of register integration requires additions

to the register renaming circuit, an additional table—the integration table (IT)—

to index integrable physical register results, modifications to the physical register

allocation and deallocation policies, and modifications to the semantics of mis-

speculation recovery. An interface between the load queue and data-cache is

added to support verification of integrated loads via re-execution.

4.2  Front End Aspects

This section describes modifications in the front end of the processor and deals

with DDT storage, triggering, context initialization and instruction injection—

the process of inserting DDT instructions into the processor.

4.2.1  Pipeline Organization

A high level organization of the DDMT microarchitecture’s modified front end

is shown in Figure 4.2. The components of a conventional superscalar front end

are grayed. The DDMT specific components are data-driven thread cache (DDTC)

which stores static descriptors of DDTs, the Trigger Table which stores trigger

information, and the register-context-manager/injection-scheduler which is

responsible for managing DDT register contexts and for scheduling DDTs for

injection into the pipeline.



117
Figure 4.2 DDMT front end.
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A DDMT front-end pipeline’s organization is driven by two important and

closely related decisions—(1) the pipeline stage at which triggering should take

place and (2) the pipeline stage at which DDT instructions should be injected into

the processor. As shown in the figure, in our proposed DDMT implementation

both of these take place at the front of the register renaming stage. DDT instruc-

tions bypass the control-driven fetch and decode stages and are injected directly

into the register renaming stage. In this organization, the DDTC sits in parallel

with the head of the IFQ. While placing the DDTC in parallel with the instruction

cache and fetching DDT instructions into the IFQ may seem like a more natural

choice, our chosen organization provides superior performance as we explain.

A triggered DDT must be initialized with an execution context. This context is

a copy of the master thread’s register map as it appears immediately after the

renaming of the trigger instruction. This copy allows the DDT to pick up external

values using register renaming and synchronizes the DDT and main thread with

a common mapping that will later be used to start the integration process. The

register map copy operation—a “flash copy”—is not an expensive implementation

requirement. Support for such operations is typically implemented in physical

register file style microarchitectures where it is used to checkpoint the map table

and provide fast recovery from branch mis-predictions. The context initialization

requirement means the DDT instructions cannot begin executing until the DDT

trigger instruction has been renamed by the parent thread.

The combined choice of triggering and injection pipeline stages balances two

concerns. To maximize a DDT’s latency tolerance capabilities, DDT instructions
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should be renamed and executed as soon as possible—i.e., immediately after the

trigger instruction has been renamed and the DDT register context established.

On the other hand, to minimize the incidence of false triggering, triggering itself

should take place as late as possible in the life of the trigger instruction, to reduce

the likelihood that the trigger itself is mis-speculated. Our chosen organization

addresses both criteria. DDT instructions may be injected into the core and begin

executing as early as one cycle after context initialization. In addition, fewer mis-

speculated instructions are renamed than are fetched, resulting in fewer false

triggerings. Injecting DDT instructions at register renaming has the added bene-

fit of ensuring that DDTs are not stuck behind a stalled master thread in the IFQ.

4.2.2  DDTC

Since DDTs do not have explicit control-flow, they cannot be sequenced using a

program-counter in the same way in which conventional control-driven code is

sequenced. Proper sequencing of a DDT requires an explicit in-order listing of all

instructions in that DDT. Storing these explicit descriptions is the job of the data-

driven thread cache (DDTC). The DDTC is a structure that looks very much like a

trace cache [67]. Logically, the DDTC is indexed by trigger PC with each entry

being a full DDT—a sequential list of all instructions in the DDT, with some addi-

tional bits per instruction. However, DDT lengths vary substantially and such an

organization may not be the most space efficient. A better DDTC organization is

to split DDTs into processor-wide—i.e., 4 or 8 instruction—chunks and index the

DDTC using a combination of trigger PC and intra-DDT instruction index. This
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design not only enables a higher utilization, but also saves the alignment net-

work that would be required to pick the appropriate instruction group out of a

particular DDT. A chunked implementation of the DDTC requires that, in addi-

tion to its tag and list of instructions, each DDT entry contain a bit that signals

whether or not it terminates the DDT. When a terminal chunk is injected, the

CMIS is signaled to release the register context and to remove the DDT from the

active scheduling list. One point implicit in the above discussion is that a trigger

PC is enough to unambiguously describe a DDT, meaning that there is at most

one DDT per trigger PC. This invariant can be—and is—enforced by our DDT

selection algorithm which fuses DDTs that are triggered by instances of the same

static instruction.

The size—in bytes—of the DDTC is a function of the information encoded in it.

Logically, for each instruction we need to store its PC, the instruction itself, six

bits to encode the integration dependence register (IDR) and one bit which for now

we call the internal communication bit (ic). The function of the IDR was

explained in the previous chapter. We will explain the function of the internal

communication bit in Figure 4.3.1.2. For a 64-bit machine, this adds up to 102

bits (roughly 13 bytes) per instruction. There are ways of decreasing the per-

instruction storage requirement of the DDTC—for instance, not all PC bits need

be represented. However, one size optimization that is obviously a bad idea is not

storing the instruction bits themselves, and using the PCs to read them out of the

instruction cache. This optimization uses the instruction cache in a way in which

it was not meant to be used and one in which it will perform very inefficiently. An



121
instruction cache is laid out to support mostly sequential (control-driven) code

access, not to allow parallel access to multiple non-sequential individual instruc-

tions. In fact, not only do we want to store actual instruction bits in the DDTC,

but placing the DDTC at the entrance to the register renaming stage may require

that we store DDTC instructions in an expanded, pre-decoded form.

In this dissertation, we do not discuss the issues surrounding DDTC manage-

ment. Specifically, we do not name the entity responsible for loading static DDT

descriptions into the DDTC. As discussed at the end of the previous chapter, we

leave open the possibility of the DDTC being managed by software, hardware, or

by a hybrid of the two. Since we do not model the DDTC management entity, we

cannot account for the performance effects of a realistic, finite DDTC. Accord-

ingly, our simulations model an infinite DDTC which is magically loaded with the

proper DDTs at program load time. However, our experimental evaluation shows

that the number of static DDTs used by a program is typically on the order of a

few tens. Only in one case did a program use more than 100 static DDTs. Fur-

thermore, it is our belief that static DDTs have small working sets associated

with different program phases, such that the dynamic cost of DDTC misses would

be low.

4.2.3  Trigger Table

Triggering DDTs requires that trigger instructions be flagged in some way.

Figure 4.2 shows DDT triggering as taking place with the help of an auxiliary

structure called the Trigger Table. The Trigger Table is a small, potentially fully
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associative structure with N ports, where N is the renaming width of the

machine. Each Trigger Table entry contains a trigger PC and potentially some

state that can be used to suppress the forking of that DDT. We will discuss the

suppression of DDT fork in Section 4.4.2.

The Trigger Table is accessed by all master thread instructions renamed in a

given cycle. Recall, in this dissertation we choose not to trigger DDTs from other

DDTs. The data-driven bit on each instruction gates access to the Trigger Table.

Trigger Table access bandwidth can be reduced via the use of cached pre-decode

bits. An unsuppressed Trigger Table hit results in a request to the register-con-

text-manager/injection scheduler to allocate a free register context to the corre-

sponding DDT and to schedule it for injection.

4.2.4  Context-Manager and Injection Scheduler

Per its name, the context manager/injection scheduler (CMIS) is responsible

for managing the register contexts—i.e. map table versions—of the processor and

for arbitrating control of the register renaming stage between the master thread

and any number of active DDTs. The CMIS is a rename-stage analog of the

thread fetch scheduler of an SMT processor. If the base processor implements

SMT and a fetch-injection organization is implemented, it is likely that the SMT

fetch scheduler can be overloaded to perform the functions of the CMIS. However,

if we wish to keep a late-injection model, a CMIS will have to be implemented in

addition to a thread fetch scheduler, and the two will likely have to coordinate

with one another.
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The CMIS is a direct mapped structure with as many entries as there are reg-

ister contexts in the processor. At any time, at least one of these contexts is allo-

cated to a control-driven thread. Each entry contains the following pieces of

information. The occupied bit (occ) signals that the register context is allocated

and on the injection scheduling agenda. The data-driven bit (dd) signals that the

context is occupied by a DDT. If the data-driven bit is set, the trigger PC and DDT

index fields specify the next DDT chunk to inject. The scheduling delay counter

(sdly) is used in implementing the injection schedule.

4.2.5  Injection Policy

The DDT injection policy governs the rate at which DDT instructions are

injected into the processor relative to instruction injection rate of the master

thread. An ideal injection policy provides the DDT with enough sequencing band-

width to allow it to execute as quickly as possible. After all, one of pre-execution’s

main features is overcoming the sequential fetch bandwidth limitation of control-

driven threads. However, injecting DDT instructions too aggressively results in

these instructions waiting around in reservation stations which—all things being

equal—should be allocated to master thread instructions. Ideally, we would like

to inject DDT instructions into the execution core dataflow style—i.e., as soon as

their inputs become ready, but no sooner. In fact, this is the sequencing model

used by the early pre-execution incarnations including dependence-based

prefetching [68] and speculative data-flow [72].

A data-driven sequencing policy is difficult to implement, but we can approxi-
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mate it with a policy called DDT-1. DDT-1 exploits the following observation

about the performance of DDTs. A DDT is a computation of a one or more prob-

lem instruction instances. This means that most DDTs are close to being true lin-

ear dependence chains. The peak execution throughput of a dependence chain is

one instruction per cycle. We expect the average execution throughput of most

DDTs to be equal to that—most DDTs have a parallelism of slightly greater than

one instruction per cycle, but some instructions have longer than unit latencies.

DDT-1 injects DDT instructions at a rate that allows the DDT to achieve its

expected peak performance—i.e., one instruction per cycle. In our model, instruc-

tions from a single thread can be injected each cycle and the policy determines

which thread has control of the injection mechanism each cycle. To implement

DDT-1 in this model, N DDT instructions are injected once every N cycles on an

N-wide machine.

Other possible injection policies are DDT-priority, round-robin, and ICOUNT

[95]. In DDT-priority, DDT instructions are injected in consecutive cycles until

completion. Round-robin and ICOUNT interleave DDT and master thread injec-

tion—round-robin does so blindly, ICOUNT prioritizes the thread with the fewest

number of active resources. Empirically, DDMT is relatively insensitive to the

injection policy used.

4.3  Execution Core Aspects

DDMT execution engine modifications come in two flavors—those that deal

with DDT instructions and those that apply to integrated instructions. Most of
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the modifications deal with new semantics for the allocation and freeing of

resources. Special support is also needed for DDT memory communication.

4.3.1  Stores and Memory Communication

One issue that must be handled delicately for DDT instructions is memory

communication—i.e., store-to-load value forwarding. Recall, to enable integra-

tion, DDTs must contain dataflow-contiguous dynamic graphs from the main pro-

gram. Contiguity implies that stores and memory communication may be

included in those graphs as well. It makes no sense to include these instructions

if memory communication cannot be implemented correctly. As described in

Chapter 2, there are two kinds of DDT memory communication. In DDT-internal

communication the load reads a value from an older store from within the same

DDT. In DDT-external communication the load reads a value from either a pre-

trigger store from the master thread or from the data cache. The requirements for

each kind of communication are different.

4.3.1.1  DDT-External Communication

DDT-external communication has two sub-cases. In the first, the communicat-

ing store is still active—i.e., sitting in the parent thread’s store queue. In the sec-

ond, the communicating store has retired to the data cache. In general, these two

cases, which differ only microarchitecturally, cannot be differentiated. Nor can

they be differentiated from the case in which no communicating store exists at

all. Therefore, for DDT-external communication—really for anything but DDT-

internal communication—the DDT load must behave exactly like a control-driven
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load and access the SQ and data cache in parallel, giving data from the SQ prior-

ity. Just as a control-driven load checks only the older portion of the SQ, a DDT

load checks only the portion of the SQ that is older than its trigger.

Accessing the SQ raises the question of DDT loads’ speculation policy—i.e.,

what the DDT load should do in the presence of older-than-trigger parent stores

with unknown addresses. The right thing to do is to issue DDT loads specula-

tively in these cases. Empirically, waiting for all known store addresses to resolve

delays execution significantly and only rarely results in a missed communication

[60]. Missed communications do not impact performance unless the load is subse-

quently integrated, in which case they must be detected and handled. This is the

subject of Section 4.4.6.

One way of simplifying the DDT-external memory communication process is to

delay the execution of an externally communicating DDT load until all pre-trig-

ger stores from its parent thread have retired. The load must only access the

cache in this case. Obviously, this is a lower performance approach and one we do

not advocate.

4.3.1.2  DDT-Internal Communication

DDT-internal communication is statically determined at DDT construction

time. Theoretically, all DDT-internal memory communication can be “register

allocated.” However, this optimization will prevent the DDT from being integra-

tion. Dynamically there is no question about where the load value should come

from, the only problem is that a mechanism is needed to perform the communica-
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tion. Unlike the DDT-external communication case, here we do not have the

option of waiting until the communicating store retires to the data cache as DDT

store values are not written to the cache.

The mechanism we use instead is a small store queue that is written only by

data-driven stores—the data-driven store queue (DDSQ). Each entry in the queue

contains three elements—an address and a thread context number which are con-

catenated to make a tag, the store value, and a synchronization bit. A successful

DDT-communication can only take place if the tag matches precisely—i.e., the

load and store access the same address and are from the same DDT. The synchro-

nization bit is used to delay the load in case the store data is not yet available.

The DDSQ allows DDT-internal communication to take place uniformly across a

range of dynamic distances without complicating the semantics of DDT stores.

Figure 4.3 shows the setup of the DDSQ in relation to the conventional store

queue (SQ) and the data cache. Note, the output signals and data of the DDSQ

and SQ are not prioritized with respect to each other. There is no need for the

DDSQ to override data found in the SQ and vice versa. A given store or load will

access either the DDSQ or the SQ/data cache, but not both. In fact, the two

pieces—which in the figure are shown as sharing input and output data paths

and signals may in reality be implemented separately. Keeping with the spirit of

centralization our implementation models the DDSQ as sharing the conventional

load and store scheduling slots, and hence the data paths and signals associated

with those slots. Loads and stores are directed to one set of structures or the
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other by the statically generated internal-communication bit (ic).

One case that is not handled by the DDSQ is that of a DDT load executing

before the corresponding DDT store’s address has been written into the DDSQ.

This is a rare case that is more often a scheduling artifact than a fundamental

Figure 4.3 DDSQ implementation.
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delay caused by data dependences. DDT-internal store-load communication is

typically stack-based—i.e., a save/restore pair. In such a communication, either

the communicating parties have the same input address computation or the load

has the longer one. Scheduling inversions can be avoided by a scheduling ready

memory operations in order as most schedulers do. If an internally communicat-

ing DDT load does not find a communicating store in the DDSQ for any reason, it

can complete using any value—i.e., the one that is already present in the physical

register. The incorrectness of the value does not matter until integration time and

will be dealt with then.

There are several other options for implementing DDT-internal communica-

tion. Overloading the LQ and SQ is one possibility. This approach adds complex-

ity to already time-sensitive structures and requires that DDT SQ entries not be

freed until all potential consuming loads have completed, a tricky constraint to

enforce. A second option is to use speculative memory cloaking [59], a mechanism

that is similar in structure to the DDSQ, but performs tag-based rather than

address-based communication. Cloaking is attractive because it is useful in a con-

ventional superscalar context as well. Cloaking learns communication tags by

observing conventional communication. If cloaking is to be used for DDT-internal

communication, these tags would have to be generated statically.

4.3.2  Allocation and Freeing of Execution Resources

The final modification to the execution engine concerns policies for the alloca-

tion and deallocation of execution resources. Modifications must be made for both
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DDT instructions and for integrating instructions. Fittingly, the modifications are

complementary. Resources that are allocated to DDT instructions and not freed

after DDT execution are subsequently not allocated for the integrated version of

those instructions while the original resource is freed. We do not discuss the more

complex semantics of physical register and IT entry management. These will be

covered in the next section which deals with register integration.

The conventional per-instruction resource allocation and deallocation policies

are modified by two bits. The statically generated data-driven bit distinguishes

data-driven instructions from control-driven instructions, and controls the alloca-

tion and deallocation of ordering resources: ROB, LQ and SQ entries. Control-

driven (master thread) instructions are allocated ordering entries at register

rename time, and these are freed when the instruction commits. Data-driven

(DDT) instructions are not allocated ordering entries. A data-driven result inte-

grated by a control-driven instruction will have ordering entries allocated for it

upon integration (actually, they will be allocated to the integrating instruction).

The dynamically generated integrating bit distinguishes integrating instruc-

tions from non-integrating ones and modifies the allocation and deallocation of

execution resources: RS entries. An instruction that has integrated another

instruction’s result—whether that instruction be control-driven or data-driven—

need not recompute that result. RS entries are freed as usual, when an instruc-

tion has issued to the functional units.

The subject of allocating and freeing RS entries brings up the important issue

of RS contention. The specific policy decision that concerns us is whether to evict
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a DDT instruction from its RS when either a new DDT instruction or a master

thread instruction about to enter the out-of-order needs an RS entry and none are

available. If we decide against spontaneous RS eviction, then the DDT or master

thread must stall until an RS is naturally freed by the scheduler. Note, we do not

consider evicting a master thread instruction from its RS entry as an option.

At first, it may seem that evicting a DDT instruction from its RS to allow a

master thread instruction to enter the window is the right thing to do. After all,

allowing a DDT to directly cause a stall in the master thread is obviously counter-

productive. Empirically, however, the opposite is true. DDTs are typically pre-exe-

cuted in parallel with low-ILP master thread regions (regions that contain cache

misses and mispredicted branches). Hence, it is likely that the master thread

instruction that will receive an evicted RS entry will not issue for some time.

Waiting an extra cycle or two to give this master thread instruction an RS entry

will not change its execution time. Consequently, it is better to stall the master

thread and allow the DDT to perform its task as evicting a DDT instruction from

its RS entry effectively aborts the downstream DDT computation, making the

cycles spent sequencing the DDT wasted ones. Similarly, it is not a good idea to

evict one DDT instruction from its RS entry to make room for another DDT

instruction. What often happens is that the younger DDT instruction depends on

the instruction evicted to make room for it. Allowing the younger DDT instruc-

tion to enter the window effectively ensures that this instruction will never exe-

cute.
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4.3.3  Exceptions and Other Disastrous Events

The execution core does not distinguish DDT instructions from master thread

instructions (save for DDSQ access). It stands to reason that anything that can

happen to a master thread instruction during execution may also happen to a

DDT instruction. Actually, even more things that can happen to a DDT instruc-

tion than can happen to a master thread instruction.

One concern is the handling of exceptions raised by DDT instructions. Sequen-

tial processors defer exceptions until the raising instruction retires, making

exceptions precise [31, 79]. We can use register integration to do the same. Sim-

ply, we buffer the exception bits in the IT, wait until the corresponding physical

register is integrated, then handle the exception when the integrating instruction

is retired by the master thread.

Some architectures have hardware handlers for certain types of exceptions.

For instance, Intel’s P6 microarchitecture [43] has hardware page table walkers

that handle soft TLB misses. As hardware TLB miss handling can be invoked

speculatively by wrong path instructions, there is no reason why it could not also

be invoked by DDT instructions. In fact, by allowing DDT instructions to invoke

the hardware TLB miss handler, we are opening a channel for using DDMT to

hide yet another source of microarchitectural latency.

Of course, one possible—and always correct—way of handling a DDT excep-

tion is simply to abort the instruction and all subsequent instructions within that

DDT. This kind of behavior is useful, for instance, when pre-executing the tra-

versal of a linked list. If a DDT instruction attempts to dereference a null pointer,
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the rest of the traversal is—appropriately—ceased.

Aborting the un-executed portion of a DDT is the solution of choice for han-

dling other exceptional events that may take place during the life of a DDT

instruction. One frequent disastrous—to a DDT—event is the freeing of a DDT

instruction’s DDT-external physical register input. Such freeing takes place when

the master thread turns away from the DDT’s pre-executed path and overwrites

the corresponding architectural register. Continuing DDT pre-execution after

this event is allowed—the DDT will execute with garbage values and will not be

integrated—but almost certainly useless.

4.4  Register Integration

Register integration is a general technology that exploits the shared central-

ized physical register file of a dynamically scheduled processor to implement

result sharing between instructions. Result sharing is achieved by modifying reg-

ister renaming to point the output of one instruction to the previously-computed

output of another instruction. We call the instruction that initially creates the

value the integrated instruction and the instruction that subsequently shares the

value the integrating instruction. The effect of register integration is to obtain a

free and instantaneous execution of the integrating instruction.

The crux of register integration is a mechanism that can locate a physical reg-

ister that contains the value the current instruction will compute, and do so while

the instruction is being renamed—i.e., using only information that is available

either before or during register renaming—and with high accuracy. Register inte-
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gration’s mechanism for accomplishing this task is the integration table (IT), a

table that indexes each physical register using information about the instruction

instance that created the value—specifically its PC and input physical registers.

During register renaming, an instruction can integrate—i.e., share—any physical

register that was created by an instance of the same instruction using the same

physical register inputs it itself will use. The rationale for sharing is clear: the

same operation (PC) performed on the same inputs (physical registers) will pro-

duce the same outputs.

Register integration implements sharing without reading or writing register

values. The act of sharing itself is performed by manipulating physical register

mappings. The act of deciding that sharing can take place is performed by com-

paring physical register numbers, essentially “proving” that two instructions are

actually instances of the same computation. The no-read/no-write methodology

means that sharing is true and that it can take place even before the first instruc-

tion has completed execution. When the original instruction completes, the inte-

grating instruction instantly completes with it.

Two important qualities of register integration are its benign impact on cor-

rectness and the graceful degradation—and escalation—of its effectiveness. A

failure to integrate a computed result does not constitute an incorrect execution,

only a lost opportunity to improve performance. Consequently, any physical regis-

ter actions whose only effect is to limit future integration opportunities (e.g.,

spontaneously freeing a physical register allocated to a pre-executed result) are

always correct. Integration’s effectiveness—the number of instructions inte-
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grated, and hence, the number of instruction executions saved—increases as inte-

gration resources, specifically IT entries and physical registers, are increased.

There are two parts to register integration. Most of the action takes place at

and around register renaming with some machinery also required at retirement.

Figure 4.4 shows a block diagram for the register renaming portion of a processor

implementing register integration. The new components are the integration table

(IT), the load integration suppression predictor (LISP), and the integration cir-

cuit. We have introduced the function of the IT. The LISP participates in the inte-

gration of loads. The integration circuit takes information read from the map

table, free list, IT and LISP and decides which of the currently renamed instruc-

tions should integrate which physical registers and which cannot integrate any

physical registers and must be allocated new ones. We will discuss these, as well

as the retirement stage components, in this section.

4.4.1  Squash Reuse via Register Integration

Chapter 2 introduced register integration as a facility for implementing pre-

execution reuse, the sharing of DDT pre-executed results by the master thread

and by other DDTs. In order to use register integration to implement pre-execu-

tion reuse, DDTs must be constructed and initialized in a specific way. As we

briefly mentioned in Chapter 2, register integration naturally implements

another form of reuse, squash reuse. A superscalar processor recovers from a con-

trol (or data) mis-speculation by squashing and re-processing—re-fetching and

re-executing—all instructions from the point of the mis-speculation forward.
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Figure 4.4 Register integration.
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Squashing is wasteful because many squashed instructions are both control- and

data- independent of the mis-speculation itself, but must be re-executed anyway.

Squash re-use saves the results of squashed instructions, indexes them using the

IT, and subsequently allows those results to be integrated by the re-processed

versions of those instructions.

Unlike pre-execution reuse, the PC and physical register invariants that allow

register integration to recognize and implement the squash reuse scenario are

naturally present. Squashed instructions naturally match their re-fetched

instructions PC for PC and data-dependence for data-dependence. A natural ana-

log of the map copy operation—which in pre-execution reuse synchronizes the

external mappings of the integrated and integrating instructions and allows the

initial integration to take place—is also present: a squash naturally restores the

map table state to its pre mis-speculation state, preserving the mappings of all

pre mis-speculation instructions. This implies that squashed instructions and

their re-executed counterparts naturally have the same external mappings that

are needed to seed integration’s inductive process.

The squash reuse scenario is illustrated in Figure 4.5. Squash reuse takes

place in three phases. Initially, the program executes along a mis-speculated path

and creates IT entries for every result it computes (marker #1). Then, when a

squash happens, the squashed results are activated for potential integration

(marker #2). Finally, as the program retraces reconvergent portions of the path

which it has squashed, any instructions whose physical register inputs are still
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valid are integrated (marker #3).

Notice, even though only squashed instructions are eligible for integration—

in-flight or retired master thread instructions are integration ineligible—we do

not create IT entries during the recovery process. Rather, we speculatively create

Figure 4.5 Register integration squash reuse scenario.
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IT entries for all master thread instructions and then make the appropriate

results integration eligible on a squash. We do this for two reasons. First, creat-

ing IT entries during register renaming is already implemented for pre-execution

reuse. Second, recovery is usually monolithic and implemented as restoration

from a checkpoint. There may not be time during recovery to create IT entries for

many squashed instructions.

As hinted at in Chapter 2, squash reuse provides several benefits for pre-exe-

cution reuse. First, squash reuse provides a DDMT-independent selling point for

register integration. The adoption of register integration for any reason other

than DDMT will ease the adoption of DDMT itself, since the integration struc-

tures comprise the bulk of the additional hardware required to implement DDMT.

From a performance aspect, the implementation of squash reuse actually solves a

big dilemma for pre-execution reuse. One problem with integration is that it

occurs during register renaming, when it is not yet known whether the integrat-

ing instruction will be retired, squashed, or squashed, re-fetched, and then

retired. Without squash reuse, it becomes quite important (but quite difficult) to

distinguish the first and third cases, since in the first integration will ultimately

help performance and, in the second, it will not. The presence of integration-

based squash reuse eliminates the need to make this distinction. A DDT instruc-

tion result can be integrated, the integrating instruction can be squashed, and

the original result can be re-integrated via squash reuse.
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4.4.2  Uses of Register Integration in DDMT

Register integration has several performance advantages in both squash

reuse and pre-execution reuse capacities. In addition to saving the re-execution of

integrating instructions, register integration also breaks the dataflow limit in

some sense by collapsing data-dependences—a chain of dependent instructions

cannot be executed in a single cycle but it can be integrated and reused in a single

cycle! In addition to reducing the penalty of branch mis-prediction indirectly—by

reusing squashed work—integration may also reduce the penalty directly. An

integrating branch instruction that itself was mis-predicted may be resolved as

early as the register renaming stage, rather than the conventional execution

stage. Unlike other forms of result reuse, integration achieves this without read-

ing from or writing to the physical registers themselves.

Register integration has even more benefits within the DDMT context. Inte-

gration allows DDTs to perform entire computations on behalf of the main

thread. Without integration, a DDT can impact performance only by prefetching

data (communicating pre-executed branch outcomes is also possible, but this

requires an additional mechanism). DDT-to-DDT integration—which is imple-

mented naturally by the integration circuit—allows DDTs to seamlessly overlap,

letting younger DDTs to leverage work already performed in older DDTs and

enhancing the performance of important pre-execution idioms like induction

unrolling. Finally, register integration—actually, the failure of register integra-

tion—can also be used as the basis for a DDT suppression mechanism. A DDT

needs to be suppressed (prevented from forking) if its dynamic instances do more
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harm than good—i.e., if they pre-execute problem instructions that are subse-

quently not executed by the master thread, or that are executed by the master

thread before they are pre-executed by the DDT. The failure to integrate signals

both of these conditions. Integration-based throttling is especially useful for

DDTs that pre-execute problem branches as failure to integrate a pre-executed

branch outcome effectively eliminates the benefit of the corresponding DDT.

As described in Section 4.2.3, DDT fork suppression can be implemented via

the Trigger Table. The decision to suppress can be made based on the ratio—or

some approximation thereof—of DDT target problem instances integrated to

DDTs forked. A DDT can be suppressed if this ratio falls below a certain level.

Since a suppressed DDT does not provide any negative suppression feedback—its

ratio will never increase—suppressed DDT are occasionally and randomly

“unsuppressed.” We do not investigate DDT fork suppression in this dissertation.

4.4.3  A Physical Register Discipline for Integration

A centralized physical register file requires a discipline for managing—i.e.

allocating and freeing—the physical registers. A centralized physical register file

that supports register integration requires a more complex discipline that sup-

ports physical register sharing. For example, it would be incorrect for an instruc-

tion to free a physical register while another instruction is using it.

Our physical register discipline for register integration is based on state tran-

sitions rather than reference counts. We prefer a state based approach because,

unlike a reference counting approach, it allows us to control the directions in
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which sharing (integration) takes place. Our implementation allows integration

to occur in three directions—(1) a squashed result may be integrated by a control-

driven (master) thread instruction, (2) a data-driven result may be integrated by

a control-driven (master) thread instruction, and (3) a data-driven result may be

integrated by another data-driven thread instruction. These three integration

scenarios are called squash reuse, pre-execution reuse and unrolling reuse, respec-

tively. We do not allow data-driven threads to integrate either squashed results or

results from the master thread (the reason for this will be explained shortly and

has to do with DDT suppression).

Our discipline is both evolutionary and graceful. It is evolutionary in the sense

that it can be viewed as an extension to the conventional discipline. It is graceful

in that any resource shortfall simply causes a collapse to the conventional case

and produces correct behavior, albeit at lower performance.

In our framework, a physical register can exist in one of six states: Free, coM-

mitted, Control-driven, Squashed, Data-driven and Invalid. The M state is ficti-

tious—it plays no part in integration or physical register management. We

include it because it aids in understanding the framework. The state of a physical

register is noted only in its IT entry. If a physical register does not have an IT

entry—and it is not necessary that every physical register does—its state is

implied by its presence in (F) or its absence from (C and M) the free list.

A conventional superscalar processor that does not implement DDTs or regis-

ter integration implicitly implements a two state discipline in which a physical

register is either free (F) or allocated. In our discipline, we distinguish two allo-
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cated sub-cases. The physical register is in the C state if it is allocated to the

result of an in-flight instruction. It is in the M state if it is allocated to the result

of a retired (committed) instruction.

The left side of Figure 4.6 (marker #1) shows these states and the transitions

among them. Physical registers in the F state are allocated to the C state. They

transition to the M state when the corresponding allocating instruction retires.

They transition from the M state to the F state when the instruction overwriting

the architectural-to-physical mapping retires. During mis-speculation recovery,

registers allocated to squashed instructions transition from the C to the F state.

A conventional processor implements its discipline implicitly: the state of a

register is implied by its mappings in the map table or its presence in the free

list. With the addition of integration and the IT, register states must be made

explicit. Recall, IT entries are created during register renaming. This means that

Figure 4.6 Physical register disciplines: conventional and with squash reuse.
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physical registers in any state can have IT entries. Since we want to implement

register integration in certain directions but not in others and cannot infer the

state of a register simply by its presence in the IT, states must be made explicit.

The right side of Figure 4.6 (marker #2) shows the S state and the added tran-

sitions that implement squash reuse. Rather than transition into the F state on

mis-speculation recovery, registers allocated to squashed instructions remain

allocated and transition into the S state. A physical register that is integrated

transitions from the S state back to the C state. A physical register result can be

squashed and re-integrated multiple times, transitioning back and forth between

the C and S states.

These two transitions are not the only changes made to the discipline. An S

state physical register does not have a free list or map table entry; the only record

of its existence is its IT entry as it waits to be integrated. An S state register

without an IT entry is “orphaned” or “leaked”—it will never be either freed or

integrated. We can never allow this to happen. Consequently, whenever an S

state register is evicted from the IT—because of an organizational set (PC) con-

flict—it must immediately transition into the F state and be added to the free list.

Similarly, whenever a C state register that does not have an IT entry—again due

to an organizational conflict—is squashed, it too must transition to the F state

and be freed. The decision of whether to transition from C to either F or S on a

squash is governed by another policy in addition to IT residence. Specifically, we

perform the C to S transition only if the physical register has an IT entry and the

instruction has issued—completed or in mid execution. Physical registers allo-
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cated to un-issued instructions that are still sitting in reservation stations—

regardless of whether they have IT entries or not—transition into the F state on

mis-speculation recovery. The reasoning behind this policy is that it is the inte-

gration of completed instructions that contributes most to performance. Integra-

tion provides two main performance benefits: it allows integrating instructions to

bypass the execution engine and it collapses dependent chains of completed inte-

grating instructions. Neither of these benefits applies to non-issued integrating

instructions.

Figure 4.7 shows the D state and the added transitions required to implement

pre-execution reuse. Physical registers are allocated into the D state by DDTs.

From this standpoint, transitions to the D state are similar to those to the C

state. The transitions defined from the D state are similar to those defined from

Figure 4.7 Physical register discipline for pre-execution reuse.
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the S state. Like an S state register, the only record of a D state register is its IT

entry. To avoid “leaking,” a D state register must transition to the F state on IT

eviction. The integration of a D state register by either a the master thread or a

younger DDT is implemented by the transition from D to C and the (null) transi-

tion from D to itself, respectively

Integration from C to D and S to D is not implemented. Although integration

in these directions does have consistent semantics, we preclude it to aid DDT sup-

pression. Consider an integration from the C state to the D state. Such an inte-

gration means that the master thread has logically passed the DDT. If this

condition is permanent, then executing the DDT will be ineffectual and we are

better off providing the machine with feedback that will suppress the DDT in the

future. If the condition is temporary, then the DDT was poorly chosen. Similar

considerations apply for integration from the S state to the D state. Such an inte-

gration implies that the main thread passed the DDT and was subsequently

squashed.

A final issue regards incremental invalidation and freeing of S and D registers

once they become unintegrable. When a physical register is freed, all S and D

physical registers that depend on it become unintegrable. To be integrated, a

physical register’s inputs must match entries from the map table and these may

only be in the C, D or M states. However, should the freed physical register be

immediately reallocated to the same logical mapping by another instruction—a

rare, but not impossible case—its dependent registers will falsely appear to

regain their integration eligibility! To prevent this from happening, whenever a
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register is freed, its dependent S and D state registers—which are found by asso-

ciatively matching the pin# fields of the IT—transition to the I state. The I state

is an intermediary to the F state and allows this sort of freeing to cascade incre-

mentally rather than to explode. The I state and its transitions are shown in

Figure 4.8.

An incremental invalidation scheme is very inefficient, requiring many paral-

lel associative lookups simply to detect and avoid a single, rare corner case. For-

tunately, there is a general way of avoiding unduly complex solutions to rare

problems—and that is to ignore the problem until retirement, detect it via re-exe-

cution, and recover from it via a squash. A proposal for such a general microarchi-

tecture style is the dynamic verification architecture (DIVA) [6, 15]. In DIVA, a

high performance core feeds a retirement-candidate instruction stream to a

Figure 4.8 Physical register discipline with cascaded invalidation.
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slower, but high bandwidth verification engine which verifies via re-execution the

outcomes of individual instructions—and individual instruction components—in

parallel. The verification engine converts incorrect behavior by the performance

engine into a performance hit. DIVA is a promising technology that may well be

widely implemented and, if so, will relieve register integration of the need for

incremental invalidation. In our experiments, we do in fact model DIVA, but a

very restricted form of it which is used for a different purpose. We model incre-

mental invalidations in the IT without modeling the associative matching band-

width requirements.

4.4.4  Integration Circuit

The most delicate piece of the integration mechanism is the integration circuit

itself. The integration circuit examines each dynamic instruction and decides

whether or not that instruction may be integrated. Of course, it must do so for

multiple, potentially dependent instructions in parallel. We describe one possible

implementation of this logic and its complexity. We begin with a scalar descrip-

tion of the circuit, then proceed to the superscalar case.

4.4.4.1  Scalar Circuit

A simplified scalar register integration circuit is shown in Figure 4.9. The fig-

ure makes two straightforward simplifications. First, each instruction has a sin-

gle input register whereas a real instruction may have up to three input

registers. Second, the IT is direct mapped—i.e., contains at most a single entry

for each static instruction—whereas a real IT may be set associative and may
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produce multiple matches per lookup. Once we have explained scalar register

integration, we explain the effects of removing these simplifications.

Conventional scalar register renaming occurs in two logical steps. In input

routing, an instruction’s logical input is renamed to a physical input using a map

table lookup (markers #1a and #1b). In output allocation, its logical output is allo-

cated a new physical register (markers #2a and #2b). This new logical-to-physical

mapping is also entered into the map table, allowing future instructions that

Figure 4.9 Scalar register integration circuit.
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need the value to obtain their inputs from the correct location (not shown).

Integration adds a piece called output selection in which the output mapping

must be chosen (marker #3) between a newly allocated physical register (marker

#2a) and a physical register obtained from an IT entry (marker #4a). Output

selection occurs logically after the input routing circuit since the integration test

must compare (marker #5) the input physical register of the sequential instance

(marker #1b) with that from the IT entry (marker #4b).

Output selection itself consists of two steps—IT lookup (marker #6) and the

integration test (marker #5). One possible organization would perform both steps

after input routing using the renamed input physical registers as indices into the

IT. However, a more practical organization—and the one shown—splits the two,

implementing IT lookup in parallel with input routing and the integration test

after both. In this organization, the IT is indexed by PC only and the physical reg-

ister numbers are used to match tags. This organization is preferred because it

has a straightforward parallel-prefix superscalar formulation.

What are the effects of removing the simplifications? Having multiple input

registers per instructions requires multiple parallel input routing instances and

multiple pair-wise comparisons between input routed physical registers and the

corresponding IT entry physical registers. The integration test (marker #5) suc-

ceeds if all pairs match. Having multiple IT matches requires multiple parallel

copies of the matching circuit with the integration test choosing the IT entry that

produces a full pair-wise match.
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4.4.4.2  Superscalar Circuit

Figure 4.10 shows a superscalar integration circuit. The superscalar changes

are superimposed onto a grayed version of the scalar circuit from the previous

subsection and Figure 4.9.

Let us review conventional superscalar renaming. Superscalar renaming is

more complex than scalar renaming because its input routing decisions must

reflect intra-group dependences. To do so, intra-group dependency-check logic

Figure 4.10 Superscalar register integration circuit.
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(marker #1) acts in parallel with output allocation. This logic compares the logi-

cal input of each instruction in the group with the logical output of each previous

in-group instruction; a match overrides the initial input routing retrieved from

the map table (marker #2) and routes the input to the newly allocated physical

register of the appropriate older intra-group instruction (marker #3). The logical

dependence cross-check circuit compares the input of every instruction with the

output of every previous intra-group instruction. In our example, since each

instruction has a single input and each superscalar group contains two instruc-

tions, this results in a single comparison. In general, the number of comparisons

needed grows as the square of the superscalar width, N—in particular as I * N(N-

1)/2 where I is the number of inputs per instruction. As multiple matches may be

occur and true dependences are only with the most recent match, the outcomes of

the comparisons must be priority encoded. The depth of the longest priority

encoder is N.

Integration requires that we implement output selection and any corrections it

might imply for input routing for subsequent instructions. Input routing correc-

tions take place as the result of the integration of a chain of dependent instruc-

tions in parallel. When integrating N instructions in parallel using an M-way set

associative IT, the initial thinking is that every physical register input of every

integration candidate must be compared with every physical register output of

every older integration candidate. Comparing M inputs with M outputs requires

I*M2 comparisons. Comparing M inputs of each of N instructions with the M out-

puts of each older intra-group instruction requires I*M2*N2 comparisons. In fact,
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this was our thinking and our reported complexity in an early investigation of

register integration [70].

What we did not realize at the time is that the results of the group dependence

information computed on the instructions’ logical registers (marker #4) can be

used to streamline this logic. Comparing inputs with the outputs of all previous

instructions is just a way of making sure that we perform the comparison with

the outputs of the instruction the particular input may depend on. However, the

group dependence information tells us for each input of each instruction which if

any older in-group instruction that input depends on. Hence there is no need to

compare the M inputs with the M outputs of every older instruction as we already

know the identity of the instruction with whose outputs they must be compared.

We compare the physical register inputs (marker #5a) of the M IT entries to the

physical register outputs (marker #5b) of the M IT entries of only that instruc-

tion. Whether or not the register has an in-group dependence, we still compare

the physical register inputs of the M candidates to the physical register obtained

from the map table entry as integration of the older instruction may have failed.

Finally, just like in conventional register renaming, a priority encoding circuit is

required to cascade individual integration decisions (marker #6). The use of the

group dependence information to simplify the output selection circuit reduces its

comparison complexity from O(I*N2*M2) to O(I*N*M2). The precise formula for

total number of physical register comparisons is (1 + ((N-1) * M * (M+1)) * I. The

depth of the longest priority encoder in the circuit is still N.

Output selection complexity is lower than that of the conventional logical
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dependence cross-check for low-associativity ITs, but diverges for higher-associa-

tivity implementations. For instance, a four-wide machine with a direct-mapped

IT requires 14 physical register comparisons to implement output selection. The

same machine with a 2-way IT needs 38 comparisons. Just for scale, an 8-wide

machine with a 4-way IT—the one we model in our simulations—requires 282

comparisons! Certainly, a highly associative integration circuit is challenging to

build. We should mention here that some of the complexity of the integration cir-

cuit may be incorporated into the structure of the IT itself. For instance, instead

of simply producing M integration candidates for every instruction, the IT could

produce M chains of integration candidates for all instructions collectively. This

would reduce the complexity of the output selection circuit to I*N*M. However, it

would require a novel IT organization with which we are not familiar.

4.4.5  A Shortcoming of the Current Formulation and an Alternative

Our current IT formulation and physical register framework has a serious

shortcoming. This shortcoming is the result of a destructive interaction between

the two functions of the IT. Primarily, the IT is an index on the physical register

file that allows integration logic to implement integration. However, the IT also

acts as an implicit tracking mechanism for squashed and DDT results.

In Section 4.4.3 we stated that any register in the S or D state that is evicted

from the IT, must be immediately freed lest it be orphaned (or leaked) and lost

forever. When a physical register transitions into the F state, the IT is associa-

tively searched and all entries corresponding to instructions which read that
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physical register are invalidated—i.e., transition to the I state. Invalidations are

then incrementally propagated. The net effect is that when a DDT physical regis-

ter (a D state physical register) is evicted from the IT, a chain of events is set in

motion that incrementally aborts all downstream DDT computation. In some

sense this is acceptable, as the downstream portion of the DDT will not be inte-

grated anyway. What often happens, however, is that the downstream portion of

the DDT is destroyed before it has had a chance to pre-execute and prefetch. In

essence, the IT’s finite associativity not only prevents certain DDTs from being

integrated, it prevents them from even being pre-executed for their prefetching

effects.

Evictions of DDT physical registers are quite common. To simplify the integra-

tion logic, the DDT is organized as a low-associativity structure indexed by PC.

This means that simple PC conflicts can cause evictions. The IT replacement pol-

icy can help with this. For instance, we can always evict an F, M, C, S or I state

register if one is present (this is what we do). Or, we can choose not to create a C

state entry if only D state registers are present in the set (we do this too). How-

ever, there is one case in which an eviction of a D state is unavoidable and that is

if the unrolling degree of a DDT exceeds the IT associativity. If this is the case,

then at least one of the induction instances—they all have the same PC—will not

fit in the set, causing the rest of the DDT to be aborted. Consequently, the asso-

ciativity of the IT is in a very real sense the limiter on the practical degree of

unrolling—and the latency tolerance—in a DDT.

This limitation is not a fundamental property of either pre-execution, DDMT,
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or register integration. Rather, it is an artifact of our particular implementation.

We have developed a second formulation in which the register tracking function

is moved to a second table which explicitly tracks and maintains the state of

every physical register. In this new formulation, IT eviction does not result in

instantaneous freeing of DDT physical registers. As foreshadowed in

Section 4.4.3, this formulation also uses re-execution to avoid incremental invali-

dations. We have only a preliminary implementation of this newer model, and

hence will not use it in our performance evaluation. However, we can roughly

estimate—probably slightly over-estimate—its performance by using the formu-

lation described here with a fully associative IT.

4.4.6  Register Integration and Correctness

DDTs execute speculatively. Since they do not overwrite master thread physi-

cal registers and do not write stores to the data cache, incorrect execution within

a DDT does not result incorrect behavior by the master thread. That changes

once a pre-executed result is integrated. An integrated result is identical to a con-

ventional control-driven result for all intents and purposes. This is good because

it means that integrating instructions require no special handling. However, it

also means that integrated results—and consequently the DDT instructions that

produced them—are bound by correctness obligations.

An integrating instruction can be thought of as having two executions. In the

physical execution, the operation actually takes place but is not architecturally

recorded, either because the instruction is pre-executed in a DDT or because it
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has been squashed. In the architectural execution, the operation is supposed to

take place, but doesn’t actually do so. For most types of instructions, the basic

integration test—the combination of operation and valid input values, denoted by

PC and physical registers respectively—guarantees that the results of the physi-

cal execution are identical to those that would be produced in the architectural

execution, allowing the former to be substituted for the latter.

Loads are the exception. Because physical register numbers are not sufficient

to detect load/store collisions, the integration of a particular load is not guaran-

teed to be safe. As shown in Figure 4.11, one of two things can happen. A conflict-

ing store may have executed between the load’s physical and architectural

executions (marker #1). Conversely, a store that forwards a value to a load’s phys-

ical execution may not exist in its architectural execution context (marker #2).

Collectively, these occurrences are called mis-integrations. Obviously, mis-inte-

grated loads must not be allowed to retire. Stores cannot be mis-integrated as

they have only register inputs.

In practice, we do not distinguish between the two mis-integration scenarios

in the figure. However, we do make a different distinction based on the temporal

relationship of the store (or lack of store) and the integration event itself. We call

a load that is blindly integrated despite a store conflict pre-mis-integrated and a

load that experiences a post-integration conflict post-mis-integrated. Pre-mis-

integration and post-mis-integration are actually quite different. There is a natu-

ral way to detect and recover from post-mis-integrations due to the short duration
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in which a post-mis-integration causing store can execute. Pre-mis-integration is

a more difficult problem, largely because of the arbitrarily long stretch over

which a pre-mis-integration causing store can occur. Explicit steps must be taken

to either detect it post-integration or avoid the integration altogether.

In addition to detecting store conflicts from the master thread itself, inte-

grated loads must also detect conflicting stores from other threads.

4.4.6.1  Detecting Mis-Integrations

There are two ways to ensure that mis-integrated loads not retired. The first

option is to try and prevent mis-integrated loads from being integrated in the first

place by keeping integration-eligible loads coherent with respect to stores from

the master thread. In this approach, we maintain address and value information

with load IT entries and use master thread stores to “snoop” the IT and invali-

date the appropriate loads. A second possibility is to re-execute integrated loads

Figure 4.11 Mis-integration scenarios.
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and initiate a squash if the re-executed value differs from the pre-executed value.

Re-execution is simpler to implement and to explain but may result in many

expensive squashes. Snooping reduces squashing but requires a significant

amount of associative matching hardware. Also, a good snooping implementation

that avoids false invalidations has several nasty corner cases, including the one

shown on the right of Figure 4.11 (marker #2). We have experimented with snoop-

ing in the past [70, 72, 73], but currently model (and prefer) re-execution.

For re-execution we use a very restricted variant of DIVA [6, 15] in which only

the cache access portion of integrated loads is re-executed. A schematic of our re-

execution mechanism is shown in Figure 4.12. Re-execution takes place immedi-

ately prior to retirement and shares the ports used by stores for data cache

writes. Paths are added from the head of the LQ—similar to those that exist from

the head of the SQ—to provide the re-execution address the value for comparison.

Re-execution latency is equal to cache access latency.

An alternative to DIVA style re-execution is to allocate RS entries to inte-

grated loads and re-execute them using the usual machinery. DIVA-style re-exe-

cution requires no changes to the out-of-order core, triggers fewer re-executions

and produces no false squashes. The only apparent advantage of scheduler-based

re-execution is that it may detect mis-integrations earlier, reducing squash

latency.

The performance cost of re-execution has three components—bandwidth

requirement, re-execution latency, and squashes due to pre-mis-integration. The
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bandwidth cost of re-execution is not great. Even with a very aggressive DDMT

system, only a small percentage of all retired instructions are integrating loads

(empirically, less than 2%). Assuming 10% of retired instructions are stores, re-

execution demands a 20% increase in cache bandwidth. However, this additional

bandwidth requirement is actually “virtual” in the sense that in the absence of

Figure 4.12 Detecting load mis-integrations via re-execution.
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register integration, the master thread would have to re-execute all pre-executed

loads anyway. Finally, because integrating loads are not re-executed until they

are ready to be retired by the master thread, DDT loads that integrate results

from other DDTs are not re-executed. Such re-execution is meaningless because

DDT loads do not obey sequential semantics with respect to stores within other

DDTs. Its effect is that even loads that are integrated multiple times—e.g., dur-

ing induction unrolling—are re-executed only once.

Re-execution latency is also minimal. A re-executed load will almost certainly

hit in the highest level of cache. Nor does re-execution subvert the dataflow graph

compression features of integration as re-execution is overlapped with the inte-

gration of downstream computation.

In practice, the most significant cost component of re-execution is the

increased number of squashes due to mis-integration. We dedicate the next sub-

section to this particular aspect.

4.4.6.2  Avoiding Mis-Integrations

Mis-integrations are not extremely common, but they do have a noticeable

incidence in some programs. While not impacting correctness, mis-integrations

degrade performance by introducing squashes. From a performance standpoint, it

is better not to integrate a load in the first place than to incur the cost of a subse-

quent mis-integration. Fortunately, there is a very easy way of doing exactly that

even without snooping the IT.

Mis-integrations are a function of program structure. A mis-integration occurs
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when the program does not follow the precise path implicitly followed by a DDT

and either includes a relevant store which the DDT omitted or omits a store the

DDT included. Program structure is also the reason that mis-integrations are rel-

atively infrequent. DDTs are generated to capture the common computation. If a

load habitually reads the value written by an older store, then that store is

included in the DDT.

Because mis-integrations are associated with differences between paths fol-

lowed by the master thread and those followed by DDTs, and because DDTs fol-

low the same dynamic paths repeatedly, we conjecture that it is dynamic loads

that lie along certain program paths that cause the majority of mis-integrations.

Empirically, this conjecture turns out to be correct—instances of static loads that

occur along certain paths repeatedly cause mis-integrations. We use this repeti-

tive behavior as the basis for a predictor for suppressing the integration of likely-

to-be mis-integrated loads.

The load integration suppression predictor (LISP) is shown schematically in

Figure 4.4. The LISP is a small cache of saturating up-down counters (SUD),

indexed by a combination of load PC and some path information bits. A mis-inte-

gration creates an entry in the LISP or increments the SUD of an existing entry.

A correct integration decrements the SUD of the corresponding entry, if one

exists. The LISP is accessed during register integration. A load that matches an

LISP entry with an above-threshold SUD value is not integrated.
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4.4.6.3  Memory Model Issues

DDMT—and pre-execution in general—is a technique for accelerating a

sequential program. However, there is no reason why DDMT cannot be used to

accelerate multiple threads in a multithreaded workload or within a parallel pro-

gram. In light of load integration, an issue that must be dealt with in these sce-

narios is the memory model supported by DDMT—i.e., the order in which DDT

loads observe external stores and the order in which DDT stores are observed by

external loads.

There are four different interactions between a memory model and DDMT.

First, the order in which DDT stores are observed by other threads is irrelevant

as DDT stores are not written to the first-level data cache, much less exposed to

the general memory system. Second, the master thread is responsible for expos-

ing integrated stores to other threads, and does so in program order. Third, we do

not care about the order in which DDT loads observe stores from other threads as

correctness does not become an issue until a load is integrated.

The fourth interaction is the one we care about, this is the order in which inte-

grated loads observe external stores. Note that a similar problem exists even in a

single master thread case, where DDT loads must be forced to “observe” master

thread stores in program order. This is accomplished by re-executing integrated

loads immediately prior to retirement. We believe that this same re-execution

mechanism can enable a DDMT-augmented master thread to support any mem-

ory model supported by the base system, by supplying integrated loads with cor-

responding program order instances.
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Program-order re-execution has been proposed as a way of implementing

memory consistency models for speculative microprocessors [40], but was dis-

missed in favor of load queue snooping for cache bandwidth consumption reasons.

Recently, re-execution has been revisited in the context of microprocessors that

employ value prediction [56]. An interesting parallel exists between DDMT and

value prediction-driven speculative execution. In each case, the naive implemen-

tation attempts to reuse entire computations by only checking the validity of

their external inputs, assuming that the data dependences preserve the integrity

of the rest of the computation. In each case, loads break this assumption, requir-

ing a more sophisticated verification scheme.

4.5  Chapter Summary

This chapter describes the DDMT microarchitecture we propose and simulate.

This microarchitecture is a series of extensions to a conventional dynamically

scheduled superscalar processor with a pointer-based style execution core. The

centralized organization lends itself to the close inter-thread cooperation present

in DDMT. The main novel components of the microarchitecture are the data-

driven thread cache (DDTC), the data-driven store-queue (DDSQ) and register

integration.
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Chapter 5

Experimental Evaluation

In this chapter, we use simulation to evaluate the performance potential of

DDMT. There are many factors that determine the performance of DDMT and

their interactions are subtle and complex. There are four primary factor groups—

DDT selection parameters, microarchitectural parameters specific to DDMT, sys-

tem parameters that have nothing to do with DDMT directly, and cross-training

effects having to do with real implementations of DDT selection. To explore the

full-cross product of all of these factor groups is infeasible from a time and space

standpoint. In fact, even fully exploring the interactions within a group is infeasi-

ble. Instead, we take the following approach. We choose a particular—not neces-

sarily optimal—design point that combines reasonable parameters for every

factor group. The only exception is that we choose to ignore the effects of real

world DDT selection. We evaluate this design point thoroughly, and then use it as

a common baseline for a collection of sensitivity studies.

The chapter is divided into three main sections. Section 5.1 describes our
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experimental framework. Section 5.2 examines a single DDMT system design

point in detail. The central design point is explored in a limit DDMT scenario, in

which the data set used to select DDTs is identical to the one used to measure

their performance impact. The section contains an evaluation of register integra-

tion in squash reuse capacity, a study of problem instructions and the perfor-

mance potential of “perfecting” them, a characterization of automatically selected

DDTs, and a performance analysis of DDMT. The final section presents a brief

sensitivity analysis on various aspects of DDMT, including microarchitecture

aspects, DDT selection parameters, the relationship between DDMT’s setup and

runtime components, and the potential impact of DDMT on future system config-

urations. We present only a small set of results in detail and summarize the rest

of our findings.

5.1  Experimental Framework and Methodology

This section describes the experimental framework used in our evaluation. We

describe our performance simulation environment, the tool-chain used to select

DDTs, our benchmark programs and a sampling methodology that allows us both

to deal effectively with long simulation runs and large data sets and to model sev-

eral DDT setup/runtime scenarios.

5.1.1  DDMT Performance Simulator

The DDMT performance model is a cycle-level simulator that uses a combina-

tion of execution-driven and trace-driven techniques. The simulator uses the pro-
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gram loader, instruction decoder, and system call modules included in the

SimpleScalar [12] release. The timing model including the memory system was

(incrementally) written from scratch. The simulator executes instructions in-

order during the register renaming stage, allowing it to model perfect memory

disambiguation, perfect branch resolution, and perfect memory latency. The exe-

cution timing model of the pipeline itself, however, is event-driven as is the mem-

ory system model. The simulator uses its early knowledge of the correct execution

path only in the various statistics packages. It does not maintain a “golden” regis-

ter and memory state associated with correct path instructions and “throwaway”

copy-on-write state for instructions along mis-speculated paths. The simulator

models the physical register file and the register renaming process faithfully—it

must in order to model register integration. It also models values and value

bypassing in all speculative memory structures like the load and store queues

and in the DDSQ. During execution, all results are written to speculative storage.

Register values are not copied to a golden architectural register file, these are

always accessed via the corresponding map table. Store values are written to the

memory system on retirement. As specified in the microarchitecture, integrating

instructions are not executed by the out-of-order engine, instead the value that

was written into the physical register during the initial execution is used instead.

Re-execution is also modeled faithfully. On retirement, integrated loads are re-

executed and the value obtained from the cache is compared to the value in the

physical register. This process discovers all mis-integrations.
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The performance simulator can execute and retire any instruction stream.

The correct execution of the program is guaranteed via the SimpleScalar toolkit’s

external I/O (eio) utility. For each full benchmark run, a fast functional simulator

creates an eio trace, which contains a record of all system calls performed during

that run. The performance and DDT selection simulators use this trace to replay

system calls rather than executing them from scratch each time. This utility

enables perfectly repeatable executions. By comparing instruction count and reg-

ister state at every system call, we can ensure that the architectural execution

modeled by the performance simulator is, in fact, the correct one.

The configuration of the performance simulator is detailed in three tables.

Table 5.1 Performance simulator configuration: branch predictor and caches.

parameter configuration

Brach
Predictor

Conditional branches Combined 16K entry bimodal and 16K entry 10-branch history gshare
predictors with a 16K entry chooser.

Taken targets 8K entry, 4-way set-associative BTB for direct jumps and calls. 8K
entry, direct mapped, 12-bit, 3-target history BTB for indirect jumps and
calls.

Return addresses 64-entry, speculatively updated return address stack

Memory
Hierarchy

L1 I-Cache 32KB, 2-way set associative, 32B line cache, with LRU replacement
and an access latency of 1 cycle.

ITLB 64 entry, 4-way set associative TLB with LRU replacement,and a 2
cycle access latency. Each entry maps a 4K page.

L1 D-Cache 64KB, 2-way set associative, 32B line data write-back, write-allocate
cache, with LRU replacement and an access latency of 2 cycles.

DTLB 128 entry, 4-way set associative TLB with LRU replacement,and a 2
cycle access latency. Each entry maps a 4K page.

L2 U-Cache 1MB, 4-way set-associative, 64B line write-back, write-allocate cache,
with LRU replacement and an access latency of 6 cycles.

L2 bus 32B bus operating at processor frequency

Memory Bus 32B bus operating at 1/4 processor frequency

Main Memory Ideal main memory with 70 cycle access latency

Write Buffer 16 entries

Miss Handlers 64 outstanding misses
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Table 5.2 Performance simulator configuration: pipeline and scheduler.

parameter configuration

Fetch Width 8

Branches per cycle Fetch can proceed past a maximum of two taken branches per cycle.
Cache block alignment constraints are not modeled.

Queue 16 entries

Latency 3 cycles

Decode Width 8

Latency 1 cycle

Branch Fixup Direct target mis-prediction is fixed at this point.

Rename Width 8

Latency 2 cycles

Physical Registers 320 = 64 architectural + 128 in-flight master instructions + 128 DDMT

Retire Total Width 8

Store/Re-execute Width 4

Ordering
Buffers

Reorder buffer 128 entries

Load/Store queues 64 entry load queue, 32 entry store queue

Execution
Resources

Cache/Store Queue Ports 4 fully pipelined cache/store queue read ports. 2 fully pipelined store
queue write ports.

Functional Units 8 simple integer execution units, 3 FP/integer multiply divide units. All
operations take 1 cycle. Integer multiplication and FP addition/multipli-
cation take 4 cycles. Integer/FP division takes 20 cycles. The multipli-
ers and adders are fully pipelined. The divider is not pipelined.

Scheduler Reservation stations 80 centralized entries

Widths A maximum of 8 instructions scheduled per cycle. A maximum of 4
memory operations scheduled per cycle, all of which may be loads but
only two of which may be stores. A maximum of 4 FP operations
scheduled per cycle. A maximum of 2 branches scheduled per cycle.

Operation priorities Ready operations are priority sorted and issue in this order according
to the availability of functional resources. Loads, branches, and floating
point operations are in the high-priority group, all other operations are
in a lower-priority group. Instructions within a group are sorted by age.

Load scheduler Loads issue in the presence of older stores with unknown addresses.
On completion, a store checks all younger issued loads. An address
collision signals a load mis-speculation and triggers recovery. To
recover from a load mis-speculation, the load and all younger instruc-
tions are squashed. The load scheduler learns from past mis-specula-
tions using a 256-entry, fully associative collision history table (CHT).

Register read latency 2 cycle

Address generation latency 1 cycle

Store-forward latency 2 cycle

Scheduling around cache
misses

Cache misses are sent to the next level of the memory hierarchy in
series. The scheduler is informed when a miss returns and issues the
load again. Primary miss is 10 cycles: 6 cycle L2 hit latency, plus at
least 1 cycle on the L2 bus (if there are no queueing delays), plus 3
cycles from the time the load is re-issued.
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Table 5.1 shows the functional branch predictor and memory hierarchy parame-

ters, Table 5.2 shows the pipeline configuration and Table 5.3 shows the default

register integration and DDMT parameters.

The base configuration described in Tables 5.2 and 5.3 is that of an aggressive,

8-wide processor with large caches and branch predictor tables. The processor is

similar in size and shape to the announced Alpha 21464 [26]—a processor with

support for 4 concurrent threads. The sensitivity analysis section studies the

impact of DDMT on narrower processors, processors with smaller caches and

branch predictor tables, and processors with faster clocks (i.e., longer pipelines

and relative memory latencies). These processors more closely resemble another

current high performance processor, Intel’s Pentium 4 [41].

Our central configuration employs a 256-entry fully-associative IT. As we

described in Chapter 4, a highly-associative IT—or at least a highly-associative

integration circuit—is impractical to build. However, as we also described in

Table 5.3 Performance simulator configuration: DDMT and register integration.

parameter configuration

Register
integration

Integration table 256-entry, fully-associative IT

Load Integration
Suppression Predictor

256-entry fully associative table of saturating up-down counters (SUD).
A suppression threshold of 32 events. A squash increments the counter
by 8. A retirement of an integrated load decrements the counter by 1. 4-
bits of path information per tag.

DDMT DDTC/Trigger Table Infinite, oracle DDTC and Trigger Table

DDT Fork Suppression none

Hardware contexts 4, for up to 3 active DDTs

Rename Injection policy 8 instructions from every active DDT injected once every 8 cycles. Since
the processor supports 3 active DDTs, up to 3 in every 8 cycles can be
used to sequence DDT instructions.

DDSQ 16-entry, 2 cycle access latency to match the cache and store queue
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Chapter 4, our current physical register discipline formulation causes destructive

interference between the IT’s two roles—integration broker and DDT physical

register tracking mechanism. The result of this interference is an inability to pre-

execute DDTs of high unrolling degrees, even if those DDTs target loads such

that their main benefit is cache prefetching, not the integration of the loaded

result. We have developed a new formulation of the physical register discipline

that does not suffer from this problem. Since the limitation of the current formu-

lation is artificial—i.e., it is not inherent to pre-execution or register integra-

tion—we would like to model this refined formulation in its place. However, we

have only a preliminary simulator implementation of this newer formulation.

A full simulated implementation of the new formulation is important future

work. In the meantime, our solution to this quandary is to model the new formu-

lation using the current implementation with a fully associative IT. The fully

associative IT only approximates the new formulation, and has positive and neg-

ative performance impacts compared to a faithful simulation. It over-estimates

performance because a fully associative IT produces more successful integrations

than one of lower associativity. It under-estimates performance because eviction

of the “wrong” physical register still triggers an invalidation cascade that

destroys the remaining portion of the corresponding DDT. At this point, we do not

know the precise contribution of these two sources of error. However, since these

errors are in opposite directions, the net performance error will be smaller than

that produced by either factor alone. For completeness, we show results with low-

associativity IT configurations with the caveat that these underestimate perfor-



172
mance.

5.1.2  DDT Construction Tool-Chain

The DDT construction tool-chain consists of three tools that perform the fol-

lowing tasks: (1) problem instruction selection, (2) selection of single-PDI DDTs,

and (3) the merging of single-PDI DDTs into multiple-PDI DDTs, respectively.

Pi-select is the tool that performs problem instruction (PI) selection. It is a

simple statistical analyzer that takes raw PI data—instruction counts and

dynamic branch misprediction and cache miss counts—and produces a list of PIs

that meet the specified criteria. Raw PI data is one of the outputs of the perfor-

mance simulator.

As described in Chapter 3, the second phase of DDT selection uses two tools.

The first is sim-ddt-build which takes the list of PIs produced by pi-select and

uses functional simulation to build the statistical database of all backward slices

of all PDIs of these PIs. To allow it to recognize PDIs, sim-ddt-build simulates a

functional cache hierarchy—not latencies, bandwidths, busses or MSHR’s—and a

branch predictor which are configured to match those of the performance simula-

tor. The second tool is ddt-select. Ddt-select loads the statistical database, and out

of all possible slices and sub-slices selects a set of single-PDI DDTs. Ddt-select is

parametrizable to allow it to select DDTs using different threshold criteria or for

processors with different latencies and bandwidths. The precise parameters and

their default values are summarized in Table 5.4.

Ddt-merge, which merges the single-PDI DDTs produced by ddt-select, is the
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final tool in the chain. The merging process is not parametrizable.

5.1.3  Benchmark Programs

We evaluate DDMT using the SPEC CPU2000 Integer benchmark suite. We

use all 12 benchmarks with a total of 16 training runs and 15 test runs. The

benchmark eon has three testing and three training runs—cook, kajiya, and rush-

meier—which we refer to as eon.c, eon.k and eon.r individually or eon collectively.

The benchmark vpr has two test and two training runs—place and route—which

we refer to as vpr.p and vpr.r individually or vpr collectively. The benchmark per-

lbmk has two training runs—scrabbl and diffmail—which we refer to as perl.s

and perl.d individually and as perl collectively. The perlbmk test input set is not

the original one that comes with the SPEC2000 release. The original test set

includes a script that loops over other scripts and executes them using the perl

Table 5.4 Ddt-select parameters.

parameter description default

Selection
Parameters

Maximum Scope Search for DDTs in a contiguous window of a given
size1starting from the problem instance. 1024

Maximum DDT length Limit an individual DDT to a certain length 32

Maximum Unrolling Degree Limit the unrolling degree (both induction unrolling and
unoverlapped full unrolling) to a certain level in order to
avoid set conflicts in the integration table. 4

Latency Coverage
Acceptability Factor (LCAF)

Accpet DDTs only if the single instance latency tolerance
is within a certain factor of the target latency tolerance. 25%

Master Thread Base IPC Used in computing master thread sequencing schedule
and in computing DDT overhead.

from
simulation

Simulated
Machine
Parameters

Renaming Width Used in computing master thread sequencing schedule
and in computing DDT overhead 8

L1 Hit Latency Used in estimating execution times 3 cycles

L2 Hit Latency Used in estimating execution times 10 cycles

Memory Latency Used in estimating execution times 70 cycles
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shell command. However, while our microarchitectural simulator models a multi-

threaded processor, its operating system proxy interface does not model a multi-

programming OS and, as a result, is unable to perform the fork and exec system

calls used to implement shell calls. To overcome this limitation, we create an

alternative input data set by concatenating the individual scripts into a large

monolithic script which we then execute directly.

Our evaluation also includes performance results for two micro-benchmarks—

em3d and mst—from the pointer-intensive Olden suite [66]. We chose the two

programs because we understand their behavior well. Em3d computes an itera-

tive solution of an electromagnetic field equation over a bipartite mesh. Mst com-

putes the minimum spanning tree of a random graph. Both micro-benchmarks

use synthetic inputs. Each micro-benchmark has a single dominant computation

loop and, hence, a single dominant DDT to pre-execute problem instructions

within a loop iteration. Em3d’s loop is nested—the outer loop iterates over all

nodes in the system, the inner loop iterates over the neighbor nodes of the cur-

rent node. Mst’s loop iterates over the remaining unadded nodes and finds the one

with the shortest edge to the one of the nodes already in the graph. Being pointer-

intensive, both benchmarks have a large fraction of serial memory accesses that

defy value-analytical address prediction but also present a latency tolerance chal-

lenge to pre-execution, which must rely on unrolling idioms to tolerate these

latencies. The use of micro-benchmarks is illustrative of the performance poten-

tial of DDMT under “ideal program conditions”. Micro-benchmarks also magnify

DDMT’s sensitivity to different parameters, allowing its various aspects to be
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more readily studied.

The benchmarks are compiled for the Alpha EV6 architecture using the Digi-

tal Unix V6.21 compiler with optimization levels and flags specified for producing

PEAK executables. The machine used for compilation is an Alpha 21264 [49]

which uses a clustered microarchitecture. At a high optimization level, the Digi-

tal Unix compiler inserts many nops into the executable to align basic blocks

within cache lines, but more so to effect better-than-random cluster assignment.

In a typical run, as many as 15% of all instructions are nops of one kind or

another. Since the microarchitecture we simulate is not clustered, we have no use

for these nops which do little but artificially inflate IPC values. To sidestep this

problem, our simulation environment simply ignores nop instructions, skipping

over them during fetch without consuming either fetch bandwidth or fetch queue

slots. The result is that the dynamic cost of nops is completely removed from sim-

ulation. The static cost—the additional instruction footprint they occupy in the

caches—remains. Even with this cost, the SPEC2000 benchmarks suffer almost

no cache misses using a 32KB L1 instruction cache.

Table 5.5 summarizes the functional characteristics of the training runs of

these benchmarks. As our simulation environment uses sampling—which we

explain in the next sub-section—all numbers shown are measured over sampled

runs. Total instructions are the number of instructions in the entire execution.

All other measurements are as they appear in a sample. The two bottom row

groups—in bold—show a characterization of the microarchitectural metrics rele-
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Table 5.5 Functional benchmark characterization.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Total instr’s (M) 225 756 59900 26054 1721 8564 2498 8682 4291

Simulated instr’s (M) 100.00 100.00 6000.00 2600.00 200.00 900.00 300.00 900.00 500.00

Loads (M) 39.16 28.74 1509.20 7314.86 49.95 226.44 72.85 218.49 116.15

Stores (M) 11.17 4.39 506.01 1377.24 38.26 191.70 62.95 92.38 62.44

Compiler prefetches (M) 5.16 0.00 0.25 0.00 3.02 16.31 5.31 2.15 3.12

Branches (M) 6.22 27.27 782.07 3145.51 23.27 105.17 35.56 146.21 90.55

FP pperations (M) 22.33 0.00 0.00 0.78 27.86 124.48 29.96 2.64 0.30

System calls 68 6 0 140 484 242 605 48 280

16K-entry branch predictor, 64KB 2-way set-associative DL1, 1MB 4-way set-associative L2

Branch misp. rate (%) 16.52 0.04 1.65 6.04 3.48 7.32 4.84 4.77 5.51

Load L1 miss rate (%) 30.02 41.05 2.71 0.79 0.13 0.09 0.13 1.76 2.18

Load L2 miss rate (%) 2.52 34.80 0.64 0.02 0.00 0.00 0.00 0.72 0.49

2K-entry branch predictor, 8KB direct mapped DL1, 128 KB 4-way set-associative L2

Branch misp. rate (%) 16.52 1.37 1.72 9.97 6.21 9.73 7.17 7.11 9.74

Load L1 miss rate (%) 37.02 41.47 4.36 15.21 6.57 6.58 6.92 10.29 7.94

Load L2 miss rate (%) 21.40 38.55 1.59 0.25 0.00 0.01 0.01 0.93 1.09

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Total instr’s (M) 53454 8830 12445 34287 25555 12442 16722 2851 10238

Simulated instr’s (M) 5400.00 900.00 1300.00 3500.00 2600.00 1300.00 1700.00 300.00 1100.00

Loads (M) 1081.16 246.03 295.70 971.91 778.86 291.56 458.21 79.27 327.17

Stores (M) 354.42 74.69 125.75 591.58 394.90 96.42 287.10 26.05 129.09

Compiler prefetches (M) 2.51 5.54 0.00 1.43 2.13 0.27 0.51 0.02 0.48

Branches (M) 662.62 185.10 224.22 519.09 389.31 180.25 300.16 35.04 129.31

FP pperations (M) 0.00 0.05 0.90 2.86 10.50 53.45 4.41 19.55 69.46

System calls 0 57 287 656 0 156 3 6 220

16K-entry branch predictor, 64KB 2-way set-associative DL1, 1MB 4-way set-associative L2

Branch misp. rate (%) 4.43 4.68 4.03 7.04 5.96 9.29 0.76 10.31 5.24

Load L1 miss rate (%) 3.25 36.67 4.87 0.74 0.11 8.79 0.73 4.09 4.40

Load L2 miss rate (%) 0.00 12.14 0.72 0.04 0.00 0.00 0.09 0.00 0.98

2K-entry branch predictor, 8KB direct mapped DL1, 128 KB 4-way set-associative L2

Branch misp. rate (%) 6.28 5.26 5.40 11.45 9.35 10.93 2.74 11.27 5.76

Load L1 miss rate (%) 9.76 41.06 11.91 7.05 9.47 16.69 7.50 14.78 12.08

Load L2 miss rate (%) 0.90 30.07 2.36 0.31 0.00 5.00 0.39 2.17 3.21
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vant to pre-execution. The branch mis-prediction rate is computed by dividing the

number of mis-predicted branches—a wrong target address counts as a mis-pre-

diction—by the total number of branches. The load L1 miss rate is computed by

dividing the number of loads that incurred L1 cache misses by the total number

of loads. The load L2 miss rate is computed similarly. Rates are shown for two

cache and branch predictor configurations. Our central configuration, used in the

bulk of our experiments, uses large caches and a large branch predictor. On the

bottom is a second configuration, with caches and a branch predictor tables that

are a factor of 8 smaller than those used in the central configuration. This config-

uration is used in our sensitivity analysis. Miss and mis-prediction rates were

obtained using functional simulation and do not include the effects of speculative

execution. The top configuration is our central configuration. We do not show

instruction cache and ITLB miss rates, as these are close to zero for all bench-

marks. Only mst and mcf have significant DTLB miss rates.

5.1.4  Sampling

In order to practically deal with performance simulations of training input

data sets which often runs for tens of billions of instructions, our simulation envi-

ronment supports sampling. Both sim-ddmt and sim-ddt-build have three modes

of operation—active, warmup and fast-forward. In active mode, sim-ddmt models

performance at the cycle level while sim-ddt-build builds and analyzes DDTs. All

statistics reported are the ones collected during active mode. The simulator oper-

ates in active mode for a pre-set number of instructions. In timing simulation,
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this means a pre-set number of committed main thread instructions. The two

other modes are designed to accelerate simulations of full runs. In warmup mode,

the simulator functionally executes a given number of instructions and updates

the state of the branch predictor and caches. Warmup mode is used to ensure that

active mode simulation does not suffer from cold-start memory or branch predic-

tion artifacts. In fast-forward mode, the simulator functionally executes a given

number of instructions, but does not update the branch predictor or caches. Fast-

forward mode is used to speed up functional simulation between active mode

samples.

The performance runs are sampled at an interval of 1B instructions. The sam-

pling rate is 10%—each individual sample contains 100M instructions. Each sam-

ple is preceded by a 1%—or 10M instruction—warmup phase. A training run

therefore cycles through the following three phases repeatedly—890M instruc-

tions are fast-forwarded, 10M are functionally executed to warm up the caches

and branch predictor (we have found 10M instructions sufficient for our bench-

marks and cache sizes), and 100M are simulated at the cycle level. The exception

is the initial sample which fast forwards only 90M instructions. The overall effect

is that a 100M instruction active sample is taken after the first 100M instructions

have and every 1B instructions thereafter. Sampling is uniform. We do not sam-

ple only the “interesting”—translation “pre-execution-conducive”—parts of the

program. It is possible that the 1B sampling period used is in phase with some

periodic behavior taking place in the program, resulting in non-representative

results. Our comparison with unsampled runs indicates that sampling can induce
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errors in both directions. For the SPEC2000 benchmarks, we have observed

errors of +10% in runs of mcf and vpr.route and errors of -5% in runs of gzip. In all

other benchmarks, sampling results in errors of no greater than 4% in either

direction. Sampling produces larger errors in the microbenchmarks, -22% in

em3d and -42% in mst. The dynamic instruction counts of the training runs of

these benchmarks are too short to allow more than a single sample to be taken.

As a result, some high IPC initialization code in both programs is not sampled.

While the absolute error of sampling is quite low, we are more concerned with its

relative error—the error introduced by sampling into our speedup calculations. To

clarify our error definition, on an unsampled speedup of 10%, a +50% error

implies that the measured sampled speedup is 15% while a -50% error implies

that the measured sampled speedup is 5%. We have found that sampling intro-

duces an error of as much as +138% in mst—a 93% speedup is measured on a

sampled run while an unsampled run observes only a 39% speedup. All other

measured speedup errors lie in the range of -68% to +53%. Most are in the range

of -40% to +28%. Part of the reason for the speedup errors we observe is that our

unsampled DDMT experiments pre-execute DDTs selected from a slice database

that was itself constructed from a sampled run of the program.

Sampling also has another benefit. It allows us to create different relation-

ships between the DDMT setup and runtime phases to model different idealized

and more real world scenarios. Specifically, our evaluation uses three scenarios.

Most of our data is presented in a limit scenario, in which DDT construction and

performance measurements take place over the same sample. Although idealized,
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one can imagine that limit corresponds to a real world scenario in which DDTs

are dynamically and continuously extracted by dedicated hardware or by a dedi-

cated software thread. Two other scenarios we model using sampling are the

static and dynamic scenarios. The static scenario models offline DDT construc-

tion. To model the static scenario we extract DDT using samples of the test—

rather than the training—inputs of the programs. The dynamic scenario models

online, VM-style DDT construction. To model this scenario, we construct DDTs

using training input samples of the 10M instructions that execute immediately

prior to each 100M performance sample. The static and dynamic scenarios are

not used until Section 5.3.3, when their effects are explicitly measured.

5.2  Analysis of a Single DDMT Design Point

We begin our evaluation with a detailed analysis of a single point in the

design space of DDMT. Everything about this particular design point is fixed—

from the configuration of the base microarchitecture (shown in Table 5.1,

Table 5.2, and Table 5.3), to the parameters of DDT selection, to the sizes, band-

widths and policies of the DDMT specific components, to the modeled relationship

between DDT selection and the DDMT runtime system. The particular combina-

tion of DDMT-specific and DDMT-agnostic parameters was not chosen with the

purpose of presenting DDMT in the best light. Although that would have been

our preference, doing so means that all combinations of all parameters were sim-

ulated and the best one chosen. Instead, we chose a base machine configuration

that we feel is representative of aggressive next generation processors, and what
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we feel are reasonable settings for the DDT selection process. Subsequent sec-

tions perform a sensitivity analysis, exploring the effects of variations in different

parameters.

In the performance evaluation of any technique, it is useful to establish an

upper bound for that performance. An upper bound serves three purposes. First,

it allows us to measure the performance potential of the technique. Second, it lets

us gauge the “quality” of our DDMT implementation—i.e., its ability to reach this

potential. Finally, if the performance evaluation is performed via simulation, an

upper bound acts as a safety check that can flag errors in the model.

There are three sequential implementation “stages” within DDMT—the PI

definition, the DDT selection algorithm, and the DDMT runtime system. Ulti-

mately, we only care about the performance of the third stage. However, we want

to evaluate each of the three stages so that we can attribute performance—or per-

formance shortfall—to the proper stage. Specifically, it is not the fault of the

DDMT runtime system that a PDI latency went uncovered if the DDT selection

algorithm could not select a DDT for that PDI. Similarly, it is not the fault of the

DDT selection algorithm for not selecting a DDT for a given PDI if the corre-

sponding static instruction was not identified as a PI by the chosen PI definition.

To perform such an evaluation, we use three different upper bounds. We eval-

uate our PI definition using an upper bound established by modeling a system

with ideal caches and branch resolution. Next, we model ideal load and branch

resolution latency only for PIs that fall within our chosen definition and use that

as the upper bound for evaluating DDT selection. Finally, we model a system with
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ideal load and branch resolution latency only for those PIs for which DDTs were

successfully selected. This serves as the upper bound for evaluating the DDMT

run-time system.

While on the subject of upper bounds, we mention that our use of the limit sce-

nario in some sense represents an upper bound on more realistic setup/runtime

implementation combinations. However, due to interactions between the PI defi-

nition, DDT selection, and register integration this upper bound can be exceeded.

Before we begin with performance upper bounds, we must establish a perfor-

mance baseline.

5.2.1  Establishing a Baseline

Register integration is an important part of DDMT. Pre-execution reuse

enables fast resolution of pre-executed branches, while unrolling reuse—the inte-

gration of one DDT’s result by another DDT—helps support induction unrolling.

Register integration also implements squash reuse which has nothing directly to

do with DDMT, although it interacts synergistically with pre-execution reuse,

allowing pre-executed instructions to be integrated, squashed and re-integrated.

This synergy makes squash reuse quite attractive to implement in conjunction

with DDMT. Moreover, one has to go to some lengths to implement the other

forms of reuse without implementing squash reuse as well. It follows that an

implementation of DDMT and register integration will include an implementa-

tion of squash-reuse.

The presence of squash reuse presents an evaluation dilemma. On one hand,
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register integration is part of DDMT. On the other, we need to isolate the effects

of DDMT which is, after all, the subject of this dissertation. Our solution is to

evaluate register integration in squash reuse capacity here, and then use the

enhanced system as the baseline for future experiments.

Our baseline configuration for evaluating squash reuse, called base, is an 8-

wide superscalar processor without register integration. A second configuration,

called RI, is the same 8-wide processor but with 320 physical registers and a 256-

entry, fully-associative IT. Our reason for choosing 320 physical registers is the

following. 64 physical registers are needed to hold the last committed value of

every architectural instruction. In a superscalar processor with a 128 entry reor-

der buffer, an additional 128 registers are needed to hold the results of all specu-

lative in-flight instructions. We add an additional 128 physical registers to hold

squashed—and later DDT—values. Note, the number of physical registers and

the number of IT entries need not be equal. Not every physical register needs an

IT entry and the IT may contain empty entries. We use a smaller IT since, at any

one point, the 64 M state (committed) registers do not need IT entries. This opti-

mization is enabled by our use of a fully associative IT and the proper replace-

ment policy. High degrees of associativity do not significantly help squash reuse

as reuse completed instructions spanning several loop iterations is uncommon.

The RI configuration also includes an aggressive 256-entry, path-sensitive load

integration suppression predictor (LISP).

Table 5.6 summarizes the performance of squash reuse. We briefly explain
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Table 5.6 Performance of register integration-based squash reuse.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Base TIs fetched (M)   153.38   101.60 7395.88 4592.21   264.31 1491.95   438.14 1379.71 1061.32

TIs renamed (M)   117.89   101.21 6943.86 3968.46   245.19 1321.58   396.87 1242.26   903.46

TIs executed (M)   103.22   100.88 6360.80 3121.13   220.00 1084.09   340.50 1022.17   674.46

BMR lat. (c)     3.86   404.99    12.96    10.28    10.68    10.07    10.10    21.35    14.68

Load lat. (c)    21.17    54.74     5.66     3.10     3.01     3.01     3.01     4.68     3.85

IPC     1.28     0.29     3.91     3.51     3.46     2.88     3.32     1.94     2.37

RI TIs fetched (M)   153.38   101.60 7381.95 4527.98   263.22 1462.49   432.92 1371.57 1034.46

TIs renamed (M)   117.89   101.21 6930.62 3894.45   244.14 1292.70   392.01 1233.65   877.51

TIs executed (M)   103.04   100.48 6282.10 2840.59   213.68 1013.90   325.73   975.69   602.48

BMR lat. (c)     3.86   404.81    12.78     9.41    10.51     9.50     9.76    21.07    13.86

Load lat. (c)    21.17    54.73     5.64     2.84     2.96     2.87     2.92     4.59     3.56

IPC     1.28     0.29     3.91     3.56     3.48     2.94     3.36     1.95     2.42

Speedup (%)     0.00     0.03     0.17     1.38     0.49     2.03     1.15     0.44     2.13

TIs squashed (M)     1.59     0.81   239.95   457.42    16.74   149.43    32.99   103.98   141.71

TIs integrated (M)     0.14     0.39    56.44   204.66     5.43    48.93    11.66    36.41    46.16

Fetch reduction (%)     0.00  0.00     0.19     1.40     0.41     1.97     1.19     0.59     2.53

Exec reduction (%)     0.18     0.40     1.24     8.99     2.87     6.47     4.34     4.55    10.67

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Base TIs fetched (M) 9115.01  1937.01 2373.68 7699.03 5253.43 2966.89 1915.97   679.48 1922.02

TIs renamed (M) 8108.63  1652.40 2053.02 6565.49 4545.75 2402.43 1850.32   558.03 1673.37

TIs executed (M) 6812.99  1207.13 1634.99 4508.36 3161.04 1633.64 1772.42   407.22 1345.95

BMR lat. (c)    18.13    54.27    20.63    12.50    14.91    12.13    12.54    11.54    35.03

Load lat. (c)     3.41    21.76     4.28     3.68     3.01     3.81     3.23     3.37     4.44

IPC     2.70     0.62     1.81     2.55     2.73     2.13     4.52     2.58     1.66

RI TIs fetched (M) 8997.10  1909.59 2329.20 7526.94 5159.72 2847.94 1913.38   648.75 1907.63

TIs renamed (M) 7993.90  1625.76 2012.33 6399.18 4454.68 2293.74 1847.96   529.65 1662.21

TIs executed (M) 6052.98  1126.67 1498.72 4056.57 2904.26 1507.00 1744.24   341.40 1240.72

BMR lat. (c)    17.25    53.94    20.12    11.81    14.25    11.19    12.37    10.34    34.82

Load lat. (c)     3.10    21.82     4.04     3.45     2.83     3.62     3.20     2.86     4.20

IPC     2.74     0.63     1.82     2.60     2.78     2.21     4.53     2.71     1.68

Speedup (%)     1.56     0.87     0.94     2.03     1.76     3.63     0.19     4.77     1.32

TIs squashed (M) 1275.52   215.73   271.81   760.28   510.56   218.61    67.45    93.14   214.32

TIs integrated (M)   553.33    44.79    98.70   288.89   183.91    83.68    24.69    47.76    83.23

Fetch reduction (%)     1.29     1.42     1.87     2.24     1.78     4.01     0.14     4.52     0.75

Exec reduction (%)    11.16     6.67     8.33    10.02     8.12     7.75     1.59    16.16     7.82
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what our metrics measure. The raw counts of instructions fetched, renamed and

executed are measured over all instructions in the program, not just correct path

instructions (if only correct path instructions were measured here, these three

counts would be equal). These metrics are shortened to TIs (total instructions) in

the table and are given in millions of instructions (M). IPC is computed by divid-

ing the number of instructions retired by the number of cycles simulated. The

raw counts, average latencies and IPCs can be directly compared across configu-

rations. Percent speedup is computed as (IPCRI-IPCBASE)/IPCBASE. We consis-

tently use these conventions when displaying data.

We also present two average diagnostic latencies, the average load execution

latency and the average branch misprediction resolution (BMR) latency. The aver-

age load latency is measured as the difference between the completion time and

the issue time of all retired loads. The branch misprediction resolution latency is

measured as the difference between the completion time and the register renam-

ing time of all retired branches that were initially mis-predicted. The effects of

wrong path instructions are not entered into average latency calculations as we

do not care about the latency of wrong-path loads, whose late completion cannot

stall the processor, or about the resolution latency of a wrong-path mis-predicted

branches, which do not impact the correct path fetch schedule. In order to cor-

rectly model the effect of integrating instructions, we must modify these two defi-

nitions. The load latency of a single retired load and the resolution latency of a

single retired mispredicted branch are defined as:
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LLD = MAX(0, TRESULT-complete - MAX(TRESULT-issue, TINSTR-rename)) EQ 17.

LBR = MAX(0, TRESULT-complete - TINSTR-rename) EQ 18.

These definitions account for the fact that for an integrating instruction, exe-

cution may complete before the instruction is renamed. Under these definitions, a

load integrating a completed result has an execution latency of zero. A mis-pre-

dicted branch integrating a completed result and performing instantaneous reso-

lution also, appropriately, has a resolution latency of zero. Note, with the

presence of register integration, it is possible for the average load latency to drop

below the perfect load latency, which for our configuration is three cycles—1 cycle

for address generation latency plus a 2 cycle cache/SQ hit. In fact, this happens

routinely for benchmarks with few cache misses.

A second row group in the RI experiment tab presents squash reuse specific

data. We list the total number of instructions squashed and total number of inte-

grated instructions that were eventually retired. Both figures are listed in mil-

lions of instructions (M). Again, we are not concerned with instructions that have

been integrated and subsequently squashed, these do not effect externally visible

performance. Similarly, we do not want to double-count instructions that were

integrated, squashed, and re-integrated. Consequently, latency and integration

statistics are all collected during retirement. We also report the percent reduction

in instructions fetched and executed, computed as (instructionsBASE-instruction-

sRI)/instructionsBASE.

Squash reuse with the basic integration configuration achieves a speedup of

4% for twolf. The rest of the programs experience a 1%-2% improvement in per-
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formance. Again, we ignore the fact that average performance degrades by about

2% when an extra cycle is added to the register renaming stage to account for the

added latency of the integration process. Our rationale for doing so is that we are

not concerned with these speedups per se, we are simply using the performance

results as a baseline for another study.

The first order effect of squash reuse is to reduce the total number of instruc-

tions executed by the program. To that end it is successful, reducing consumption

of execution bandwidth by up to 16% with an average reduction of about 7%.

However, a reduction in instructions executed does not translate directly into

speedup. Well designed processors have balanced pipelines, in which no one stage

is the bottleneck. Any technique that relieves bandwidth demands of a given

stage without lowering bandwidth demands by an equal amount on all prior

stages will produce only negligible speedup. Since register integration only elimi-

nates the execute stage from the processing of an integrated instruction, it does

not directly reduce the number of instructions fetched. In other words, it frees up

execution bandwidth for new instructions, but does not directly free up more

fetch bandwidth to fetch those new instructions. Register integration produces its

speedups via second-order effects—primarily, by accelerating the resolution of

mispredicted branches, reducing the number of instructions fetched and expedit-

ing the fetch of correct path instructions. Register integration actually acceler-

ates branch resolution in two ways. First, if either a mispredicted branch or part

of its computation is successfully integrated, then the branch completes and

resolves earlier as its dataflow graph is essentially compressed. Second, inte-
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grated instructions that do not contribute directly to the computation of a mis-

predicted branch remove themselves from scheduling and resource contention

with instructions that do, allowing the former to execute earlier. Via accelerated

misprediction resolution, register integration is able to reduce the number of

instructions fetched by up to 5% with an average of about 2%. As we reasoned, for

squash reuse these figures correlate well with end performance improvement.

This correlation breaks down for pre-execution reuse which achieves speedups by

prefetching as well.

One opportunity for integration to do harm is by precipitating squashes via

mis-integration. Although not shown in the table, this is the case in most of the

benchmarks. Load integration suppression can eliminate the bulk of this prob-

lem. Our aggressive LISP keeps the number of mis-integrations three orders of

magnitude below the number of integrated results. This is sufficient to ensure

that in the squash reuse scenario, mis-integrations are not responsible for pro-

ducing a slowdown.

The degree to which a program benefits from squash reuse is highly depen-

dent on the program’s structure. Certain programs are naturally amenable to

integration-based squash-reuse while some cannot take advantage of it. Factors

include the unoptimized incidence of squashes, the size of the code within the

conditional arms, which effects the probability of executing reconvergent code

before the branch is resolved, and the data dependence nature of work in the

reconvergent regions. We do not discuss the structural properties of individual

programs in this context, but point the reader to previous work [70]. That work
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also contains a thorough evaluation of register integration in squash reuse capac-

ity, including analysis of sensitivity to parameters like IT size and associativity

and integration latency.

Squash reuse can also be implemented using a reuse buffer (RB) [82], a prede-

cessor to the IT that based reuse on values and architectural register names

rather than on microarchitectural physical register names. Due to their funda-

mentally different implementations, the squash reuse captured by the RB and

that captured by the IT do not exactly overlap. However, a good, generally appli-

cable discussion of squash reuse and its relation to the structural properties of

programs can also be found here [81].

5.2.2  Absolute Upper Bound on DDMT Performance

Since DDMT attacks memory and branch misprediction resolution latencies,

the absolute upper bound for performance of the DDMT system in its entirety is

the performance of the program with all of these latencies “perfected”—i.e., magi-

cally eliminated. Note, we do not model zero latencies for branches and loads. To

make this study more relevant to DDMT, we model perfect branch resolution

rather than perfect branch prediction. We allow branch mispredictions to take

place and instructions to be fetched along the wrong path. However, we correct all

branch mispredictions magically at register renaming—emulating the perfor-

mance effect of integrating a pre-executed branch—such that wrong path instruc-

tions are not executed. The latency of a perfect load is 3 cycles—the cache hit

latency. Perfect caches are modeled in a straightforward way.
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The performance potential for perfect memory and branch resolution is shown

in Figure 5.1 and in Table 5.7. The graph shows speedups due to perfecting loads

(l, the left-most bars in each group), speedups due to perfecting branches (b) and

speedups due to perfecting both loads and branches together (a). The table breaks

down supporting data similarly.

Even with perfect memory and perfect branch resolution, the performance of

most programs does not approach the peak capabilities of the machine—i.e., IPC

of 8. A major part of this is due to our modeling of perfect branch resolution,

rather than perfect branch prediction. In this model, the cost in cycles of each

branch misprediction is (at least) the number of pipeline stages between fetch

and register renaming—6 in our model. Other factors that limit performance are

Figure 5.1 Performance potential of perfect load and branch resolution latencies.
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real memory disambiguation, a realistic mixture of functional unit resources,

non-unit execution latencies (especially the 3-cycle load latency) and the natu-

rally available in-window parallelism of the program.

Table 5.7 Performance potential of perfect load and branch resolution latencies.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Load Static PIs 150 298 931 3661 1367 1520 1557 5178 26590

PIIs executed (M) 39.16 28.75 1509.20 731.49 49.95 226.45 72.85 218.49 116.15

PDIs covered (M) 11.69 11.75 40.13 5.76 0.07 0.21 0.10 3.94 2.08

Dyn. eff. (%) 29.85 40.87 2.66 0.79 0.14 0.09 0.13 1.81 1.79

IPC 3.41 4.41 5.45 3.71 3.48 2.94 3.36 2.61 2.84

Speedup (%) 166.50 1404.29 39.12 4.37 0.09 0.09 0.16 33.67 17.74

Branch Static PIs 146 260 646 2308 597 664 681 4152 21132

PIIs executed (M) 6.22 27.27 782.07 314.55 23.27 105.17 35.56 146.21 90.55

PDIs covered (M) 0.99 0.01 13.00 18.98 0.85 7.86 1.76 7.01 5.01

Dyn. eff. (%) 15.86 0.04 1.66 6.03 3.65 7.47 4.95 4.80 5.53

IPC 1.32 0.29 4.31 4.91 4.17 4.02 4.26 2.46 3.37

Speedup (%) 2.98 0.03 10.19 37.98 19.77 36.68 26.78 26.30 39.29

Both Dyn. eff. (%) 28.60 21.08 2.35 2.36 1.25 2.43 1.71 3.06 3.66

IPC 3.77 4.46 6.23 5.16 4.17 4.02 4.26 3.64 4.30

Speedup (%) 194.74 1421.81 59.10 45.05 19.81 36.75 26.94 86.81 78.01

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Load Static PIs 1156 457 4357 5214 2181 2486 9681 572 2580

PIIs executed (M) 1081.16 246.03 295.70 971.91 778.86 291.56 458.21 79.27 327.17

PDIs covered (M) 34.39 83.28 13.22 7.22 1.02 23.47 3.32 3.05 13.62

Dyn. eff. (%) 3.18 33.85 4.47 0.74 0.13 8.05 0.72 3.85 4.16

IPC 2.94 2.66 2.62 2.69 2.78 2.47 5.10 2.85 2.43

Speedup (%) 7.10 324.27 43.57 3.63 0.26 12.03 12.57 5.33 44.77

Branch Static PIs 847 382 3833 3407 1191 1717 6269 394 1484

PIIs executed (M) 662.62 185.10 224.22 519.09 389.31 180.25 300.16 35.04 129.31

PDIs covered (M) 29.31 9.09 9.36 36.47 23.28 17.02 2.25 3.61 6.98

Dyn. eff. (%) 4.42 4.91 4.17 7.03 5.98 9.44 0.75 10.29 5.40

IPC 3.53 0.70 2.22 3.97 4.22 3.10 4.85 4.00 2.14

Speedup (%) 28.82 11.81 21.63 52.88 52.12 40.48 7.08 47.71 27.35

Both Dyn. eff. (%) 3.70 23.00 4.57 2.92 2.06 9.14 0.74 5.99 4.68

IPC 3.81 3.53 3.35 4.19 4.24 3.49 5.54 4.24 3.29

Speedup (%) 38.85 462.68 83.50 61.13 52.69 58.03 22.16 56.61 95.48
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In addition to IPC and speedup—which we measure over the RI configura-

tion—the table presents four quantities that are relevant to pre-execution. Static

PIs is the number of static problem instructions perfected. In this case, since we

are modeling perfect branch resolution and perfect memory latency, this number

includes every static branch with at least one misprediction and every static load

with at least one cache miss—essentially every static load and branch in the sam-

ple. PIIs executed is the count of all dynamic instances of all problem instructions.

PDIs covered is the count of all performance degrading instances of all PIs.

The dynamic efficiency of a pre-execution implementation or a potential pre-

execution implementation can be measured as the number of PDIs covered to

PIIs pre-executed (a more accurate measure would be the number of PDIs cov-

ered to instructions pre-executed, but such a measure can’t be taken at this

point). If the dynamic efficiency is low, then pre-execution is doing a lot of work

for little return. As Table 5.7 shows, an unconstrained PI definition—i.e., “per-

fecting” or attacking all PDIs—is a low-efficiency approach. Except for the Olden

micro-benchmarks and mcf, this strategy would require executing at least 10

PIIs, and sometimes as many as 100 PIIs for every PDI. This observation moti-

vates our use of a narrow PI definition.

5.2.3  Performance Potential of Perfecting Problem Instructions

DDMT does not attack all PDIs. Instead, it relies on the fact that most PDIs

are caused by a few static problem instructions (PIs) and that the dynamic effi-

ciency of pre-executing PI instances is relatively much higher than that of the
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general instruction population. In this section, we evaluate the performance

potential of DDMT using a restricted PI definition—a set of thresholds for distin-

guishing PIs from non-PIs. This section also serves as an evaluation of the PI def-

inition itself. We perform this evaluation by comparing measures of the restricted

definition to the corresponding ones in the unrestricted case.

Recall, there are three aspects to the “problemness” of an instruction: the

average problem latency, the problem ratio and the problem contribution. For our

central design point we have chosen our definition thresholds as follows. The

problem contribution threshold is 0.2%, meaning that a PI must contribute at

least one in every 500 PDIs of its kind in the program—e.g., a branch PI must

contribute at least one in every 500 mispredictions. The problem ratio threshold

is 10%, meaning that in order to be considered a PI at least one in every 10 PIIs

must be a PDI. Our problem penalty thresholds are 10 cycles for loads and 5

cycles for branches, the minimum latencies for an L1 cache miss and the resolu-

tion of a branch mis-prediction, respectively. The graph in Figure 5.2 shows the

performance potential of perfecting PIs that obey this definition. The data is over-

laid on the graph from Figure 5.1. Again, performance potential is shown for per-

fecting problem loads only (l), problem branches only (b), and both problem loads

and branches (a). Tables 5.8, 5.9 and 5.10 provide details that can be used to

“evaluate” the PI definition.

To evaluate a PI definition, we compare its metrics—i.e., the number of static

PIs it includes, the number of PDIs it covers, the number of PIIs it pre-executes to
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do so, and the speedup it produces—to the corresponding metrics of the uncon-

strained definition from the previous section. The three tables perform these com-

parisons for loads, branches and a comprehensive PI definition. Each table is

divided into two row groups—the top group labeled All reprises the metrics of the

unconstrained definition, the bottom row group labeled PIs shows the metrics for

the new, constrained definition. The bottom four rows of the PIs experiment show

the raw unconstrained metrics as percentages of their constrained counterparts.

We call these percentages “coverages”. For instance, the PDI coverage of a PI defi-

nition is its percentage of PDIs covered vis-a-vis the perfect memory system and

oracle branch resolution model. Its speedup coverage is the speedup it achieves as

a percentage of the total possible speedup. A good PI definition will have high

Figure 5.2 Performance potential of perfecting PIs.
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Table 5.8 Performance potential of perfecting load PIs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

All Static PIs 150 298 931 3661 1367 1520 1557 5178 26590

PIIs executed (M) 39.16 28.75 1509.20 731.49 49.95 226.45 72.85 218.49 116.15

PDIs covered (M) 11.69 11.75 40.13 5.76 0.07 0.21 0.10 3.94 2.08

Dyn. eff. (%) 29.85 40.87 2.66 0.79 0.14 0.09 0.13 1.81 1.79

IPC 3.41 4.41 5.45 3.71 3.48 2.94 3.36 2.61 2.84

Speedup (%) 166.50 1404.29 39.12 4.37 0.09 0.09 0.16 33.67 17.74

PIs Static PIs 10 6 11 32 4 6 4 31 83

PIIs executed (M) 18.28 12.67 18.06 14.95 0.11 0.33 0.08 6.47 3.42

PDIs covered (M) 11.60 11.74 9.05 3.03 0.05 0.13 0.05 2.64 0.85

Dyn. eff. (%) 63.43 92.66 50.13 20.29 49.69 38.99 62.43 40.87 24.99

IPC 3.41 4.41 5.45 3.71 3.48 2.94 3.36 2.61 2.84

Speedup (%) 125.16 1385.92 6.75 2.77 0.05 0.03 0.04 28.24 8.41

PI coverage (%) 6.67 2.01 1.18 0.87 0.29 0.39 0.26 0.60 0.31

PII coverage (%) 46.69 44.09 1.20 2.04 0.21 0.15 0.11 2.96 2.95

PDI coverage (%) 99.21 99.94 22.56 52.64 73.36 60.94 53.16 67.00 41.06

Spd. coverage(%) 75.17 98.69 17.26 63.45 51.52 34.62 28.30 83.89 47.44

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

All Static PIs 1156 457 4357 5214 2181 2486 9681 572 2580

PIIs executed (M) 1081.16 246.03 295.70 971.91 778.86 291.56 458.21 79.27 327.17

PDIs covered (M) 34.39 83.28 13.22 7.22 1.02 23.47 3.32 3.05 13.62

Dyn. eff. (%) 3.18 33.85 4.47 0.74 0.13 8.05 0.72 3.85 4.16

IPC 2.94 2.66 2.62 2.69 2.78 2.47 5.10 2.85 2.43

Speedup (%) 7.10 324.27 43.57 3.63 0.26 12.03 12.57 5.33 44.77

PIs Static PIs 3 21 46 56 10 39 28 18 20

PIIs executed (M) 79.36 113.70 23.70 20.82 0.78 35.71 5.80 6.40 26.69

PDIs covered (M) 20.89 81.02 9.84 4.35 0.20 19.66 1.72 2.43 9.06

Dyn. eff. (%) 26.32 71.26 41.51 20.90 25.81 55.04 29.60 37.96 33.95

IPC 2.94 2.66 2.62 2.69 2.78 2.47 5.10 2.85 2.43

Speedup (%) 6.01 275.78 30.96 1.56 0.05 9.59 7.64 4.49 29.27

PI coverage (%) 0.26 4.60 1.06 1.07 0.46 1.57 0.29 3.15 0.78

PII coverage (%) 7.34 46.21 8.02 2.14 0.10 12.25 1.27 8.07 8.16

PDI coverage (%) 60.75 97.29 74.44 60.30 19.64 83.74 51.73 79.64 66.54

Spd. coverage(%) 84.59 85.05 71.05 42.90 17.81 79.66 60.74 84.20 65.38
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Table 5.9 Performance potential of perfecting branch PIs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

All Static PIs 146 260 646 2308 597 664 681 4152 21132

PIIs executed (M) 6.22 27.27 782.07 314.55 23.27 105.17 35.56 146.21 90.55

PDIs covered (M) 0.99 0.01 13.00 18.98 0.85 7.86 1.76 7.01 5.01

Dyn. eff. (%) 15.86 0.04 1.66 6.03 3.65 7.47 4.95 4.80 5.53

IPC 1.32 0.29 4.31 4.91 4.17 4.02 4.26 2.46 3.37

Speedup (%) 2.98 0.03 10.19 37.98 19.77 36.68 26.78 26.30 39.29

PIs Static PIs 0 0 24 68 38 60 53 78 81

PIIs executed (M) 0.00 0.00 35.08 56.69 2.94 21.79 6.33 21.32 7.64

PDIs covered (M) 0.00 0.00 6.79 10.83 0.64 6.79 1.45 4.98 2.36

Dyn. eff. (%) 0.00 0.00 19.36 19.11 21.63 31.19 22.85 23.37 30.95

IPC 1.32 0.29 4.31 4.91 4.17 4.02 4.26 2.46 3.37

Speedup (%) 0.00 0.00 6.93 19.88 16.04 33.43 22.46 17.43 18.03

PI coverage (%) 0.00 0.00 3.72 2.95 6.37 9.04 7.78 1.88 0.38

PII coverage (%) 0.00 0.00 4.49 18.02 12.63 20.72 17.81 14.58 8.44

PDI coverage (%) 0.00 0.00 52.27 57.08 74.92 86.46 82.20 71.03 47.23

Spd. coverage(%) 0.00 0.00 67.99 52.34 81.13 91.13 83.88 66.28 45.90

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

All Static PIs 847 382 3833 3407 1191 1717 6269 394 1484

PIIs executed (M) 662.62 185.10 224.22 519.09 389.31 180.25 300.16 35.04 129.31

PDIs covered (M) 29.31 9.09 9.36 36.47 23.28 17.02 2.25 3.61 6.98

Dyn. eff. (%) 4.42 4.91 4.17 7.03 5.98 9.44 0.75 10.29 5.40

IPC 3.53 0.70 2.22 3.97 4.22 3.10 4.85 4.00 2.14

Speedup (%) 28.82 11.81 21.63 52.88 52.12 40.48 7.08 47.71 27.35

PIs Static PIs 28 19 78 31 28 59 33 27 16

PIIs executed (M) 65.23 26.59 30.04 64.94 50.71 65.31 4.16 10.81 17.64

PDIs covered (M) 12.81 5.89 5.81 30.93 21.00 14.03 1.54 2.93 4.98

Dyn. eff. (%) 19.64 22.16 19.34 47.63 41.42 21.49 36.91 27.14 28.25

IPC 3.53 0.70 2.22 3.97 4.22 3.10 4.85 4.00 2.14

Speedup (%) 9.66 7.75 12.56 43.48 44.01 30.32 5.18 38.54 10.10

PI coverage (%) 3.31 4.97 2.03 0.91 2.35 3.44 0.53 6.85 1.08

PII coverage (%) 9.85 14.37 13.40 12.51 13.03 36.23 1.39 30.84 13.64

PDI coverage (%) 43.72 64.82 62.08 84.81 90.22 82.44 68.36 81.30 71.41

Spd. coverage(%) 33.51 65.68 58.05 82.23 84.45 74.91 73.18 80.79 36.95
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Table 5.10 Performance potential of perfecting load and branch PIs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

All Static PIs 296 558 1577 5969 1964 2184 2238 9330 47722

PIIs executed (M) 45.39 56.02 2291.27 1046.04 73.22 331.62 108.41 364.70 206.70

PDIs covered (M) 12.98 11.81 53.92 24.74 0.91 8.06 1.85 11.18 7.56

Dyn. eff. (%) 28.60 21.08 2.35 2.36 1.25 2.43 1.71 3.06 3.66

IPC 3.77 4.46 6.23 5.16 4.17 4.02 4.26 3.64 4.30

Speedup (%) 194.74 1421.81 59.10 45.05 19.81 36.75 26.94 86.81 78.01

PIs Static PIs 10 6 35 100 42 66 57 109 164

PIIs executed (M) 18.28 12.67 53.14 71.64 3.05 22.12 6.42 27.79 11.06

PDIs covered (M) 11.60 11.74 16.42 13.83 0.69 6.93 1.50 7.69 3.27

Dyn. eff. (%) 63.43 92.66 30.89 19.31 22.51 31.34 23.37 27.68 29.54

IPC 3.77 4.46 6.23 5.16 4.17 4.02 4.26 3.64 4.30

Speedup (%) 125.16 1385.92 14.61 23.71 16.04 33.43 22.47 59.36 29.86

PI coverage (%) 3.38 1.08 2.22 1.68 2.14 3.02 2.55 1.17 0.34

PII coverage (%) 40.29 22.62 2.32 6.85 4.16 6.67 5.92 7.62 5.35

PDI coverage (%) 89.34 99.45 30.45 55.91 75.01 85.97 80.87 68.83 43.20

Spd. coverage(%) 64.27 97.48 24.72 52.63 80.97 90.95 83.41 68.38 38.28

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

All Static PIs 2003 839 8190 8621 3372 4203 15950 966 4064

PIIs executed (M) 1743.78 431.14 519.92 1491.00 1168.17 471.80 758.38 114.31 456.48

PDIs covered (M) 64.45 99.15 23.78 43.57 24.12 43.15 5.61 6.85 21.37

Dyn. eff. (%) 3.70 23.00 4.57 2.92 2.06 9.14 0.74 5.99 4.68

IPC 3.81 3.53 3.35 4.19 4.24 3.49 5.54 4.24 3.29

Speedup (%) 38.85 462.68 83.50 61.13 52.69 58.03 22.16 56.61 95.48

PIs Static PIs 31 40 124 87 38 98 61 45 36

PIIs executed (M) 144.60 140.29 53.74 85.76 51.49 101.02 9.97 17.20 44.34

PDIs covered (M) 33.58 89.67 15.95 35.26 21.20 35.65 3.26 5.47 14.79

Dyn. eff. (%) 23.22 63.91 29.67 41.11 41.18 35.29 32.70 31.77 33.36

IPC 3.81 3.53 3.35 4.19 4.24 3.49 5.54 4.24 3.29

Speedup (%) 16.32 341.58 50.10 46.34 44.10 43.53 14.17 45.36 48.66

PI coverage (%) 1.55 4.77 1.51 1.01 1.13 2.33 0.38 4.66 0.89

PII coverage (%) 8.29 32.54 10.34 5.75 4.41 21.41 1.31 15.05 9.71

PDI coverage (%) 52.10 90.43 67.06 80.92 87.91 82.63 58.13 79.77 69.23

Spd. coverage(%) 42.00 73.83 60.00 75.79 83.71 75.01 63.95 80.11 50.96
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PDI and speedup coverages and low PI and PII coverages. In other words, a good

PI definition will cover the largest fraction of PDIs and achieve the largest frac-

tion of the possible speedup while doing the least amount of work both statically

and dynamically.

This data shows that a narrow PI definition has a higher inherent dynamic

efficiency than an unconstrained definition, while achieving a large fraction of the

speedup associated with the latter. The PI definition we have chosen “performs”

well (in an ideal sense) as judged by these metrics, achieving greater than 60%

PDI and speedup coverage with less than 15% PII coverage and less than 3% PI

coverage on most programs. Section 5.3.2.1 measures DDMT’s sensitivity to the

PI definition.

5.2.4  DDT Characterization

We select DDTs to cover PDIs of instructions that fit the PI definition. In this

section, we “evaluate” these DDTs against the PI definition in the same way we

evaluated the PI definition against the unconstrained definition. Specifically, we

measure DDT “coverage” of the PI definition using the same metrics.

We quickly review the DDT selection parameters. We set DDT selection

scope—the number of instructions older than the PDI the slice generator can look

at—at 1024 instructions. Maximum DDT length is 32 instructions. The minimum

latency coverage acceptability factor (LCAF) is 25%, meaning that any acceptable

DDT must achieve at least 25% of the PDI’s desired latency tolerance, LTdes. The

maximum unrolling degree is 4. This is a concession to a realistic IT configuration
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which would be at most 4-way set-associative, meaning that the maximum num-

ber of un-integrated data-driven instructions with matching PCs is 4.

There are two ways to characterize DDTs. First, we may characterize them

using measures observed over the DDT selection data set. Since in the limit sce-

nario we use the same data set to select DDTs as we do to pre-execute them,

these measures also represent fairly accurate projections for pre-execution. A sec-

ond way of characterizing DDTs is to repeat our perfect PI experiment, perfecting

only PIs for which DDTs were selected. Neither of these methods is ideal. The

first provides accurate projections of PII and PDI coverage, but is not associated

with a speedup. The second measures a speedup, but does not accurately reflect

the number of PDIs that will actually be covered or the number of PIIs that will

actually be pre-executed to cover them. Not all PDIs of a given PI will be covered

by the chosen DDTs, and of those that are covered not all will be covered in full—

i.e., their latency will only be partially tolerated. These shortfalls are reflected in

the statistics collected during DDT selection, but not in the perfect DDT experi-

ment. In the absence of a clear winner, we use both methods. Figure 5.3 is a copy

of the previous graph on which we overlay the performance potential of perfecting

all PDIs of those PIs for which any DDTs were found. This experiment is called

perfect DDT.

A characterization of the DDTs is shown in three tables. Table 5.11 character-

izes a set of DDTs that pre-executes only loads, Table 5.12 characterizes DDTs

that pre-execute only branches and Table 5.13 characterizes a set of DDTs that
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pre-executes both loads and branches. The first experiment in each table reprises

our raw data from the evaluation of the PI definition in Table 5.8. We include the

static PI count, the counts of dynamic PIIs executed and PDIs covered and the

potential speedup. The first row group of the DDTs experiment parallels this data

using the observed (projected) statistics from the DDT selection process. Static

PIs is the number of static PIs for which DDTs were found. PIIs executed is the

number of projected PII executions. Note, the projected number of PIIs executed

may in fact be greater than the corresponding number of PIIs found in the pro-

gram sample, as DDTs can be triggered when no corresponding master thread

PII is forthcoming. PDIs covered is the number of observed (projected) PDIs cov-

ered by the DDTs. PDIs fully covered is the number of PDIs whose latency we

Figure 5.3 Performance potential of perfecting PIs for which DDTs were found.
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Table 5.11 Characterizing load DDTs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Perfect
PIs

Static PIs 10 6 11 32 4 6 4 31 83

PIIs executed (M) 18.28 12.67 18.06 14.95 0.11 0.33 0.08 6.47 3.42

PDIs covered (M) 11.60 11.74 9.05 3.03 0.05 0.13 0.05 2.64 0.85

Speedup (%) 125.16 1385.92 6.75 2.77 0.05 0.03 0.04 28.24 8.41

DDTs Static PIs 10 6 9 12 2 5 3 22 52

PIIs executed (M) 19.06 12.34 16.67 7.76 0.15 0.94 0.19 4.75 3.81

PDIs covered (M) 9.65 11.03 9.02 1.31 0.05 0.13 0.05 0.98 0.40

PDIs fully cov’d (M) 5.11 8.59 1.78 1.05 0.03 0.07 0.03 0.20 0.16

PI cov’g (%) 100.00 83.33 81.82 37.50 50.00 83.33 75.00 70.97 62.65

PII cov’g (%) 104.23 97.39 92.30 51.92 144.98 282.50 232.79 73.45 111.28

PDI cov’g (%) 83.20 93.95 99.57 43.25 95.81 98.99 97.89 37.27 46.36

PDI full cov’g (%) 44.03 73.12 19.64 34.69 47.91 55.94 51.66 7.56 18.86

Perfect
DDTs

PIIs executed (M) 15.70 12.67 16.66 10.57 0.05 0.31 0.08 6.11 3.04

PDIs covered (M) 9.43 11.74 8.90 2.29 0.05 0.13 0.05 2.57 0.70

Speedup (%) 101.69 1385.92 6.73 2.23 0.05 0.03 0.05 28.17 6.48

PII cov’g (%) 85.87 100.00 92.26 70.75 47.61 93.65 99.35 94.42 88.94

PDI cov’g (%) 81.31 100.00 98.30 75.68 86.71 97.38 99.56 97.12 82.28

Speedup cov’g (%) 81.25 100.00 99.66 80.43 94.12 100.00 106.67 99.75 77.03

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Perfect
PIs

Static PIs 3 21 46 56 10 39 28 18 20

PIIs executed (M) 79.36 113.70 23.70 20.82 0.78 35.71 5.80 6.40 26.69

PDIs covered (M) 20.89 81.02 9.84 4.35 0.20 19.66 1.72 2.43 9.06

Speedup (%) 6.01 275.78 30.96 1.56 0.05 9.59 7.64 4.49 29.27

DDTs Static PIs 1 14 38 37 4 25 16 14 15

PIIs executed (M) 16.03 89.61 28.35 13.76 0.37 48.01 1.65 8.70 23.28

PDIs covered (M) 6.77 60.41 5.66 2.28 0.12 15.94 1.03 1.94 6.03

PDIs fully cov’d (M) 0.00 0.66 1.52 1.24 0.12 9.76 0.47 1.65 5.61

PI cov’g (%) 33.33 66.67 82.61 66.07 40.00 64.10 57.14 77.78 75.00

PII cov’g (%) 20.20 78.81 119.60 66.10 48.04 134.46 28.51 136.02 87.21

PDI cov’g (%) 32.39 74.56 57.48 52.47 57.66 81.10 60.24 79.98 66.49

PDI full cov’g (%) 0.00 0.82 15.49 28.48 57.66 49.65 27.51 67.74 61.86

Perfect
DDTs

PIIs executed (M) 74.58 95.53 19.45 20.71 0.61 31.35 5.32 5.37 26.69

PDIs covered (M) 17.74 66.53 6.61 4.28 0.17 16.86 1.48 2.20 9.06

Speedup (%) 4.95 246.07 8.06 1.50 0.03 6.65 6.01 4.21 29.27

PII cov’g (%) 93.97 84.02 82.06 99.49 79.08 87.79 91.67 83.86 100.00

PDI cov’g (%) 84.90 82.11 67.23 98.38 84.10 85.76 86.43 90.79 100.00

Speedup cov’g (%) 82.39 89.23 26.02 96.30 61.54 69.41 78.74 93.74 100.00
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Table 5.12 Characterizing branch DDTs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Perfect
PIs

Static PIs 0 0 24 68 38 60 53 78 81

PIIs executed (M) 0.00 0.00 35.08 56.69 2.94 21.79 6.33 21.32 7.64

PDIs covered (M) 0.00 0.00 6.79 10.83 0.64 6.79 1.45 4.98 2.36

Speedup (%) 0.00 0.00 6.93 19.88 16.04 33.43 22.46 17.43 18.03

DDTs Static PIs 0 0 3 41 29 43 40 50 65

PIIs executed (M) 0.00 0.00 3.89 27.47 1.82 15.89 4.77 14.78 6.13

PDIs covered (M) 0.00 0.00 0.85 4.88 0.32 3.56 0.79 2.24 1.40

PDIs fully cov’d (M) 0.00 0.00 0.52 4.17 0.23 2.77 0.64 1.47 0.66

PI cov’g (%) nan nan 12.50 60.29 76.32 71.67 75.47 64.10 80.25

PII cov’g (%) nan nan 11.08 48.46 61.87 72.93 75.38 69.34 80.22

PDI cov’g (%) nan nan 12.58 45.05 50.87 52.37 54.58 45.04 59.20

PDI full cov’g (%) nan nan 7.68 38.47 36.92 40.71 44.01 29.41 27.70

Perfect
DDTs

PIIs executed (M) 0.00 0.00 5.00 46.81 2.76 17.07 5.87 18.43 6.54

PDIs covered (M) 0.00 0.00 1.31 9.34 0.59 5.71 1.37 4.23 2.27

Speedup (%) 0.00 0.00 0.90 16.04 15.25 25.57 20.56 13.78 17.51

PII cov’g (%) nan nan 14.25 82.57 93.74 78.37 92.70 86.41 85.60

PDI cov’g (%) nan nan 19.29 86.23 93.41 84.07 94.81 84.85 96.07

Speedup cov’g (%) nan nan 13.01 80.68 95.07 76.50 91.56 79.06 97.11

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Perfect
PIs

Static PIs 28 19 78 31 28 59 33 27 16

PIIs executed (M) 65.23 26.59 30.04 64.94 50.71 65.31 4.16 10.81 17.64

PDIs covered (M) 12.81 5.89 5.81 30.93 21.00 14.03 1.54 2.93 4.98

Speedup (%) 9.66 7.75 12.56 43.48 44.01 30.32 5.18 38.54 10.10

DDTs Static PIs 12 13 41 24 17 43 18 15 11

PIIs executed (M) 38.95 19.25 22.43 56.77 28.55 71.53 1.09 10.72 14.64

PDIs covered (M) 5.82 2.37 2.01 24.29 11.77 9.60 0.59 2.06 2.50

PDIs fully cov’d (M) 1.54 0.40 0.67 10.89 4.44 4.79 0.55 1.33 2.26

PI cov’g (%) 42.86 68.42 52.56 77.42 60.71 72.88 54.55 55.56 68.75

PII cov’g (%) 59.70 72.39 74.68 87.42 56.29 109.52 26.24 99.16 82.99

PDI cov’g (%) 45.45 40.28 34.58 78.51 56.03 68.39 38.35 70.26 50.21

PDI full cov’g (%) 11.99 6.87 11.58 35.20 21.14 34.13 35.92 45.34 45.41

Perfect
DDTs

PIIs executed (M) 44.73 22.82 28.10 60.88 45.15 63.36 2.93 9.98 17.42

PDIs covered (M) 9.00 4.87 5.54 30.71 20.42 13.71 1.19 2.61 4.92

Speedup (%) 5.80 6.88 11.88 43.29 42.13 27.80 3.57 31.07 9.97

PII cov’g (%) 68.57 85.81 93.54 93.75 89.02 97.01 70.30 92.34 98.76

PDI cov’g (%) 70.27 82.71 95.28 99.28 97.22 97.73 77.45 89.09 98.74

Speedup cov’g (%) 60.03 88.68 94.63 99.55 95.73 91.69 68.80 80.62 98.70
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Table 5.13 Characterizing “combination” load and branch DDTs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Perfect
PIs

Static PIs 10 6 35 100 42 66 57 109 164

PIIs executed (M) 18.28 12.67 53.14 71.64 3.05 22.12 6.42 27.79 11.06

PDIs covered (M) 11.60 11.74 16.42 13.83 0.69 6.93 1.50 7.69 3.27

Speedup (%) 125.16 1385.92 14.61 23.71 16.04 33.43 22.47 59.36 29.86

DDTs Static PIs 10 6 12 53 31 48 43 72 117

PIIs executed (M) 19.06 12.34 20.56 35.23 1.97 16.83 4.96 19.53 10.27

PDIs covered (M) 9.65 11.03 9.87 6.19 0.37 3.69 0.84 3.23 1.79

PDIs fully cov’d (M) 5.11 8.59 2.30 5.22 0.26 2.84 0.66 1.67 0.82

PI cov’g (%) 100.00 83.33 34.29 53.00 73.81 72.73 75.44 66.06 71.34

PII cov’g (%) 104.23 97.39 38.68 49.18 64.75 76.09 77.39 70.29 92.83

PDI cov’g (%) 83.20 93.95 60.12 44.76 54.52 53.28 56.16 41.97 54.87

PDI full cov’g (%) 44.03 73.12 14.01 37.74 37.92 40.95 44.24 21.64 25.02

Perfect
DDTs

PIIs executed (M) 15.70 12.67 21.66 57.38 2.81 17.39 5.95 24.53 9.58

PDIs covered (M) 9.43 11.74 10.71 11.60 0.64 5.85 1.42 6.83 3.02

Speedup (%) 101.69 1385.92 7.83 18.85 15.26 25.56 20.57 51.94 26.53

PII cov’g (%) 85.87 100.00 40.76 80.10 92.15 78.60 92.78 88.27 86.63

PDI cov’g (%) 81.31 100.00 65.25 83.88 93.89 84.36 94.98 88.72 92.41

Speedup cov’g (%) 81.25 100.00 53.57 79.49 95.09 76.48 91.56 87.50 88.86

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Perfect
PIs

Static PIs 31 40 124 87 38 98 61 45 36

PIIs executed (M) 144.60 140.29 53.74 85.76 51.49 101.02 9.97 17.20 44.34

PDIs covered (M) 33.58 89.67 15.95 35.26 21.20 35.65 3.26 5.47 14.79

Speedup (%) 16.32 341.58 50.10 46.34 44.10 43.53 14.17 45.36 48.66

DDTs Static PIs 13 25 79 61 21 68 34 29 25

PIIs executed (M) 54.98 102.52 50.23 70.05 28.92 119.55 2.75 19.42 37.88

PDIs covered (M) 12.59 62.06 7.61 26.50 11.88 26.20 1.62 4.00 8.51

PDIs fully cov’d (M) 1.54 1.07 2.14 12.06 4.56 11.66 1.02 2.97 7.85

PI cov’g (%) 41.94 62.50 63.71 70.11 55.26 69.39 55.74 64.44 69.44

PII cov’g (%) 38.02 73.08 93.45 81.68 56.16 118.34 27.56 112.86 85.44

PDI cov’g (%) 37.50 69.21 47.72 75.18 56.05 73.49 49.84 73.25 57.54

PDI full cov’g (%) 4.57 1.19 13.43 34.22 21.49 32.70 31.44 54.43 53.09

Perfect
DDTs

PIIs executed (M) 119.32 118.35 47.55 81.59 45.76 94.71 8.25 15.34 44.12

PDIs covered (M) 26.65 74.06 12.45 34.96 20.61 32.36 2.68 4.91 14.73

Speedup (%) 11.05 292.32 20.04 46.00 42.19 35.86 10.51 37.30 48.41

PII cov’g (%) 82.51 84.36 88.48 95.14 88.87 93.75 82.74 89.19 99.51

PDI cov’g (%) 79.38 82.59 78.07 99.16 97.19 90.77 82.15 89.84 99.58

Speedup cov’g (%) 67.70 85.58 40.01 99.29 95.66 82.38 74.16 82.23 99.50
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expect to fully tolerate using the selected DDTs. Recall, the DDT selection algo-

rithm is given a desired level of latency tolerance, LTdes, for the instances of every

PI and a latency coverage acceptability factor (LCAF) which—if set below 100%—

allows it to accept DDTs that will tolerate less than 100% of the desired latency.

As a result, the DDT selection algorithm may consciously produce DDTs that will

only partially cover their target PDI latencies. Again, these are just approxima-

tions. As we will see in the following section, the DDT selection algorithm may

both over-estimate and under-estimate the latency tolerance of individual DDTs

leading to either a lower-than-expected or higher-than-expected full coverage rate

at DDMT runtime. The second row group of the DDT experiment shows metric

coverages which are computed by dividing the DDT observed/projected metric by

the corresponding Perfect PIs metric. Here, we would like high PI and PDI cover-

ages, and a low PII coverage. A good DDT selection implementation will success-

fully find DDTs for most PIs, project these DDTs to cover most PDIs—preferably

in full—and place triggers along paths that will not result in many pre-execu-

tions for either NPDIs or no corresponding PIIs. Of course, failure to achieve

proper coverage levels—both high and low for the respective metrics—does not

imply that the DDT selection algorithm is faulty. It may simply be that the PDI

dependence graphs are such that sufficient latency tolerance may not be possible

within the length and scope bounds of the search, or that if such latency tolerance

is possible that its PII to PDI ratio is unacceptably high. These failures are the

“fault” of the program itself, not of the selection algorithm.

The final experiment shown in each table is Perfect DDTs. In this experiment,
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we perfect the behavior of all PI instances for all PIs for which any DDTs were

found. We do this to obtain a tighter performance upper bound for DDMT,

although as we explained this upper bound is rather loose.

We briefly discuss “combination” load and branch DDTs. Statistics for load

and branch DDTs separately are also provided, but are not discussed as they

have the same general character as the combined DDTs. Our two micro-bench-

marks have few mis-predicted branches and, hence, only load PIs. Per projected

coverage metrics, our DDT selection algorithm performs well on the two micro-

benchmarks—em3d and mst—finding DDTs to cover all static PIs and high per-

centages—83% and 93%, respectively—of dynamic PDIs. Projected full coverage

for PDIs is lower—44% and 73%, respectively. Both benchmarks have high L2

miss rates, whose long latencies require high degrees of unrolling. Em3d’s longer

inner loops restrict the unrolling degree that can be observed within the slicing

scope. As mentioned earlier, to achieve both high PDI coverage and sufficient

latency tolerance, it may be necessary to choose DDTs that will be pre-executed

even when the likelihood is high that no corresponding master thread PIIs exist.

An extreme form of this situation—which is not a positive one—arises in em3d

and is reflected by a PII coverage that is greater than 100%.

As expected, DDT selection “performs” well, but less so, on the SPEC2000

benchmarks. DDTs are found for between 40% and 80% of PIs, and these typi-

cally project to cover between 20% and 75% of PDIs. Projected full coverage is

lower still, ranging from 1% to 54%. Mcf is an interesting case study. Mcf contains

tight loops, many with serial (pointer-chasing) latencies. High degrees of unroll-
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ing are needed to tolerate these latencies fully. For the parallel latencies, induc-

tion unrolling suffices. However, our selection algorithm limits the unrolling

degree to 4 and the maximum DDT length to 32. For the serial latencies, unover-

lapped full unrolling is needed. As we explained in Chapter 2 and again in Chap-

ter 3, our DDT selection algorithm has a difficult time recognizing instances of

unoverlapped induction unrolling due to its limited slicing scope and statistical

nature. Consequently, while the selection algorithm find DDTs to cover nearly

70% of mcf ’s PDIs, full latency tolerance is projected for only 2%.

Table 5.14 provides some additional data about the automatically selected

Table 5.14 Additional characterization of “combination” load and branch DDTs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Static multi-PDI DDTs 2 2 10 54 29 43 39 96 144

Static single-PDI DDTs include 16 10 14 95 47 78 64 139 259

Avg. static length 15.00 20.50 11.40 10.81 12.83 10.35 9.21 15.08 14.97

DDT executions (M) 3.14 2.47 15.98 22.76 1.38 10.13 2.69 15.87 4.98

Avg. dynamic length 12.42 20.50 13.86 9.70 8.52 8.51 9.14 9.60 11.74

Avg. dynamic unrolling 1.00 1.00 2.26 0.23 0.00 0.00 0.00 0.59 0.36

Avg. dynamic PII/DDT 6.07 5.00 1.29 1.55 1.43 1.66 1.85 1.23 2.06

Avg. dynamic PDI/DDT 3.07 4.47 0.62 0.27 0.27 0.36 0.31 0.20 0.36

Avg. dynamic advantage/DDT 62.18 316.00 7.87 2.10 1.82 2.37 1.84 2.58 3.59

Avg. dynamic advantage/PDI 20.24 70.70 12.74 7.73 6.75 6.51 5.89 12.66 9.98

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Static multi-PDI DDTs 17 18 83 116 43 84 52 30 32

Static single-PDI DDTs include 23 31 156 163 56 198 69 64 48

Avg. static length 8.41 13.00 7.47 14.70 17.65 11.38 17.04 15.27 11.03

DDT executions (M) 45.38 51.75 29.85 46.94 21.46 49.45 2.19 9.17 12.52

Avg. dynamic length 7.58 11.71 5.91 13.64 17.37 9.91 19.10 12.27 18.96

Avg. dynamic unrolling 0.03 1.70 0.75 0.01 0.05 1.06 0.00 0.53 0.78

Avg. dynamic PII/DDT 1.21 1.98 1.68 1.49 1.35 2.42 1.26 2.12 3.03

Avg. dynamic PDI/DDT 0.28 1.20 0.25 0.56 0.55 0.53 0.74 0.44 0.68

Avg. dynamic advantage/DDT 1.22 23.92 2.14 3.00 4.90 3.43 8.82 2.85 18.10

Avg. dynamic advantage/PDI 4.41 19.95 8.39 5.31 8.84 6.47 11.87 6.54 26.62
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“combination” (i.e., both load and branch) DDTs. For static DDT measures, we list

the total number of final (merged) DDTs and the number of single-PDI DDTs

included in the merged total. As these diagnostics show, DDT overlaps are com-

monplace. In the em3d micro-benchmark, for instance, the 16 single-PDI DDTs

found by the second phase of DDT selection are merged into 2 DDTs by the final

phase. We also show the average static DDT size; the maximum DDT size is 32

instructions.

For dynamic measures, we present the number of projected DDT executions

and the average dynamic length and degree of unrolling. The average number of

PIIs pre-executed and PDIs covered per dynamic DDT is also shown. The pro-

jected number of PDIs covered per DDT pre-executed is an important predictive

measure of DDMT performance. While the Olden micro-benchmarks average

more than 3 PDIs covered per DDT, the SPEC2000 benchmarks average less than

1. We do not expect significant speedups for gap and gzip, which cover 1 PDI per 5

DDTs pre-executed. However, we do expect performance improvement on mcf,

whose DDTs project to cover a PDI per pre-execution. The final dynamic mea-

sures shown in the table are the average projected advantage in cycles per DDT

pre-executed and per PDI covered. Advantage, recall, is latency tolerance minus

overhead. Average advantage per DDT is also a performance predictor. Again, the

Olden micro-benchmarks project better DDMT performance than the SPEC2000

benchmarks. Of the SPEC2000 benchmarks, mcf again promises to benefit the

most with a 22 cycle projected reduction in execution time per DDT executed.
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5.2.5  DDMT Performance

In this section we examine the performance of the runtime component of

DDMT using the DDTs selected in the previous section. This portion of the evalu-

ation is certainly not a limit study, at least if one disregards the limit relationship

between DDMT setup and runtime.

Figure 5.4 shows DDMT’s performance overlaid on our accumulating graph

which earlier emphasized the performance potential of perfecting all loads and

branches, perfecting PIs and perfecting DDTs. Table 5.15 and Table 5.16 provide

more detailed data—Table 5.15 details combination load-branch DDTs, while

Table 5.16 deals with load DDTs and branch DDTs separately. Each table shows

data from two experiments, RI and DDMT. RI is the baseline register integration

Figure 5.4 DDMT performance on central configuration.
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enabled superscalar configuration. In the DDMT experiment, we pre-execute the

DDTs characterized in the previous section. Data in the row groups can be com-

pared directly. We follow our conventions for reporting average latencies by

including only retired instructions in those figures. The total counts of instruc-

tions renamed and executed in the DDMT experiments include instructions

renamed and executed by DDTs. We do not report the count of instructions

fetched. As DDTs do not consume fetch bandwidth, this measure is not informa-

tive.

Table 5.15 DDMT performance for “combination” load and branch DDTs.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI TIs renamed (M) 117.89 101.21 6930.62 3894.45 244.14 1292.70 392.01 1233.65 877.51

TIs executed (M) 103.04 100.48 6282.10 2840.59 213.68 1013.90 325.73 975.69 602.48

BMR lat. (c) 3.86 404.81 12.78 9.41 10.51 9.50 9.76 21.07 13.86

Load lat. (c) 21.17 54.73 5.64 2.84 2.96 2.87 2.92 4.59 3.56

IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

DDMT TIs renamed (M) 162.03 148.35 7062.58 3838.57 251.62 1278.75 399.73 1378.86 893.35

TIs executed (M) 117.01 101.70 6283.74 2852.15 217.96 1025.10 335.15 1046.42 608.62

BMR lat. (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load lat. (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI TIs renamed (M) 7993.90 1625.76 2012.33 6399.18 4454.68 2293.74 1847.96 529.65 1662.21

TIs executed (M) 6052.98 1126.67 1498.72 4056.57 2904.26 1507.00 1744.24 341.40 1240.72

BMR lat. (c) 17.25 53.94 20.12 11.81 14.25 11.19 12.37 10.34 34.82

Load lat. (c) 3.10 21.82 4.04 3.45 2.83 3.62 3.20 2.86 4.20

IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

DDMT TIs renamed (M) 8300.92 2198.87 2136.36 6913.57 5023.78 2450.58 1867.48 559.91 1851.15

TIs executed (M) 6184.76 1256.79 1560.48 4319.80 3048.72 1653.96 1752.55 377.10 1290.43

BMR lat. (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load lat. (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07
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Table 5.16 DDMT performance load DDTs and branch DDTs separately.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI TIs renamed (M) 117.89 101.21 6930.62 3894.45 244.14 1292.70 392.01 1233.65 877.51

TIs executed (M) 103.04 100.48 6282.10 2840.59 213.68 1013.90 325.73 975.69 602.48

BMR. lat. (c) 3.86 404.81 12.78 9.41 10.51 9.50 9.76 21.07 13.86

Load lat. (c) 21.17 54.73 5.64 2.84 2.96 2.87 2.92 4.59 3.56

IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Load
DDMT

TIs renamed (M) 162.03 148.35 7043.58 3945.79 244.96 1297.02 392.91 1288.84 882.78

TIs executed (M) 117.01 101.70 6271.40 2849.33 213.66 1013.91 325.61 994.28 595.16

BMR lat. (c) 3.54 180.54 11.81 9.24 10.44 9.46 9.74 19.71 13.43

Load lat. (c) 12.30 23.40 5.52 2.81 2.95 2.86 2.91 4.33 3.42

IPC 1.83 0.57 4.00 3.56 3.48 2.94 3.36 2.06 2.46

Speedup (%) 42.99 93.83 2.14 0.03 0.07 0.03 -0.02 5.81 1.72

Branch
DDMT

TIs renamed (M) 117.89 101.21 6958.21 3783.19 251.01 1274.92 398.89 1336.17 888.15

TIs executed (M) 103.04 100.48 6269.38 2820.84 217.71 1023.55 334.88 1029.95 605.99

BMR lat. (c) 3.86 404.81 12.43 7.53 8.38 6.52 7.34 19.58 12.51

Load lat. (c) 21.17 54.73 5.63 2.82 2.87 2.70 2.79 4.47 3.48

IPC 1.28 0.29 3.92 3.71 3.57 3.18 3.50 2.00 2.49

Speedup (%) 0.00 0.00 0.25 4.22 2.48 8.19 4.34 2.44 3.06

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI TIs renamed (M) 7993.90 1625.76 2012.33 6399.18 4454.68 2293.74 1847.96 529.65 1662.21

TIs executed (M) 6052.98 1126.67 1498.72 4056.57 2904.26 1507.00 1744.24 341.40 1240.72

BMR. lat. (c) 17.25 53.94 20.12 11.81 14.25 11.19 12.37 10.34 34.82

Load lat. (c) 3.10 21.82 4.04 3.45 2.83 3.62 3.20 2.86 4.20

IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Load
DDMT

TIs renamed (M) 8003.97 2160.95 2087.72 6633.64 4604.80 2399.67 1880.83 553.61 1849.87

TIs executed (M) 5961.85 1228.66 1518.78 4103.27 2907.05 1522.23 1754.18 360.94 1287.72

BMR lat. (c) 16.60 40.53 18.92 11.66 14.22 9.98 12.31 7.75 35.91

Load lat. (c) 3.09 17.19 3.85 3.42 2.82 3.09 3.15 2.65 3.78

IPC 2.78 0.72 1.86 2.60 2.78 2.38 4.63 2.93 1.83

Speedup (%) 1.54 15.33 2.19 0.08 0.17 7.99 2.20 8.37 9.18

Branch
DDMT

TIs renamed (M) 8321.94 1797.69 2076.10 6845.82 5021.70 2392.94 1840.07 539.60 1820.38

TIs executed (M) 6274.07 1123.63 1525.65 4299.09 3046.86 1644.78 1742.73 363.91 1282.52

BMR lat. (c) 16.61 50.42 18.88 10.47 13.32 8.33 10.10 6.62 34.68

Load lat. (c) 3.08 19.52 3.93 3.39 2.77 3.28 3.18 2.64 3.89

IPC 2.76 0.64 1.86 2.65 2.80 2.40 4.58 3.02 1.83

Speedup (%) 0.80 2.51 2.14 2.05 0.93 8.86 0.97 11.58 8.82
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We discuss the Olden micro-benchmarks before turning to the SPEC2000 pro-

grams. Both em3d and mst are bound by memory latency as their initial average

load latency figures of 21 and 54 cycles suggest. DDMT attacks this memory

latency directly by pre-executing the problem loads achieving a prefetching effect.

In both cases, DDMT is successful in reducing the average load latency by almost

50%—to 12 and 23 cycles, respectively. In mst, where these latencies are taken in

series, this nearly 50% reduction in average load latency translates directly into a

nearly 50% reduction in execution time—i.e., a 93% speedup. In em3d, many of

the L2 cache misses are parallel, meaning that some level of latency overlapping

is naturally present in the program. In this case, a nearly 50% reduction in aver-

age load latency translates “only” into a 43% speedup (a 31% reduction in execu-

tion time).

DDMT’s effectiveness on these two micro-benchmarks is in part due to their

low initial performance: IPCs of 1.28 and 0.29 respectively. Such low baseline lev-

els of processor utilization justify and can tolerate the siphoning of large amounts

of sequencing and execution bandwidth to DDTs. In both cases, DDTs account for

at least a 50% increase in sequencing bandwidth consumption, with that figure at

close to 80% for em3d. However, the increase in execution bandwidth consump-

tion is much less—only 25% and 13%, respectively. This, of course, is due to pre-

execution reuse via register integration. We will take a closer look at pre-execu-

tion and pre-execution reuse in the following section.

One factor not explicitly shown in the table that contributes to DDMT’s excel-

lent performance on both micro-benchmarks is that their dominant loops perform
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relatively few stores. This translates into a small number of load mis-integra-

tions. We will investigate the performance impact of mis-integrations in

Section 5.3.1.2.

DDMT’s performance impact on the SPEC2000 benchmarks is both less pro-

nounced and more varied. Performance improves by 8% to 15% over the RI case

for six benchmarks: eon.k, gap, mcf, twolf, vpr.p, and vpr.r. The remaining 10

benchmarks experience speedups of between 1% and 4%. It is probably not coinci-

dental that four of the runs that benefit the most are mcf, twolf, vpr.p and vpr.r.

Mcf, twolf and vpr make heavy use of pointer-based data structures, and use exe-

cution idioms similar to those used in the two Olden micro-benchmarks.

Of the six high-performing benchmarks, eon.k achieves its speedup almost

exclusively via the pre-execution of branches while mcf benefits primarily from

the pre-execution of loads. Like mst, most of mcf ’s cache misses are serial,

accounting both for its low initial performance and the fact that a 20% reduction

in average load latency produced by DDMT translates into a 15% performance

improvement. The rest of the benchmarks achieve some benefit from both. Notice,

speedups generated by pre-executing branch DDTs and speedups generated by

pre-executing load DDTs are not additive (or multiplicative). In vpr.r, for instance,

pre-executing only loads achieves a speedup of 9% while pre-executing only

branches achieves an 8% speedup. However, pre-executing both achieves only an

11% speedup. The reason for this phenomenon is the overlap of load and branch

PDI computations, specifically the frequent idiom of a mis-predicted branch

depending on a cache miss. Notice, pre-executing branch computations in vpr.r
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primarily lowers the branch mis-prediction resolution (BMR), but also reduces

the load latency as many of the mis-predicted branches have cache missing loads

in their computations. Similarly, pre-executing load computations in vpr.r prima-

rily lowers the average load latency, but also effects the BMR latency as mis-pre-

dicted branches that depend on pre-executed loads are resolved earlier.

The lower speedups observed on the remaining benchmarks are due to several

factors, most of which will be discussed in 5.2.6. Here, we are concerned with fac-

tors that produce a DDMT performance shortfall with respect to the performance

predicted by our DDT selection algorithm and by the perfect DDT experiments.

Ignoring performance for a moment, DDMT does what it is meant to do, reduc-

ing both the average load latency and the average mis-prediction resolution

(BMR) latency in every benchmark. Reduction in average load latency varies

from a fraction of 1% to over 20%. Branch mis-prediction resolution latency is

reduced by up to 40%. In Section 5.2.5.3, we use register integration to break

down performance improvements into prefetching effects, branch resolution

effects and reuse effects.

DDMT achieves high speedups on the two Olden micro-benchmarks because

those programs are composed almost entirely of PDIs and their computations. As

we have seen, DDMT sequences almost a full copy of the master thread as the

sum of many DDTs. Performance improves because this copy is effectively time

shifted with respect to the master thread. In the SPEC2000 benchmarks, PDIs

and their computations account for a much smaller fraction of the dynamic

instruction stream. DDMT typically results in a 3% to 10% increase in the total
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number of instructions renamed. However, due to pre-execution reuse via register

integration, the consumption of execution bandwidth increases only by 1% to 6%.

One apparent anomaly we should explain is the case of pre-executing load

DDTs for vpr.p, where performance achieved is higher than perfect performance.

This is effect is due to register integration. In our model, a perfect load completes

in 3 cycles. However, from the point of view of the master thread, a load inte-

grated after having completed execution effectively completes in zero cycles. With

low overhead and a sufficiently high integration rate, it is conceivable that the

master thread’s average load latency could drop to well below its perfect value of

3. In this experiment, it drops to 2.65.

5.2.5.1  Measuring Pre-Execution Activity and Pre-Execution Reuse

The previous section presented total-system diagnostics that can be directly

compared with non-DDMT configurations. In this section, we present DDMT-spe-

cific metrics that allow us to measure the “level” of pre-execution activity going on

in the processor and the degree to which pre-executed results are integrated by

the master thread.

Table 5.17 presents pre-execution specific metrics for the three DDMT experi-

ments—loads, branches and all (both loads and branches together). We discuss

the measures of the all experiment. The other two result sets have the same char-

acteristics. We report the number of DDTs forked by the master thread, and the

number of DDTs squashed. DDT squashes occur due to path differences between

the DDT and the master thread and resulting invalidation of physical registers or
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due to exceptions in DDT instructions. A DDT squash does not mean that all

instructions in the DDT are lost; only instructions that occur after the disastrous

event are aborted. The bottom row group in each experiment shows per- data-

driven instructions (DDI) metrics. We show the numbers of DDIs renamed, DDIs

executed, and DDI results integrated. Again, we count an integration event when

the integrating master thread instruction retires to avoid double counting and

counting integrations by mis-speculated instructions. The DDI integration rate is

computed by dividing the number of DDT results integrated by the number of

DDT instructions renamed. We comment briefly about a few of these measures.

DDT squashes are relatively rare. In general, about 10% of DDTs are

squashed—or rather partially squashed—with the bulk of the squashes caused

by physical register invalidations. It may be possible to reduce the overhead of

squashed DDTs by dynamically learning which DDTs are susceptible to squashes

and selectively suppressing the fork of these DDTs. We have not experimented

with such a mechanism.

The number of DDT instructions renamed is often much larger than the num-

ber of DDT instructions executed, often exceeding the latter by a factor of 2.

There are two effects at work here. First, un-executed DDT instructions may be

aborted via cascaded invalidations even after the DDT has completed sequencing

and vacated its register context. Second, a DDT instruction which is integrated

before it has had a chance to execute and which is subsequently executed by the

master thread is not counted as a DDT executed instruction.
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Table 5.17 Pre-execution and pre-execution reuse diagnostics.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Load DDTs forked (M) 3.55 2.38 13.08 6.21 0.16 0.98 0.19 4.33 1.81

DDTs squashed (M) 0.09 0.00 2.08 1.09 0.01 0.04 0.00 0.15 0.19

DDIs renamed (M) 42.73 47.22 150.57 73.16 0.83 4.74 0.87 47.41 12.36

DDIs executed (M) 35.75 31.36 84.27 53.25 0.64 3.20 0.58 23.55 6.62

DDIs integrated (M) 25.05 34.29 50.96 26.58 0.51 2.66 0.42 9.78 1.91

DDI integ. rate (%) 58.62 72.62 33.85 36.34 60.65 55.99 48.32 20.62 15.41

Branch DDTs forked (M) 0.00 0.00 4.11 24.39 1.73 12.87 3.66 16.53 7.29

DDTs squashed (M) 0.00 0.00 0.30 3.44 0.12 1.19 0.31 1.54 1.53

DDIs renamed (M) 0.00 0.00 50.52 187.48 14.57 104.49 30.78 141.59 68.83

DDIs executed (M) 0.00 0.00 23.45 132.41 10.37 80.94 23.00 91.38 39.43

DDIs integrated (M) 0.00 0.00 11.07 86.05 5.07 41.73 10.38 48.30 13.35

DDI integ. rate (%) nan nan 21.91 45.90 34.84 39.93 33.73 34.11 19.40

All DDTs forked (M) 3.55 2.38 15.58 29.46 1.86 13.82 3.85 19.84 8.20

DDTs squashed (M) 0.09 0.00 2.64 4.26 0.12 1.19 0.32 1.68 1.64

DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

DDIs executed (M) 35.75 31.36 103.44 180.69 10.95 84.52 23.60 111.28 43.27

DDIs integrated (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

DDI integ. rate (%) 58.62 72.62 31.17 43.72 35.82 40.60 34.20 31.24 18.90

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Load DDTs forked (M) 8.93 57.17 24.87 25.51 0.59 29.62 1.96 3.92 6.77

DDTs squashed (M) 0.78 2.62 1.41 1.77 0.10 2.77 0.07 0.63 0.39

DDIs renamed (M) 83.96 646.72 122.65 177.90 9.13 170.74 35.47 57.40 150.42

DDIs executed (M) 20.04 239.66 67.57 81.38 7.10 84.04 27.02 46.16 82.27

DDIs integrated (M) 38.32 107.84 24.66 17.93 4.12 50.15 20.91 22.12 42.31

DDI integ. rate (%) 45.64 16.68 20.10 10.08 45.12 29.37 58.96 38.54 28.13

Branch DDTs forked (M) 51.00 27.33 24.53 62.38 37.05 55.44 1.06 8.02 12.22

DDTs squashed (M) 5.63 2.10 2.52 10.16 5.70 5.19 0.08 0.60 0.35

DDIs renamed (M) 423.16 286.93 134.89 818.45 579.69 429.95 18.38 84.97 198.27

DDIs executed (M) 329.95 151.01 82.36 415.44 248.52 303.32 15.27 67.08 115.79

DDIs integrated (M) 71.56 83.14 31.13 140.05 101.83 94.36 13.14 32.24 65.21

DDI integ. rate (%) 16.91 28.97 23.08 17.11 17.57 21.95 71.51 37.94 32.89

All DDTs forked (M) 60.15 66.46 41.53 74.75 37.51 56.09 2.57 9.95 12.97

DDTs squashed (M) 7.25 4.18 3.31 10.98 5.78 7.28 0.15 0.75 0.33

DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

DDIs executed (M) 305.73 294.97 135.34 444.81 253.76 333.52 38.26 89.17 141.38

DDIs integrated (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

DDI integ. rate (%) 27.46 17.73 21.60 16.48 17.89 25.84 60.06 36.98 34.39
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The number of instructions integrated and the integration rate—the ratio of

DDT instructions integrated to DDT instructions renamed—are measures of two

things. First, they are a crude measure of DDT “accuracy”, the fraction of DDT

instructions that pre-executed the right thing. The measure is crude because

integration may fail for any number of reasons. Admittedly, artificial integration

failures—i.e., ones that could have, and perhaps should have, been avoided—are

rare. Second, they are a more accurate measure of the DDMT’s execution “non-

overhead”. Integrated instructions are executed only once by the out-of-order exe-

cution engine. Integrated loads are re-executed, but this functionality belongs to

the retirement stage. DDT instruction integration rates are about 58% and 70%

for the Olden micro-benchmarks em3d and mst, respectively. They vary between

15% and 40% for most of the SPEC2000 benchmarks. The fact that integration

rates are not close to 100% is due to a combination of three factors. The first is a

pathological interaction with the integration mechanism itself. We will investi-

gate this effect in more detail in our sensitivity analysis (Section 5.3.1.1). The sec-

ond factor is the presence of induction unrolling which involves sequencing what

is essentially the same induction sequence instance multiple times. This is likely

a small effect. The third factor is the fact that the DDT selection algorithm

chooses DDTs whose triggers are not control-equivalent with the rest of the com-

putation. In other words, it selects a DDT with the a priori “understanding” that

some fraction of its forked instances will execute along an implicit control path

that the master thread will not follow. The DDT selection algorithm knows the

expected ratio of DDTs that will be forked along non-master thread paths, and
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takes that ratio into account when calculating aggregate overhead (OHagg) and

hence aggregate advantage (ADVagg). There is not much we can do to explicitly

characterize this last factor which is likely responsible for the integration rate

differences observed between the micro-benchmarks and the more realistic

SPEC2000 benchmarks. Em3d’s and mst’s DDTs are both induction unrolled on

an outer loop; they are dynamically control-equivalent with their trigger instruc-

tions a large fraction of the time. The integration shortfall observed in these

benchmarks is due to individual inner loop instructions that are not executed by

the master thread. Rarely is an entire DDT not integrated due to path diver-

gence. In contrast, the SPEC2000 benchmarks contain more varied control flow,

and the DDTs chosen for them are dynamically control equivalent with their trig-

ger instructions a lower fraction of the time.

5.2.5.2  PDI Coverage

Ultimately, the function of DDTs is to pre-execute the PDIs at the ends of

their respective computations, not the intermediate results. In this section, we

present PDI specific metrics. We then use our measurements to evaluate DDMT’s

PII and PDI “coverages” in terms of the upper bounds set by the selected DDTs.

In other words, just as we evaluated the PI definition against an ideal processor

and the DDT selection algorithm against an ideal “implementation” of the PI def-

inition, we now evaluate DDMT against an ideal “implementation” of the selected

DDTs. Again, we show the results of the three experiments—loads, branches and

all. These are shown in three tables, Table 5.18, Table 5.19 and Table 5.20,
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respectively.

The first experiment in each table—DDT—shows the numbers of PIIs exe-

cuted, PDIs covered and PDIs fully covered as projected by the DDT selection

algorithm. The second experiment shown in the table—DDMT—measures the

corresponding quantities from the DDMT performance simulation. Coverages are

shown in bold as the bottom row group of each DDMT experiment. We clarify how

Table 5.18 Load pre-execution and pre-execution reuse diagnostics.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

DDT PIIs executed (M) 19.06 12.34 16.67 7.76 0.15 0.94 0.19 4.75 3.81

PDIs covered (M) 9.65 11.03 9.02 1.31 0.05 0.14 0.05 0.98 0.40

PDIs fully covered (M) 5.11 8.59 1.78 1.05 0.03 0.07 0.03 0.20 0.16

DDMT PIIs executed (M) 19.00 9.57 14.02 5.45 0.15 0.83 0.16 3.06 2.10

PDIs executed (M) 8.76 7.52 6.09 1.52 0.05 0.12 0.03 0.61 0.28

PDIs integrated (M) 9.08 9.32 4.89 0.78 0.03 0.06 0.01 0.99 0.17

PDIs covered (M) 7.45 6.95 4.05 0.44 0.03 0.05 0.00 0.26 0.11

PDIs fully covered (M) 4.55 5.85 2.78 0.27 0.03 0.03 0.00 0.05 0.07

PII coverage (%) 99.70 77.51 84.11 70.26 96.15 88.52 83.14 64.43 55.15

PDI coverage (%) 77.18 63.03 44.95 33.63 49.80 36.36 9.08 26.68 27.77

PDI full coverage (%) 47.13 53.01 30.85 20.56 49.80 24.46 1.75 4.69 17.33

Full coverage realized (%) 89.07 68.11 156.34 25.63 99.60 45.46 3.46 23.10 42.60

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

DDT PIIs executed (M) 16.03 89.61 28.35 13.76 0.37 48.01 1.65 8.70 23.28

PDIs covered (M) 6.77 60.41 5.66 2.28 0.12 15.94 1.03 1.94 6.03

PDIs fully covered (M) 0.00 0.66 1.52 1.24 0.12 9.76 0.47 1.65 5.61

DDMT PIIs executed (M) 3.94 78.26 24.65 9.31 0.37 30.23 1.34 8.34 11.98

PDIs executed (M) 1.33 24.88 3.51 1.36 0.11 9.12 0.88 1.96 4.42

PDIs integrated (M) 3.69 33.46 3.38 0.29 0.04 8.77 0.65 1.12 2.69

PDIs covered (M) 1.21 13.82 1.77 0.16 0.04 5.39 0.64 0.95 2.57

PDIs fully covered (M) 0.53 9.19 0.98 0.06 0.04 5.01 0.43 0.82 2.35

PII coverage (%) 24.57 87.33 86.95 67.67 99.01 62.96 80.92 95.83 51.48

PDI coverage (%) 17.90 22.88 31.28 6.91 34.92 33.84 61.85 48.72 42.71

PDI full coverage (%) 7.82 15.21 17.27 2.69 33.36 31.40 41.57 42.31 39.01

Full coverage realized (%) nan 1385.4 64.12 4.96 33.36 51.28 91.03 49.95 41.93
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each coverage is computed. PDI coverage is computed by dividing DDMT’s PDIs

covered by DDT’s PDIs covered. PDI coverage measures how many of the targeted

PDIs were actually covered by DDMT. PDI full coverage is computed by dividing

DDMT’s PDIs fully covered by DDT’s PDIs covered. PDI full coverage measures

the fraction of the targeted PDIs that were fully covered in practice. Finally, full

coverage realized is computed by dividing DDMT’s PDIs fully covered by DDT’s

PDIs fully covered. Full coverage realized measures the ratio of PDIs for which

full coverage was achieved to that for which full coverage was projected. It is dis-

tinctly possible for the DDT selection algorithm to underestimate latency toler-

ance of a certain DDT, resulting in a full coverage realization of greater than

100%.

Our DDMT measure of PIIs executed is straightforward. However, our defini-

tion of PDIs covered and PDIs fully covered in the DDMT experiment, as well as

our reason for listing PDIs executed and PDIs integrated measures, merit further

explanation. This is true especially because these measures have slightly differ-

ent interpretations when applied to load and branch PDIs.

In the load case, it is not immediately clear which DDMT quantity properly

corresponds to the PDIs covered metric of the DDT upper bound. Our definition

for covering a PDI load is to pre-execute it such that its master thread execution

will appear to hit in the cache. However, if the load is integrated—as we hope it

will be—there will be no master thread execution whose latency we can measure!

On the other hand, if the load is not integrated then we have no way of associat-

ing the pre-executed instance with the master thread instance for which it is
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intended. There are similar problems in calculating full vs. partial latency cover-

age for pre-executed loads. We cannot know how much execution latency of the

master thread instance is untolerated if the master thread instance is not re-exe-

cuted. To deal with this dilemma, we list four metrics, none of which measures

precisely the information we want, but which collectively convey the general idea.

PDIs executed is the number of cache misses triggered by load pre-executed PIIs.

This count excludes cache misses due to pre-executed loads whose execution took

place after integration as no latency tolerance is achieved for these loads. How-

ever, PDIs executed may be an over-count as—if the PDI is not subsequently inte-

grated—the prefetched block may never be used by any master thread

instruction. PDIs integrated is a measure of all retired loads that were initially

allocated in DDTs and triggered a cache miss. PDIs integrated is an overcount.

Although it cannot include “wrong prefetches”, it does include cache misses

issued post integration, by the master thread. We show PDIs integrated because

our strict definition of does not require that the PDI was issued prior to integra-

tion, only that its latency would have been equivalent to that of a cache hit had

the load been executed by master thread. If the load’s computation was inte-

grated in the completed state, this level of latency tolerance may be achieved. The

final two measures correlate with PDI coverage more intuitively, if not more accu-

rately in the strict sense. Load PDIs covered is the number of load PDIs inte-

grated after having been issued by the DDT. Load PDIs fully covered is the

number of load PDIs integrated after having been issued by the DDT and com-

pleted. These, too, are both over- and under- counts. They are over-counts because
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integration may fail even though the proper prefetching effect was achieved.

They are undercounts because pre-integration completion was not an initial

requirement for load latency coverage, nor do we select DDTs with the express

purpose of providing the appearance of pre-integration completion.

The definitions of these measures for branches (Table 5.19) are somewhat less

muddled. First, note that in this experiment the values of PDIs executed are

replaced with question marks. The reason for this is that there is no way to know

Table 5.19 Branch pre-execution and pre-execution reuse diagnostics.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

DDT PIIs executed (M) 0.00 0.00 3.89 27.47 1.82 15.89 4.77 14.78 6.13

PDIs covered (M) 0.00 0.00 0.85 4.88 0.32 3.56 0.79 2.24 1.40

PDIs fully covered (M) 0.00 0.00 0.52 4.17 0.23 2.77 0.64 1.47 0.66

DDMT PIIs executed (M) 0.00 0.00 0.60 17.43 1.44 12.27 3.89 6.96 2.92

PDIs executed (M) ? ? ? ? ? ? ? ? ?

PDIs integrated (M) 0.00 0.00 0.22 3.62 0.19 2.78 0.47 1.35 0.60

PDIs covered (M) 0.00 0.00 0.16 2.63 0.12 2.23 0.34 0.87 0.42

PDIs fully covered (M) 0.00 0.00 0.15 2.40 0.12 2.17 0.32 0.84 0.42

PII coverage (%) nan nan 15.40 63.44 79.02 77.25 81.53 47.09 47.69

PDI coverage (%) nan nan 18.32 53.80 36.53 62.58 43.24 38.83 30.00

PDI full coverage (%) nan nan 17.95 49.28 36.38 60.86 41.08 37.40 29.65

Full coverage realized (%) nan nan 29.39 57.70 50.12 78.29 50.94 57.28 63.37

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

DDT PIIs executed (M) 38.95 19.25 22.43 56.77 28.55 71.53 1.09 10.72 14.64

PDIs covered (M) 5.82 2.37 2.01 24.29 11.77 9.60 0.59 2.06 2.50

PDIs fully covered (M) 1.54 0.40 0.67 10.89 4.44 4.79 0.55 1.33 2.26

DDMT PIIs executed (M) 19.76 6.72 13.25 27.33 9.60 38.25 0.62 7.14 11.49

PDIs executed (M) ? ? ? ? ? ? ? ? ?

PDIs integrated (M) 3.05 1.37 0.98 7.06 2.15 5.16 0.50 1.40 1.54

PDIs covered (M) 1.03 0.60 0.53 2.64 1.27 4.31 0.27 0.97 1.32

PDIs fully covered (M) 0.97 0.60 0.51 2.63 1.27 4.28 0.27 0.95 1.32

PII coverage (%) 50.72 34.91 59.08 48.15 33.63 53.47 56.41 66.60 78.46

PDI coverage (%) 17.66 25.42 26.13 10.86 10.80 44.91 46.58 47.26 52.79

PDI full coverage (%) 16.73 25.28 25.33 10.83 10.78 44.60 46.39 46.34 52.76

Full coverage realized (%) 63.43 148.23 75.63 24.16 28.58 89.38 49.54 71.81 58.34
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whether a pre-executed branch PII is a PDI or not until the result is integrated

and correlated with a master thread branch. On the other hand, the PDIs fully

covered metric—again defined as the number of pre-executed branches integrated

after having been executed and completed by a DDT—measures exactly what we

want. Our intent in selecting DDTs for problem branches is that those DDTs will

allow the branch to complete prior to integration, thus taking full advantage of

instantaneous mis-prediction resolution.

Table 5.20 Load and branch pre-execution and pre-execution reuse diagnostics.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

DDT PIIs executed (M) 19.06 12.34 20.56 35.23 1.97 16.83 4.96 19.53 10.27

PDIs covered (M) 9.65 11.03 9.87 6.19 0.37 3.69 0.84 3.23 1.79

PDIs fully covered (M) 5.11 8.59 2.30 5.22 0.26 2.84 0.66 1.67 0.82

DDMT PIIs executed (M) 19.00 9.57 15.14 23.53 1.61 13.14 4.06 10.22 5.29

PDIs executed (M) 8.76 7.52 6.08 2.14 0.05 0.12 0.04 0.62 0.30

PDIs integrated (M) 9.08 9.32 5.23 4.41 0.21 2.85 0.50 2.36 0.75

PDIs covered (M) 7.45 6.95 4.33 3.16 0.14 2.29 0.36 1.14 0.53

PDIs fully covered (M) 4.55 5.85 2.84 0.30 0.02 0.03 0.01 0.05 0.07

PII coverage (%) 99.70 77.51 73.67 66.78 81.49 78.05 81.85 52.34 51.49

PDI coverage (%) 77.18 63.03 43.84 51.02 38.34 61.93 43.04 35.38 29.44

PDI full coverage (%) 47.13 53.01 30.32 44.33 38.19 59.80 39.46 27.51 26.80

Full coverage realized (%) 89.07 68.11 130.07 52.58 54.91 77.80 50.09 53.34 58.79

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

DDT PIIs executed (M) 54.98 102.52 50.23 70.05 28.92 119.55 2.75 19.42 37.88

PDIs covered (M) 12.59 62.06 7.61 26.50 11.88 26.20 1.62 4.00 8.51

PDIs fully covered (M) 1.54 1.07 2.14 12.06 4.56 11.66 1.02 2.97 7.85

DDMT PIIs executed (M) 29.29 84.74 39.89 37.12 9.97 72.14 1.96 15.46 24.28

PDIs executed (M) 3.97 24.20 3.65 1.38 0.11 9.68 0.88 1.91 4.62

PDIs integrated (M) 6.89 33.12 3.83 6.98 2.19 14.15 1.15 2.01 4.57

PDIs covered (M) 2.25 13.19 2.01 2.71 1.31 9.98 0.92 1.46 4.13

PDIs fully covered (M) 0.54 8.41 0.72 0.05 0.04 4.95 0.43 0.35 2.32

PII coverage (%) 53.26 82.66 79.42 52.99 34.48 60.34 71.48 79.60 64.08

PDI coverage (%) 17.88 21.26 26.39 10.24 11.04 38.11 56.42 36.52 48.47

PDI full coverage (%) 11.90 14.17 16.04 9.81 11.00 35.01 43.24 32.95 45.11

Full coverage realized (%) 97.59 823.20 56.98 21.56 28.70 78.68 68.56 44.34 48.89
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For consistency, we include PDIs integrated and PDIs covered metrics. These

use the same definitions as were used in the load case. PDIs integrated is the

count of mis-predicted branches integrated at any point during their lifetime.

PDIs integrated has the same significance for branches as it does for loads. Inte-

grating an un-executed branch will effectively lower its resolution latency if, by

the time it is integrated, the majority of its computation has completed. PDIs cov-

ered is the count of mis-predicted branches integrated after having issued in the

DDT. Notice the almost precise match between PDIs covered and PDIs fully cov-

ered for branches. Since branches execute in one cycle, this difference measures

those branches that are executed by the out-of-order engine in the precise cycle in

which they are integrated.

As the tables show, load and branch PII coverages are high while PDI cover-

ages and PDI full coverages are significantly lower. However, this does not mean

that DDMT is a low-efficiency implementation of pre-execution. Recall, PDI full

coverage is artificially low for loads and PDI coverage is artificially low for both

loads and branches, as it defines coverage too tightly. If we redefine PDI coverage

to use PDIs integrated as the numerator rather than PDIs covered, coverages will

double in many cases. Of course, this is not an ideal solution either as PDIs inte-

grated defines coverage too loosely. For loads especially, any definition of coverage

that includes integration as a criterion does not fully measure coverage. Perfor-

mance benefit for load PDIs can be conveyed via the prefetching effect and with-

out integration at all. If we mentally correct for these inaccuracies, load and

overall coverage rise into the moderate range.



225
One coverage measure we can use directly with relatively high confidence is

PDI full coverage for branches, since it matches our definition of latency coverage

precisely. Happily, branch PDI full coverage is relatively high, in the 20% to 50%

range for many of the benchmarks.

As we initially hinted, the possibility exists for the DDT selection algorithm to

underestimate the latency tolerance of a DDT—this is usually due to an under-

estimation in the execution time of the master thread—and project a lower inci-

dence of full coverage than is achieved in practice. We observe this phenomenon

in bzip2 and mcf in the form of full coverage realization rates of greater than

100%.

5.2.5.3  Impact of Pre-Execution Reuse

In Section 5.1.1, we measured the performance impact of squash reuse. In this

section, we attempt to isolate the performance impact of pre-execution reuse on

DDMT. Recall, pre-execution reuse provides DDMT with two functions. First, it

enables the implementation of instantaneous resolution of mis-predicted pre-exe-

cuted branches. Second, it passes DDT results to the master thread, reducing

execution bandwidth consumption and compressing the master thread’s critical

path. In this section, we measure the performance impact of each of these func-

tions. We then use this breakdown to attribute performance improvement to

instantaneous branch resolution, prefetching effects and reuse.

We measure a function’s performance impact by eliminating it from our con-

figuration. We begin by measuring the performance of DDMT with all integration
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transitions (as described in Section 4.4.3) enabled. We eliminate the instanta-

neous resolution effect by disallowing master thread instructions from integrat-

ing D state branches. Doing this has little effect besides eliminating

instantaneous resolution, as branches have no downstream dataflow successors

whose integration will be forfeited, and the cost of operationally re-executing the

branch is a single cycle. We remove pre-execution reuse by disallowing the D to C

state transition entirely.

The results of these experiments are shown in Figure 5.5 and Table 5.21. The

format of the figure is somewhat different than the one we have been use to. Our

IPC stack consists of three experiments. DDMT is our initial experiment with

integration allowed in all directions. DDMT NI-BR is DDMT with branch inte-

Figure 5.5 Performance impact of pre-execution reuse.
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Table 5.21 Performance impact of pre-execution reuse.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

DDMT DDIs executed (M) 35.75 31.36 103.44 180.69 10.95 84.52 23.60 111.28 43.27

DDIs integrated (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

BMR lat. (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load lat. (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

DDMT
NI-BR

DDIs executed (M) 29.70 31.28 93.88 182.00 10.51 81.74 23.62 104.77 35.69

DDIs integrated (M) 25.04 34.29 56.53 95.94 4.79 36.16 9.27 49.60 12.83

BMR lat. (c) 3.54 181.50 11.73 7.92 8.66 7.29 7.85 18.45 12.48

Load lat. (c) 12.31 23.40 5.52 2.81 2.86 2.69 2.78 4.22 3.39

IPC 1.83 0.57 3.99 3.65 3.54 3.08 3.44 2.10 2.50

Speedup (%) 42.97 93.83 2.05 2.59 1.71 4.76 2.38 7.48 3.36

DDMT
NI

DDIs executed (M) 34.92 42.34 126.64 218.35 12.11 93.64 26.40 125.86 43.62

DDIs integrated (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BMR lat. (c) 3.62 181.52 12.03 9.27 10.27 9.29 9.60 19.54 13.17

Load lat. (c) 13.73 23.17 5.54 2.87 2.96 2.88 2.92 4.33 3.43

IPC 1.78 0.48 3.98 3.55 3.45 2.91 3.32 2.05 2.45

Speedup (%) 39.29 64.25 1.74 -0.24 -0.75 -0.86 -1.28 5.29 1.42

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

DDMT DDIs executed (M) 305.73 294.97 135.34 444.81 253.76 333.52 38.26 89.17 141.38

DDIs integrated (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

BMR lat. (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load lat. (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

DDMT
NI-BR

DDIs executed (M) 324.36 251.57 127.20 435.86 220.74 312.10 36.85 90.66 176.26

DDIs integrated (M) 113.41 127.97 42.50 135.71 87.22 104.78 28.88 38.03 113.51

BMR lat. (c) 16.02 41.71 18.38 10.59 13.38 8.64 10.32 6.88 32.87

Load lat. (c) 3.07 17.83 3.82 3.39 2.77 2.93 3.13 2.49 3.53

IPC 2.79 0.71 1.86 2.63 2.79 2.40 4.67 2.96 1.93

Speedup (%) 1.69 12.92 2.17 1.15 0.61 8.84 3.00 9.32 14.54

DDMT
NI

DDIs executed (M) 448.52 403.65 152.83 464.20 238.21 369.08 32.19 113.10 138.34

DDIs integrated (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BMR lat. (c) 16.56 42.67 18.90 11.35 14.04 10.42 12.39 9.15 34.99

Load lat. (c) 3.11 18.07 3.90 3.43 2.83 3.30 3.19 2.75 3.86

IPC 2.76 0.70 1.85 2.57 2.74 2.28 4.55 2.74 1.84

Speedup (%) 0.74 12.10 1.50 -0.94 -1.15 3.23 0.28 1.19 9.76
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gration disabled. In the DDMT NI experiment, all pre-execution reuse is dis-

abled. We show base performance alongside this IPC stack rather than

underneath it to emphasize the fact that excluding pre-execution reuse can result

in sub-baseline performance. As usual, the graph contains results for load,

branch and all experiments. The table, however, only shows the results of the all

experiment.

The results show that instantaneous branch resolution has a noticeable per-

formance effect for those programs that pre-execute branches—crafty, the eon

benchmarks, twolf and vpr.p. In twolf, for instance, performance improvement

drops from 12% to 8% when branch integration is not included. Notice, even for

benchmarks that benefit only from branch pre-execution—like crafty and eon—

performance improvement is possible even without instant resolution. This

speedup is conveyed by integrating the completed computation of a branch,

ensuring that the branch is ready to execute as soon as it enters the window. By

the same token, disallowing all integration for these programs eliminates this

“computation compression” effect and eliminates the benefit of DDMT entirely,

leaving only overhead and resulting is sub-baseline performance. Notice, how-

ever, this overhead is remarkably low, less than 1% in most cases. We will discuss

overhead in greater detail in the next section.

Naturally, DDMT performance degrades for all programs when pre-execution

reuse is removed entirely (DDMT NI), as resource contention in the execution

engine is increased and the effects of dataflow-graph compression for integrated

completed results are lost. Notice, the increase in DDT instructions executed as
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the result of the removal of integration is simply an artifact of our accounting

method. Those additional instructions are executed even when pre-execution

reuse is active. However, they are executed after having been integrated by the

master thread and are counted as control-driven executions.

Without pre-execution reuse, the remaining performance effect is prefetching.

The elimination of pre-execution reuse allows us to validate our statements of the

previous section concerning the under-estimation of PDI coverage. Take mcf as an

example. Using our definition of coverage, DDMT on mcf covers 13 million PDIs

(Table 5.20). 33 million PDIs are integrated but execute post-integration and

hence are not counted as being covered. However, when integration is removed,

performance improvement drops from 15% to 12%. If our coverage metric was

accurate and instructions executed post-integration did not cover any latency,

then we would have observed performance improvement dropping by a factor of 3,

to 5%. We conclude that tolerating the latency of a PDIs computation does consti-

tute partial coverage of the PDI itself, even if the PDI is not executed before being

integrated by the master thread.

Before we leave this section, we must explain an anomaly—in vpr.r, perfor-

mance improves dramatically when branch reuse is eliminated. After some

searching, we have discovered the extremely subtle source of this anomaly. Elimi-

nating branch re-use lengthens branch resolution latency. In the case of one par-

ticular branch, the resolution latency is lengthened just enough to allow a certain

wrong path trigger instruction to be renamed and to fork a DDT. Now, this trigger

instruction lies in a reconvergent code region, so that the DDT it forks is a useful
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one. However, the correct path conditional arm is longer than the wrong path

such that waiting to fork the DDT from the correct path actually delays it signifi-

cantly. In this case, allowing a DDT to be forked along the wrong path actually

lets it execute sooner and achieve greater latency tolerance. This is reflected in

the reduction in average load latency.

5.2.5.4  Attempting to Account for Overhead

In this penultimate experiment of our detailed analysis, we attempt to mea-

sure DDMT’s overhead. We do this by removing as many sources of DDT conten-

tion as possible from the system. We remove injection and re-execution overhead

by not charging DDT instructions for renaming and re-execution bandwidth,

respectively. We remove reservation station contention by simulating a large

number of reservation stations and enforcing a restriction only on the number

allocated to master thread instructions. We also remove scheduling contention by

not charging DDT instructions for scheduling slots, although this may be going a

little overboard as with integration we effectively gain scheduling bandwidth for

the master thread. Note, we do not have the same problem in modeling renaming

bandwidth since the master thread must re-rename all DDT instructions.

Our evaluation is shown in Figure 5.6 and in Table 5.22. Again, the graph

shows data for the load, branch and all experiments separately, while the table

shows data only for the all experiment. In the graph, we add another bar to our

IPC stack which represents “overhead-less” DDMT. In the table, we present the

now familiar system diagnostics for DDMT with and without modeled overhead.
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In the previous section, we noted that removing pre-execution reuse entirely

in programs that benefit solely from branch pre-execution removes the benefit of

DDMT entirely, leaving only overhead. Subsequently, we remarked at the low

level of this overhead, less than 1% in most programs, even though DDT instruc-

tions account for up to a 10% increase in instructions sequenced and executed.

The data shown here gives us a different look at the same phenomenon. Just as

disallowing the integration of branch DDTs leaving only their overhead results in

little slowdown (Table 5.2.5.3), so does removing overhead result in negligible

speedup. Only in vpr.r does removing DDMT overhead result in even a 5%

speedup. In most cases, DDMT overhead is virtually zero. In two cases—eon.k

and mcf—removing overhead actually induces slowdowns!

Figure 5.6 Performance potential of DDMT without overhead.
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The initial result—that DDMT overhead is low—may initially seem surpris-

ing, but on further thought is actually intuitive. Our base processor has band-

widths that none of our benchmark programs is capable of fully, or even mostly,

exploiting. The cost of DDTs, which typically account for a 10% to 15% increase

total instructions sequenced, can easily be hidden in this slack bandwidth. Our

micro-benchmarks, for which DDT pre-execution effects a 50% increase in total

Table 5.22 Performance potential of DDMT without overhead.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

DDMT TIs renamed (M) 162.03 148.35 7062.58 3838.57 251.62 1278.75 399.73 1378.86 893.35

TIs executed (M) 117.01 101.70 6283.74 2852.15 217.96 1025.10 335.15 1046.42 608.62

BMR lat. (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load lat. (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

OH-less
DDMT

TIs renamed (M) 158.17 148.86 7073.24 3946.45 252.16 1312.96 405.24 1389.43 905.46

TIs executed (M) 111.25 101.65 6284.94 2859.58 217.76 1030.68 335.63 1041.64 605.80

BMR lat. (c) 3.55 183.39 11.85 7.87 8.58 7.05 7.56 18.45 12.56

Load lat. (c) 12.51 23.65 5.53 2.81 2.86 2.70 2.80 4.22 3.38

IPC 1.83 0.57 4.01 3.73 3.59 3.17 3.54 2.12 2.53

Speedup (%) 43.25 94.96 2.36 4.92 3.18 7.82 5.50 8.82 4.73

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

DDMT TIs renamed (M) 8300.92 2198.87 2136.36 6913.57 5023.78 2450.58 1867.48 559.91 1851.15

TIs executed (M) 6184.76 1256.79 1560.48 4319.80 3048.72 1653.96 1752.55 377.10 1290.43

BMR lat. (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load lat. (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

OH-less
DDMT

TIs renamed (M) 8426.59 2200.78 2182.75 7044.81 4887.04 2504.74 1868.37 587.09 1831.72

TIs executed (M) 6232.68 1213.41 1570.88 4355.76 3023.69 1662.60 1750.94 379.85 1265.19

BMR lat. (c) 16.35 41.75 18.56 10.90 13.39 8.62 9.98 6.71 32.14

Load lat. (c) 3.06 17.73 3.80 3.36 2.77 2.95 3.14 2.50 3.52

IPC 2.80 0.72 1.89 2.68 2.85 2.49 4.70 3.10 1.96

Speedup (%) 2.17 14.19 3.78 3.16 2.72 13.02 3.71 14.69 16.48
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instruction count, have such low bandwidth utilization that even this overhead is

easily hidden. We expect that DDT overhead will be expressed more strongly on

narrower machines. Our early experience with these machines suggests that this

is indeed so, but not to a high degree.

The phenomenon of producing speedups by the addition of overhead, seen in

eon.k and mcf, is an artifact of the fact that we did not eliminate all possible

sources of contention. Specifically, we did not add functional units, cache ports, or

bus bandwidth. Ignoring all direct sources of DDT bandwidth consumption allows

DDTs to swamp the machine and consume those resources we did not uncon-

strain. It is possible that removing constraints on these resources, perhaps via

modeling the execution of DDTs as taking place on an unlimited second pipeline,

would eliminate this artifact. It is also possible that these same resources we did

not unconstrain are leading us to underestimate overhead. Increased contention

for these resources may be actively dampening the performance of “overhead-

less” DDMT.

5.2.6  Evaluating the Implementation “Stack”

Up to this point, we have evaluated each step in our implementation stack—

PI definition, DDT selection and DDMT—in terms of the previous step. In this

final section of our detailed analysis, we evaluate all of them against our absolute

upper bound, a machine with perfect caches and perfect branch resolution. This is

a slightly different way of looking at data we have already seen, one which hope-

fully makes it easier to assign performance shortfall—i.e., blame—to each imple-
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Figure 5.7 Cumulative PDI coverage, PDI full coverage and speedup coverage.
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mentation stage.

The three graphs in Figure 5.7 measure cumulative PDI coverage, PDI full

coverage and speedup coverage. These coverages are computed with the usual

numerators. However, the denominators in each case are the metrics of the Per-

fect experiment. Obviously, the Perfect model achieves 100% coverage of its own

results. For the DDT experiments, we use projections to measure PDI coverage

and PDI full coverage, and the admittedly overly aggressive Perfect DDT experi-

ment to measure speedup coverage.

Again, the graphs are divided into bar groups that show results for load,

branch, and all experiments separately. However, in contrast with previous

breakdown graphs which showed IPCs, these graphs show coverages. The rela-

tionship of the load bars and the branch bars to the corresponding all bars is not

approximately additive as it is for IPC. Rather, it is an averaging relationship

that is weighted by the incidence of PDI loads and branches in the program. In

other words, unless a program has either no load or no branch PIs whatsoever,

this relationship is inscrutable from the graph.

What the graph does is show potential performance improvement is forfeited

at each implementation stage. For instance, an average of approximately 35%,

but as much as 80%, in performance improvement is lost due to the restricted PI

definition. Now, this is not to say that an expanded definition would recover this

lost performance. In fact, it is likely not to. An expanded definition will admit

static instructions with poorer pre-execution characteristics—i.e., lower problem

ratio and contribution rates—than the ones currently included. In this sense, this
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portion of performance improvement is not forfeited, it was never really attain-

able in the first place. In Section 5.3.2, we will explore the performance impact of

expanding and narrowing the PI definition.

Approximately another 30% is lost to the inability of the DDT selection algo-

rithm to find DDTs for the PIs that were identified. This 30% value was con-

structed as an ad hoc average of the PDI coverages, which are artificially low, and

the speedup coverage, which is unreasonably high. Again, this 30% may not be

practically recoverable. It may be the computations of those PIs for which no cov-

ering or fully covering DDTs were found are simply too dense with respect to the

complete program to allow pre-execution to achieve any latency advantage. In

some sense, these PIs are “super” PIs; they present problems not only for branch

and address predictors but for pre-execution as well. Section 5.3.2 will also

explore variations in the DDT selection algorithm parameters to try and gauge

the extent of its performance impact.

Finally, about 20% in potential performance improvement is lost to the DDMT

implementation itself, leaving realized performance improvement at 15%. In

Section 5.3.1, we explore microarchitectural parameter variations in an attempt

to see if any of this 20% can be recovered. We find that imperfect load integration

suppression—i.e., a high incidence of mis-integrations or over-zealous integration

avoidance—is partially responsible.

As a final note, we should mention that simply because the efficiencies of each

of DDMT’s implementation stages are seemingly low, it does not mean that

DDMT is relegated to 15% performance improvements. Most significantly, our
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baseline machine has large caches and branch predictor tables that produce rela-

tively few cache misses and branch mis-predictions for DDMT to attack. In

Section 5.3.4, we examine processors with smaller caches and predictors that

generate more PDIs that may be targeted by DDMT. While DDMT’s performance

relative to the perfect machine may stay the same in these configurations, its

absolute performance gain relative to the base processor rises.

5.3  Sensitivity Analysis

In this section, we measure DDMT’s sensitivity to several relevant parame-

ters of its specific microarchitecture components, the DDT selection algorithm,

the relationship between DDT selection and DDMT pre-execution and the config-

uration of the base processor.

In the interest of space, we summarize some of our more intuitive, or less

interesting results in prose rather than provide full data and discussion. At the

same time, some interactions that we would like to study are so complex that to

do them justice would require a full paper. For these, we summarize our initial

results and point to some of the interactions we have seen. Also in the interest of

space, our sensitivity analysis does not contain breakdowns into load and branch

contributions.

5.3.1  Sensitivity to DDMT Specific Microarchitecture Configuration

We have performed an array of sensitivity analyses on several aspects of the

DDMT specific microarchitecture components. We have investigated the role of



238
bandwidth contention at different stages, experimented with different DDT injec-

tion scheduling policies and altered the configuration of register integration.

DDMT appears to be insensitive to most changes in its microarchitectural config-

uration but sensitive to two parameters in particular—the associativity of the IT

and the use or lack thereof of load integration suppression. We also experiment

with adding chaining—allowing one DDT to trigger the fork of another DDT—to

our system. We present our results for these three parameters and briefly sum-

marize our other findings.

5.3.1.1  Integration Associativity

Our central DDMT configuration uses a fully associative IT as a way of model-

ing—somewhat imprecisely, as we described—a new formulation of the physical

register semantics of DDMT. This new formulation separates the two roles of the

IT to avoid destructive interference that would otherwise limit the practically

realizable unrolling degree to the associativity of the IT. In this section, we evalu-

ate DDMT performance with ITs of realistic associativity—1, 2 and 4. However,

since our simulator implements the old formulation, these do not model the new

interference-free formulation closely. Instead, they serve to highlight its short-

comings.

Table 5.23 shows the results of four experiments. We include the results for

the fully associative IT from the previous sections, and complement them with

measurements for a 4-way set-associative, a 2-way set-associative and a direct-

mapped IT. For each configuration we present the number of DDIs renamed, exe-
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Table 5.23 Performance impact of IT associativity.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Full DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

DDIs executed (M) 35.75 31.36 103.44 180.69 10.95 84.52 23.60 111.28 43.27

DDIs integrated (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

4-way DDIs renamed (M) 42.80 51.08 184.09 252.25 15.29 109.04 31.67 177.93 76.64

DDIs executed (M) 34.88 27.12 92.35 179.98 10.95 84.46 23.60 102.72 40.88

DDIs integrated (M) 20.64 22.93 31.72 106.24 5.48 44.27 10.82 55.01 13.35

IPC 1.82 0.36 3.98 3.69 3.57 3.18 3.50 2.04 2.49

Speedup (%) 42.48 22.56 1.64 3.68 2.56 8.20 4.30 4.65 3.02

2-way DDIs renamed (M) 36.12 48.52 147.67 260.09 13.32 100.49 29.33 171.50 64.86

DDIs executed (M) 24.00 11.00 34.96 166.16 9.95 78.69 22.53 82.59 28.20

DDIs integrated (M) 19.01 0.09 9.97 93.98 5.44 44.29 10.81 47.72 11.35

IPC 1.76 0.30 3.94 3.67 3.57 3.18 3.50 2.02 2.45

Speedup (%) 37.42 2.97 0.77 3.19 2.55 8.17 4.27 3.50 1.55

Direct
Map

DDIs renamed (M) 35.34 13.53 115.56 272.02 13.00 100.79 28.85 169.44 62.70

DDIs executed (M) 20.02 1.27 28.07 151.01 9.16 69.13 20.00 59.76 19.48

DDIs integrated (M) 5.46 0.00 7.91 81.30 4.88 39.19 10.05 34.22 8.11

IPC 1.71 0.29 3.94 3.66 3.56 3.14 3.49 2.00 2.42

Speedup (%) 33.54 0.03 0.64 2.75 2.35 6.75 3.79 2.42 0.26

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Full DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

DDIs executed (M) 305.73 294.97 135.34 444.81 253.76 333.52 38.26 89.17 141.38

DDIs integrated (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

4-way DDIs renamed (M) 491.30 678.86 229.32 877.95 571.52 482.89 49.54 117.52 239.73

DDIs executed (M) 301.05 170.20 101.76 430.29 252.09 253.74 38.33 89.12 141.29

DDIs integrated (M) 132.99 75.43 38.71 158.91 105.19 115.45 29.73 40.29 86.83

IPC 2.76 0.63 1.84 2.64 2.80 2.43 4.68 3.02 1.85

Speedup (%) 0.86 1.16 0.93 1.45 0.80 9.98 3.22 11.54 9.92

2-way DDIs renamed (M) 492.62 573.14 203.59 779.09 386.15 423.92 48.02 118.60 300.28

DDIs executed (M) 291.57 72.76 81.09 397.89 205.61 171.40 35.11 79.66 171.48

DDIs integrated (M) 131.43 16.78 31.24 146.72 91.87 74.25 28.83 40.53 86.61

IPC 2.75 0.62 1.83 2.61 2.80 2.32 4.67 3.02 1.89

Speedup (%) 0.40 -1.15 0.38 0.63 1.05 5.36 3.05 11.71 12.32

Direct
Map

DDIs renamed (M) 500.92 532.20 202.45 710.30 389.19 414.19 46.87 132.09 155.35

DDIs executed (M) 274.43 33.01 62.40 266.66 170.67 130.19 23.39 73.42 108.25

DDIs integrated (M) 86.30 7.45 24.43 111.24 82.73 46.15 17.83 23.25 58.54

IPC 2.73 0.63 1.82 2.56 2.77 2.27 4.60 2.79 1.84

Speedup (%) -0.51 0.54 -0.37 -1.38 -0.29 2.71 1.38 3.10 9.31
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cuted and integrated. In contrast with our detailed single design-point analysis,

where to judge performance we compared total system metrics for the RI and

DDMT configurations, here we are comparing multiple DDMT configurations

with each other. As a result, we can choose to show whatever metrics we feel will

provide the most insight, as all metrics are directly comparable. We still report

IPCs and speedups over the RI configuration even though changes in the IT asso-

ciativity change the performance of the baseline system as well. We note here

that, in our experience, squash reuse is far less sensitive to IT associativity than

pre-execution reuse. This is due primarily to unrolled idioms which are fre-

quently pre-executed and reused but rarely squashed and reused.

The results support our assertion that—at least under the current physical

register discipline—IT associativity plays an important role in DDMT perfor-

mance, especially when unrolling is used. An extreme example is our serial mem-

ory latency-bound micro-benchmark—mst. Mst can benefit from high degrees of

DDT unrolling and will exploit unrolling to the maximum allowed degree. The

maximum unrolling degree used in all of these experiments is 4 to match our

default IT configuration. Notice that the number of DDT instructions renamed

and executed—and hence mst’s performance—drops sharply for IT associativities

below 4. The low-associativity ITs simply will not allow highly unrolled DDTs to

execute, initiating a cascade of invalidations that aborts the portion of a DDT

that depends on a DDT physical register that is evicted from the IT. Although its

DDTs are unrolled only 4 times, mst experiences a sharp drop in performance

when IT associativity drops from full to 4-way. The reason for this is that mst’s
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DDTs are both induction unrolled and unoverlapped fully unrolled. Mst executes

a nested loop with a hash table lookup constituting the inner loop. To tolerate the

long latencies of the hash bucket traversal, the DDT selection algorithm induc-

tion unrolls the outer loop 4 times, jumping ahead 4 outer loop iterations in each

DDT, and unoverlapped fully unrolls several iterations of the inner loop.

Although mst’s outer unrolling degree—and the only one visible to the merging

algorithm—is only 4, its unrolling degree for integration purposes is 16 (16 inner

loop iteration results may be active at any one time). When IT associativity drops

below 16, destructive interference among the inner loop iterations is observed.

Destructive interference among outer loop iterations takes place when IT associa-

tivity drops below 4, at which point all performance benefit is lost.

Mst is an extreme case due to its heavy use of induction unrolling, but all

benchmarks suffer from finite associativity under the current formulation. Even

without unrolling, IT conflicts between different PCs—from within the same DDT

or across DDTs—can trigger destructive interference. One solution to reducing

different-PC set conflicts while still maintaining reasonable integration complex-

ity is to use an IT with a large number of sets. Our experiments with such ITs

show that they are indeed useful in eliminating most conflicts that are not born of

unrolling. However, unrolling is an important enough idiom to justify adopting

the new formulation.

5.3.1.2  Load Integration Suppression

The ability to suppress the integration of loads that are likely to cause mis-
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integrations is important. The cost of a single load mis-integration—a full squash

equivalent in latency to a branch mis-prediction or a memory ordering violation—

far outweighs the benefit of a single load integration. However, over-zealous sup-

pression can result in numerous lost opportunities to integrate good loads and

their downstream pre-executed computations. This especially hurts if the end of a

suppressed computation is a pre-executed branch that was mis-predicted by the

master thread. In this section, we measure the performance impact of mis-inte-

grations and of load integration suppression.

Table 5.24 shows the results for three experiments. Base—the second experi-

ment—is our central DDMT configuration using an aggressive load integration

suppression predictor (LISP)—a 256-entry structure that distinguishes loads

based on path information. In the None experiment, no LISP is used and suppres-

sion is not implemented; all loads that can be integrated are integrated. Our final

experiment, Oracle, uses a perfect LISP that can predict mis-integrations and

suppress them with 100% coverage and with no false positives. For each configu-

ration, we report the numbers of control-driven (CD) and data-driven (DD)

instructions integrated. We distinguish between control-driven and data-

driven—i.e., between squash reuse and pre-execution reuse—integrations by the

state in which the physical register was allocated. We also report the number of

mis-integrations, and similarly distinguish between the two mis-integration

sources—control-driven and data-driven. Again, we only count successful integra-

tions on retirement, to avoid double counting. Obviously, mis-integrations are
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Table 5.24 Performance impact of load integration suppression predictor.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

None CD integ (M) 0.60 0.40 123.63 173.71 8.34 50.93 14.80 42.69 46.99

CD mis-integ (K) 0.00 0.01 3791.40 1126.57 83.60 548.41 125.76 466.15 141.15

DD integ (M) 25.04 34.29 62.80 114.40 6.89 49.62 14.45 61.18 16.30

DD mis-integ (K) 0.00 1.47 699.71 374.34 107.71 412.12 299.52 559.26 106.70

IPC 1.83 0.57 3.84 3.65 3.43 3.05 3.32 2.06 2.50

Speedup (%) 42.97 93.83 -1.79 2.57 -1.47 3.75 -1.19 5.59 3.34

Base CD integ (M) 0.60 0.39 59.00 161.29 4.56 35.16 8.74 29.25 44.68

CD mis-integ (K) 0.00 0.01 12.49 588.32 0.17 0.47 0.20 1.36 25.56

DD integ (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

DD mis-integ (K) 0.00 1.22 3.71 150.57 3.94 15.33 3.33 3.11 7.26

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

Oracle CD integ (M) 0.60 0.36 67.25 154.75 4.17 35.33 8.34 30.18 44.82

CD mis-integ (K) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

DD integ (M) 25.04 34.30 60.48 112.58 6.75 48.52 13.61 61.09 16.02

DD mis-integ (K) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IPC 1.83 0.57 4.00 3.76 3.62 3.20 3.58 2.12 2.53

Speedup (%) 42.99 93.87 2.15 5.61 4.02 8.98 6.45 8.63 4.91

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Base CD integ (M) 758.28 51.02 109.91 286.46 177.28 89.75 28.33 22.58 65.83

CD mis-integ (K) 5596.96 297.68 1412.02 1798.57 160.00 87.03 46.66 196.56 388.41

DD integ (M) 174.19 132.71 52.79 188.85 146.96 131.54 31.74 52.08 124.36

DD mis-integ (K) 1141.77 56.00 240.67 2287.80 1283.86 865.14 118.76 61.96 56.57

IPC 2.69 0.71 1.82 2.58 2.86 2.38 4.64 3.09 1.93

Speedup (%) -1.73 12.61 -0.15 -0.83 2.91 8.05 2.46 14.02 14.71

Simple CD integ (M) 529.53 46.20 90.19 245.22 165.43 69.59 22.62 23.09 42.47

CD mis-integ (K) 39.16 4.98 19.27 3.50 0.02 5.74 0.78 1.06 1.49

DD integ (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

DD mis-integ (K) 32.16 2.22 11.81 11.34 19.81 32.56 0.06 7.93 0.45

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

None CD integ (M) 672.54 48.56 96.41 250.09 165.54 69.91 22.78 16.98 58.13

CD mis-integ (K) 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 00.00

DD integ (M) 168.59 132.46 53.57 187.98 135.77 130.63 31.39 51.67 124.31

DD mis-integ (K) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IPC 2.83 0.73 1.88 2.69 2.91 2.48 4.68 3.22 1.95

Speedup (%) 3.41 16.96 2.84 3.49 4.94 12.49 3.29 19.12 15.90
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counted whenever they occur as mis-integrated loads are not retired. Note that

successful integrations are measures in millions (M) while mis-integrations are

measured in thousands (K). Again, we report speedups over the RI configuration

even though changes to the LISP configuration change the performance of the RI

baseline as well. However, in contrast with the previous section in which we

argued that squash reuse is largely insensitive to associativity, the table shows

that squash reuse suffers from mis-integrations at roughly the same rate as does

pre-execution reuse.

The table shows that a suppression predictor can significantly boost perfor-

mance in many cases by eliminating many mis-integrations. In fact, mis-integra-

tions are so common in some programs—bzip2, eon.c, eon.r, gzip, parser, and

perl.d—that without a suppression mechanism their cost swamps the positive

performance impact of DDMT and results in an overall slowdown. In contrast,

however, in other cases—perl.s, vpr.p and vpr.r—the suppression predictor can

become too aggressive and falsely suppress many loads whose integration would

not have caused a problem, losing the opportunity to exploit even more perfor-

mance. We quantify this opportunity loss using a simulated oracle suppression

mechanism.

We have experimented with a few LISP configurations, including ones that

don’t distinguish loads based on paths. Our 256-entry, path-based LISP gives the

best performance of the few predictors we have examined, and this performance

usually falls within 2% of oracle performance. However, in those three cases

where we identified the LISP as being overly aggressive, its performance shortfall
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is about 5%. Further refinements of the LISP may recover some of this shortfall.

5.3.1.3  Trigger Chaining

In Chapter 2, we mentioned that our simulated DDMT implementation does

not include trigger chaining, preferring to use induction unrolling instead. How-

ever, implementing chaining is trivial in our model, so an evaluation of this

design choice is simple.

To implement chaining at runtime, we allow DDT instructions to check the

trigger table and trigger the forking of other DDTs. However, the DDT selection

algorithm must also be notified that chaining is used so that it does not produce

induction-unrolled DDTs, as chaining induction-unrolled DDTs creates an extra

level of redundancy. To do this, we set the maximum unrolling degree to 1. All

other DDT selection parameters remain the same. Our implementation of chain-

ing has an advantage over other implementations. Specifically, it uses the regis-

ter integration mechanism to suppress redundant DDT forks. An integrating

instruction is prevented from forking a DDT with the argument that the inte-

grated instance has already forked an identical DDT.

Our evaluation of chaining is shown in Table 5.25. DDTs forked counts all

DDTs forked by the master thread, as well as by other DDTs. DDTs forked chain

only counts those DDTs forked by other DDTs. Obviously, when chaining is dis-

abled, DDTs forked chain is zero. The remaining metrics have been explained in

previous sections.

Even with register integration to suppress redundant forks, the addition of
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Table 5.25 Performance impact of trigger chaining.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

DDMT DDTs forked (M) 3.55 2.38 15.58 29.46 1.86 13.82 3.85 19.84 8.20

DDTs forked chain (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

DDIs integrated (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

PDIs covered (M) 7.45 6.95 4.33 3.16 0.14 2.29 0.36 1.14 0.53

BMR latency (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load latency (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

DDMT
+chain

DDTs forked (M) 6.04 4.05 103.60 35.38 2.28 14.34 4.51 40.60 20.51

DDTs forked chain (M) 4.62 3.34 99.86 11.73 0.53 2.19 0.85 28.33 13.52

DDIs renamed (M) 49.12 50.84 410.27 267.03 16.30 101.83 32.91 308.43 95.11

DDIs integrated (M) 24.30 36.35 22.31 101.69 4.89 42.05 10.17 60.07 14.01

PDIs covered (M) 6.96 7.27 1.22 2.90 0.11 2.23 0.33 1.57 0.63

BMR latency (c) 3.52 192.96 11.89 7.63 8.87 6.59 7.68 17.98 11.79

Load latency (c) 11.64 25.54 5.52 2.82 2.88 2.70 2.80 4.11 3.30

IPC 1.87 0.54 4.01 3.69 3.53 3.17 3.48 2.12 2.55

Speedup (%) 45.90 84.36 2.34 3.61 1.57 7.87 3.53 8.65 5.74

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

DDMT DDTs forked (M) 60.15 66.46 41.53 74.75 37.51 56.09 2.57 9.95 12.97

DDTs forked chain (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

DDIs integrated (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

PDIs covered (M) 2.25 13.19 2.01 2.71 1.31 9.98 0.92 1.46 4.13

BMR latency (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load latency (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

DDMT
+chain

DDTs forked (M) 62.75 406.02 201.26 92.23 45.46 112.11 3.88 13.10 32.35

DDTs forked chain (M) 5.28 374.37 173.58 31.63 11.30 84.14 1.82 7.26 25.29

DDIs renamed (M) 509.25 1246.6 393.28 872.27 445.50 414.72 50.21 127.70 231.89

DDIs integrated (M) 134.59 158.58 53.27 151.25 86.67 109.18 29.44 33.50 79.00

PDIs covered (M) 2.27 14.12 2.47 3.26 1.43 8.57 0.90 1.03 3.76

BMR latency (c) 15.95 44.31 18.32 10.29 13.37 8.20 9.86 7.37 33.20

Load latency (c) 3.06 18.88 3.76 3.39 2.77 2.91 3.13 2.54 3.73

IPC 2.79 0.67 1.86 2.65 2.80 2.47 4.67 2.92 1.89

Speedup (%) 1.78 6.67 2.06 2.06 0.92 11.96 3.13 7.99 12.50
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chaining increases the total number of DDTs forked by the processor. Register

integration can suppress redundant forks. However, register integration cannot

detect spurious chained forks such as repeated forks of loop iterations after the

loop has exited. Spurious forks damage performance. Not only do they unneces-

sarily steal bandwidth and resources from the master thread, but they also

unnecessarily occupy thread contexts which may prevent more useful DDTs from

being forked by the master thread. Substituting induction unrolling for chaining

eliminates this problem. Once the master thread exits a loop, no further pre-exe-

cuted iterations will be forked.

Since they are not unrolled, chained DDTs are shorter than the ones used in

our central configuration. However, the increase in the number of DDTs forked

usually translates into an increase in DDT instructions renamed and increased

overhead. In certain programs—e.g. mcf—this overhead may be significant.

Ultimately, via a combination of overhead and thread context contention with

master-thread forked DDTs, the addition of DDT chaining usually under-per-

forms our unrolled implementation. Occasionally, chaining’s more aggressive

approach can result in higher levels of latency tolerance—e.g., in em3d—or

increased PDI coverage—e.g., in mst. However, its high overhead usually means

that end performance gain as a result of these improvements is low.

5.3.1.4  A Summary of Other Results

In addition to the studies presented above, we have performed studies that

measure the effects of parameter variations in other DDMT-specific components.
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Below is a brief summary of our findings.

DDSQ size is not an important performance factor. We have found that a 16-

entry DDSQ performs as well as a 256-entry DDSQ. DDT-internal memory com-

munication is quite frequent, but having more than 4 simultaneously active com-

municating pairs is not. Even when a DDT-internal communication happens as

part of the induction step of an unrolled DDT, inter-DDT integration limits exe-

cuted communication to a single instance per DDT. All shared instances of the

communication are actually shared within the DDSQ.

We supply our DDTs with 128 additional physical registers for result buffer-

ing. However, our experiments show that, using our default DDT selection

parameters of a maximum of 32 instructions per DDT and an unrolling degree of

4, only two programs—mst and twolf—benefit from having more than 64 addi-

tional physical registers, and none benefit from having more than 128 additional

registers. In fact, vpr.p performs better with only 64 additional physical registers.

Pre-execution in vpr.p does use more than 64 physical registers. Limiting the

physical registers to 64, reduces the number of pre-executed results that are inte-

grated, but in this particular case greatly reduces the number of loads that are

mis-integrated.

DDMT’s insensitivity to the number of physical registers available for storing

pre-executed results is a function of the fixed size of DDTs and our choice to

exclude trigger chaining. The combination of tying DDT fork to master thread

progress and limiting the work performed by each DDT fixes the number of out-

standing pre-executed results. With a maximum DDT length of 32 instructions, a
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maximum degree of unrolling of 4, and up to 3 active DDTs, the number of DDT

results that must be buffered can exceed the product of these three factors, but

rarely approaches it in practice.

With a fully associative IT and a proper replacement policy—i.e., F and M

state registers are the primary candidates for eviction—the IT need not be larger

than the number of physical registers minus the number of architected registers.

Of course, a larger IT with lower associativity may be used to reduce different-PC

set-conflicts as described in Section 5.3.1.1.

Just as it is insensitive to the number of additional physical registers, DDMT

also does not respond to an increase in the number of reservation station entries.

We did not experiment with a number of RS entries smaller than our default 80,

since doing so handicaps the master thread. Since we stall DDT renaming when

RS entries are not available, it would appear that additional RS entries would

prevent DDT stalls and allow DDTs to be sequenced more quickly. Indeed, adding

RS entries does reduce the average DDT thread context occupancy—the number

of cycles a DDT actively occupies a thread context—implying that DDTs are

sequenced faster. However, the sequenced DDT instructions are not executed any

earlier than they would have been. Because DDTs are dependence chains and

because many contain internal cache misses, DDT instructions are often not

ready to execute immediately after being sequenced. Allowing DDTs to be

sequenced more quickly does not effectively change their execution schedule or

resulting latency tolerance.

Insensitivity to DDT sequencing within a certain range also manifests as
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insensitivity to the DDT injection policy. On our 8-wide processor, a DDT-1 policy

is modeled by a frequency of 8. We have investigated policies that inject DDTs at

frequencies ranging from 2—i.e., a round-robin policy—to 32 cycles. High sched-

uling frequencies theoretically increase effective DDT overhead, but in practice

are throttled by the fixed number of RS entries. Lower frequencies compromise a

DDTs latency tolerance capabilities by undermining data-driven sequencing.

However, many of our DDTs have serial—i.e, pointer-chasing—cache misses

which make DDT IPC far lower than 1 and dampen this effect. Reducing DDT

sequencing frequency too much—we have only experimented with reductions by a

factor of 4—will eventually negate the benefit of data-driven sequencing and ren-

der DDMT useless. For a DDT of length 16 and a sequential span of 512 instruc-

tions, a factor of 16 frequency reduction in scheduling frequency is needed to

offset data-driven sequencing.

In addition to physical registers and reservation station slots, DDTs contend

with the master thread for register renaming, scheduling and store retirement

bandwidths, where the latter is used for load re-execution. DDMT performance is

almost completely insensitive to increases in these bandwidths. We have already

seen a preview of this insensitivity—and effectively discussed it—in

Section 5.2.5.4 where we measured the performance of “overhead-less DDMT”.

Finally, we have found that DDMT performance on most programs suffers

slightly when only one extra register context—rather than the default three—is

available for pre-execution. Theoretically, a program pre-executing an induction-

unrolled DDT of degree N requires N-1 additional register contexts since, in the
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steady state, N-1 copies of the unrolled DDT will be active. However, with our

default unrolling and DDT size parameters, no program takes advantage of the

availability of more than three additional contexts.

Of course, the number of thread contexts, the injection scheduling policy, and

the numbers of physical registers and reservation station entries all indepen-

dently act as throttling mechanisms. It may be that in order to improve DDMT

performance, several or all of them need to be simultaneously unconstrained. We

have not explored the “cross-product” sensitivity of these factors.

5.3.2  Sensitivity to DDT Selection Parameters

Due to the constraints of register integration, there is not much we can

parametrize about DDTs structurally. However, we can control their general

character by expanding and narrowing the PI definition, restricting DDT size and

allowed degree of unrolling, and raising and lowering the latency tolerance

acceptability threshold (LCAF). In this section, we investigate DDMT’s sensitiv-

ity to these parameters.

5.3.2.1  Problem Instruction Definition

A good PI definition is one that, when applied to a given execution, combines

the smallest number of static PIs with the highest number of dynamic PDIs and

the smallest number of dynamic NPDIs. In this section, we compare three PI def-

initions. Central (c) is our central definition, with problem and contribution ratios

set at 10% and 0.2%, respectively. For a broad (b) definition, we set the problem

and contribution ratios at 5% and 0.1% respectively. The broad definition admits
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more PIs. Finally, we use a narrow (n) definition with problem and contribution

ratios of 20% and 0.5%, respectively, in an attempt to find a more focused PI pool.

In all three definitions, we use minimum problem latency thresholds for both

branches and loads. In particular, we do not raise the load problem latency

threshold in an attempt to prune loads that only incur L1 misses.

Since the PI definition is the top implementation level, we can evaluate its

cascaded impact on DDT selection and DDMT. This “stack” evaluation, similar to

the one performed in detail for our central design point, is shown in Figure 5.8

and in three tables. The figure shows the familiar IPC stack of base, DDMT, per-

fect PIs, and perfect performance. The tables evaluate the PI definitions

(Table 5.26), DDTs selected (Table 5.27) and DDMT (Table 5.28) in more detail.

Figure 5.8 DDMT sensitivity to PI definition.
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This evaluation differs from our central “stack” evaluation in three respects.

First, we do not break down our data into load and branch effects. Second, we do

not show the Perfect DDT experiment, as we have already argued (and hopefully

demonstrated) that its performance bound is inaccurate and uninformative.

Table 5.26 Comparative evaluation of PI definitions.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Broad Static PIs 11 6 52 188 61 77 85 213 343

PIIs executed (M) 19.12 12.67 376.99 125.78 4.24 24.94 8.38 41.64 18.52

PDIs covered (M) 11.67 11.74 37.06 18.33 0.77 7.13 1.62 9.05 4.26

IPC 3.05 4.36 5.00 4.75 4.12 3.94 4.20 3.31 3.39

Speedup (%) 138.66 1385.92 27.83 33.48 18.32 34.23 24.90 69.45 40.32

Central Static PIs 10 6 35 100 42 66 57 109 164

PIIs executed (M) 18.28 12.67 53.14 71.64 3.05 22.12 6.42 27.79 11.06

PDIs covered (M) 11.60 11.74 16.42 13.83 0.69 6.93 1.50 7.69 3.27

IPC 2.88 4.36 4.49 4.40 4.04 3.92 4.11 3.11 3.14

Speedup (%) 125.16 1385.92 14.61 23.71 16.04 33.43 22.47 59.36 29.86

Narrow Static PIs 8 6 15 28 19 51 31 47 60

PIIs executed (M) 14.87 12.67 21.52 16.27 1.10 18.38 2.82 12.23 4.40

PDIs covered (M) 11.15 11.74 11.88 5.85 0.40 6.46 0.98 5.06 2.09

IPC 2.30 4.36 4.23 3.93 3.78 3.79 3.78 2.85 2.85

Speedup (%) 79.49 1385.92 7.93 10.30 8.73 29.02 12.62 45.90 17.81

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Broad Static PIs 46 51 239 164 52 119 130 61 67

PIIs executed (M) 295.04 162.93 88.77 122.46 69.50 105.94 19.63 20.19 90.38

PDIs covered (M) 47.33 94.66 19.58 38.39 22.04 36.35 4.06 5.70 18.90

IPC 3.66 2.91 2.99 3.98 4.12 3.21 5.33 4.01 2.99

Speedup (%) 33.62 364.70 64.21 53.23 48.52 45.61 17.51 48.09 78.17

Central Static PIs 31 40 124 87 38 98 61 45 36

PIIs executed (M) 144.60 140.29 53.74 85.76 51.49 101.02 9.97 17.20 44.34

PDIs covered (M) 33.58 89.67 15.95 35.26 21.20 35.65 3.26 5.47 14.79

IPC 3.19 2.77 2.74 3.80 4.00 3.17 5.18 3.93 2.50

Speedup (%) 16.32 341.58 50.10 46.34 44.10 43.53 14.17 45.36 48.66

Narrow Static PIs 12 27 56 29 22 73 23 30 19

PIIs executed (M) 32.03 113.51 30.57 59.80 41.66 68.39 5.42 11.28 30.92

PDIs covered (M) 14.65 82.30 11.78 31.37 20.02 30.24 2.39 4.46 12.66

IPC 2.99 2.41 2.48 3.63 3.86 2.81 5.01 3.69 2.41

Speedup (%) 8.91 284.91 35.91 39.56 39.20 27.51 10.45 36.38 43.28
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Finally, since we are comparing different implementations to each other rather

than to a single base case, we can conduct our evaluation by comparing any met-

rics we wish, as all metrics are comparable across implementations.

In Section 5.2.6, we reasoned that broadening or narrowing the PI definition

is unlikely to have a large effect on DDMT. Broadening the definition admits

instructions that are less suitable for pre-execution—judging by their problem

ratio and contribution metrics—than those included by the current definition.

Similarly, narrowing the definition will exclude those instructions that are least

suitable for pre-execution—judging by the same criteria—from the current list.

The instructions most likely to benefit from pre-execution will survive all but the

narrowest of definitions.

The graph and supporting tables corroborate this hypothesis. As shown in

Table 5.26, broadening the PI definition admits a large number of additional PIs.

However, the performance impact of these added PIs—the number of associated

PDIs covered and the performance improvement potential of “perfecting” them—

is low in relation to their static representation. Take vortex as an example. Broad-

ening the PI definition more than doubles the number of static PIs from 61 to 130.

However, the number of PDIs covered and relative performance improvement

each increase by only 20%. Broadening the definition includes more PIs, but these

are “lower quality” PIs. Narrowing the definition has a similar effect in the oppo-

site direction. The total number of PIs may halve, but since the remaining PIs are

of the “highest quality”, PDI coverage and performance improvement potential
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decrease less dramatically.

Table 5.27 shows the cascading effect on DDT selection. Although speedups

are not shown, the PDIs covered and PDIs fully covered measures show that the

“self-dampening” of the PI definition is dampened further by the DDT selection

algorithm. Although the numbers of PIs for which DDTs were successfully found

maintains a roughly constant relationship with the number of PIs in the defini-

Table 5.27 Characterizing DDTs selected using different PI definitions.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Broad Static PIs 11 5 24 76 41 54 53 118 210

PIIs executed (M) 21.64 12.34 339.83 42.32 2.47 17.25 5.32 23.87 13.95

PDIs covered (M) 9.75 11.03 29.74 6.98 0.40 3.75 0.86 3.72 2.18

PDIs fully covered (M) 5.11 8.59 14.40 5.75 0.29 2.88 0.68 1.85 1.00

Central Static PIs 10 5 12 53 31 48 43 72 117

PIIs executed (M) 19.06 12.34 20.56 35.23 1.97 16.83 4.96 19.53 10.27

PDIs covered (M) 9.65 11.03 9.87 6.19 0.37 3.69 0.84 3.23 1.79

PDIs fully covered (M) 5.11 8.59 2.30 5.22 0.26 2.84 0.66 1.67 0.82

Narrow Static PIs 8 5 8 17 16 41 24 33 49

PIIs executed (M) 16.82 12.34 15.78 15.56 1.13 16.39 2.81 8.57 5.59

PDIs covered (M) 9.17 11.03 9.39 3.67 0.26 3.54 0.56 1.67 1.25

PDIs fully covered (M) 4.63 8.59 1.99 3.04 0.17 2.75 0.43 0.30 0.54

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Broad Static PIs 16 32 128 115 27 82 73 31 48

PIIs executed (M) 55.70 110.65 65.49 81.08 31.83 122.23 4.06 20.41 40.21

PDIs covered (M) 12.70 63.40 8.79 27.91 12.35 26.61 1.85 4.08 8.77

PDIs fully covered (M) 1.60 1.18 2.63 12.71 4.65 11.91 1.18 3.05 8.01

Central Static PIs 13 25 79 61 21 68 34 29 25

PIIs executed (M) 54.98 102.52 50.23 70.05 28.92 119.55 2.75 19.42 37.88

PDIs covered (M) 12.59 62.06 7.61 26.50 11.88 26.20 1.62 4.00 8.51

PDIs fully covered (M) 1.54 1.07 2.14 12.06 4.56 11.66 1.02 2.97 7.85

Narrow Static PIs 4 16 39 24 13 53 12 22 11

PIIs executed (M) 7.54 84.01 30.31 54.97 26.65 87.81 1.85 15.62 27.90

PDIs covered (M) 2.14 60.85 5.88 24.18 11.23 22.60 1.32 3.65 7.31

PDIs fully covered (M) 0.02 0.81 1.58 10.33 4.19 9.93 0.88 2.85 6.85
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Table 5.28 DDMT performance sensitivity to different PI definitions.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Broad DDIs renamed (M) 42.73 47.22 1822.34 276.82 17.36 111.34 33.77 211.13 92.49

PDIs covered (M) 11.35 8.97 96.16 13.94 0.79 6.08 1.24 5.29 2.24

BMR latency (c) 3.54 180.54 11.25 7.48 8.05 6.48 7.31 17.93 11.94

Load latency (c) 12.30 23.40 4.54 2.81 2.83 2.69 2.76 4.19 3.34

IPC 1.83 0.57 3.85 3.70 3.58 3.18 3.50 2.12 2.53

Speedup (%) 42.99 93.83 -1.57 3.99 2.79 8.11 4.08 8.55 4.72

Central DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

PDIs covered (M) 10.94 8.97 8.43 11.14 0.48 5.95 1.09 4.40 1.59

BMR latency (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load latency (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

Narrow DDIs renamed (M) 39.94 47.22 175.13 138.19 10.43 106.27 21.95 136.55 53.82

PDIs covered (M) 8.61 8.97 5.01 3.49 0.32 5.24 0.62 0.74 0.64

BMR latency (c) 3.52 180.54 11.73 8.26 8.57 6.58 7.85 18.74 12.59

Load latency (c) 12.55 23.40 5.58 2.83 2.88 2.71 2.83 4.28 3.44

IPC 1.82 0.57 3.97 3.64 3.57 3.16 3.47 2.09 2.50

Speedup (%) 42.15 93.83 1.41 2.22 2.62 7.61 3.36 7.15 3.52

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Broad DDIs renamed (M) 497.09 749.21 259.04 987.82 597.12 509.09 60.97 117.45 246.95

PDIs covered (M) 10.45 27.13 12.92 6.70 3.35 30.48 1.27 5.02 14.30

BMR latency (c) 15.94 40.25 18.03 10.33 13.29 8.01 9.78 6.18 34.30

Load latency (c) 3.06 17.26 3.79 3.35 2.76 2.93 3.12 2.49 3.74

IPC 2.79 0.72 1.87 2.65 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.17 2.56 1.91 0.83 12.53 3.24 12.65 11.48

Central DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

PDIs covered (M) 10.24 20.82 8.54 4.45 2.79 29.87 1.06 4.58 13.19

BMR latency (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load latency (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

Narrow DDIs renamed (M) 307.62 633.07 145.32 788.00 564.91 361.12 29.85 101.29 213.74

PDIs covered (M) 0.07 18.99 5.22 2.82 1.48 21.11 0.88 3.89 7.38

BMR latency (c) 16.79 39.90 18.87 10.59 13.38 9.12 10.13 6.44 34.45

Load latency (c) 3.07 17.08 3.88 3.39 2.77 3.02 3.14 2.52 3.77

IPC 2.77 0.73 1.86 2.64 2.80 2.43 4.67 3.06 1.86

Speedup (%) 0.98 15.84 1.97 1.60 0.78 10.23 2.93 12.94 10.84
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tion, the number of PDIs covered by the chosen DDTs varies by even less than the

20% relative variation of PDIs perfected. Perl.d is an extreme example. For the

broad central and narrow definitions, DDTs are chosen for 115, 61 and 24 PIs,

respectively. However, the number of PDIs covered by these DDTs varies only

from 27 million to 24 million across this entire range.

Finally, Table 5.28 shows the effect of the twice-dampened PI definition on

DDMT performance. It shows that, at least across the range we have studied, the

PI definition has almost no effect on end DDMT performance. A factor of 4 differ-

ence in the number of PIs selected effects less than a 2% change in end perfor-

mance. In fact, in certain cases—e.g., bzip2—a narrower PI definition can lead to

higher (albeit slightly) overall performance. This is not a surprise. A narrower

definition contains only “higher quality” PIs. Restricting pre-execution to these

PIs will result in fewer PDIs actually covered. However, the number of DDT

instructions required to achieve this reduced coverage may be far reduced in pro-

portion. While DDMT’s benefit would decrease slightly, its overhead would

decrease significantly. This argument makes the most sense when we take it to

its broad limit. At its broadest definition, we would attempt to find DDTs for and

pre-execute every PDI of every PI. We have already seen that such an approach is

inherently inefficient.

5.3.2.2  DDT Size, Slicing Scope and Unrolling Degree

DDT size, slicing window size and unrolling degree constraints limit DDT

length. In general, longer DDTs tolerate more latency per PDI covered. However,



258
longer DDTs also consume more sequencing bandwidth and cover fewer PDIs. In

this section, we study the effects of three DDT size, slicing window size and

unrolling degree combinations. Our central (c) configuration, used consistently to

this point, has a slicing window of 1024 instructions, a maximum DDT length of

32 instructions and a maximum unrolling degree of 4. We add a long (l) configura-

tion with maximum values of 2048, 64 and 8, respectively, and a short (s) configu-

ration with maximum values of 512, 16 and 2, respectively.

Results are shown in Figure 5.9 and in two tables. Since the top level of the

implementation hierarchy—the PI definition—is fixed, we evaluate only DDT

selection (Table 5.29) and DDMT (Table 5.30). From the graph in Figure 5.9, our

only way of gauging the impact of our parameter variations is by examining the

Figure 5.9 DDMT sensitivity to DDT size, selection scope and unrolling degree.
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results of the DDMT experiment. From the graph, it appears that permitting

longer DDTs with higher unrolling degrees does not appreciably boost perfor-

mance for any program, while restricting DDT size and unrolling degree

adversely affects only a few programs, most notably the micro-benchmark mst.

We appeal to the tables for clarification.

In Table 5.29, we have replaced our metrics of static PIs and PIIs executed

with projected DDT metrics having to do with length and unrolling degree. We

list the projected average dynamic DDT length and the projected average

dynamic unrolling degree. The unrolling degree is averaged over all projected

DDT executions, such that if a DDT of unrolling degree 3 is projected to execute

half as many times as a DDT that does not use unrolling at all, the reported aver-

age unrolling degree is 1. This precise situation occurs in the two DDTs chosen

for mst.

Table 5.29 shows that while restricting DDT length and unrolling degree to

levels below those of our central configuration has an effect on the character of

DDTs chosen—the DDTs are shorter and exploit unrolling to a lesser degree—

loosening these restrictions does not have a pronounced opposite effect. Desired

latency tolerance, LTdes, and the selection algorithm’s implicit edict not to toler-

ate more latency than necessary tends to give each DDT a “natural” length which

is not exceeded. The only exception to this rule is the situation in which memory

latencies must be tolerated. Increased unrolling may need to be used in these

cases. However, although several of our benchmarks—mst and mcf—suffer from
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high L2 miss rates in this large-cache configuration, it appears that our central

maximum degree of unrolling, 4, is sufficient to create DDTs that will tolerate

these latencies. Even if this is not the case in practice, the DDT selection algo-

rithm “believes” that no advantage is to be gained by exploiting further unrolling.

Unlike variations in the PI definition, varying DDT size and unrolling con-

straints are not “damped” by the DDT selection algorithm. As constraints are

tightened, the impact is shown directly in the PDIs fully covered metric, as

Table 5.29 Evaluating DDTs of different sizes, slicing scopes and unrolling degrees.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

Long Avg. dyn. length 13.13 20.50 15.75 9.73 8.74 8.51 9.16 9.66 11.95

Avg. dyn. unrolling 1.00 1.00 2.26 0.23 0.00 0.00 0.00 0.59 0.43

PDIs covered (M) 9.71 11.03 9.90 6.24 0.38 3.69 0.84 3.18 1.80

PDIs fully covered (M) 5.16 8.59 4.82 5.26 0.26 2.84 0.66 1.73 0.83

Central Avg. dyn. length 12.42 20.50 13.86 9.70 8.52 8.51 9.14 9.60 11.74

Avg. dyn. unrolling 1.00 1.00 2.26 0.23 0.00 0.00 0.00 0.59 0.36

PDIs covered (M) 9.65 11.03 9.87 6.19 0.37 3.69 0.84 3.23 1.79

PDIs fully covered (M) 5.11 8.59 2.30 5.22 0.26 2.84 0.66 1.67 0.82

Short Avg. dyn. length 12.42 7.00 9.97 9.43 7.05 7.81 8.47 6.29 10.09

Avg. dyn. unrolling 1.00 1.00 1.62 0.23 0.00 0.00 0.00 0.59 0.28

PDIs covered (M) 9.65 2.82 3.32 6.17 0.34 3.38 0.79 2.56 1.61

PDIs fully covered (M) 5.11 1.59 0.52 4.84 0.23 2.55 0.61 1.36 0.63

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

Long Avg. dyn. length 7.58 12.54 6.49 13.64 17.37 9.99 18.75 12.26 19.08

Avg. dyn. unrolling 0.03 1.70 0.80 0.01 0.05 0.46 0.00 0.53 0.78

PDIs covered (M) 12.59 62.58 7.65 26.51 11.88 25.70 1.63 4.01 8.51

PDIs fully covered (M) 1.54 10.38 2.89 12.07 4.56 12.93 1.03 2.98 7.95

Central Avg. dyn. length 7.58 11.71 5.91 13.64 17.37 9.91 19.10 12.27 18.96

Avg. dyn. unrolling 0.03 1.70 0.75 0.01 0.05 1.06 0.00 0.53 0.78

PDIs covered (M) 12.59 62.06 7.61 26.50 11.88 26.20 1.62 4.00 8.51

PDIs fully covered (M) 1.54 1.07 2.14 12.06 4.56 11.66 1.02 2.97 7.85

Short Avg. dyn. length 4.88 6.57 5.30 9.65 11.10 8.02 11.64 10.76 12.69

Avg. dyn. unrolling 0.03 1.30 0.63 0.01 0.00 0.49 0.00 0.54 0.67

PDIs covered (M) 10.94 63.97 7.01 22.38 9.36 24.16 1.60 3.55 8.11

PDIs fully covered (M) 1.54 0.31 2.00 5.27 2.79 10.61 0.28 2.38 3.52
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Table 5.30 DDMT performance sensitivity to DDTs of different sizes.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Long DDIs renamed (M) 45.06 47.22 205.43 251.60 15.66 109.06 31.71 187.13 77.17

PDIs covered (M) 10.97 8.97 9.00 11.20 0.48 5.95 1.09 4.39 1.57

BMR latency (c) 3.57 180.54 11.64 7.55 8.27 6.48 7.32 18.08 12.23

Load latency (c) 11.84 23.40 5.48 2.81 2.85 2.69 2.78 4.20 3.38

IPC 1.85 0.57 4.01 3.70 3.57 3.18 3.50 2.12 2.52

Speedup (%) 44.83 93.83 2.35 3.86 2.60 8.21 4.31 8.58 4.16

Central DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

PDIs covered (M) 10.94 8.97 8.43 11.14 0.48 5.95 1.09 4.40 1.59

BMR latency (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load latency (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

Short DDIs renamed (M) 42.73 17.28 63.43 247.59 12.27 100.84 27.99 119.54 66.42

PDIs covered (M) 10.94 3.69 2.60 10.83 0.44 5.33 1.08 3.81 1.50

BMR latency (c) 3.54 378.72 12.66 7.58 8.49 6.90 7.36 18.58 12.40

Load latency (c) 12.30 48.52 5.60 2.81 2.87 2.72 2.78 4.25 3.41

IPC 1.83 0.31 3.93 3.69 3.56 3.14 3.50 2.09 2.50

Speedup (%) 42.99 6.03 0.47 3.81 2.22 6.95 4.23 7.37 3.65

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Long DDIs renamed (M) 493.08 780.74 218.45 894.98 586.71 408.03 49.73 115.29 240.52

PDIs covered (M) 10.24 21.20 6.86 4.45 2.79 29.03 1.08 4.61 13.18

BMR latency (c) 15.95 40.00 18.22 10.45 13.29 8.25 9.95 6.21 34.27

Load latency (c) 3.07 17.26 3.84 3.38 2.76 2.99 3.13 2.49 3.74

IPC 2.79 0.72 1.87 2.64 2.80 2.49 4.68 3.05 1.87

Speedup (%) 1.82 14.68 2.62 1.72 0.97 12.64 3.24 12.65 11.12

Central DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

PDIs covered (M) 10.24 20.82 8.54 4.45 2.79 29.87 1.06 4.58 13.19

BMR latency (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load latency (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

Short DDIs renamed (M) 235.58 413.57 196.92 583.58 411.20 311.77 43.58 95.93 176.35

PDIs covered (M) 10.76 17.55 6.55 3.13 2.85 28.40 0.76 5.38 18.12

BMR latency (c) 16.39 50.87 18.39 10.88 13.67 8.37 11.78 5.91 32.03

Load latency (c) 3.08 20.15 3.87 3.42 2.79 2.97 3.17 2.47 3.52

IPC 2.78 0.65 1.87 2.62 2.78 2.46 4.57 3.08 1.95

Speedup (%) 1.27 3.26 2.31 0.75 0.23 11.51 0.81 13.71 16.29
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shorter DDTs are unable to tolerate the full latency of their target PDIs. If the

constraint is tightened sufficiently, the number of PDIs covered may drop as well,

as the shorter DDT may not be able to achieve threshold (LCAF) latency toler-

ance.

However, shorter DDTs do not always imply lower performance as shown in

Table 5.30. It is possible for the DDT selection algorithm to underestimate

latency tolerance, and choose long DDTs when shorter ones would have sufficed.

Restricting DDT selection to short DDTs prevents the DDT selection algorithm

from using its faulty estimates. We observe this phenomenon in both vpr bench-

marks. In general, however, shorter DDTs tolerate less latency per PDI and

result in lower performance. As we initially observed in the graph, mst’s and

mcf ’s performance improvement disappears when unrolling is limited to 2 itera-

tions. These benchmarks have a high incidence of serial memory accesses whose

latencies can only be hidden using high unrolling degrees.

5.3.2.3  Latency Tolerance Acceptability Factor (LCAF)

The LCAF determines what level of latency tolerance makes a DDT minimally

acceptable. For instance, with an LCAF of 50%—i.e., a DDT must tolerate at least

50% the required latency—and an LTdes of 80, a DDT that tolerates 30 cycles of

latency is deemed unacceptable. Our default LCAF is 25%. In this section, we

measure the DDT selection algorithm’s and DDMT’s sensitivity to this parameter

by experimenting with LCAFs of 50% and 10%. Again changes in the LCAF leave

the upper level of the implementation stack unchanged, leaving us to evaluate
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DDT selection and DDMT. The results are shown in Figure 5.10, with the 10%,

20% and 50% experiments denoted by the numbers 1, 2 and 5, respectively, under

each bar group. As in the previous section, Table 5.31 characterizes the DDTs

chosen using each one of these LCAF values while Table 5.32 provides DDMT

performance details.

As the graph and tables show, the ideal LCAF is different for different pro-

grams. Like most DDT selection parameters, tuning the LCAF is a balancing act.

A high LCAF will cause the DDT selection algorithm to choose a DDT with a

higher per-PDI latency tolerance over one with sub-LCAF latency tolerance but a

higher aggregate advantage. As shown in Table 5.31, this is the case for em3d.

However, the other effect of a high LCAF is to cause the DDT selection algorithm

Figure 5.10 DDMT sensitivity to latency coverage acceptability threshold (LCAF).
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to reject a DDT with a positive but sub-LCAF latency tolerance in favor of no

DDT at all. For, instance setting the LCAF at 100% will result in the DDT selec-

tion algorithm choosing only DDTs that can achieve full latency coverage on

every PDI. Intuitively, a 100% LCAF is too restrictive, especially if long memory

latencies are to be tolerated. It is not difficult to find DDTs that can tolerate 20 or

30 cycles of latency. Finding DDTs that can hide 100 cycles is more difficult. The

combination of two effects of the LCAF produces the following result. In general,

Table 5.31 Evaluating DDTs chosen using different LCAF values.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

10% Avg. dyn. length 2.82 11.00 8.68 6.93 7.60 5.31 5.79 6.69 7.37

Avg. dyn. unrolling 1.00 1.00 1.37 0.22 0.00 0.00 0.00 0.48 0.35

PDIs covered (M) 9.65 11.03 10.70 6.58 0.38 3.99 0.85 3.89 2.02

PDIs fully covered (M) 5.11 8.59 2.30 5.22 0.26 2.81 0.66 1.65 0.79

25% Avg. dyn. length 12.42 20.50 13.86 9.70 8.52 8.51 9.14 9.60 11.74

Avg. dyn. unrolling 1.00 1.00 2.26 0.23 0.00 0.00 0.00 0.59 0.36

PDIs covered (M) 9.65 11.03 9.87 6.19 0.37 3.69 0.84 3.23 1.79

PDIs fully covered (M) 5.11 8.59 2.30 5.22 0.26 2.84 0.66 1.67 0.82

50% Avg. dyn. length 3.35 12.50 14.32 7.31 8.85 6.58 6.24 8.97 9.40

Avg. dyn. unrolling 1.90 1.50 2.42 0.27 0.00 0.00 0.00 0.66 0.50

PDIs covered (M) 10.68 11.03 5.57 6.38 0.36 3.72 0.78 2.50 1.43

PDIs fully covered (M) 6.06 8.59 2.30 5.29 0.26 2.97 0.68 1.73 0.89

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

10% Avg. dyn. length 6.60 5.37 3.99 9.55 10.49 6.00 17.93 6.07 7.92

Avg. dyn. unrolling 0.03 1.28 0.47 0.01 0.04 1.06 0.00 0.50 0.74

PDIs covered (M) 13.01 64.27 8.02 28.02 14.14 25.83 1.67 4.04 8.48

PDIs fully covered (M) 1.54 1.07 1.95 11.83 4.56 11.58 1.02 2.90 7.85

25% Avg. dyn. length 7.58 11.71 5.91 13.64 17.37 9.91 19.10 12.27 18.96

Avg. dyn. unrolling 0.03 1.70 0.75 0.01 0.05 1.06 0.00 0.53 0.78

PDIs covered (M) 12.59 62.06 7.61 26.50 11.88 26.20 1.62 4.00 8.51

PDIs fully covered (M) 1.54 1.07 2.14 12.06 4.56 11.66 1.02 2.97 7.85

50% Avg. dyn. length 3.80 6.35 5.38 10.21 12.68 6.50 19.37 7.40 9.46

Avg. dyn. unrolling 0.03 1.86 0.83 0.01 0.06 1.19 0.00 0.59 0.71

PDIs covered (M) 10.93 42.20 6.11 17.07 10.59 26.13 1.50 3.92 6.87

PDIs fully covered (M) 1.54 1.07 2.48 9.40 4.63 13.03 1.23 3.14 5.90
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Table 5.32 DDMT sensitivity to different LCAF values.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

10% DDIs renamed (M) 36.60 47.13 185.19 255.79 13.53 105.03 29.45 169.58 64.93

PDIs covered (M) 10.93 8.97 8.38 11.37 0.48 5.73 1.09 4.33 1.62

BMR latency (c) 3.54 181.50 11.69 7.54 8.27 6.57 7.31 18.89 12.20

Load latency (c) 12.31 23.40 5.52 2.81 2.86 2.69 2.78 4.30 3.37

IPC 1.83 0.57 3.99 3.70 3.57 3.17 3.50 2.06 2.52

Speedup (%) 42.97 93.83 1.98 3.92 2.63 7.84 4.33 5.56 4.23

25% DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

PDIs covered (M) 10.94 8.97 8.43 11.14 0.48 5.95 1.09 4.40 1.59

BMR latency (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load latency (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

50% DDIs renamed (M) 54.06 47.13 120.77 249.35 14.22 111.55 29.13 149.94 63.81

PDIs covered (M) 11.37 8.97 4.80 11.32 0.47 5.72 1.06 4.01 1.52

BMR latency (c) 3.59 181.50 11.97 7.48 7.99 6.47 7.37 19.44 12.17

Load latency (c) 11.05 23.40 5.56 2.81 2.85 2.69 2.79 4.34 3.39

IPC 1.93 0.57 3.98 3.71 3.60 3.18 3.51 2.04 2.53

Speedup (%) 51.00 93.83 1.78 4.19 3.33 8.18 4.54 4.55 4.52

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

10% DDIs renamed (M) 499.84 584.75 188.78 789.92 412.70 426.58 47.83 111.13 233.78

PDIs covered (M) 10.23 21.94 7.25 4.27 2.98 30.96 1.08 4.67 18.75

BMR latency (c) 15.95 42.22 18.65 10.43 13.49 7.99 9.95 6.30 32.15

Load latency (c) 3.05 17.76 3.85 3.39 2.77 2.92 3.13 2.50 3.53

IPC 2.79 0.70 1.86 2.64 2.79 2.46 4.68 3.05 1.94

Speedup (%) 1.81 12.45 1.78 1.77 0.44 11.44 3.33 12.55 15.71

25% DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

PDIs covered (M) 10.24 20.82 8.54 4.45 2.79 29.87 1.06 4.58 13.19

BMR latency (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load latency (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

50% DDIs renamed (M) 235.92 551.89 183.73 750.44 343.86 445.50 39.03 121.43 251.52

PDIs covered (M) 10.77 19.67 6.79 4.13 2.84 33.08 0.86 6.01 16.83

BMR latency (c) 16.38 50.33 18.37 10.54 13.37 7.84 9.76 5.04 32.65

Load latency (c) 3.08 19.18 3.86 3.41 2.77 2.89 3.13 2.45 3.57

IPC 2.78 0.65 1.87 2.63 2.81 2.48 4.68 3.17 1.93

Speedup (%) 1.27 4.37 2.29 1.36 1.17 12.17 3.24 17.20 14.70
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the high LCAF results in DDTs that cover fewer total PDIs, but fully cover more

PDIs. These trends show clearly in Table 5.31.

How LCAF-driven changes in the character of DDTs impact performance is

shown in Table 5.32. The performance effects are not consistent, even within a

program. Certain programs, like perl.s, perform consistently better with a higher

LCAF. Others, like perl.d, perform consistently worse. Certain programs, like gap

and mcf, perform better with DDTs chosen using an LCAF of 25% than with

DDTs chosen using an LCAF of either 10% or 50%. Other programs, like vpr.r,

exhibit precisely the opposite behavior performing better with DDTs chosen

using either a low or a high LCAF.

These different responses can be explained using the combination of LCAF’s

two effects: the “threshold” effect, in which latency tolerant DDTs are rejected

because their latency tolerance levels do not meet LCAF requirements, and the

“latency tolerance” effect in which more latency tolerant DDTs are preferred over

ones with higher aggregate advantage. Suppose that by raising the LCAF, a cer-

tain DDT is eliminated from the chosen set. If this DDT was falsely preferred due

to the “latency tolerance” effect, then eliminating it will improve performance.

Otherwise, eliminating the DDT will result in performance degradation.

5.3.2.4  Summary of Other Results

Although currently not a parameter of the DDT selection algorithm, one vari-

able that may benefit from being externally parametrizable is the formula used to

compute the master thread’s effective sequencing bandwidth consumption (BWseq-
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CD) from its IPC and the sequencing width of the machine. BWseq-CD is an impor-

tant parameter in DDT selection as it effectively conveys both the master

thread’s sequencing constraint which is used in latency tolerance calculations

and its consumption of sequencing bandwidth which is used in overhead calcula-

tions. After a short run of “pre-tuning”, we have chosen to define BWseq-CD as the

average of the master thread’s IPC and the sequencing width of the machine,

weighing IPC 2-to-1. What our “pre-tuning” exercise showed is that changes in

this formula—i.e., weighing IPC differently—can produce radically different

DDTs and, consequently, different levels of DDMT performance. It also appears

that different formulae work better for different programs and, furthermore,

these changes do not appear correlated with the program’s base IPC. The formula

we chose works produces good DDTs for most benchmarks, and is the best for-

mula—of the ones we have tried—for 6 of the benchmarks.

As of this writing, we do not have a clear understanding of how different for-

mula weights determine the character of the chosen DDTs and the resulting

DDMT performance impact. In general, a formula that produces a high BWseq-

CD—i.e., one that weighs sequencing width more heavily—reduces the master

thread’s sequencing constraint and leads the DDT selection algorithm to con-

struct longer, more highly unrolled DDTs that tolerate more latency, but consume

more overhead. However, a high BWseq-CD may also make it appear that a DDT is

unable to achieve any sequencing advantage over the master thread and cause

the DDT selection algorithm to reject certain DDTs which in practice would be

useful. It is possible that some combination of formula weights, LCAF and unroll-
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ing degree could achieve better DDT selection uniformly across all benchmarks.

Empirically, however, different programs respond differently to different combi-

nations.

One shortcoming of the formula we are currently aware of is that its IPC mea-

sure is taken as a global constant over the execution of the program. This simpli-

fication ignores the real scenario of different program phases with different IPCs.

In these cases, it is likely that the single IPC we use is too high for PDIs in cer-

tain phases and too low for PDIs in other phases. Correcting this shortcoming,

and understanding the impact of this parameter are areas for future research.

5.3.3  Sensitivity to Setup/Runtime Relationship

Up until this point, our evaluation modeled a limit scenario in which DDT

selection and DDMT pre-execution take place over the same program sample. In

this section, we examine the effect of more realistic relationships between

DDMT’s setup and runtime components.

In this dissertation, we do not provide an actual implementation of the setup

phase nor do we model its cost. Consequently, our investigation is not of the total

system performance of the various implementations, but rather only of the effects

of cross-training DDT selection. Still, such a study has value in that it speaks to

the cross-data-set stability of both the PI definition and the DDTs themselves.

We are concerned with stability in two different scenarios. An offline scenario

which models a software implementation of DDT selection, and an online sce-

nario which models a dynamically optimizing VM implementation. In order to



269
model these scenarios with some degree of accuracy we must choose the input

program sample to the DDT selection algorithm with care. For the offline sce-

nario, we substitute the benchmark test inputs for their training inputs. Since

test inputs are much shorter than training inputs, sampling at 1B instruction

intervals is too coarse and may not produce a representative execution cross-sec-

tion. Test runs are sampled at 100M instruction intervals where the first 80M

instructions are fast-forwarded, the next 10M are used for warming up, and the

last 10M are used for DDT selection. If a program has multiple test inputs (e.g.,

eon and vpr), we select DDTs using all of them and then merge the resulting sets

of DDTs together using our merging procedure. Each of a program’s training runs

then executes an identical set of DDTs constructed using all test runs.

For the online scenario, we keep the training input for DDT selection purposes

but use a different sample within that run. Specifically, we use the 10M instruc-

tions that immediately precede each performance sample. This scenario “models”

a VM in which a the program is observed for 10M instructions, DDTs are selected

using information about that sample and then those DDTs are pre-executed over

the next 100M instructions.

Cross-training can actually be done at two levels. We can extract PI defini-

tions using one sample, select the appropriate DDTs for PDIs of those PIs using a

second sample, and pre-execute the DDTs on a third sample. We perform only

single-level cross-training, identifying PIs and selecting DDTs using the same

sample. We use our central PI definition and DDT selection parameters.
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The results are shown in Figure 5.11 and in two supporting tables. For this

particular sensitivity analysis, the selected DDTs cannot be evaluated directly as

has been our method to this point. Because DDT selection no longer uses the per-

formance evaluation input sample to select DDTs, its statistics and measures

cannot be used as projections. We are left with evaluating the PI definition

(Table 5.33) and the end performance effect of the generated DDTs (Table 5.34).

Table 5.33 presents PI definition stability data. The presented data was

obtained by running the perfect PI experiment on the performance sample, using

the PIs found in each of the three samples: limit (the performance sample itself),

online, and offline. In the interest of space, we list only raw statistics. The results

confirm our intuition that an instruction’s PI status is a function of its computa-

Figure 5.11 DDMT sensitivity to setup/runtime relationship.

l l l l l l l l l l l l l l l l l lf f f f f f f f f f f f f f f f f fn n n n n n n n n n n n n n n n n n
0

1

2

3

4

5

6

IP
C

perfect 

perfect PI

DDMT

base

em
3d

mst
bz

ip2
cra

fty
eo

n.c
eo

n.k
eo

n.r ga
p

gc
c

gz
ip

mcf
pa

rse
r

pe
rl.

d
pe

rl.
s

tw
olf

vo
rte

x
vp

r.p
vp

r.r



271
tion—i.e., program structure—and is largely independent of the input data set. In

general, the cross-trained PI definition is more stable in the online scenario than

in the offline scenario. This is not a surprise since, after all, in the online scenario

Table 5.33 PI definition stability under different setup/runtime scenarios.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Limit Static PIs 10 6 35 100 42 66 57 109 164

PIIs executed (M) 18.28 12.67 53.14 71.64 3.05 22.12 6.42 27.79 11.06

PDIs covered (M) 11.60 11.74 16.42 13.83 0.69 6.93 1.50 7.69 3.27

IPC 2.88 4.36 4.49 4.40 4.04 3.92 4.11 3.11 3.14

Speedup (%) 125.16 1385.92 14.61 23.71 16.04 33.43 22.47 59.36 29.86

Offline Static PIs 12 4 38 108 70 75 77 83 139

PIIs executed (M) 21.70 0.00 23.91 95.56 4.57 22.29 7.31 14.97 6.84

PDIs covered (M) 12.48 0.00 11.49 15.13 0.75 6.92 1.54 3.96 2.17

IPC 3.14 0.29 4.24 4.49 4.10 3.91 4.15 2.39 2.86

Speedup (%) 145.57 0.00 8.42 26.30 17.92 33.13 23.52 22.54 18.58

Online Static PIs 10 0 35 102 40 67 59 102 168

PIIs executed (M) 18.28 0.00 50.04 73.84 2.74 22.20 6.47 23.55 5.06

PDIs covered (M) 11.60 0.00 13.78 14.06 0.64 6.94 1.48 5.63 1.49

IPC 2.88 0.29 4.48 4.42 4.00 3.92 4.06 2.42 2.67

Speedup (%) 125.16 0.00 14.51 24.19 15.03 33.43 20.96 24.14 10.33

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Limit Static PIs 31 40 124 87 38 98 61 45 36

PIIs executed (M) 144.60 140.29 53.74 85.76 51.49 101.02 9.97 17.20 44.34

PDIs covered (M) 33.58 89.67 15.95 35.26 21.20 35.65 3.26 5.47 14.79

IPC 3.19 2.77 2.74 3.80 4.00 3.17 5.18 3.93 2.50

Speedup (%) 16.32 341.58 50.10 46.34 44.10 43.53 14.17 45.36 48.66

Offline Static PIs 14 30 133 59 24 66 80 53 24

PIIs executed (M) 264.72 62.06 44.76 21.76 38.25 46.21 10.19 14.89 41.83

PDIs covered (M) 42.88 26.47 11.59 10.04 16.88 10.62 2.86 4.10 14.11

IPC 3.54 0.87 2.66 2.86 3.64 2.72 5.16 3.83 2.45

Speedup (%) 29.07 38.31 45.87 10.18 31.15 23.48 13.88 41.44 45.66

Online Static PIs 32 42 114 86 36 101 54 45 23

PIIs executed (M) 141.73 148.83 46.17 94.01 51.13 100.44 10.43 17.20 71.17

PDIs covered (M) 33.28 92.45 14.24 35.78 21.00 35.49 3.21 5.47 16.87

IPC 3.18 2.88 2.69 3.82 3.98 3.15 5.16 3.93 2.62

Speedup (%) 16.13 359.25 47.40 46.99 43.48 42.98 13.91 45.36 55.94
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we train the PI definition using the same input data set, only with a different

sample from within that run. In the offline scenario, the input data set is differ-

ent. In both cross-training scenarios it is possible to obtain both a broader PI def-

inition that will cover more dynamic PDIs and a narrower PI definition that will

cover fewer PDIs.

In the offline scenario, differences are largely due to different program work-

ing sets exercised by each individual data set. For instance, vpr has two input test

data sets, place and route, and two matching training data sets. The place and

route runs are not similar to each other from an execution standpoint, exercising

largely independent sections of the program. Accordingly, their individual PI def-

initions will have some instructions in common and some different instructions.

The merged PI definition will contain those instructions which both sets defined

as PIs and then some but not necessarily all instructions that appear in only one

set. The degree to which PI samples from each set overlap will determine

whether the merged definition is closer to being the intersection of the two defini-

tions or their union. An intersection will produce a narrower definition, a union

will produce a wider definition. Sampling differences do play a role as well, since

the offline sample is typically much smaller than its corresponding training sam-

ple.

Sampling differences are the only differences in online scenario. As discussed

in Section 5.1.4, the 10% sampling rate used for our performance experiments

yields little sampling error. However, our online training methodology uses a 1%

sampling rate, which likely results in larger errors. An extreme case of such sam-



273
pling error is mst. The mst benchmark has three distinct phases, of which only

the last one has many PDIs. Mst’s training data accommodates only a single per-

formance sample and, thus, a single online DDT selection sample as well. While

the performance sample straddles the second and third phases, the DDT selection

sample executes exclusively in the second phase. As a result, it captures none of

the PDIs that dominate the third phase.

In Table 5.34, we measure DDMT’s performance stability in each of the three

scenarios. Rather than provide full system and pre-execution diagnostics, we

present a few choice metrics. We show the number of DDIs renamed and inte-

grated, average load and branch misprediction resolution (BMR) latency and IPC.

DDMT performance stability tracks the stability of the PI definition. This is an

intuitive result. We have already argued that PI stability is due to its basis in

program structure, which is fixed. The structure of DDTs—which after all are

computations extracted directly from execution traces—is also determined by

program structure. Since the underlying processor modeled by the DDT selection

algorithm is constant, PI problem penalties and subsequent levels of desired

latency tolerance, LTdes, are also roughly constant. Finally, we also keep the DDT

selection parameters fixed. With the combination of these factors, it stands to rea-

son that for a given PDI the same DDT will be selected independently of the DDT

selection sample. Obviously, a stable set of DDTs leads to stable performance.

Both the performance numbers and the diagnostics bear this out.
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Table 5.34 DDMT sensitivity to setup/runtime scenarios.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Limit DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

DDIs integrated (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

BMR lat. (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load lat. (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

Offline DDIs rename (M) 41.30 0.00 93.23 285.54 29.77 162.28 51.13 92.61 68.26

DDIs integrated (M) 25.18 0.00 51.89 122.59 8.80 49.27 14.47 22.62 19.04

BMR lat. (c) 2.17 404.81 11.85 7.64 8.00 6.63 7.01 20.22 12.71

Load lat. (c) 13.48 54.73 5.53 2.81 2.82 2.70 2.77 4.44 3.49

IPC 1.86 0.29 3.99 3.68 3.54 3.13 3.49 2.00 2.46

Speedup (%) 45.25 0.00 2.04 3.37 1.78 6.47 3.95 2.67 1.91

Online DDIs executed (M) 42.73 0.00 153.25 274.96 14.98 121.49 36.36 151.65 39.92

DDIs integrated (M) 25.05 0.00 35.64 120.25 5.27 42.16 10.86 42.63 7.52

BMR lat. (c) 3.54 404.81 11.69 7.36 8.13 6.76 7.05 19.99 13.19

Load lat. (c) 12.30 54.73 5.55 2.81 2.85 2.69 2.79 4.40 3.48

IPC 1.83 0.29 3.99 3.71 3.57 3.15 3.52 2.02 2.46

Speedup (%) 42.99 0.00 2.03 4.37 2.65 7.25 4.89 3.53 1.69

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Limit DDIs rename (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

DDIs integrated (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

BMR lat. (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load lat. (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

Offline DDIs renamed (M) 441.61 329.22 138.21 114.61 312.32 192.65 42.52 90.81 277.00

DDIs integrated (M) 107.95 93.08 30.84 14.26 41.62 62.29 21.19 40.36 122.94

BMR lat. (c) 16.20 50.69 19.08 11.73 14.09 9.12 11.28 5.53 31.34

Load lat. (c) 3.07 19.75 3.94 3.43 2.82 3.29 3.15 2.57 3.55

IPC 2.78 0.65 1.86 2.60 2.77 2.40 4.61 3.12 1.94

Speedup (%) 1.52 4.12 1.91 0.04 -0.30 8.75 1.62 15.47 15.54

Online DDIs renamed (M) 494.75 702.01 205.52 960.02 559.56 496.66 41.61 113.79 201.75

DDIs integrated (M) 135.70 161.26 36.50 159.17 101.75 125.93 26.43 42.25 132.75

BMR lat. (c) 15.94 40.79 18.19 10.32 13.30 8.14 9.86 6.20 31.87

Load lat. (c) 3.05 17.28 3.83 3.38 2.77 2.91 3.13 2.50 3.49

IPC 2.79 0.71 1.88 2.65 2.80 2.46 4.67 3.05 1.97

Speedup (%) 1.87 13.71 2.97 1.82 0.95 11.60 3.07 12.88 16.97
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5.3.4  Sensitivity to Underlying Processor Configuration

The base processor we have assumed so far is meant to represent an aggres-

sive next generation machine. It was initially configured to resemble the size and

shape of the since canceled Alpha 21464 [26], an 8-wide dynamically scheduled

processor with large caches, a sophisticated branch predictor and support for 4

concurrent threads.

It is unclear whether future generation processors will copy this wide, large

cache design. Wide superscalar designs are difficult to implement at high clock

rates. Hence, microprocessors of the future may be narrower, pipelined much

more deeply, or both. A combination of high clock rates and the desire to keep the

common-case load latency to a few cycles may require the use of small, fast, low-

associativity L1 data caches. Similarly, smaller branch predictor tables may be

needed to allow branches to be predicted in a single cycle. High clock rates will

also cause an increase in the relative latency to memory. L2 cache latency will

increase similarly, unless smaller L2 caches are also employed. This shift in

design philosophy is already evident in Intel’s Pentium 4 [41], a microprocessor

with a low-end clock frequency of 1.4GHz. The Pentium 4 is 3-wide, has a 4K-

entry branch predictor, a deep pipeline and uses a direct-mapped, 8KB L1 data

cache, and a 256KB L2 cache. The Pentium 4 also has a large L3 cache, which we

do not model.

In this section, we examine DDMT’s sensitivity to changes in the microarchi-

tecture of the base processor. There are many possible changes to consider. In

addition to processor width, cache size, and memory latency, we could explore the
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effects of larger and smaller instruction windows, deeper re-order buffers, and

clustering in the microarchitecture. However, in the interest of space, we focus on

the three initially discussed parameters as these are likely to have the most

direct impact on DDMT. Processor width determines the master thread’s

sequencing constraints and level of resource consumption and, consequently, a

DDT’s sequencing advantage and the amount of bandwidth available for pre-exe-

cution. Cache and branch predictor size effect the number of cache misses and

branch mis-predictions—PDIs—that may be targeted using pre-execution. L2,

memory and scheduling latencies effect the cost of each individual PDI.

5.3.4.1  Processor Width

DDMT has a complex sensitivity to processor width, one which—for reasons

given above—we have investigated only with processors narrower than the 8 of

our central configuration. On one hand, a narrow processor imposes stricter fetch

constraints on the master thread and makes the data-driven sequencing

employed by DDTs relatively more powerful. On the other, relative bandwidth

utilization is higher on narrower processors, making DDT overhead relatively

larger as well.

In this section we explore the effect of DDMT on processors of widths 4 and 6

in addition to our central 8-wide configuration. All other processor parameters—

the pipeline depth, amount of instruction buffering and the cache and branch pre-

dictor configurations—are fixed. Also fixed are the PI definition and the parame-

ters of the DDT selection algorithm. The one microarchitectural parameter that
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we vary with width is the DDT sequencing injection policy. In order to keep injec-

tion bandwidth constant across experiments, we inject DDTs at processor width

and the corresponding frequency. That is, to implement a DDT-1 injection policy

on a 4-wide processor we inject DDTs 4 instructions at a time once every 4 cycles.

The results are shown in the graph in Figure 5.12 and in three supporting

tables. With a new underlying processor configuration, all five levels of the imple-

mentation stack—including the baseline and the absolute upper bound (the per-

fect experiment)—must be re-evaluated. Rather than use five tables for each

implementation level, we divide the evaluation into three tables, and evaluate a

full implementation stack for each processor width in one table. Table 5.35 is the

summary evaluation of the 8-wide processor, Table 5.36 evaluates a 6-wide pro-

Figure 5.12 DDMT sensitivity to processor width.

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0

1

2

3

4

5

6

IP
C

perfect 

perfect PI

DDMT

base

em
3d

mst
bz

ip2
cra

fty
eo

n.c
eo

n.k
eo

n.r ga
p

gc
c

gz
ip

mcf
pa

rse
r

pe
rl.

d
pe

rl.
s

tw
olf

vo
rte

x
vp

r.p
vp

r.r



278
cessor, and Table 5.37 shows results for a 4-wide processor. We will use this kind

of organization in the remainder of the section.

First, lets us comment on the comparative character of the baseline machines.

Baseline IPC degrades by about 10% when processor width narrows from 8 to 6,

and by an additional 15% or so when it narrows from 6 to 4. Programs whose

IPC’s on the 8-wide processor are already low—e.g., em3d, mst and mcf—don’t

experience significant changes. In general, a narrower processor is associated

with a slightly higher average load latency and a slightly lower branch mis-pre-

diction resolution latency. Again, these variations are slight.

Next, we are interested in the results of the perfect and perfect PIs experi-

ments. In addition to performance and speedup, the tables summarize these two

experiments in a single metric—PDIs covered. This single number, more so than

the number of static PIs or the number of PIIs executed, characterizes the extent

of the load and branch problem in the baseline machine and the coverage of the

PI definition. As the tables show, processor width does not effect this metric.

We proceed to show a summary characterization of the selected DDTs.

Although the PI definitions are identical, as are the cache and branch predictor

configurations and the latencies of all operations, the DDTs selected for proces-

sors of different widths need not be identical. Recall, both processor width and

the program’s base IPC are inputs to the DDT selection algorithm. We combine

them into a single metric which estimates the master thread’s sequencing band-

width consumption (BWseq-CD). BWseq-CD is used in latency tolerance calculations
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Table 5.35 DDMT on an 8-wide processor.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI BMR lat. (c) 3.86 404.81 12.78 9.41 10.51 9.50 9.76 21.07 13.86

Load lat. (c) 21.17 54.73 5.64 2.84 2.96 2.87 2.92 4.59 3.56

IPC 1.28 0.29 3.91 3.56 3.48 2.94 3.36 1.95 2.42

Perfect PDIs covered (M) 12.98 11.81 53.92 24.74 0.91 8.06 1.85 11.18 7.56

IPC 3.77 4.46 6.23 5.16 4.17 4.02 4.26 3.64 4.30

Speedup (%) 194.74 1421.8 59.10 45.05 19.81 36.75 26.94 86.81 78.01

Perfect
PI

PDIs covered (M) 11.60 11.74 16.42 13.83 0.69 6.93 1.50 7.69 3.27

IPC 2.88 4.36 4.49 4.40 4.04 3.92 4.11 3.11 3.14

Speedup (%) 125.16 1385.9 14.61 23.71 16.04 33.43 22.47 59.36 29.86

Speedup cov’g (%) 64.27 97.48 24.72 52.63 80.97 90.95 83.41 68.38 38.28

DDT Avg. dyn. length 12.42 20.50 13.86 9.70 8.52 8.51 9.14 9.60 11.74

Avg. dyn unroll 1.00 1.00 2.26 0.23 0.00 0.00 0.00 0.59 0.36

PDIs covered (M) 9.65 11.03 9.87 6.19 0.37 3.69 0.84 3.23 1.79

DDMT DDIs renamed (M) 42.73 47.22 184.74 249.73 15.29 109.06 31.66 186.31 76.47

DDIs integrated (M) 25.05 34.29 57.59 109.18 5.48 44.28 10.83 58.20 14.45

BMR lat. (c) 3.54 180.54 11.71 7.56 8.30 6.48 7.32 18.08 12.26

Load lat. (c) 12.30 23.40 5.52 2.81 2.86 2.69 2.78 4.20 3.38

IPC 1.83 0.57 3.99 3.70 3.57 3.18 3.50 2.12 2.51

Speedup (%) 42.99 93.83 2.02 3.86 2.56 8.21 4.30 8.51 4.05

Speedup cov’g (%) 22.08 6.60 3.41 8.57 12.91 22.34 15.96 9.80 5.19

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI BMR lat. (c) 17.25 53.94 20.12 11.81 14.25 11.19 12.37 10.34 34.82

Load lat. (c) 3.10 21.82 4.04 3.45 2.83 3.62 3.20 2.86 4.20

IPC 2.74 0.63 1.82 2.60 2.78 2.21 4.53 2.71 1.68

Perfect PDIs covered (M) 64.45 99.15 23.78 43.57 24.12 43.15 5.61 6.85 21.37

IPC 3.81 3.53 3.35 4.19 4.24 3.49 5.54 4.24 3.29

Speedup (%) 38.85 462.68 83.50 61.13 52.69 58.03 22.16 56.61 95.48

Perfect
PI

PDIs covered (M) 33.58 89.67 15.95 35.26 21.20 35.65 3.26 5.47 14.79

IPC 3.19 2.77 2.74 3.80 4.00 3.17 5.18 3.93 2.50

Speedup (%) 16.32 341.58 50.10 46.34 44.10 43.53 14.17 45.36 48.66

Speedup cov’g (%) 42.00 73.83 60.00 75.79 83.71 75.01 63.95 80.11 50.96

DDT Avg. dyn. length 7.58 11.71 5.91 13.64 17.37 9.91 19.10 12.27 18.96

Avg. dyn unroll 0.03 1.70 0.75 0.01 0.05 1.06 0.00 0.53 0.78

PDIs covered (M) 12.59 62.06 7.61 26.50 11.88 26.20 1.62 4.00 8.51

DDMT DDIs renamed (M) 493.08 740.37 223.97 894.94 586.71 499.00 49.51 115.33 239.12

DDIs integrated (M) 135.39 131.26 48.37 147.48 104.95 128.93 29.74 42.65 82.24

BMR lat. (c) 15.95 40.29 18.25 10.45 13.29 8.06 9.96 6.21 34.29

Load lat. (c) 3.07 17.29 3.82 3.38 2.76 2.94 3.13 2.50 3.75

IPC 2.79 0.72 1.87 2.64 2.80 2.48 4.68 3.05 1.87

Speedup (%) 1.82 15.13 2.38 1.72 0.97 12.34 3.24 12.69 11.07

Speedup cov’g (%) 4.68 3.27 2.85 2.81 1.84 21.26 14.60 22.42 11.60
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Table 5.36 DDMT on a 6-wide processor.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI BMR lat. (c) 3.79 403.57 12.25 9.37 9.88 9.03 9.23 20.65 13.62

Load lat. (c) 20.84 54.72 5.55 2.90 2.98 2.91 2.94 4.61 3.60

IPC 1.27 0.29 3.52 3.24 3.23 2.75 3.12 1.89 2.28

Perfect PDIs covered (M) 12.98 11.81 53.94 24.75 0.90 7.98 1.84 11.17 7.55

IPC 3.66 4.26 5.09 4.47 3.82 3.64 3.87 3.39 3.82

Speedup (%) 187.55 1354.1 44.79 37.96 18.29 32.36 24.03 79.71 67.52

Perfect
PI

PDIs covered (M) 11.58 11.75 16.42 13.99 0.68 6.89 1.46 7.65 3.24

IPC 2.74 4.17 3.94 3.90 3.70 3.56 3.74 2.93 2.88

Speedup (%) 115.51 1323.6 11.96 20.53 14.51 29.62 19.79 55.45 26.65

Speedup cov’g (%) 61.59 97.75 26.70 54.09 79.33 91.53 82.38 69.57 39.47

DDT Avg. dyn. length 2.45 11.00 9.91 6.20 7.63 6.00 5.01 7.09 7.52

Avg. dyn unroll 1.00 1.00 1.65 0.24 0.00 0.00 0.00 0.53 0.32

PDIs covered (M) 8.14 11.03 9.98 6.47 0.35 4.15 0.77 3.54 1.91

DDMT DDIs renamed (M) 37.97 49.23 193.20 183.85 12.47 106.16 21.22 153.94 64.32

DDIs integrated (M) 23.23 35.58 70.91 106.01 5.56 53.57 9.77 55.02 16.23

BMR lat. (c) 3.41 174.56 11.24 7.39 7.54 5.57 6.62 17.92 11.74

Load lat. (c) 11.92 22.68 5.41 2.85 2.87 2.68 2.81 4.27 3.43

IPC 1.85 0.60 3.56 3.34 3.30 2.94 3.24 2.00 2.37

Speedup (%) 45.08 104.16 1.38 3.12 2.12 7.19 3.73 5.85 3.96

Speedup cov’g (%) 24.03 7.69 3.09 8.22 11.61 22.22 15.53 7.34 5.87

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI BMR lat. (c) 16.53 53.66 19.73 11.31 13.83 10.96 11.95 10.25 33.87

Load lat. (c) 3.12 21.79 4.06 3.49 2.89 3.66 3.20 2.93 4.23

IPC 2.62 0.62 1.77 2.42 2.57 2.12 4.08 2.50 1.65

Perfect PDIs covered (M) 64.44 99.15 23.72 43.54 24.10 43.13 5.65 6.85 21.32

IPC 3.54 3.27 3.15 3.67 3.88 3.25 4.83 3.78 3.13

Speedup (%) 35.45 427.25 77.50 51.97 50.92 52.93 18.45 51.05 89.81

Perfect
PI

PDIs covered (M) 31.62 90.56 16.34 35.23 21.03 35.52 3.26 5.47 14.83

IPC 3.00 2.61 2.63 3.39 3.68 2.99 4.57 3.54 2.40

Speedup (%) 14.71 320.58 48.13 40.23 43.28 40.64 12.01 41.69 45.49

Speedup cov’g (%) 41.51 75.03 62.11 77.40 84.99 76.79 65.06 81.66 50.66

DDT Avg. dyn. length 9.10 5.66 3.84 11.43 9.58 4.27 13.73 6.14 10.64

Avg. dyn unroll 0.03 1.33 0.67 0.01 0.00 0.59 0.00 0.53 0.81

PDIs covered (M) 10.56 73.23 7.77 25.90 13.38 23.38 1.80 3.65 8.36

DDMT DDIs renamed (M) 464.12 631.22 175.68 668.59 458.68 342.91 43.63 100.63 257.33

DDIs integrated (M) 121.03 160.49 45.30 129.34 85.06 116.11 27.49 51.88 76.41

BMR lat. (c) 14.92 38.83 17.66 10.35 12.22 7.93 10.92 4.44 32.84

Load lat. (c) 3.11 17.12 3.80 3.43 2.81 3.01 3.14 2.45 3.70

IPC 2.65 0.70 1.82 2.38 2.58 2.30 4.17 2.87 1.85

Speedup (%) 1.24 13.26 2.32 -1.36 0.33 8.44 2.22 14.71 12.07

Speedup cov’g (%) 3.50 3.10 2.99 -2.61 0.65 15.94 12.02 28.81 13.44
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Table 5.37 DDMT on a 4-wide processor.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI BMR lat. (c) 3.97 402.22 11.53 9.36 9.89 9.11 9.44 20.10 13.50

Load lat. (c) 20.26 54.70 5.39 2.97 2.98 2.94 2.96 4.61 3.67

IPC 1.26 0.29 2.81 2.62 2.65 2.27 2.53 1.71 1.92

Perfect PDIs covered (M) 12.94 11.81 53.89 24.76 0.88 7.98 1.82 11.16 7.54

IPC 3.18 3.67 3.58 3.34 3.02 2.82 2.98 2.81 2.84

Speedup (%) 153.32 1153.4 27.70 27.11 13.94 24.45 17.76 63.94 47.81

Perfect
PI

PDIs covered (M) 11.62 11.76 16.19 13.99 0.66 6.88 1.45 7.61 3.21

IPC 2.47 3.59 3.04 3.02 2.93 2.77 2.89 2.51 2.32

Speedup (%) 96.73 1126.6 8.39 15.10 10.60 22.31 14.45 46.49 20.80

Speedup cov’g (%) 63.09 97.68 30.29 55.71 76.10 91.24 81.39 72.71 43.52

DDT Avg. dyn. length 2.39 11.00 7.47 5.71 5.22 5.38 4.46 6.29 6.61

Avg. dyn unroll 0.87 1.00 1.26 0.23 0.00 0.00 0.00 0.51 0.27

PDIs covered (M) 7.97 11.04 10.33 5.80 0.36 4.85 0.81 3.52 2.03

DDMT DDIs renamed (M) 40.20 46.92 162.82 126.88 7.60 95.28 16.58 109.67 50.54

DDIs integrated (M) 23.80 36.69 68.75 78.92 4.72 42.03 9.09 60.10 19.02

BMR lat. (c) 3.21 209.07 10.16 7.57 7.50 6.63 7.16 17.31 11.07

Load lat. (c) 10.75 26.58 5.25 2.92 2.90 2.77 2.83 4.30 3.47

IPC 1.81 0.53 2.83 2.66 2.67 2.29 2.56 1.76 1.98

Speedup (%) 43.78 81.61 0.93 1.44 0.75 0.96 1.37 2.62 3.17

Speedup cov’g (%) 28.55 7.08 3.36 5.31 5.39 3.93 7.71 4.09 6.63

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI BMR lat. (c) 15.00 52.86 18.85 11.10 12.94 10.75 12.06 10.49 33.73

Load lat. (c) 3.23 21.64 4.08 3.51 2.95 3.65 3.21 3.05 4.27

IPC 2.32 0.61 1.65 2.06 2.17 1.91 3.11 2.12 1.54

Perfect PDIs covered (M) 64.59 99.12 23.58 43.44 24.12 43.04 5.65 6.85 21.27

IPC 2.94 2.71 2.73 2.87 3.05 2.71 3.47 3.02 2.72

Speedup (%) 26.51 346.75 65.67 39.02 40.33 41.87 11.41 42.49 76.41

Perfect
PI

PDIs covered (M) 18.87 91.32 16.21 34.67 20.85 35.45 3.24 5.46 14.80

IPC 2.52 2.26 2.35 2.70 2.94 2.55 3.35 2.85 2.14

Speedup (%) 8.62 271.63 42.72 30.94 35.28 33.07 7.64 34.53 39.00

Speedup cov’g (%) 32.52 78.34 65.06 79.30 87.49 79.00 66.94 81.26 51.04

DDT Avg. dyn. length 16.12 5.07 3.67 8.21 9.01 3.82 13.52 5.63 8.01

Avg. dyn unroll 0.01 1.19 0.51 0.00 0.00 0.45 0.00 0.45 0.67

PDIs covered (M) 2.49 61.84 7.82 25.01 14.26 23.66 1.95 3.36 8.91

DDMT DDIs renamed (M) 233.36 610.52 150.57 419.25 370.80 220.64 43.60 83.10 223.81

DDIs integrated (M) 138.48 165.52 59.81 155.66 82.42 109.46 29.18 48.06 143.79

BMR lat. (c) 13.47 37.61 16.84 9.23 11.35 7.50 9.66 4.31 28.33

Load lat. (c) 3.16 17.01 3.75 3.45 2.86 3.07 3.14 2.54 3.41

IPC 2.34 0.69 1.66 2.06 2.14 2.00 3.16 2.29 1.76

Speedup (%) 0.69 13.34 0.72 -0.19 -1.57 4.66 1.61 7.77 14.39

Speedup cov’g (%) 2.60 3.85 1.10 -0.48 -3.89 11.13 14.11 18.28 18.83
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where we use it to approximate the master thread’s sequencing constraint, and

thereby a DDT’s sequencing advantage. The ratio of BWseq-CD to the width of the

machine is also used in overhead estimations as a master thread utilization fac-

tor. Certainly, changing this one metric can have a large impact on the character

of DDTs selected.

A narrower processor results in a lower BWseq-CD as both processor width and

the particular program’s base IPC drop. In general, a lower BWseq-CD will result

in shorter DDTs that employ unrolling less aggressively. With a lower BWseq-CD

value, the DDT selection algorithm sees the master thread as extremely sequenc-

ing constrained, making data-driven sequencing relatively that much more pow-

erful. On a narrower processor, every master thread instruction skipped in a DDT

has a proportionately larger impact on latency tolerance. Since fewer master

thread instructions must be skipped to allow a DDT to achieve a certain sequenc-

ing advantage, shorter DDTs are needed. This effect is dampened somewhat in

DDTs that attack long L2 cache misses, as hiding the latency of the operation

may require a high sequencing advantage even on a narrower machine. Overhead

also contributes to keeping DDTs short. Since a narrower processor is usually

more highly utilized by the master thread, the cost of longer DDTs is correctly

seen as relatively higher by the DDT selection algorithm.

The tables show exactly these trends; average DDT length and unrolling

degree are lower in the narrow processor cases. The long exception is gzip. In

gzip, a narrower machine results in longer (albeit less unrolled) DDTs. On a

wider machine, the DDT selection algorithm fails to create DDTs for certain
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PDIs, perceiving the DDT’s sequencing advantage as insufficient to achieve a cer-

tain level of latency tolerance within the size and scope restrictions of the algo-

rithm. However, on a narrower machine the DDT’s perceived sequencing

advantages grows. In gzip’s case, it grows to the point where DDTs with sufficient

latency tolerance can now be found within the search constraints. These DDTs

will be long as they just barely “fit” under one or more of the size, scope and

unrolling constraints.

Finally, we show the results of our DDMT experiment. With shorter DDTs, a

narrower processor renames fewer DDT instructions. This is a general observa-

tion, not a rule, as while DDTs may be shorter, there may be more of them. Sur-

prisingly perhaps, while fewer DDT instructions are renamed on the narrower

machine, in general more are integrated. Not only are shorter DDTs less likely to

have difficult to integrate regions, they are more likely to be control-equivalent

with their trigger instruction. Latency reductions—both load and branch resolu-

tion—are similar on processors of different widths. This is not a surprise as the

latency tolerance criteria of the DDT selection algorithm were fixed.

Ultimately, DDMT’s performance impact on narrower machines is slightly

lower than it is on wider machines, as higher processor utilization by the master

thread makes DDMT relatively more expensive. In fact, while no program experi-

ence a DDMT induced slowdown on an 8-wide processor, perl.d does on a 6-wide

processor, and both perl benchmarks do on the 4-wide processor. Performance

impact can be relatively higher on a narrower machine as the result of shorter,

more efficient DDTs enabled by DDMT’s increased sequencing advantage. How-
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ever, the important point is that performance impact relative to potential perfor-

mance impact—i.e., speedup coverage—is stable if not slightly increasing due to

the “compressed nature” of the narrower processors’ performance stack.

On a closing note, in Section 5.2.5.4, we claimed that while DDMT overhead is

negligible on a wide processor its effects would be felt more strongly on a nar-

rower machine. While we still believe this to be the case, results for an “overhead-

less” DDMT experiment are not shown. The flaw in our “overhead-less” model is

magnified on a narrower processor.

5.3.4.2  Cache and Branch Predictor Table Size

As seen in our functional benchmark characterization (Table 5.5), most of the

benchmarks we study have low cache miss rates for our central, large-cache con-

figuration. This is especially true for L2 misses, which are effectively zero in

many programs. Branch mis-predictions are also relatively infrequent—although

less so when compared to cache misses—as the baseline predictor has extremely

large, 16K-entry tables.

For our second experiment in our base processor sensitivity analysis, we mea-

sure the performance of DDMT on a processor with smaller caches and a smaller

branch predictor. In this new configuration, we cut the size of the L1 data cache,

the L2 cache and the branch predictor tables by a factor of 8. The branch predic-

tor algorithm and organization and the cache block size remain the same. How-

ever, we use a direct-mapped L1 data cache, rather than one with an associativity

of 2. The direct-mapped, 8KB L1 data cache matches that of the Pentium 4. The
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branch predictor tables and the 128KB L2 cache are a factor of 2 smaller than

those used in the Pentium 4. The purpose of this experiment is not to model any

single future processor carefully—the Pentium 4 is a 3-wide machine whereas our

base processor is an 8-wide machine—but to gauge the effectiveness of DDMT in

scenarios with far larger numbers of cache misses and mis-predicted branches. As

in the previous section, we keep all other parameters, including PI definition and

DDT selection algorithm configuration, constant.

We compare the performance stack of this, smaller cache/predictor-table pro-

cessor configuration (s) with that of our central configuration (c) in the graph in

Figure 5.13. A hierarchical evaluation of the new configuration is presented in

Table 5.38. Again, the parallel evaluation of the central configuration is in

Figure 5.13 DDMT sensitivity to cache and branch predictor size.
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Table 5.38 DDMT on a processor with smaller caches and branch predictor tables.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI BMR lat. (c) 3.73 864.46 16.36 10.88 10.86 10.36 10.44 20.95 14.44

Load lat. (c) 46.46 61.05 8.83 4.08 3.58 3.49 3.52 5.68 5.42

IPC 0.71 0.18 2.96 2.43 2.80 2.45 2.74 1.57 1.44

Perfect PDIs covered (M) 15.62 12.26 78.73 142.36 4.75 25.20 7.61 32.27 18.14

IPC 3.76 4.34 5.95 4.49 3.93 3.80 3.99 3.37 2.69

Speedup (%) 428.75 2309.6 100.95 84.59 40.38 54.94 45.76 114.07 86.14

Perfect
PI

PDIs covered (M) 14.17 12.16 25.23 86.14 3.56 18.28 5.84 18.85 5.55

IPC 3.06 4.21 3.58 3.54 3.72 3.53 3.79 2.64 1.75

Speedup (%) 329.96 2237.2 21.12 45.66 32.92 44.15 38.37 67.56 21.44

Speedup cov’g (%) 76.96 96.87 20.92 53.98 81.54 80.37 83.85 59.23 24.88

DDT Avg. dyn. length 2.00 10.74 8.01 6.61 5.34 6.09 5.65 7.74 7.03

Avg. dyn unroll 1.00 0.98 0.83 0.11 0.04 0.04 0.11 0.33 0.56

PDIs covered (M) 10.86 11.42 8.89 39.11 2.73 13.61 4.49 10.75 2.80

DDMT DDIs renamed (M) 53.23 50.72 184.03 707.56 38.22 255.93 70.90 364.10 85.97

DDIs integrated (M) 25.28 34.65 47.28 224.74 11.45 63.17 20.20 88.12 18.22

BMR lat. (c) 3.42 231.53 13.38 9.07 8.04 7.43 7.23 16.86 12.87

Load lat. (c) 24.96 24.38 8.69 3.86 3.15 3.07 3.06 5.09 5.17

IPC 0.99 0.43 3.08 2.52 3.01 2.64 2.97 1.73 1.50

Speedup (%) 38.73 137.50 4.00 3.56 7.45 7.75 8.47 9.77 3.92

Speedup cov’g (%) 9.03 5.95 3.96 4.21 18.44 14.11 18.50 8.56 4.55

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI BMR lat. (c) 29.26 76.22 29.61 13.50 15.64 29.28 11.33 22.32 58.45

Load lat. (c) 5.30 40.57 6.94 4.32 3.56 14.33 4.12 6.88 6.82

IPC 1.79 0.28 1.25 1.62 1.93 0.93 2.63 1.50 1.10

Perfect PDIs covered (M) 140.99 110.94 47.10 125.87 108.89 67.35 40.88 15.35 47.08

IPC 3.69 3.08 3.19 2.95 3.63 3.07 3.96 4.08 3.16

Speedup (%) 106.81 987.90 155.34 82.48 88.56 230.81 50.44 171.83 188.10

Perfect
PI

PDIs covered (M) 116.30 98.52 31.55 73.77 82.83 54.67 25.86 13.43 39.33

IPC 3.20 2.21 2.33 2.44 3.29 2.49 3.45 3.59 2.52

Speedup (%) 79.04 680.90 86.44 51.24 70.76 168.61 31.09 139.20 129.82

Speedup cov’g (%) 74.00 68.92 55.64 62.12 79.90 73.05 61.63 81.01 69.02

DDT Avg. dyn. length 8.44 8.45 5.25 7.62 8.44 5.98 11.97 6.31 10.45

Avg. dyn unroll 0.13 2.47 0.45 0.05 0.00 1.07 0.01 0.53 0.50

PDIs covered (M) 44.05 79.15 13.91 52.08 57.34 37.93 18.54 8.18 13.85

DDMT DDIs renamed (M) 960.41 720.61 365.90 1142.4 1079.8 561.86 411.02 147.80 388.55

DDIs integrated (M) 188.55 161.96 82.07 213.58 273.13 149.95 143.12 52.82 108.93

BMR lat. (c) 27.41 67.41 26.12 11.80 12.95 20.84 9.92 13.26 57.07

Load lat. (c) 4.74 36.42 6.47 4.06 3.28 9.46 3.76 5.34 5.82

IPC 1.85 0.30 1.32 1.66 2.03 1.21 2.72 1.82 1.23

Speedup (%) 3.42 5.45 6.09 2.43 5.21 30.00 3.37 21.17 12.01

Speedup cov’g (%) 3.20 0.55 3.92 2.94 5.89 13.00 6.69 12.32 6.39
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Table 5.35.

Table 5.5 showed that the smaller cache and branch predictor configuration

produces a significant number of additional branch mis-predictions, L1 cache

misses, and L2 cache misses. As the graph and Table 5.38 show, these additional

misses result in significantly higher average load latencies and significantly

lower baseline performance. The branch mis-prediction resolution latency (BMR)

also rises, but less significantly. This rise is due the increased cache miss inci-

dence in mis-predicted branch computations.

With a fixed PI definition, the higher miss and mis-prediction rates result in

higher numbers of PDIs. This increase is due both to a larger number of PDIs per

PI and the addition of new PIs which now meet the definition’s thresholds.

The character of the chosen DDTs is also affected by the underlying processor

configuration. However, in contrast with processor width which affects DDT

selection in one main way, multiple effects are at work here. The effect we saw in

the processor width case—the lower BWseq-CD—is also present here. Although

processor width is fixed, base IPC is much lower relative to the central configura-

tion. We have seen that a lower BWseq-CD results in shorter DDTs. However, here

the shorter DDT effect is less pronounced since overhead considerations are lower

due to our use of a wide machine. Counter-acting this first effect, is the fact that

PDIs have a higher average level of desired latency tolerance, LTdes. In an aggre-

gate sense, this is due to the increased presence of L2 cache misses. However,

LTdes increases even for L1 cache miss and branch mis-prediction PDIs due to an

increased incidence of cache misses in their computations. A higher LTdes tends
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to create longer, more highly unrolled DDTs, as these are needed to hide the addi-

tional latency. The net change in the character of chosen DDTs reflects the stron-

ger of these two effects. In gcc and mcf, the average PDI latency increase is higher

than the gain in sequencing advantage resulting in higher levels of unrolling. In

bzip2 and crafty, the sequencing advantage is higher resulting in shorter DDTs.

The relative character of the chosen DDTs determines the runtime level of

pre-execution activity. Programs for which longer DDTs were chosen typically

execute and integrate more DDT instructions. However, this is not always the

case here. With more PDIs to cover and more PDIs covered by the chosen DDTs,

more total instructions can pre-execute and be integrated as a result of the

increased number of DDT, while each individual DDT is shorter. This was not the

case in the processor-width experiment where the number of PDIs effectively

stayed constant. Absolute reductions in BMR and load latencies are larger in the

smaller cache configuration. Relative reductions vary and performance impact

varies with them. In twolf, for instance, relative reductions increase from about

20% to about 35%. Consequently, DDMT’s performance impact in twolf increases

from a 12% improvement to a 30% improvement. Most benchmarks, in fact, see

substantial increases in performance impact. None are as large in an absolute

sense as the one experience by twolf, but several benchmarks see the impact of

DDMT double and more. In parser, for instance, speedup jumps from 2% to 6%,

and in vpr.p from 12% to 21%. In a few programs, DDMT’s impact is reduced. Mcf

is the primary example with performance improvement dipping from 15% to 5%.

In mcf, the constraints of the DDT selection algorithm—which we left fixed—pre-
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vent the chosen DDTs from dealing effectively with the increased latency of the

PDI computations which contain many cache misses. The average dynamic

unrolling degree for mcf in the small cache experiment is 2.47. With a maximum

unrolling degree of 4, this means that many dynamic DDTs are unrolled to the

maximum allowed level. Other benchmarks like em3d and gcc also see a decline

in DDMT’s effectiveness, although this decline is less than 10% (relative).

Experimenting with narrower processors, we saw DDMT’s absolute impact

decline but its efficiency—speedup coverage or impact relative to potential

impact—rise. The opposite is true here. With lower baseline performance, the

“performance potential stack” expands, leading to lower relative efficiencies

although absolute gains improve.

Before we proceed, we must make a point about our experiences with different

base processor configurations. Earlier, we mentioned that DDMT’s effectiveness

on mcf degrades as the DDT selection algorithm becomes actively constrained by

the allowed unrolling degree. Presumably, better performance could be obtained

by unconstraining this parameter. While we have experimented with several base

processor configurations, we have not performed the sensitivity analysis required

to tune DDMT for each of these configurations. For instance, we have seen that

our central configuration is relatively performance insensitive to the PI defini-

tion. However, our central configuration also had relatively few PDIs. If more

PDIs are present as they are in this case, it may be advantageous to narrow the

PI definition, or perhaps to expand it. These and other investigations are fertile

ground for future work.
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5.3.4.3  L2 Cache, Memory and Branch Resolution Latencies

For the final experiment of this portion of the sensitivity analysis, we measure

DDMT’s sensitivity to PDI latency. Smaller caches and branch predictor tables

increase the PDI population. A faster clock and deeper pipelining increase the

latency of load and branch PDIs, respectively. Breaking with our tradition of

investigating a single change from our central design point, we model these addi-

tional latencies on top of the small cache and branch predictor configuration

introduced in the previous section. We do this because our central configuration

does not experience enough L2 cache misses to expose memory latency. We

increase the L2 cache latency from 6 to 12 cycles, increasing the effective L2

cache hit time from 10 to 16 cycles. We increase memory latency from 70 to 140

cycles. Branch mis-prediction resolution latency is increased by increasing pipe-

line depth. Adding depth at any logical pipeline stage suffices to increase resolu-

tion latency. However, because DDMT uses register integration as its mis-

prediction resolution mechanism, only the additional stages after register renam-

ing can be attacked by DDMT. Our central configuration has a “scheduling

latency” of 3 cycles—we model a single cycle scheduler and 2 cycles to read the

physical register file. This latency is observed only upon entry to the instruction

window. It is not added to the program’s critical path as the scheduler can sched-

ule dependent instructions in consecutive cycles. In this new configuration, we

increase the scheduling latency to 6 cycles. The Pentium 4 also has a 6 cycle

scheduling latency.
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The performance of DDMT in this new configuration is shown in Figure 5.14.

The new configuration is called slow (l) and is the right bar in each group. The

two other bars are our central (c) configuration and the small (s) configuration

from the previous section. The hierarchical evaluation of the slow configuration is

presented in Table 5.39.

The increased pipeline depth and cache and memory latencies cause the aver-

age branch mis-prediction resolution (BMR) and load latencies to rise by about

80% from their small (s) configuration values. Performance degrades about 40%

from the same, stretching the “performance potential stack” even further as most

benchmarks have difficulty achieving IPCs much greater than 1.

At the same time, the PDI coverage of the PI definition expands only slightly.

Figure 5.14 DDMT sensitivity to cache, memory and branch resolution latencies.

c c c c c c c c c c c c c c c c c cs s s s s s s s s s s s s s s s s sl l l l l l l l l l l l l l l l l l
0

1

2

3

4

5

6

IP
C

perfect 

perfect PI

DDMT

base

em
3d

mst
bz

ip2
cra

fty
eo

n.c
eo

n.k
eo

n.r ga
p

gc
c

gz
ip

mcf
pa

rse
r

pe
rl.

d
pe

rl.
s

tw
olf

vo
rte

x
vp

r.p
vp

r.r



292
Table 5.39 DDMT on a processor with smaller caches and longer memory latencies.

em3d mst bzip2 crafty eon.c eon.k eon.r gap gcc

RI BMR lat. (c) 8.15 1656.9 25.92 17.37 16.21 15.58 15.80 33.55 24.16

Load lat. (c) 75.96 115.87 14.33 5.42 4.34 4.27 4.24 8.33 7.93

IPC 0.44 0.10 1.95 1.78 2.26 1.92 2.17 1.05 0.96

Perfect PDIs covered (M) 15.60 12.26 78.12 142.64 4.76 25.10 7.60 32.40 18.17

IPC 3.60 4.00 5.73 4.23 3.53 3.35 3.57 2.70 2.02

Speedup (%) 718.08 4115.7 193.48 137.37 56.41 73.96 64.23 157.33 109.44

Perfect
PI

PDIs covered (M) 15.49 12.16 32.78 89.63 4.22 20.58 6.47 19.90 5.87

IPC 2.79 3.80 2.50 2.94 3.39 3.07 3.34 1.94 1.19

Speedup (%) 533.87 3901.4 28.37 64.69 50.19 59.56 53.58 84.51 23.93

Speedup cov’g (%) 74.35 94.79 14.66 47.09 88.98 80.53 83.41 53.72 21.87

DDT Avg. dyn. length 2.71 12.21 5.86 6.87 5.98 6.80 6.79 8.89 8.27

Avg. dyn unroll 1.24 1.47 0.33 0.19 0.03 0.06 0.11 0.42 0.41

PDIs covered (M) 12.62 11.42 14.65 38.60 3.09 14.98 4.43 9.97 2.64

DDMT DDIs renamed (M) 63.61 53.62 443.59 862.81 55.11 324.97 98.32 471.26 102.39

DDIs integrated (M) 32.79 26.29 77.57 249.12 13.20 65.39 20.12 87.56 18.03

BMR lat. (c) 2.89 893.46 19.86 14.68 12.66 11.16 11.91 27.91 21.85

Load lat. (c) 25.47 63.83 14.14 5.17 3.60 3.63 3.66 7.51 7.60

IPC 0.79 0.14 2.05 1.88 2.47 2.13 2.37 1.16 1.00

Speedup (%) 78.74 49.05 5.18 5.25 9.37 10.63 9.06 10.38 4.13

Speedup cov’g (%) 10.96 1.19 2.68 3.82 16.62 14.37 14.10 6.60 3.77

gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

RI BMR lat. (c) 46.69 139.70 49.07 21.41 23.32 52.01 19.36 39.44 98.26

Load lat. (c) 7.68 74.31 11.23 6.06 4.36 25.82 5.31 11.36 10.69

IPC 1.30 0.15 0.80 1.13 1.46 0.56 1.74 0.95 0.70

Perfect PDIs covered (M) 141.40 111.02 47.20 125.74 109.13 67.59 40.88 15.36 47.12

IPC 3.49 3.00 2.87 2.32 3.14 2.59 2.99 3.81 3.00

Speedup (%) 168.70 1845.6 259.54 105.13 115.55 364.61 71.48 299.94 327.56

Perfect
PI

PDIs covered (M) 116.38 99.54 32.24 84.18 87.06 57.17 27.28 13.90 39.56

IPC 2.86 1.90 1.74 1.83 2.74 1.93 2.48 3.08 2.18

Speedup (%) 120.17 1133.8 117.51 61.56 88.03 245.52 42.48 223.13 210.78

Speedup cov’g (%) 71.23 61.43 45.28 58.56 76.18 67.34 59.43 74.39 64.35

DDT Avg. dyn. length 8.43 6.80 5.92 8.15 9.23 6.50 11.23 6.05 11.12

Avg. dyn unroll 0.22 1.43 0.59 0.06 0.16 0.99 0.06 0.57 0.47

PDIs covered (M) 39.71 23.22 12.03 47.35 55.04 30.41 18.91 7.40 11.66

DDMT DDIs renamed (M) 1214.2 381.37 461.47 1553.8 1138.2 581.66 434.01 164.27 418.08

DDIs integrated (M) 188.89 97.88 80.42 203.31 248.94 143.76 150.91 54.99 83.15

BMR lat. (c) 40.52 134.26 42.97 18.89 20.84 39.60 17.28 22.65 94.00

Load lat. (c) 6.55 68.68 10.46 5.83 4.13 18.68 4.78 8.87 9.06

IPC 1.42 0.16 0.86 1.17 1.51 0.72 1.80 1.21 0.80

Speedup (%) 9.18 3.11 7.65 3.64 3.87 29.55 3.29 26.71 14.03

Speedup cov’g (%) 5.44 0.17 2.95 3.46 3.35 8.10 4.60 8.90 4.28



293
Recall, our central PI definition used minimum problem latency thresholds for

both loads and branches. No new PIs are admitted by this definition by sole vir-

tue of the increase in their problem latencies.

The character of selected DDTs is also predictable from trends we have

observed previously. Longer latencies require longer DDTs and higher degrees of

unrolling to hide them. In most benchmarks, such longer DDTs are, in fact, cho-

sen. However, when very long serial latencies must be tolerated, as is the case in

mst and mcf, a second effect is activated. Specifically, the desired levels of latency

tolerance of serial loads are so high, that within the slicing window and size con-

straints no DDTs can be found that tolerate a sufficient fraction of this latency as

mandated by the latency tolerance acceptability threshold (LCAF). DDTs that

tolerate latency at sub-LCAF levels are rejected. The increased minimal latency

tolerance demands and the upper bound constraints of the DDT selection algo-

rithm effectively “cross” one another, resulting in an empty set of DDTs for a

given set of PDIs. This “cross-over” effect is a pathology in our current implemen-

tation which degrades its robustness under extreme conditions. Fixing this

pathology is a straightforward piece of future work. To find DDTs that can toler-

ate very long latencies with our current implementation, either the scope and size

constraints of the DDT selection algorithm must be relaxed, or the LCAF must be

lowered so that it admits as much partial latency tolerance as possible. We have

not performed the sensitivity analysis to measure the validity of this hypothesis.

DDMT performance impacts track those observed in the small cache configu-

ration well. In general, performance improvement stays steady or even increases
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slightly as the chosen DDTs tolerate more absolute latency than those chosen for

the lower latency small (s) configuration. Exceptions to this general rule are pro-

grams, like mst and mcf, which experience the counter-productive “cross-over”

effect described in the previous paragraph. On the other hand, speedup coverage

is low, again due to the depressed baseline IPCs and the relatively high potential

improvement (perfect or perfect PIs) associated with them.

5.4  Chapter Summary

This chapter presented a simulation-driven performance evaluation of DDMT.

We performed a detailed analysis of a single DDMT design point, attributing per-

formance and overhead to each component of the system. We follow with a sensi-

tivity analysis, measuring the impact of changes to DDMT-specific components,

the DDT selection algorithm, the relationship between DDMT’s setup and runt-

ime phases, and the configuration of the base microprocessor.

The results of this broad but preliminary performance evaluation are encour-

aging. Added to an aggressive, wide, superscalar processor with large caches and

a large branch predictor, DDMT produces large speedups on challenging micro-

benchmarks and performance improvements in the 10% to 15% range on integer

benchmarks. These performance improvements are 20% to 35% of the improve-

ments obtained by “perfecting” (idealizing) the targeted instructions.

Our sensitivity analysis showed that DDMT is sensitive to only a few pre-exe-

cution specific microarchitectural parameters, most notably IT associativity and

the load integration suppression mechanism. DDMT’s static finite DDTs and its
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exclusion of trigger chaining result in a “naturally-throttled” pre-execution model

that suppresses resource contention. Consequently, DDMT is insensitive to most

bandwidth and resource variations.

DDT selection can effect DDMT performance by covering varying numbers of

PDIs and achieving different levels of latency tolerance per PDI covered. Both

quantities (and hence DDMT performance) are particularly sensitive the esti-

mate of the master thread’s sequencing rate. This value determines the perceived

DDT sequencing advantage and controls the size and latency tolerance of the

selected DDTs. DDT size and unrolling constraints and latency tolerance require-

ments also play roles in DDT selection and DDMT performance.

One extremely positive result is that both the PI definition and the DDTs that

pre-execute the PDIs of chosen PIs are largely independent of the program sam-

ple used to acquire them. This implies that DDMT’s setup component may be

implemented in any number of ways, including offline using different input sets.

DDMT’s performance impact grows when we vary the underlying microarchi-

tecture to model characteristics of likely future processors. These characteris-

tics—including smaller caches, deeper pipelines, and longer perceived memory

latencies—are all driven by increasing clock frequency. Smaller caches and

branch predictor tables create more PDIs, while longer pipelines and cache and

memory latencies increase the cost of each individual PDI. With more work to do

and lower master thread processor utilization, DDMT’s performance gains double

for certain programs. This doubling occurs without tuning the DDMT microarchi-

tectural components or the selection algorithm for these new conditions.
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Chapter 6

Related Work

My work on pre-execution and DDMT was inspired and influenced by prior

and contemporaneous work of many others on various realized and proposed sys-

tems. I would also like to think that it has influenced a number of subsequent

research initiatives and has played a part in popularizing this research direction.

In this chapter, I describe pre-execution’s influences—both backwards and for-

wards—and point out the similarities and differences. The chapter is organized

into four sections. The first describes pre-execution’s development from my

research perspective, beginning with simple, domain-specific mechanisms and

slowly generalizing to DDMT. The last three describe prior, contemporaneous and

subsequent efforts by others.

6.1  Pre-Execution: My Retrospective

DDMT is the last of my four incarnations of pre-execution. Early incarnations

were simple, highly specialized mechanisms for attacking specific classes of prob-

lem instructions. They gradually evolved into DDMT, the general purpose Swiss-
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Army-knife of pre-execution. This section is my retrospective on this process. In

hindsight, pre-execution was as much a product of other research going on in the

group at the time as it was of almost anything else.

6.1.1  Dependence-Based Prefetching for Linked Data Structures

Dependence based prefetching (DBP) [68] was my initial foray into pre-execu-

tion. It was inspired by Luk and Mowry’s work on compiler prefetching for

linked—i.e., pointer-based—data structures [55]. Recognizing that prefetch

addresses for linked data structures (LDS) could not be guessed arithmetically,

the initial aim was to create a dynamic hardware version of Luk and Mowry’s

compiler-based greedy prefetching algorithm. In the software version, the com-

piler recognized instructions that accessed pointers and then scheduled copies of

those instructions immediately after the instruction that loaded the correspond-

ing pointer address. The idea was to create an analogous hardware mechanism

that recognizes loads that load pointer values and loads that dereference pointer

values and then to use dynamic instances of the former to trigger scheduling of

copies of the latter. The argument was that decoupling and the lack of sequencing

overhead would give the hardware version better latency tolerance and perfor-

mance characteristics than its software counterpart. The term dependence-based

prefetching was coined to distinguish this early form of pre-execution from

address-based prefetching.

Implementing DBP—at least in a simulator—was easy. My office-mate at the

time, Andreas Moshovos, knew all about address dependences and mechanisms
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for capturing and representing them. The dependence predictor used was a

reverse—forward rather than backward—version of one of his post-retirement

buffer-based designs [59]. The predictor acted in conjunction with a small queue

of prefetch addresses. The predictor was accessed on the completion of every load.

If the load matched as a pointer producer, dedicated address generators used the

loaded values to compute prefetch addresses of the pointer consumer loads and

enqueued those addresses onto the prefetch queue. Asynchronous prefetching—

i.e., pre-execution—was implemented by allowing completed prefetches to access

the predictor and spawn other prefetches as well.

6.1.2  Dependence-Based Pre-Computation for Virtual Function Calls

The simplicity and success of dependence based prefetching led me to look for

other applications of the same technique. Pre-computation of chronically mis-pre-

dicted branches was an obvious choice, but required extreme generalizations to

the dependence detection and pre-execution mechanisms. The simplicities of the

pointer chasing idiom—i.e., its exclusive use of loads which implied a single input

and a single trigger for every pre-executed instruction—allowed dependence

based prefetching to use an extremely simple mechanism. Expanding this mecha-

nism to encompass computations of general shape was a difficult task. Fortu-

nately, one class of pathologically mis-predicted control-transfers was

idiomatically similar to pointer-chasing. The target addresses of virtual functions

are computed by following pointers from objects to virtual function tables, allow-

ing pre-computation of these targets using an unmodified version of the depen-
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dence based prefetch mechanism [69].

Pre-computation of virtual function addresses did require one component that

dependence-based prefetching did not. In cache—i.e., non-binding—prefetching,

there is no need for a mechanism to correlate a given prefetch with a given load.

That function is performed implicitly and perfectly by the cache. In target pre-

computation, however, a mechanism that correlates a pre-computed target with

its intended dynamic function call is crucial as mis-correlated results are use-

less—if not harmful—results. The solution I found relied on control-based inter-

leaving invariants. The observation is that instructions that trigger pre-

computations and their intended dynamic virtual function calls form interleaved

sequences. A simple sequence numbering scheme could divide the dynamic

stream into epochs separated by virtual function call instances. A virtual function

call always used a prediction that was triggered by an instruction from the imme-

diately older epoch. A more robust formulation of this same solution was later

found by Zilles, who called epochs valid regions [106]. As it turns out, the key

insight is that with some static analysis and statically-generated hints, control-

flow in the master thread can be used to manage epochs with extreme accuracy.

6.1.3  A Speculative Dataflow Processor

Following the work on dependence-based prefetching and pre-computation,

the next step was to create a pre-execution system that could handle all problem

instructions and hence computations of all shapes. The internal static represen-

tation of inter-instruction dependences used by the first two systems was simi-
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lar—not coincidentally of course—to the static program representation used by

dataflow machines [5, 24, 42, 46, 63, 74, 75, 89, 91, 98]. And, of course, the

sequencing model was data-driven. I argued that, since a dataflow machine could

theoretically handle arbitrary computations, it should be possible to create a

small speculative dataflow machine, interface it with the main superscalar pro-

cessor and use it to execute generalized computations learned by a generalized

dependence detection circuit.

Speculative dataflow [72] worked beautifully. The erstwhile prefetch queue—

which circularly fed back to itself via the memory system and the dependence

predictor was the perfect analog of the token queue used in dataflow machines.

Replaced with a generalized work (token) queue, it provided the perfect interface

point between the main superscalar processor and the speculative dataflow pro-

cessor. The dataflow component—a small, simplified implementation of the

tagged-token dataflow architecture (TTDA) [5]—meshed naturally with the

superscalar processor’s dynamic scheduler.

It was at this time that register integration was also first conceived. Inspira-

tion for register integration came from two directions. The first was a desire to

fully mesh the dataflow processor with the out-of-order execution engine of the

superscalar processor—this implied sharing the physical register file. The second

was a performance-driven desire to avoid re-execution of pre-executed results by

adapting Avinash Sodani’s instruction reuse [82].
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6.1.4  DDMT

The speculative dataflow processor had two problems. First, dynamically

learning and internally representing computations of arbitrary shapes was a

much more difficult task than I initially realized. Even the unreasonably compli-

cated dependence detection machinery we employed could only recognize compu-

tations with simple structure. The dual superscalar/dataflow organization of the

processor was perceived as unduly complex and unattractive from an implemen-

tation standpoint.

Speculative data-driven multithreading (DDMT) [71, 73] was conceived to

address these concerns. Rather than dataflow, DDMT was initially designed as an

extension to SMT which seemed like a probable microarchitecture for future pro-

cessors. To mesh with SMT, the pre-execution static representation was converted

from the difficult-to-construct static data-driven form to a more palatable, more

manageable sequential form—a compressed sequence of instructions called the

data-driven thread (DDT). Finally, the task of discovering and extracting pre-exe-

cution candidate computations was moved out of simulated hardware to a soft-

ware form which we claimed modeled an offline, profile-driven implementation.

The move from speculative dataflow to DDMT has paid dividends. The current

implementation of DDMT is relatively clean and straightforward while the sepa-

ration and juxtaposition of computation selection from computation pre-execution

has helped provide valuable insight into both aspects.
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6.2  Earlier Work

This section describes prior work that relates—either by comparison or con-

trast—to pre-execution’s processing model or to any high-level component of the

model like result reuse.

6.2.1  Dataflow Architectures

The most important aspect of pre-execution is its ability to fully decouple the

processing of long latency problem computations from the rest of the program.

Decoupling allows hiding (overlapping) of long latencies. It also enables an easy

and straightforward implementation of “compressed” data-driven sequencing of

problem computations, which allows problem operations to be reached and initi-

ated at data-flow speeds. The importance of these two properties—latency over-

lapping and data-driven sequencing—to performance was recognized long ago. At

that time, however, the transistor budgets or the expertise to implement the

dynamic scheduling machinery and hardware multithreading required to support

pre-execution—and which are commonplace today—were not available. Archi-

tects sought to imbue processors with these desirable properties at the architec-

tural level, leaving compilers to reconcile the specification needs of the enriched

interface with the sanity needs of the programmer.

Dataflow architectures [5, 24, 42, 46, 63, 74, 75, 89, 91, 98] provide both data-

driven sequencing and full decoupling using a data-driven interface and a circu-

lar organization. A data-flow architecture is the exact opposite of a control-flow—

sequential or von Neumann—architecture. In a control-flow architecture, paral-
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lelism is implicit as instructions implicitly name their predecessors—the instruc-

tions whose output values they consume—via the use of shared name-spaces. In a

dataflow architecture, parallelism is fully exposed as every instruction explicitly

names the instructions that will consume its output value. At any point in the

execution of a dataflow program the identity of all ready (or partially ready) to

execute instructions is known. A sequential processor is organized in a pipeline

with instructions entering and exiting in sequential order. A dataflow processor is

also pipelined, but the pipeline is fed by a worklist of ready to execute opera-

tions—often called the token queue—which itself is filled by the dataflow succes-

sor function implemented as the last stage of the pipe.

Dataflow architectures expose all the available parallelism in an entire pro-

gram, maximizing latency tolerance and performance. Dataflow processors oper-

ate at near peak efficiency as sequencing and execution schedules are matched as

close to perfectly as possible. However, despite their positive performance and

efficiency characteristics and despite years of research and the construction of

several fully functional prototypes, dataflow machines have failed commercially.

As it turns out, complete parallelism exposure is not such a good thing when it

must be represented explicitly and is directly tied to the architectural interface,

and hence correct execution. A dataflow processor contains two unique structures

which allow it to implement a data-driven sequencing model. The token queue

contains descriptors of all instructions that have been specified as dataflow suc-

cessors by completed instructions. The rendezvous store holds partially ready

two-input instructions triggered by the completion of one input operand and wait-
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ing for the second. With parallelism fully exposed, the number of instructions in-

flight—i.e., in one or both of these two structures—can grow extremely large. And

big problems occur when one of these structures overflows. Instructions cannot

simply be discarded from either the token queue or the rendezvous station as the

event which triggered and specified their entry into those structures—the com-

pletion of a predecessor instruction—has already taken place and will never take

place again. In cases of overflow, the contents of these structures must be spilled

to memory by software. Now, token queue overflows are costly, but may be man-

ageable because of the simplicity of both the overflow and the overflow recovery

operations. However, the rendezvous store must be associatively searched by

every instruction. Rendezvous store overflows effectively turn a dataflow proces-

sor into a dataflow processor emulator. In essence, a dataflow processor can only

reasonably execute programs whose maximum parallelism does not exceed the

size of these structures. Ironically, while sequential processor research has

focused on increasing parallelism, much dataflow processor research has been

aimed at artificially restricting parallelism to deal with these constraints [21].

Another obstacle faced by dataflow processors is that a data-driven program

representation can only be automatically generated from programs written in

languages whose data dependences can be statically analyzed in full. The lan-

guages for which this is true are ones that do not permit the use of state variables

through which statements may interact in untraceable ways—i.e., functional lan-

guages. Functional languages are well suited for certain tasks. However, because

of their exclusion of state and their resulting awkward interface with I/O—which
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is inherently sequential—these languages have not been widely adopted for sys-

tem use. Using a dataflow machine for system purposes is difficult regardless of

the programming language, as dataflow machines—due to their inherently paral-

lel architectural interface—do not support repeatable executions that are crucial

for program development and debugging.

Pre-execution draws great inspiration from dataflow architectures. In some

sense, it strives to bring some small measure of the good properties of these archi-

tectures—latency decoupling and data-driven sequencing—into the realm of

sequential processing, using speculation to remove first the constraints of archi-

tectural correctness and subsequently the dependence on a data-driven architec-

tural interface.

6.2.2  Decoupled Access/Execute Architecture

It is impossible to generate a true data-driven sequencing representation for a

general program written in a sequential language. However, some degree of auto-

matically generated decoupling may still be possible for such programs, and with

decoupling the effects of data-driven sequencing can be approximated. These

observations led to the proposal and development of the decoupled access/execute

architecture [78].

Per its name, the decoupled access/execute architecture divides a program

into two streams. The access stream contains all memory accesses and their com-

putations. The execute stream contains everything else. The two streams commu-

nicate via a set of architected result queues. In general, dividing a sequential
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program into two architectural streams requires determining its data depen-

dences precisely and in full. In other words, it is quite difficult. In fact, this is the

same problem that dataflow architectures face. However, in one specific and

important case, an access/execute division is trivial. Since floating-point opera-

tions cannot contribute to address calculation, putting all floating-point opera-

tions into the execute stream and all other operations into the access stream

results in a correct division. For floating-point intensive scientific programs—

which, not coincidentally, dominated the era in which the decoupled architecture

was conceived—it also results in a highly balanced, highly efficient division as

well.

A decoupled processor tolerates memory latency by providing limited slip

between the access and execute stream. Although each stream executes in order,

the access stream can advance ahead of its original position within the execute

stream. This advance—or slip—is limited by the finite architectural buffering via

which the two streams exchange results.

Access decoupling is another attractive paradigm that did not enjoy commer-

cial success. Although it successfully deals with sequential programs, architec-

tural access decoupling is really only viable for floating-point scientific programs

where the division can be performed automatically and where the execute stream

has many long-latency operations that balance the load with the access stream. It

is less useful for integer programs which dominate today’s workloads. Another

problem with architectural decoupling is the lack of scalability of memory latency

tolerance due to the limited slip.
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Pre-execution has a similar relationship with the decoupled access/execute

architecture as it does with dataflow architectures. Again, speculation is pre-exe-

cution’s primary tool in taking decoupling from the architectural level to the

microarchitectural level, freeing it both from correctness obligations and from the

constraints of finite architectural name-spaces. In DDMT, communication

between the pre-execution threads and the master thread takes place via the

microarchitectural physical register name-space which (theoretically) can be

made arbitrarily large and permit an arbitrary amount of result buffering, slip

and latency tolerance.

6.2.3  Runahead Execution

Arguably, the most important performance enhancing effect of dynamic sched-

uling is its ability to reorder and parallelize memory operations and enable mem-

ory-level parallelism (MLP)—the overlapping of cache misses. The runahead

microarchitecture [30] is a clever approach for providing MLP in an in-order pro-

cessor. A runahead processor is a conventional in-order processor that contains

an extra register file. When the main thread stalls on a cache miss, its register

state is checkpointed to the spare register file. The processor keeps executing,

using garbage values when real ones are not available and potentially initiating

more cache misses. When the cache miss that initially caused the main thread to

block returns, the register state is restored from the checkpoint file and execution

resumes, hopefully with all near future would-be cache misses already in flight.

Since an in-order register file is the only structure needed for speculation,
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runahead execution has theoretically unlimited ability to advance past the archi-

tectural thread.

Runahead and pre-execution are completely different, both philosophically

and mechanically. Runahead waits for a stall, then uses control-driven sequenc-

ing to overlap it with sequentially younger instructions. Pre-execution anticipates

a stall, and aggressively uses data-driven sequencing to overlap its execution

with older instructions. However, like pre-execution, runahead execution also cre-

ates a speculation context that exploits a processor’s normal execution mode but

yet is separate from it and uses this context to reduce the latencies of problem

instructions. Recent proposals have combined aspects of runahead execution and

pre-execution in a number of ways.

6.2.4  Speculative (Control-Driven) Multithreading

Pre-execution is not the only way to speculatively multithread a single archi-

tectural thread in order to improve its performance. In fact, the older more estab-

lished form is to speculatively divide a program into threads along control-flow—

rather than data-flow—lines. Speculative control-driven multithreading is usu-

ally called just speculative multithreading, because initially there was no need to

distinguish it from speculative data-driven multithreading—pre-execution—

which only surfaced about five years later. There have been several proposals for

speculative control-driven multithreaded processors, including the Multiscalar

Architecture [38, 83], Single-Program Speculative Multithreading (SPSM) [29],

Thread-Level Data Speculation (TLDS) [87] and Dynamic Multithreading (DMT)
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[2]. There have even been two implementations—Sun’s MAJC [92, 93] and NEC’s

Merlot [32].

Although similar in name and mechanics, the two forms of speculative multi-

threading are diametrically opposite in approach. Speculative (control-driven)

multithreading actually exploits a different form of parallelism—speculative

thread-level parallelism (TLP)—than speculative data-driven multithreading,

which exploits an enhanced form of ILP. In speculative multithreading, a sequen-

tial program is speculatively executed as a parallel program. The program’s

dynamic instruction stream is divided along control-flow boundaries into contigu-

ous chunks sometimes called tasks. The processor then executes adjacent tasks in

parallel, using its knowledge of the actual task order to detect sequentiality viola-

tions. Because individual tasks are sequenced in a control-driven manner, there

is no need to re-sequence work performed in speculative control-driven threads.

When the oldest task in the processor is ready to retire, its final state is compared

(logically) to the initial state of the immediately younger task. If the states

match, then responsibility for the architectural state of the processor is simply

transferred to the younger task. Of course, boundary state comparison need not

take place literally. Boundary states are typically presumed to match at the out-

set with the older task assuming responsibility for signalling changes.

Latency tolerance in speculative multithreaded processors is achieved by

overlapping the execution of problem instructions from different concurrently

executing tasks. This is true even for branch misprediction latency. In contrast

with a contiguous window superscalar processor, a branch mis-prediction in a
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task need not trigger a sequential squash of all younger tasks. As long as tasks

are control-independent—i.e., internal task control-flow converges and does not

impact inter-task sequencing—younger tasks can continue to execute, relying on

the older task’s signalling of data dependence violations to preserve a sequen-

tially correct execution. The exploitation of control-independence to decouple

branch mis-predictions from one another is a completely different mechanism for

tolerating branch mis-prediction latency than the one used by pre-execution.

Rather than tolerate and overlap branch mis-predictions, pre-execution tries to

reduce the mis-prediction resolution latency or “fix” and avoid mis-predictions

altogether. Pre-execution does, however, decouple problem computations from

unrelated branch mis-predictions that occur within the master thread.

Like pre-execution, speculative multithreading uses a discontiguous win-

dow—allowing instructions from different places in the program to execute in

parallel without having all intermediate instructions in the machine. However, in

contrast with pre-execution, speculative multithreading must have buffering for

the results of all intermediate instructions in speculative tasks. If internally

tasks execute in-order, then this amounts to buffering for store values. If specula-

tive buffering fills, speculative task execution must stall since discarding any

results will violate boundary state matching assumptions. This does not imply

deadlock since the lead, non-speculative task may retire store values to the mem-

ory system. DDMT has a different version of this problem. Its ability to run ahead

is tied not to the number of control-driven store buffering slots, but to the number

of physical registers that can hold the pre-executed results. Of course, this limit
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can be ignored at the cost of forfeiting pre-execution reuse via register integra-

tion.

6.2.5  Multi-Path Execution

Like speculative control-driven multithreading, speculative multipath execu-

tion [44, 50, 97, 100] is another way of using decoupling and speculative control-

driven threads to overcome some limitations of the vanilla superscalar model.

Multipath execution attempt to tolerate branch mis-prediction latency by hedg-

ing its bets and executing along both arms of a pathologically mis-predicted con-

ditional branch. When the branch is ultimately resolved, execution continues

along the right path, while the alternate path is discarded. Although mechani-

cally multithreaded, multi-path execution’s closest counterpart from an approach

standpoint is runahead execution. While runahead execution is a reactive tech-

nique for speculating past cache misses, multi-path execution is a reactive tech-

nique for speculating past branch mis-predictions.

Multi-path executions proximity to pre-execution is in its mechanics, specifi-

cally its notion of forking a microarchitectural execution context. However, while

multi-path forks a fully functional control-driven context, pre-execution forks a

reduced data-driven context which does not take full responsibility for architec-

tural state. Philosophically, the two approaches are wildly different. Like

runahead execution, multi-path execution is reactive, overlapping problem

instructions with downstream work after the actual problems have manifested

sequentially. Pre-execution is proactive, aggressively sequencing and solving
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problem instructions before they are sequentially encountered.

Note, DDMT can exploit multipath execution within DDTs via its use of

greedy control.

6.2.6  Pre-Execution

In addition to our own work on dependence-based prefetching and the pre-

computation of virtual function calls, pre-execution—the idea of augmenting a

sequential program with auxiliary threads that execute specific performance-

enhancing tasks on its behalf—was initially and independently proposed by Song

and Dubois in Assisted Execution [85], Farcy et. al. in the Branch Flow Microar-

chitecture [36] and by Chappell et. al. in Simultaneous Subordinate Microthread-

ing (SSMT) [14].

Assisted Execution is an architectural software pre-execution implementation

that leverages SMT processors. By virtue of its narrow architectural communica-

tion channel with the main program, an assist thread is limited to enhancing

master thread performance by prefetching into the shared cache. Assist threads

are control-driven threads that are not extracted from the original program but

rather generated separately. This is a common combination for pre-execution sys-

tems—architecture level (software) threads must be sequenced in a control-

driven manner which in turn makes extraction from the original program diffi-

cult.

SSMT threads are microcode threads or microthreads. Microthreads are com-

posed of microinstructions that the processor can execute internally and may or



313
may not be architecturally accessible. SSMT does not rely on an underlying mul-

tithreaded processor architecture. Similar to the microarchitectural DDMT,

microinstructions are injected directly into the execution core. Microthreads must

be programmed manually and must supply their own internal control flow. How-

ever, their advantage is that they can interact closely with microarchitectural

components that do not have a software interface. In the original proposal, SSMT

microthreads were used to implement a per-static instruction local-history

branch prediction algorithm which selectively overrode the predictions made by

the hardware predictor. This interface is readily implemented in microcode. Cer-

tainly microthreads can be adapted to perform any one of a variety of functions,

including data and even instruction prefetching. However, they cannot offload

any actual work from the master thread.

The branch flow microarchitecture targets mis-predicted branches within

inner loops. The computation of the branch and the loop induction and control

code are annotated statically. At runtime, annotated instructions are copied to a

second pipeline where they execute the reduced loop in parallel with the complete

loop executed by the original program. The reduced loop advances past the origi-

nal program due to its smaller size. Branch outcomes pre-computed by the branch

flow pipeline are enqueued onto the branch anticipation queue from which the

main thread dequeues them. By limiting branch-flow pre-computations to uncon-

ditionally executed branches—i.e., branches which are not embedded in other sin-

gle-iteration control-structures—a simple one-to-one correspondence between

pre-computed branches and dynamically observed branches is maintained, mak-
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ing anticipation queue management a straightforward matter. Although the

branch flow pipeline uses explicit control-flow, the branch flow microarchitecture

performs true—albeit extremely restricted—pre-execution in the sense that it

executes copies of instructions from the original program before the original pro-

gram executes them.

6.2.7  Instruction Reuse and Unified Renaming

Register integration is an important component of DDMT that plays a central

role in supporting DDMT’s pre-execution model. In hindsight, register integra-

tion can be thought of as a combination of two separate techniques—instruction

reuse [82] and unified renaming [48]. Instruction reuse supplies the empirical

basis for squash reuse—generalized to same-parent-context speculative-execu-

tion reuse—and the basic structure of the reuse test. Unified renaming supplies

the motivation for renamer-based physical register sharing.

Instruction reuse creates a hardware memoization scheme that indexes val-

ues computed by recent instructions using information about the creating

instance’s inputs. The reuse buffer (RB), in which memoization information is

stored, is structurally identical to an integration table (IT), or rather an IT is

structurally identical to an RB. The main difference between the two is that

instruction reuse is based on architectural quantities like logical register names

and values whereas register integration is based on microarchitectural quantities

like physical register numbers. This difference is crucial. Instruction reuse

applies more broadly to more baseline microarchitectures—even ones that don’t
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use physical registers—and to more manifestations of reuse. However, it cannot

take many microarchitectural shortcuts available to register integration—e.g.,

reused values must be written to the register file and re-propagated. In contrast,

register integration is extremely efficient, but is restricted to certain base

microarchitecture designs and to certain constrained—albeit useful—reuse sce-

narios.

Unified renaming is a scheme for true sharing of physical register results by

different instructions in the same execution context. Unified renaming extends

the semantics of physical register allocation and deallocation with reference

counting. As for locating matching results during register renaming, unified

renaming largely relies on the detection of identity operations—i.e., single

instructions or groups of instructions whose input is equal to its output with high

probability. Examples of identity operations are register move instructions and

communicating store-load pairs. Unified renaming effectively collapses the data-

flow graphs of identity operations to zero height.

Interestingly, it may be possible to fuse register integration and unified

renaming even further, using reference counting schemes to allow register inte-

gration to exploit general reuse within the same execution context.

6.3  Contemporaneous Work

During the two years in which my work on pre-execution and DDMT was tak-

ing place, two summaries of efforts in related areas were also published. These

are discussed here.
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6.3.1  Data-Threaded Microarchitecture

The Data-Threaded Microarchitecture [101] is the most ambitious proposal to

date for a system with pre-execution characteristics. The data-threaded microar-

chitecture is structurally reminiscent of the speculative dataflow processor. It has

a superscalar pipeline with a sequential architectural interface, a dependence

tracking mechanism that learns backwards consumer-to-producer data depen-

dences and creates reverse, data-driven producer-to-consumer static mappings

for them, and a dataflow-like engine. However, while the dataflow portion of the

speculative dataflow processor is content to remain in a speculative supporting

role, pre-executing only that small fraction of the program that is most perfor-

mance critical, the dataflow portion of the data-threaded microarchitecture is

much more aggressive.

The approach taken by the data-threaded microarchitecture is to slowly

migrate all execution away from the superscalar side to the dataflow side. When

the entire program, or a complete portion of a program has been fully mapped—

its dependences have been fully analyzed—the superscalar core stops executing

altogether and the program begins executing in pure, high-performance dataflow

mode. An argument is made that this approach is especially effective for loops,

where the dataflow side would explode a loop and ostensibly execute all of its iter-

ations in parallel.

The data-threaded proposal did not come with an evaluation or even an indi-

cation that a working version has been successfully simulated in any detail.

There are many difficult problems this proposal simply ignores or claims to be
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able to solve. Chief among these is the ability to guarantee correct sequential

semantics without re-sequencing when the superscalar side is operating, much

less when the superscalar side is turned off. There may indeed be solutions to this

and related problems and, if there are, then the data-threaded approach could

provide extremely high performance. However, having worked in this area for the

better part of four years—with potentially another twenty man years put in by

others—with still no hope for a solution, I reserve the right to be skeptical.

6.3.2  Slipstream Processors

Proposed several years after the initial pre-execution work, slipstream proces-

sors [65, 88] present an interesting alternative approach. Slipstreaming is a

microarchitectural technique. An interesting juxtaposition develops if we com-

pare it to a microarchitectural implementation of DDMT—i.e., where DDT con-

struction happens at runtime. DDMT starts with a single copy of the complete

program and gradually augments it with small DDTs to remove stalls from

repeatedly encountered problem instructions. In complete contrast, a Slipstream

processor starts with two copies of the program—running one behind the other—

and continuously whittles down the lead copy by removing computations of non-

problem instructions. In theory, both approaches converge to the same steady

state—a complete program running behind a much reduced copy of itself. The

reduced copy accelerates the complete program by absorbing latency on its behalf.

The complete program accelerates the reduced copy by enabling its reduction.

Slipstreaming is a fitting metaphor for this synergy.
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In practice, slipstreaming and DDMT do not closely converge to the same

steady state. In slipstreaming, the lead copy of the program maintains largely

control-driven semantics and achieves only about a 25% reduction in size over the

complete program. In DDMT, the aggregate dynamic size of all DDTs rarely tops

10% of the original program. These ratios suggest differing implementations for

each scheme. While DDMT can effectively siphon resources in a centralized orga-

nization, a Slipstream processor’s high level of redundancy mandates that each

copy of the program essentially run on its own separate processor with its own

cache. In other words, DDMT is a better fit for SMT or superscalar while slip-

treaming is a better fit for CMP.

6.4  Subsequent Work

The topic of pre-execution has become quite popular and several proposed

implementations have been published in recent months. We separate these pro-

posals into two camps. Proposals in the first camp use strictly control-driven

sequencing and have distinct runahead mechanics. However, these systems use

notions of problem instructions, backward-slicing, and register integration to

enhance the runahead process. Proposals in the second camp resemble pre-execu-

tion much more closely, using decoupled data-driven sequencing to accelerate

problem computations.

6.4.1  Dependence Graph Pre-Computation and ILP Balancing

Dependence-graph pre-computation (DGP) [4] enhances runahead by using
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slicing to prune the runahead execution stream so that it includes only computa-

tions of problem loads. A DGP processor is a superscalar processor enhanced with

a second pipeline, an extended IFQ and some backward slicing machinery. When

the main thread stalls, the slicing machinery slices backwards from problem

instruction instances it finds in the IFQ. These slices are executed on the addi-

tional pipeline. Cache prefetching is achieved via cache port sharing. DGP’s argu-

ment is that a large IFQ enhanced with slicing machinery plus an additional

pipeline can perform limited runahead more selectively and efficiently than an

extended ROB. This much is probably true as long as re-execution—which would

not be required in the extended ROB scheme—is not taken into account. Whether

this organization is simpler to implement than an extended ROB (note, the sched-

uler is not extended in any way) is debatable.

Similar to DGP is a simultaneous independent proposal for enhancing

runahead execution by balancing resource allocation between nearby (supersca-

lar) and distant (runahead) ILP [8]. We will shorten the name of the technique to

BNDI. BNDI’s proposed enhancement also involves reducing and hence acceler-

ating the runahead stream. However, rather than proactively reducing the

stream a priori via slicing, BNDI reduces the stream reactively by reclaiming

storage and scheduling resources used by long-waiting runahead instructions

and reallocating them to even further downstream runahead instructions that

may make more immediate use of them. BNDI also supports a simple, single-

level—i.e., non-recursive—form of register integration, called direct reuse which

is implemented using a series of occupancy and overwrite bits.
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Both DGP and BNDI enhance runahead one way, by reducing the runahead

stream. However, they also handicap runahead a different way, by restricting it to

the size of the extended IFQ.

6.4.2  Pre-execution of Speculative Slices

Pre-execution of speculative slices [106]—which we will shorten to PESS—is a

primarily software-based pre-execution technique designed for use in SMT pro-

cessors. PESS is similar to DDMT in its generality; it attacks both loads and

branches. It is also similar in its SMT-based resource-siphoning model. However,

the similarities end there.

Being software based, PESS is unable to take advantage of register integra-

tion. However, this limitation also relieves it from having to work within integra-

tion’s constraints. Speculative slices can contain control-flow and PESS makes

liberal use of the most powerful pre-execution idiom—unoverlapped full unroll-

ing. Speculative slices can also be optimized and, in fact, need not look anything

like dynamic slices from the actual program execution, as long as they produce

the desired results—i.e., access the right memory locations and pre-compute the

right branch outcomes. In this sense, PESS can be thought of as a microarchitec-

tural version of Assisted Execution or SSMT. PESS slices are not actual slices

that are extracted by slicing from the original program. The term “speculative”

refers to a different level of speculation, speculation that the slices are function-

ally equivalent to actual dynamic program slices.

Sans register integration, PESS must use an alternative mechanism for corre-
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lating pre-computed branch outcomes with their intended dynamic instances. To

perform this correlation during the fetch stage, the matching process must rely

on control-flow information and its speculation vagaries rather than data-flow

information and its simple correctness guarantees. PESS uses an architectural

scheme in which instruction set annotations are added to the speculative slices

that allow speculative slice control-regions to be unambiguously matched with

master thread control-regions. Instance matching becomes trivial if at most one

instance of a given static pre-executed branch exists per region. This scheme,

called valid regions is a more robust version of the microarchitectural epochs

scheme used in the pre-computation of virtual function call targets [69].

To this point, speculative slices must be generated by hand. It remains to be

seen whether their construction can be automated. Speculative slices cannot con-

tain stores as they are executed in architectural threads. It is possible that they

could be constructed out of actual slices to which store-eliminating structured

optimizations—like the ones we described for DDTs—have been applied. How-

ever, given their more traditional format and their liberal use of unoverlapped

full unrolling, it is likely that they will rely on more traditional static program

analysis for their construction.

6.4.3  Speculative Pre-Computation

Speculative Pre-Computation (SPC) [20] is the follow-up proposal that most

resembles DDMT. SPC’s runtime component is implemented on top of a multi-

threaded Itanium processor, applying pre-execution where it has the potential for
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the greatest benefit—in a statically scheduled in-order environment.

SPC’s setup component is trace-driven and offline and like DDMT finds pre-

execution computations—which are called p-slices—by actually slicing back-

wards from problem instruction instances. The precise algorithm for extracting p-

slices is left for future work. The implementation presented in the paper is not

statistical, does not take overhead or even latency tolerance into account and

slices within a window of 128 instructions. It is possible that these limitations

have less of an impact in an in-order setting. Copies of pre-executed computations

are linked into the executable binary in a control-driven representation where

they traverse the instruction memory hierarchy like normal program instruc-

tions. This simplified p-slice model resembles the one used in slice processors [58]

and could ultimately lend itself to a similar hardware implementation. In a

recent conference submission by the same authors, the details of such an imple-

mentation are given.

One feature incorporated by SPC that DDMT explicitly excludes is chained

triggering—allowing instructions in pre-executing computations to trigger the

pre-execution of other computations. Chained p-slice execution is controlled via a

combination of mechanisms. The pending slice queue (PSQ) buffers triggered p-

slices until hardware contexts are ready to service them. The outstanding slice

counter table (OSC) tracks the number of outstanding p-slices and does not exe-

cute p-slices if that number exceeds some threshold. Finally, the main thread can

abort all child p-slices via a special instruction. In certain benchmarks, chaining

combined with these control mechanisms can improve performance over exclusive
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main thread triggering.

6.4.4  Software-Controlled Pre-Execution

Software-controlled pre-execution (SCPE) [54] is—according to our defini-

tions—only partially true to its name. It is software controlled and it is pre-execu-

tion in the sense that it speculatively executes sections of the original program.

However, the speculative computations executed by SCPE are not data-driven

but rather full control-driven regions from the original program. In a way, SCPE

uses speculative control-driven threads in a pre-execution context, employing

them redundantly to enhance performance rather than forming a full, non-redun-

dant sequential division of the program.

In SCPE, the compiler annotates a sequential program with PreExecute_Start,

PreExecute_Stop and PreExecute_Cancel instructions which have been added to

the ISA as extensions. PreExecute_Start takes a constant address argument and

forks a thread that begins executing at that address with a copy of the forking

thread’s register context. PreExecute_Start returns a thread identifier to the par-

ent thread, much like a fork system call. PreExecute_Stop ends the execution of

the current pre-executing thread. PreExecute_Cancel takes a thread identifier

argument and ends the execution of that thread. SCPE does not implement

chained triggering—PreExecute_Start and PreExecute_Cancel instructions are

ignored from within pre-executing threads. PreExecute_Stop is ignored when

seen by the main thread.

SCPE’s only aim is to prefetch, which somewhat simplifies its implementation



324
and allows it to be implemented on only a slightly modified SMT processor. Pre-

executing threads are ordinary SMT threads which are allowed to allocate and

free registers. No register integration is implemented so freeing registers in pre-

executing threads—as long as care is taken not to free registers belonging to the

parent thread—is acceptable. However, either an expensive software register

copying mechanism or hardware physical register reference counting must be

implemented to ensure this. The chief SMT modification required by SCPE is a

scratchpad to which pre-executing store values must be written as these cannot

be written to the cache. This scratchpad is the analog our DDSQ. Pre-executing

loads access the cache and scratchpad in parallel, allowing them to pick up values

from older stores within the same thread.

The compiler algorithm responsible for annotating the program is based on

miss and locality analysis and in general tries to maximize pre-execution—i.e.,

prefetch—distance. The compiler also performs transformations, like loop unroll-

ing, that explicitly facilitate SCPE look-ahead.

6.4.5  Slice Processors

Slice processors [58] support a restricted form of pre-execution. A slice proces-

sor is a superscalar processor augmented with a slicer, a slice-cache, and several

streamlined scout pipelines each containing an instruction buffer and a simple

integer ALU. The slicer is a simple instruction stream post-processor that can

sequentially backpedal along register dependences within a fixed window. The

slicer is activated on the retirement of a cache miss and the resulting slice—
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extracted from the most recent 32 or 64 non-store, non-control, non-FP instruc-

tions—is stored in the slice-cache. The oldest instruction in the slice is identified

as the lead, the equivalent of our trigger instruction. The slice-cache is organized

precisely like a DDTC, as there are only a finite number of ways such things may

be organized.

The mechanics of slice execution are as follows. When the master thread

renames a lead, it allocates a free scout pipeline to the corresponding slice. The

scout pipeline is initialized with a copy of the master thread’s map table at the

time of the fork. The scout pipeline is a simple, in-order scalar pipeline—there is

no need for more, as all it does is execute dependence chains—which nevertheless

contains register renaming logic. This logic is required to allow the scout thread

to wait for external master-thread values that have not yet computed. Once exter-

nal values are available, the scout thread processes the slice, using the instruc-

tion buffer as temporary register storage. Executing the slice on the scout

pipeline implements cache prefetching as the scout pipeline shares the data cache

ports with the main superscalar pipeline. Branch pre-execution is not imple-

mented.

From a sequencing standpoint, slice processors do perform actual pre-execu-

tion. However, the slices are constrained by the sequential limitations of the

slicer itself. The end result is that the system as a whole behaves more like a

runahead machine.
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6.5  Chapter Summary

This chapter presents some of the research that has supported and motivated

my work, as well as concurrent and subsequent efforts in related areas. The work

discussed here all relates to pre-execution as a processing model. I have chosen

not to discuss work that relates to individual, concrete aspects of pre-execution,

the DDMT microarchitecture, or DDT selection. Certainly many of these exist. In

the pre-execution domain, much work on alternative approaches for enhancing

ILP and other forms parallelism was not discussed. In the DDMT microarchitec-

ture realm, we ignored the wide and varied contributions—in the form of compo-

nents—made by others to both the base microarchitecture and DDT specific

enhancements, including (but not limited to) dynamic scheduling, register

renaming, simultaneous multithreading, speculative store-to-load value forward-

ing, DIVA, and thread scheduling. Finally, in the DDT selection area, we have not

acknowledged works on dynamic backward slicing, identification of stable mem-

ory dependences, characterization of backward slices, statistical analysis of pro-

gram graphs, loop unrolling, and algorithms for graph comparison and merging. I

apologize for these omissions.
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Chapter 7

Conclusion

As we survey the computing needs of the coming decade, sequential program

performance—the performance of a single program executing on a single logical

processor—will continue to be important. As new constraints on power, area, ease

of design and verification are activated, the emphasis shifts from increasing per-

formance by any means and at any cost to increasing performance in new and

innovative ways that leverage the existing processor infrastructure. This disser-

tation introduces pre-execution, a new paradigm for extracting additional

instruction level parallelism and performance from sequential programs using a

mechanism every processor naturally supports—the execution of instructions.

This dissertation makes four major contributions. First, it introduces and

defines pre-execution, a new processing model for extracting additional ILP from

sequential programs. Second, it describes speculative data-driven multithreading

(DDMT), a proposed implementation of pre-execution that extends a common

dynamically scheduled superscalar design in a straightforward way with addi-
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tional components that also have uses in simultaneous multithreading and com-

putation reuse. Third, it introduces a quantitative framework for the automatic

extraction of pre-execution computation descriptions from program traces. Finally,

it presents a simulation driven performance evaluation of DDMT and automatic

computation selection.

This final chapter summarizes these four contributions. Section 7.1 recaps the

novel concepts that were introduced. Section 7.2 summarizes the important

results of the performance evaluation. Finally, in Section 7.3, we use the insight

gained into pre-execution and our understanding of the limitations of the current

model to point to some possible future work.

7.1  Summary of Concepts, Mechanisms and Frameworks

This dissertation introduces a novel concept, a novel mechanism, and a novel

framework. The concept is pre-execution, a technique for stepping outside the

superscalar paradigm in a directed way in order to increase the exploitable

instruction level parallelism of sequential programs. The mechanism is data-

driven multithreading (DDMT), an implementation of pre-execution as a set of

extensions to a superscalar processor. The framework is a formalization of the

notions of latency tolerance and overhead in an algorithm that automatically

selects what to pre-execute by processing program traces.

7.1.1  Pre-Execution

Sequential program performance degrades when the processor needs a certain
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value to proceed, but execution has yet to provide that value. Late values that

result in effective stalls are the outcomes of mis-predicted branches and the

addresses of data blocks that are not in the cache but which will soon be accessed.

In practice, 95% of dynamic branch outcomes and load addresses can be obtained

quickly and accurately via prediction. We call the remaining 5% of dynamic loads

and branches, whose outcomes and addresses are unpredictable, performance

degrading instances (PDIs). PDI values can be supplied via actual execution, but

results from execution are too late, as the stall has already been incurred. Pre-

execution is a way of using execution to obtain PDI values in a timely manner.

Empirically, most PDIs are caused by a few static problem instructions (PIs).

In pre-execution, copies of PI computations—or simply problem computations—

are executed in parallel with the complete program. To obtain a speed advantage

over the main program, a pre-execution context sequences problem computations

in a proactive, out-of-order (i.e., compressed) manner, skipping over unrelated

instructions from the complete program. Proactive, out-of-order sequencing

allows computations to be hoisted and long latencies to be initiated early. Decou-

pling the pre-executing copy from the master thread allows these latencies to be

hidden. Since a stall in one execution context does not impact another context,

“moving” an operation to a pre-execution context allows its latency to be over-

lapped with useful instructions from the master thread. While the pre-execution

thread stalls, the master thread can keep pushing useful instructions through the

processor for many cycles. To reconcile out-of-order sequencing and decoupling

with sequential execution, we make pre-execution redundant with respect to the
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complete program. Redundancy relieves pre-execution of architectural correct-

ness obligations, expanding its scope of applicability. However, redundancy also

makes pre-execution an expensive technique that should be used judiciously.

Pre-execution is a promising technology. It is a reliable mechanism for the

timely supply of critical values that are difficult to obtain in other ways. Its

decoupled nature enables a high degree of latency overlapping that is not

bounded by physical resource limitations. Its redundant formulation allows it to

be used for performance troubleshooting without concern for master thread cor-

recness. Finally, success rates of traditional predictors and the concentration of

dynamic problems to a few static PIs allow pre-execution’s relatively high cost to

be controlled by focusing its use.

7.1.2  Speculative Data Driven Multithreading

An implementation of pre-execution has two components. The runtime compo-

nent pre-executes specified problem computations and communicates pre-exe-

cuted results to the master thread. The setup component identifies candidate pre-

execution computations and communicates its selections to the runtime compo-

nent. The runtime component is obviously dynamic; the setup component may be

implemented statically or dynamically.

Speculative data-driven multithreading (DDMT), our proposed implementa-

tion of the runtime component, is a set of small, straightforward extensions to a

dynamically-scheduled superscalar processor. In this dissertation, we leave

implementation of DDMT’s setup component open, but we discuss the possibili-
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ties of software, hardware, and hybrid implementations.

DDMT’s unit of pre-execution is the data-driven thread (DDT)—a static

sequence of instructions that encodes one or more PDI computations. Each static

DDT is associated with a static trigger instruction. When the master thread

encounters an instance of a trigger instruction, the processor forks a copy of the

corresponding DDT. The processor siphons some register renaming bandwidth

away from the master thread to inject the DDT into the execution core. The exe-

cution core naturally interleaves instructions from multiple threads.

In addition to supporting fine-grain resource allocation, DDMT’s centralized

organization facilitates communication between the DDT and master thread. The

shared first-level cache allows a DDT to prefetch for a master thread by simply

executing the appropriate loads. Beyond prefetching, the shared physical register

file allows a DDT to contribute actual register values to the master thread, via a

modification to register renaming called register integration. In register integra-

tion, the master thread can recognize and claim DDT results—physical registers

allocated by DDT instructions—as its own. In addition to sparing the master

thread from having to repeat pre-executed work, register integration also

enforces a one-to-one correspondence between DDT and master thread instruc-

tions. We use this property to match pre-executed branch outcomes with their

intended dynamic branch instances and to implement instantaneous branch reso-

lution—the fixup of a mispredicted branch during the register renaming stage.

DDMT is a promising implementation of pre-execution. It requires only local-

ized changes to a conventional superscalar processor. Its parasitic resource con-
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sumption model—i.e., there is no dedicated pre-execution bandwidth—supports

high processor utilization even when pre-execution is inactive. Finally, its inclu-

sion of register integration allows the master thread to directly leverage pre-exe-

cuted work.

7.1.3  Automated DDT Selection

One important element demonstrated in this dissertation is that, regardless

of its implementation, DDMT’s setup component—the discovery or selection of

DDTs—is automatable. Register integration restricts the structure of DDTs to

dynamic backward slices of PDIs. This restriction turns the problem of construct-

ing DDTs from scratch to the problem of automatically enumerating the back-

wards slices of PDIs observed in a program execution and selecting DDTs from

that bounded space. We develop a framework that formalizes the notions of

latency tolerance and overhead and allows the selection task to be performed

rationally.

We split the selection task into three phases. First, we identify PIs whose

PDIs will be the targets of DDTs. We do so by estimating the number of PDIs cov-

ered as a function of the amount of work done dynamically by DDTs. Second, we

examine program traces to collect a database of the backwards slices of PDIs. We

analyze the database using our formal framework to select a set of DDTs each of

which covers a set of PDIs via a single (but hopefully recurring) computation. The

framework optimizes a metric called aggregate advantage, which attempts to

model the aggregate latency tolerance of all PDIs covered by the DDT minus the
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aggregate overhead of all DDT executions. The final phase merges partially over-

lapping DDTs to reduce overhead.

7.2  Summary of Results

In this section, we summarize the results of our simulation-driven perfor-

mance evaluation. Our overall conclusions are that pre-execution in general, and

DDMT in particular, show promise as a high performance technique that is ame-

nable to several different setup component implementations. However, DDMT as

currently formulated has several limitations that restrict its applicability and

performance robustness.

7.2.1  Performance Potential of DDMT

The results of our performance evaluation, which may be described as prelim-

inary, are encouraging. When added to an aggressive, wide, superscalar processor

with large caches and a large branch predictor, DDMT produces large speedups

on challenging micro-benchmarks and performance improvements in the 10% to

15% range on integer benchmarks. Correcting for the limited number of instruc-

tions targeted, these performance improvements are 20% to 35% of the “ideal”

performance improvements achievable only in simulation.

DDMT’s performance diagnostics are positive. It achieves its stated goals of

reducing load execution latency and branch misprediction resolution latency.

Also, its direct approach attacks the instructions that need attacking (PDIs) a

large fraction of the time.
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Register integration improves DDMT performance by saving the master

thread from re-executing pre-executed instructions. Register integration’s imple-

mentation of instantaneous branch resolution improves the performance of pro-

grams which exploit branch pre-execution. Finally, register integration also

implements squash reuse, which achieves modest speedups in its own right and

enhances the benefits of pre-execution reuse.

DDMT’s execution model limits pre-execution overhead in a natural way.

Small, fixed size DDTs and a triggering model that ties DDT forking to progress

made by the master thread are effective ways of limiting resource consumption

that can otherwise turn destructive. The arbitrarily long, but fixed, slip between

a DDT and the master thread also appears to be the right model for avoiding

early prefetching effects that may afflict other prefetching systems where slip

between the two is unconstrained.

7.2.2  Sensitivity of DDMT

In addition to a basic performance evaluation, we performed several studies

that measured DDMT’s sensitivity to its own microarchitectural configuration,

the parameters of the DDT selection algorithm, and the DDMT setup/runtime

relationship.

Out of all of its microarchitectural components, DDMT is most sensitive to the

associativity of the integration table (IT) and to the implementation of the load

integration suppression predictor (LISP). IT associativity is important because,

in our current formulation, its interaction with physical register tracking limits
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the degree of unrolling DDTs can practically exploit. The LISP is important

because it can significantly reduce the number of performance degrading load

mis-integrations. We have found DDMT to be largely insensitive to other pre-exe-

cution specific microarchitectural parameters, including IT and physical register

size, the number of reservation station entries, the number of hardware thread

contexts, and the DDT injection policy.

The DDT selection process also has an effect on DDMT performance. In our

central baseline configuration, DDMT is largely insensitive to the PI definition

(the thresholds used to separate PIs from non-PIs), but it is sensitive to the size,

scope, and unrolling degree constraints placed on the algorithm. However, the

character of the chosen DDTs does not change—and hence neither does DDMT

performance—when these limits are raised above a certain level. DDT selection is

particularly sensitive to the estimate of the sequencing rate of the master thread.

A low estimate leads the DDT selection algorithm to believe that the master

thread is highly constrained by sequencing and that short DDTs suffice to over-

come this constraint. A high estimate results in long DDTs, as the selection algo-

rithm believes that these are needed to achieve a sequencing advantage over the

master thread.

The abilities to predict the right PDIs to attack and to select the right DDTs

with which to attack them are largely independent of the input data set with

which this knowledge was acquired. This implies that the DDT setup phase is

amenable to any number of implementations, even static implementations using

completely different data sets.
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Our central configuration is a wide superscalar processor with large caches

and a moderate memory latency. Believing that, due to increasing clock fre-

quency, future processors will be narrower, use smaller caches, and observe rela-

tively higher memory latencies, we investigated DDMT’s sensitivity to these

parameters.

DDMT’s performance impact decreases slightly as we narrow processor width

from 8 to 6 to 4. Although a narrower processor has a larger sequencing disad-

vantage vis-a-vis a DDT, it is also more highly utilized making DDMT more

expensive. On the other hand, DDMT’s performance impact increases relative to

that of an ideal solution.

Shrinking the sizes of the caches and branch predictor tables results in more

cache misses and more branch mis-predictions—i.e., more PDIs for DDMT to

cover. DDMT’s performance impact increases under these conditions as baseline

performance drops. It is possible that, with an increase in the PDI population,

sensitivity to the PI definition—which controls how many PDIs DDMT attempts

to cover—will increase. If this is the case, better performance may be achieved by

adjusting the thresholds of this definition.

A faster clock makes memory latency, and potentially L2 cache latency, appear

relatively longer. It also potentially increases the need for pipelining, exacerbat-

ing the branch mis-prediction resolution latency. Increased PDI latencies necessi-

tate longer, more highly unrolled DDTs and a willingness on the part of the DDT

selection algorithm to accept DDTs that only partially cover latencies. Our

results show that DDMT performance impact remains at the levels associated
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with the small cache configuration, even when the DDT selection algorithm is not

tuned to these new conditions.

Proper evaluation of DDMT under different baseline microarchitectures

potentially requires the PI definition, the DDT selection algorithm parameters

and the DDMT-specific microarchitectural parameters to be tuned simulta-

neously. We did not perform such an exhaustive investigation in this dissertation.

7.2.3  Limitations of DDMT

While DDMT’s micro-benchmark performance is excellent, its performance on

more realistic benchmarks—which nevertheless are single-threaded and contain

no operating system component—is less consistently good. We believe that two

basic limitations are responsible for this: (1) the lack of an interface that sends

pre-executed branch results to the master thread fetch unit, (2) the inability to

exploit unoverlapped full unrolling in more scenarios. The two micro-benchmarks

show DDMT in a good light because they do not exercise these two weaknesses.

Both use DDMT mainly for prefetching, and their dominant computations have a

structure that is one of the few for which DDMT can exploit unoverlapped full

unrolling.

The lack of an interface for sending pre-executed branch outcomes to the mas-

ter thread’s fetch unit prevents DDMT from completely eliminating the penalty of

a branch mis-prediction. Even if DDMT can fully hide the latency of a mis-pre-

dicted branch from an execution standpoint—i.e., it can compute the branch

before the master thread has fetched it—the fact that rendezvous actually takes
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place at the register renaming stage means that a portion of the latency (equal to

the number of stages between fetch and rename) remains exposed. For programs

with many problem branches, this cumulative uncovered penalty is substantial.

The somewhat disappointing results of our limit study with perfect branch reso-

lution corroborate this observation.

The inability to capture and exploit cases of unoverlapped full unrolling also

limits the performance of DDMT as described in this dissertation. Unoverlapped

full unrolling is a powerful pre-execution idiom and the only one capable of hiding

serial latencies in tight loops. DDMT’s exploitation of unoverlapped full unrolling

is restricted to those cases in which the program’s natural statistical degree of

unrolling—i.e., the average number of dynamic iterations executed—is low. Only

in those cases can the automated DDT selection algorithm recognize the idiom. In

addition, the current implementation of DDT sequencing does not support arbi-

trarily long DDTs, looping, trigger chaining, or any other mechanism that can

dynamically achieve high unrolling degrees.

There are other potential limitations of DDMT as is formulated in this disser-

tation, including an inability to optimize DDTs. However, we have little means of

quantifying—or even qualifying—their effects at this time.

7.3  Future Work

This dissertation describes one potential implementation of pre-execution.

Work remains to be done before a fully functional, commercially viable system

that includes pre-execution becomes a reality. The good news is that the promise
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of pre-execution has excited other researchers in both academia and industry and

that the necessary work has been undertaken with enthusiasm.

This section summarizes my view of the future directions of research in pre-

execution. Admittedly, this view is colored by my own experience and my prefer-

ence for speculative data-driven multithreading as the implementation of choice.

It is my belief that some work is needed in both microarchitecture and computa-

tion selection areas. Most of this work deals with the shortcomings of DDMT as

described above. However, the most pressing challenge is in the architecture and

system area. We must find an interface for pre-execution that is acceptable to sys-

tem and application implementors and that leverages the capabilities of software

while isolating the casual user and even the non-casual user from the mechanical

details.

7.3.1  System-Friendly Implementation and Interface for DDMT

The runtime component of DDMT is almost entirely microarchitectural. For

DDMT to succeed, a software-friendly formulation of its setup component is nec-

essary.

As described in Chapter 3, there are three possibilities. The first is to create a

purely microarchitectural implementation of the setup component, making

DDMT entirely transparent to software. This is the approach taken by two of

DDMT’s successors, speculative pre-computation [20] and slice processors [58].

Work along these lines has already begun, although a hardware implementation

of the algorithm we described will be daunting. The challenges will be in creating
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a formulation of the algorithm that can select DDTs with as much accuracy, while

using approximations rather than full statistical analysis.

A second option is to resort to implementing DDT selection in software and to

create an expanded instruction set and executable interface that can convey this

information to the processor. This is the approach taken by software controlled

pre-execution [54] and speculative slices [106]. The challenge here is to create an

interface that is expressive enough and compatible both forward and backward. A

static framework for selecting DDTs may also be necessary, as trace collection

and trace driven program optimization are not common practices.

A final promising approach—and one that has not been explored yet—is to

insert the DDT selection process into a virtual machine (VM), thereby executing

the selection algorithms in VM software while remaining transparent to systems

software above. Being dynamic, a VM implementation would have all the raw

information—traces with full address annotations, knowledge of the identities of

PDIs, etc.—from which to select good DDTs. The challenge here is to create fast

selection algorithms whose online cost would be low.

7.3.2  Practical Register Integration

The microarchitecture required to support speculative data-driven multi-

threading is relatively simple. Most DDMT specific components are small, most

policy changes are localized, and most internal semantic changes are both evolu-

tionary and self-contained. However, several aspects of the microarchitecture do

deserve some attention, both to improve the performance of DDMT and to sim-
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plify—and increase the probability of—an eventual implementation.

Undoubtedly, the microarchitectural aspect most in need of attention is regis-

ter integration. Although it has undergone several significant simplifications

since its initial conception, register integration is still admittedly complex to

implement. An implementation of its current formulation may not fit within the

timing constraints of current register renaming implementations and may not

justify the addition of a pipeline stage. Even if increased pipelining is warranted,

the critical timing path of register renaming—the passing of integration deci-

sions from one group of instructions to a subsequent group—must still be imple-

mented in less than a cycle. As we have shown, the complexity of this operation—

even stripped to its barest form with most of the information pre-computed by

previous pipeline stages—is O (NM2) where N is the superscalar width of the

machine and M is the associativity of the IT. It is quite possible that a strong tim-

ing restriction will restrict M to a small number like 1 or 2. A low integration

associativity will restrict performance impact especially in cases where unrolling

is used. If low integration associativity is required, an organization that decou-

ples the internal associativity of the IT from the integration associativity is

required. Of course, all of these concerns are pure speculation because a circuit

simulation of even the simplest register integration circuit has not yet been

undertaken.

7.3.3  Branch Predictor Interface for Pre-Executed Branches

Although powerful, the instant branch resolution enabled by register integra-
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tion is not as powerful as the improved branch prediction that may be possible

with a mechanism that can reliably match pre-computed branch outcomes with

their intended dynamic branches at the fetch stage of the processor.

The topic of such mechanisms has been the subject of much recent research

[14, 36, 69, 106]. However, since these mechanisms are all based on notions of

control-flow, their implementations invariably have to deal with control-flow

speculation and conditional execution—i.e., missing or extraneous pre-computed

outcomes and recovery from the incorrect consumption of a pre-computed out-

come. These aspects are transparent to a data-flow based technique like register

integration. Of course, the price for this simplicity and accuracy is the delay asso-

ciated with getting the correct branch outcome. Proposed implementations of con-

trol-driven branch correlation mechanisms are either less than reliable [14],

limited in their applicability [36, 69], or require some help from software [106],

which necessitates an expansion of the architectural interface. Regardless, incor-

porating one of these mechanisms into DDMT is probably not a bad idea. If a suit-

able high accuracy implementation can be found, then the need for register

integration itself—and subsequently the centralized organization of DDMT—

may be revisited. Alternatively, a simple, lower accuracy implementation can be

used in conjunction with register integration, with the latter serving as a higher-

latency but perfect-accuracy backup. A satisfactory solution to this question will

likely improve the performance of DDMT significantly and make the case for its

adoption more compelling.
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7.3.4  Unoverlapped Full Unrolling for DDTs

One of the great limitations of our current formulation of DDMT is the

restricted applicability of unoverlapped full unrolling within the framework. The

constraints come from two directions. First, the use of implicit data-driven

sequencing mandates a small fixed DDT size, limiting the number of loop itera-

tions that can be unrolled within a DDT. Second, the dynamic nature of the DDT

selection algorithm makes recognizing instances of unoverlapped full unrolling

difficult in situations in which the common dynamic iteration count of a loop is

more than a few iterations. Exploiting unoverlapped full unrolling requires solv-

ing both of these issues.

We have already discussed one option for simulating loop control for DDTs in

Chapter 2. Trigger chaining enables unrolling of arbitrary degrees by moving the

loop control from the DDT itself to the fork mechanism. The drawbacks of trigger

chaining are redundant forking and the distinct possibility of a DDT explosion.

Explicit throttling mechanisms are needed to avoid these problems. A similar

effect can be achieved by moving the task of unrolling the loop to the CMIS, the

component responsible for injecting DDT instructions into the processor. The

CMIS can simulate unrolling by injecting the same piece of DDT code into the

processor repeatedly. Injector based loop control does not suffer from the redun-

dant forking problem, since fork control is centralized.

Building an automatic DDT selection algorithm that can recognize instances

of unoverlapped full unrolling is more of a challenge. Recognizing instances of

unoverlapped full unrolling requires recognizing loop structures and, more
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importantly, finding triggers sufficiently in advance of the entire loop. Doing so

dynamically is extremely difficult as long loop iteration counts mean that the

likelihood of analyzing late iterations and pre-loop code within the same slicing

window are slim. Statistical analysis will then dissociate these late iterations

from the pre-loop code and either attack them using induction unrolling or else

give up. Recognizing unoverlapped full unrolling in high dynamic iteration count

cases likely requires analyzing the program statically.

The problem with a static analysis framework is that DDTs must be dynamic

dataflow graphs, and it is more difficult to generate these by explicitly laying out

static code than by mining traces. It is also unclear how our cost metrics translate

to a static framework, although admittedly that is not a fundamental problem,

simply one to which we have not given much thought. In any event, the subject of

static analysis frameworks has already been broached, albeit in a context which

does not exactly fall within our definition of pre-execution [54]. It is also possible

that a hybrid static/dynamic framework could be used. Here, the dynamic portion

would be responsible for generating the DDTs and computing latency tolerances

and costs. However, the static framework could be consulted in special cases to

advise of the presence of higher level control structures that may not be visible

from within the slicing window.

7.3.5  Optimizations for DDTs

DDT optimization is potentially important. A DDT’s prime objective is latency

tolerance, and optimization may help in this regard. On the surface, it may
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appear that the opportunity for optimization within DDTs, especially those

extracted from highly optimized programs, is low. However, this is not the case. In

fact, there is opportunity for optimization within DDTs that does not exist for the

corresponding computation within the context of the complete program [106].

First, DDTs are speculative, so optimizations within them are not bound by the

same correctness guarantees and resource constraints as compiler optimizations

on the complete program. Second, DDTs implicitly encode paths and can be opti-

mized in ways that are only valid on those paths. Finally, DDTs transparently

cross procedure boundaries, thus enabling a high degree of inter-procedural opti-

mization not possible in the complete program context. The “register allocation”

of save/restore pairs within DDTs is an example of all of these opportunities.

Some save/restore pairs within the program are a result of a local shortage of log-

ical register names. A DDT potentially encodes a much smaller computation than

the local program region, and thus its context may have more free register

names. Some save/restore pairs are needed to allow the load to access different

values along different paths—i.e., a single restore will access saves along differ-

ent paths. Since a DDT encodes a single path with respect to the load, register

allocation is possible. Finally, some save/restore pairs are used to pass values

across procedure calls, an artifact of separate compilation. These can be register

allocated in DDTs which are monolithically “compiled.”

It is impossible to marry DDT optimization with register integration in its

current form. However, it may be possible to optimize and integrate DDTs if reg-

ister integration can be modified so that it can recognize these optimizations and
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do the right thing. More accurately, to be able to incorporate a certain kind of

optimization within DDTs, we need to find some corresponding dynamic optimi-

zation that can take place at register rename time and cast the DDT optimization

as an instance of it, or alternatively allow the optimization to act upon the DDT

naturally.

There are already microarchitectural analogs for two of the structured optimi-

zations we have described. Register moves can be eliminated from the dynamic

dataflow graph by a technique called unified renaming [48]. Memory communica-

tion can be dynamically eliminated at register renaming time using either mem-

ory renaming [96], speculative memory bypassing [59], or dynamic load

elimination [35]. Marrying these techniques with register integration—and DDT

optimization—is interesting future work.
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