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�e transition of the microprocessor industry to multi-core processors poses
a signi�cant challenge to the information technology industry. Realizing the
full potential of these processors requires decomposition of so�ware into units
of work amenable to parallel execution. �is places an enormous burden on
so�ware developers—conventional approaches to parallel programming, such
as multithreading, present a programming model that is radically di�erent from
sequential programming, and may result in a wide range of execution behaviors
that are neither predictable nor repeatable. �ese problems threaten to greatly
increase the time and cost required to develop so�ware applications.

�is dissertation proposes data-driven decomposition as a mechanism to over-
come many of the di�culties associated with deriving parallel execution of so�-
ware. Data-driven decomposition dynamically divides a sequential program into
units of work according to the data manipulated by its constituent operations.
Operations that manipulate disjoint sets of data may execute in parallel, while
operations on overlapping data are serialized—executed one-at-a-time in pro-
gram order—to ensure they produce the same result as a sequential execution of
the program. �us data-driven decomposition both preserves both the intuitive
sequential programming interface, as well as its predictable, repeatable execution.

�is dissertation also describes the design and implementation of prometheus,
a library comprising two components supporting data-driven decomposition of
programs written in the C++ language. �e �rst component of prometheus is a
programming interface that allows programmers to express the relationship be-
tween computational operations and the data they manipulate via the widespread
practices and idioms of object-oriented programming. �e second component of
prometheus is runtime support for e�ciently orchestrating data-driven decom-
position. �ese mechanisms allow prometheus programs to realize the bene�ts
of data-driven decomposition, while achieving performance competitive with
programs parallelized via conventional, control-driven techniques.
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1 introduction

I suppose that we are all asking ourselves whether the computer as we
now know it is here to stay, or whether there will be radical innovations.
In considering this question, it is well to be clear exactly what we have
achieved. Acceptance of the idea that a processor does one thing at
a time—at any rate as the programmer sees it—made programming
conceptually very simple, and paved the way for the layer upon layer of
sophistication that we have seen develop. Having watched people try to
program early computers in which multiplications and other operations
went on in parallel, I believe that the importance of this principle can
hardly be exaggerated.

— Maurice Wilkes (1967)

1.1 motivation

Nearly �ve decades ago, Gordon Moore predicted that the number of transistors
integrated on a single chip would double every two years (Moore, 1965). Moore’s
Law has held true to this day, and for most of this duration, computer architects
and circuit designers have been able translate this exponential increase in resources
directly into improved microprocessor performance. Unfortunately, another of
Moore’s predictions—that transistor scaling would enable continuously increasing
clock speeds for a �xed amount of power per unit area—has not held true. �e
exponential growth in the number of transistors used to implement modern micro-
processors has resulted in a concomitant growth in power consumption and design
complexity. Coupled with the diminishing marginal bene�ts of processor design
techniques such as pipelining and superscalar issue, microprocessor designers
have been forced to adopt a new approach to harnessing the transistors furnished
by Moore’s Law (Olukotun and Hammond, 2005). Rather than improving the
performance of an individual microprocessor, recent designs integrate multiple
processor cores on a single chip.

Multi-core processors provide parallel execution as a new avenue for improving
so�ware performance. Because so�ware performance may be measured using
many di�erent metrics, this improvement may be re�ected in a number of ways,
including decreased execution time, improved response time, or reduced power
consumption. Unfortunately, it is not possible to automatically parallelize most
so�ware. As Herb Sutter observes in his famous essay “�e Free Lunch is Over”
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(Sutter, 2005), to reap the bene�ts of multi-core processors, so�ware developers
must decompose a program into units of computation suitable for parallel ex-
ecution. �us multi-core processors have e�ectively transferred the burden of
improving application performance from computer system designers to so�ware
developers.

�e transition to parallel so�ware development poses an enormous challenge
for the information technology industry. Numerous obstacles make parallel pro-
gramming signi�cantly harder than traditional sequential programming. Namely,
so�ware developers must:

1. Identify or develop parallel algorithms that decompose the desired computation
into a set of potentially independent operations; and

2. Utilize appropriate data structures that promote independent computation.

Surmounting these �rst two obstacles requires parallel thinking (Blelloch,
2009b). So�ware developers must overcome decades of inertia to refocus their
e�orts on exposing parallelism in applications. �e �rst component of parallel
thinking requires emphasizing parallelism at the algorithmic level. Many widely-
used algorithms in current programs are inherently sequential, or are optimized
for sequential execution in ways that obscure their computational independence.
�e process of replacing these algorithms with parallel versions is o�en di�cult,
and sometimes impossible. Even if a suitable parallel algorithm already exists, is
will usually be signi�cantly more di�cult to understand and implement. If such
an algorithm does not yet exist, then the programmer must exert time and e�ort
to develop one. Worse yet, some computations are simply not amenable to parallel
execution.

�e second component of parallel thinking is careful consideration of the data
structures used in a program. Because identifying operations on independent data
is the key to deriving parallel execution, the organization of data and the selection
of container structures has an enormous impact on the amount of parallelism
the program exhibits. For example, trees are excellent sources of independence
because they recursively partition a data set. By contrast, linked lists o�en inhibit
parallelism, because they encode a total ordering on each list node.

We believe these �rst two obstacles represent the fundamental challenges to
the success of multi-core processors. Establishing the parallel mindset required to
overcome these challenges will require a concerted e�ort in several areas: we must
train present and future programmers to understand and foster parallelism; we
must develop tools to measure and visualize parallelism; and we must continue
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to invent new and improved algorithms that address the growing demand for
parallelism.

Conventional parallel programming models further complicate these already
formidable challenges. In addition to the �rst two obstacles, so�ware developers
using these models must also:

3. Explicitly identify independence in the static program;

4. Represent this independence using abstractions that radically di�er from the
abstractions of the sequential programming model, such as the threads and shared
memory of the multi-threaded model, or the processes and messages of the message-
passing model;

5. Identify accesses to shared data, and ensure that these accesses are correctly syn-
chronized so that concurrent operations do not corrupt this data; and

6. Test and debug the resulting applications, which behave in an unpredictable and
unrepeatable fashion due to the arbitrary interleaving of operations from di�erent
threads.

�e goal of this dissertation is to allow programmers to focus on the former two
obstacles by eliminating the latter four. We will argue that the second set of prob-
lems occur because conventional parallel execution models employ control-driven
decomposition that is oblivious to the data manipulated by the operations of the
program. �e thesis of this dissertation is that a data-driven decomposition, which
dynamically decomposes a sequential program into series of operations on disjoint
sets of data, yields parallel execution that is repeatable, predictable, and provides
performance competitive with, or better than, control-driven decomposition.

1.2 our contributions

�e primary contribution of this dissertation is the proposal and development
of data-driven decomposition. �e key principles of this execution model are:
(1) dynamically decomposing a sequential program to identify the data manip-
ulated by each operation, (2) preserving the sequential ordering of operations
on a particular data set, and (3) executing operations on disjoint sets of data in
parallel. �is model has signi�cant implications for parallel execution of so�ware:
data-driven decomposition does not admit the notion of shared state, thereby
avoiding data races and the need for explicit synchronization. Furthermore, im-
posing a sequential ordering on all operations manipulating a particular set of
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data results in repeatable and predictable program execution. Within the context
of data-driven decomposition, we make the following contributions:

Constructs for Data-Driven Decomposition. We propose two constructs for
performing data-driven decomposition: private objects and serializers. A private
object is an aggregation of data that is disjoint from other data in the program,
which may only be manipulated by the set of operations de�ned by its speci�ca-
tion. Each private object is associated with a serializer, which executes operations
manipulating a private object asynchronously, so that program execution may
continue before the operations complete, and serializes them so that they execute
one-at-a-time, in program order. Private objects provide the disjoint sets of data
required for data-driven decomposition, and serializers act in concert to paral-
lelize the execution of operations on di�erent private objects, while each individual
serializer maintains the sequential semantics of operations on a particular private
object.

Sequential, Object-Oriented Representation. We describe the design and im-
plementation of prometheus, a C++ library that implements data-driven de-
composition in terms of the widespread practice of object-oriented programming.
Programmers indicate a data-driven decomposition by annotating existing pro-
gramming constructs such as class speci�cations and method invocations. By
contrast, conventional parallel programming models require programmers to em-
ploy new programming constructs with very di�erent semantics from sequential
constructs. prometheus eliminates this obstacle by providing an interface based
on sequential programming constructs and dynamically parallelizing program
execution in a manner that preserves their semantics.

Serializer Scheduling via Dynamic Task Extension. Task programming sys-
tems, sometimes called fork-join frameworks, utilize work-stealing algorithms
to perform dynamic scheduling that is provably e�cient in terms of both time
and space. However, these algorithms assume that tasks are completely inde-
pendent and can be represented by a static entity in the program text, such as a
single function or method. By contrast, a serializer must manage the execution
of an arbitrary number of dynamically identi�ed operations that manipulate a
particular private object. We describe how to implement serializers in terms of
existing task-programming models using dynamic task extension. Implementing
serializers using tasking primitives allows data-driven decomposition to leverage
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the task scheduling support provided by many current libraries and languages,
and places serializer scheduling on a �rm theoretical foundation.

Library Support for Unrestricted Work-Stealing. We describe the implemen-
tation of the prometheus runtime library, which performs dynamic task schedul-
ing using work-stealing. Because the activations records of fork-join tasks result
in a structure that resembles a tree, rather than a stack, previous work-stealing
schedulers have required either compiler support for specialized calling conven-
tions, or have restricted the scheduling algorithms to deal with the limitations of
linear stacks. prometheus uses a novel stack allocation and recycling scheme to
implement unrestricted work-stealing as a library.

Receiver Disambiguation. Data-driven decomposition requires each poten-
tially parallel operation to identify its receiver—the private object it will manipulate—
so that it may preserve the sequential ordering of operations on each particular
private object. One way to satisfy this ordering requirement is to execute the
receiver identi�cation phase of each operation sequentially. However, sequential
receiver identi�cation may result in an unacceptable sequential bottleneck for
some algorithms. �is observation leads us to recognize the receiver identi�cation
problem, an inherent limitation of any parallel execution model that maintains
program ordering of operations on a given data structure. To address this problem,
we propose receiver disambiguation as a mechanism to allow operations to imme-
diately begin parallel execution, while preserving the sequential order in which
they manipulate a particular private object. We describe the design and implemen-
tation of the receiver disambiguation queue, and apply it to the implementation of
divide-and-conquer parallel loops.

�is dissertation expands on our previously published work (Allen and Sohi,
2007; Allen et al., 2009) in several ways: First, we provide a generalized notion of
data-driven decomposition, and a detailed comparison with conventional, control-
driven decomposition techniques. Second, we provide a simpler, more general
programming model that is more closely tied to object-oriented programming.
�ird, we describe a more advanced runtime system that supports both nested
parallelism, as well as dynamic scheduling. Fourth, our description of the receiver
identi�cation problem and receiver disambiguation is entirely new.
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1.3 synopsis

In the remainder of this document, we:

1. Review the abstractions of multithreading and show how it is used to perform a
control-driven decomposition, and demonstrate how this results in unpredictable
and unrepeatable parallel execution (in Chapter 2);

2. Propose data-driven decomposition as a mechanism to realize repeatable, pre-
dictable parallel execution that preserves the intuitive sequential programming
model, and describe the application programming interface of prometheus, a
C++ library for performing data-driven decomposition using object-oriented
programming (in Chapter 3);

3. Describe an implementation of serializers that enables data-driven decomposition
to leverage e�cient dynamic scheduling techniques developed for control-driven
decomposition (in Chapter 4);

4. Present the design and implementation of the prometheus runtime library, which
performs unrestricted work-stealing to dynamically schedule parallel tasks (in
Chapter 5);

5. Explain how the ordering requirements of data-driven decomposition lead to the
receiver identi�cation problem and describe the implementation of the receiver
disambiguation queue, showing how it can alleviate this problem in the context of
parallel loops (in Chapter 6); and

6. Evaluate the performance of data-driven decomposition in comparison with
control-driven decomposition of the same applications (in Chapter 7).

Before concluding, we compare data-driven decomposition with other means
of realizing parallel execution. Finally, we summarize the insights we have ac-
quired during the development of data-driven decomposition, and discuss their
implications for future parallel execution models. We also discuss future research
opportunities indicated by the �ndings of this dissertation.



2 background

A folk de�nition of insanity is to do the same thing over and over again
and to expect the results to be di�erent. By this de�nition, we in fact
require that programmers of multithreaded systems be insane. Were
they sane, they could not understand their programs.

— Edward Lee (2006)

�e sequential execution model is arguably the most successful abstraction in
the �eld of computer science, serving as the basis for most existing so�ware. �ree
essential features explain this success. �e �rst essential feature is the programming
model: sequential programs express computation as a series of operations on a set
of variables, each operation completing before the next one begins. �is provides
an intuitive interface that allows the programmer to reason about each step of
the program in isolation, assuming all previous steps have completed, and no
subsequent steps have begun.

�e second essential feature of the sequential execution model is the determin-
istic manner in which programs execute. �e static representation of the program
dictates a total ordering on all program operations to which the execution must
adhere. Consequently, sequential program execution is repeatable because every
instance of the program running with a particular input yields the same sequence
of operations. Repeatability allows the programmer to easily reproduce errors,
and is the basis for most current testing and debugging methodologies. However,
repeatability does not fully describe the advantages of encoding a deterministic
ordering in a program, because it only captures the behavior of multiple runs of
the program. Sequential execution is also predictable, because the programmer
can reason about what will happen when the program is run with a particular
input. �e ability to anticipate what a program will do makes it much easier for
the programmer to write code that will achieve the desired outcome. Together, the
properties of repeatability and predictability provide the programmer with strong
guarantees about the runtime behavior of a program.

�e third essential feature of the sequential execution model is that, until
recently, it has been amenable to high-performance execution that has tracked
the exponential transistor scaling of Moore’s Law (Moore, 1965). Smith and Sohi
(1995) describe the various techniques used to implement the high-frequency
superscalar microprocessors that have achieved this performance. However, in re-
cent years, technological forces such as power consumption and design complexity
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have conspired to limit further increases in processor performance (Olukotun and
Hammond, 2005). Computer architects have therefore changed course, utilizing
the exponentially increasing number of transistors at their disposal to integrate
multiple processor cores onto a single chip (Sutter, 2005).

Multicore processors have become ubiquitous, o�ering bene�ts such as in-
creased performance, improved response time, and decreased power consumption.
To leverage these bene�ts, so�ware must be capable of dividing its constituent com-
putations among the cores of a multicore processor to achieve parallel execution.
Unfortunately, there is no general way to achieve parallel execution of sequential
programs—automatic parallelization has proven largely ine�ective, due to the
limitations of program analysis, and the fact that sequential programs frequently
employ inherently sequential algorithms (Sutter and Larus, 2005). �erefore, to
exploit the potential of multicore processors, programmers must intervene and
divide up the work of a program in a manner suitable for parallel execution.

Today, the most common technique for realizing parallel execution is control-
driven decomposition—statically dividing a program into multiple units of work
based on independent control �ow. �e prevalent programming model for this
kind of decomposition is multithreading, which provides two primary abstrac-
tions: multiple threads of control, and a global shared memory. In contrast with
the deterministic ordering of operations in sequential program execution, mul-
tithreaded execution is nondeterministic. When run, the program imposes no
ordering on operations from di�erent threads; instead, the interleaving of these
operations is determined dynamically when the program executes. Dynamic
ordering makes multithreaded program behavior unpredictable, increasing the
di�culty of implementing programs to achieve a desired result.

Control-driven decomposition assigns operations to threads statically, and
is usually oblivious to the data these operations will access. �erefore when the
program is run, it is o�en the case that operations assigned to di�erent threads
will need to share data. Programs that do not require shared data—so-called em-
barrassingly parallel programs—are trivial to parallelize, but client-side programs
rarely exhibit this form of parallelism (Sutter and Larus, 2005). Manipulation of
a shared variable by operations in di�erent threads, which are unordered with
respect to each other, results in a condition called a determinacy race (Netzer and
Miller, 1992). Determinacy races cause the values assigned to a shared variable to
depend on the dynamic ordering of operations from di�erent threads. Since this
ordering may vary on every run of the program, determinacy races compromise
the repeatability of the program. �is greatly increases the di�culty of detecting
and reproducing bugs, consequently increasing the cost of so�ware development
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and degrading so�ware reliability.
Multithreading is a natural abstraction of multiprocessor computer systems,

but as a programming model, it has grave de�ciencies. �e programming interface
is radically di�erent from that of sequential programs, requiring new constructs
such as threads and locks, and the shared memory abstraction changes the se-
mantics of memory operations. �ere is a broad consensus among computer
scientists that multithreaded programming is signi�cantly more di�cult than
sequential programming (Sutter and Larus, 2005). �e di�culty of multithreaded
programming is not simply a lack of programmer acumen, but is a fundamental
property of the model, demonstrated by the fact many machine-automated static
analyses commonly used for sequential programs are provably more complex for
multithreaded programs. For example, Ramalingam (2000) shows that context-
sensitive static analyses—i.e., analyses that consider only valid inter-procedural
paths when analyzing a program—are rendered undecidable if the analysis must
also consider the synchronization of a multithreaded program. Lee (2006) makes
a convincing argument that the state-space explosion of multithreaded program
behavior renders multithreading untenable as a programming model for client-
side applications. He predicts that if threads become the de facto standard for
programming multicore processors, the resulting proliferation of concurrency
bugs will make multicore so�ware extremely unreliable.

Bocchino et al. (2009a) observe that control-driven decomposition is only
required for a subset of all parallel programs—reactive computations that exhibit
inherent concurrency, such as a web server. Transformative computations, which
manipulate input data to produce a desired output, have no innate concurrency
requirement. Most currently-sequential client-side applications fall into this cate-
gory. While they do not require concurrency, parallel execution of transformative
computations allows them to leverage the bene�ts of multicore processors. �e
profound di�culty of writing and debugging multithreaded programs motivates
the search for new parallel execution models to address this class of computation.

�e remainder of this chapter expands on these issues, using as simple bank
transaction processing program, presented in Section 2.1, as a running exam-
ple. Section 2.2 shows how multithreading is used to perform a control-driven
decomposition of the example program. Section 2.3 demonstrates how shared
data leads to two kinds of data races: atomicity violations, which may cause opera-
tions to compute erroneous results, and determinacy races, which cause program
execution to be unrepeatable. Section 2.4 considers repeatability, arguing that
while determinism is not a realistic goal for parallel execution, a weaker property
called determinacy provides su�cient repeatability. Section 2.5 explains how de-
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1 class account_t {
2 private:
3     const unsigned int number; 
4     float balance; 
5
6 public:
7     account_t (unsigned int number, float balance) : 
8         number (number), balance (balance)  {} 
9

10     unsigned int get_number () const { return number; } 
11
12     float get_balance () const { return balance; } 
13
14     void deposit (float amount) { 
15         balance += amount;
16     } 
17
18     void withdraw (float amount) { 
19         balance -= amount;
20     } 
21 };

Figure 2.1: C++ code for a bank account class

terminacy can be made predictable using the ordering information encoded in a
sequential program. Finally, Section 2.6 illustrates the resulting property, which
we call sequential determinacy.

2.1 running example: bank transaction processing

�is section presents a simple bank transaction processing program to serve
as a running example for this dissertation. Rather than representing realistic
bank transaction processing, this example is intended to capture many of the
problems that arise when parallelizing a program. Our program executes the
bank transactions as a transformative computation, whereas a practical system
would likely run in real-time and require a reactive, truly concurrent solution.
Furthermore, the bank account operations are too �ne-grained to be pro�tably
parallelized on current multiprocessors. While unrealistic, we use this example
because the familiar bank account idiom allows us to rely on the reader’s intuition
for what should happen as the program executes.
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1 // Read bank transactions one at a time,
2 // until there are no more transactions.
3 for (trans_t* trans = get_next_trans (); trans != NULL; 
4      trans = get_next_trans ()) { 
5     account_t* account = trans->account; 
6
7     if (trans->type == DEPOSIT) 
8         account->deposit (trans->amount);
9

10     else if (trans->type == WITHDRAW)
11         account->withdraw (trans->amount);
12
13     else if (trans->type == BALANCE)
14         trans->balance = account->get_balance ();
15 }

Figure 2.2: C++ bank transaction processing

�e code for a bank account class is listed in Figure 2.1. We use the standard
C/C++ convention of appending _t to di�erentiate the names of types from the
names of variables.1 Each bank account comprises two �elds: a constant integer
for the account number (line 3) and a �oating-point balance (line 4). �e account’s
interface provides �ve operations. �e constructor (lines 7–8) initializes the
account data to the speci�ed values. Two accessor methods return the account
number (line 10) and balance (line 12). Two mutator methods allow for deposits
(lines 14–16) and withdrawals (lines 18–20) by incrementing and decrementing
the balance, respectively.

�e bank transaction processing code is given in Figure 2.2. �is code reads
transactions and processes them in a loop, until there are no further transactions
(lines 3–4). First, the loop body reads the account upon which it will operate
out of the transaction object (line 5). Second, the loop body determines the type
of the transaction and invokes the appropriate method on the account object
(lines 7–14).

�ere are several aspects of the execution of this program that are not known by
the programmer at the time the program is written, because they are determined
by the input data. �e number of transactions in the input determines the number
of times the loop will execute. �e input also determines which account objects

1Java uses a di�erent convention that capitalizes type (class) names to di�erentiate them from
variable names.
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Number Account Type Amount ($)

1 1 deposit 40
2 4 withdraw 35
3 1 withdraw 30
4 3 withdraw 10
5 2 deposit 50
6 4 deposit 70
7 1 withdraw 75
8 1 deposit 55
9 4 withdraw 45

10 3 deposit 60
11 4 deposit 25
12 3 withdraw 90

Table 2.1: Example input for bank transaction program

the program will modify, as well as the operation it will perform on the account.
�e statically unknown aspects do not pose a problem for the programmer

in the sequential execution model. �e statically encoded ordering allows the
programmer to anticipate what will happen when the program executes, even
before it is run. Consider the input shown in Table 2.1: observing that transaction
numbers 2, 6, 9, and 11 manipulate account 4, the programmer can predict that the
sequence of values of the balance of account 4 will be {100, 65, 135, 90, 115}. When
program execution deviates from what the programmer expects, the repeatability
of the sequential ordering makes debugging a straightforward process—errors
are trivially reproduced by rerunning the program with the same input. While
they may not pose a problem in the context of the sequential execution model,
in the next section we will see that the statically unknown aspects have major
implications for the multithreaded implementation.

2.2 control-driven decomposition with multithreading

Multithreading is the predominant programming model for control-driven de-
composition. �reads share most resources, including an address space, and
maintain only a small amount of truly private state, including a set of registers,
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1 // Read bank transactions one at a time,
2 // until there are no more transactions.
3 for (trans_t* trans = get_next_trans (); trans != NULL; 
4      trans = get_next_trans ()) {
5     transactions.push_back (trans);
6 } 
7
8 // Break the transactions into chunks of equal size,
9 // and assign each chunk to a thread.

10 int trans_per_thread = transactions.size () / NUM_THREADS; 
11 thread_info_t thread_info[NUM_THREADS];
12 thread_t tid[NUM_THREADS];
13 for (int i = 0; i < NUM_THREADS; ++i) {
14     thread_info[i].begin = trans_per_thread * i;
15     thread_info[i].end = thread_info[i].begin + trans_per_thread;
16     if (thread_info[i].end > transactions.size ())
17         thread_info[i].end = transactions.size ();
18     thread_create (&tid[i], &process_transactions, thread_info[i]);
19 } 
20
21 // Wait for threads to complete before exiting
22 for (int i = 0; i < NUM_THREADS; ++i) { 
23     thread_join (tid[i]);
24 } 

Figure 2.3: Bank transaction processing with threads

a stack pointer, and scheduling information. Many multithreading systems pro-
vide mechanisms for so-called thread-local storage (tls), but this an addressing
convenience—this state is still accessible by other threads.

Figure 2.3 lists a multithreaded version of the bank transaction processing
example assuming a simpli�ed interface similar to posix threads (IEEE, 2001). We
have performed a control-driven decomposition of the program, statically dividing
the transaction input into chunks and assigning each chunk of work to a thread.
Since the number of input transactions is unknown when this decomposition is
performed, the program must read the entire input into an array before it can
begin parceling out transactions to threads. Our example program does this by
pushing all the transactions into a global shared array transactions (lines 3–6).
Next, the program divides the input array evenly among the speci�ed number of
threads. Note that because the input data is not known when this division of data is
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1 // Global array to hold input
2 vector <trans_t*> transactions;
3
4 // Structure to package thread arguments
5 struct thread_info_t {
6    int begin;
7    int end;
8 };
9

10 // Each thread executes this function
11 void* process_transactions (void* arg) {
12     thread_info_t* thread_info = (thread_info_t*) arg; 
13     int begin_trans = thread_info->begin;
14     int end_trans = thread_info->end; 
15
16     for (int trans_num = begin_trans; trans_num < end_trans;  
17          ++trans_num) {
18         trans_t* trans = transactions[trans_num];
19         account_t* account = trans->account;
20
21         if (trans->type == DEPOSIT)
22             account->deposit (trans->amount);
23
24         else if (trans->type == WITHDRAW)
25             account->withdraw (trans->amount);
26
27         else if (trans->type == BALANCE)
28             trans->balance = account->get_balance ();
29     } 
30
31     return NULL;
32 }

Figure 2.4: Code for transaction processing thread

statically coded, the assignment of transactions to threads is completely oblivious
to the accounts that will be manipulated by the transactions. �e program then
creates a thread to handle each chunk of the array (lines 10–19). Finally, the main
thread waits for the threads to complete by using the join operation on each of
them (lines 22–24).

Figure 2.4 lists the code for the process_transactions function executed
by each of the threads. A thread �rst determines the region of the transaction
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// Thread 1
int tmp = account->balance;
tmp += amount;

account->balance = tmp;

1 // Thread 2
2
3
4 int tmp = account->balance;
5
6 tmp += amount;
7 account->balance = tmp;

Figure 2.5: Problematic interleaving of two transactions

array for which it is responsible (lines 12–14). It then processes the transactions
stored in this portion of the array, in the same order that the original sequential
program would (lines 16–29).

If the sets of accounts manipulated by the transactions in each thread are
disjoint, then the multithreaded program will produce the correct �nal state
for each bank account. However, if the input to the program contains more
than one transaction operating on any given account, it is unlikely that these
transactions would all be assigned to the same thread. Since the control-driven
decomposition assigns transactions to threads without considering the accounts
they will manipulate, there is a good chance that transactions manipulating a
particular account will be assigned to more than one thread.

Sharing accounts among threads introduces a signi�cant problem in the pro-
gram, because the operations performed by these methods are not atomic—they
do not take e�ect instantaneously. Instead, they comprise multiple machine in-
structions that may be interleaved with instructions from other threads. Consider
the two interleaved deposit transactions shown in Figure 2.5, which are presented
in a pseudo-code that resembles the primitive operations performed by processor
instructions. If this interleaving occurs for deposits on two di�erent accounts, i.e.,
for di�erent values of account, then these computations operate on disjoint data
and both accounts will have the correct balance at the end of the computation.
However, if the deposits are accessing the same account object, i.e., the account
pointer is the same, then the deposit performed by thread 1 will be lost. �is occurs
because thread 2 reads the balance of the account (line 4) before it is updated
by thread 1 (line 5), and then thread 2 overwrites the value balance written by
thread 1 (line 7). �is is one of many possible interleavings of these instructions
that would result in one of the operations being lost.

�is example illustrates the atomicity problem that arises when a control-
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driven decomposition assigns operations on the same data to di�erent threads.
In the next section, we will examine how the multithreaded programming model
addresses this problem, and further examine the consequences of control-driven
decomposition.

2.3 shared data, synchronization, and data races

Bernstein (1966) recognized that when parallel operations manipulate the same
data, they may produce a di�erent result than the sequential execution of the
same operations. He de�ned a set of constraints on how operations access data,
now called Bernstein’s conditions, that guarantees the parallel execution of these
operations will be equivalent to their sequential execution. Let READS(OPi) be
the set of all variables read by operation OPi, and WRITES(OPi) be the set of
all variables written by operationOPi. �en the sequential executionOPi ;OPj

is equivalent to the parallel executionOPi ||OPj if the following conditions are
satis�ed:

WRITES(OPi) ∩ READS(OPj) = ∅ (2.1a)
READS(OPi) ∩WRITES(OPj) = ∅ (2.1b)

WRITES(OPi) ∩WRITES(OPj) = ∅ (2.1c)

Bernstein’s conditions specify that for correct execution, no operation should
read or write a variable that may be written by a logically parallel operation.
Violation of these conditions is a data race. Netzer and Miller (1992) provide a
detailed discussion of data races, as well as a taxonomy that divides data races
into two categories: atomicity violations, and determinacy races.2 We will examine
each category of data race in turn.

To prevent operations from interfering with each other when accessing shared
data, multithreaded programs employ critical sections—blocks of code the pro-
grammer intends to be executed atomically. Critical sections use locks or some
other form of synchronization to ensure mutual exclusion, so that only one thread
may execute a critical section protected by particular lock at any given time. When
used correctly, critical sections prevent malignant interleavings that cause opera-
tions to produce incorrect results.

Figure 2.6 lists an updated account class that employs critical sections using a

2Data race terminology is inconsistent. Netzer and Miller refer to atomicity violations as data
races, and determinacy races as general races. We �nd the former set of terms more descriptive.
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1 class account_t {
2 private:
3     const unsigned int number;
4     float balance;
5     mutex_t mutex;
6
7 public:
8     account_t (unsigned int number, float balance) :
9         number (number), balance (balance)  {}

10
11     unsigned int get_number () const { return number; }
12
13     float get_balance () const {
14         float ret_val = balance;
15         return ret_val;
16     }
17
18     void deposit (float amount) {
19        balance += amount;
20    }
21
22     void withdraw (float amount) {
23        balance -= amount;
24    }
25
26     void lock () { mutex.lock (); }
27
28     void unlock () { mutex.unlock (); }
29 };

Figure 2.6: Bank account class with mutex locks
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1 // Each thread executes this function
2 void* process_transactions (void* arg) {
3     thread_info_t* thread_info = (thread_info_t*) arg;
4     int begin_trans = thread_info->begin;
5     int end_trans = thread_info->end;
6
7     for (int trans_num = begin_trans; trans_num < end_trans;
8           ++trans_num) {
9         trans_t* trans = transactions[trans_num];

10         account_t* account = trans->account;
11         account->lock ();
12
13         if (trans->type == DEPOSIT)
14             account->deposit (trans->amount);
15
16         else if (trans->type == WITHDRAW)
17             account->withdraw (trans->amount);
18
19         else if (trans->type == BALANCE)
20             trans->balance = account->get_balance ();
21
22         account->unlock ();
23     }
24
25     return NULL;
26 }

Figure 2.7: Code for transaction processing thread with locks

mutual exclusion construct called a mutex. Using a single mutex lock for operations
on every account would be su�cient to ensure correct execution of the program.
However, this would severely limit the available parallelism, because only one
thread could perform an operation on any account at a given time. Instead, we
use a di�erent mutex for each account object (line 5), so that only one thread may
operate on a given account, but multiple threads can operate on distinct accounts
(McKenney, 1996). We also add methods to lock (line 26) and unlock (line 28) the
mutex. Figure 2.7 updates the transaction processing thread function to use lock
an account (line 11) before performing a transaction, and unlocking it (line 22)
a�erward.
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1 void account_t::transfer (account_t* to_account, float amount)
2 {
3     this->lock (); 
4     to_account->lock (); 
5
6     this->withdraw (amount); 
7     to_account.deposit (amount); 
8
9     to_account->unlock ();

10     this->unlock ();
11 }

Figure 2.8: Transfer method

Critical sections must be very carefully deployed to protect access to a shared
variable that may be concurrently accessed by another thread. Omitting the
synchronization for even one such access can allow multiple threads to simultane-
ously access the shared variable, causing the �rst category of data race described
by Netzer and Miller:

De�nition 2.1. An atomicity violation occurs when a shared variable that is ac-
cessed inside a critical section is concurrently accessed by another thread, and at
least one of the accesses is a write.

Correctly synchronizing accesses to shared variables is a hard problem. A
recent empirical study by Lu et al. (2008) found that two-thirds of randomly
sampled concurrency bugs in real-world programs are due to atomicity violations.
Vaziri et al. (2006) describe two reasons why atomicity violations are so di�cult
to avoid: First, synchronization is associated with the code manipulating the
data, rather than the data structure itself. Instead of thinking locally about the
consistency properties of a data structure, the programmer must reason globally
about every possible access to that data structure. Second, placing every access to a
shared variable inside a critical section is o�en not su�cient to ensure correctness.
Many programs assume consistency properties involving more than one variable.
Atomicity violations involving multiple variables, sometimes called high-level
data races (Artho et al., 2003) occur when these consistency properties are not
maintained by the synchronization of the program. To avoid high-level data
races, the programmer must therefore ensure that any invariant involving multiple
variables always holds outside of a critical section.



20

mutex

number
balance

account1

mutex

number
balance
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account1->lock ();

account2->lock ();

...

account1->transfer(account2,100);

thread 1 thread 2
account2->transfer(account1,200);

account2->lock ();

account1->lock ();

...

Figure 2.9: Example of deadlock between transfer method invocations

In addition to the di�culty of correctly identifying critical sections, the use of
mutual exclusion introduces new types of possible bugs. We present an example
of how synchronization can lead to deadlock. Other examples include starvation
and priority inversion (Tanenbaum, 2001, chap. 2).

To illustrate a classic example of deadlock, consider the transfer method
listed in Figure 2.8. �is method withdraws an amount from the receiver object
and deposits it in the account speci�ed by the �rst argument. �e transfer must
maintain a consistent amount of money in the customer’s two accounts, so the
method locks both accounts before performing both operations (lines 3 and 4).
�is prevents the transferred amount from seeming to temporarily disappear,
which could occur if other threads were allowed to access the accounts involved
in the transfer a�er the withdrawal from the �rst account (line 6), but before the
deposit to the second account (line 7).

Figure 2.9 shows how deadlock can occur if one thread transfers fromaccount1
to account2 while a second thread transfers to account2 to account1. �read 1
successfully locks account1 and thread 2 successfully locks account2. Now nei-
ther of the threads can acquire a lock on the second account, since it is held by
the other thread, and thus the threads are unable to make further progress. �e
solution to this problem is to always lock the accounts in a consistent fashion—for
example, always locking the account with the lower account number �rst. In
general, deadlock avoidance in multithreaded programs requires strict adherence
to complex locking protocols (Co�man et al., 1971).

�e synchronization in our multithreaded bank transaction processing ensures
that the program computes the correct �nal balance for each account, but the
behavior of the program varies wildly from run to run. Consider running the



21

account #3
withdraw

$10
($90)

account #1 
deposit

$40
($140)

account #1
withdraw

$75
($65)

account #3
deposit

$60
($150)

account #4
withdraw

$35
($65)

account #2
deposit 

$50
($150)

account #4
deposit

$25
($90)

account #4
withdraw

$45
($115)

account #3
withdraw

$90
($60)

account #1
withdraw

$75
($25)

account #3
withdraw

$10
($150)

account #1
deposit

$40
($120)

account #2
deposit 

$50
($150)

account #1
deposit

$55
($80)

account #4
deposit

$70
($115)

account #1
withdraw

$30
($90)

account #4
withdraw

$35
($45)

account #3
deposit

$60
($160)

account #4
deposit

$25
($125)

account #3
withdraw

$90
($60)

account #4
withdraw

$45
($80)

thread 1 thread 2 thread 3 thread 4

thread 1 thread 2 thread 3 thread 4

(a)

(b)

account #1 
mutex

account #3 
mutex

account #1 
mutex

account #1 
withdraw

$30
($90)

account #4 
mutex

account #4
deposit

$70
($160)

account #1
deposit

$55
($120)

account #4 
mutex

Figure 2.10: Two possible executions of the multithreaded program
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program on the input given in Table 2.1 with four threads. Two possible executions
are shown in Figure 2.10. (�ese are not the only possible outcomes of running
this program—there are myriad other possibilities.) In both cases, each thread
is assigned the same transactions, but when the program is executed they are
interleaved in di�erent ways. In the �gure, the balance a�er each transaction is
listed in parentheses, and time lost blocking on a mutex is shown as an empty
box. We assume the initial balance of each account is $100. During the �rst
execution, shown in Figure 2.10(a), the sequence of balances of account 4 is
{100, 65, 90, 160, 115}. During the second execution, shown in Figure 2.10(b), the
sequence of balances of account 4 is {100, 125, 80, 45, 115}. �e �nal balance is
the correct value of $115 in each execution, but the intermediate values are all
di�erent. Neither sequence of balances matches the sequential execution, which
produces the sequence {100, 65, 135, 90, 115} for the balance of account 4.

While the synchronized multithreaded program ensures that each operation
leaves the account balance in a consistent state, it does not impose any ordering
when operations from di�erent threads access the same account. �us the values
assigned to a particular account balance depend upon how the operations in
di�erent threads are dynamically interleaved. �is condition is the second category
of data race described by Netzer and Miller:

De�nition 2.2. A determinacy race occurs when a variable is accessed by multiple
threads, at least one of the accesses is a write, and the order of the accesses is not
enforced by the program.

�e bank transaction processing example illustrates how static control-driven
decomposition leads to execution that is neither predictable nor repeatable. Be-
cause the data each operation manipulates is not taken into account during control-
driven decomposition, operations that manipulate a particular variable can be
assigned to di�erent threads. �ese operations then result in determinacy races
when the program executes, so that the order they update a shared variable de-
pends entirely on the dynamic scheduling decisions of the underlying thread
library, operating system, and hardware. �e programmer cannot predict this
ordering because it is not encoded in the program. And when the program is run
multiple times, the ordering will likely change due to varying conditions in the
system, so the execution is not repeatable. �is makes it extremely di�cult to
debug multithreaded applications, because so-called “Heisenbugs” (Gray, 1985)
manifest in some executions, but not others. Worse yet, latent bugs may be missed
entirely during testing, leading to unreliable so�ware that fails in the �eld.
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Repeatability and predictability are both consequences of the ordering proper-
ties of a program. Execution is repeatable if the ordering of operations is always
the same on di�erent runs with the same input. Execution is predictable if the
static program dictates the ordering of program operations. Predictability implies
repeatability, because an ordering imposed by the static program will always pro-
duce the same execution. �e converse is not true—it is possible that running
a program with a particular input might always produce the same behavior, but
if this order is imposed dynamically, then execution will be repeatable, but not
predictable. In the next two sections, we examine how to achieve repeatable and
predictable parallel execution.

2.4 repeatable parallel execution

Researchers o�en describe repeatability properties of parallel execution using the
terms determinism and determinacy. Unfortunately, previous research provides
inconsistent de�nitions for these terms. And while determinism and determinacy
are not synonyms in the �elds of mathematics or theoretical computer science, they
are o�en used as such by computer systems researchers. (�is confusion possibly
results from the fact that determinism and determinacy are near-homophones.)
For the purposes of this dissertation, we adopt de�nitions that illuminate our dis-
cussion of repeatable parallel execution, while attempting to maintain consistency
with as much existing literature as possible.

We �rst consider determinism. One popular de�nition states that a program
executes deterministically if it always produces the same output for a given input—
see, for example, the de�nitions given by Bocchino et al. (2009a) and Devietti et al.
(2009). �is de�nition is inadequate because it does not consider the intermediate
states of the program. As we have shown via the bank transaction processing
example, a program may display erratic behavior from run to run, yet always
produce the same output for a given input.

In the �eld of computer science, determinism usually refers to a system that
can be modeled as a deterministic �nite automaton. To model program execution,
the states of a �nite automaton would typically be some representation of the
program’s data, such as the value of all variables, or the contents of processor
registers and memory. For such a �nite automaton to be deterministic, each state
must have a one and only one successor state for each program action. �is implies
a total ordering on the assignments of values to variables. We prefer the following
de�nition of determinism, which is consistent with automata theory:
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De�nition 2.3. A program is deterministic if any execution with the same input
produces the same totally-ordered sequence of assignments to program variables.

Due to the cost of interprocessor communication, realizing truly deterministic
parallel execution on current multiprocessors is impractical. Ensuring a total or-
dering of all assignments would require synchronization of all variables, including
the private state of each thread. �is degree of coordination would cripple the per-
formance of parallel computation. High-performance parallel programs usually
only synchronize only accesses to shared state, allowing access to private state to
proceed in an uncoordinated, arbitrary order. �erefore any credible model of
parallel execution must be nondeterministic to accurately re�ect this asynchrony.

Early in the study of parallel computing, researchers recognized need for a
weaker repeatability property than determinism. Karp and Miller (1966) give a
graph-theoretic model of parallel computation, and in this context de�ne deter-
minacy as the property that a variable is assigned the same sequence of values in
any execution. Contemporarily, Van Horn (1966) de�ned the similar notion of
asynchronous reproducibility. We prefer the former term, which is widely used in
academic literature.

De�nition 2.4. A program is determinate if each program variable is assigned the
same sequence of values in any execution with a particular input.

We believe that transformative parallel programs should strive to be deter-
minate whenever possible. �e fundamental advantage over nondeterminate
programs is, by de�nition, the absence of determinacy races. Because each vari-
able is always assigned the same sequence of values when the program is run with
a particular input, determinacy provides the repeatability needed for testing and
debugging. In contrast with determinism, determinacy does allow the ordering
between assignments to two independent variables to change in di�erent execu-
tions. Allowing asynchrony between assignments to di�erent variables relaxes the
total ordering of determinism to a partial ordering, facilitating e�cient parallel
execution.

Determinacy guarantees a reproducible ordering on operations for executions
with the same input. However, this property does not specify how this ordering is
established. As long as it is repeatable, the ordering may be completely arbitrary.
Furthermore, any change in the input to the program admits a completely di�erent
ordering of all operations. For example, suppose we modify the input of our bank
transaction processing program so that a di�erent set of transactions is performed
on account 1, but do not change the transactions on the other accounts. Determi-
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nacy allows a di�erent ordering of all operations in the program, even operations
on accounts that were not a�ected by the change in input. So while determinacy
provides repeatability, it does not provide predictability. We investigate this issue
in the next section.

2.5 predictable parallel execution

Program execution is predictable if the programmer has a priori knowledge of its
behavior. In contrast with repeatability, which provides guarantees about what
happens when a program is run multiple times with the same input, predictability
provides guarantees about what how the program will behave before it is executed.
Predictability also allows the programmer to reason about the outcomes of running
the program with di�erent inputs, which is not addressed by repeatability.

Control-driven decomposition sacri�ces predictability because it discards the
ordering among operations assigned to di�erent threads. �ese operations are
dynamically ordered—they are scheduled according to dynamic decisions made
by entities such as the runtime, operating system, and hardware components. By
contrast, sequential programs are statically ordered—the program text determines
the order of all operations, resulting in eminently predictable program execution.

A logical approach to making parallel execution more predictable is to leverage
the ordering of a sequential program. We note that while multithreading relaxes
the sequential ordering between operations in di�erent threads, it does maintain
the sequential ordering for operations in the same thread. Unfortunately this
ordering provides little bene�t, since it is orthogonal to the ordering of variable
assignments needed for repeatability—as we showed in Section 2.3, sharing data
among threads introduces determinacy races.

Rather than maintaining the sequential ordering within a unit of independent
control �ow (i.e., a thread), a parallel execution model could maintain the sequen-
tial ordering within a unit of independent data �ow. �is yields a stronger version
of determinacy where the updates to a variable always occur in the same order as
a sequential execution of the program. Rather than requiring a separate sequential
version of the program, we de�ne the sequential elision as the execution of the
program a that elides all parallel constructs. (�is notion is equivalent to the serial
elision described by Frigo et al. (1998).) We then use the sequential elision as the
basis for our de�nition:

De�nition 2.5. Sequential determinacy is the property that in any execution of a
program with the same input, a variable is assigned the same sequence of values as
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Number Account Type Amount ($)

1 1 deposit 30
2 2 withdraw 50
3 1 withdraw 70

Table 2.2: Transaction input for determinacy example

<100, 100>

<100, 50> <130, 100> <30, 100>

<130, 50> <60, 100> <30, 50>

<60, 50>

sequential execution
(deterministic)

sequential determinacy

dynamically ordered,
nondeterminate

Tuples are balances of:
 <Account  1, Account 2>

Figure 2.11: Possible executions of the input in Table 2.2

the sequential elision of the program.

Sequential determinacy provides the repeatability of determinacy, because in
any execution of the program with the same input, the program will always assign
the same sequence of values to a variable. It improves on determinacy by making it
predictable, since the ordering is encoded in the program. In the next section, we
illustrate sequential determinacy and contrast it with other execution properties.

2.6 sequential determinacy

We illustrate sequential determinacy by revisiting the bank transaction processing
example. To restrict the number of possible executions to a manageable size, we
use the reduced input shown in Table 2.2. �is input includes two transactions on
account 1 and one transaction on account 2. Figure 2.11 shows possible program
executions under di�erent repeatability and predictability conditions. Each state in
the execution of the program is represented as a tuple of the two account balances,
which are initially 〈100, 100〉.



27

�e �rst type of execution depicted in Figure 2.11 is that of a sequential pro-
gram. Valid sequential transitions are shown by following bold arrows in the �gure.
Because sequential execution is deterministic, each state has one and only one
successor. �ese state transitions apply the transactions to the accounts in the
order given by the input in Table 2.2, yielding a single valid execution: 〈100, 100〉,
〈130, 100〉, 〈130, 50〉, 〈60, 50〉.

�e second type of execution is that of a sequentially determinate program,
indicated in the �gure by following any solid arrow in the �gure (bold or non-
bold). At any given state, any account balance may be updated, but the update
must be the next operation on that account in the sequential ordering. �us
from the initial state of 〈100, 100〉 there are two valid transitions: applying �rst
transaction to account 1, a deposit of $30, yielding the 〈130, 100〉 state; or the
�rst transaction to account 2, a withdrawal of $50, yielding the 〈100, 50〉 state.
However, the withdrawal of $70 from account 1 is not a valid transition, because
it would violate the sequential ordering of transactions on account 1.

�e third type of execution is a dynamically-ordered, nondeterminate program,
which allows for any ordering of the constituent operations of the program. �ese
executions may follow any arrow (solid or dashed) between states of the program.
Note that any execution that applies the second transaction to account 1 before
the �rst falls in this category.

�is example illustrates the bene�ts of sequential determinacy: Programs that
satisfy this property rule out any state transitions that produce unrepeatable or
unpredictable behavior. Additionally, it allows asynchrony to facilitate parallel
execution.

2.7 related work

In this section, we discuss alternatives to synchronizing threads with critical
sections.

Non-blocking synchronization (Herlihy and Shavit, 2008, chap. 3) employs
atomic read-modify-write instructions to implement operations that have a lin-
earization point—a single atomic step where the operation takes e�ect (Herlihy
and Wing, 1990). Linearization prevents threads from interfering with each other,
and thereby avoids the problems caused when a thread prevents other threads from
making progress, such as deadlock and priority inversion. Researchers have used
these techniques to develop a number of non-blocking data structures, including
queues, lists, hash tables, and trees. Moir and Shavit (2004) provide an excellent
survey of the area. Despite these successes, non-blocking synchronization is ex-
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tremely di�cult to reason about and correctly implement. Universal constructions,
such as the one proposed by Herlihy (1991), provide a mechanism to implement
any non-blocking algorithm, but they are not practical because they perform
poorly, even in comparison with blocking techniques. �erefore non-blocking
synchronization will likely remain an important tool for constructing e�cient
algorithms and data structure, but seems unlikely to by adopted by mainstream
programmers.

Transactional memory (tm) is a promising approach for synchronizing multi-
threaded programs. First proposed by Herlihy and Moss (1993) as a programming
model for multiprocessors, research on tm has �ourished in recent years. Harris
et al. (2010) provide the authoritative survey of the subject. Transactions comprise
a series of operations that appear to take e�ect instantaneously and indivisibly.
�ey provide three main properties: failure atomicity: a transaction either appears
completely (i.e., it commits), or not at all (i.e., it aborts); consistency: transactions
transition a program from one consistent state to another; and isolation: operations
in di�erent transactions cannot interfere with each other.

Transactional memory o�ers programmers several advantages over mutual
exclusion techniques. Perhaps the greatest advantage of transactions is that they
allow the composition of multiple concurrent operations, which is not generally
possible using mutual exclusion or non-blocking synchronization. Transactions
can also be useful to realize scalable performance without requiring programmers
to perform �ne-grained locking, which is extremely di�cult to do correctly.

While transactional memory addressed many of the problems associated with
synchronization, they do not in general address the issue of determinacy races.
However, proposals such as tcc (Hammond et al., 2004) and ipot (von Praun et al.,
2007) introduce the notion of ordered transactions, which enforce the sequential
ordering of transaction commits. While these models still express parallel pro-
grams as a control-driven decomposition, they do ensure sequential determinacy.

2.8 summary

In this chapter, we attributed the success of the sequential execution model to
its intuitive programming model, and two properties of sequential execution: re-
peatability, which ensures the program behaves the same way on any execution
with a particular input; and predictability, which gives the programmer a priori
knowledge of a program’s behavior. We showed how conventional parallel pro-
grams use control-driven decomposition to statically partition a program into
units of independent control �ow using the multithreaded programming model.
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We illustrated how using threads requires constructs not present in the sequential
program representation, and how the shared memory abstraction changes the
semantics of memory operations. We also showed how control-driven decomposi-
tion compromises both repeatability and predictability by assigning operations to
di�erent threads that may need to access the same data. �e resulting determinacy
races produce an explosion of possible program behaviors, making it very di�cult
for the programmer to reproduce particular behaviors, let alone anticipate what
the program will do before it is run.

For the remainder of the chapter, we addressed the question of how parallel
program execution could be made repeatable and predictable. We observed that
the property of determinacy provides repeatability by ensuring that any variable
in the program is assigned the same sequence of values in any execution with
the same input. We then showed that determinacy may be made predictable by
deriving the ordering of assignments to each variable from a sequential program,
yielding a property we call sequential determinacy. In the next chapter, we propose
mechanisms to realize parallel execution that satis�es this property.





3 data-driven decomposition

If we believe in data structures, we must believe in independent (hence
simultaneous) processing. For why else would we collect items within a
structure? Why do we tolerate languages that give us one without the
other?

— Alan J. Perlis (1982)

In Chapter 2, we argued that many of the di�culties associated with conven-
tional parallel programming are a direct result of control-driven decomposition,
which forfeits both the intuitive programming interface and the predictable, re-
peatable execution of the sequential execution model. We also observed that the
abstraction of independent control is unnecessary for transformative computa-
tions, which do not require concurrent execution of particular operations. �is
chapter advocates retaining the the sequential programming interface for transfor-
mative computations, and proposes data-driven decomposition as a mechanism
for deriving repeatable, predictable parallel execution of these programs.

3.1 overview of data-driven decomposition

Data-driven decomposition divides up a sequential program for parallel execution
based on the data accessed by its constituent operations. Operations that manip-
ulate disjoint sets of data may execute in parallel. Operations that manipulate
overlapping data must be serialized—executed one at a time, in program order—so
that they produce the same e�ect on the data as would their sequential execution.
Serialized operations on a particular set of data may still execute in parallel with
operations manipulating di�erent sets of data. Utilizing the knowledge of the
data manipulated by each operation allows data-driven decomposition to directly
realize Bernstein’s conditions when selecting units of work for parallel execution.

Some forms of static parallelization might be viewed as data-driven decom-
position. For example, many scienti�c programs perform computations on large
matrices, which can be partitioned so that di�erent regions of the matrix are cal-
culated in parallel. �is is possible not because the data is known, but because the
regularity of the program’s data structures predetermine the data access patterns.
By contrast, many client-side applications manipulate pointer-based data struc-
tures that are dynamically connected to form irregular graphs. �e resulting data
access patterns are too unpredictable to be used for static decomposition (Sutter
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and Larus, 2005). In general, data-driven decomposition must be performed at
run time, when the input to the program is available, and the structure of the
data is known. �is dissertation proposes dynamic data-driven decomposition,
although we will usually omit this quali�cation for the sake of brevity.

We introduce two basic constructs for performing data-driven decomposition:
private objects and serializers. An object comprises a set of data, called �elds, and
de�nes a set of operations, called methods, that may be invoked on the object. A
private object is an object that is disjoint from other data in the program, and may
only be manipulated via its methods.1 Private objects serve as the disjoint sets of
data needed for data-driven decomposition.

Each private object is associated with a serializer, which is responsible for the
asynchronous execution of methods invoked on the object. A serializer executes
these methods one-at-a-time, in the order they were invoked by the program.
Serializers thus provide the mechanism for data-driven decomposition to serialize
the operations manipulating the data contained in the object.

�e programmer facilitates data-driven decomposition in two ways. First, the
programmer speci�es one or more classes of private objects. �is speci�cation
de�nes the data stored in objects instantiated from the class, and de�nes the set of
methods that may be performed on these objects. �ese classes form the basis for
partitioning the data of the program into disjoint sets—each class is a speci�cation
of a single partition. Objects are instantiated from class speci�cations at run time
to store the data dynamically manipulated by the program. Each new private
object provides an additional disjoint set of data that can be used for data-driven
decomposition.

Second, the programmer identi�es methods that write only data contained
in a single private object; and read only the data in that object, or data external
to the object that is guaranteed to be constant. We call these object-pure meth-
ods because their visible side e�ects are con�ned to the receiver (the object the
method manipulates), generalizing the notion of purity as the absence of side
e�ects. Previous researchers have de�ned other relaxed notions of purity (Hogg
et al., 1992; Leavens et al., 2006; Sălcianu and Rinard, 2005). Our de�nition of
object-purity is inspired by the classi�cation of Benton and Fischer (2009), which
de�nes an externally-pure method as one whose read and write e�ects are con�ned
to the receiver, and an externally-read-only method as one whose write e�ects are

1Here, the term private is intended to connote privacy in the sense of object-oriented pro-
gramming, rather than the multithreaded distinction between shared objects that may be accessed
by multiple threads, and private objects that are local to a single thread.
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con�ned to the receiver, but may read external state. Object-pure methods, which
may read only constant external data, fall between these categories.

Object-pure methods are potentially independent because when two such meth-
ods are executed in the program, either they manipulate the same object and are
dependent; or they manipulate di�erent objects and are completely independent.
By contrast, object-impure methods interact with both the receiver object and
other state in the program, so they are always dependent. In the bank transaction
processing example of Section 2.1, the deposit and withdraw methods adjust
the balance of the account, but do not modify any state external to the object, so
they are object-pure methods. �e get_balance method allows other operations
in the program to read the private state of the object, so it is an object-impure
method.

Object-pure methods are the candidates for parallel execution in data-driven
decomposition. When the running program encounters the invocation of an
object-pure method, it delegates execution of the method to the serializer associ-
ated with the private object. �e serializer executes the methods it is delegated
serially to honor dependences between method invocations on the same private
object. It executes these methods asynchronously with respect to the rest of the
program, so method invocations delegated to di�erent serializers present the
opportunity for parallel execution.

We illustrate the dynamic actions of data-driven decomposition using the bank
transaction processing example from Section 2.1, executing the input given in
Table 2.1. We defer detailed discussion of the programming interface until the
next section, and assume that the programmer has made the necessary changes to
the sequential program to indicate that the account_t class is a source of private
objects, and that the deposit and withdraw methods are object-pure. (We will
extend the basic model of data-driven decomposition to handle transfers between
accounts in Section 3.4.)

Figures 3.1 and 3.2 present several steps in the execution of the example
program. In these �gures, the values in parentheses indicate the balance of an
account a�er each transaction. Figure 3.1(a) depicts the initial state of program.
Four private account objects have been instantiated with a beginning balance of
$100, and each account is associated with a serializer.

Figure 3.1(b) shows the actions of the program when it encounters the �rst
invocation of an object-pure method, a deposit of $40 to account 1. Delegation of
a method invocation to the appropriate serializer proceeds in three steps, as shown
in the �gure: Ê identi�cation of the private object the invocation will manipulate;
Ë identi�cation of the serializer associated with that object; and Ì communication
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Figure 3.1: Data-driven decomposition with serializers
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Figure 3.2: Data-driven decomposition with serializers, continued

of the method (deposit) and its arguments ($40) to the serializer. �e serializer
assumes responsibility for executing this method invocation, so the program can
immediately proceed to the next operation.

Figure 3.1(c) shows the delegation of the second object-pure method invo-
cation. �is transaction performs a withdrawal of $35 from account 4, and is
assigned to the serializer for that account. Because this method manipulates a
di�erent private account than the previous method, it introduces an additional
opportunity for parallel execution.

�e third invocation of an object-pure method is a withdrawal of $30 from
account 1. As shown in Figure 3.1(d), this invocation is delegated to the serializer
of account 1. It is serialized a�er the �rst invocation on that account (the deposit
of $40), and will not execute until this previous invocation completes and its
e�ects are re�ected in the balance. Serialization prevents these two methods
from executing concurrently, possibly corrupting the balance of the account, and
ensures that the transactions are applied to the account in the order they were
encountered in the input to the program.

Figure 3.2 shows the state of the serializers a�er the program has delegated
method invocations for all of the transactions listed in Table 2.1. �is example
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illustrates two key aspects of data-driven decomposition with serializers. First,
serialization ensures that methods are invoked on objects in the same order they
would be in the sequential program. Note that as each method invocation is
applied to account 4, the sequence of balances is {100, 65, 135, 90, 115}, exactly
matching the sequential execution. Second, the degree of parallelism manifested
by the program is determined by the amount of dynamic independence among
operations, which is in turn determined by the input to the program. If all the bank
transactions were performed on the same account, program execution would be
essentially sequential, but if each transaction is performed on a di�erent account,
program execution would be highly parallel.

At any given time, a private object may have a number of method invocations
pending execution in its serializer, as shown in Figure 3.2. Before invoking a
object-impure method, such as get_balance, on a private object, the serializer
must be quiesced. Quiescing the serializer ensures that all asynchronous method
invocations delegated to the serializer have completed, so that the state of the
object re�ects the changes made by these operations. Quiescing the serializer may
be performed implicitly any time an object-impure method is invoked, without
requiring any extra e�ort on the part of the programmer.

Implications of Data-Driven Decomposition

Data-driven decomposition is a signi�cant departure from conventional control-
driven decomposition. �e three distinguishing features of data-driven decom-
position are (1) decomposition of a program based on the data accessed by its
operations, rather than its control �ow, (2) prohibiting, rather than requiring,
shared data, and (3) dynamic decomposition instead of static decomposition. We
now examine the implications of these di�erences.

Program Representation. Programming models for control-driven decompo-
sition, such as multithreading, result in code that looks super�cially similar to a
sequential program. However, these models introduce new constructs like threads
and locks that have signi�cantly di�erent behavior than existing sequential con-
structs. Furthermore, the shared memory abstraction changes the semantics of
memory accesses, so that a given piece of sequential code may behave di�erently in
a multithreaded program. By contrast, data-driven decomposition augments the
sequential programming model with annotations on existing constructs, including
classes and method invocations. Programmers may need to restrict how they use
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these constructs to promote parallelism—for example, by limiting the side e�ects
of a method to a single object—but data-driven decomposition does not change
their behavior.

Expressing Parallelism. All parallel programming models require the program-
mer supply a parallel algorithm to realize parallel execution. However, these
models di�er in how the parallelism of the algorithm is expressed. Multithreading
requires programmers to explicitly identify the independent operations in the
algorithm and manually assign these operations to threads (or tasks) for execution.
Data-driven decomposition takes a di�erent approach, where the programmer
expresses dependence in the program via bundling of the individual data elements
with the operations that manipulate those elements. Data-driven decomposi-
tion then dynamically discovers independence among these operations. While
it o�en behooves the programmer to foster independence with a �ner-grained
division of data, explicit identi�cation of independence is not a requirement of the
model. We believe that dynamic discovery of independence will become increas-
ingly important as multicore processors prompt parallelization of highly irregular
applications.

Implicit Synchronization. �e shared memory abstraction of control-driven
decomposition allows operations in di�erent threads to access the same data. As
we saw in Section 2.2, programmers must provide explicit synchronization to
prevent operations on shared data from interfering with each other. Data-driven
decomposition precludes this problem by forbidding shared data. A private object
is the only data that may be manipulated asynchronously, and each private object
permits at most one method invocation at any given time. Method invocations
may execute in parallel only when they are invoked on di�erent private objects.
�erefore each method invocation executes in isolation, and leaves the object
in a consistent state. Since parallel method invocations cannot interfere with
each other, there are no atomicity violations. Runtime support for data-driven
decomposition does rely on synchronization to coordinate parallel execution, but
this synchronization is implicit in the program representation.

Repeatable Parallel Execution. Section 2.3 showed that repeatability of a paral-
lel program is compromised when the program exhibits determinacy races, which
are unordered accesses to a particular variable in the program. Data-driven de-
composition avoids determinacy races by disallowing shared data, and relies on
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serializers to enforce the same ordering of method invocations on each private
object in any execution with the same input. �e only permissible asynchrony
results from updates to disjoint sets of data in the program. Data-driven decompo-
sition thus provides determinacy, and the resulting repeatability makes program
execution signi�cantly easier to test and debug than a multithreaded program.

Predictable Parallel Execution. In addition to the guarantee that each execu-
tion of a program with a particular input always produces the same sequence of
method invocations on each private object, serializers also guarantee that this
sequence of method invocations will be the same as a sequential execution of
the same program. �us data-driven decomposition ensures the property of se-
quential determinacy introduced in Section 2.6. For a well-formed data-driven
decomposition—i.e., one that enforces the restrictions of private objects and object-
pure methods—the equivalence to sequential execution has a very important con-
sequence: all testing and debugging may be performed on a sequential execution,
and the parallel execution is guaranteed to produce the same behavior.

E�cient Parallel Execution. Data-driven decomposition dynamically discov-
ers parallelism in a program in the form of method invocations delegated to
di�erent serializers. Dynamic runtime support transparently orchestrates parallel
execution of the constituent method invocations of each serializer—no additional
e�ort is required from the programmer. �is dissertation will show that data-
driven decomposition can achieve performance that is comparable to, or better
than, control-driven decomposition.

In summary, data-driven decomposition is a means for achieving e�cient par-
allel execution of transformative computations that preserves both the intuitive
programming interface and the repeatable, predictable execution of sequential
programs. It is not a means for automatic parallelization of sequential programs—
programmers must still supply parallel algorithms and appropriate data structures.
But unlike control-driven decomposition, data-driven decomposition does not
compound these challenges with a radically di�erent programming interface and
execution model.

Our prototype implementation of data-driven decomposition is a C++ library
named prometheus. �ere are two components to this library: the prometheus
template library (ptl) which implements the application programming interface
(api); and a runtime system that performs the dynamic actions needed to coordi-
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nate program execution. �e remainder of this chapter describes the prometheus
api. Chapter 4 describes our implementation of serializers, and Chapter 5 describes
the prometheus runtime system.

3.2 prometheus: a c++ library for data-driven decomposition

�ree primary factors motivated our decision to implement data-driven decom-
position as a C++ library. First, a library implementation allows programmers to
apply data-driven decomposition in a familiar language, using existing compilers
and libraries, and provides a path for parallelizing existing sequential programs. In
comparison with a language-based implementation, which would require compiler
support, a library implementation also facilitates rapid development and design
iteration.

Second, prometheus closely aligns data-driven decomposition with the object-
oriented programming (oop) features of C++. One of the distinguishing features
of object-oriented programming is encapsulation, which hides the internal im-
plementation of an object and requires manipulation of data in the object to be
performed via a set of methods. While oop is not a prerequisite for data-driven
decomposition, encapsulation provides a natural way to derive independent com-
putations on disjoint sets of data.

�ird, C++ templates provide a powerful mechanism for generic program-
ming—writing classes and functions that are parameterized on types (Stroustrup,
1997, chap. 13). �ese generic classes and functions can be used to express
commonly-used algorithms and data structures in terms of abstract types. When
a program uses a template class or function, the compiler instantiates the template
by replacing the type parameters with the concrete types used in the program, and
specializes the resulting code for these types. �e compile-time evaluation per-
formed for template instantiation enables template metaprogramming—the use of
templates as a Turing-complete language for compile-time execution (Veldhuizen,
1995; Czarnecki and Eisenecker, 2000). Appendix A provides an overview the
capabilities of C++ templates.

Templates and template metaprogramming provide the necessary tools for
implementing language-like features in a C++ library. prometheus makes ex-
tensive use of templates to implement features such as the annotation of private
objects and delegation of method invocations. Because template instantiation is
performed by the compiler, prometheus code enjoys the same type checking as
ordinary C++ code. prometheus also employs template metaprogramming to
implement compile-time checks for some common programming errors that can
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arise during data-driven decomposition.

Data-Driven Decomposition and Object-Oriented Programming

Before describing the prometheus api, we review the key concepts of oop as
described by Pierce (2002, chap. 18) and Armstrong (2006). Recall that an object
is a data structure comprising a set of variables called �elds. Additionally, objects
provide an interface de�ning a set of operations called methods on the object.
Objects thus provide an abstraction of both a set of data, and the operations that
modify that data.

A class is a blueprint from which objects are instantiated that speci�es the
number and type of �elds in each object, and the implementation of the methods
in their interface. Multiple classes may expose the same interface, but provide dif-
ferent implementations of its methods. �is enables polymorphism—manipulating
objects of di�erent types via the same interface. Polymorphic methods are invoked
using dynamic dispatch, which identi�es the correct implementation, or method
body, corresponding to the method’s name and the run-time type of the object.

Polymorphism allows programmers to tailor the behavior of a method based
on the type of an object. However, this specialization is o�en applied to select
methods in the interface, with the remaining methods producing the same be-
havior. Rather than require the programmer to provide redundant de�nitions
of identically behaving methods, oop provides inheritance as a mechanism to
incorporate the functionality of an existing class in a new class. When a subclass
B inherits from a superclass A, B includes all of the �elds and method bodies of A.
�e subclass may add additional �elds and methods to provide additional func-
tionality, and may override the implementation of certain methods in the subclass
if a di�erent behavior is desired.

oop encapsulates data into objects for the purpose of enhancing modularity
via information hiding—separating the public, abstract interface of an object from
its private implementation (Parnas, 1972). Encapsulation alleviates much of the
di�culty in developing and maintaining large-scale applications. As long as an
object provides a consistent interface, changes to the underlying implementation
do not require changes to the so�ware components using that interface. �us oop
encourages programmers to specify classes so that methods manipulate only the
private state owned by an object.

Encapsulation is a means of developing highly modular so�ware, but it also
provides the necessary components of data-driven decomposition. Objects inher-
ently provide disjoint sets of data, and methods that operate only on the internal
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state of an object are viable candidates for parallel execution any time multiple
method invocations operate on di�erent object instances. Implementing data-
driven decomposition via oop further reinforces the practice of encapsulation by
providing the dual bene�ts of increased modularity and increased opportunity for
parallel execution.

Besides the logical analogue between data-driven decomposition and encap-
sulation, there is a practical bene�t to closely tying a parallel execution model
to oop. Only an elite subset of current so�ware developers are conversant with
conventional parallel programming models. By contrast, object-oriented practices
and idioms are already widely used by the so�ware industry. Providing support
for data-driven decomposition via oop should signi�cantly reduce the barriers to
parallelizing so�ware and leveraging multicore processors.

�e Prometheus api

Having reviewed the basic concepts of object-oriented programming, we now
present the prometheus api, which builds on these concepts to provide support
for data-driven decomposition. We begin with the base api, which provides
the means to associate C++ objects with serializers and then delegate method
invocations to these serializers. Later sections will then expand on this base to
describe more advanced capabilities.

Data-driven decomposition requires a mechanism for associating a private
object with a serializer. �e simplest solution is to incorporate a serializer directly
into each private object. �is approach would provide a single construct that
would be su�cient for many applications of data-driven decomposition.

We anticipate the need for a more �exible mechanism of associating objects
with serializers. In particular, the programmer should be able to write code to
specify or change the mapping between an object and a serializer. Programmers
can then associate multiple objects with the same serializer, e�ectively treating
them as a single private object for the purposes of data-driven decomposition.
�is is useful when methods operate on a tightly-coupled group of objects, or
when a set of objects cannot be broken into disjoint sets of data because they
share common data via pointers. Providing the ability to dynamically change the
association between objects and serializers allows the programmer the �exibility
to express evolving relationships between objects.

To allow dynamic association of private objects with serializers, we propose
making the serializer a �rst-class object—an entity that can be assigned to a variable,
and passed to and returned from functions. Private objects should then include a
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1 namespace prometheus {
2     class private_base_t
3     {
4     private:
5         serializer_t* serializer;
6
7     public:
8         // Constructors
9         private_base_t ();

10         private_base_t (serializer_t* serializer);
11
12         // Serializer accessor and mutator methods
13         serializer_t* get_serializer () const;
14         void set_serializer (serializer_t* serializer);
15     };
16 }

Figure 3.3: Interface for private_base_t

pointer to a serializer, and provide an interface for reading and writing this pointer.
�e operation responsible for setting the serializer of a private object must quiesce
the previous serializer before changing the pointer, to ensure that no more than
one serializer is ever executing method invocations on a private object.

prometheus provides support for associating serializers with C++ objects via
the private_base_t class, listed in Figure 3.3. �is class includes a pointer to a
serializer (line 5), a default constructor that automatically creates a new serializer
(line 9), and a constructor that allows the programmer to specify a serializer
(line 10). �e private_base_t class also provides a method to get the current
serializer (line 13), and a method that sets the serializer to the speci�ed value, a�er
implicitly quiescing the previous serializer (line 14).

Recall the bank transaction processing example from Section 2.1. Figure 3.4
shows how to modify the bank account class of Figure 2.1 so that serializers may
be associated with the objects instantiated from this class. �is is accomplished
by making the bank account class a subclass of private_base_t (line 2). (�e
public keyword on line 2 indicates that the public interface of private_base_t
is visible to users of the account_t class.) �e constructor for the account (lines 9–
11) initializes the account number and balance (line 11) as in the sequential
version, and also allocates a new serializer, passing it to the constructor of the
private_base_t base class (line 10).
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1 class account_t :
2     public private_base_t 
3 {
4 private:
5     unsigned int number;
6     float balance;
7
8 public:
9     account_t (unsigned int number, float balance) : 

10         private_base_t (new serializer_t), 
11         number (number), balance (balance)  {} 
12
13     unsigned int get_number () const { return number; }
14
15     float get_balance () const { return balance; }
16
17     void deposit (float amount) {
18         balance += amount;
19     }
20
21     void withdraw (float amount) {
22         balance -= amount;
23     }
24 };

Figure 3.4: Bank account class modi�ed to use serializers

�e basic interface of the prometheus api is given in Figure 3.5. �ese
functions are declared in the prometheus namespace to avoid name clashes
with identically named functions in user code. �e initialize (line 3) and
terminate (line 5) functions create and destroy the prometheus runtime, re-
spectively. Typically initialize will be called once at the beginning of the
program and terminate will be called once at the end of the program.

prometheus requires the programmer to indicate regions of code containing
delegated method invocations using calls to the begin_delegation (line 8) and
end_delegation (line 10) functions. Calling begin_delegation initializes the
structures used by the runtime to manage delegation.2 Calling end_delegation
e�ects a local barrier, causing program execution to wait until all outstanding

2We could avoid the need for begin_delegation by having the �rst delegation perform the
initialization, but this would require every delegation to check if initialization is required.
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1 namespace prometheus {
2     // Initializes the Prometheus runtime
3     void initialize ();
4     // Terminates the Prometheus runtime and cleanup
5     void terminate ();
6
7     // Prepare runtime for delegation
8     void begin_delegation ();
9     // Local barrier: wait for all delegated invocations to complete

10     void end_delegation ();
11
12     // Delegate a method invocation
13     template <typename C, typename B, typename... Args>
14     void delegate (C& obj, void (B::* method) (Args...), Args... args);
15
16     // Wait for delegated method invocations on
17     // obj’s serializer to complete
18     template <typename C>
19     quiesce (C& obj);
20 }

Figure 3.5: prometheus api

delegated method invocations have completed.
�e calls to begin_delegation and end_delegation should be lexically

scoped so that they clearly delineate a static block of program text. �is usage is
consistent with the practice of structured programming (Dijkstra, 1972), which
makes it easy for the programmer to identify these regions within code. Lexical
scoping also ensures that these regions are properly nested, so that two di�erent
regions are either nested or disjoint, but do not partially overlap. (We will discuss
nested delegation in detail in Section 3.3.) With compiler support, it would be
straightforward to implement a delegation{...} construct to enforce lexical
scoping of these regions.

�e delegate function (line 14) is used to delegate a method invocation to the
serializer associated with an object. �e arguments to the delegate function com-
prise the object upon which to invoke the method (obj), a C++ method pointer
(method), and the list of arguments (args). As described in Section 3.1, delegation
identi�es the serializer associated with the object, and communicates the object,
method, and arguments to the serializer. �e serializer executes the method in-
vocations it is delegated one by one, in program order, but asynchronously with
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respect to the rest of the program.
�e delegate function is a template (line 13), parameterized on the type C of

the object (which must be derived from private_base_t), the type B of the class
in which the method is declared (which must be either C, or a superclass of C),
and a list Args of the types of the arguments to the method. �is function is an
example of a variadic template—a template parameterized on a variable number
of types (Gregor et al., 2007).3 Variadic templates allow prometheus to support
delegation of methods with any number of arguments.

When the compiler encounters a call to delegate in a program, it uses the
template function in the ptl and specializes this generic version with the types
used in the program. In turn, this template instantiation uses other template classes
and functions to implement the delegation, which are also instantiated at compile
time. Because template instantiation is type checked, any errors that would be
detected in a standard method invocation—such as invoking an unde�ned method,
or passing an argument of the wrong type—will also be detected for a delegated
method invocation.

prometheus mandates the return value of delegated method invocations be
void, as shown on line 14. Return values frequently represent a read of object
state by the caller (Hogg, 1991), which violates the assumption that the e�ects
of an object-pure method are con�ned to the receiver object. Return values
are also not appropriate for methods executing asynchronously, because they
are o�en used shortly a�er the method call, inhibiting parallelism between the
method’s invocation and continuation. To date, we have not encountered a need
for return values that outweighs the arguments against them. In practice, it is
usually straightforward to refactor a method to store its return value in the object,
and provide an accessor method that may be used to retrieve this value later in the
program. Should we encounter a compelling application, we anticipate supporting
return values by wrapping them in an implicitly synchronized object that causes
reads of the return value to wait until the value is produced, similar to the future
construct (Baker and Hewitt, 1977; Halstead, 1985).

prometheus also places restrictions on the types of the parameters of a dele-
gated method. �e delegate function only accepts methods that take arguments
passed by value (i.e., copied), or const arguments passed by reference or pointer.
In C++, the const quali�er on a parameter prevents the method from modifying

3Variadic templates are part of a future standard for C++ called C++0x (ISO/IEC, 2010),
which as of this writing has not been approved. Many popular C++ compilers, including gcc, have
already implemented support for variadic templates.
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1 begin_delegation (); 
2
3 // Read bank transactions one at a time,
4 // until there are no more transactions.
5 for (trans_t* trans = get_next_trans (); trans != NULL;
6       trans = get_next_trans ()) {
7     account_t* account = trans->account;
8
9     if (trans->type == DEPOSIT)

10         delegate (account, &account_t::deposit, trans->amount); 
11
12     else if (trans->type == WITHDRAW)
13         delegate (account, &account_t::withdraw, trans->amount); 
14
15     else if (trans->type == BALANCE) {
16         quiesce (account); 
17         trans->balance = account->get_balance ();
18     }
19 }
20
21 end_delegation (); 

Figure 3.6: Bank transaction example parallelized with prometheus

it—any attempt to assign it a value will result in a compilation error. �ese restric-
tions on parameter types help ensure that delegated methods meet the requirement
that object-pure methods do not write state external to their receiver.

�e quiesce function (line 19) quiesces the serializer associated with an
object. Synchronization ensures that outstanding delegated method invocations
have completed, so that an object-impure method may safely execute. �is function
is parameterized on type C of the object (line 18), which must be a subclass of
private_base_t. �e single argument dictates the object to quiesce.

Synchronizing the serializer introduces a subtle issue when a delegated method
invocation attempts to quiesce its own serializer. �is could potentially cause a
method invocation executed by a serializer to wait for that serializer to �nish
all delegated method invocations, creating a cyclic dependence and resulting in
deadlock. �is situation is impossible to avoid in some cases, such as when the
delegated method invokes another method via a pointer or reference that may
refer both to its own receiver as well as other objects. prometheus automatically
detects and elides self-synchronization to prevent this problem.
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Figure 3.6 gives the code for a data-driven decomposition of the bank trans-
action processing program using prometheus. We do not show the calls to
initialize and terminate, but it should be assumed that they are placed at the
beginning and end of the main function, respectively. We surround the transaction
processing loop with calls to begin_delegation (line 1), and end_delegation
(line 21) to indicate a delegation region.

Recall that because they modify only the balance of the account object on which
they are invoked, the deposit and withdraw methods are object-pure, and thus
potentially independent. We delegate these methods as shown on lines 10 and 13.
�e calls to delegate pass the account object (account); a C++ method pointer
to the desired method (deposit or withdraw), quali�ed by the class in which they
are de�ned (account_t); and the argument to the method (trans->amount).

�e get_balancemethod is object-impure, because it allows other operations
to read the private state of the account object. Before invoking this method, the
serializer associated with the account object must be quiesced, so that all delegated
invocations of deposit and withdraw are re�ected in the balance before it is read.
�erefore the program invokes quiesce on the account object (line 16) before
invoking get_balance (line 17).

To facilitate data-driven decomposition, the programmer provides a clear de-
lineation between object-pure methods, which are delegated, and impure methods,
which are invoked in the standard fashion. �us there is no reason to require the
programmer to explicitly quiesce the serializer of an object. Instead, the serializer
can be implicitly quiesced any time an impure method is invoked. prometheus
implements implicit synchronization with the private wrapper class.

Implicit Synchronization via the Private Wrapper

�e base api of prometheus shown in Figure 3.5 provides a means for delegating
object-pure method calls, and for synchronizing serializers before invoking impure
methods. Unfortunately, intermingling these api calls with ordinary method
invocations can violate the assumptions of data-driven decomposition in two
ways. First, if a programmer mixes standard invocations and delegations of object-
pure methods, these method invocations may execute concurrently when they
should have been serialized. Second, if the programmer forgets to quiesce the
serializer before invoking an object-impure method, that method may execute
before outstanding delegated method invocations on the receiver complete. Both of
these scenarios introduce the possibility of determinacy races by allowing multiple
methods to concurrently manipulate the same object.
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1 namespace prometheus {
2
3     template <typename C>
4     class private_t <C> : protected C
5     {
6     public:
7         // Constructor
8         template <typename... Args>
9         private_t (Args... args);

10
11         // Delegation of object-pure methods
12         template <typename B, typename... Args>
13         void delegate (void (B::* method) (Args...), Args... args);
14
15         // Quiesced call for object-impure methods
16         template <typename R, typename B, typename... Args>
17         R call ((B::* method) (Args...), Args... args);
18    };
19 }

Figure 3.7: Wrapper template interface

prometheus provides the private wrapper template to forestall these sorts of
errors. �e private wrapper walls o� an object, ensuring its �elds are not visible
outside of the wrapper (even if public), and mediates all methods invoked on
the object to ensure they are either delegated to the object’s serializer, or that the
serializer is implicitly quiesced before a method is invoked directly. �is prevents
direct invocation of methods, and eliminates the need for the programmer to
explicitly quiesce objects.

Figure 3.7 shows the interface of the private wrapper, de�ned in the template
class private_t. �is class de�nes the three permissible operations on a private
object. �e private wrapper is parameterized on the object’s class C (line 3), and
inherits from C using the protected keyword (line 4), giving the wrapped object
all of the functionality of the underlying object, but hiding its interface from users.
�is forces the programmer to perform all manipulation of the wrapped object
through the wrapper interface.

�e �rst permitted operation is construction (line 9). Wrapped objects may
be constructed using the standard constructor interface of the underlying object.
Consider an object of the account_t class, which could be declared in this fashion:
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account_t account (account_num, initial_balance);

�e declaration of a wrapped object takes the same constructor arguments,
but uses the type of the wrapped object:

private_t<account_t> account (account_num, initial_balance);

�ere is no way to create wrapped objects from unwrapped objects—they
can only be constructed inside the boundaries of the private wrapper. �is pre-
vents programmers from inadvertently circumventing the private_t interface
by accessing an object outside of its wrapper.

�e second permitted operation is delegation (line 13. �e delegate method
of the private wrapper takes a pointer to a method in the underlying object, fol-
lowed by a list of arguments, and delegates this method invocation to the object’s
serializer. �us:

delegate (account, &account_t::deposit, trans->amount);

becomes:

account.delegate (&account_t::deposit, trans->amount);

�e third permitted operation is a dependent method call (line 17), which
implicitly quiesces the serializer of the underlying object before directly invoking
the speci�ed method. �e call interface of the private wrapper may introduce
more synchronization than is strictly necessary, because every dependent call is
quiesced, even when no delegation has occurred since the last dependent call.
Chapter 4 will show that synchronization is essentially free if a serializer has no
outstanding method invocations, so in practice this extra synchronization incurs
a negligible performance penalty.

�e interface for dependent method calls is similar to delegation, except that it
allows return values. As an example, the following dependent method invocation,
which must be quiesced using the basic prometheus api:

quiesce (account);
trans->balance = account->get_balance ();

requires no explicit synchronization using the private wrapper:

trans->balance = account.call (&account_t::get_balance);

�e constructor, delegate, and call methods serve as the primary interface
to wrapped objects. As a practical matter, the private wrapper also de�nes the set
of operators that C++ allows to be overloaded, and an operator that can be used
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1 // Declare private wrapper class
2 typedef private_t <account_t> private_account_t; 
3
4 begin_delegation ();
5
6 // Read bank transactions one at a time,
7 // until there are no more transactions.
8 for (trans_t* trans = get_next_trans (); trans != NULL;
9       trans = get_next_trans ()) {

10     private_account_t* account = trans->account; 
11
12     if (trans->type == DEPOSIT)
13         account->delegate (&account_t::deposit, trans->amount); 
14
15     else if (trans->type == WITHDRAW)
16         account->delegate (&account_t::withdraw, trans->amount); 
17
18     else if (trans->type == BALANCE)
19         trans->balance = account->call (&account_t::get_balance); 
20 }
21
22 end_delegation ();

Figure 3.8: Bank transaction code using the private wrapper

to cast the object to wrapped versions of other classes in the object’s inheritance
hierarchy.

In Figure 3.8, we update the bank transaction processing code to use the private
wrapper and its interface. �e account_t class requires no modi�cation to use
the wrapper—we simply de�ne a wrapped type on line 2. We similarly modify
the declaration of the account object on line 10 use the wrapped type. We also
change lines 13 and 16 to use the delegate method to delegate the potentially
independent invocations of deposit and withdraw, and line 19 to use the call
method for the dependent invocation of get_balance.

In summary, the private wrapper protects programmers from errors caused
by improper method invocations on private objects by providing an interface
that allows only delegations or quiesced calls. �e distinction between delegating
and calling methods is similar to the distinction that some object-oriented pro-
gramming languages make between two types of methods: procedures that modify
an object but do not return a value, and functions that return a value but do not
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modify the object. Meyer (1988b) referes to this as command-query separation.
�is is yet another example of the synergy between data-driven decomposition
and oop.

3.3 nested delegation

Parallel execution models can be divided into two categories: �at models and
nested models (Blelloch, 1996). Flat models allow a single decomposition of a
computation to derive parallel operations, but the resulting operations cannot be
further decomposed. Nested models allow multiple decompositions of a computa-
tion to expose a hierarchy of parallelism, and are generally preferable because many
programs exhibit multiple granularities of independence. Blelloch (1996) pro-
vides numerous examples of algorithms containing nested parallelism, including
Quicksort (Hoare, 1961b), �nding primes with the Sieve of Eratosthenes, sparse
matrix multiplication, the Quickhull algorithm for computing planar convex hulls
(Preparata and Shamos, 1985), and the fast Fourier transform (fft) (Hillis and
Steele, 1986). Before exploring nested data-driven decomposition and its im-
plementation in prometheus, we review three important arguments for nested
parallelism.

�e �rst argument for nested parallelism is that it is the most straightforward
way to express recursive computations, such as divide-and-conquer algorithms
(Cormen et al., 2009, chap. 27), because it allows the parallelism can be expressed
directly in the recursion. Without nested parallelism, the computation must be
split into di�erent cases to distinguish the parallel and sequential parts of the
recursion.

�e second argument for nested parallelism stems from modular program-
ming practices such as oop, dynamic linking, and dynamic class loading. �ese
techniques facilitate large-scale so�ware development by isolating functionality
in modules that interact via abstract interfaces, so that a programmer writing a
particular module is o�en unaware of the implementation details of other modules.
Blelloch and Sabot (1990) observe that a particular module may be called by both
sequential and parallel code, and similarly the module may call other code that is
either sequential or parallel. Ideally, a programmer would express the parallelism
in an individual module without needing to consider how parallelism is expressed
in other modules, and rely on the parallel execution model to handle any nested
parallelism that results from the composition of these modules.

�e third argument for nested parallelism is that without it, the programmer
must identify the single granularity of parallelism that achieves the best perfor-
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mance. �is is usually an empirical process, performed either by pro�ling the
application, or applying parallelism at di�erent granularities and measuring per-
formance. While this approach may achieve good performance for certain inputs
to the program on a particular hardware con�guration, the program may perform
poorly under di�erent conditions. By contrast, dynamic task scheduling systems
bene�t from an abundance of parallelism (Frigo et al., 1998). Using these systems,
the programmer can express parallelism wherever it occurs in the program, and
the runtime automatically selects the appropriate granularity for parallel execution
as the program executes.

Data-driven decomposition exposes parallelism when operations manipulate
disjoint sets of data. It exposes nested parallelism when a particular operation
on a distinct data set can be further decomposed into operations that manipulate
disjoint subsets of that data. Using the constructs proposed in this dissertation, a
private object may encapsulate other private objects, each with their own serializer.
Method invocations delegated to the serializer of the top-level private object may
then perform nested delegation—delegating object-pure method invocations to
the serializers of the sub-objects. prometheus supports arbitrarily deep nested
delegation.

We demonstrate nested delegation with an implementation of the Quicksort
algorithm. �e prometheus code for a data-driven decomposition, given in
Figure 3.9, uses the qsort_block_t class to sort a region of an array. �e pro-
gram begins with a single block object for the range to be sorted, and recursively
subdivides these blocks during the sorting process.

Before the class speci�cation of the qsort_block_t, we use a forward declara-
tion the private version, private_qsort_block_t (line 2), so we can instantiate
private objects of this class inside the class speci�cation. �e qsort_block_t
class inherits from private_base_t class to enable association of objects with
serializers (line 4). Each object of this class has four �elds: the begin (line 7) and
end (line 8) �elds, which de�ne the half-open range [begin,end)4 to be sorted,
and two pointers to private block objects that may be used to divide this block
into a left block (line 9) and a right block (line 10).

�e constructor (lines 13–16) takes two iterators as arguments, which de�ne
the range of the block. It creates a new serializer, and associates it with the object
by passing it to the constructor of the private_base_t class (line 14). �e
constructor also initializes the begin and end �elds to the values passed to the

4A half-open range [begin,end) includes the elements begin, begin+1, ..., end-1 (but not
end).
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1 class qsort_block_t;
2 typedef private_t <qsort_block_t> private_qsort_block_t;
3
4 class qsort_block_t : public private_base_t
5 {
6 private:
7    iterator_t begin;
8    iterator_t end;
9    private_qsort_block_t left;

10    private_qsort_block_t right;
11
12 public:
13   qsort_block_t (iterator_t begin, iterator_t end) :
14         private_base_t (new serializer_t),
15        left (NULL), right (NULL)
16     {}
17
18     void sort () { 
19         // find pivot
20         Iter pivot = partition (begin, end); 
21
22         begin_delegation ();
23
24         // left side
25         if ((pivot - begin) > 1) {
26             left = new private_qsort_block_t (begin, pivot);
27             left->delegate (&qsort_block_t::sort);
28         }
29
30         // right side
31         if ((end - pivot) > 1) {
32             right = new private_qsort_block_t (pivot, end);
33             right->delegate (&qsort_block_t::sort);
34         }
35
36         end_delegation ();
37     } 
38 };

Figure 3.9: Recursive data-driven decomposition of Quicksort
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constructor (line ??), and initializes the left and right block pointers to null
(line 15).

�e sort method (lines 18–37) modi�es only data in the range of the array
owned by the object, and so it is object-pure. It begins by calling partition
(line 20), which selects a pivot element; then places all elements less than this
element to its le�, and all elements greater than or equal to this element to its
right; and returns the �nal location of the pivot element (Hoare, 1961a). Note that
the partitioning process requires Θ(N) comparisons, introducing a signi�cant
sequential bottleneck in the algorithm if it is not parallelized. We do not show
the implementation of partition in this example, but this operation is also
amenable to data-driven decomposition using algorithms such as those described
by Heidelberger et al. (1990) and Tsigas and Zhang (2003).

�e next step of Quicksort splits the array around the pivot element, and
then recursively sorts these partitions. Because they are disjoint, we may apply
data-driven decomposition to sort the le� and right sides in parallel. To enable
delegation, this part of the sortmethod is enclosed in calls to begin_delegation
(line 22) and end_delegation (line 36).

�e code on lines 25–28 processes the le� partition. We �rst check that
the partition contains least two elements (line 25); otherwise, the recursion
has completed for this side. If there are enough elements to be sorted, a new
private_qsort_block_t object is created for the le� partition. �is new object
is encapsulated inside the current object, and represents a subset of its data, i.e. the
portion of the array in the range [begin,pivot). �is makes it a valid candidate
for nested delegation. Construction of the left object creates a new serializer, to
which we delegate an invocation of sort for the le� side of the array (line 27).

�e code for the right partition is identical to the le� partition, except that
it sorts the part of the array to the right of the pivot (lines 31–34). When
the sort method has been delegated for both the le� and right partitions, the
end_delegation method causes execution to wait for these asynchronous meth-
ods to complete.

Figure 3.10 depicts the execution of the code from Figure 3.9 sorting the string
“PARALLELISM”. To perform a sort, we simply declares a block for the range to
be sorted, and delegate the sort method:

private_qsort_block_t block (begin, end);
block.delegate (&qsort_block_t::sort);

Initially, the entire array is owned by a single block object associated with
serializer0. For the purposes of this example, we assume that the rightmost ele-
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Figure 3.10: Recursive data subdivision in quicksort

ment in a block always serves as the pivot. �us the partition function chooses
“M” as the pivot element, and moves elements less than “M” to its le�, and ele-
ments greater than or equal to “M” to its right. �e sort method then creates
two new qsort_block_t objects, which create new serializers when they are
constructed. �e left block owns the letters to the le� of “M”, and is associated
with serializer1. �e right block owns the letters to the right of “M” and is associ-
ated with serializer2. �e sort method is then delegated to the serializer of these
blocks.

�e le� and right blocks are partitioned in parallel. �e right block, which
contains “PSR”, is partitioned around the pivot element “R”, rearranging the letters
to “PRS”. Since the le� and right sides of the pivot are both less than two characters,
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1 void account_t::transfer (private_account_t* to_account, float amount)
2 {
3     this->withdraw (amount);
4     to_account->call (&account_t::deposit, amount);
5 }

Figure 3.11: Transfer method in prometheus

the recursion has completed for this side.
�e le� block is partitioned around “E”, and then subdivided again into le�

and right blocks associated with serializer3 and serializer4, respectively. �e sort
method is then delegated to these serializers. �e recursive process of dividing
the data and sorting it continues until the sub-blocks are less than two characters
and the recursion is complete. �e result is the sorted array, shown at the bottom
of Figure 3.10.

Nested delegation allows a programmer to apply data-driven decomposition
to a data structure in a hierarchical fashion to reveal multiple layers of parallelism.
In the next section, we present multiple delegation, which allows data-driven
decomposition to expose multiple granularities of parallelism at a given layer in
this hierarchy.

3.4 multiple delegation for aggregate operations

�e constructs we have described so far are su�cient to express potentially inde-
pendent operations on individual objects, but client-side applications frequently
contain aggregate operations that manipulate multiple objects at once. Consider
the prometheus implementation of the transfer method, listed in Figure 3.11.
�is method operates on two account objects at once, withdrawing a speci�ed
amount from the receiver, and depositing this amount in the account speci�ed by
the �rst parameter (line 1). �e transfermethod does not meet our previous def-
inition of object purity, so we cannot delegate this method invocation and instead
must execute it sequentially. Sequential execution of aggregate operations inhibits
parallelism, because later object-pure method invocations cannot be delegated
until the transfer completes.

Consider the code listed in Figure 3.12. �is snippet delegates object-pure
method invocations to the serializers of account1 and account2 on lines 1–2. It
then performs a transfer from account1 to account2 using the call interface



57

1 account1.delegate (&account_t::deposit, 50);
2 account2.delegate (&account_t::withdraw, 20);
3 account1.call (&account_t:transfer, account2, 100);
4 account2.delegate (&account_t::withdraw, 10);
5 account1.delegate (&account_t::withdraw, 20);
6 account3.delegate (&account_t::deposit, 40);

Figure 3.12: Invoking transfer via the call interface

(line 3). �e call quiesces the serializer of account1, and once the previously
delegated method invocations complete, sequential execution of the transfer
method begins. Note that the transfer method also quiesces the serializer of
account2 (Figure 3.11, line 4). Because the transfer is executed sequentially, later
object-pure method invocations on account1 and account2 (lines 4–5) cannot
be delegated until the transfer completes. Worse yet, operations to accounts not
involved in the transfer, such as the deposit to account3 on line 6, must also wait
for the transfer to complete.

We observe that this is an arti�cial limitation of the implementation we have
described so far, rather than a fundamental limitation of data-driven decomposi-
tion. Recall that private objects are operated on by at most one method at any given
time, and that these method invocations are applied in sequential program order.
�ese invariants do not preclude the same operation from manipulating multi-
ple objects. We therefore extend our notion of object purity to include methods
whose side e�ects are con�ned to a set of objects, which we call multi-object-pure
methods. Data-driven decomposition can exploit multi-object-pure methods by
performing multiple delegation, which delegates the method invocation to the seri-
alizer of each object involved in the aggregate operation. To maintain the program
ordering invariant, these method invocations are executed only once they are the
oldest operation in every serializer to which they were delegated. Note that despite
being delegated to multiple serializers, there is only one method invocation, so it
is executed exactly once.

prometheus statically inspects the parameter list of delegated methods using
template metaprogramming. If it �nds any private objects, it specializes the delega-
tion to perform the appropriate form of multiple delegation. �is implementation
of multiple delegation is similar to support for multimethods provided by some
object-oriented languages, which allow a method to be specialized not only on the
type of its receiver, but on the types of its arguments as well (Steele, 1990; Cli�on
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1 account1.delegate (&account_t::deposit, 50);
2 account2.delegate (&account_t::withdraw, 20);
3 account1.delegate (&account_t:transfer, account2, 100);
4 account2.delegate (&account_t::withdraw, 10);
5 account1.delegate (&account_t::withdraw, 20);
6 account3.delegate (&account_t::deposit, 40);

Figure 3.13: Aggregate delegation of the transfer method

et al., 2006).
While prometheus places no restriction on the number of private objects

involved in multiple delegation, two considerations likely establish an e�ective
upper limit. First, each private object must be passed as an argument to the
method. Methods with many parameters tend to be cumbersome, so programmers
typically do not write methods with more than six or seven parameters. Second,
the overhead of delegation increases for each object involved in the aggregate
operation. To date, we have found that by far the most common need for multiple
delegation is interactions of two objects. Should we �nd it necessary to perform
multiple delegation on large numbers of objects in the future, we could employ the
techniques described in Chapter 6 for parallelizing delegation of large numbers of
method invocations.

With support for multiple delegation, we can update the code from Figure 3.12
to delegate the transfer method invocation, as shown in Figure 3.13. Now we
delegate the transfer on line 3 rather than execute it sequentially, and later op-
erations on lines 4–6 need not wait for the transfer to complete before they are
delegated. To demonstrate the operation of multiple delegation, we illustrate the
execution of the delegated method invocations on account1 and account2 listed
in Figure 3.13. We show their execution in six steps, spread across Figures 3.14
and 3.15.

Figure 3.14(a) shows the state of the program a�er delegation of the �rst two
method invocations: a deposit to account1, and a withdrawal from account2.
Figure 3.14(b) depicts delegation of the transfer method to the serializers of both
accounts. In Figure 3.14(c), additional method invocations have been delegated
to the serializer of each account.

In Figure 3.15(d), the serializer of account1 has executed its �rst method
invocation. Now the transfer is the oldest method invocation in this serializer, but
it cannot execute it yet, since it is not the oldest method invocation in the serializer
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Figure 3.14: Multiple delegation of the transfer method
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Figure 3.15: Multiple delegation of transfer method, continued
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of account2. Only a�er the serializer associated with account2 executes the
withdrawal of $20, as shown in Figure 3.15(e), may the transfer method invocation
execute. Figure 3.15(f) shows how once the transfer is complete, the serializers
may resume independent execution of delegated method invocations.

�is example illustrates how multiple delegation allows multi-object-pure
methods to execute asynchronously, without inhibiting parallelism among later
method invocations in the program. In concert with nested delegation, mul-
tiple delegation provides the ability to express parallelism at multiple di�erent
granularities of data throughout the program.

Multiple Delegation and Multimethods

prometheus statically inspects the parameter list of delegated methods using
template metaprogramming. If it �nds any private objects, it specializes delegation
to perform the appropriate form of multiple delegation. Our implementation of
multiple delegation is similar to the support for multimethods provided by some
object-oriented languages (Steele, 1990; Cli�on et al., 2006). Traditional object-
oriented languages allow a method to be specialized on the type of the receiver
object. Multimethods may be specialized not only on the type of the receiver,
but also the types of arguments. An enhanced form of dynamic dispatch called
multiple dispatch to is used to identify the correct method body for a multimethod
based on the types of the receiver and the arguments (Chambers and Chen, 1999).
With compiler support, similar techniques could be used to implement polymor-
phic delegation that automatically and dynamically performs the correct form of
delegation for any method invocation.

3.5 correctness and safety of data-driven decomposition

Implementing support for data-driven decomposition as a C++ library a�ords the
signi�cant advantages described in Section 3.2. However, this implementation also
requires that we deal with the limitations imposed by an existing language. C++ is
intended to be a �exible, general-purpose language supporting a wide range of
programming styles, and not as a vehicle for strict object-oriented programming
(Stroustrup, 1995). As a consequence of this design choice, the encapsulation
guarantees of C++ objects are fairly weak. Furthermore, the permissive scoping
and visibility rules of C++ preclude restricting a method’s observable e�ects to
its receiver object. (�e stronger guarantees provided by type-safety in languages
such as Java and C] prevents some, but not all, of the C++ limitations.) �ese
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shortcomings make it impossible to enforce the exact semantics of private objects
and object-pure methods. It is therefore possible to write a prometheus programs
where a delegated method invocation accesses state that is simultaneously accessed
by some other operation in the program, resulting in a determinacy race.

�ough it does not realize the full potential of data-driven decomposition,
prometheus represents a signi�cant improvement in repeatability and predictabil-
ity in comparison with control-driven decomposition. Determinacy races are an
inherent property of shared-state multithreading, whereas they always represent
errors in prometheus programs. �erefore we can rely on existing determinacy
race tools such as those described by Feng and Leiserson (1997) and Bender et al.
(2004) to detect these errors. We believe sacri�cing safety for �exibility, backwards
compatibility, and performance is a reasonable choice for prometheus and is
consistent with the spirit of an unsafe systems language like C++.

In this section, we examine the cases where C++ allows violation of the as-
sumptions of data-driven decomposition, possibly resulting in determinacy races.
Rather than attempt to address every possible issue separately, we group these
problems into broad categories that we illustrate with speci�c examples. We ob-
serve that nearly every source of inadvertently shared data is also a violation of
the object-oriented practice of encapsulation. We show that using the private
wrapper and a disciplined, object-oriented programming style can prevent almost
all of these problems. At the end of this section, we examine how we might apply
existing static analysis and type-checking techniques to implement a safe language
for data-driven decomposition.

Violations of Private Object Semantics in C++

We begin by describing how C++ objects may violate the strong encapsulation
requirements of private objects, illustrated with simple examples in Figure 3.16.
We ascribe these issues to two categories: weaknesses of the C++ encapsulation
mechanism, and the consequences of aliasing among the state encapsulated in
di�erent objects.

�e �rst source of encapsulation violations in C++ programs is the encap-
sulation mechanism itself. C++ provides class encapsulation, meaning that the
methods of an object may access the private members—both �elds and methods—
of any other object instantiated from the same class (Stroustrup, 1997, pg. 754).
Figure 3.16 contains several examples of the consequences of class encapsulation.
Consider the read_others_field method of the example_t class on lines 9–11.
�is method takes another object of the example_t class as a parameter, reads a
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1 class example_t {
2     friend class other_class_t;
3
4 private:
5     int field;
6     int* pointer_field;
7
8 public:
9     int read_others_field (example_t& other) {

10         return other.field;
11     }
12
13     static int read_instance_field (example_t& object) {
14         return object.field;
15     }
16
17     int* get_field_address () {
18         return &field;
19     }
20
21     void set_pointer_field (int* pointer) {
22         pointer_field = pointer;
23     }
24 };

Figure 3.16: Violations of private object semantics in C++

�eld of that object (which is declared as private on line 5), and returns that value.
Class encapsulation also allows class methods, which are declared in the class but
not associated with an object instance, to access the private members of any object
of that class. �e read_instance_field method (lines 13–15), declared using
the C++ static keyword (line 13), also reads a private �eld of an object of the
example_t class. Both of these methods are legal in C++ and clearly violate the
encapsulation assumption of private objects.

C++ also allows a class to declare friends—classes and functions that may then
directly access the private �elds of objects in this class. In Figure 3.16, the friend
declaration on line 2 makes the private members of any object of the example_t
class visible to any method of other_class_t. While certain practical circum-
stances necessitate the use of friends in C++ programs, it weakens encapsulation
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and is subject to abuse.5
�e private wrapper eliminates the problems of class encapsulation and friends

by enforcing object encapsulation, which hides the private members of an object
from every other object, regardless of class. �e private wrapper hides the original
class of an object using the protected inheritance feature of C++, so that other ob-
jects of the class, as well as objects or functions declared friends of the class, cannot
access its private implementation. While the restrictions of object encapsulation
may not be appropriate for all objects in C++ programs, we believe that reducing
the probability of determinacy races justi�es its use in the private wrapper.

�e second source of encapsulation violations in C++ is aliasing. �e �elds of
a C++ object may be pointers or references to state outside the boundary of the
object. �e state contained in the object is therefore the transitive closure of the
data reachable from its �elds. If this set of data is only reachable via the object,
then it is fully encapsulated (Boyapati et al., 2003). In the parlance of oop, the
object owns this set of data. If any subset of the data reachable from an object’s
�elds is reachable from outside of the object, then that subset is aliased (Hogg et al.,
1992; Noble et al., 1998). Aliasing can cause a method to a�ect an object other
than the receiver that is not obviously connected to the actions of that method.
�is is a problem in the context of oop because it compromises the modularity of
separate objects.

�e code in Figure 3.16 shows two examples of how the �elds of an object may
become aliased. �e �rst example is the get_field_address method (lines 17–
19), which returns a pointer to field. �e pointer returned from this method
can be used to manipulate that �eld without using the object’s methods. Leak-
ing pointers into the internal representation of an object is usually viewed as
poor object-oriented design, but some common programming idioms, including
the external iterator pattern (Gamma et al., 1994, pg. 260), require it. �e sec-
ond example is the set_pointer_field method (lines 21–23), which assigns
pointer_field to a pointer passed in as an argument. If the original pointer is
maintained a�er calling this method, then it is an alias for pointer_field.

C++ makes no attempt to prevent aliases. However, it does provide unique
pointers via the unique_ptr template, which allows the programmer to imple-
ment strict ownership semantics (ISO/IEC, 2010, sec. 20.9.10).6 A unique pointer
owns the data it points to, and automatically deallocates that memory when it goes

5�e reputation of friend is evident in the C++ maxim “Friends don’t let friends use friend!”
6�e auto_ptr provided similar functionality in earlier versions of C++, but has been depre-

cated for the more robust unique_ptr.
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out of scope. To enforce a single unique owner, these pointers cannot be copied,
only moved, so that:

unique_ptr<int> old_p (new object_t); // Allocate an object
unique_ptr<int> new_p = old_p; // Compilation error!

is illegal, because it attempts to copy the old_p pointer, but:

unique_ptr<int> old_p (new object_t); // Allocate an object
unique_ptr<int> new_p = std::move (old_p); // Move pointer

works correctly, invalidating the old_p pointer and transferring ownership to
the new_p pointer. To prevent aliasing in prometheus programs, programmers
should prefer unique pointers to ordinary pointers for the �elds of private objects.

Violations of Object-Purity in C++

C++ provides no mechanism to restrict the e�ects of a method to state owned by
the receiver object, as is required for object-pure methods. A method may access
external state both via global variables, or via its parameters. Figure 3.17 gives
several simple examples of these problems.

�e write_global method (lines 8–10) writes to global_variable, which
is declared on line 1. prometheus cannot prevent methods from accessing global
variables, because they are always visible in the scope of a method body. �e detri-
mental e�ect of global variables on program understandability and maintainability
is well-known (Wulf and Shaw, 1973). �ey are even more hazardous in object-
oriented programming, because they violate modularity by creating a dependence
on state external to the module that may be shared with a large number of other
modules (Meyer, 1988a; Martin, 1996). �erefore programmers should follow
standard oop practice and avoid using global variables (especially non-constants)
in prometheus programs.

Values passed by pointer or reference also allow a method to write to external
state. Hogg et al. (1992) calls this dynamic aliasing, because the alias disappears
when the method exits, in contrast to the static aliasing of �elds, which persists
across method invocations. �e write_argument method (lines 12–14) gives an
example of modifying external state by incrementing a value of a parameter passed
via a pointer. prometheus is able to prevent these accesses to external state by
statically rejecting delegation of a method that takes non-constant parameters by
pointer or by reference.

�e static checks performed by prometheus do not prevent a second class of
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1 int global_variable;
2
3 class example_t {
4 private:
5     int field;
6
7 public:
8     void write_global () {
9         global_variable++;

10     }
11
12     void write_argument (int* argument) {
13         (*argument)++;
14     }
15
16     void read_constant (const int* argument) {
17         file = *argument;
18     }
19 };
20
21 void const_example () {
22     private_t <example_t> example;
23     int x = 0;
24
25     begin_delegation ();
26     example.delegate (&example_t::read_constant, &x);
27     x = 1;
28     end_delegation ();
29 }

Figure 3.17: Violations of object-purity in C++
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errors that can result from parameters passed by pointer or reference. Consider
the read_constant method (lines 16–18), which takes an integer value by const
pointer, and assigns its value to field. �e const quali�er prevents this method
from writing to the pointed-to value, but it does not prevent external pointers to
this value from modifying it. �is problem is illustrated by the const_example
function on lines 21–29. �is function initializes the variable x to zero (line 23),
then delegates the read_constant method (line 26), passing it the address of x.
Next, const_example assigns the value of one to x (line 27), introducing a deter-
minacy race. Because the execution of read_constant is asynchronous, it may
read either zero or one when it dereferences the pointer to x.

To avoid creating this kind of race, programmers should ensure that values
passed by pointer or reference to delegated method invocations are relatively
constant, i.e., that their values do not change from the time the method is delegated
to the next end_delegation call, which e�ects a local barrier. In our example,
we could achieve this e�ect by moving the assignment to x on line 27 a�er the
barrier on line 28. It would be straightforward to extend the prometheus interface
with a wrapper template for arguments that could detect or prevent changes to
variables passed by pointer or by reference, and require that the wrapper be used
for arguments to delegated methods. We have elected not to require such a wrapper,
as it would require wrapping every variable passed as an argument to a delegated
method, and thus be much more invasive than our current annotations. Currently,
we rely on programmer discipline to avoid this problem, and we continue to
evaluate other possible solutions.

Towards a Safe Language for Data-Driven Decomposition

To realize its full potential for accessible parallel programming, data-driven de-
composition should have language support that ensures its safety. Cardelli (2004)
de�nes a safe language as one that prevents all untrapped errors—errors that can
result in arbitrary behavior because they do not immediately cause an exception,
such as accessing memory outside the bounds of an array. Determinacy races
are also untrapped errors, so safe data-driven decomposition must prevent these
errors using some combination of static and dynamic checking. To achieve safety,
we could utilize existing static analysis and type-checking techniques to enforce
strong encapsulation of private objects and verify that the e�ects of delegated
methods meet the requirements for object purity.

�ere are two existing approaches to enforcing strong encapsulation. �e
�rst approach is to enforce restrictive coding conventions with static checking
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(Hogg, 1991; Almeida, 1997). �ese techniques could be employed to enforce
our recommended programming discipline. �e second approach is to augment
a language with support for ownership types (Clarke and Drossopoulou, 2002;
Boyapati et al., 2003), which allow programmers to express ownership relationships
between objects and statically detect violations of these relationships. Ownership
types aim to provide greater �exibility then the restrictive approach, so that idioms
like external iterators may be used without violating encapsulation. If private
objects were enhanced with ownership types, we might be able to imbue them
with less restrictive semantics while still satisfying the necessary conditions for
data-driven decomposition.

Type-and-e�ect systems (Lucassen and Gi�ord, 1988) extend conventional type
systems to express the e�ects of a computation in terms of reads or writes to abstract
regions of memory. For example, the e�ects of an object-pure method would be
expressed as writes to the region containing the receiver object, and reads of the
regions of the method’s parameters. Recent work by Bocchino et al. (2009b) for
checking the e�ects of Java methods could be adapted to check that delegated
methods meet the requirements of object purity. E�ect inference techniques, such
as those proposed by Benton and Fischer (2009) and Vakilian et al. (2009) might
be applied to automatically identify object-pure methods suitable for delegation.

Given the recent progress in these areas, we are optimistic that language sup-
port for safe data-driven decomposition is an achievable goal. We leave further
exploration of this issue for future work.

3.6 related work

Many other parallel execution models have been proposed to combat the di�cul-
ties associated with nondeterminate parallel execution. �ese models are described
as deterministic or determinate, but these terms are not used consistently in the
literature, so we will classify each according to our taxonomy from Chapter 2:
sequentially determinate (predictable) models that guarantee the sequential order-
ing of assignments to each variable when the program is run with a given input,
and determinate (repeatable) models that guarantee the same (but not necessarily
sequential) ordering of assignments to each variable when the program is run
with a given input. We begin by examining several models that provide sequential
determinacy.
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Sequentially Determinate Parallel Execution Models

Jade (Rinard and Lam, 1998) extends the C language with support for implicit,
dynamic parallel execution. Jade provides the abstraction of shared objects which
may be accessed by any code in the program. Programmers facilitate dynamic
parallelization in Jade by indicating blocks of code that are candidates for parallel
execution, which are called tasks. �e programmer also annotates each task with
a set of access speci�cations that specify the shared objects the task will access, and
whether the task will read, or read and write the object. Access speci�cations can
contain expressions that are evaluated dynamically to determine the particular
objects that will be accessed by the task. When a Jade program is executed, the
runtime system orchestrates execution of the tasks by evaluating the access speci-
�cations of each task it encounters, and using the results to schedule the task for
execution according to its dependences on the access speci�cations of other tasks.
As the program runs, Jade dynamically checks that each task is faithful to its access
speci�cation.

Jade and prometheus share the common goal of e�ciently executing se-
quentially determinate programs, and they both achieve this goal by dynamically
decomposing the program so that they may identify the data accessed by each
operation. However, the abstractions they provide are very di�erent. Jade provides
shared objects that may accessed by any operation, while prometheus provides
private objects that may only be manipulated their methods. �e trade-o� for the
programming model is that Jade’s access speci�cations make it easier to express
operations on arbitrary sets of data, whereas prometheus is more restrictive;
but Jade makes signi�cant changes to the sequential programming model, while
prometheus is able to present a model that closely resembles standard sequential
oop. �ese di�erences also have implications for the runtime system: Jade uses
a custom runtime system to meet the requirements of its model; in Chapter 4,
we will show that prometheus is able to exploit support for dynamic scheduling
present in many libraries and languages for parallel programming.

Duran et al. (2009) propose StarSs, an extension to the OpenMP 3.0 task model.
OpenMP tasks use a similar programming interface to the tasks of Cilk, which
we describe in detail in Chapters 4 and 5. StarSs extends this task programming
model to support dependent tasks, where each task is augmented with a set of
directionality clauses that specify that a particular set of memory locations are
used as input, output, or both input and output for the task. �ese clauses are used
by the StarSs runtime system to schedule tasks according to their dynamic data
dependences in a similar fashion to Jade’s access speci�cations. �e runtime system
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automatically avoids false dependences (write-a�er-read and write-a�er-write) by
renaming the memory locations used by tasks with false dependences.

Bocchino et al. (2009b) propose Deterministic Parallel Java (dpj), a dialect of
the Java language augmented with parallel constructs and a type-and-e�ect system
to statically guarantee the safety of parallel execution. dpj provides cobegin and
foreach constructs for expressing parallelism in the program. Programmers
also annotate the program to associate data with abstract regions of the heap, and
to indicate a summary of the e�ects—either read or write—of each method on
the regions it accesses. �e compiler uses the region and e�ect information to
verify that each parallel operation does not write data that is read or written by
other parallel operations, or that synchronization ensures a correct ordering. �e
parallel program is then guaranteed to produce the desired ordering.

�e type-and-e�ect system of dpj provides strong safety guarantees, which
are clearly a desirable property of any parallel execution model. However, dpj
is only able to exploit parallelism that can be statically veri�ed, which would
limit its application to irregular programs with unstructured parallelism. Pairing
the powerful safety guarantees of dpj’s type-and-e�ect system with an ordering
mechanism like the serializers proposed in the next chapter could potentially
provide the bene�ts of safety and dynamic decomposition.

Grace (Berger et al., 2009) supports the fork-join task parallel programming
model with a so�ware runtime system that ensures the sequential determinacy
of the resulting execution. Grace runs tasks in di�erent processes, and exploits
virtual memory protection to isolate the memory references of each task. Memory
updates are integrated using a sequential commit protocol that only writes back
the results of a task a�er all previously ordered tasks have committed, and it has
veri�ed that the values read by the task have not changed, indicating a violation.
Grace’s novel use of memory protection hardware might be leveraged to ensure
the dynamic safety of data-driven decomposition.

Determinate Parallel Execution Models

Determinate program ordering do not have to be derived from the program
itself—instead, they can be imposed dynamically. In contrast with data-driven
decomposition, these models do not provide the advantage of a simple, predictable
programming model to the programmer. However, because they do not change
the programming model, they are directly applicable to existing programs, such
as legacy multithreaded code.
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Devietti et al. (2009) propose deterministic shared memory multiprocessing
(dmp), and evaluate several hardware-based schemes that enforce a determinate
ordering on memory accesses. �ey begin with a design that serializes the memory
accesses of all processors, resulting in a truly deterministic ordering. Devietti et al.
show that this scheme incurs unacceptable overhead, as would be expected. �ey
then propose a set of mechanisms to exploit hardware support for transactional
memory to relax the deterministic ordering to a determinate ordering, and show
that these techniques can greatly reduce the overheads of enforcing determinacy.

In follow-on work to dmp, Bergan et al. (2010) propose CoreDet, a compiler
and runtime environment for writing determinate parallel programs. CoreDet
divides dynamic program execution into a series of quanta, where each quantum
has two phases: a parallel mode for known-independent memory accesses, and a
serial mode for potentially dependent memory accesses. Bergan et al. describe
two di�erent approaches that employ these quanta to ensure determinacy. �e
�rst approach employs a table to track the identity of the thread that owns each
memory location. A thread may freely access any data it owns during parallel
mode, but must wait until serial mode to access other data, at which point it may
take ownership of that data. �e second approach bu�ers the stores of each thread
during the parallel phase of a quantum, and commits them serially at the end of
the parallel phase. Because a thread may read its store before the end of the parallel
phase, the resulting program is not sequentially consistent. In their evaluation,
Bergan et al. (2010) show that while the ownership table has lower overhead, but
the store bu�ers are more scalable.

Kendo (Olszewski et al., 2009) is a so�ware-only system that enforces a re-
peatable ordering on all lock acquisitions when a program is run with a particular
input. Kendo uses a notion of deterministic logical time, where each thread counts
the frequency of some repeatable event, and use this counter to determine ordering
of a thread with respect to other threads. It also uses a modi�ed implementation
of pthread locks that check logical clocks and only allow a thread to acquire a
lock when it is its turn. If a Kendo program correctly quiesces all of its accesses to
shared data, then it is determinate.

Synchronizing Data Manipulation via Synchronization

Serialization has been used by a number parallel execution models as a mechanism
to provide atomicity of data manipulation. Two notable examples are the Actor
model and Apple’s Grand Central Dispatch.

�e Actor model (Hewitt and Steiger, 1973) uni�es the notions of data objects
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and threads of execution. Each actor conceptually executes in its own thread, and
actors communicate with each other via asynchronous message passing. �ese
messages are processed serially by each actor, typically in the order of their arrival.
�e Actor model was later codi�ed as the active object pattern (Lavender and
Schmidt, 1995) for object-oriented programming.

Apple recently introduced Grand Central Dispatch (gcd) (Apple, 2009), which
abstracts parallel computation via a set of di�erent types of dispatch queues. Parallel
work is expressed via blocks, an extension to the C, C++, and ObjectiveC languages
that denote a region of static code as a unit of parallel work. Block instances are
scheduled for execution by the operating system using a set of dispatch queues
synchronized with atomic operations. Private dispatch queues are one of the queue
types provided by gcd that may be used by programmers to ensure atomic access to
shared data structures. If block instances are submitted to a private dispatch queue
in program order, then their execution will be determinate. Unlike serializers,
dispatch queues must be manually managed by programmers.

3.7 summary

In this chapter, we proposed data-driven decomposition, a parallel execution
model that dynamically partitions a sequential program into units of parallel work
based on the data accessed by the operations of the program. We introduced the
private object and serializer constructs and described how they are used to perform
data-driven decomposition. Private objects are fully encapsulated, disjoint sets of
data that may safely be manipulated in parallel. Each private object is associated
with a serializer that asynchronously executes method invocations one-at-a-time,
in program order. �ese constructs are su�cient to ensure sequential determinacy,
so the resulting parallel execution is repeatable and predictable.

We also described the programming interface of the prometheus C++ li-
brary. Using prometheus, programmers express data-driven decomposition
using the familiar constructs of object-oriented programming. We then showed
how nested delegation and multiple delegation allow the programmer to �exibly
express potential independence at di�erent granularities throughout the program.
We concluded the chapter by showing that a disciplined, idiomatic application of
object-oriented programming minimizes the likelihood of errors in prometheus
programs, and speculated how we might employ existing programming language
techniques to ensure the safety of data-driven decomposition.



4 serializer design and implementation

A corollary of the determinacy theorem is that the entire sequence of
values written into each and every memory cell during any run of the
system is the same for the given input. �is corollary also tells us that
any system of blocking tasks that communicates by messages using fifo
queues (instead of shared memory) is automatically determinate be-
cause the message queues always present the data items in the same
order to the tasks receiving them.

— Peter J. Denning and Jack B. Dennis (2010)

In Chapter 3, we introduced the private object and serializer constructs for
performing data-driven decomposition. During the presentation of the execution
model and the prometheus api, we discussed private objects in detail, but so
far we have only addressed the serializer as a programming abstraction. In this
chapter we begin by discussing the necessary components of any serializer design.
We then describe the design and implementation of the prometheus serializer,
and show how the delegate and quiesce operations manipulate this construct
to realize data-driven decomposition. Our serializer design utilizes the fork-join
task programming capabilities provided by many current languages and libraries.1
�ese platforms use dynamic scheduling to parallelize task execution, under the
assumption these tasks are independent. Using a novel technique called dynamic
task extension, our design is able to exploit the e�cient scheduling provided by
these systems, while still enforcing the dynamic dependences between method
invocations resulting from a data-driven decomposition.

4.1 serializer design considerations

A serializer has two primary responsibilities: First, it must maintain the invariant
that the method invocations it is delegated are executed one-at-time, in program
order. Second, it must endeavor to parallelize the serialized execution of these
method invocations with the rest of the program. To ful�ll these responsibilities,
any serializer design must have a data structure to track method invocations and
a mechanism to schedule these method invocations for execution.

1To avoid confusion with other uses of the term task, in this dissertation we use use the term
task exclusively to refer to the lightweight threads of the dynamically scheduled fork-join execution
model popularized by Cilk (Frigo et al., 1998).
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�e Serialization Queue

To preserve the serialization invariant, the serializer must incorporate a data
structure to track method invocations that maintains their ordering. We call this
structure the serialization queue, because a queue is the abstract data type (adt)
that best meets this requirement. Note that the implementation of this abstract
data type will depend on the speci�c goals of the serializer design, the scheduling
mechanism, and the target so�ware and hardware platforms.

�e queue adt de�nes three operations: produce, which inserts an item into
the queue; consume, which removes an item from the queue in a �rst-in �rst-out
(fifo) manner; and empty, which is used to determine if they queue contains any
items. �ese operations provide a su�cient basis for implementing a serializer.
�e produce operation is used by delegation to insert method invocations into the
queue. �e empty operation is queried by synchronization to check if all method
invocations delegated to the serializer have completed. Runtime scheduling op-
erations also query empty to check if the serialization queue contains method
invocations, and uses consume to remove an invocation to execute.

Serializer Scheduling

In addition to tracking method invocations and their ordering, the serializer must
schedule execution of these invocations by assigning them to a worker thread—an
abstraction of a hardware execution context that is managed by the runtime. �e
primary goal of scheduling is to guarantee the serialization of method invocations
for a particular serializer. �e secondary goal of scheduling is to parallelize ex-
ecution of method invocations from di�erent serializers to the greatest degree
possible.

Scheduling may be either static or dynamic. It may seem counter-intuitive
that a dynamic decomposition could employ static scheduling—to clarify the
distinction, we de�ne scheduling as static if a �xed formula for assigning method
invocations to worker threads is encoded in the program, so that when a program
is run with a particular input and a certain number of worker threads, a given
method invocation is always assigned to the same worker thread. Scheduling is
dynamic if the assignment of method invocations to worker threads may change
in di�erent executions with the same input and number of worker threads.
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Serializer Design Goals

Before describing the serializer implementation in prometheus, we identify
several desirable properties of a serializer. We focus on useful characteristics for
data-driven decomposition on general-purpose multiprocessor and multi-core
systems, such as those used in servers, desktop and laptop computers, and mobile
devices. A serializer for more specialized platforms, such as graphics processors
(Owens et al., 2007; Luebke and Humphreys, 2007) and heterogeneous systems
like the ibm Cell processor (Gscwind, 2007), might have a di�erent set of goals
that re�ect the needs of the speci�c kinds of applications targeting these platforms.

Dynamic Scheduling. A serializer for general purpose parallel computing
should be amenable to dynamic scheduling, which relies on a runtime system to
assign operations to worker threads for execution. �is relieves programmers of
the scheduling burden, allowing them to focus on the expression of parallelism
in a program. It also allows the program to tailor scheduling to the particulars of
the hardware on which it is running, such as the number of cores in a multi-core
processor. Dynamic scheduling performs load balancing, which improves overall
performance when parallel computations perform varying amounts of work (Mohr
et al., 1991). Load balancing is especially useful for multiprogrammed systems,
where the operating system may preempt worker threads in favor of unrelated
processes, so that some worker threads to appear to run more slowly than others
(Arora et al., 1998).

Locality Optimization. �e method invocations of a serializer exhibit both
spatial and temporal locality, because they manipulate a single receiver object, or a
small set of objects. Serializer scheduling should exploit this locality by successively
executing all method invocations in a particular serializer until it is empty, rather
than alternately executing method invocations from di�erent serializers.

Concurrent Delegation and Execution. A serializer should allow delegation of
method invocations at the same time the runtime is executing earlier method in-
vocations from the same serializer. If delegation to an executing serializer blocked,
it would inhibit the discovery of further parallelism in the program. �e key to
satisfying this goal is to ensure that the serialization queue is a concurrent structure
that allows simultaneous produce and consume operations.
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Dynamically Sized Serialization Queue. Implementing a serializer with a �xed-
size serialization queue introduces several problems. If it is too small, it may �ll
up and cause delegation to block. If it is too large, it wastes memory and hampers
locality. In general, it is not possible to identify an upper bound on the number of
method invocations that may be in a serialization queue during program execution,
since this will depend on the input to the program, as well as the relative rates
of delegation and execution of these method invocations in a particular run of
the program. �erefore the serialization queue should not be of a �xed size, but
rather should be capable of growing and shrinking to accommodate the number
of method invocations contained in the serializer at any given time.

Nonblocking Operations. We can generalize the previous two goals by guar-
anteeing a progress condition for the serialization queue. Progress conditions
characterize the e�ect that a thread experiencing a delay—which may be caused by
a cache or tlb miss, a page fault, or preemption—has on other threads accessing
the same concurrent data structure (Herlihy and Shavit, 2008, pg. 59–61). If the
delay of one thread prevents other threads accessing the structure from making
progress, we say the data structure is blocking. If the delay of one thread does
not necessarily delay other threads, then the data structure is nonblocking.2 To
ensure good performance, our serializer design should endeavor to guarantee the
strongest possible progress condition for the serialization queue (Moir and Shavit,
2004).

With these goals in mind, we proceed to describe the design of the prometheus
serializer.

4.2 a task-based serializer design

�e fork-join task programming model has been widely adopted by libraries and
languages for parallel programming. A task is essentially a very lightweight thread
of control—the overhead of spawning a task is typically a few times the overhead
of an ordinary function call (Frigo et al., 1998). In contrast with the high overhead
of spawning a thread, the low cost of creating tasks allows the programmer to
apply control-driven decomposition to very �ne-grained operations, and relieves

2Some authors use the term nonblocking as a synonym for the lock-free progress condition
(see Section 4.6). In this dissertation we use the broader de�nition of nonblocking given by Moir
and Shavit (2004) and Herlihy and Shavit (2008).
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1 class task_t {
2 public:
3     // Pure virtual method implemented by subclasses of task_t
4     virtual void execute () = 0;
5 };

Figure 4.1: Task interface

the programmer of the responsibility of assigning these tasks to threads. Run-
time support dynamically schedules tasks for execution, typically using e�cient
algorithms with provable time and space bounds (Blumofe and Leiserson, 1999).
Dynamically scheduled task programming was popularized by Cilk (Frigo et al.,
1998), and is supported in many other parallel platforms, including OpenMP
3.0 (OpenMP, 2008), Intel’s �reading Building Blocks (tbb) (Reinders, 2007)
and Cilk++ (Leiserson, 2009), the Java Fork/Join framework (Lea, 2000), and Mi-
croso�’s .net Task Parallel Library (tpl) (Leijen et al., 2009). Task programming
is also supported in many recent languages, including those developed for the
darpa hpcs program: Chapel (Chamberlain et al., 2007), Fortress (Allen et al.,
2007), and x10 (Charles et al., 2005).

If we implement serializer scheduling using task programming primitives, we
can leverage the e�cient scheduling already provided by these platforms. �is
presents a signi�cant challenge, because dynamic scheduling algorithms assume
tasks are independent, whereas the method invocations produced by a data-driven
decomposition may depend on earlier method invocations. In this chapter, we
present a serializer design that overcomes this challenge using a technique called
dynamic task extension to ensure the serial execution of method invocations in
a given serializer, while exploiting existing task scheduling support to execute
method invocations in di�erent serializers. Using tasks as the basis for scheduling
serializers does not mean that the task programming interface must be exposed
to programmers for them to use data-driven decomposition—these operations
may be entirely hidden in the runtime system. Before describing the design
and implementation of the prometheus serializer, we review the basics of task
programming, which will clarify the expression of our serializer in terms of tasking
operations.
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1 class deposit_task_t : public task_t { 
2 private:
3     account_t* account; 
4     float amount; 
5
6 public:
7     // Constructor
8     deposit_task_t (account_t* account, float amount) : 
9         account (account), amount (amount)

10     {} 
11
12     // Implementation of execute method
13     virtual void execute () { 
14         account->lock ();
15         account->deposit (amount);
16         account->unlock ();
17     } 
18 };

Figure 4.2: Deposit task

Task Programming Review

We present our task programming examples using a C++ interface similar to that of
tbb. Tasks are implemented as classes, and objects of these classes are instantiated
to create dynamic tasks as the program executes. Figure 4.1 lists the interface for
the task_t class which has a pure virtual method execute (line 4). To create a
new kind of static task, the programmer speci�es a class inheriting from task_t
and implements the execute method to perform the desired operations. �e
programmer may also add �elds to the object, which are used to communicate
values the task will need when it executes.

�e runtime assumes that tasks are independent, i.e., that they do not write to
memory that other tasks read or write. �erefore the runtime may schedule tasks
concurrently, and interleave them in any way. As with any control-driven decom-
position, if a task accesses shared state, the programmer must use critical sections,
or some other form of synchronization, to ensure atomicity of the operation.

Figure 4.2 provides a task class for performing a deposit, suitable for use
in the bank transaction processing program introduced in Chapter 2. �e
deposit_task_t class inherits from the task_t class (line 1). It adds �elds
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to track the account the task will manipulate (line 3) and the amount to deposit
(line 4). �e constructor (lines 8–10) initializes these �elds to values speci�ed
by the constructor’s parameters. �e deposit_task_t class implements the
execute method (lines 13–17) to call deposit on the appropriate account. Since
this account may be accessed by other concurrently executing tasks, the deposit is
enclosed in a critical section to prevent other tasks from simultaneously accessing
the same account.

To submit a task for execution, the programmer must �rst instantiate an
object of the desired task class, and then call spawn to submit it for execution.
Runtime support dynamically schedules tasks and ensures that each spawned task
is executed exactly once (Michael et al., 2009). �e following code shows how the
programmer might create and spawn an instance of the deposit task:

task_t task = new deposit_task_t (account, amount);
spawn (task);

Besides spawn, the other primitive operation provided by task programming
is sync, which performs a local barrier synchronization that waits until all out-
standing tasks have completed. Task programming allows both spawn and sync
to be used inside of tasks to express nested parallelism.

Dynamic Task Extension

Delegating a method invocation looks super�cially similar to spawning a task,
so one might be tempted to implement delegation using a task for each method
invocation. However, tasks are ill-suited to execute these method invocations.
Each delegated method invocation in a data-driven decomposition may be inde-
pendent, or may depend on earlier method invocation, while tasks are scheduled
under the assumption that they are independent, and no ordering is imposed
on their execution. Recognizing that tasks are only appropriate for independent
computations, we can instead utilize them to schedule di�erent serializers, so that
an individual task is responsible for all of the method invocations delegated to a
serializer.

Using tasks to implement serializer scheduling is not as simple as just creating
a task for a serializer when it is delegated a method invocation. Conventional
tasks execute a single invocation of a function or method in the program, while a
serializer may comprise multiple method invocations that are dynamically iden-
ti�ed during program execution. So while a task executes a method invocation
from a serializer, additional invocations may be delegated to that same serializer.
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Figure 4.3: State diagram for serializer scheduling

We have already established that there should be a single task for each serializer,
so in this case, we should not create an additional task. We also do not want to
require delegations to wait for a running task to complete, as that would inhibit the
discovery of parallelism later in the program—one of the goals we established for
our serializer design in Section 4.1 was that it should allow concurrent delegation
and execution of method invocations.

We rectify the shortcomings of conventional tasks for scheduling serializers
by augmenting the existing task class to create a class of extendable tasks. An ex-
tendable task executes a series of method invocations, rather than a single method
invocation, and supports dynamic task extension, so that additional method in-
vocations may be appended to the task while it is running. We then employ an
extendable task to schedule all of the method invocations delegated to a given
serializer. If additional method invocations are delegated to a serializer while this
task is executing, they extend the existing task, rather than triggering the creation
of a new task.

Figure 4.3 depicts a state transition diagram for serializer scheduling via dy-
namic task extension. A serializer is always in one of two states: it is either sched-
uled, or unscheduled. �ese states re�ect whether or not an extendable task exists
for the serializer, and transitions between these states occur during delegation
and task completion. In the �gure, the standard text on transition arcs indicates
input actions that cause a state transition, while the italicized text indicates the
transition action.

When a serializer is created, its serialization queue is empty, and it is in the
unscheduled state. �e �rst delegate operation to this serializer creates a new
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1 struct serialization_node_t {
2     serialization_node_t* volatile next; 
3     invocation_t* invocation; 
4
5     // Constructor
6     serialization_node_t (invocation_t* invocation) : 
7         next (NULL), invocation (invocation)
8     {} 
9 };

Figure 4.4: Serialization queue node structure

method invocation record and inserts it into the serialization queue, and transitions
the serializer to the scheduled state. �en the delegate operation creates a new
extendable task for the serializer and spawns that task for execution by the runtime.
If a future method invocation is delegated to this serializer while it is still in the
scheduled state, indicating there is already a task executing its method invocations,
then delegation extends the existing task with the new method invocation. When
an extendable task �nishes executing the last method invocation in the serialization
queue, the task completes, and the serializer transitions to the unscheduled state.
If another method invocation is delegated to this serializer at some future point in
the program’s execution, then a new extendable task must be created to schedule
its execution.

Dynamic task extension provides a mechanism for scheduling serializers using
existing support for task scheduling, while ensuring that there is never more than
one task executing the invocations of a particular serializer. With this design in
mind, we now proceed to detail the implementation of the prometheus serializer,
beginning with the serialization queue.

4.3 the serialization queue

To meet the design goals outlined in Section 4.1, the serialization queue should be
a dynamically sized data structure that allows concurrent produce and consume
operations. �e single-producer single-consumer queue described by Lamport
(1983) uses an array for data storage and synchronizes accesses with ordinary
loads and stores.3 Because this queue is synchronized without resorting to mutual

3Lamport provides the earliest known description of this queue, but according to Herlihy and
Shavit (2008, pg. 65), this design is considered folklore.
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exclusion, it provides extremely e�cient concurrent access. However, this struc-
ture is unsuitable for our design, because it uses a �xed-size array. Hendler and
Shavit (2002) present a producer-consumer bu�er (pcb) with a similar design that
replaces the array with a linked list structure. �e size of the linked list is inherently
dynamic, re�ecting the number of items in the queue. �us the Hendler-Shavit
pcb satis�es the goals of our design, and we use it as the basis of our serialization
queue.

Figure 4.4 lists the code for an individual list node for the serialization queue.
Each node maintains a pointer to the next node in the list (line 2) and a pointer
to the data payload—in this case a method invocation object (line 3). Each of
these method invocation objects stores a pointer to the receiver of the method,
a pointer to the method to be invoked, and the arguments to be passed to the
method. (We do not show the implementation of the method invocation class,
which is conceptually simple but requires a large amount of cryptic template code.)
�e constructor for the list node (lines 6–8) accepts a pointer to an invocation
object, and initializes the node’s invocation pointer to this value.

Figure 4.5 shows the serialization queue implemented as a Hendler-Shavit
pcb. �e �elds of the class are pointers to the head node (line 3) and the tail node
(line 4). �e constructor sets both the head and tail to point at a newly created
dummy node, which is initialized with both its next and invocation pointers
set to NULL. �is dummy node serves as the �rst sentinel node, a node with no data
that is always at the head of the list. �e serialization queue is empty if and only
if the next pointer of the sentinel node is NULL, as shown in the empty method
(lines 12–15). Note that when the list is empty, the tail pointer will also point to
the sentinel node.

�e produce method (lines 17–22) takes a pointer to an invocation object as
its single parameter. It creates a new node to hold the invocation, and sets the
next pointer of the node pointed to by tail to point at the new node (line 20).
�is is the linearization point of the produce method: the single step where the
e�ects of the method become visible to concurrent operations on the pcb (Herlihy
and Wing, 1990). In particular, this is the step where the new invocation becomes
visible to invocations of consume. �e last action of the method is to set the tail
to point to the new invocation. �e use of the sentinel node greatly simpli�es the
produce method, because its presence at the head of the list ensures that tail
always points to some list node, allowing the cases where the list is empty and
non-empty to be treated the same way.

�e consume method (lines 24–29) saves the node currently at the head of the
list in the local variable old_head. It then sets head to point at the next node in
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1 class serialization_queue_t {
2 private:
3     serialization_node_t* head; 
4     serialization_node_t* tail; 
5
6 public:
7     // Constructor
8     serialization_queue_t () : 
9         head (new serialization_node_t (NULL)), tail (head)

10     {} 
11
12     bool empty () { 
13         if (head->next == NULL) return true;
14         else return false;
15     } 
16
17     void produce (invocation_t* invocation) { 
18         serialization_node_t* node;
19         node = new serialization_node_t (invocation);
20         tail->next = node; 
21         tail = node;
22     } 
23
24     invocation_t* consume () { 
25         serialization_node_t* old_head = head;
26         head = head->next; 
27         delete (old_head);
28         return head->invocation;
29     } 
30 };

Figure 4.5: Serialization queue class
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the list (line 26). �is assignment is the linearization point of the consumemethod,
and is the single step that may cause the serialization queue to transition from
the non-empty state to the empty state. Next, the old_head node is deallocated,
and the invocation in the current head of the list is returned. �e list node that
previously held this invocation now becomes the new sentinel node for the list.
Note that the consume method assumes the queue contains at least one entry, so
the empty method must always be queried to ensure the queue is not empty before
calling consume.

Like the single-producer single-consumer queue described by Lamport, the
Hendler-Shavit pcb employs no locks, and is synchronized entirely with ordinary
loads and stores. �e key to the operation of the Hendler-Shavit pcb is the sentinel
node which is either the initial dummy node, or the list node that held the last
invocation object returned from consume. Representing the empty queue with
both head and tail pointing to the sentinel node, rather than being set to NULL,
allows the cases of empty and non-empty queues to be treated the same way:
the consume method may remove the last item in the bu�er without changing
the tail pointer, and the produce method to add to an empty bu�er without
changing the head pointer. �is allows the produce and consume methods to be
linearized by changing the next pointer of the head and tail nodes, respectively,
so they are completely decoupled.

Despite its desirable properties, the Hendler-Shavit pcb is not su�cient to
implement a serializer. Using this structure without modi�cation causes a race
condition when an extendable task is consuming the last method invocation in
the serialization queue while a concurrent delegate operation is producing an
additional method invocation into the queue. Consider the following case where
the serializer is in the scheduled state, and the serialization queue contains one or
more method invocations: Before producing an invocation, the delegate opera-
tion sees that the queue is not empty, and thus the serializer must be scheduled.
Next, the task serializer’s task consumes and executes all the method invocations
from the serialization queue. Seeing that the queue is empty, this task ceases execu-
tion and the serializer transitions to the unscheduled state. Finally, the delegate
operation adds its method invocation, but does not create a new task and spawn it
for execution because it assumes that the invocation extended a currently execut-
ing task. In this scenario, the newly delegated method invocation may never be
executed, because the delegate operation and the extendable task both wrongly
assume the other is responsible for scheduling the method invocation.

While the produce and consume operations of the Hendler-Shavit pcb are
completely decoupled, the serializer requires that the producer and consumer
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coordinate to determine whether the queue ever becomes empty. If it does, then
the delegate operation must create a new task to execute the serializer. If the
queue does not ever become empty, the current task must assume responsibility
for the additional method invocation. In the next section, we will describe how
to coordinate concurrent produce and consume operations so they agree on the
status of the serialization queue.

4.4 scheduling serializers

To enable concurrent produce and consume operations on the serialization queue
to agree on whether the queue ever becomes empty, we augment the serializer with
a tag. We de�ne a tag value of zero to indicate an empty queue, and positive integers
to indicate that the queue is non-empty. �is tag is updated by the produce and
consume methods using the atomic compare-and-swap (cas) primitive to ensure
that concurrent operations achieve consensus on the state of the queue.

�e code for the serializer class is shown in Figure 4.6. �e �elds of this class
include the serialization queue (line 5) and a 64-bit unsigned integer used to
implement the tag (line 6). �e tag is initialized to zero in the constructor (lines 9–
11), and may be modi�ed using the provided accessor (lines 13–14) and mutator
(lines 16–18) methods.

�e serializer class also provides the cas_tag method (lines 22–25) that takes
the presumed value of the tag and a new value as parameters. �is method updates
the tag using the compare-and-swap (cas) instruction provided by many processor
implementations (IBM, 1975; SPARC, 1994; Intel, 2009a).4 cas performs the
following actions atomically: �rst, it reads the current value of a speci�ed memory
location; second, if this value is equal to the presumed value, it stores the new
value to that memory location. �e cas instruction returns the previous value of
the memory location, which indicates if the swap was successful. If the previous
value is equal to the presumed value, then the new value was stored to the memory
location; otherwise, it was not. �e serializer also has produce (line 29) and
consume (line 33) methods that are used to implement delegation and the serializer
task, respectively.

�e producemethod, listed in Figure 4.7, takes a method invocation object as a
parameter. It returns true if the serializer task should be created and spawned, and

4If the processor’s instruction set architecture does not implement cas, other atomic primitives
such as load-linked/store-conditional (ll/sc) may be used (Compaq, 2002; IBM, 2005; MIPS,
2008).
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1 typedef uint64_t tag_t; // Use 64-bit unsigned integer
2
3 class serializer_t {
4 private:
5     serialization_queue_t queue; 
6     tag_t tag; 
7
8 public:
9     serializer_t () : 

10         tag (0)
11     {} 
12
13     tag_t get_tag () { 
14       return tag; } 
15
16     void set_tag (tag_t value) { 
17         tag = value;
18     } 
19
20     // Update tag field with compare-and-swap instruction
21     // Returns true if update is successful, false if not
22     bool cas_tag (tag_t old_value, tag_t new_value) { 
23         tag_t curr_value = CAS (old_value, new_value);
24         return (curr_value == old_value);
25     } 
26
27     // returns true if serializer must be scheduled
28     // returns false if serializer is still scheduled
29     bool produce (invocation_t* invocation); 
30
31     // returns next invocation in serialization queue,
32     // or NULL if the serialization queue is empty
33     invocation_t* consume (void); 
34 };

Figure 4.6: Serializer class
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1 void serializer_t::produce (invocation_t* invocation) {
2     tag_t current_tag = tag; 
3     bool scheduled = (tag != 0); 
4
5     // Serializer was not scheduled before invocation produced
6     if (!scheduled) { 
7         serialization_queue.produce (invocation);
8         set_tag (1);
9         return true;

10     } 
11
12     // Serializer may have been scheduled before invocation produced
13     serialization_queue.produce (invocation); 
14     scheduled = cas_tag (current_tag, current_tag + 1);  
15
16     // Serializer no longer scheduled after invocation produced
17     if (!scheduled) { 
18         // Invocation was consumed, no need to reschedule
19         if (queue.empty ()) return false; 
20
21         // Invocation was not consumed, need to reschedule
22         else { 
23             set_tag (1);
24             return true;
25         } 
26     } 
27
28     // Tag update succeeded, no need to reschedule
29     return false; 
30 };

Figure 4.7: Serializer produce method
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false if the invocation was successfully added to a scheduled task. �e produce
method begins by reading the current value of the tag. �e subsequent actions
are divided into two cases, depending on whether the tag is zero, indicating the
serializer is not scheduled; or the tag is a positive integer, indicating the serializer
is scheduled.

In the �rst case, the serializer is not currently scheduled (lines 6–10). �e
invocation is inserted into the serialization queue, and the tag of the serializer is
set to one using the mutator method. Because the serializer is not scheduled, there
can be no concurrent operations on the tag, so this unsynchronized update is safe.
�e produce method then returns true, indicating that a new extendable task
should be instantiated and spawned for execution by the runtime system.

In the second case, the serializer is scheduled at the time the produce method
begins, although it may be descheduled before the method completes. �e method
inserts the invocation object into the serialization queue (line 13), and then at-
tempts to increment the tag using the cas_tag method (line 14). If the cas update
of the tag fails, it means that the serialization queue was drained and the tag was
successfully set to zero by a concurrent consume operation. At this point, there
are two possibilities, which are addressed by the code in lines 17–26. First, the
invocation that was just inserted to the serialization queue may have been seen
by the concurrent consume, in which case it would have been removed from the
queue and executed. In this case, the queue will be empty (line 19) so produce
returns false, because there is no need to reschedule the task. Second, if the
queue is not empty, then the concurrent consume did not see the new invocation.
�e produce method handles this outcome on lines 22–25 by setting the tag to
one and returning true to trigger creation and spawning of a new task.

Finally, if the tag update on line 14 is successful, then the method invocation
was added to the serialization queue without a concurrent consume operation
seeing an empty queue. �e method invocation was therefore successfully ap-
pended to the current task, so the method returns false to indicate the task is
still scheduled.

�e consume method, listed in Figure 4.8, takes no parameters and returns
a pointer to an invocation object, or NULL if the method �nds the serialization
queue empty and successfully deschedules the serializer. �e �rst action of the
consume method is to read the current tag of the serializer (line 2). �en, if it
�nds the queue empty, it attempts to deschedule the serializer (lines 4–7) by using
the cas_tag method to reset the tag to zero (line 5). If the cas is successful,
the method returns NULL (line 6). If the cas fails, then a concurrent produce
succeeded in inserting a method invocation into the serialization queue. Whether
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1 invocation_t* serializer_t::consume () {
2     tag_t current_tag = tag; 
3
4     if (queue.empty ()) { 
5         bool descheduled = cas_tag (current_tag, 0); 
6         if (descheduled) return NULL; 
7     } 
8
9     invocation_t* invocation = queue.consume (); 

10     return invocation; 
11 }

Figure 4.8: Serializer consume method

the queue was initially non-empty, or the attempt to deschedule the serializer failed,
when execution reaches line 9, there must be an invocation in the serialization
queue. �is invocation is removed from the queue and returned (line 10).

�e tag used to synchronize concurrent produce and consume operations is
implemented as a 64-bit integer, making over�ow during the lifetime of a computer
an unlikely event (Chase and Lev, 2005). However, since the tag is a �nite value,
it is still worthwhile to consider what will happen should the tag over�ow. �e
only potential problem arises if a consume operation reads the tag and sees an
empty serialization queue, and then a succession of produce operations cause
the tag to wrap around to the same value seen by the consume operation. �is
would allow the consume operation to use cas to set the tag to zero, indicating
the serialization queue is empty, even though the queue still contains unexecuted
method invocations. Aside from the improbability of the consume operation
seeing the same value out of 264 possibilities, it would require a multiple of 264

method invocations to cause the tag to wrap around to the same value. �e size of
objects used to hold method invocations is at least 16 bytes on a 64-bit machine,
and thus the system will run out of virtual address space long before 264 method
invocations could be inserted into the serialization queue. �erefore we do not
expect tag over�ow to ever occur during execution of a program.

�e methods of the serializer class provide su�cient synchronization to ensure
that produce and consume operations achieve consensus on the scheduling state
of the serializer. In the next section, we use these primitives to implement the
delegate and quiesce operations.
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1 class extendable_task_t : public task_t {
2 private:
3     serializer_t* serializer; 
4
5 public:
6     extendable_task_t (serializer_t* serializer) : 
7         serializer (serializer)
8     {} 
9

10     virtual void execute () { 
11         invocation_t* invocation = serializer.consume ();
12         do {
13             bool executed = invocation->execute ();
14             if (!executed) break;
15             invocation->finish_multiple_delegation ();
16             delete invocation; 
17             invocation = serializer.consume ();
18         } while (invocation != NULL);
19    } 
20 };

Figure 4.9: An extendable task class for scheduling serializers

4.5 implementation of delegate and quiesce

Figure 4.9 lists the code for an extendable task class. Tasks are instantiated from
this class and used to schedule serializers for execution. �e extendable_task_t
class has a single �eld, which stores a pointer to the serializer to be scheduled
(line 3). �e constructor initializes this �eld when the task is instantiated (lines 6–
8). �e serializer task implements the execute method (lines 10–19) to execute
all the method invocations in the serialization queue. It does this by repeatedly
calling the consume method on the serializer until it returns NULL. Let us �rst
consider the case where the invocation returned by consume was only delegated to
this serializer, i.e., it is not an aggregate operation. A�er removing an invocation
object from the serializer, the task calls its execute method, which invokes the
method using the receiver object and arguments passed to delegate, and then
returns true to indicate the method was executed (line 13). �e next two lines are
irrelevant in the case of a method invocation delegated to a single serializer—the
method invocation is always executed, so the task does not break out of the loop
on line 13, and the call to finish_multiple_delegation on line 15 is a no-op.
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1 template <typename C, typename B, typename... Args> 
2 void delegate (C& obj, void (B::* method) (Args...), Args... args) { 
3     // Get serializer associated with obj
4     serializer_t* serializer = obj.get_serializer (); 
5
6     // Create an invocation object
7     invocation_t* invocation = new invocation_t (obj, method, args...); 
8     // Add invocation to serializer
9     bool schedule = serializer.produce (invocation); 

10
11     // If serializer is not currently scheduled, spawn a task
12     if (schedule) { 
13         task_t* extendable_task = new extendable_task (serializer);
14         spawn (extendable_task); 
15     } 
16 }

Figure 4.10: Implementation of the delegate function

A�er the executing the invocation, the task deallocates it (line 16), and the loop
continues.

Next, let us consider the case where the invocation returned from consume
was the result of multiple delegation. �is specialized invocation object contains
a count of the number of serializers to which it was delegated. Each time that a
serializer calls execute (line 13), this counter is atomically decremented. If the
count is not zero a�er this decrement, it indicates that not all of the serializers
involved in the invocation are ready, so execute returns false, causing the task to
break out of the loop (line 14) and become descheduled. When the last serializer
involved in the multiple delegation calls execute, the counter is decremented
to zero, indicating that all serializers are ready to execute this invocation. �is
time, the method is invoked, and execute returns true. �en the last serializer
calls finish_multiple_delegation (line 15), which reschedules any serializers
with additional method invocations. �e invocation is then deallocated (line 16) ,
and the serializer loop continues to the next invocation.

�e extendable task is used to implement the delegate function, as shown in
Figure 4.10. Its parameters of are the receiver object (obj), a pointer to the method
to be invoked (method), and the arguments to the method (args). �e delegate
operation �rst identi�es the serializer associated with the receiver (line 4). It
then creates a new invocation object (line 7) to hold the receiver object, method
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1 template <typename C>
2 void quiesce (C& object) {
3     // Get serializer associated with object
4     serializer_t* serializer = object.get_serializer (); 
5
6     // Yield processor until serializer is empty
7     while (!serializer->get_tag () != 0) { 
8         yield ();
9     } 

10 }

Figure 4.11: Implementation of the quiesce function

pointer, and arguments. If any of the arguments is a private object, creation of
this invocation also causes it to be delegated to the serializers associated with
these objects to handle the case of multiple delegation. �e delegate operation
then inserts the resulting invocation object into the serialization queue using the
produce method of the serializer (line 9). If produce returns false, the invocation
extended an existing task. If produce returns true, it indicates that a new task must
be scheduled to execute the serializer, so a new extendable_task_t object is
instantiated and spawned (lines 12–15). �us at the end of the delegate function,
the invocation has been scheduled for execution, either by extending an existing
task, or creating and spawning a new task.

�e implementation of the quiesce function is listed in Figure 4.11. �is
function waits for all method invocations delegated to the serializer associated
with an object to complete, so that dependent methods can safely be invoked on
that object. It accepts the object to quiesce as its single parameter. �e quiesce
function �rst identi�es the serializer associated with the object (line 4). It then
repeatedly checks the tag in a loop (lines 7–9) until the tag is set to zero, indicating
the task executing the serializer has completed. To avoid the deleterious e�ects of
busy waiting (Mellor-Crummey and Scott, 1991), the loop calls the yield function
inside the loop, which surrenders the processor so that other threads may run
(Arora et al., 1998).

4.6 nonblocking serializer scheduling

In Section 4.1, we stated that a serializer should have a strong progress condition
to ensure that a delay of one thread accessing the serializer does not hamper the
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progress of another thread accessing the serializer. �is goal is especially important
in the context of a multiprogrammed operating system, because preemption of
worker threads can introduce signi�cant delays. Before analyzing the progress
condition of the serializer, we �rst review the hierarchy of progress conditions for
operations on a concurrent data structure.

�e strongest progress condition is wait-freedom, which guarantees that ev-
ery concurrent operation completes in a �nite number of steps (Lamport, 1974;
Herlihy, 1991). �e next strongest progress condition is lock-freedom, which guar-
antees that at least one concurrent operation �nishes in a �nite number of steps
(Herlihy, 1991). �e power of these two properties is that they guarantee that a
computation makes progress regardless of how threads are scheduled.

Herlihy and Shavit (2008, pg. 60) describe a weaker class of dependent progress
conditions, which ensure progress only if the underlying system provides certain
guarantees. Isolation—executing an operation to completion without any other
operation taking steps—is an example of such a guarantee. A notable example of a
dependent progress condition is obstruction-freedom Herlihy et al. (2003), which
states than an operation will �nish in a �nite number of steps when executed in
isolation.

�e producer-consumer bu�er used to implement the serialization queue
(Figure 4.5) is wait-free—both the produce and consume operations will always
complete in a �nite number of steps (Hendler and Shavit, 2002). By inspection,
we see that the produce and consume operations of the serializer are also wait-
free, because they contain no loops, and no blocking operations. Furthermore,
the cas instructions in these operations will fail at most a single time. In the
produce method (Figure 4.7), if the cas on line 14 fails, a concurrent consume
operation removed the last method invocation and descheduled the serializer
task. In this case, the produce method indicates that the serializer should be
rescheduled, completing in a �nite number of steps. In the consume method
(Figure 4.8), if the cas on line 5 fails, then a concurrent produce has added
another method invocation to the serializer. �e produce method returns this
invocation, completing in a �nite number of steps. �us neither the produce or
consume operations require more than a single cas instruction. �is wait-free
serializer implementation ensures that both delegation and serializer execution
make progress when concurrently accessing a serializer.

While the serializer provides wait-free operations, the progress guarantees for
the overall runtime depend on the other components in the system. �e progress
condition of delegate operation (Figure 4.10) is determined by the properties of
the new operator (line 7) and the spawn operation (line 14). �e progress condition
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of the extendable task (Figure 4.9) is determined by the progress conditions of the
runtime that schedules its execution and the delete operator. �us the delegate
operation and the serializer depend on the same two components to determine
their progress conditions: the dynamic memory allocation system, and the runtime
scheduler.

If a multiprocessor system provides a nonblocking dynamic memory alloca-
tion system, such as those proposed by Michael (2004) and Hudson et al. (2006),
then we may use the default new and delete operators without modi�cation to
perform lock-free allocation and deallocation. As of this writing, nonblocking
allocators are not widely available—most allocators still make heavy use of mu-
tual exclusion locks. �erefore prometheus does not assume the presence of a
nonblocking allocator, and instead overloads the C++ new and delete operators
for invocation_t objects to use a lock-free recycling scheme similar to the one
described by Hendler and Shavit (2002) for the pcb.

�e �nal component contributing to the progress guarantees of serializer
operations is the task scheduling system itself. While the particular guarantees
provided by di�erent schedulers vary, the lock-free scheduling algorithm described
by Arora et al. (1998) and improved upon by Chase and Lev (2005) have been
adopted by many runtimes, including the task scheduler targeted for Java 7 (Lea).
�e prometheus runtime described in Chapter 5 uses these algorithms to perform
lock-free task scheduling.

In the past, many parallel programs were run on systems dedicated to their
execution. Today, the ubiquity of multicore processors means that many future
parallel programs will run in multiprogrammed environments. Composing our
wait-free serializer implementation with lock-free memory allocation and task
scheduling techniques yields nonblocking scheduling and execution of serializers,
ensuring graceful performance degradation in the presence of heavily loaded
systems.

4.7 summary

In this chapter, we identi�ed the key elements of a serializer design: a serialization
queue to track delegated method invocations and maintain their order, and a
mechanism to schedule these method invocations for execution by worker threads.
We also described a set of goals for a serializer design targeting general-purpose
multiprocessors running a multiprogrammed operating system. We proposed
a novel scheme for dynamic task extension, allowing serializers to exploit exist-
ing task scheduling support, while still ensuring the serialization of dependent
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method invocations. For the remainder of the chapter, we detailed a nonblocking
implementation of the prometheus serializer, and showed how the delegate
and quiesce operations manipulate the serializer to coordinate a data-driven
decomposition.





5 the prometheus runtime

In the case of non-determinism, I also believe this is an issue of ab-
straction. Under the hood the program is always going to be non-
deterministic since there is no reasonable way to run a parallel program
in lock-step in exactly the same way on every run. Beyond the technical
problems, such lock-step execution would likely be terribly ine�cient.
�e idea is therefore to abstract away the non-deterministic behavior
so that the programmer only sees deterministic behavior and any non-
determinacy is hidden in the run-time system.

— Guy Blelloch (2009)

In Chapter 4, we described a serializer implementation that uses dynamic
task extension to ensure that the method invocations delegated to a particular
serializer are assigned to a single task, and relies on runtime support to dynamically
schedule di�erent serializers for execution. �is chapter describes the design
and implementation of the prometheus runtime, which provides dynamic task
scheduling support for C++ programs. Together, the task-based serializer and the
prometheus runtime enables data-driven decomposition of C++ programs to
exploit state-of-the-art dynamic scheduling techniques.

Scheduling is the process of assigning tasks to a set of worker threads for
execution. As we explained in Section 4.2, a task is a lightweight mechanism for
the asynchronous invocation of a single subroutine (i.e., a function or method),
allowing the callee to continue executing without waiting for the subroutine to
complete. Worker threads, or workers, are threads created by the runtime system
that run a scheduling loop, which repeatedly attempts to acquire and execute a
task. Dynamic scheduling balances the load of tasks assigned to each worker as the
program runs, adapting to di�erences in the amount of work performed by each
task, as well as variations in the speed of workers resulting from preemption by a
multiprogrammed operating system. �e prometheus runtime employs a work-
stealing algorithm with provable time and space e�ciency bounds (Blumofe and
Leiserson, 1999), and nonblocking, dynamically sized data structures (Arora et al.,
1998; Chase and Lev, 2005). We review work-stealing schedulers in Section 5.1.

�e principal novelty of the prometheus runtime is that it supports unre-
stricted work-stealing in the form of a C++ library. Previous implementations of
work-stealing that fully realize the e�ciency guarantees of the scheduling algo-
rithms, including Cilk (Frigo et al., 1998) and Cilk++ (Leiserson, 2009), rely on

97
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compiler or other translation support. Previous library implementations of work
stealing, including Intel’s �reading Building Blocks (tbb) (Kukanov and Voss,
2007), compromise the e�ciency guarantees of work stealing due to two limita-
tions of the existing sequential languages they support. �e �rst limitation, which
we describe in Section 5.2, is the lack of support for storing the continuation of a
subroutine invocation, which is required to achieve the space e�ciency guarantee.
�e second limitation, which we explain in Section 5.3, is that sequential languages
store activation records (or frames) on a stack. Most work-stealing libraries use
this stack structure to hold the activation records for tasks, and consequently must
restrict scheduling so that tasks using the same stack do not run concurrently.
prometheus overcomes both of these limitations with system-speci�c assembly
language routines that provide the necessary functionality not provided by C++.

In Section 5.4, we describe the data structures used to implement the
prometheus runtime. We then describe the runtime operations that manip-
ulate these data structures to realize dynamic scheduling in Section 5.5. Note that
while the material in this chapter describes important aspects of the prometheus
runtime library, it is largely orthogonal to data-driven decomposition. Readers
wishing to bypass this discussion should consider reviewing the material on the
dag model of parallelism in Section 5.1, which provides background for Chapter 6.

5.1 task scheduling algorithms

Task scheduling algorithms may broadly be divided into two categories—work
sharing and work stealing (Herlihy and Shavit, 2008, pg. 381). Algorithms in both
categories rely on a set of worker threads—normally one per hardware execution
context—to execute tasks.1 A worker typically maintains some form of work queue
containing unexecuted tasks, from which it draws tasks to execute.

In a work-sharing algorithm, when a task is spawned, the scheduler decides
whether the new task should be executed by the present worker, or whether the
new task should be migrated to a di�erent worker (Rudolph et al., 1991; Lüling
and Monien, 1993; Hendler and Shavit, 2002). �is decision involves assessing the
worker’s current load, usually measured by the number of tasks in its work queue,
and comparing this with the load of other workers in the system. �e main draw-
back of work sharing is that when all workers are heavily loaded, there is no bene�t
to performing load balancing. In this scenario, the time spent deciding whether
to migrate each new task is wasted. Furthermore, the process of assessing the load

1Additional threads may be necessary when tasks perform considerable I/O.
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Figure 5.1: Scheduling tasks with work stealing

of other workers also incurs a signi�cant amount of unnecessary communication.
Figure 5.1 depicts the operation of a work-stealing scheduler. Each processor

executes a worker thread, and each worker is either currently executing a task
(shown as a gray box inside the worker), or performing scheduling (shown as a
white box inside the worker). Each worker maintains a double-ended queue, or
deque of tasks. �e deque has two ends: the local worker pushes and pops tasks on
the bottom end, and other workers may steal tasks from the top end. (We use the
standard de�nitions of bottom and top for the ends of the deque, which results in
results in the deqeus in Figure 5.1 appearing to be upside-down—the bottom is
the end closes to the worker threads.) Because the work-stealing deque only allows
insertions at the bottom end, it is not a general deque, but an input-restricted deque
(Knuth, 1997). A worker pushes new tasks into the bottom of its deque, and when
it completes a task, it performs a scheduling operation to get the next task. �is
scheduling operation �rst attempts to pop the next task from the worker’s local
deque. If this deque contains tasks, like the deque for worker thread 1 in Figure 5.1,
then the worker pops this task from the deque and executes it.

If the local deque is empty, like the deque of worker thread 2 in Figure 5.1,
then the worker becomes a thief and the scheduling operation attempts to steal a
task from another worker. It randomly selects another worker to be a victim, and
then accesses the top of the victim’s deque to steal a task. (Again, in Figure 5.1, the
top is the end furthest from the worker thread.) In Figure 5.1, worker thread 2
selects worker thread 1 as the victim, and since the deque of worker thread 1 is not
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empty, worker thread 2 will successfully steal a task. If the victim’s deque is empty,
the scheduling operation will wait for some amount of time and then attempt to
steal from another randomly selected victim.

Work-stealing algorithms result in less communication and synchronization
than work-sharing algorithms, because busy worker spend no time performing
scheduling operations. Instead, the brunt of scheduling overhead is borne by idle
workers. �ese advantages were observed empirically in early implementations
of work stealing. Burton and Sleep (1981) developed an early incarnation of
work stealing to schedule parallel execution of programs written in functional
languages. Halstead (1985) used work stealing to schedule parallel work generated
by the future construct of Multilisp. Later work on the Multilisp project by Mohr
et al. (1991) introduced the use of a deque as the work queue. Work-stealing
schedulers were popularized by Cilk (Blumofe et al., 1995; Frigo et al., 1998),
a task programming extension to the C language. While optimal scheduling is
NP-complete (Garey and Johnson, 1979), the Cilk project proved tight bounds
on both the time and space required for work-stealing schedulers (Blumofe and
Leiserson, 1999).

�e DAG Model of Parallel Computation

To facilitate the presentation of the e�ciency of work-stealing schedulers, we �rst
review the directed acyclic graph (dag) model developed by Eager et al. (1989)
to quantify the parallelism of a dynamic computation. We describe this model
using the more contemporary terminology of Cormen et al. (2009, chap. 27). �e
dag model represents program execution as a graph, with vertices representing
dynamic instructions, and edges between the vertices representing dependences
between these instructions. Figure 5.2 depicts an example dag. �e number in
each node is given for the purpose of identi�cation, and does not have any other
signi�cance.

�ere are two important metrics used to quantify the performance of the
program using the dag model. �e �rst metric is work—the minimum execution
time of the program running on a single idealized processor that executes one
instruction per cycle. �e number of nodes in the dag of a parallel computation
determines its work, denoted T1. For the example in Figure 5.2, T1 = 14.

If we execute a program in parallel on an computer withN idealized processors,
the program could complete at mostN instructions per cycle. �is gives a lower
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Figure 5.2: An example dag representing parallel execution

bound on the execution time TN of the parallel program called the work law:

TN > T1/N . (5.1)

�e second metric is span, which is the execution time of the program running
on an in�nite number of idealized processors. �e longest path through the dag,
or critical path, determines the span of the computation, denoted T∞. �e critical
path of the computation represented by Figure 5.2 is highlighted in gray, and
counting the length of this path gives us T∞ = 7. Because the critical path cannot
be parallelized, it gives us another lower bound on the execution time of this
program onN processors, called the span law:

TN > T∞ . (5.2)

Using work and span, we may de�ne the average parallelism P of the program’s
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execution as the speedup when run on an in�nite number of processors:

P = T1/T∞ . (5.3)

�e example in Figure 5.2 has work T1 = 14 and span T∞ = 7, and thus has
parallelism P = 14/7 = 2. �e implication of parallelism is that a parallel program
can only achieve perfect linear speedup for a number of processors N 6 P. In
other words, the marginal bene�t of adding additional processors will decrease
once the number of processorsN is larger than the parallelism P.

�e E�ciency of Work Stealing

�e work and span laws provide a lower bound on the execution time of a parallel
program. Using the dag model, Blumofe and Leiserson (1999) show that the Cilk
work-stealing algorithm gives an upper bound:

TN 6 T1/N+O(T∞) . (5.4)

Equation 5.4 says that the execution time of the program on P processors will
be less than the work divided by the number of processorsN (the work term) plus
a critical path termO(T∞).

Recall that the parallelism of the program is the speedup on an in�nite number
of processors. Now let the parallel slackness be the ratio of parallelism to the
number of processors: P/N. Frigo et al. (1998) show that if the program has
ample parallel slackness, i.e., the average parallelism of the program is signi�cantly
greater than the number of processors:

P = T1/T∞ � N. (5.5)

Rearranging this equation, we have:

T∞ � T1/N. (5.6)

�us the assumption of parallel slackness makes the critical-path term of
Equation (5.4) negligible in comparison with the work term. �is gives us the
following upper bound on the execution time:

TN 6 T1/N. (5.7)
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Taking equation (5.7) in combination with the work law, Equation (5.1) gives
us:

TN ≈ T1/N . (5.8)

�us under the assumption of parallel slackness, a work-stealing scheduler
gives perfect linear speedup. �is result provides a �rm theoretical basis for
assigning tasks to worker threads. �e provable e�ciency of work-stealing has
resulted in its widespread adoption: In addition to Cilk and Cilk++ (Leiserson,
2009), work-stealing algorithms are used today in libraries such as Intel �reading
Building Blocks (tbb) (Kukanov and Voss, 2007), the Java Fork/Join framework
(Lea, 2000), Microso�’s .net Task Parallel Library (tpl) (Leijen et al., 2009), and
recent languages including Chapel (Chamberlain et al., 2007), Fortress (Allen
et al., 2007), and x10 (Charles et al., 2005).

Drawbacks of Work Stealing

While work-stealing provides provably e�cient scheduling under the assumption
of parallel slackness, it does have notable shortcomings. �e �rst drawback is
that work-stealing schedulers do not account for a�nity that tasks may have for
particular worker threads or processors. Frigo et al. (1999) show that divide-and-
conquer algorithms naturally exploit cache locality without intervention from the
programmer, but many applications require other kinds of algorithms. If a set of
tasks accesses spatially local data, it may be bene�cial to map these tasks to the
same worker thread so that they bene�t from cache locality. Applications may also
bene�t from task a�nity when running on cache-coherent non-uniform memory
access (ccnuma) servers (Conway and Hughes, 2007; Intel, 2009b). Assigning
tasks to processors closest to the memory they access can improve performance
by reducing the average memory access time. Unfortunately, most current task
programming systems do not support a�nity in their api, and randomized work-
stealing schedulers are inherently oblivious to locality.

Recent research suggests it may be possible to remedy the lack of a�nity
support in work-stealing schedulers. Acar et al. (2000) describe a mechanism for
locality-guided work stealing, but their proposal greatly increases the number of
expensive atomic operations required for each scheduling operation. Contreras
and Martonosi (2008) suggest initially assigning tasks to speci�c processors, and
then falling back on work stealing for load balancing, but they do not evaluate the
performance or prove the e�ciency of this approach.
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�e second drawback with work stealing is that its time-e�ciency guaran-
tee breaks down in the absence of parallel slackness. Contreras and Martonosi
(2008) and Guo et al. (2009) both empirically observe that for some applications,
work stealing scales poorly to large numbers of worker threads. Contreras and
Martonosi attribute this to the fact that the increasing number of workers reduces
the probability that a random steal will select a victim with a large amount of work.
�ey suggest occupancy-based stealing, which selects a victim with the most work
as a remedy for this issue. Guo et al. observe that work stealing performs poorly
for long chains of sequential spawns when using a large number of workers. In
both these examples, the underlying limitation is that the parallel slackness is
insu�cient to maintain linear scaling.

Despite these shortcomings, we believe that a work-stealing scheduler is the
best choice for the prometheus runtime because it has been thoroughly studied
and rests on a �rm theoretical basis. We note that data-driven decomposition using
the task-based serializer, described in Chapter 4, may partially remedy locality
issues, because it allows programmers to establish pipelines of operations applied
to a private object, which are likely to execute on the same processor. We plan to
continue evaluating the interaction of data-driven decomposition with scheduling
algorithms as the number of hardware contexts in multi-core processors continues
to grow.

5.2 task creation

�ere are two possible ways to handle the creation of new tasks in a work-stealing
scheduler: eager task creation, and lazy task creation. With eager task creation, a
worker spawns a task by pushing it into the bottom of the work deque and then
continues executing the code a�er the spawn (i.e., the continuation of the task).
When the worker reaches a sync directive, it begins drawing tasks from the bottom
of its local deque and executing them. In the meantime, other workers may steal
tasks from the top of the deque and execute them.

Eager task creation is straightforward to implement, but it can result in an
explosion in memory consumption when a program spawns a large number of
tasks. Consider the code in Figure 5.3, which lists a simpli�ed version of the
blackscholes benchmark from the parsec suite (Bienia et al., 2008). �is pro-
gram uses the Black-Scholes formula to compute prices for a portfolio of European
options. �e program reads option data from a �le into an array (line 2), and then
loops over each array element (lines 3–6). It creates a task to compute the price of
each option in the array (line 4) and spawns the task (line 5). A�er the loop, the
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1 vector <option_t> options;
2 initialize_option_data (&options); 
3 for (int i = 0; i < 100000000; ++i) {
4     task_t* task = new option_task_t (options[i]);
5     spawn (task);
6 }
7 sync ();

Figure 5.3: Simpli�ed code for blackscholes benchmark

program performs a sync to wait for the tasks to complete (line 7).
A sequential version of this program (eliding the spawn and sync directives)

would only require memory for one task at a time. Using eager task creation, the
parallel version would require memory for as many tasks as there are options
in the input, and would require the deques be large enough to store all of the
tasks. Running the blackscholes example with its input of one hundred million
options would result in a �ood of tasks that may overwhelm the system.

Recognizing the problems with eager task creation, Mohr et al. (1991) devel-
oped lazy task creation for scheduling Multilisp programs. When a worker spawns
a task using lazy task creation, it saves the continuation of the task, rather than the
task, in its deque. �e worker then executes the task itself. Once the task completes,
it attempts to pop the continuation from the deque to resume execution.

While a worker is executing a task, it is possible that another worker may steal
the task’s continuation. �e stealing worker will execute the continuation until it
encounters another spawn point, at which point it will save a new continuation
into its deque and commence execution of the new task. �is process continues,
with each worker peeling o� a single task for execution, until a worker reaches the
sync directive. Applying this approach to our example limits the number of active
tasks to the number of active workers, so executing blackscholes on a machine
with N processors would require storage for N tasks, rather than one hundred
million, and would require only one entry in each deque to hold the continuation.

Blumofe and Leiserson (1999) prove that lazy task creation bounds the memory
consumption of a program that consumes space S1 in a single-processor execution
consumes at most S1N space in anN-processor execution. �is �nding motivated
the adoption of lazy task creation in both the Cilk (Frigo et al., 1998), and Cilk++
(Leiserson, 2009) languages. However, because most popular sequential languages
do not provide a mechanism for saving a continuation, many recent task schedul-
ing libraries, including Intel tbb (Kukanov and Voss, 2007), the Java Fork/Join
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framework (Lea, 2000), and the Microso� .net tpl (Leijen et al., 2009) use eager
task creation.

Task scheduling frameworks using eager task creation alleviate the memory
explosion problem by providing special looping constructs such as parallel_for
and parallel_while, which recursively subdivide loops in a divide-and-conquer
fashion.2 �ese constructs reduce memory consumption so that it is logarithmi-
cally proportional, rather than linearly proportional, to the number of tasks. How-
ever, they are only applicable to looping code, and thus pathological programs with
excessive memory consumption are still possible when using eager task creation.

Data-driven decomposition strives to use existing sequential programming
constructs and semantics. Requiring programmers to reason about the memory
consumption of parallel operations and potentially requiring them to restructure
code to reduce its memory footprint would severely undermine these goals. �ere-
fore the prometheus runtime implements lazy task creation, ensuring an upper
bound on memory consumption. (To the best of our knowledge, prometheus
is the �rst library implementation of a work-stealing scheduler to use lazy task
creation.) Because C++ does not support saving the continuation of a method
invocation, prometheus includes a set of functions for saving and restoring con-
tinuations implemented in assembly language, which we detail in Sections 5.4
and 5.5.

5.3 managing task activation records

One of the foremost challenges to implementing support for tasks in an existing
sequential language is managing the activation records of the asynchronous sub-
routine (function or method) invocations performed by tasks. An activation record
(sometimes called a frame) stores the data used to invoke a subroutine, including
the return address and the values of arguments and local variables. Sequential
languages use a linear call stack, which allocates activation records in a contiguous
region of memory. When a function is invoked, it pushes an activation record onto
the stack, and when it returns, it pops the activation record o� of the stack. �ese
operations are extremely e�cient, requiring only a simple addition or subtraction
to the stack pointer, which is usually stored in a dedicated register. �e fact that a
routine in a sequential language directly invokes at most one subroutine at any

2�ese constructs are also useful in systems that employ lazy task creation, such as Cilk++,
because they increase the parallel slackness, reducing the critical path contribution to the execution
time.
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1 void A () {
2     spawn (&B);
3     C ();
4     sync ();
5 }
6
7 void B () {
8     spawn (&D);
9     E ();

10     sync ();
11     foo ();
12 }
13
14 void C () {
15     spawn (&F);
16     G ();
17     sync ();
18 }

Figure 5.4: Example of parallel function calls in a task-based program

given time enables this simple scheme.
Tasks execute subroutines asynchronously, allowing a particular routine to

directly invoke multiple subroutines simultaneously. Figure 5.4 lists an example of
parallel function calls in a task-based program, due to Frigo (2009). �is example
code corresponds to a simple traversal of a balanced binary tree with four leaves.
�e function A spawns function B (line 2) and then invokes function C (line 3)
for (potentially) parallel execution. (Note that there is no bene�t to spawning C,
because it is immediately followed by a sync.) A linear stack is inadequate for this
code, because at most one of the activation records of B and C can be placed on
the stack a�er the activation record for A.

Previous work-stealing schedulers have adopted one of two solutions to this
problem (Taura et al., 1999). �e �rst solution is to use compiler or other transla-
tion support to implement a more appropriate mechanism for allocating activation
records. Examples of this approach include Cilk (Frigo et al., 1998), Cilk++ (Leis-
erson, 2009), Lazy �reads (Goldstein et al., 1996), and Stack�reads/MP (Taura
et al., 1999). While this completely solves the problem of managing activation
records, the resulting code cannot interoperate with existing code that uses stack-
allocated activation records.
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Figure 5.5: Cactus stack for the code in Figure 5.4

�e second solution is to allocate the activation record of a particular task
on the linear stack of the worker executing that task. All current task scheduling
libraries, including tbb (Kukanov and Voss, 2007), the Java Fork/Join framework
(Lea, 2000), and the Microso� .net tpl (Leijen et al., 2009) use this approach to
maintain interoperability with existing code. As we will see later in this section,
allocating task activation records on linear stacks can lead to several pathological
behaviors. Kukanov and Voss (2007) describe the mechanisms used to alleviate
these problems in tbb, which either require extra e�ort on the part of the pro-
grammer; or restrict scheduling, so that workers may sometimes go idle while
there are still unexecuted tasks.

We will now examine these two approaches in detail. We use Cilk++ and tbb
for our examples, since they provide detailed documentation of their handling
of activation records. At the end of the section, we describe the prometheus
approach to managing activation records, which provides the full compatibility
with existing code of the library approaches, while not requiring any restriction
on scheduling or extra programmer e�ort.

�e Cilk++ Approach: Cactus Stack

Cilk++ replaces the linear call stack with cactus stack (also known as a saguaro stack
or spaghetti stack) (Hauck and Dent, 1968). Each function invocation, whether
directly invoked or spawned as a task, allocates an activation record on the heap.
Each activation record contains a pointer to the activation record of the calling
function, so that the resulting structure resembles a tree or saguaro cactus. Fig-
ure 5.5 shows the cactus stack for the code in Figure 5.4 at the point when the
functions B–G have been spawned or invoked, but have not yet completed.

Using a cactus stack allows Cilk++ to avoid the problem of mapping activation
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records onto a linear call stack. However, replacing the linear stack with a di�erent
structure requires changes to the calling convention (sometimes called the calling
sequence)—the series of events that sets up an activation record when a subroutine
is invoked. Calling conventions are determined by the application binary interface
(abi) of a particular system, which speci�es how applications should interact with
libraries, other applications, and the operating system. �erefore, changing the
calling convention has the following consequences: First, it requires a compiler
modi�ed to generate the necessary function prologue and epilogues to create and
destroy activation records, respectively. Second, Cilk++ functions are distinct
from other C++ functions, and these two kinds of functions cannot call each
other because they handle activation records di�erently. �is makes it di�cult to
integrate Cilk++ code into an existing program—either the entire code base must
be converted to Cilk++, which is impossible if third-party libraries are used; or the
program must be split into Cilk++ and C++ components, with extra code added
to convert between calling conventions at the boundaries of these components
(Cilk Arts, 2008).

�e tbb Approach: Linear Stacks

�e purpose of so�ware libraries is to provide functionality that can be reused
in di�erent programs, so they must use standard calling conventions. �ere-
fore, previous library implementations of work-stealing schedulers, including
tbb (Kukanov and Voss, 2007), use the linear stack structure of the sequential
languages they support. �is approach can result in serious problems: Frigo (2009)
describes how a naive implementation of work-stealing using linear stacks can
degrade the operation of the scheduler, and potentially lead to stack over�ow.

We restate this example of Frigo below, assuming a work-stealing scheduler
with lazy task creation, operating with three worker threads. We follow the se-
quence of operations of the code from Figure 5.4. Initially, worker 1 is executing
function A. One possible execution of the remainder of the program is as follows:

1. A spawns B (line 2). Worker 1 saves the continuation of B in its deque and invokes B.
2. Worker 2 steals the continuation of B.
3. �e continuation B (in function A) invokes C (line 3) in worker 2.
4. C spawns F (line 15). Worker 2 pushes the continuation of F in its deque and

invokes F.
5. Meanwhile, B spawns D (line 8). Worker 1 saves the the continuation of D in its

deque and invokes D.
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Figure 5.6: A possible execution of the code in Figure 5.4 with a linear stack

6. Worker 3 steals the continuation of D.
7. �e continuation of D (in function B) invokes E (line 9) in worker 3.

�is point in the execution is depicted in Figure 5.6(a). Worker 1 has A, B, and
D on its stack. Worker 2 has C and F on its stack and the continuation of F in its
deque. Worker 3 has E on its stack. Execution continues as follows:

8. Worker 1 completes execution of D and pops its activation record o� of the stack.
Finding its deque empty, it steals the continuation of F from worker 2.

9. �e continuation of F (in function C) invokes G (line 16) in worker 1.

Figure 5.6(b) shows this stage of execution. Now we see a problem beginning
to emerge—the activation record for G is sitting on top of the activation record of
B, which is not its ancestor in the dynamic call graph. �e consequences of this
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1 void B1 () {
2     spawn (&D);
3     spawn (&E);
4     set_continuation (&B2);
5 }
6
7 void B2 () {
8     foo ();
9 }

Figure 5.7: Example of tbb continuation tasks (syntax simpli�ed)

problem manifest in the next step of the example. Worker 3 completes execution
of E and pops its activation record o� of the stack, returning to line 10 of B. Since D
has completed, we expect B to continue executing past the sync to the invocation
of foo on line 11. However, this is not safe, because the activation record of B is
on the stack of worker 1, underneath the activation record of G. If worker 3 did
continue executing B from the continuation of E, the invocation of foo would
overwrite the activation record of G and cause the program to fail. �erefore the
scheduler cannot execute foo until G completes, including all functions that it
calls or spawns.

�is example shows how mapping the tree-like structure of task activation
records onto a linear stack can trap an activation record beneath an activation
record of a function that is not its descendent, preventing it from continuing
execution. �is is a signi�cant problem, since it can result in idle workers when
there is still work to be done, but an even worse outcome is possible—if this
scenario occurs repeatedly on a worker’s stack, it may over�ow and crash the
program.

Kukanov and Voss (2007) describe two techniques that Intel tbb uses to miti-
gate these problems. First, the scheduler only allows a worker to steal a task that is
more deeply nested than the tasks currently on its stack. �is policy reduces the
probability of over�owing the stack, because more deeply nested tasks are likely to
have fewer child tasks, and thus require less stack space. Second, the programmer
can divide the original task into a task that returns before its children complete, so
that its stack space can be reclaimed; and a continuation task, which executes once
all the child tasks �nish. For example, the programmer might divide the task for
function B into a task B1 that spawns D and E, and a continuation task B2 that calls
foo, as shown in Figure 5.7. Here the programmer speci�es that the continuation
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task B2 should execute on completion of D and E (line 4). �e spawn of B on line 2
of Figure 5.4 is then replaced with a spawn of B1. When B1 executes, it spawns
D and E, and returns without waiting for these children to complete, popping its
activation record o� of the stack. �en when tasks D and E complete, the runtime
schedules B2 for execution.

While the tbb techniques partially alleviate the problems of storing task acti-
vation records on linear stacks, they introduce two disadvantages. First, tbb may
not always be able to exploit parallelism in the program due to the scheduling
restrictions. Second, continuation tasks require signi�cant extra programmer
e�ort to identify tasks to split, and to manually divide the function or method into
a task and one or more continuation tasks. �is process requires the programmer
to understand how tbb uses the stack and structure their program accordingly,
lowering the level of abstraction provided by task programming.

�e Prometheus Approach: Recycled Stacklets

Like tbb, prometheus is also implemented as a library, but takes a completely
di�erent approach to managing activation records, inspired by the strategy used in
the Hood user-level threading library (Papadopoulos, 1998). �is strategy provides
each running task with a stacklet—a linear stack that stores the activation records of
ordinary subroutine invocations for that particular task. We will show that stacklets
allow prometheus to perform unrestricted scheduling, while maintaining the
compatibility bene�ts of using the standard calling convention.

We list the actions of the prometheus runtime performs for all events that
allocate or deallocate activation records below:

Subroutine invocation. When invoked, a subroutine allocates an activation record
on the stacklet using the standard calling convention speci�ed by the system
abi. �is typically involves incrementing the stack pointer by the size of the
activation record.

Subroutine return. When returning, a subroutine deallocates the current activa-
tion record on the stacklet using the standard calling convention speci�ed by
the system abi. �is typically involves restoring the previous value of the stack
pointer, which is either stored in the activation record or a designated register.

Task spawn. To spawn a task, a worker saves the continuation into its local deque,
including a pointer to the current stacklet. �e worker then allocates a new
stacklet, and changes its stack pointer to point to the new stacklet and then
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Figure 5.8: Stacklets for the code in Figure 5.4

invokes the subroutine (function or method) for the task.
Task completion. When a task completes, the worker deallocates its stacklet. If

there is a continuation in the local deque, the worker retrieves it, switches to
its stacklet, and resumes its execution. If the local deque is empty, the worker
restores its original call stack, and attempts to steal work from another worker.

Continuation steal. When a worker successfully steals work, it saves its current
stack pointer into a reserved location, and then sets its stack pointer to the
stack pointer of the continuation. �e worker then resumes executing the
continuation.

Figure 5.8 shows the stacklets for the code in Figure 5.4, at the point where A
through G have been invoked, but none have completed. Note that each spawned
function (B, D, and F) begins a new stacklet, while the original stacklet remains
with the continuation of the spawn. Ordinary function invocations (C, E, and G)
push an activation record on the existing stacklet.

Stacklets form a cactus stack that is more coarse-grained than the Cilk-style
cactus stack. Cilk allocates every activation record on the heap for both sub-
routines spawned as tasks and ordinary subroutine invocations. Even using an
optimized memory allocator (Frigo et al., 1998), heap-based activation record
allocation still incurs more overhead on each subroutine invocation than the linear
stack mechanism. By contrast, prometheus uses the standard stack-based call-
ing convention to allocate activation records in the current stacklet for ordinary
subroutine invocations, so they do not incur any extra overhead.

prometheus allocates new stacklets using mmap, a relatively expensive system
call. To prevent this overhead from becoming a bottleneck, we borrow another
technique from Hood: each worker maintains a local pool of stacklets. When a
worker requires a stacklet to execute a task, it �rst tries to reuse one from the pool,
and only allocates a new stacklet if the pool is empty. When the task is complete,
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the stacklet is recycled back into the worker’s pool. Once a worker reaches the
maximum depth of the task graph, it never needs to allocate another stacklet.
Using this combination of fast linear-stack-based allocation of activation records
for ordinary subroutine calls with a scheme that amortizes the overhead of stacklet
allocation over many tasks, prometheus is able to e�ciently support the tree
structure of task activation records.

In the prometheus runtime, an activation record is always a direct descendent
of the previous activation record in a stacklet. �e phenomenon of activation
records becoming trapped underneath unrelated activation records that occurs
when using a linear stack, as tbb does, never happens with stacklets. Consequently,
prometheus can schedule tasks without any restriction of the work-stealing
algorithm. When a worker steals a continuation, it also acquires the stacklet
associated with the continuation, and adjusts its stack pointer to point to this
stacklet before resuming the continuation. Avoiding the linear stack problem
also eliminates the need for programmers to specify continuation tasks. �is is
especially important for prometheus, because exposing this artifact of control-
driven decomposition in the api for data-driven decomposition would be highly
undesirable.

Goldstein et al. (1996) originally proposed stacklets for the Lazy �reads
execution model. Lazy �reads use a specialized calling convention, relying on
a modi�ed version of the gcc compiler to generate native code that adheres to
these conventions. By contrast, prometheus uses the standard calling convention
speci�ed by the abi of the host system. When a task is spawned, prometheus
allocates a new stacklet, then uses a system-speci�c routine to change the stack
pointer to point to the new stacklet before invoking the method. �is mechanism,
which we will describe in detail in the next two sections, allows prometheus
to exploit the bene�ts of stacklets without any special compiler or pre-processor
support, and maintains compatibility with existing so�ware and libraries.

5.4 runtime structures

As we explained in the previous sections, the prometheus runtime is a C++ library
that implements dynamic task scheduling via work-stealing with lazy task creation.
Currently the library targets 32- and 64-bit x86 and sparc architectures. To
facilitate portability, system-speci�c code is isolated in a few architecture-speci�c
�les and a handful of assembly-language routines. In this section, we describe
the data structures used to implement the runtime, and in the next section we
describe how the runtime uses these structures to schedule tasks.
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�reads

�e prometheus runtime instantiates objects of the thread_t to serve as workers
for scheduling. �is class abstracts away all system-speci�c details of thread
management, and provides an interface for common thread operations such as
creation, destruction, and joining. �e thread class also encapsulates management
of thread-local storage (tls).

prometheus currently supports Linux for x86 architectures and Solaris for
sparc architectures. For both of these platforms, the thread_t class uses posix
threads (pthreads) for its implementation. Because the thread class encapsulates all
threading functionality, porting prometheus to other threading implementations—
such as Solaris threads or Windows api threads—would involve a straightforward
replacement of pthread calls with the corresponding calls in the new api.

Stacklets

Figure 5.9 lists the code for the stacklet_t class. �is class comprises two �elds,
one that indicates the size of the stacklet (line 3), and another that points to the
location of the allocated stacklet (line 4). �e constructor (lines 7–12) takes a
single parameter specifying the size of the stacklet. It uses the mmap system call to
allocate a chunk of memory of the desired size. �e arguments to mmap specify
that the memory pages should be mapped with read and write permissions; that
they should be private to the current process; and that they should be anonymous,
i.e., not associated with any �le. Likewise, the destructor (lines 14–16) uses the
munmap system call to deallocate the pages.

�e get_sp method (18–21) is used to obtain a pointer into the allocated
chunk of memory suitable to be used as a stack pointer. Stacks grow down
(from higher addresses to lower addresses) on all platforms currently targeted by
prometheus, so this pointer is obtained by starting with the top of the allocated
block. However, these systems all have their own application binary interface (abi)
that speci�es a required alignment for the stack on entry to a function call. �ere-
fore get_sp calls a system-speci�c get_abi_alignment function to determine
an o�set from the top of the allocated memory chunk that will yield the correct
alignment (line 19). �is o�set is then used to compute the highest correctly
aligned address in the allocated storage, and this is returned as the value to use as
a stack pointer (line 20).
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1 class stacklet_t {
2 private:
3     size_t size; 
4     void* storage; 
5
6 public:
7     stacklet_t (size_t size) :
8         size (size)
9     {

10         storage = mmap (NULL, size, PROT_READ | PROT_WRITE,
11                           MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
12     }
13
14     ~stacklet_t () {
15         munmap (storage, size);
16     }
17
18     void* get_sp (void) {
19         size_t offset = get_abi_alignment ();
20         return ((char*) storage + size - offset);
21     }
22 };

Figure 5.9: Stacklet class

Termination-Detecting Barriers

�e sync operation in task programming e�ects a local barrier that causes the
caller to wait until all outstanding tasks complete. A termination-detecting barrier
tracks outstanding tasks and recognizes their completion (Flood et al., 2001). (For
the sake of brevity, we will refer to a termination-detecting barrier as simply a
barrier, but it should not be confused with barriers used for global thread syn-
chronization, as described by Mellor-Crummey and Scott (1991).) Conceptually,
this barrier simply maintains a join counter that is incremented before a task is
spawned and decremented when a task completes. When the join counter reaches
zero, it indicates there are no outstanding tasks.

Figure 5.10 gives the prometheus implementation of a termination-detecting
barrier. Rather than using a single counter, which would require synchronization
of concurrent accesses and could potentially lead to cache contention, each barrier
maintains an array of per-thread counters (line 3). We do not show this in the



117

1 class td_barrier_t {
2 private:
3     int64_t* counters;
4
5 public:
6     barrier_t () :
7         counters (new int64_t[prometheus::get_num_threads ()])
8     {}
9

10     ~barrier_t () {
11         delete[] counters;
12     }
13
14     void add_tasks (int64_t num_tasks) {
15         prometheus_tid_t tid = get_thread_id ();
16         counters[tid] += num_tasks;
17     }
18
19     void subtract_tasks (int64_t num_tasks) {
20         prometheus_tid_t tid = get_thread_id ();
21         counters[tid] -= num_tasks;
22     }
23
24     bool complete () {
25         int64_t num_tasks = 0;
26         for (int i = 0; i < prometheus::get_num_threads (); ++i) {
27             num_tasks += counters[i];
28         }
29
30         return (num_tasks == 0);
31     }
32 };

Figure 5.10: Termination-detecting barrier
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simpli�ed code of Figure 5.10, but these counters are each aligned on a cache-line
boundary to avoid false sharing. �e constructor (lines 6–8) allocates memory
for this array and initializes the counters to zero. Correspondingly, the destructor
(lines 10–12) deallocates this memory.

�e barrier provides a method to add to the task count when tasks are spawned
(lines 14–17), and another method to subtract tasks when they complete (lines 19–
22). �ese methods take the count of tasks to add or subtract as their lone parame-
ter, and a�er determining the identity current thread, increment or decrement the
counter for that thread. Because each counter in the array is written by a single
thread, these methods require no synchronization.

�e thread-local counters are represented as signed integers because they may
be positive or negative, depending on how many tasks a particular thread has
spawned and completed. �e number of outstanding tasks is determined by sum
of all the counters. �e complete method (lines 24–31) detects termination by
looping over the array (lines 26–28) and adding together the value of each counter.
�e method returns true if this value is equal to zero, and false otherwise.

Note that complete uses no synchronization, and so the values of a particular
local counter may change while the sum is being computed, either before or a�er it
is read by the loop. As we shall see in the next section, the runtime increments the
task count before the task is spawned, which ensures that the total count is always
positive while there are still outstanding tasks. (If the counter were incremented
a�er the task was spawned, it is possible that the thread executing the task could
complete its execution and decrement its counter before the spawning thread
performed the increment, causing the total counter value to be less than it should
be.) �erefore it is impossible for complete to return true while there are still
outstanding tasks. It is possible for complete to return false when all tasks have
completed, but this cannot cause erroneous execution, and termination will be
detected on the next call.

Contexts

prometheus maintains information about the state of running and suspended
computations using contexts. Contexts serve multiple purposes: they provide the
ability to save and restore continuations, as well as enabling transitioning between
the scheduler and program code. Figure 5.11 lists the context_t data structure,
which comprises three �elds. �e �rst �eld is a pointer to a termination-detecting
barrier (line 2), which is used to track the number of outstanding tasks for an
executing context. �e remaining �elds are used to save the state of a suspended
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1 struct context_t {
2     td_barrier_t* td_barrier;
3     stacklet_t* stacklet;
4     void* save_sp;
5
6     context_t () :
7         save_sp (NULL), stacklet (NULL),
8         td_barrier (new td_barrier_t)
9     {}

10
11     ~context_t () {
12         delete td_barrier;
13     }
14 };

Figure 5.11: Context structure

1 void* save_and_move_context (void** save_sp, void* new_sp);
2 void* restore_context (void* new_sp, void* ret_val);
3 void* save_and_restore_context (void** save_sp, void* new_sp,
4                                 void* ret_val);

Figure 5.12: Context management functions

context. �e second �eld is a pointer to the stacklet object for this context (line 3).
�e constructor (lines 6–9) and destructor (lines 11–13) allocate and deallocate
this barrier, respectively. �e third �eld (line 4) is used to store the current stack
pointer when a context is suspended.

�e standard C library provides the getcontext and setcontext routines
to manage user-level contexts. However, using these routines would require two
system calls on every context swap, making these routines signi�cantly slower than
a purely user-space solution. To enable prometheus to pro�tably parallelize more
�nely grained tasks, we have implemented our own custom user-level context
management routines. Our approach to saving and restoring contexts was inspired
by the Hood user-level threading library (Papadopoulos, 1998). To suspend a
context, the runtime saves all user-level registers on top of the current stacklet, so
that the stacklet is a self-contained record of the context state. To resume a context,
the runtime restores registers from the stacklet, and then continues execution.

Figure 5.12 gives the prototypes of the three primary context manipulation
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functions. �e �rst function, save_and_move_context, is used as part of a
spawn operation to save the continuation of the spawned method, set the stack
pointer to point to a new stacklet, and then continue executing with the same
register values. �e �rst action of the function is to save all user registers to the top
of the current stacklet. Invoking the save_and_move_context function causes
the compiler to emit code to save all caller-saved registers, so this function only
needs to save the remaining callee-saved registers. �e function then saves the
resulting stack pointer at the address pointed to by the save_sp argument. Finally,
save_and_move_context sets the stack pointer to the value speci�ed by the
new_sp argument, which switches to the new stacklet.

�e save_and_move_context function forks a single context into two con-
texts, one using a new stacklet, and the original context, which keeps using the
original stacklet. Like the fork system call in unix, these contexts are di�eren-
tiated by the return value of the function. A return value of zero indicates the
program is executing in the new context, and a non-zero return value indicates
the original context.

�e second function, restore_context, resumes a suspended context a�er
completion of a spawned task. �is function switches the stack pointer to the value
speci�ed by new_sp, which points to an existing stack associated with a suspended
context. Next, this function restores the user registers of the context from the top
of the stack. Finally, restore_context returns the value speci�ed by ret_val,
which is always non-zero, indicating the resumption of a saved context. When
restore_context returns, it transfers control to the continuation of the function
that saved this context (for example, save_and_move_context), and thus the
return value appears to be the return value of that function.

�e third function, save_and_restore_context, is used by the scheduler
when switching from its context to a stolen continuation. �is function com-
bines the functionality of save_and_move_context and restore_context to
suspend one context and resume another suspended context.

�e context manipulation functions are implemented in assembly language
for each of the platforms that prometheus supports. We originally used the
context manipulation functions for 32-bit x86 and sparc-v9 from the Hood library
(Papadopoulos, 1999). We then rewrote these routines from scratch, signi�cantly
reducing the number of instructions necessary for each operation, and then ported
the resulting functions to 64-bit x86 and sparc-v9. We note that the x86 functions
are very short (16 instructions or less), due to the small number of registers that
must be saved and restored. �e sparc-v9 functions are slightly longer, due to the
large number of registers in the sparc-v9 isa, and the need to �ush contents of
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the register windows to the stack any time a context is saved.

Work-Stealing Deques

As described in Section 5.1, a work-stealing deque serves as the work queue for
each worker thread. Note that a work-stealing deque is not a general concurrent
deque, which allows concurrent operations on both ends of the queue, such as
the implementation described by Herlihy et al. (2003). Instead, a work-stealing
deque is accessed by a single thread at one end (the bottom), and may be accessed
by multiple threads at the other end (the top). For the sake of brevity, we will refer
to work-stealing deques simply as deques henceforth.

Mohr et al. (1991) introduced the use of deques in work-stealing schedulers.
Frigo et al. (1998) showed how to eliminate the need to lock the deque for most
local accesses to the deque by its associated worker thread. �ey use a protocol
called the, similar to that proposed by Dijkstra (1983), which allows accesses to
the bottom of the deque to avoid locking, unless there is exactly one item in the
deque. Arora et al. (1998) improved on this design further with a non-blocking
deque that ensures the progress condition of lock-freedom. �is design allows for
most accesses to the bottom of the deque (again, unless the deque contains exactly
one element) to be performed with ordinary loads and stores.

All of the deque implementations we have described so far use a �xed-size array
as storage for the elements in the deque. If the deque size chosen for a particular
run of the program is not large enough, it will over�ow and cause the program to
crash. Chase and Lev (2005) proposed a deque that replaces the array of the Arora
et al. deque with a dynamically resizable circular array. �is design maintains the
lock-freedom of the Arora et al. design, while allowing the deque to automatically
grow when an insertion into the deque would cause it to over�ow. �e Chase and
Lev deque is currently the state-of-the-art design for work-stealing deques, and is
used as part of the Java Fork/Join framework (Lea, 2000). We adopted this design
without modi�cation for the prometheus system.

We note that while the deque implementations due to Frigo et al. (1998), Arora
et al. (1998), and Chase and Lev (2005) all promise to synchronize most accesses
to the bottom of the deque with ordinary loads and stores, this is infeasible on real
machines. Any machine that does not implement sequential consistency requires
that a memory fence be placed a�er accesses to the bottom of the deque. Michael
et al. (2009) observe that on many processors, using an atomic instruction to adjust
the bottom pointer may be as fast or faster than the combination of ordinary load
and stores plus a memory fence.
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1 template <typename T>
2 class ws_deque_t {
3 public:
4     ws_deque_t (int initial_size);
5     void push_bottom (T* item);
6     T* pop_bottom ();
7     T* steal ();
8 };

Figure 5.13: Work-stealing deque interface

Figure 5.13 gives the interface for the work-stealing deque. �e class is im-
plemented as a template, and may be specialized to allow it to be used for tasks
with eager task creation, or continuations with lazy task creation. �e constructor
(line 4) initializes the deque to an initial size as speci�ed by its sole parameter. A
worker thread uses the push_bottom (line 5) and pop_bottom (line 6) methods
to push and pop work from its local deque. Workers use the steal method when
attempting to steal work from another thread.

5.5 runtime operations

In this section, we describe how the prometheus runtime uses the data structures
described in the previous section to implement dynamic scheduling via work
stealing.

Initialization

When the prometheus runtime library is initialized, it performs a series of actions
to prepare to execute a task-based program. First, the runtime spawns a number
of worker threads. By default, the total number of threads is set to be equal to
the number of hardware contexts in the system, but this value may be overridden
at run time by setting an environment variable. Second, the runtime constructs
a work-stealing deque for each thread. �ird, the runtime creates a scheduling
context for each worker, which encapsulates the register and stack state of the
scheduling code for each worker thread. �en the initialization routine returns
and the program continues execution.
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Spawning and Synchronizing Tasks

Now that we have described the primary data structures used in the prometheus
runtime, we can put all the pieces together to show how the system schedules
tasks. When a worker thread is executing program code and encounters a spawn,
it performs the following actions:

1. Allocate a new stacklet.
2. Save the current context, and change to a new context using the new stacklet.
3. Push the previous context, which contains the continuation of the spawn, into the

local deque of the worker thread.
4. Execute the task.
5. Switch to the scheduling context to obtain more work.

We now review these steps in detail. Figure 5.14 lists the code for spawning
tasks, which is broken into two functions: the spawn function (lines 1–17) called
by the programmer, and the execute_task function (lines 19–33) used by the
runtime to execute the task. �e spawn function begins by determining the id of
the current thread (line 2), and then accessing the corresponding context to add
one to the task count of the termination-detecting barrier (line 3). (Recall that
this count must be incremented before the spawn of the task to ensure correct
operation of the barrier.) �e spawn function then copies the task pointer into
a global array at the index corresponding to the current thread id (line 4). �is
is necessary because the local variables of the currently executing function will
become inaccessible when the prometheus context-switching function changes
the stack pointer to a new stacklet.

Next, spawn prepares to switch to a new context in which it will execute the
task. First, it determines the address of the location in the context structure where
the stack pointer will be saved and copies it into a local variable (line 6). Second,
it allocates a new stacklet (line 7), and third, it determines the initial stack pointer
of the new stacklet (line 8). �e spawn function then changes contexts by calling
save_and_move_context (line 11). A�er saving the registers of the current con-
text on the stack, this function changes the stack pointer to the newly allocated
stack and returns zero. �en spawn function then calls execute_task (line 12)
to execute the task in the new context. �is function does not return, and thus this
new context does not execute the rest of the code in spawn. When the saved context
is eventually restored—either by the current thread, a�er the spawned task com-
pletes, or by a thread that steals the saved context—the save_and_move_context
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1 void spawn (task_t* task) {
2     tid_t tid = get_thread_id ();
3     context[tid]->td_barrier->add_tasks (1);
4     tasks[tid] = task;
5
6     void** save_sp = &context->save_sp;
7     stacklet_t* stacklet = allocate_stacklet ();
8     void* new_sp = stacklet->get_sp ();
9

10     // fork point, return value of zero indicates new context
11     if (save_and_move_context (save_sp, new_sp) == 0) {
12         execute_task (); // does not return
13     }
14     
15     // if return value not zero, executing continuation
16     return;
17 }
18
19 void execute_task (void) {
20     tid_t tid = get_thread_id ();
21     context_t* continuation = context[tid];
22     td_barrier_t* td_barrier = continuation->td_barrier;
23     deque[tid].push_bottom (continuation);
24
25     task_t* task = tasks[tid];
26     task->execute ();
27     td_barrier->subtract_tasks (1);
28     delete task;
29
30     // thread id of current worker may have changed, must re-read
31     tid = get_thread_id ();
32     restore_context (scheduler[tid], (void*) 1);
33 }

Figure 5.14: Implementation of spawn
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1 void sync () {
2     tid_t tid = get_thread_id ();
3     td_barrier_t* td_barrier = context[tid]->td_barrier;
4     while (!td_barrier->complete ()) {
5         yield ();
6     }
7 }

Figure 5.15: Implementation of sync

function (line 11) will return a non-zero value, and execution will resume at line 21.
At this point, the spawning function is complete and the program continues.

�e execute_task function (lines 19–33) is responsible for executing the
task in the new context. First, it retrieves the previous context (line 21) and
pushes it into the bottom of the local deque (line 23). �is context, which contains
the continuation of the task, will either be resumed by the current thread when
the task is complete, or stolen by another thread that runs out of work. Next,
execute_task retrieves the task from the worker thread’s slot in the task array
(line 25) and executes it (line 26). Once the task completes, the task count of
the termination barrier is decremented by one (line 27), and the task object is
deallocated (line 28).

When it �nishes executing the task, execute_taskmust return to the schedul-
ing context, which will acquire more work. However, it is possible that this code
executes in a di�erent worker thread than the beginning of the function. �is
can occur when the executed task spawns one or more nested tasks, which could
result in the continuation of a nested task (including previous invocations of
execute_task) being stolen by another worker. It is therefore necessary to re-
read the thread id (line 31) to ensure that control is transferred to the scheduling
context of the current worker thread (line 32). �e scheduling context resumes
the scheduling loop, which looks for work in the local deque, and then attempts
to steal work when the local deque becomes empty.

Figure 5.15 lists the prometheus implementation of the sync primitive, which
causes the worker thread in which it is invoked to wait until all outstanding tasks
complete. �is function identi�es the termination-detecting barrier of the current
context (line 3), and loops until the complete method of the barrier returns true.
To ensure good multi-tasking performance, sync follows the recommendation
of Arora et al. (1998), yielding the processor between each unsuccessful call to
complete.
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1 void schedule () {
2     tid_t tid = get_thread_id ();
3     context_t* continuation = deque[tid].pop_bottom ();
4
5     // loop until terminated
6     while (true) {
7
8         // while continuation in local deque, pop and execute
9         while (continuation != NULL) {

10             void** save_sp = get_current_sp (tid);
11             void* sp = continuation->get_sp ();
12             save_and_restore_context (save_sp, sp, 1);
13             // control transferred to continuation
14
15             // return from continuation
16             recycle_stacklet (tid);
17             continuation = deque[tid].pop_bottom ();
18         }
19
20         // no continuation in local deque
21         while (continuation == NULL) {
22             check_for_termination ();
23             thread_t::yield ();
24             tid_t victim = get_victim (tid);
25             continuation = deque[victim].steal ();
26         }
27     }
28 }

Figure 5.16: Scheduling loop

Scheduling Loop

Workers acquire work by entering the scheduling context, which continuously
executes the scheduling loop listed in Figure 5.16. When the scheduling context is
active, this loop (lines 6–27) runs continuously until it �nds work or the runtime
is terminated. �e scheduling loop comprises two inner loops. �e �rst loop
executes as long as the local deque has work (lines 9–18). It attempts to pop work
from the deque 17, and if it is successful, it suspends the scheduling context and
restores the continuation stored in the context popped from the deque (lines 10–
12). When this work is completed, the scheduling context resumes at line 15. It
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recycles the previous stacklet and then continues looking for work in the local
deque.

Should the scheduling loop exhaust work in its local deque, it enters the second
inner loop (lines 21–26). �is loop �rst checks for termination (line 22). If the
program has not signalled termination, the loop then yields the processor (line 23),
allowing other workers with a chance to run on its processor. A�er yielding, it
identi�es a victim thread at random (line 24) and attempts to steal work from this
worker (line 25). Once work is successfully stolen, the second loop exits and the
outer loop then re-enters the �rst loop, once again executing work from the local
queue.

�e spawn and sync operations and the scheduling loop act in concert to
dynamically schedule the tasks submitted to the runtime. �ese actions are per-
formed by worker threads operating independently on decentralized work queues.
Coordination between worker threads only occurs when a worker exhausts its
local work and attempts to acquire additional work from another worker. �e
decoupled nature of the work-stealing algorithm thus leads to an elegant and
e�cient means for distributing work to the hardware contexts of a multiprocessor
system.

5.6 summary

In this chapter, we described the prometheus runtime system for dynamic task
scheduling. We began by reviewing dynamic scheduling algorithms, and sum-
marized previous work that established the time- and space-e�ciency of work
stealing. We then described two key aspects of the design of a work-stealing sched-
uler: creating tasks, which may be performed eagerly or lazily; and managing the
tree structure task activation records, which map awkwardly onto the linear stack
structure used by sequential languages. prometheus improves upon previous
work-stealing algorithms by implementing lazy task creation, which preserves
the space-e�ciency guarantee of the scheduling algorithm; and by using a combi-
nation of fast user-level context switching and e�cient allocation of stacklets to
provide independent storage for activation records of independent tasks. �ese
improvements enable prometheus to realize the full potential of work-stealing al-
gorithms, which has previously required compiler support, while maintaining full
compatibility with existing C++ programs, and requiring no additional e�ort from
the programmer. A�er describing the high-level design decisions, we described
the implementation of the data structures and operations of the runtime system.
In conclusion, the prometheus runtime enables data-driven decomposition of
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C++ programs using the task-based serializer described in Chapter 4 to exploit
state-of-the-art dynamic scheduling.



6 receiver disambiguation and parallel loops

�ere are known knowns. �ere are things we know that we know.
�ere are known unknowns. �at is to say there are things that we now
know we don’t know. But there are also unknown unknowns. �ere are
things we do not know we don’t know. ... It sounds like a riddle. It isn’t
a riddle. It is a very serious, important matter.

— Donald Rumsfeld (2002)

Data-driven decomposition achieves repeatable and predictable parallel ex-
ecution by invoking methods on each private object in the same order as the
sequential program. To preserve this ordering, each parallel operation identi�es
its receiver—the object it will modify—and the runtime ensures that the operation
is ordered a�er earlier operations on that object. �erefore a particular operation
cannot modify its receiver until the identities of the receivers of all operations
that occur earlier in the sequential ordering are known. �e receiver identi�cation
problem is a fundamental limitation of any parallel execution model that dynami-
cally preserves a program-speci�ed ordering of operations on each data element
in the program.

�e implementation of data-driven decomposition we have described in earlier
chapters of this dissertation relies on explicit delegation, which requires each oper-
ation to identify its receiver before commencing parallel execution. Performing
receiver identi�cation sequentially ensures that all previous operations have named
their receivers, so the operation may immediately delegate a method invocation to
the speci�ed receiver. However, if each operation spends a signi�cant fraction of
its execution time identifying the data it will modify, receiver identi�cation may
become the critical path through the program, limiting its parallelism.

In this chapter, we introduce ambiguous delegation to overcome the potential
sequential bottleneck of explicit delegation. Ambiguous delegation allows an
operation to immediately begin parallel execution. Initially, the operation performs
the computation needed to identify the object it will modify. During this phase,
the receiver is ambiguous. Once the operation identi�es its receiver, this ambiguity
is resolved. �e operation then performs receiver disambiguation to ensure that
delegation of a method invocation to the serializer of its receiver does not occur
until it is certain that any earlier delegation that may name the same receiver is
complete. Once the receiver is disambiguated with respect to earlier operations,
the operation then delegates a method invocation to the serializer of its receiver,

129
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which will order the operation a�er any earlier method invocations delegated
to that serializer. We describe the receiver identi�cation problem and receiver
disambiguation in more detail in Section 6.1.

As an initial case study, we apply ambiguous delegation to the implementation
of e�cient parallel loops. Many parallel execution models provide looping con-
structs that allow the programmer to indicate that each loop iteration operates
on independent data. �e runtime system then executes these loops in parallel
by scheduling loop iterations on a set of worker threads. To minimize the impact
of scheduling on the critical path, e�cient parallel loop implementations use a
divide-and-conquer strategy to parallelize the assignment of loop iterations to
worker threads. Parallelizing both the distribution and execution of loop iterations
signi�cantly reduces the granularity of work required to pro�tably parallelize a
loop. In Section 6.2, we review divide-and-conquer parallel loops, and show how
the receiver identi�cation problem impedes parallelizing loops in data-driven de-
composition. �en in Section 6.3, we propose the receiver disambiguation queue
(rdq) to facilitate ambiguous delegation. Finally, in Section 6.4, we describe how
to use the rdq to implement an e�cient parallel foreach loop construct for
data-driven decomposition.

6.1 the receiver identification problem and ambiguous delegation

Data-driven decomposition dynamically parallelizes method invocations that op-
erate on disjoint objects. Frequently, the identities of these objects are readily
available in the program—accessing an object may be as simple as dereferencing a
pointer or indexing into an array. However, some algorithms require more substan-
tial preliminary processing to identify the receiver object. �is can signi�cantly
hamper the parallelism of a program performing explicit delegation, since all
processing that occurs before the receiver is identi�ed will impact the critical path
of the program. To illustrate this issue, we view each computational operation
as comprising two phases: First, the receiver identi�cation phase determines the
object the operation will modify. Second, the computation phase invokes a method
on the object named by the identi�cation phase.

Figure 6.1 illustrates several scenarios for parallel execution of such computa-
tions. For the purposes of this example, we assume each operation is composed
of an identi�cation phase (represented as a dotted line) that takes time τ and a
computation phase (represented as a solid line) that takes time 2τ, as shown in
Figure 6.1(a). �e point in the operation where the identi�cation phase completes
and names the receiver is shown as a diamond. We further assume that the partic-
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Figure 6.1: Illustration of the receiver identi�cation problem

ular operations shown in the �gure are independent and may execute in parallel,
and we ignore any scheduling overheads.

Figure 6.1(b) depicts these operations executing as a multithreaded program.
Because multithreading permits shared data, the computation phase would use
mutual exclusion when necessary to ensure the atomicity of its calculations. As
we described in Chapter 2, multithreaded programs sacri�ce repeatability and
predictability because a particular object may be manipulated by operations in
di�erent threads with no restriction on how these operations are ordered. However,
for this example, multithreading yields high performance because it parallelizes
both the identi�cation and computation phases of each operation.

Figure 6.1(c) shows a data-driven decomposition of the same set of operations
using explicit delegation. �e receiver identi�cation phase of each computation
executes sequentially to ensure that method invocations are delegated to a par-
ticular serializer in program order. Once the receiver is named, the program
delegates the computation phase. Assuming the identi�cation phase is sequential
and the computation phase is fully parallel, Amdahl’s Law (Amdahl, 1967) dictates
that the upper limit of speedup of computations that spend a fraction fid in the
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identi�cation phase is:
Speedup∞ =

1
fid

(6.1)

on an in�nite number of processors. For the example shown in Figure 6.1, the
identi�cation phase constitutes one-third of the operation, and the computation
phase makes up the remaining two-thirds. According to Amdahl’s Law, this
computation can achieve a maximum speedup of three, even on an in�nite number
of processors.

Figure 6.1(d) illustrates how we may alleviate the receiver identi�cation prob-
lem with ambiguous delegation, which relaxes the requirement that an operation
names its receiver before commencing parallel execution. Ambiguous delegation
overlaps the receiver identi�cation phases of multiple operations, but maintains
the sequential order that method invocations are delegated to the serializer of
a particular object. Once an operation names its receiver, it performs receiver
disambiguation, which stalls the operation until all previous operations that might
identify the same receiver complete their receiver identi�cation phase and delegate
a method invocation to the serializer of the identi�ed object. Only then can the
operation proceed to delegate a method invocation to the designated receiver.
In Figure 6.1(d), the sequential ordering enforced by receiver disambiguation is
indicated by the arrows between the diamonds at the end of each receiver iden-
ti�cation phase. Enforcing this ordering may impact performance when a short
identi�cation phase must wait on an earlier, longer identi�cation phase. However,
only this imbalance contributes to the critical path of the program, in contrast
with explicit delegation, where the entire identi�cation phase is on the critical
path.

Receiver disambiguation is analogous to memory disambiguation in a dynam-
ically scheduled microprocessor. Memory disambiguation enforces the sequential
semantics of load and store instructions that execute out-of-order by ensuring
that a dynamic load instruction to a particular address always reads the value
written by the most recent dynamic store instruction to that same address. �e ibm
System/360 Model 91 (Anderson et al., 1967) is an early example of a dynamically
scheduled processor. �is machine uses a fully associative store queue to maintain
information about all in-�ight store instructions (Boland et al., 1967). When a
load issues, it calculates its address, and then searches the store queue to determine
if there are any stores that it may depend on. If the store queue contains stores
that have not yet generated their address, the load must stall, since one or more of
these stores might be to the same address as the load. If the store queue contains
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stores to the same address as the load, the load must stall until this store completes
to ensure that the load reads the correct value from memory.

In this chapter, we propose a construct called the receiver disambiguation queue
(rdq), which performs the same function for receiver disambiguation that the
store queue performs for memory disambiguation. In this analogy, a parallel
operation identifying its receiver object corresponds to a memory instruction
generating its address. �e rdq detects dependences between ambiguous dele-
gations, just as the store queue detects dependences between in-�ight memory
instructions. A�er an ambiguous delegation identi�es its receiver, it accesses the
rdq, which checks two conditions and takes appropriate action. First, if there is
any earlier ambiguous delegation that has not identi�ed its receiver, and if so, the
operation stalls until this ambiguity is resolved. Second, if an earlier operation has
identi�ed the same receiver as the present operation, it stalls the present operation
until the previous one completes delegation to the serializer of this receiver. Note
that despite this strong conceptual analogy between receiver disambiguation and
memory disambiguation, the rdq is implemented in so�ware and is thus neces-
sarily di�erent from a hardware structure like the store queue. We will describe
the operation and implementation of the rdq in Section 6.3.

While early dynamically-scheduled processors stalled loads when a an ear-
lier store has not generated its address, more recent processors, such as the mips
R10000 (Yeager, 1996), use speculative execution to allow load instructions to
execute immediately, squashing and rolling back if the processor discovers the
load has violated a dependence. Processors may also use dependence prediction
techniques (Moshovos et al., 1997) to selectively execute load instructions specu-
latively when they are unlikely to cause a dependence violation. While we will not
examine this issue in this dissertation, the receiver identi�cation problem presents
a similar opportunity to apply speculation. Instead of stalling, an operation that
has named its receiver object, but is not the oldest ambiguous delegation, could
begin executing speculatively. If an older ambiguous delegation identi�es the
same receiver object, the speculative operation would be squashed. If all previous
ambiguous delegations identify di�erent receivers, then the speculative execu-
tion could be allowed to commit, having avoided wasting time waiting on earlier
operations.

While we address the issue of receiver identi�cation in the context of data-
driven decomposition, we note that this is a fundamental limitation of any parallel
execution model that dynamically guarantees a program-speci�ed ordering of
operations on every variable or data structure. Receiver disambiguation overcomes
this limitation and allows independent operations to perform both receiver iden-
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ti�cation and computation phases of a operation in parallel. For the remainder
of this chapter, we will focus on the application of receiver disambiguation to
divide-and-conquer parallel looping constructs. However, we believe that receiver
disambiguation may prove to be useful in other situations, such as computations
that perform lookups in complicated container structures to identify the object on
which to perform an operation.

6.2 efficient parallel loops

Many parallel execution models provide parallel looping constructs, which
are a straightforward and idiomatic way to express parallel computation. �e
parallel_for loop in OpenMP, Cilk++, and tbb and the DOALL loop in par-
allel fortran are examples of such constructs. To achieve parallel execution,
a parallel loop must distribute its work (loop iterations) to worker threads for
execution. Figure 6.2 shows the dag models (as described in Section 5.1) for
two possible approaches to executing a parallel loop with eight iterations. �e
�rst approach, shown in Figure 6.2(a), sequentially spawns each loop iteration as
a task. Recall that the span of a computation is determined by the critical path
through its execution dag, illustrated by the gray nodes in the �gure. If we assume
each loop iteration performs constant work, i.e., T1 = O(1), then the span of this
computation is linear in the number of iterations:

T∞ = O(niterations). (6.2)

�e problem with this strategy is that it limits the parallelism of the loop—
doubling the number of loop iterations doubles the span of the computation. While
it may provide adequate performance when the loop iterations perform a large
amount of work, the span of the loop will become the limiting factor for shorter
loop iterations.

To reduce the span, we must parallelize not only the loop iterations, but the
distribution of loop iterations to threads. Figure 6.2 illustrates a more e�cient
parallel loop implementation that recursively traverses the loop range in a divide-
and-conquer fashion, spawning tasks for each loop iteration at the leaf nodes of
the recursion. Note that all paths through this dag are the same length, and one
of them is highlighted in gray to illustrate the critical path. Using the divide-and-
conquer approach, doubling the number of loop iterations increases the span by
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Figure 6.2: A dag model of a parallel loop using (a) sequential and (b) divide-and-
conquer distribution of loop iterations

one, and thus the span is logarithmic in the number of iterations:

T∞ = O(lgniterations). (6.3)

Because of the improved parallelism provided by the divide-and-conquer strategy,
tasking systems such as Cilk++ (Leiserson, 2009) and tbb (Kukanov and Voss,
2007) implement parallel loops in this way.

prometheus supports parallel loops via the foreach construct using the
interface given in Figure 6.3. �is construct implements a parallel loop by in-
voking a method on all elements of a C++ stl container in the half-open range
[begin,end).1 �e programmer uses foreach to indicate that all objects in this

1A half-open range [begin,end) includes the elements begin, begin+1, ..., end-1 (but not
end). Half-open ranges are commonly used for iterators because they simplify determining the
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1 namespace prometheus {
2      // Parallel loop over a half-open range [begin, end)
3     template <typename T, typename C, typename B, typename Args... args>
4     void foreach (typename T <C>::iterator begin,
5                   typename T <C>::iterator end,
6                   void (B::*method) (Args...),
7                   Args... args);
8
9     // Parallel loop over a half-open range [begin, end)

10     // Each task is N loop iterations specified by grain_size
11     template <typename T, typename C, typename B, typename Args... args>
12     void foreach (size_t grain_size,
13                   typename T <C>::iterator begin,
14                   typename T <C>::iterator end,
15                   void (B::*method) (Args...),
16                   Args... args);
17 }

Figure 6.3: prometheus api for parallel loops

range are distinct, which allows the runtime to optimize the parallel loop. �e
sequential elision of the foreach loop is an ordinary for loop that invokes the
method on each object in the range. �e parallel execution of foreach provides
ensures equivalent semantics.

�e foreach function is parameterized on three types: the type T of the C++
stl container, the class C of the objects stored in the container, and the class B in
which the method to be called is declared. �ere are two versions of the foreach
function: the �rst version, which forms tasks of individual loop iterations (lines 3–
7); and the second version, which has an additional grain_size that speci�es the
number of loop iterations used to form a task (lines 11–16). �e other parameters
to foreach are iterators designating the beginning and end of the half-open range
(begin and end), a C++ method pointer to the method to invoke on each object
in the range (method), and a list of arguments to pass to the method (args).

Using explicit delegation, the receiver identi�cation problem introduces a
trade-o� in the implementation of foreach. To illustrate this problem, we present
the code in Figure 6.4. �is snippet is a function with a single parameter that takes
a C++ stl vector of objects by reference. (A vector is an array container.) �e

size of the range, which is given by end-begin, and detecting iteration termination, which is
indicated when the iterator is equal to end.
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1 void do_foo (vector<obj_t>& array) {
2     foreach (array.begin (), array.end (), &obj_t::foo);
3     array[0].delegate (&obj_t::bar);
4 }

Figure 6.4: Example of the receiver identi�cation problem with a parallel loop

function then uses the prometheus foreach construct to perform a parallel loop
that invokes the method foo on each element in the vector (line 2). Finally, the
function delegates an invocation of the method bar on the �rst element in the
vector (line 3).

If foreach is implemented using the naive approach to the distribution of
loop iterations shown in Figure 6.2(a), this function will work correctly, because
method invocations will be delegated sequentially. However, this implementation
of foreach yields no performance advantage over using a normal for loop that
delegates the method on each element of the vector.

To achieve a higher-performing parallel loop, delegation of the method invo-
cations in the loop must proceed in parallel, as shown in Figure 6.2(b). Because
the programmer ensures that the elements in the vector are disjoint objects, a
foreach implementation that delegates the method invocations in parallel will
not introduce races when inserting method invocations into the respective seri-
alization queues of each object. �e problem occurs when the program reaches
the delegation of bar on line 3. Because this version of foreach performs dele-
gations in parallel, the delegation of foo on array[0] may occur in a di�erent
worker thread than the delegation of bar on the same object. �is introduces a
determinacy race between the two delegations as they attempt to insert a method
invocation into the serialization queue of array[0]. A straightforward solution to
this problem is to use a termination-detecting barrier to ensure that all ambiguous
delegations in the foreach loop complete before the program continues. �is
approach has its own disadvantage—it prevents parallelism between the loop and
the subsequent code, because it requires the delegation of bar on array[0] to
wait for all delegations in the loop to complete, rather than just the delegation on
array[0].

�e need to preserve the ordering of delegations that may occur in di�erent
worker threads is the source of the trade-o� between loop e�ciency and paral-
lelism. �is is exactly the situation that ambiguous delegation addresses. Because
the programmer speci�es that the each iteration manipulates a distinct object,
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the runtime may schedule them using the divide-and-conquer strategy without
violating the sequential ordering. �e operations in the loop can then use receiver
disambiguation to ensure that a particular loop iteration is ordered correctly with
respect to operations before and a�er the loop, without resorting to barriers. In the
next section we will describe the operation and implementation of the receiver dis-
ambiguation queue, which preserves the correct ordering of method invocations
on an object in the presence of ambiguous delegation.

6.3 the receiver disambiguation queue

prometheus supports ambiguous delegation using the receiver disambiguation
queue (rdq). �is rdq removes the requirement that an operation explicitly
identify its receiver before commencing parallel execution. It does this by conser-
vatively stalling the computation phase of any operation until it can determine
that all previous operations to that receiver have completed delegation, or that
there are no longer any previous operations with ambiguous receivers.

�e rdq contains a list of nodes, each of which represents a set of operations.
�is set may include either a single operation or multiple operations to disjoint
objects, such as a parallel loop. �e rdq disambiguates receivers between an
operation and all operations represented by earlier nodes. It does not disambiguate
operations represented by the same node, which are assumed to be independent.
�is allows a loop to schedule its iterations in any order, facilitating divide-and-
conquer parallelization.

Each rdq node maintains a count of the number of operations it represents,
and a timestamp indicating the ordering of this set of operations relative to earlier
and later operations in the sequential execution. Delegations, whether explicit
or ambiguous, records the node at the tail of the rdq, which we refer to as the
disambiguation node of that operation. �e disambiguation node summarizes
the state of all previous ambiguous delegations. A�er recording this node, the
ambiguous delegation adds a new node to the tail of the list, which we refer to as
the ambiguity node for that operation. �e ambiguity node tracks the completion
of the delegations associated with it, and is used for ordering later operations.
Once a particular operation identi�es its receiver and the associated serializer, it
disambiguates this serializer with the disambiguation node, which stalls the opera-
tion until any previous parallel operations that may identify the same receiver have
completed delegation. When disambiguation completes, the operation delegates a
method invocation to the speci�ed serializer.

�e function of the rdq is straightforward, but its operation is complex. We
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1 // declare array of 3 elements and initialize
2 vector <object_t> array (3);
3 initialize_array (array);
4
5 foreach (array.begin (), array.end (), &object_t::A);
6 foreach (array.begin (), array.end (), &object_t::B);
7 foreach (array.begin (), array.end (), &object_t::C);
8 array[0].delegate (&object_t::D);
9 array[1].delegate (&object_t::E);

10 array[2].delegate (&object_t::F);

Figure 6.5: Code for rdq example

now present an extended example to illustrate how the rdq disambiguates the
receivers of ambiguous delegations.

An Example of rdq Operation

We illustrate the operation of the rdq using the example code in Figure 6.5. �is
program �rst creates and initializes an array of three elements (lines 2–3). It then
executes three foreach loops, which each apply three methods to each element in
the array: A (line 5), B (line 6), and C (line 7). �e program then performs explicit
delegation of the methods D, E, and F on the �rst, second, and third elements of
the array, respectively (lines 8–9).

Figures 6.6 and 6.7 depict one possible execution of this program. �e rdq
is shown on the le�, and the method invocations enqueued in the serializer of
each element of the array are shown on the right. �e subscript of each method
invocation indicates which array element to which that invocation will be applied.

�e rdq tracks each set of operations with a list node that records the time-
stamp, a counter for the number of operations, and a boolean value indicating
whether the ambiguities represented by the node have been resolved. New nodes
are appended to the tail of the list. �e rdq maintains the invariant that the head
always points to a resolved node. Initially, both the head and tail of the list point
to a dummy node with a counter set to zero that is marked as resolved, as shown
in Figure 6.6(a).

When the code listed in Figure 6.5 executes, the program creates and initializes
the array, and then encounters the �rst foreach loop (line 5). Before the loop
begins, it noti�es the rdq that it will perform three independent ambiguous
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delegations. �e rdq records the disambiguation node at the tail of the list, which
will be returned to the foreach loop to use for receiver disambiguation with
earlier operations. �en the rdq creates a new node, marking it with the time-
stamp of the previous node incremented by one, setting the number of operations
to three, and initializing the resolved �ag to false. It appends this new node to the
tail of the list to re�ect the loop of line 5.

Figure 6.6(b) shows the state of the program’s execution just before theforeach
loop on line 5 spawns tasks to execute each iteration. As the program executes the
loop, it recursively spawns tasks that subdivide the loop range until it is reduced
to a single element. �e tasks at the leafs of this recursion are responsible for
executing the individual loop iterations, so we refer to them as iteration tasks. Be-
fore the delegating the A method to the speci�ed element of array, each iteration
task disambiguates the serializer of this object using the disambiguation node
returned by the rdq. Disambiguation checks two conditions: First, it checks if the
serializer has passed through all previous ambiguous delegations, indicated when
its timestamp is equal to that of the disambiguation node, at which delegation
may safely proceed. Second, it checks if the ambiguity of the rdq node via the
resolved �ag, which indicates all previous ambiguous operations have completed.
If neither of these conditions is satis�ed, that particular loop iteration must stall
and periodically recheck these conditions until one becomes true.

�e timestamps of the serializers for the objects of array are all initially
zero. Since this matches the timestamp of the rdq node, the �rst disambiguation
condition is satis�ed. (Since the resolved �ag of this node is set, the second
condition would also be satis�ed.) �us the iteration tasks proceed to delegate the
invocations of A to the serializers of the three array elements. Once an iteration
task completes delegation, it noti�es the rdq that it has resolved an ambiguous
operation, it decrements the counter of the ambiguity node (which is always the
node a�er the disambiguation node) by one. Figure 6.6(c) shows the state of the
rdq when all loop iterations have delegated their method invocations and the
counter of the rdq node has been decremented to zero. �e resolved �ag is not
yet set, because it is lazily updated by later operations.

�e next step in the program is the second foreach loop on line 6 of Figure 6.5,
which delegates B to each object in the array. �e foreach loop informs the rdq
that it is initiating a set of three independent ambiguous delegations. Before
recording this ambiguity, the rdq cleans the list, which performs two functions:
propagating the resolved �ag through completed nodes, and reclaiming the storage
for completed nodes. �e cleaning process begins at the head of the list, and checks
if the count of the next node is zero. If it is, it sets the resolved �ag to true, points
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the head pointer at this node, and pops o� the old head. �is procedure is repeated
until a successor of the head with a counter greater than zero is found, leaving a
single resolved node at the head of the list. A�er cleaning is complete, the rdq
then adds a new node at the tail of the list to re�ect the ambiguity introduced by
the foreach loop, as shown in Figure 6.6(d).

Next, the foreach loop for B recursively spawns tasks to execute the loop iter-
ations. A�er each iteration task identi�es its receiver, it disambiguates its serialize.
Since the iteration tasks for the previous loop iteration have already identi�ed their
receivers and completed delegation, the foreach loop can immediately spawn
tasks for the B loop. To show how the rdq enforces the ordering of operations on
each serializer, let us assume that the loop iteration operating on array element 1
is delayed. �is could happen in many di�erent ways—for example, if the worker
thread executing that task were preempted, or if there are more tasks in the system
than workers to execute them. Figure 6.6(e) depicts this scenario, showing that
method B has been delegated to array elements 0 and 2, but not element 1. �us
the corresponding rdq node still has a counter value of one, indicating that one
operation has not yet named its receiver.

Program execution proceeds to the third foreach loop on line 7 of Figure 6.5,
which delegates C to each object in the array. Once again, foreach loop informs
the rdq that it is initiating three independent, ambiguous operations. �e rdq
attempts to clean the list, but there is nothing to modify, since there is only one
resolved node at the head of the list. Next, another node with an operation count of
three is appended to the rdq list as shown in Figure 6.7(a). �e foreach loop then
spawns tasks to execute the loop iterations. �e resulting iteration tasks identify
and disambiguate their receivers. �e iteration tasks for array elements zero and
two �nd that the serializers have a timestamp of 2, indicating that these serializers
have been resolved with respect to previous ambiguous delegations, and so these
tasks can safely delegate C to their respective serializers. Meanwhile, the iteration
task for array element 1 �nds that its serializer has a timestamp of 1, indicating
that it has not completed the previous ambiguous operation. Its disambiguation
node is not resolved, so this previous ambiguous operation may identify the same
receiver (and in fact it will), so this iteration task must stall until the previous
ambiguity is resolved.

�is state of a�airs is shown in Figure 6.7(b). �e A, B, and C methods have
been delegated on array elements 0 and 2, but only A has been delegated on array
element 1, and C is being stalled by the delay in the iteration task responsible for
delegating B.

�e next step in the program is the explicit delegation of method D to array[0]



143

head tail

ts: 2
count: 1

resolved: F

B1

ts: 1
count: 0

resoved: T

ar
ra

y

2

1

0 A0

A1

A2 B2

B0ts: 2
count: 3

resolved: F

C0 C1 C2

head tail

ts: 2
count: 1

resolved: F

B1

ts: 1
count: 0

resolved: T

ts: 3
count: 1

resolved: F

C1

ar
ra

y

2

1

0 A0

A1

A2 B2

B0 C0

C2

head tail

ts: 2
count: 1

resolved: F

B1

ts: 1
count: 0

resolved: T

ts: 3
count: 1

resolved: F

C1

ar
ra

y

2

1

0 A0

A1

A2 B2

B0 C0

C2

D0

E1

head tail

B1 C1

ar
ra

y

2

1

0 A0

A1

A2 B2

B0 C0

C2

D0

E1

head tail

B1 C1

ar
ra

y

2

1

0 A0

A1

A2 B2

B0 C0

C2

D0

E1

F2

(a)

(b)

(c)

(d)

(e)

ts: 3
count: 0

resolved: F

ts: 2
count: 0

resolved: F

ts: 1
count: 0

resolved: T

ts: 3
count: 0

resolved: F

ts: 2
count: 0

resolved: F

ts: 1
count: 0

resolved: T

Figure 6.7: Example of rdq operation, continued



144

(line 8 of Figure 6.5). Explicit delegation does not perform any modi�cation to the
rdq, but it must disambiguate the serializer of the designated receiver with the
rdq to ensure the delegation is correctly ordered. �e timestamp of the serializer
for array[0] is 3, which matches the timestamp of the node at the tail of the rdq,
and thus this method may be immediately delegated. �e next operation is the
explicit delegation of method E on array[1] (line 9 of Figure 6.5). When this
delegation performs disambiguation via the the rdq, it �nds that the timestamp
of the serializer for array[1] is less than that of the node at the tail of the rdq,
and since this node is not �agged as resolved, the delegation stalls. Figure 6.7(c)
shows the state of the program at this point. Since explicit delegation identi�es
receivers sequentially, program execution does not proceed past this point.

Now let us suppose the delay of the iteration task for the delegation of B on
array[1] ends. A�er delegating B on array[1], it increments the timestamp
of the serializer of array[1]. When the task responsible for delegating C on
array[1] rechecks this timestamp, it sees that the timestamp is now 2, which
equals the timestamp of its disambiguation node, and so it proceeds to delegate C
on array[1], and then increment the timestamp of its serializer to 3. Figure 6.5(d)
depicts this point in the program’s execution.

Now that the timestamp of the serializer of array[1] is equal to 3, the explicit
delegation of E on array[2] may proceed. Finally, the program reaches the
explicit delegation of method F on array[2] (line 10 of Figure 6.5), and �nds
that its serializer’s timestamp is 3, and since this is equal to the timestamp of the
tail node of the rdq, it immediately delegates the method. Figure 6.7(e) shows the
�nal state of the program.

Note that the rdq still contains several nodes and that the last two are not
marked as resolved, although their counters have reached 0. �e extra nodes will
be removed by the cleaning routine, and the resolved �ag will be set for these nodes.
�e cleaning routine is always executed when a new ambiguous operation begins,
and is also periodically run by operations that are performing disambiguation in
order to ensure that they see the latest values of the resolved �ag.

�is example illustrates how the rdq performs receiver disambiguation to
ensure ambiguous delegations maintain the sequential ordering of method invoca-
tions enqueued on a particular serializer. Even though the delegation of methods C
and E on array[1]were ready to execute before the delegation of the method B on
array[1], the rdq stalled delegation of these methods until a�er the delegation
of B completed. Having demonstrated the operation of the rdq, we now proceed
to detail its implementation.
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Implementation of the Receiver Disambiguation Queue

As we showed in the example, the rdq relies on timestamps to discern when earlier
ambiguous delegations have completed. �is requires us to augment the serializer
with a time\-stamp �eld, as well as an accessor method get_time\-stamp to
read its value and a mutator method set_time\-stamp to set its value. For the
sake of brevity, we do not show the code for these simple modi�cations here.

Figure 6.8 lists the code for the rdq_node_t class. Each instance of this class
represents a set of ambiguous delegations to disjoint objects. �e rdq_node_t
class inherits from the td_barrier_t class (line 3) described in Section 5.4.
Incorporating the functionality of the termination-detecting barrier provides
an e�cient counter to track the number of outstanding ambiguous delegations
represented by the node.

�e �rst �eld of the rdq_node_t class is a pointer to the rdq containing this
node (line 5). �e second and third �elds are pointers to the previous (line 6)
and next (line 7) nodes in the list, respectively. �e fourth �eld is the timestamp,
which is implemented as a 64-bit unsigned integer (line 8). �e ��h �eld is the
resolved �ag (line 9), which indicates that all ambiguous delegations for this
node, as well as all previous nodes, have completed. �is �ag is a boolean value,
augmented with a tag that is used during the cleaning process. We will explain the
purpose of the tag when we describe the clean method of the rdq.

�e constructor of the rdq node (lines 11–16) initializes the pointer to the rdq
and the timestamp using values speci�ed by the parameters. �e constructor also
adds the number of ambiguous tasks speci�ed by the num_ambiguous parameter
to the counter contained in the td_barrier_t superclass (line 15).

Ambiguous delegations disambiguate their receiver using the serializer asso-
ciated with the receiver and the node that was at the tail of the rdq when the
delegation began. �is is done using the disambiguate method (lines 18–31).
�e single parameter to disambiguate is the serializer of the receiver named by
the operation. �is method stalls the operation in a loop (lines 19–30) that checks
the two disambiguation conditions. First, it checks the serializer timestamp to see
if it has completed all previous ambiguous operations (lines 21–22). Second, it
checks if all previous ambiguous delegations have completed. Before performing
this check, disambiguate invokes the clean method of the rdq to ensure that
the resolved �ag has been propagated through the node list (line 25). �en it
checks the resolved �ag, and if it is set, then all previous operations have identi-
�ed their receivers and completed delegation. When either of these two conditions
is found to be true, the loop ends and the disambiguate method completes. As
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1 typedef uint64_t ts_t;
2
3 class rdq_node_t : public td_barrier_t {
4 public:
5     rdq_t* rdq;
6     rdq_node_t* volatile prev;
7     rdq_node_t* volatile next;
8     ts_t timestamp;
9     tagged_bool_t resolved;

10
11     rdq_node_t (rdq_t* rdq, ts_t timestamp, size_t num_ambiguous) :
12         rdq (rdq), prev (NULL), next (NULL),
13         timestamp (timestamp), resolved (false)
14     {
15         add_tasks (num_ambiguous);
16     }
17
18     void disambiguate (const serializer_t* serializer) {
19         while (true) {
20             // check if serializer has passed through previous ambiguities
21             ts_t serializer_ts = serializer->get_timestamp ();
22             if (serializer_ts == timestamp) break;
23
24             // check if all previous ambiguities have been resolved
25             rdq->clean ();
26             if (resolved.value ()) break;
27
28             // yield the processor
29             yield ();
30         }
31     }
32
33     void resolve (serializer_t* serializer) {
34         serializer->set_timestamp (timestamp + 1);
35         next->subtract_task (1);
36     }
37 };

Figure 6.8: �e rdq node structure
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1 class rdq_t {
2 private:
3     rdq_node_t* volatile head;
4     rdq_node_t* volatile tail;
5
6 public:
7     rdq_t () :
8         head (new rdq_node_t (this, 0, 0), tail (NULL))
9     {}

10
11     rdq_node_t* add_ambiguous (size_t num_ambiguous);
12     void disambiguate (const serializer_t* serializer) const;
13     void clean ();
14 };

Figure 6.9: �e receiver disambiguation queue (rdq) class

with all spin loops in the prometheus runtime, the loop yields the processor
between loop iterations (line 29).

Upon completion, an ambiguous delegation calls theresolvemethod (lines 33–
36). �e single parameter is the serializer associated with the receiver named by
the ambiguous delegation. �e timestamp of this serializer is updated to match the
timestamp of the node (line 34). �e resolvemethod also increments the counter
of the operation’s ambiguity node (always the next node in the rdq list a�er the
operation’s disambiguation node) (line 35). Recall that the disambiguation node
represents all previous ambiguous computations, whereas the next node in the list
represents the ambiguity of the operations associated with this node.

Figure 6.9 lists the code for therdq_t class. �e rdq tracks the list ofrdq_node_t
objects with two �elds that maintain pointers to the head and tail the list (lines 3–4).
�e constructor (lines 7–9 creates a dummy node with its count set to zero and
sets the head and tail �elds to point to this node. �e rdq_t class has three other
methods: the add_ambiguous method, which adds a node to the rdq list, the
disambiguate method, which disambiguates explicit operations with the rdq,
and the clean method, which propagates the resolved �ag to completed nodes,
and removes all but the most recently completed node.

�e implementation of the add_ambiguous method is given in Figure 6.10.
�is method takes a single parameter that speci�es the number of ambiguous
delegations represented by this node. It �rst calls the clean method (line 3), and
then allocates and initializes a new rdq node and inserts it into the list (lines 6–9).
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1 rdq_node_t* rdq_t::add_ambiguous (size_t num_ambiguous) {
2     // clean up completed nodes
3     clean ();
4
5     // allocate and initialize a new node
6     rdq_node_t* rdq_node = new rdq_node_t (this, timestamp, num_ambiguous);
7     rdq_node->prev = tail;
8     tail->next = rdq_node;
9     tail = rdq_node;

10
11     // return previous node for disambiguation
12     return rdq_node->prev;
13 }

Figure 6.10: Implementation of the add_ambiguous method of the rdq

1 void rdq_t::disambiguate (const serializer_t* serializer) const {
2     tail->disambiguate (serializer);
3 }

Figure 6.11: Implementation of the disambiguate method of the rdq

Finally, the method returns the node previously at the tail of the list, which serves
as the disambiguation node for the new operation.

Figure 6.11 lists the disambiguate method, which is called by ordinary dele-
gations to ensure correct ordering with previous ambiguous operations. It takes
the serializer named by the delegation as its sole argument, which it uses to invoke
the disambiguate method of the rdq node at the tail of the list (line 2).

Figure 6.12 presents the implementation of the clean method. Unlike the
previously described methods, which are always executed sequentially to prepare
for ambiguous delegation, the clean method may be invoked concurrently by
multiple worker threads attempting to propagate the resolved �ag. �erefore this
operation requires careful synchronization. �e cleanmethod updates resolved
using compare-and-swap (cas), and only the thread that successfully changes the
�ag is allowed to continue, excluding other threads from modifying the the rdq
list.

�e resolved �eld is implemented with the tagged_bool_t type, which
operates as a normal boolean value and the �eld incorporates a tag that is in-
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cremented on each modi�cation of the �eld. �e tag is used to avoid the aba
problem that can occur with cas-based synchronization, �rst described in the
ibm System/370 documentation (IBM, 1975, pg. 310–314). �e aba problem
manifests when one thread reads the value of a variable to be a. A second thread
also reads the value as a and then uses cas to set the value to b. If the �rst thread
were to use a cas to set the variable to some other value, the cas would fail because
the value is no longer a. However, if some intervening operation changes the value
back to a, then a cas by the �rst thread will succeed. �is can cause problems
when an algorithm uses cas and assumes that nothing has changed between the
initial read and the cas, because the value is the same.2

�e aba problem can occur in the rdq when multiple worker threads are
executing the cleaning routine. Consider the case where one worker reads the
resolved �ag of a node for a completed ambiguous operation and sees it set to false.
A second worker may also see this value, use cas to set it to true, and then the
node may be popped o� the list and recycled. �e same node may later be reused
for another ambiguous operation, causing its resolved �ag to be re-initialized to
false. �e �rst worker, operating under the assumption that the node represented
the older, now completed operation, could use cas to set the resolved �ag to
true, erroneously marking the node as representing a completed computation.
�e tagged_bool_t uses the classic solution described in the ibm System/370
documentation, storing the value in a memory word with an additional tag that
is incremented on each update, ensuring that a cas will fail if there have been
intervening updates between the original read and the cas.

�e clean method �rst checks to see if the head node of the rdq list has any
successors (lines 4–5). If it does not, then there is nothing for the method to do
and it returns. If there is a successor node, then the method checks to see if the
resolved �ag has been set (line 9. If it has, then some other thread is modifying
the list, and the method returns (line 10).

�e clean method next checks the complete method, which indicates if the
counter of the node’s termination-detecting barrier has reached zero (line 13).
If the node is not complete, then this node cannot be removed from the list,
and clean returns (line 23). If the node is complete, then clean attempts to
set the node’s resolved �ag to true using a cas operation (line 15). �is update
simultaneously increments the tag on the resolved �eld to avoid the aba problem.

2By contrast, the load-linked/store-conditional (LLSC) primitive does not su�er from the
aba problem—any intervening store to the address read by load-linked instruction will cause the
store-conditional to fail.
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1 void rdq_t::clean () {
2     while (true) {
3         // Check for ambiguous nodes
4         rdq_node_t* rdq_node = head->get_next ();
5         if (node == NULL) return;
6
7         // If the head successor is resolved,
8         // another thread is performing clean
9         bool resolved = node->resolved.value ();

10         if (resolved) return;
11
12         // If node is complete, attempt to set resolved flag
13         if (node->complete ()) {
14             // If CAS of resolved flag succeeds, pop old head off the list
15             if (node->resolved.cas (false, true)) {
16                 rdq_node_t* old_head = head;
17                 head = rdq_node;
18                 rdq_node->prev = NULL;
19                 delete (old_head);
20             }
21             else return;
22        }
23        else return;
24     }
25 }

Figure 6.12: Implementation of the clean method of the rdq

If the cas fails, then some other thread successfully performed the cas operation
and will �nish the cleaning operation, so the method returns (line 21).

Discussion

�e current design of the rdq is tailored to facilitate e�cient parallel loops for data-
driven decomposition with a minimal amount of synchronization and contention.
As we explore other uses of ambiguous delegation, we anticipate that some aspects
of the present design may prove to be inadequate. While this design su�ces for
parallel loops, it is worth mentioning these potential shortcomings for posterity.

�e rdq facilitates ambiguous delegation of methods to di�erent serializers by
stalling later delegations until either the serializer named by a particular delegation
has completed the earlier delegations, indicated by its timestamp, or until all
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previous delegations complete. �is leads to the �rst potential drawback of the
present design— it may cause a delegation to stall even when there are no previous
ambiguous delegations that will name this data. For example, consider a parallel
loop over a container data structure, followed by a delegation to a serializer that
is not held in the container. Because the timestamp of this serializer is never
incremented by one of the iteration tasks, the delegation will wait until the loop
completes and the resolved �ag for its ambiguity node is set. We can envision
adding loop indices to each rdq node to re�ect the portion of container being
accessed, but then each delegation would have to walk the entire rdq list, checking
to see if it is part of any previous delegations. In the present design, each delegation
reads from a single rdq node (the disambiguation node) and writes to a single
rdq node (the ambiguity node), which greatly simpli�es the design.

�e other potential shortcoming of the design is its reliance on the clean
routine to lazily propagate the resolved �ag. Ideally, we would like to eagerly
propagate the resolved �ag as the counter of each node reaches zero. However,
this would seem to require that the threads executing the loop tasks synchronize
each update to the counter of an rdq node to precisely determine the thread that
completes the last ambiguity, and that thread would then propagate the resolved
�ag. N atomic instructions would be required for a loop withN iterations, versus
the single cas operation currently used to propagate the resolved �ag. In the future,
we plan to investigate other mechanisms for detecting completion to overcome
this problem.

As we investigate further uses of ambiguous delegation, we plan to revisit the
design of the rdq to identify further opportunities to enhance its functionality and
performance. However, we believe the current implementation demonstrates a
useful approach to overcoming some of the limitations resulting from the receiver
identi�cation problem.

6.4 implementation of foreach

Having described the implementation of the rdq, we now show how prometheus
uses it to provide an e�cient foreach loop. We begin by explaining the modi�ca-
tions needed to incorporate the rdq into the existing constructs for data-driven
decomposition.

�e quiesce operation, described in Section 4.5, ensures that all method
invocations delegated to the serializer of an object complete before an impure
method is invoked. �is operation must be modi�ed as shown in Figure 6.13
to account for the fact that an empty serializer does not guarantee that all out-
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1 template <typename C>
2 void quiesce (C& object) {
3     // Get serializer associated with object
4     serializer_t* serializer = object.get_serializer (); 
5
6     // Disambiguate serializer using the RDQ
7     rdq_t* rdq = serializer->get_rdq ();
8     if (rdq != NULL) rdq->disambiguate (serializer);
9

10     // Yield processor until serializer is empty
11     while (!serializer->get_tag () != 0) { 
12         yield ();
13     } 
14 }

Figure 6.13: Quiesce function updated to use rdq

standing method invocations have completed—currently ambiguous delegations
may resolve their receiver to be this object and delegate a method invocation to
its serializer. We therefore modify the quiesce operation to disambiguate the
serializer of the object (lines 8). Once it is certain that any ambiguous delegation
to the serializer of this object has completed, quiesce waits for the serializer to
become empty, as in the previous implementation.

Once an ambiguous delegation identi�es its receiver, it callsparallel_delegate
to perform the delegation. �is operation requires only a few modi�cations to
the explicit delegate operation presented in Section 4.5. It takes one additional
argument, the rdq node that serves as the disambiguation node for this operation.
Before inserting the method invocation into the serialization queue of the des-
ignated receiver, parallel_delegate disambiguates the serializer as shown on
line 8. As in explicit delegation, a method invocation object is allocated (line 11)
and inserted into the serialization queue via the produce method of the serializer
(line 14). At this point, the method invocation has been ordered in the serial-
izer, and resolution of this ambiguity is communicated to the rdq on line 14.
�e remainder of the parallel_delegate operation schedules the serializer for
execution in the same way as explicit delegation.

We now have all the necessary pieces to implement the foreach loop construct,
listed in Figure 6.15. As we described in Section 6.2, this function recursively
divides the range of a C++ stl container speci�ed by the begin and end arguments.
�e recursion is divided into two pieces: the base case, and the divide-and-conquer
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1 template <typename C, typename B, typename... Args> 
2 void parallel_delegate (rdq_node_t* disambiguation_node, 
3                         C& obj,
4                         void (B::* method) (Args...),
5                         Args... args) { 
6     // Get serializer associated with obj
7     serializer_t* serializer = obj.get_serializer ();
8     disambiguation_node->disambiguate (serializer);
9

10     // Create an invocation object
11     invocation_t* invocation = new invocation_t (obj, method, args...); 
12     // Add invocation to serializer
13     bool schedule = serializer.produce (invocation); 
14     disambiguation_node->resolve (serializer);
15
16     // If serializer is not currently scheduled, execute it
17     if (schedule) { 
18         invocation_t* invocation = serializer.consume ();
19         do {
20             invocation->execute (); 
21             delete invocation; 
22             invocation = serializer.consume ();
23         } while (invocation != NULL);
24     } 
25 }

Figure 6.14: Implementation of the parallel_delegate function

case.
�e base case (lines 10–15) executes when the recursion reaches a point where

the range is less than or equal to the grain size speci�ed by the programmer
(line 10). (If the programmer does not specify a grain size, it defaults to one.) It
iterates over this range (lines 11–14), using parallel_delegate to delegate the
desired method to each object in the range (line 13).

�e divide-and-conquer case (lines 16–22) �rst identi�es the middle element
of the range as a split point (line 17). It creates a task to continue dividing the le�
side of the range (line 18), and then spawns the task (line 19). �e divide-and-
conquer case then directly calls foreach on the right side of the range. �e right
side need not be spawned as a task, since it is followed by a call to sync, which
waits until the task for le� side completes.

Because parallel_delegate operation performs receiver disambiguation,
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1 // Parallel loop over a half-open range [begin, end)
2 // Each task is N loop iterations specified by grain_size
3 template <typename T, typename C, typename B>
4 void foreach (size_t grain_size,
5               typename T <C>::iterator begin,
6               typename T <C>::iterator end,
7               void (B::*method) (Args...),
8               Args... args)
9 {

10     if ((end - begin) >= grain_size) {
11         for (typename T <C>::iterator iter = begin;
12              iter != end; ++iter) {
13              parallel_delegate (rdq_node, *iter, method, args);
14         }
15     }
16     else {
17         typename T <C>::iterator split = begin + ((end - begin) / 2);
18         foreach_task_t task (grain_size, begin, split, method, args);
19         spawn (task);
20         foreach (grain_size, split, end, method, args);
21         sync ();
22     }
23 }

Figure 6.15: Implementation of the foreach loop construct

foreach requires no special action to ensure the delegated method invocations
are ordered correctly with respect to delegations before and a�er the loop. �e rdq
handles all of the ordering requirements, so that the implementation of foreach
is essentially identical to a standard divide-and-conquer loop.

6.5 summary

In this chapter, we described the receiver identi�cation problem, a fundamental
limitation of any parallel execution model that dynamically enforces program
ordering of operations on each variable or data structure. For some computa-
tions, receiver identi�cation may constitute a signi�cant fraction of each operation.
Restricting parallel execution to the portion of the computation a�er receiver
identi�cation ensures a correct ordering of such operations, but it may place an
unacceptable limit on the amount of parallelism in the program. To overcome this
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limitation, we proposed receiver disambiguation, which allows receiver identi�-
cation to proceed in parallel and preserves program ordering of delegations to a
particular receiver. We then described the operation and implementation of the
receiver disambiguation queue (rdq), a novel mechanism for performing receiver
disambiguation. To demonstrate the feasibility of this technique, we applied the
rdq to the implementation of divide-and-conquer parallel loops. In the future,
we plan to study the application of receiver disambiguation to other forms of
computation that are limited by the receiver identi�cation problem.





7 experimental evaluation

We’re just starting. It’s a bit evolutionary and there are an awful lot of
chicken-and-egg problems. You have to have parallel computers before
you can �gure out ways to program them, but you have to have parallel
programs before you can build systems that run them well.

— Chuck Thacker (2010)

In this chapter, we present an experimental evaluation of the prometheus
system for data-driven decomposition. We begin by describing our benchmark
applications, and how we applied prometheus to facilitate a data-driven de-
composition to each one (Section 7.1). We then describe our methodology for
performing our experiments (Section 7.2) and present the results of this evalu-
ation (Section 7.3), including a comparison of the performance of control- and
data-driven decomposition of the same programs. We conclude by summarizing
the �ndings of this analysis (Section 7.4).

7.1 benchmarks

�ere are many possible questions one might ask when evaluating a new parallel
execution model: Is it easy to learn? Does it have a positive impact on the complexity
of developing, debugging, and maintaining so�ware? Are the resulting programs
reliable? Can it interact with existing code? Does the model enable parallel execution
for new classes of applications? Unfortunately, these questions do not readily lend
themselves to quanti�cation. We rely on the arguments made in Chapter 2 and
Chapter 3 to convince the reader that by using a sequential program representation
to derive repeatable, predictable parallel execution, data-driven decomposition
could potentially answer many of these questions in the a�rmative.

Assuming these are desirable goals we seek to answer the following ques-
tions with our evaluation: Can data-driven decomposition achieve performance
that is competitive with control-driven decomposition? Can dynamic paralleliza-
tion provide higher performance for some applications than static parallelization?
How e�ective are the mechanisms for e�cient data-driven decomposition proposed
in this dissertation? Answering these questions will help us understand if there are
inherent costs associated with the bene�ts of the model, and allow us to identify
areas for future improvement.

157
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Program Source Original Language Description

barnes-hut Lonestar C++ N-body simulation
black-scholes parsec C++ Financial analysis
bzip2 pbzip2 C Compression
canneal parsec C++ vlsi cad
dedup parsec C Enterprise storage
histogram Phoenix C Image analysis
reverse_index Phoenix C html analysis
word_count Phoenix C Text processing

Table 7.1: Benchmark Programs

To this end, we perform an evaluation using existing parallel applications to
provide a basis of comparison between control- and data-driven decomposition.
�ese applications, which are summarized in Table 7.1, are drawn from the Lon-
estar (Kulkarni et al., 2009), parsec (Bienia et al., 2008), and Phoenix (Ranger
et al., 2007) benchmark suites. �ese programs are all written in either C or C++
and parallelized with pthreads. We ported these benchmarks to prometheus by
�rst rewriting them as idiomatic, object-oriented C++ programs, using standard
template library (stl) data structures. We then annotated class speci�cations and
method delegations to facilitate a data-driven decomposition.

When implementing a parallel algorithm in prometheus, we endeavored to
apply data-driven decomposition to the same set of operations as the original
program. Some of the benchmark programs do not exploit all opportunities to
harness parallelism, and we avoided annotating these operations in our versions.
But while we parallelize the same operations, the sequential representation and
dynamic decomposition of a prometheus program may result in a very di�erent
parallel execution. For example, a common approach to multithreading a data-
parallel algorithm is to read the input data set from a �le, and then parcel chunks
of this data to a set of threads, which apply a set of operations to each data element
in a chunk. By contrast, a prometheus program can read in the �rst object
and immediately delegate a set of operations to its serializer. As the serializer
invokes these methods, the program reads in the next object begins delegating
operations to its serializer. Rather than having all data in �ight at once, each
executing serializer forms a pipeline through which each object �ows.
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Despite parallelizing the same set of operations, the substantial di�erences
between the two models means that there are sometimes di�erent amounts of
parallelism in the two versions of each application. �ere are two primary sources
of these di�erences. First, because we apply data-driven decomposition at the level
of objects, it is naturally more �ne-grained than many multithreaded programs.
�is helps some programs by exposing additional parallelism, but it harms others
because parallelization overheads must be amortized over shorter computations.
Second, there are some cases where multithreaded programs employ shared data
and synchronization in ways that have no natural analogue in a data-driven de-
composition. In these cases, we had no choice but to take a di�erent approach.
We will highlight any important di�erences in our discussion of the results.

Having explained our overall approach to applying data-driven decomposition
to existing parallel applications, we now turn to the individual benchmarks. We
will give a brief description of each, and simpli�ed code showing how they are
expressed using prometheus.

Barnes-Hut

Description. �e barnes-hut benchmark is anN-body simulation, which cal-
culates the motion of a group ofN particles that interact with each other via forces
such as gravity (Barnes and Hut, 1986). �e Barnes-Hut algorithm avoids comput-
ing allO(N2) interactions between particles using a spatial partitioning structure
called an octree. Each node in the octree represents a cell in three-dimensional
space, and summarizes the mass and center of gravity of all particles it contains.
Using the octree, the program need only compute direct interactions of nearby
particles, and uses the cell summaries for more distant particles, reducing the
complexity of the algorithm toO(N logN). �e Barnes-Hut algorithm iterates
over time steps, performing the following actions for each step: (1) create a new
octree and insert all the bodies, (2) compute the force acting upon each body by
traversing the octree, and (3) update the position and velocity of each body based
on the incident force.

Pthreads implementation. We evaluate the Lonestar (Kulkarni et al., 2009)
implementation of barnes-hut. While all three of the steps in the program are
amenable to parallelization, the Lonestar version parallelizes only the second step—
computing the force incident on each object using the octree—which dominates
the execution time of the program (Singh et al., 1992). �e program creates a set
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1 typedef prometheus::private_t <force_t> private_force_t;
2
3 void barnes_hut (vector <body_t>& bodies, int n_timesteps) {
4     vector <force_t> forces (bodies.size ());
5
6     prometheus::begin_delegation ();
7     for (int timestep=0; timestep < n_timesteps; ++timestep) {
8         octree_t octree;
9         for (size_t i = 0; i < bodies.size (); ++i) {

10             octree.insert (bodies[i]);
11         }
12         octree.summarize_subtrees ();
13
14        private_force_t::foreach (forces.begin (), force.end (), 
15                                  &force_t::compute_force, octree);
16
17        for (size_t i = 0; i < bodies.sizes (); ++i) {
18             bodies[i].advance (forces);
19         }
20     }
21     prometheus::end_delegation ();
22 }

Figure 7.1: prometheus pseudo-code for barnes-hut

of threads and assigns an equal number of bodies to each thread. �e threads
then compute the forces on each body they are assigned. Barrier synchronization
ensures that the third step of the program does not begin updating the position
and velocity of the bodies until the second step has completed computing the
incident forces.

prometheus implementation. Conventional implementations of Barnes-Hut
store all information about a body, including its mass, position, velocity, and
incident force in a single data structure or object. �is organization of data is
not amenable to parallelization with prometheus because in the second phase
of each timestamp, the operation computing the forces on that object writes to
the force �elds of the object, while other operations may read the position and
mass of that object. Because the values that are written are disjoint from the
values that are read, this does not introduce a determinacy race. However, because
prometheus requires objects to be operated on by one operation at a time, we
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split this object into a body object holding the mass, position, and velocity of the
body, and a corresponding force object that stores the force information. �us
during the second phase of each timestep, the force objects are accessed by a single
operation, while the bodies, which are constant during the phase, are read by
multiple operations.

Figure 7.1 lists pseudo-code for the prometheus implementation
ofbarnes-hut. �e program uses two primary classes of objects: a body_t
object stores the mass and velocity of a particle, while a force_t object is used to
compute the force acting upon a particular body. We indicate that the force_t
class will be used to create private objects using the private wrapper on line 1.
Inside the barnes_hut function we create a delegation region (lines 6–21). We
then use a loop to iterate over the speci�ed range of time steps (lines 7–20).

�e �rst step of the algorithm builds the octree by inserting all bodies into the
octree (lines 8–11). �e last part of this step summarizes the contents of each cell in
the octree (line 12). �e second step of the algorithm computes the force acting on
each body. In our program, we use the foreach loop to delegate compute_force
to each force_t object (lines 14–15). In this phase of the computation, the octree
is read-only, and only the force_t objects are being written. �e third step of
the algorithm modi�es the velocity and updates the position of each body object
based on the corresponding force object (lines 17–lines 19). Note that when the
code in the advance method (line 18) executes, it uses the call interface of the
private_force_t class, which will implicitly synchronize the serializer of the
force object accessing it.

Black-Scholes

Description. An option is a �nancial instrument that provide the owner with
the right to buy or sell an asset at a set price. �e Black-Scholes partial di�erential
equation (pde) (Black and Scholes, 1973) is commonly used to determine the
value of European-style options.1 �e black-scholes application uses this pde
to compute the prices for portfolios of European options.

Pthreads implementation. �e black-scholes application provided in the
parsec benchmark suite uses the Black-Scholes pde to compute the prices of
a portfolio of options (Bienia et al., 2008). �e price computations of di�erent

1European-style options may be exercised only on a given date, whereas American-style
options may be exercised any time on or before a given date.
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1 typedef prometheus::private_t <option_t> private_option_t;
2 typedef prometheus::private_t <output_file_t> private_output_file_t;
3
4 void blackscholes (input_file_t& input_file, int num_options) {
5     private_output_file_t output_file (output_filename);
6     private_option_t* options = new private_option_t[num_options];
7
8     prometheus::begin_delegation ();
9     for (int i = 0; i < num_options; ++i) {

10         options[i].call (&option_t::initialize, input_file);
11         options[i].delegate (&option_t::compute_price);
12         options[i].delegate (&option_t::output, output_file);
13     }
14     prometheus::end_delegation ();
15 }

Figure 7.2: prometheus pseudo-code for black-scholes

options are independent, and thus each option in the portfolio presents an oppor-
tunity for parallel execution. �e multithreaded version of black-scholes reads
in a number of options from a �le, and divides these options into equal-sized sets,
each of which is assigned to a thread for execution. Once it determines the price
of all the options, indicated via barrier synchronization, the program writes the
results out to a �le.

prometheus implementation. Like the pthreads implementation, our
prometheus version also parallelizes the pricing of di�erent options. But rather
than grouping options together for parallel execution, the prometheus version
parallelizes the operations on individual options. �is a�ords it three main ad-
vantages over the pthreads version: First, reading the input �le and writing the
output �le contribute a signi�cant amount of sequential processing time to the
application. �e prometheus implementation is able to mitigate this bottleneck
by immediately beginning parallel execution of the pricing of each option as it
is read in, and writing out the results of each operation once it and all previous
operations have completed. Second, reading all of the options before pricing them
coupled with pricing all of the options before writing out the results destroys the
temporal locality of operations on an individual option. Using a �ner-grained
parallelization a�orded by prometheus, black-scholes can foster locality by
performing operations on each option more closely together in time. �ird, par-
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allelizing the pricing of individual operations allows the dynamic scheduler to
balance the load among worker threads.

FIgure 7.2 sketches a prometheus implementation of blackscholes. For
this program, we use two classes of private objects: the private_option_t class
de�ned on line 1, and the private_output_file_t class de�ned on line 2. A�er
initializing the output �le (line 5) and an array to hold each option (line 6), we
declare a delegation region (lines 8–14). We employ a loop to iterate over each
option (line 9–13). Inside the loop, we initialize the option by reading in data
from the input �le (line 10). We then delegate the compute_price method on
line 11. Finally, we delegate the output method, which takes the output �le as
an argument (line 12). Because the output �le is a private object, prometheus
automatically performs multiple delegation (as described in Section 3.4). �is
allows the program to continue without waiting for output to the �le to complete,
while ensuring that each output method accesses the �le in program order.

Bzip2

Description. �e popular bzip2 compression utility implements the Burrows-
Wheeler Transform (bwt) (Burrows and Wheeler, 1994), a block-sorting, lossless
data compression algorithm. �e bwt takes blocks of a predetermined size, and
applies a reversible transformation that greatly improves the compressibility of
the block. �en bzip2 uses a secondary algorithm, such as Hu�man Encoding,
to compress the block.

Pthreads implementation. Pbzip2 is a popular parallel implementation of
bzip2 developed by Gilchrist (2004). Pbzip2 uses a pipeline-style parallelization
to compress independent blocks from the �le. �e �rst step in the pipeline is
reading in the blocks from a �le. �is step is performed by the original program
thread, which reads each block of the input, and records the block number and a
pointer to the block in a shared global array protected by a mutex lock. �e original
thread then inserts the block pointer into a shared producer-consumer queue.
Queue accesses are synchronized with a mutex lock, and condition variables are
used to indicate the full and empty states.

�e second step in the pipeline is implemented using a set of threads, which
each repeatedly retrieve a block from the queue and compress it. �e compression
thread then inserts a pointer to the compressed data into the global table under
the protection its mutex lock.
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1 typedef prometheus::private_t <block_t> private_block_t;
2 typedef prometheus::private_t <output_file_t> private_output_file_t;
3 void compress (input_file_t& input_file, char* outfile) {
4     private_output_file_t output_file (outfile);
5
6     prometheus::begin_delegation ();
7     while (!input_file.empty ()) {
8         private_block_t* block = new block (input_file);
9         block.delegate (&block_t::compress);

10         block.write (output_file);
11     }
12     prometheus::end_delegation ();
13 }

Figure 7.3: prometheus pseudo-code for bzip2

�e third step in the pipeline is writing the blocks out to a �le, which is
performed by a single dedicated thread. �is thread decouples the writing of the
output �le from the reading of the input �le so they can be overlapped in time.
�e output thread identi�es the next block in the input ordering by monitoring its
entry in the shared global table, which it accesses under the protection of its mutex
lock. Once the compressed data arrives the output thread proceeds to monitor the
next entry in the table.

prometheus implementation. Compression utilities are frequently used to
compress large �les. �e advantage of the pipelined implementation of pbzip2
is that it greatly reduces the memory footprint of parallel compression by only
having a small number of blocks in �ight at once, rather than trying to compress
the entire �le in parallel. We achieve similar bene�ts using prometheus by reading
each block sequentially and delegating a method to compress that block to its
serializer. We also decouple writing the output by creating an object for the output
�le, and delegating a method to write each block to the �le. Multiple delegation
(Section 3.4) automatically enqueues this method invocation in the serializers of
both the block and the output �le, preserving the order that blocks are written out.
By contrast with the pthreads implementation, this pipeline does not require any
extra work on the part of the programmer to implement and synchronize queues
and bookkeeping tables. Instead, it is implicit in the data-driven decomposition,
and is automatically implemented by the serializers associated with the block and
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output �le objects.
Figure 7.3 lists pseudo-code for the prometheus implementation of bzip2.

�is program uses two classes of private objects: block_t objects used to store
and compress data (line 1), and a single output_file_t object to write out the
compressed data to a �le.

A�er opening the output �le (line 4) and declaring a delegation region (lines 6–
12), the program reads block from the input �le in a loop until the �le is empty
(lines 7–11). Inside the loop, the program reads a block from the input �le (line 8),
and delegates the compress method (line 9). Finally, it uses multiple delegation to
perform the block write (line 10), which ensures the method is ordered correctly
on both the objects for both the block and the output �le.

Canneal

Description. Simulated annealing is a technique for solving the global opti-
mization problem in a large search space. �e canneal benchmark simulates the
application of simulated annealing to �nding the optimal routing cost for a chip
design. �is program is part of the parsec benchmark suite.

�e canneal randomly chooses a pair of elements from a supplied netlist and
evaluates the e�ect of swapping them on the routing cost of the chip. If swapping
the elements reduces the cost, then elements are swapped. With the simulated
annealing algorithm, elements that result in an increased cost are accepted accord-
ing to a probability. �is allows the optimization to escape local minima in order
to reach the global minimum routing cost.

Pthreads Implementation. �e pthreads implementation of canneal spawns
multiple threads to simultaneously evaluate the e�ects of swapping elements in
the netlist. Swaps are performed using atomic instructions to ensure elements
are not lost from the netlist, but this synchronization strategy does not prevent
concurrent swaps involving a common element from resulting in an unintended
swap. Instead, such unintended swaps are assumed to be relatively rare, and thus
the program relies on the optimization of simulated annealing to recover from the
change.

prometheus Implementation. �e prometheus implementation of canneal
divides the netlist into a number of regions, which are represented as private objects.
Pointers to these regions are stored in an array. For each step in the simulation,
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1 typedef prometheus::private_t <region_t> private_region_t;
2
3 void canneal (temperature_t temperature, netlist_t netlist) {
4     vector <region_t> regions = netlist.get_regions ();
5     while (!test_convergence ()) {
6         temperature = temperature / 1.5;
7         while (completed_moves < moves_per_temp) {
8
9             prometheus::begin_delegation ();

10             for (int i = 0; i < regions.size (); i += 2) {
11                 private_region_t* region1 = regions[i];
12                 private_region_t* region2 = regions[i+1];
13                 region1->delegate (&region_t::swap, *region2);
14             }
15             prometheus::end_delegation ();
16
17             for (int i = 0; i < regions.size (); i++) {
18                 regions[i]->call (&region_t::update_locations);
19             }
20         }
21     }
22 }

Figure 7.4: prometheus pseudo-code for canneal

the swap method is delegated using multiple delegation, to each pair of regions
in the array. �is method only considers swapping netlist elements with the two
regions. During each step of the simulation, the list of regions is permuted, so that
the next swap consideres di�erent pairs of regions.

Each region object is solely responsible for performing updates to its portion
of the netlist. However, because swaps in the netlist also a�ects the fan-in and
fan-out nodes of a netlist element, swaps are not performed immediately, but
instead recorded locally in each region object. Once each pair of regions evaluates
its potential swaps, the actual swaps are performed sequentially to avoid creating
determinacy races.

Dedup

Description. Data duplication is a signi�cant contributor to the overall data
footprint of enterprise storage systems, due to redundant copies of �les, email,



167

and other data. Deduplication is an emerging technique for compressing backup
storage systems by eliminating these redundant copies of identical blocks of data.
Used in conjunction with other mechanisms for data reduction, such as delta
encoding (i.e., “di�s”), and conventional compression, deduplication can greatly
reduce the cost of data storage, backup and archival.

Deduplication relies on collision-resistant hash functions with a su�ciently
large output range to generate a �ngerprint for a block of data(Quinlan and Dor-
ward, 2002). A popular choice of hash function for deduplication is the sha1
cryptographic hash function (National Institute of Standards and Technology,
1995), which uses 160 bit keys and yields a probability of 1020 in an exabyte (1018

bytes) of data. �is probability is so low that an (National Institute of Standards
and Technology, 1995) may be safely treated as a unique identi�er for a the data.
�us duplicate copies of a storage block can be replaced with the hash key, so that
only one copy of the block is required.

Pthreads implementation. �e dedup benchmark is a parallel implementation
of deduplication included in the parsec. �e program breaks an input �le into a
set of coarse chunks to create independent units of work, and then divides each of
these coarse chunks into a set of �ne-grained fragments using �ngerprinting (Karp
and Rabin, 1987) to reduce the probability of fragmenting duplicate sequences
in the data. Next, dedup computes the sha1 hash of each fragment, and checks a
global hash table to see if a fragment with the same hash code has been encountered,
indicating the current fragment is a duplicate. If the fragment is a duplicate, only
its �ngerprint is written to the output �le. If the fragment is not a duplicate, it is
added to hash table, compressed, and the compressed version is written to the �le.

Like the previous pbzip2 example, dedup uses a pipeline approach to paral-
lelization. �e �rst stage of the pipeline, implemented in a single thread, reads the
input �le and create the coarse chunks from its data. �e second stage uses multi-
ple threads to parallelize the �ngerprinting and subdivision of the coarse-grained
chunks into fragments. �e third stage also uses multiple threads, parallelizing
the compression of the fragments generated in the second stage. Finally, the last
stage uses a single thread to reconstruct the original order of the fragments and
write them to the output �le.

Di�erent pipeline stages communicate uses fifo producer-consumer queues,
synchronized with mutex locks and condition variables. Accesses to the global
hash table, which is shared among the threads constituting the third and fourth
stages of the pipeline, are synchronized using mutex locks. �ese accesses can
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occur in di�erent orders when the program is run multiple times on the same
�le, due to the particular interleaving these threads. �erefore the �rst time an
instance of a duplicate fragment is encountered may not be the �rst instance of that
duplicate in the input �le. Consequently, the compressed instance of the duplicate
is not always the �rst instance in the output �le—it may be preceded by one or
more �ngerprints, meaning that the output of parsec dedup is non-deterministic.

prometheus Implementation. Our prometheus implementation of dedupli-
cation uses private objects for the coarse-grained chunks as well as the �ne-grained
fragments. Initially, the program reads in data from the input �le and creates a
private object for each chunk. Next, it delegates a method to �ngerprint and
fragment each chunk. It then sequentially accesses the hash table, which maps
�ngerprints to compressed data, to determine which fragments need to be com-
pressed. �e prometheus version of dedup then delegates a method to compress
each uncompressed fragment. Finally, it writes each fragment to an output �le.

As with bzip2, the prometheus version of dedup results in a pipeline of data
�owing through the program, without requiring the programmer to implement
the low-level details of its execution. Furthermore, because it ensures a sequential
ordering of accesses to the hash table, it always produces the same output �le: the
�rst instance of a duplicate fragment is always the compressed copy, and subsequent
duplicates are always �ngerprints. Not only does this make the program repeatable
and easier to debug, it also simpli�es decoding the compressed �le, because a
�ngerprint is never encountered before the corresponding data is known.

Figure 7.5 lists simpli�ed code for the prometheus version of dedup. It
employs two classes of private objects: private_chunk_t for coarse chunk objects
(line 1) and private_fragment_t for fragments (line 2). �e program tracks
which fragments have been previously compressed using the hash table on line 5.

�e program reads from an input �le in a loop (lines 6–22). In the �rst phase
of the program, the program creates a set of data chunks by reading them in
from an input �le (line 10). As each chunk is read, the program delegates the
find_fragments method, which uses the Rabin-Karp �ngerprinting technique
to identify good splitting points in the data. Once all chunks are complete, the
program proceeds to its second phase.

In the second phase of the program, the loop on lines 15–17 calls the
compress_fragments method of the chunk_t class, listed on lines 25–34. �is
method loops over each of the fragments it identi�ed in the previous phase, and
any fragment that is not found in the hash table of compressed fragments is in-
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1 typedef prometheus::private_t <chunk_t> private_chunk_t;
2 typedef prometheus::private_t <fragment_t>private_fragment_t;
3
4 void dedup (input_file_t& input_file) {
5     hash_table <private_fragment_t*> compressed_frags;
6     do {
7         prometheus::begin_delegation ();
8         private_chunk_t* chunks[CHUNK_SET_SIZE];
9         for (int i = 0; i < chunks.size (); ++i) {

10            chunks[i] = new chunk (input_file);
11            chunk->delegate (&chunk_t::find_fragments);
12         }
13         prometheus::end_delegation ();
14
15         for (int i = 0; i < chunks.size (); ++i) {
16             chunks[i]->compress_fragments (compressed);
17         }
18
19         for (int i = 0; i < chunks.size (); ++i) {
20             chunk[i]->write (output_file);
21         }
22    } while (!input_file.eof ());
23 }
24
25 chunk_t::compress_fragments (hash_table <fragment_t*> compressed) {
26     prometheus::begin_delegation ();
27     for (int i = 0; i < num_fragments; ++i) {
28         if (!compressed.find (fragments[i]) {
29             compressed->insert (fragment[i]);
30             fragment[i]->delegate (&fragment_t::compress);
31        }
32     }
33     prometheus::end_delegation ();
34 }

Figure 7.5: prometheus pseudo-code for dedup
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serted into the hash table, and the compress method is delegated to the serializer
of that object (line 30).

When the method returns, the program enters its third phase, which writes
the compressed copy or �ngerprint for each fragment (lines 19–21).

Histogram

Description. �e histogram benchmark is a simple image processing program
that analyzes a bitmap image to determine the frequency each value for the red,
green, and blue components of each pixel. We adapted this program from a suite of
benchmarks originally developed for the Phoenix multi-core MapReduce system
(Ranger et al., 2007).

Pthreads implementation. �e pthreads version of histogram reads a bitmap
image �le into memory. It then spawns a set of threads and assigns part of the
image �le to that thread. A thread examines all of the pixels in its portion of the
�le, incrementing one of 256 counters for the 8-bit values of each of the red, blue,
and green components of the pixel. Once all of the threads have completed, the
resulting histograms are accumulated sequentially to produce a single histogram.

prometheus Implementation. �e prometheus implementation of
histogram divides the bitmap �le into chunks, and associates each chunk with
a private object that maintains the histogram for that chunk. It delegates a the
method to compute the histogram for each chunk, and once these methods
complete, the resulting histogram objects are combined to produce the �nal result.

Of the applications we studied for this dissertation, histogram resulted in
the strongest similarity between the pthreads and prometheus implementations.
Due to the simplicity of the algorithm, the control-driven and data-driven decom-
positions are essentially the same—the delegated method invocations correspond
exactly to the actions of threads. However, the prometheus version still has two
advantages: First, the decomposition is expressed using annotations on an sequen-
tial program, without introducing the cru� of con�guring threads and marshaling
their arguments. Second, the ability to easily select the size of the bitmap chunk
associated with each histogram a�ords the programmer the ability to choose a
parallelization granularity that is high enough to amortize the parallelization over-
heads, but small enough to allow the runtime the �exibility to perform dynamic
load balancing.
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1 typedef prometheus::private_t <histo_t> private_histo_t;
2
3 void histogram (input_file_t& input_file) {
4     bmp_t bmp (input_file);
5     private_histo_t* histos = new histo_t[NUM_CHUNKS];
6     prometheus::begin_delegation ();
7
8     int num_chunks = bmp.size () / CHUNK_SIZE;
9     int start = 0;

10     for (int i = 0; i < num_chunks; ++i) {
11         histos[i] = new private_histo_t (start, start + chunk_size);
12         histos[i].delegate (&histo_t::calculate);
13         start = start + CHUNK_SIZE;
14     }
15     prometheus::end_delegation ();
16
17     summarize (histos)
18 }

Figure 7.6: prometheus pseudo-code for histogram

Figure 7.6 lists the prometheus code for histogram. It uses one class of
private object, the private_histo_t class, de�ned on line 1. When the program
begins, it �rst initializes a bitmap image by reading it from a �le (line 4), and
initializes an array of histogram objects (line 5). �e program divides the bitmap
into a number of equally sized chunks, and creates a histogram object for each
chunk (line 11). It then delegates the calculate method to each of these objects.
Upon completion of these methods, the program sequentially summarizes the
results.

Reverse Index

Description. A linked database comprises a set of nodes that are linked together
in some way, such as web pages via hyperlinks, or academic papers via citations.
Counting the number of links to a particular node in a linked database provides
a metric that is useful in determining that node’s importance. For example, the
Google PageRank algorithm uses the number of links to a particular web page as
one metric for determining its relevance to a web search (Page, 1998). �e metric
weights each link based on the estimated importance of its source.
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To compute the rank of a web page, it is therefore necessary to know how many
web pages link to it, as well as address of the linking web page. �e reverse_index
application from the Phoenix suite (Ranger et al., 2007) performs this function
by analyzing a set of web pages and extracting the links within each page. It uses
this information to create an index that indicates for each web page, the set of web
pages that link to it.

Pthreads implementation. �e pthreads version of reverse_index provided
in the Phoenix suite processes web pages stored on disk by a web crawler. It
recursively traverses the directory tree, and each time it encounters an html �le,
it adds that �le to a linked list. Once the �les have all been identi�ed, it spawns a
set of threads to �nd the links in each web page. A thread begins this process by
dequeing the �le currently at the front of the list, using a mutex lock to preserve
the consistency of the list. �is approach di�ers from the other multithreaded
applications we have examined, because each thread dynamically acquires work
as it runs, rather than being assigned a predetermined set of data. �is dynamic
distribution of work balances the load on each thread.

Once a thread has acquired the source �le for a web page, it scans it to identify
links to other pages. �e thread tracks information about these links using a
thread-local list which contains one entry for the address it has encountered a link
to, and the list of �les that contained that link. �e list is kept sorted according to
the lexicographic ordering of the link address for each entry. �is sorting adds
extra overhead when a new link is inserted, but simpli�es merging the results of
each thread.

Once all the �les have been processed, Phoenix reverse_index merges the
results of the threads. It spawns a thread for each pair of lists that merges their
contents together. �e fact that the lists are sorted simpli�es the merging process
because the lists can both be traversed in order, rather than traversing one list
and searching for matches in the second list. �e merging process is repeated
recursively, dividing the number of threads by two at each step until there is a
single, �nal list containing the index mapping each web address to the set of
addresses linking to it.

prometheus Reductions. Both reverse_index and word_count perform
independent computations on private objects, and then need to summarize the
results of these operations to produce their �nal result. Since these programs may
both involve potentially very large data sets, performing these summarizations
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sequentially could introduce a signi�cant sequential bottleneck that would limit
the performance of the program. To overcome this limitation, we implemented a
set of container data structures that support reductions (sometimes referred to as
folds, which uses an associative operator to combine data elements to produce a
�nal value. We then use prometheus to perform parallel reductions over these
containers to speed up the summarization process.

�ere are two key components of these parallel reductions. �e �rst is the
concept of a reducible object, which is an object that speci�es a way for it to be
combined with another object of the same class. To make an object reducible,
programmers need only specify a reduce method that takes another object of
the same class as an argument, and performs the desired summarization of the
data. �e second component of our parallel reductions are reducible containers for
holding reducible objects. �ese containers maintain local copies of a container for
each worker thread in the system, which allows delegated method invocations to
operate on the container without introducing determinacy races. �e containers
also provide a reduce method to combine the local copies of the container into a
single container holding the result. When duplicate reducible objects are detected
in di�erent local copies, they are combined using the reduce method speci�ed by
the programmer.

We parallelized the container reductions using prometheus. �e parallel
reduction recursively combines pairs of local containers until there is only one,
�nal container of reducible objects. For example, if a program running with eight
worker threads were to reduce the container, the �rst step combines local containers
0,1, 2,3, 4,5 and 6,7 in parallel; the second step combines local containers 0,2 and
4,6 in parallel; and the third step would combine local containers 0,4. When the
reduction completes, container 0 holds the summary result.

prometheus Implementation. �e prometheus version of reverse_index
uses two key classes of objects. Files are represented using private objects, and
a find_links method is delegated on each �le. Links are represented using
reducible objects. Each link object stores a set containing the �les in which it has
been encountered. �e reduce method of the link object takes another link as an
argument, and adds all the �les in that link’s �le set to its own.

prometheus reverse_index also traverses the directory structure speci�ed
by the input, �nding html �les. However, rather than waiting until it has found
all �les, the prometheus implementation immediately creates a private object for
each �le and delegates find_links. When this method encounters a link in the
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�le, it uses the address string to get the link object associated with that address from
a reducible version of the stl map container. Once all of the delegated invocations
of find_links completes, the reducible map is reduced to produce a single map
container holding the results of the program: a map from a text address of a web
page to a set of �les that contain that link.

�e prometheus implementation of reverse_index, listed in Figure 7.7,
uses a single class of private object, the private_file_t class de�ned on line 1.
For convenience, the program also declares a set container for �les (line 2) which
is instantiated on line 6, and declares a container for mapping from link text to
link objects, which is instantiated on line 7.

�e program begins by calling the find_files function on line 10, which is
listed on lines 17–25. �is function recurses the directory tree, allocating a new
�le object and delegating the find_links method each time it encounters a �le
(line 19–line 20).

�e find_links method (lines 27–37) scans through the �le to �nd each link
(lines 28–29). If the link has been encountered before, the �le is added to the set of
�les associated with that link (lines 30–31). If the link has not been encountered
before, a new one is created, the �le is added to its �le set, and then the link is
added to the link map (lines 33–34).

Once find_files has located all the �les, it returns. �e program then per-
forms a reduction on the link_map to summarize the results (line 13). Finally,
the link map is written out to a �le (line 14).

Word Count

Description �e word_count application is a utility that counts the number of
times each particular word appears in a �le, and prints out the 10 most frequently
occurring words. �is benchmark is part of the Phoenix suite (Ranger et al., 2007).

Pthreads Implementation �e pthreads implementation of word_count reads
the speci�ed �le into memory, and spawns a set of threads. �e �le is divided
into equally sized chunks, taking to only split it between words, and each chunk is
assigned to a thread. Each thread scans through its chunk of the �le, identifying
individual words in the text. �e threads track each word and its associated count
using a thread-local sorted list, similar to the sorted list of �les used by Phoenix
reverse_index. A�er the �le is processed, another set of threads is spawned to
merge the sorted lists of words, accumulating their counts to produce a single list.
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1 typedef prometheus::private_t <file_t> private_file_t;
2 typedef set <private_file_t*> file_set_t;
3 typedef reducible_map <string, link_t*> link_map_t;
4
5 int reverse_index (const char* path, output_file_t& output_file) {
6     file_set_t file_set;
7     link_map_t link_map;
8
9     prometheus::begin_delegation ():

10     find_files (root_dir, file_set, link_map);
11     prometheus::end_delegation ();
12
13     link_map.reduce ():
14     output_file.write (link_map);
15 }
16
17 void find_files (const char* path, link_map_t& link_map) {
18     if (is_file (path)) {
19         private_file_t* file = new private_file_t (path);
20         file->delegate (&file_t::find_links, link_map);
21     }
22     else { // path is a directory
23         // open directory and recurse on contents
24     }
25 }
26
27 file_t::find_links (link_map_t& link_map) {
28     while (!eof ()) {
29         const char* link_text = find_next_link ();
30         if (link_map.find_text (link_text)) {
31             link_map[link_text]->add_file (this);
32         else {
33             link_t* link = new link_t (link_text, file);
34             link_map.insert (link_text, link);
35         }
36     }
37 }

Figure 7.7: prometheus pseudo-code for reverse_index
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1 typedef prometheus::private_t <string_buffer_t> private_buffer_t;
2 typedef reducible_map <char*, count_t> count_map_t; 
3 typedef vector <private_buffer_t*> buffer_vector_t;
4
5 void word_count (input_file_t input_file, int num_results) {
6     buffer_vector_t buffers;
7     count_map_t count_map;
8     prometheus::begin_delegation ();
9     while (!input_file.eof ()) {

10         private_buffer_t* private_buffer =
11             new private_buffer_t (BUFFER_SIZE);
12         private_buffer->fill_on_word_boundary (input_file);
13         private_buffer->delegate (&string_buffer_t::find_words,
14                                   count_map);
15     }
16     prometheus::end_delegation ();
17
18     count_map.reduce ();
19     print_top_n (count_map, num_results);
20 }

Figure 7.8: prometheus pseudo-code for word_count

�is list is sorted by count in decreasing order, and the �rst ten words and their
counts are printed to the screen.

prometheus Implementation �e prometheus implementation of
word_count uses string bu�er objects to hold pieces of the input �le, and a
counter object to count the number to track the number of occurrences of each
individual word. �e counters are stored in a reducible map that that associates a
particular text string with the associated counter for that word.

prometheus word_count reads in chunks of the input �le of the speci�ed
size, and creates a new string bu�er object for each chunk. It then delegates the
find_words method, which scans through the string bu�er, incrementing the
counter for each word it �nds. Once the entire input �le has been processed,
the map holding the counters is reduced to summarize the results of the parallel
computations.

Figure 7.8 lists the pseudo-code for the prometheus implementation of
word_count. �e program uses private objects for the string_buffer_t class
(line 1), as well as a reducible map to associate the text string for a word with its
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Original Original prometheus
Program Parallelization Synchronization Parallelization

barnes-hut data-parallel barrier data-parallel
black-scholes data-parallel barrier pipeline
bzip2 pipeline mutexes, cond. variables pipeline
canneal data-parallel atomics data-parallel
dedup pipeline mutexes, cond. variables pipeline
histogram data-parallel barrier data-parallel
reverse_index data-parallel mutexes pipeline
word_count data-parallel barrier data-parallel

Table 7.2: Benchmark Characteristics

associated counter object (line 7).
�e program reads the the input �le in a loop until it has read the entire �le

(lines 9–lines 15). Each loop iteration creates a new instance ofprivate_buffer_t
(line 11), and �lls the bu�er from the input �le using thefill_on_word_boundary
function, which takes care not to split words. �en the program delegates the
find_words method to the string bu�er object. A�er the entire �le has been read
and the delegated method invocations have completed, the counter map is reduced
to summarize the results (line 18), and then passed to a function that prints out
the speci�ed number of words (line 19).

Benchmark Summary

Table 7.2 lists the benchmarks we use in our evaluation and lists how each program
was parallelized, as well as the synchronization used in each program. We also
list the approach we used for our prometheus version of each benchmark. For
the data-parallel programs, the corresponding prometheus program is also data-
parallel, using loops to parallelize operations in di�erent data. For the programs
that use mutual exclusion, we found that a natural way to express the parallelism
in prometheus was to use a pipeline idiom. As an example, consider a program
where each operation manipulates private data and then updates a shared resource.
In prometheus, such a program would be expressed by delegating the indepen-
dent operations to the serializers of objects containing the private data, and then
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AMD Barcelona Intel Nehalem

Phenom Opteron Opteron Core i7 Xeon
Processor 9850 8350 8356 965 X5550

Sockets 1 4 8 1 2
Cores 4 4 4 4 4
�reads 1 1 1 2 2

Total Contexts 4 16 32 8 16

Clock (GHz) 2.5 2.0 2.3 3.2 2.66
Memory (GB) 8 16 80 12 24
Linux kernel 2.6.18 2.6.25 2.6.25 2.6.18 2.6.18

Table 7.3: Hardware Con�gurations

performing the updates on the shared resource sequentially as the operations
complete. �ese pipelines can also use multiple delegation, instead of sequential
execution, if the shared resource is su�ciently encapsulated.

7.2 experimental methodology

Hardware

We performed our evaluation on �ve di�erent 64-bit x86 processors, including
both multi-core and multi-socket systems based on the AMD Barcelona and the
Intel Nehalem architectures. For the Barcelona architecture, which integrates
four cores per processor, we used a Phenom multi-core system, an Opteron four-
socket server with a total of 16 cores, and an Opteron eight-socket server with a
total of 32 cores. In the following results, these systems are labeled Barcelona (4),
Barcelona (16), and Barcelona (32), respectively. For the Nehalem architecture,
which provides four cores per processor, each supporting two thread contexts, we
used a Core i7 multi-core system and a Xeon two-socket server. �ese systems are
labeled Nehalem (4x2) and Nehalem (8x2) in our results. Table 7.3 lists the details
of the hardware con�guration for each of these systems.
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Input Data

Program Small Medium Large Units

barnes-hut 1,000 / 25 10,000 / 50 100,000 / 75 bodies / steps
black-scholes 16,384 65,536 10,000,000 options
bzip2 31 185 673 �le (MB)
canneal 200,000 400,000 2,500,000 netlist elements
dedup 31 185 673 �le (MB)
histogram 100 400 1,4000 bitmap (MB)
reverse_index 100 500 1,000 directory (MB)
word_count 10 50 100 �le (MB)

Table 7.4: Benchmark Inputs

So�ware

We performed our experiments using the benchmarks described in Section 7.1.
We compiled both the pthread and prometheus versions with gcc 4.4.3 using
the highest optimization level -O3, and the appropriate tuning �ag for each archi-
tecture: -march=amdfam10 for the Barcelona processors, and -march=core2 for
the Nehalem processor. We compiled all programs to 64-bit binaries so that they
could utilize the full amount of system memory and exploit the expanded x86-64
register set.

�e prometheus programs used the system default for each con�guration
parameter. prometheus automatically detects the number of hardware contexts
in a system and uses it as the default number of worker threads. It determines the
size of each stacklet based on the default size for pthread stacks, which are 8 kB in
Linux. Each work-stealing deque is initially contains 32 entries, where each entry
is a pointer to a continuation object (8 bytes).

For our performance results, we measured the execution time of the full pro-
gram, rather than just the parallel regions. We did this for two reasons: �rst, it
provides a more realistic picture of real-world performance; second, control- and
data-driven decomposition can result in di�erent parallel regions, and thus the
results would not be comparable. We ran each program ten times, and used the
minimum execution time from those runs.
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7.3 evaluation

In this section, we compare the performance of control-driven and data-driven
decomposition by comparing applications implemented in both pthreads and
prometheus. We also characterize several aspects of the prometheus runtime.
We begin by examining the trade-o� between performance and design complexity
of prometheus introduced by dynamic memory allocation.

Dynamic Memory Allocation Micro-benchmark

�e implementations of serializers and the prometheus runtime described in
the previous chapters use many di�erent dynamically allocated data structures
during the execution of the program, including method invocations, serializer
list nodes, contexts, and stacklets. �e objects are o�en allocated and deallocated
in rapid succession, which would place a heavy burden on the memory allocator.
�erefore the prometheus runtime manages allocation of these data structures
using thread-local free lists, circumventing the memory allocator. �is strategy
prevents serializers and prometheus from being hampered by the scalability of
the memory allocator, but it complicates the implementation of these structures.

To justify this design decision, we developed a micro-benchmark that simu-
lates an extreme version of the allocation behavior of prometheus. �e micro-
benchmark spawns a thread for each processor in the system, and then each thread
proceeds to repeatedly allocate and deallocate N 64-byte objects in a loop. We
measured the performance of the thread-local free lists used by the prometheus
runtime against the standard glibc memory allocator that ships with Linux,
as well as two state-of-the-art scalable memory allocators for multithreaded pro-
grams: Hoard (Berger et al., 2000), and McRT (Hudson et al., 2006). �ese memory
allocators use a combination of features to provide improved scalability: heap or-
ganizations that minimize contention between threads; minimizing false-sharing
of heap-allocated objects, and bounding the amount of synchronization incurred
by memory allocation.

We ran our microbenchmark on the 16-core Barcelona machine described
in the previous section. We varied the number of allocations from ten thou-
sand per thread to one hundred million per thread. Figure 7.9 shows the results
of this experiment. �e benchmark executes roughly 8 times faster using the
prometheus thread-local free lists than the default glibc allocator. Furthermore,
despite the advantages of the scalable memory allocators, they yield only marginal
improvement for this particular allocation pattern.
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Figure 7.9: Performance of dynamic memory allocation vs. thread-local free lists

Performance Comparison of Control-Driven and Data-Driven Decomposition

To compare the performance of the pthread and prometheus versions of our
programs, we calculate speedup relative to a sequential execution of the original
program. Table 7.5 summarizes the results for the Barcelona machines, and Ta-
ble 7.6 summarizes the results for the Nehalem machines. For each processor and
benchmark, we give the time for the sequential execution of the original bench-
mark (BL), and our C++ version (C++), and the execution time for the parallel
pthreads version and prometheus version (PR). �e next two columns give the
speedups of the pthread and prometheus parallel execution time over the sequen-
tial execution of the original program (BL). �e last column gives the speedup of
the prometheus version over our C++ program. Overall, the performance of the
two models is quite similar, indicating that data-driven decomposition does not
require compromising performance for these programs.

�e prometheus implementation of barnes-hut lags behind its multi-
threaded counterparts, especially on the 16-core Barcelona machine. We will
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BL C++
Time (s) Speedup Speedup

System benchmark BL C++ PT PR PT PR PR

Barcelona barnes-hut 512.5 574.8 117.8 137.2 4.3 3.7 4.2
(4) black-scholes 309.0 302.5 104.5 81.0 3.0 3.8 3.7

bzip2 281.0 282.0 77.6 78.9 3.6 3.6 3.6
canneal 215.4 220.7 85.9 102.7 2.5 2.1 2.1
dedup 45.1 39.5 13.0 12.6 3.5 3.6 3.1
histogram 2.72 2.71 0.74 0.78 3.7 3.5 3.5
reverse_index 46.8 23.3 8.7 6.6 5.6 7.3 3.5
word_count 20.7 11.2 4.4 2.5 4.7 8.2 4.5

Barcelona barnes-hut 734.8 824.4 50.1 58.9 14.7 12.5 14.0
(16) black-scholes 369.1 359.1 68.8 72.6 5.4 5.1 4.9

bzip2 334.7 334.1 26.7 28.8 12.5 11.7 11.6
canneal 334.9 346.7 76.1 103.1 4.4 3.2 3.4
dedup 61.2 52.4 15.6 13.6 3.9 4.5 3.9
histogram 3.52 3.55 1.21 1.46 2.9 2.4 2.4
reverse_index 63.4 31.0 6.0 5.3 10.6 12.1 5.9
word_count 28.7 16.7 1.6 1.7 17.9 16.9 9.8

Barcelona barnes-hut 647.9 766.1 41.8 44.4 15.5 14.6 17.3
(32) black-scholes 322.1 312.4 52.2 90.0 6.2 3.6 3.5

bzip2 308.2 310.6 17.6 15.8 17.5 19.5 19.7
canneal 325.1 336.4 88.4 117.4 3.7 2.8 2.9
dedup 55.1 48.1 20.5 15.4 3.6 4.6 3.1
histogram 3.23 3.23 3.77 3.69 0.9 0.9 0.9
reverse_index 65.0 27.6 14.1 6.8 4.6 9.6 4.1
word_count 24.8 14.1 1.2 2.1 21.4 11.6 6.6

Table 7.5: Performance of pthreads and prometheus on Barcelona machines
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BL C++
Time (s) Speedup Speedup

System benchmark BL C++ PT PR PT PR PR

Nehalem barnes-hut 280.2 322.3 61.3 67.6 4.6 4.1 4.8
(4x2) black-scholes 193.5 184.1 51.7 37.7 3.7 5.1 4.9

bzip2 163.5 163.7 34.9 35.9 4.7 4.6 4.6
canneal 135.2 137.0 46.5 44.0 2.9 3.1 3.1
dedup 33.8 28.0 7.6 7.0 4.4 4.8 4.0
histogram 1.41 1.33 0.28 0.28 5.0 5.0 4.8
reverse_index 24.7 15.5 5.0 4.5 4.9 5.5 3.4
word_count 13.5 7.7 2.6 1.5 5.2 8.8 5.1

Nehalem barnes-hut 316.1 357.5 37.8 41.4 8.3 7.6 8.6
(8x2) black-scholes 232.7 220.1 44.4 48.5 5.2 4.8 4.5

bzip2 194.6 195.1 22.1 23.2 8.8 8.4 8.4
canneal 123.0 124.1 44.9 45.8 2.7 2.9 2.7
dedup 37.8 33.4 6.1 6.9 6.5 5.5 4.8
histogram 1.58 1.60 0.19 0.19 8.3 8.3 8.4
reverse_index 29.1 17.6 5.0 3.4 5.8 8.6 5.2
word_count 13.5 7.7 2.6 1.5 5.2 9 5.1

Table 7.6: Performance of pthreads and prometheus on Nehalem machines

show in later results that the prometheus foreach construct for divide-and-
conquer loops signi�cantly improves the performance of barnes-hut over ex-
plicit delegation. While it is unlikely that these loops will be able to match the
performance of multithreading on highly independent data-parallel programs
like barnes-hut, this result indicates that our foreach loop might bene�t from
further optimization.

Running on the 16-core and 32-core Barcelona machines, histogram achieves
a lower speedup than on any other system, including the similar 4-core Barcelona
machine. We will see in later results that histogram achieves parallel speedups
up to a certain number of worker threads, and then experiences a drastic drop-o�
in performance. �is phenomenon does not appear when histogram runs on the
Nehalem machines.

Our results show that our C++ implementation of reverse_index and
word_count are roughly twice as fast as sequential execution of the original bench-
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mark. �is performance di�erence is largely caused by the di�erent ways these
programs store and aggregate the data produced by their parallel operations. �e
Phoenix versions of reverse_index and word_count maintain track links and
word counts, respectively, in thread-private arrays. �ese lists are kept sorted,
which incurs a high overhead for insertions, but allows for very e�cient merging
of the arrays. During a merge of two arrays, only the �rst element of each is exam-
ined at each step, so neither array need be searched. Sequential execution of these
programs must pay the high insertion cost, which is not o�set by the e�ciency of
merging since there is only one thread.

�e prometheus versions of these programs use reducible containers to aggre-
gate the results of computations stored in di�erent objects. �ese containers allow
for much faster insertions, but merging them via reduction is more expensive
because while one container is traversed, the other container must be searched for
matches. �is trade-o� is evident in the fact that the performance gap between the
prometheus and Phoenix pthreads versions is smaller for machines with larger
numbers of cores.

Sensitivity to Input Size

Figure 7.10 shows the performance of each benchmark running with small, medium,
and large inputs. Note that for these measurements we compute speedup relative
to the sequential prometheus program, rather than the original program. �ere is
no basis for comparison between di�erent benchmarks—the sizes of these inputs
were determined separately. However, this data does allow us to see the sensitivity
of each individual benchmark to input size. While most of the programs bene�t
from larger inputs, barnes-hut and reverse_index require a large amount of
data to fully realize their potential.

�e performance of dedup seems to be an exception to the relationship
between performance and input size—it achieves its best performance for the
medium input size. However, this result is misleading, because this input actually
results in the program doing more work, evident in the fact that the output has a
much higher compression ratio than the small and large input �les.

Performance Scalability

Figures 7.11, 7.12, and 7.13 show the scalability of the prometheus benchmarks as
a function of the number of worker threads used by the runtime. Bothbarnes-hut
and bzip2 continue scaling to 16 workers and beyond, but the other programs
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Figure 7.10: Benchmark performance by input size
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Figure 7.11: prometheus scalability for barnes-hut, black-scholes, and
bzip2
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Figure 7.12: prometheus scalability for canneal, dedup, and histogram
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Figure 7.13: prometheus scalability for reverse_index and word_count
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Figure 7.14: Performance of the foreach loop

saturate much earlier.
�e histogram benchmark shows a peculiar scaling trend on the Barcelona

servers—scaling up to a certain number of threads above which the execution
time of the program increases drastically. Because the pthreads version of the
program also exhibits this behavior, we do not believe it indicates a problem with
prometheus. We also note that this problem does not occur on the Nehalem
systems.

Parallel Loop Performance

To illustrate the importance of e�cient parallel loops, we measured the perfor-
mance two loop-based benchmarks using both explicit delegation and theforeach
loop. We compared our standard foreach-based implementation of barnes-hut
with a version that performs explicit delegation inside of a standard for loop. We
also modi�ed black-scholes to use loops instead of the pipeline-style imple-
mentation described in Section 7.1. �ese versions do not perform as well, but
they serve to illustrate the di�erence between �ne- and coarse-grained loops.

We present the results of this comparison in Figure 7.14 . For black-scholes,
which exhibits very coarse-grained parallelism, the foreach loop provides only
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Program Invocations Allocated stacklets Allocated stacklets
(mean) (mean) (percentage)

barnes-hut 7499925 632.8 < 0.01%
black-scholes 20000000 17 < 0.01%
bzip2 1566 17 0.01%
canneal 9000000 17 < 0.01%
dedup 167609 17 0.01%
histogram 16 17 106.3%
reverse_index 78371 17 0.02%
word_count 17 63 27.0%

Table 7.7: Stacklet recycling e�ectiveness

marginal bene�t because even when using explicit delegation, distribution of
the loop iterations is not on the critical path. By contrast, for the �ner-grained
parallelism in barnes-hut, the foreach loops result in substantial performance
improvement: on the 16-core Barcelona system, foreach improves a speedup
of 8.6 to 14.0; on the 32-core Barcelona system, foreach improves a speedup
of 10.2 to 17.3; on the 8-core, 16-thread Nehalem system, foreach more than
doubles the speedup of 3.7 to 8.6.

E�ectiveness of the Stacklet Recycling Mechanism

In Chapter 5, we argued that allocation and deallocation of stacklets could be
performed e�ciently by recycling previously allocated stacklets, avoiding an ex-
pensive mmap. system call. �e prometheus runtime tracks both the number of
delegated method invocations (and tasks spawned for foreach loops), as well as
the number of stacklets allocated using mmap. �is data can be used to determine
the e�ectiveness of stacklet recycling by calculating the number of delegated or
spawned invocations that require allocation.

We collected the stacklet allocation data for ten runs of our benchmark
programs on the 16-core Barcelona machine, and we present the results in Ta-
ble 7.7. Except for barnes-hut, all of the other programs require only 17 stack-
let allocations—one for each worker thread, and one additional stacklet for the
scheduling context of the original program thread. As a result, most of the bench-
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mark programs require stacklet allocation for a very small fraction of all del-
egated or spawned method invocations. �e foreach loop construct used in
barnes-hut requires many additional stacklets for the recursive divide-and-
conquer of the loop range, and thus requires many more stacklets, but it also
requires stacklet allocation very infrequently. �e exceptions are histogram and
word_count which exhibit very coarse granularities of parallelism, resulting in
low numbers of delegated method invocations. In particular, histogram delegates
only a single method invocation for each worker thread, so every delegation results
in stacklet allocation. Overall, the stacklet recycling mechanism is highly e�ective
at minimizing the number of mmap calls.

7.4 summary

We began this chapter by describing the benchmarks used in our evaluation, in-
cluding a description of how we applied prometheus to facilitate data-driven
decomposition. A�er presenting our experimental methodology, we presented the
results of our evaluation. Based on these results, we observe that for the programs
we studied, data-driven decomposition was able to achieve performance compet-
itive with that of a control-driven decomposition. We examined the sensitivity
of these programs to input size and showed how they scale to increasing thread
counts. Finally, we showed that the prometheus foreach construct is essential
to extracting �ne-grained loop parallelism.





8 conclusions and future work

�ere must be a beginning of any great matter, but the continuing unto
the end until it be thoroughly �nished yields the true glory.

— Sir Francis Drake (n.d.)

In this dissertation, we proposed data-driven decomposition, a new parallel
execution model that (1) dynamically decomposes a sequential program based on
the data manipulated by each operation, (2) preserves the sequential ordering of
operations on a particular set of data, and (3) parallelizes execution of operations
on disjoint sets of data. �e thesis of this dissertation is that data-driven decom-
position yields repeatable, predictable, and e�cient parallel execution. To support
this thesis, we presented the following contributions:

1. A de�nition of sequential determinacy—the property that each variable is assigned
the same sequence of values as a sequential execution in any parallel execution
with a given input—augmenting the repeatability of determinacy (Karp and Miller,
1966) with the predictability of sequential execution (in Chapter 2);

2. Constructs for data-driven decomposition: the private object, a distinct collection
of data that may only be manipulated by the operations de�ned by its speci�cation;
and the serializer, which preserves the sequential ordering of method invocations
on a private object, but executes these methods asynchronously with respect to
other operations on other objects (in Chapter 3);

3. A program representation based on annotations to traditional sequential, object-
oriented programming constructs such as class speci�cations and method invoca-
tions (in Chapter 3);

4. A serializer implementation that exploits state-of-the-art dynamic task scheduling
algorithms to execute method invocations delegated to di�erent serializers; and a
technique for dynamic task extension to ensure the sequential ordering of method
invocations delegated to the same serializer (in Chapter 4);

5. �e prometheus runtime, which uses a combination of fast user-level context
switching and a stacklet-based activation record management to provide the �rst li-
brary for dynamic scheduling via unrestricted work stealing with lazy task creation
(in Chapter 5);

193
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6. Recognition of the receiver identi�cation problem, which restricts any operation in
a determinate program from manipulating its receiver until all previous operations
have identi�ed their receivers; and the proposal for receiver disambiguation to
overcome the limitations of sequential receiver identi�cation on parallelism (in
Chapter 6).

In addition to these contributions, performing the work described in this
dissertation yielded several other insights about writing so�ware intended for
parallel execution. We review these in the next section.

8.1 insights and implications

In our experience so far, data-driven decomposition has met its original goals,
allowing programmers to develop parallel so�ware using the familiar sequential
program representation. �e repeatability and predictability a�orded by sequen-
tial determinacy means that most testing and debugging can be performed on
a sequential execution. �is represents a substantial improvement over the dif-
�cult process of identifying, reproducing, and correcting bugs in multithreaded
programs. However, data-driven decomposition is not without limitations, and
signi�cant barriers to realizing parallel execution remain.

Limitations of Data-Driven Decomposition

During the initial development of data-driven decomposition, we thought that
restricting parallel execution to operations on disjoint objects might limit the
expressive power of the model in comparison with control-driven decomposition.
A�er performing the research documented in this dissertation, we now believe
that this model imposes very few limitations on the kinds of computations that can
be expressed. �e reasons for this are twofold: First, as we discussed in Chapter 3,
the tenets of modular and object-oriented programming include practices such
as encapsulation and ownership, which result in the same organization of data
required for data-driven decomposition. Second, restricting manipulation of a
set of data to at most a single operation should not be any more of a limitation
for data-driven decomposition than it is for control-driven decomposition. While
multithreading provides the abstraction of shared memory, programs must use
synchronization to ensure that only one operation modi�es a particular set of data
at any given time.

�e remaining question is then whether the organization of data required for
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data-driven decomposition limits the expressive power of the model. We believe
that it does not. Nested delegation allows each set of data to be partitioned into
subsets that can be operated on independently, and multiple delegation allows a
single operation to operate on multiple objects at once. Composing these tech-
niques allows the programmer to express computation on any combination of
data in the program.

Instead, the primary limitation of data-driven decomposition seems to be the
requirement of a speci�c ordering of operations on each set of data. �is leads
to the receiver identi�cation problem discussed in Chapter 6, which prevents
executing an operation until the receivers of all earlier-ordered operations are
known. Receiver disambiguation partially alleviates this problem by facilitating
parallel receiver identi�cation. However, it appears that fully overcoming this
limitation will likely require speculative techniques that allow an operation to
immediately modify its receiver, rolling back and re-executing in the event that an
earlier operation identi�es the same receiver.

Remaining Challenges for Parallel So�ware Development

Despite the bene�ts of data-driven decomposition, parallel programs remain sig-
ni�cantly more di�cult to develop than sequential programs. Using a sequential
representation does not mean that an existing program can be parallelized by
simply annotating classes and methods. Programmers must identify or develop a
suitable parallel algorithm to perform the desired computation, and these algo-
rithms are almost always signi�cantly more complex than an equivalent sequential
algorithm. Programmers must also pay careful attention to the organization and
structure of the data processed by the program, which can have a signi�cant impact
on the parallelism and locality. We therefore believe that many current applications
will require a signi�cant amount of redesign and reimplementation to fully exploit
multi-core processors.

Data-driven decomposition greatly simpli�es debugging program correctness,
but debugging performance remains a di�cult problem. Identifying the most
computationally intensive parts of a program is straightforward using existing
pro�ling tools. While this allows the programmer to target parallelization e�orts
at performance bottlenecks, it yields no information about the parallelism of
these computations. �is situation is gradually improving, thanks to tools such
as HPCToolkit (Tallent and Mellor-Crummey, 2009) and Cilkview (He et al.,
2010), which measure the work, span (critical path), and the resulting parallelism
of a program. Further improvement of these techniques and development of new
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tools for performance analysis are imperative to improving the accessibility of
parallel so�ware development.

Cache e�ects cause some of the most vexing performance problems, and can
inhibit the performance of programs that are otherwise highly parallel. �ese
problems can be very di�cult to diagnose, since they are not a direct consequence
of the computations in the program. Our experience with tuning parallel execu-
tion has led us to recognize highly erratic performance as an indicator of cache
lines thrashing between processor cores due to false sharing. Tools like Intel
VTune (Intel, 2010), which provide access to cache miss performance counters,
are invaluable for diagnosing the source of these con�icts. Ultimately, we have
adopted the defensive strategy of aligning any frequently accessed data structure
on a cache-line boundary. Unfortunately, specifying data alignment is not sup-
ported by most current programming languages, and instead requires obscure,
compiler-speci�c attributes and intrinsic functions. Combined with the need to
explicitly encode cache-line sizes, this results in code that is non-portable and
di�cult to write and maintain. Furthermore, these annotations do not produce
the desired outcome for language constructs as simple as arrays. �ese problems
have forced us to implement custom alignment templates and memory allocation
routines to perform the work in this dissertation. In the future, languages should
provide abstract, machine-independent speci�cation of alignment to ameliorate
these di�culties.

8.2 future work

During the development of data-driven decomposition and the preparation of
this dissertation, we have identi�ed several opportunities for future research. One
clear immediate direction is the application of data-driven decomposition to a
broader range of applications to demonstrate its applicability and identify any
shortcomings of the programming interface and execution model. Additionally,
tools for debugging and performance will be an important part of supporting large-
scale so�ware development with data-driven decomposition. As we described in
Chapter 3, an important goal of these tools should be detecting safety violations
caused by inadvertently shared data that introduces determinacy races in the
program. Extending existing dynamic determinacy race detection algorithms,
such as those proposed by Feng and Leiserson (1997) and Bender et al. (2004),
would be an important step in this direction. While these can detect incorrect
execution, developing sound static analyses to check the safety of data-driven
decomposition would ensure that any execution of a program was correct.
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In our study of data-driven decomposition, we have observed cases where
ensuring determinacy is complicated by non-determinism in sequential programs.
�e most obvious example is random number generation, although this can be
avoided by using a deterministic seed. We have identi�ed two sources of non-
determinism that are more problematic. �e �rst source of non-determinism is
dynamic memory allocation, which generally returns di�erent addresses for the
allocation of a particular object in di�erent runs of the program. Usually this has no
obvious impact on program execution, but it will occasionally manifest when these
addresses are used for operations like hashing or sorting. �e second source of
non-determinism in sequential programs is time. Any time control �ow is a�ected
by the duration of some event, the result is likely to be nondeterministic. Future
research on determinate execution models should investigate how to address such
sources of non-determinism.

Our current implementation of data-driven decomposition enforces the se-
quential ordering of all method invocations on a particular object. However, it
is worth considering whether there are cases when it may be bene�cial to relax
this ordering. Commutativity annotations, such as those proposed by Bridges
et al. (2007), Kulkarni et al. (2007), and Bocchino et al. (2009b), could be used
to identify methods that can be reordered without changing the �nal state of
the object. �is provides the programmer a mechanism to judiciously introduce
nondeterminacy into the program, and may be necessary to overcome the receiver
identi�cation problem for some algorithms. Allowing reordering of commutative
operations in a data-driven decomposition raises the following questions: (1) In
what situations does such reordering signi�cantly enhance performance? (2) How
should commutativity be expressed in the program? (3) How can we introduce
nondeterminacy selectively, so as not to compromise the determinacy of other
operations?

One avenue for future research is exploring whether dynamic parallelization
can achieve better performance than static parallelization. We believe that it can,
especially for irregular programs with unstructured parallelism. A static, control-
driven decomposition of such programs can result in signi�cant contention for
locks. �reads that fail to acquire a lock may block, and if there is other inde-
pendent work they could be doing, it may be unnecessarily delayed. Dynamic
data-driven decomposition should be limited only by the data �ow through the
program. �is should result in higher performance than a control-driven decom-
position for programs that exhibit signi�cant lock contention. Our initial work
in this area has produced promising results, and we plan to investigate it more
thoroughly in the future.
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A related question is whether optimistic models, such as speculative multi-
threading or transactional memory, are able to extract higher performance from
some applications than a dynamic model. We conjecture that optimistic models
would have an advantage for applications were most operations are truly indepen-
dent, but the receiver identi�cation problem limits a dynamic decomposition from
fully exploiting this independence. If such applications can be identi�ed, they
would warrant investigation of how data-driven decomposition can be augmented
with support for speculative execution.

Because data-driven decomposition results in parallel operations on disjoint
data, it seems like a promising match for the emerging class of high throughput
compute accelerators, including graphics processors (or gpus), and heterogeneous
processors like the ibm Cell. �ese accelerators provide arithmetic throughput
dwar�ng that of current microprocessors, and can potentially bene�t many com-
putationally intensive calculations. However, the programming models for these
accelerators require intimate knowledge of the underlying hardware and provide
only a minimal amount of abstraction. If runtime support for data-driven decom-
position could be retargeted to these accelerators, it would allow programmers to
exploit their computational horsepower at a much higher level of abstraction.

Given that determinate parallel execution models provide signi�cant bene�ts
to so�ware developers raises the question of whether it might also bene�t hardware.
Choi et al. (2010) observe that because determinate models provide information
about the data accessed by each parallel operation and prohibit data races, they
provide opportunities for simplifying cache coherence and memory consistency
models, as well as reducing interprocessor communication. We agree with their
conclusions, and observe that such simpli�cations will likely be necessary in
the future as processors scale to increasingly numbers of cores. If determinate
programming models facilitate simpler, more scalable, and higher performance
hardware, it would make them even more compelling.

8.3 conclusions

�e development of data-driven decomposition presented in this dissertation
leads us to the following set of conclusions. First, parallelism is all about data. As
Bernstein observed in 1966, achieving parallel execution requires identi�cation of
operations on independent data. Data should therefore be the primary focus of
future parallel execution models. Second, the identity of the data manipulated by
each operation can be identi�ed and exploited dynamically. �e paramount im-
portance of data to parallelism thus gives dynamic decomposition a fundamental
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advantage over static decomposition. �ird, ordering is the key to simplifying par-
allel programming. It should be speci�ed by the programmer and then enforced,
rather than recklessly discarded, by the execution model. �e intuitive nature and
widespread use of the sequential programming model make it the logical basis for
determining the ordering of program operations.

�e work described in this dissertation represents our e�orts to apply these
observations. While some aspects of our implementation of data-driven decom-
position may prove to be �awed or misguided, we believe these principles will
be instrumental in developing accessible, reliable, and e�cient parallel execution
models.





a overview of c++ templates

So�ware frequently requires components with similar functionality that operate
on di�erent types. For example, it is useful to have a function that computes the
maximum of two numbers, whether those numbers are integral or �oating-point.
Likewise, containers such as a binary tree or a hash table are useful for any number
of di�erent types. Ideally, a programmer should only express such functionality
once, in a generic way, rather than duplicating it for every type.

C++ addresses this need with templates, a powerful language feature that allow
programmers to abstract concrete types out of classes and functions to create
generic versions. �e ability to write generic code that can operate on di�erent
concrete types in di�erent contexts is o�en called generic programming (Stroustrup,
1997, ch.13) or parametric polymorphism (Pierce, 2002, pg. 319). Template classes
and functions are parameterized on types, and these type variables are evaluated
when the program is compiled. Whenever a generic class or function is used in
the program, the compiler instantiates it by replacing the type variables with the
appropriate concrete types, and specializes the resulting code for those types. Once
a template is instantiated, the compiler performs the same type checking on these
classes and functions that it would on non-template code.

A.1 template classes

We illustrate the usage of C++ templates with several simple examples. Figure A.1
lists the code for an example C++ template class. �e pair_t class is a simple
generic container for holding two values. �e class declaration is preceded by
the template keyword on line 1, which is parameterizes the class on two types,
T1 and T2. �ese parameters determine the types of the two values stored in the
pair_t container (lines 4 and 5), and are used in every method signature that
refers to the types of these values—the constructor (line 8), the accessor for each
value (lines 12 and 13), and the mutator for each value (lines 14 and 15).

�e programmer explicitly instantiates a template class by specifying the con-
crete types to be substituted for the type parameters. In our example, the pro-
grammer declares a pair_t object to hold integer and �oating-point values. �e
statement pair_t<int, float> (line 19) causes the compiler to instantiate the
pair_t class and substitute int for T1 and float for T2.
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1 template <typename T1, typename T2>
2 class pair_t {
3 private:
4     T1 first;
5     T2 second;
6
7 public:
8     pair_t (T1 first, T2 second) :
9         first (first), second (second)

10     {}
11
12     T1 get_first () const { return first; }
13     T2 get_second () const { return second; }
14     void set_first (T1 first) { this->first = first; }
15     void set_second (T2 second) { this->second = second; }
16 };
17
18 int main () {
19     pair_t <int, float> pair (42, 3.14159); // explicit instantiation
20     cout << "first=" << pair.get_first ()
21          << ", second=" << pair.get_second ()
22          << endl;
23 }

Figure A.1: Example of a C++ template class

A.2 template functions

Figure A.2 gives a simple template function. �e swap function exchanges the
values stored in two variables. �is function is parameterized on the type T (line 1),
representing the type of the values being swapped. �e function takes two argu-
ments of the parameter type T by reference (line 2), and exchanges their values
(lines 3–5).

In contrast with template classes, which must be explicitly instantiated, tem-
plate functions can be implicitly instantiated when the compiler can infer the types.
�e call to swap on line 11 passes in two integer arguments, causing an implicit
instantiation of swap with int substituted for T. In some cases, the compiler
cannot infer the type parameters from the context of the program—for example,
when the function arguments are also parameterized types—and the programmer
must explicitly instantiate the template function, as shown on line 12.
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1 template <typename T>
2 void swap (T& a, T& b) {
3     T temp = a;
4     a = b;
5     b = temp;
6 }
7
8 int main () {
9     int x = 3;

10     int y = 6;
11     swap (x, y); // implicit instantiation
12     swap <int> (x, y); // explicit instantiation
13     cout << "x=" << x << ", y=" << y << endl;
14 }

Figure A.2: Example of a C++ template function

1 // Template class
2 template <int num>
3 class factorial_t {
4 public:
5     static const int value = num * factorial_t <num - 1>::value;
6 };
7
8 // Template specialization for num=0
9 template <>

10 class factorial_t <0> {
11 public:
12     static const int value = 1;
13 };
14
15 int main () {
16     int x = factorial_t <3>::value; // evaluates to 6
17     int y = factorial_t <4>::value; // evaluates to 24
18     cout << "x=" << x << ", y=" << y << endl;
19 }

Figure A.3: Example of a C++ template metaprogram
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A.3 template metaprogramming

Our examples so far have only hinted at the power of C++ templates. �e compile-
time evaluation performed for template instantiation enables template metapro-
gramming—the use of templates as a Turing-complete language for compile-time
execution (Veldhuizen, 1995; Czarnecki and Eisenecker, 2000). Figure A.3 lists
a simple template metaprogram for computing the factorial of an integer. �is
example utilizes two abilities of templates we have not yet discussed. First, template
classes and functions can be parameterized on primitive types such as integers and
booleans. Second, template classes and functions can be specialized for particular
concrete types or primitive values. �e compiler always prefers these specialized
templates over generic ones, allowing the programmer to customize the behavior
of the template for particular template parameter values.

�e factorial_t class (lines 2–6) is parameterized on the integer num (line 2).
�is class has a single static �eld value, a constant that is initialized using the
familiar recursive de�nition of the factorial function (line 5). Each instantiation of
factorial_t for a speci�c value of num causes the instantiation of factorial_t
for num - 1, and value is assigned the product of these two numbers.

Like any recursive computation, our factorial metaprogram must have a base
case that terminates the recursion. To this end, factorial_t class template is
specialized for the case when num is zero on lines 9–13. �is class sets the value
�eld to one (line 12).

�e programmer can calculate the factorial of any positive integer using the
factorial_t template class. On line 16, the programmer assigns the value of
factorial_t<3> to the variable x, which will be evaluate to 6, and on line 17,
the programmer assigns the value of factorial_t<4> to the variable y, which
will evaluate to 24. �ese values are evaluated at compile time—not run time—by
the recursive instantiation of the factorial_t template, and become constants
in the program.
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