Exploiting Value Locality In
Physical Register Files

Saisanthosh Balakrishnan Guri Sohi
University of Wisconsin-Madison

36t Annual International Symposium on Microarchitecture

Motivation

More in-flight instructions (ILP, SMT)

Need more physical registers
Increase in area, access time, power

Optimized Design Optimized Storage
Access locality: Hierarchical and Late allocation: Virtual-physical registers
register caches Value locality: Physical register reuse

Communication locality: Banked and

clustered design Reduce storage requirements:

1. Exploit register value locality
2. Simplify for common values

Exploiting Value Locality in Physical Register Files

Outline

The property: Value locality in register file
Optimized storage schemes
¢ Results

¢ Conclusion

Exploiting Value Locality in Physical Register Files

Value Locality

Locality of the results produced by all dynamic instructions

1. Identify the most common results
2. Locality in the results produced (register writes)

3. Duplication in register file

Exploiting Value Locality in Physical Register Files

Value Locality

10 most common values in some SPEC CPU2000 benchmarks

bzip2 crafty gap gcc gzip mcf ammp art

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
4831843632 7 2 4 4 5368778784 5368710000 2
5368712376 3 81 4831839248 32 5 2560 4.59187e+18
62914560 5369648560 5 3 2 4831863760 1884672376 4.58549e+18
65536 8 5369767936 52 3 10 3584 3
5368712432 2 8 -1 5368758224 32 6656 5370448344
32 5369777344 3 59 16 2 5632 32

2 6 4 7 -1 49 48 7

3 5368862128 16 5 8 -1 14848 10

0 and 1 are most common results on all benchmarks
Exploiting Value Locality in Physical Register Files 5

Value Locality

Locality in all results produced (register writes)

60% m" ' ek

50% # Consider valid registers only

40% _
y 4 Many registers could hold the

30% | same value
20%
10% % Duplication in register file

0%

Percentage of values written to registers
already present in the physical register file (80, 128, 160 regs.)

Exploiting Value Locality in Physical Register Files

30%
25%
20%
15%
10%

5%

0%

Value Locality

Duplication of values in physical register file

% Value being held in n registers
- (n-1) duplicate registers

4 Number of duplicate registers
depends on register lifetime

¥ 60% to 85% of duplication
because of 0 and 1

of duplicate registers =
of valid physical registers — # of unique values in the register file

Exploiting Value Locality in Physical Register Files

Observations

1. Many physical registers hold same value

Reuse physical registers
Instructions with same result mapped to one physical register
First proposed by [Jourdan et al. MICRO-31]
Reduced storage requirements

2. 0’'s and 1’'s are most common results

Optimized storage for common values
Registerless Storage
Extended Registers and Tags
Simplified micro-architectural changes

Exploiting Value Locality in Physical Register Files

Outline

Value locality in register file

¢ Exploiting it: Optimized storage schemes
+ Physical Register Reuse
+ Registerless Storage
+ Extended Registers and Tags

¢ Results

¢ Conclusion

Exploiting Value Locality in Physical Register Files

Physical Register Reuse

Many instructions with same result map to one physical register

1. Conventional renaming of destination register
2. On execution, detect if result present in register file
3. Free assigned physical register

4. Remap instruction’s destination register

5. Handle dependent instructions

Register file with unique values = More free registers

Exploiting Value Locality in Physical Register Files

10

Physical Register Reuse

Value
Cache

A

Fetch

Decode

Rename

Queue

Schedule

Reg. Read

Execute

Writeback

Commit

Value cache - to detect duplicate results

% Maps physical register tags to values
% CAM structure, returns tag for a value

¢ Actions to invalidate / add entries

Exploiting Value Locality in Physical Register Files

11

Physical Register Reuse

Value
Cache

A

Fetch | Decode| Rename | Queue [Schedule | Reg. Read | Execute |Writeback | Commit
Reference Counting in Register File |-t 0.
5
< Reference counter for every register |~ Physicat g~
& Increment when mapped | Regi'lseter """" &
& Decrement when freed |t g
& Return to free list when 0 [E)
Exploiting Value Locality in Physical Register Files 12

Physical Register Reuse

Value
Cache

A

Fetch | Decode| Rename | Queue |Schedule | Reg. Read |Execute |Writeback | Commit

Handling dependent instructions g

% Update rename map. Remap Physical

instruction’s destination register ~-~-~--------Reg_-il-Ste"""""- ------ 9
e =

Exploiting Value Locality in Physical Register Files 13

Physical Register Reuse

Value
Cache
Fetch | Decode| Rename | Queue |Schedule | Reg. Read |Execute [Writeback |Commit
Handling dependent instructions 0. Alias
9 Table
S
% Re-broadcast new destination register Physical |9
tag —..Ragister...|.q-
File |8
o
% Re-broadcast <invalid src tag>. <
Lookup alias table on register read -
Exploiting Value Locality in Physical Register Files 14

Physical Register Reuse

Reduced register requirements

Avoids register write of duplicate values

Non-trivial micro-architectural changes
+ Value Cache lookup, Alias Table indirection, Reference counts
4+ Recovering from exceptions

¢ Remapping of destination register requires re-broadcast

Exploiting Value Locality in Physical Register Files

15

Outline

Value locality in register file

Optimized storage schemes
+ Physical register reuse
4+ Registerless Storage (0's & 1's)
+ Extended Registers and Tags (0's & 1's)

¢ Results

¢ Conclusion

Exploiting Value Locality in Physical Register Files

16

Registerless Storage

Exploit common value locality — state bits for 0 and 1

1. Conventional renaming of destination register
2. On execution, detect if result is 0 or 1
3. Free assigned physical register

4. Remap instruction’s destination register to reserved tags

5. Communicate value directly to dependent instructions

Register file without 0s and 1s =» More free registers

Exploiting Value Locality in Physical Register Files

17

Registerless Storage

Simplified micro-architectural changes
+ No Value Cache, Alias Table, Reference counts

No registers for 0 and 1: Reduced register requirements

Eliminates register reads and writes of 0 and 1

Remapping of destination register requires re-broadcast

Optimize storage for common values.
But, avoid remapping destination register tag

Exploiting Value Locality in Physical Register Files

18

Extended Registers and Tags

Associate physical register with 2-bit extension
+ V: Valid and D: data = {0, 1}

Physical register V|D

¢ Rename: Assign physical register with its extension (if available)

Execute: IfresultisOor1
+ Use extension, if available. Free physical register.
+ Physical register can be assigned to some other instruction

Most 0's and 1's in register extensions

Exploiting Value Locality in Physical Register Files

19

Extended Register and Tags

Extended tagging scheme eliminates remapping

Tag management

Increase tag (N-bits) namespace by 1-bit (MSB)

4 Unmodified free list

¢ To assign a tag:
1. Get tag from free list
2. Get MSB from the corresponding extension’s valid bit

MSB = 0 = {register, extension}
¢ MSB = 1 = {register}

Exploiting Value Locality in Physical Register Files

20

Extended Registers and Tags

Register write operation Never used
e
MSB =0 Physical register 0|D
Result '= {0, 1}
MSB = 0 Physical register 1D
Result = {0, 1}
MSB = 1 Physical register V|D

Register read operation

MSB = 1 Physical register V|D
MSB =0 Physical register 1D
MSB = 0 Physical register 0D

Exploiting Value Locality in Physical Register Files

Extended Registers and Tags

¢ Simplified micro-architectural changes

Extended registers hold 0's and 1’s
& Better design

Some common values use physical registers

Exploiting Value Locality in Physical Register Files

22

Outline

Value locality

Optimized storage schemes

4 Results

4+ Performance — more in-flight instructions
+

+ Reduced register traffic

¢ Conclusion

Exploiting Value Locality in Physical Register Files

23

Performance

Relative performance improvement with increased instruction window

Register Reuse (0-c Alias Table)
20% H
15%
N i
=
T
8 10%
o _
n
5%
0%
XA RS S SR EAEE I N IR E SRR R
N 8 ¢ 905 4 25 £ a® gomagggegg T
Qo o g S S © 8§ é o = ">-_<' Q_. e
-

Exploiting Value Locality in Physical Register Files 24

Performance

Relative performance improvement with increased instruction window

o Register Reuse (1-c Alias Table) Register Reuse (0-c Alias Table)
20/o_ O [|
15%
10%
5%
o
3 0%
0 -
Q
o
D 5%
N > o X 5§ &2 32 9 £ @9 0o T g ® @ T X g o (=
B B8 5 P ERG S5V 28553523 5
10% & 5 S € ® 2 0o ES =2 E E g 0 3 &
o 8 B 3
-15%

Exploiting Value Locality in Physical Register Files 25

Performance

Relative performance improvement with increased instruction window

IR 2 E AL AR 2 b 2 2R W 4 =y

20% O Register Reuse (0-c Allas Table) 4

15%

10%

5%

o

3 0%

q, —

@

o

P59
N c @ T X £ ()] (22
g = o = O £ o >
B g° g 9 O T 3@

0% § 8 2L tia

(7
-15%

Exploiting Value Locality in Physical Register Files 26

Performance

Relative performance improvement with increased instruction window

RS TR AL LIRS b d WL P TL L I LD e ——ee—srer— - s me = - = =gy~

20% O Registerless Storage O Register Reuse (0-c Alias Table)
. .] [|

15%]

10% - .

[n

Speedup
[
[
[]
[W
|
(L1
O
[1
| |
L | T
L] M
1
[]
[0
- N
[[I
LT N
([1N
(N

[[N

CaE g3 SEsESsERE2EELE3REIREESY D
10% N © © O D 2 - € >E2¢g €« @ 2 0 0 5 &8 3 3 ®
8 5 5 8§ ER® 28EgIEPLAELS
© S > ® g & o = X 2 g £
N
-15%

Exploiting Value Locality in Physical Register Files 27

%0

%01
%02

%0¢

bzip2 |
crafty

ozip
mcf
parser
perl
twolf

vortex
vpr

S9|14 1915169y |eJISAUd Ul AJIjeD0T anjeA buniojdx3

ammp
applu
apsi

art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim

wupwise

int-avg

fp-avg

8¢

%0

obe.101S SSo|19315169Y UM uoionpad 9lIm 1915160y

gcc
gzip
mcf
parser
perl
twolf
vortex

vpr

ammp
applu
apsi

art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim

wupwise

int-avg

fp-avg

obe.101S SSo|1931S169y YiIM uoilpnpad peal 1a1s169y

dljjed| 191s1bay

Conclusions

Value locality
+ Observe duplication in physical register file
+ Significant common value locality

Optimization schemes
+ Physical Register Reuse
+ 0's and 1's: Registerless Storage and Extended Registers and Tags

¢ Benefits
+ Reduced register requirements
+ Reduced register traffic
+ Power savings, better design

Exploiting Value Locality in Physical Register Files

29

Questions

Comparison

Physical Reg. Reuse

Reg.less storage

ERT

Detect Value cache Identify {0, 1} Identify {0, 1}

Exploit Reuse register holding Free register Write 0 or 1 to extension,
the same value. Free reg. if available. Free register

Handle Update rename map. Update rename map.

dep instns Alias table or Re-broadcast Re-broadcast {0, 1}

Handle Recover ref. counts, alias

exception | table, value cache

Outcome | Reg. File with unique Reg. File without 0, 1 0, 1 in extensions

values

Exploiting Value Locality in Physical Register Files

31

Simulation Methodology

¢ Alpha ISA. SimpleScalar based.
+ Nops removed at the front-end
+ Register r31 not included in value locality measurements

Detailed out-of-order simulator
+ 4-wide machine, 14-stage pipeline, 1-cycle register file access
+ Base case: 128 physical registers, 256 entry instruction window

+ Instruction and data caches
% 64KB, 2-way set associative, 64-byte line size, 3-cycle access
% L2 is 2MB unified with 128-byte line size, 6-cycle access

¢ Benchmarks
+ SPEC CPU2000 suite (12 int and 14 fp benchmarks)
+ Reference inputs run to completion

Exploiting Value Locality in Physical Register Files

32

Performance

Relative performance improvement with increased instruction window
Register Reuse (1-c Alias Table)

20%] H
15% |
10% |
5%_

0%

5%
C T X Q O
10%. é 2% § 2355
? % ? 2ag &
15% @ =

Exploiting Value Locality in Physical Register Files

;

33

