
Parallelism in the Front-End

Parallelism in the Fr ont-End

Paramjit Ober oi
Gurindar Sohi

Univer sity of Wisconsin –Madison

International Symposium on Computer Architecture

June 10, 2003

Parallelism in the Front-End 1 / 29

Sequential Front-Ends

• Sequential Fetch
• Fetch contiguous block of instructions starting at PC
• Hard to fetch across discontinuities in the same cycle

• Taken branches
• Cache-line boundaries

• Discontinuities are frequent

• Must fetch across discontinuities for high performance

PC

Parallelism in the Front-End 2 / 29

Fetching Across Discontinuities

• Code layout optimizations
• Effective, but limited
• Programs have complex control flow

• Trace Cache
• Significant space overhead
• Poor performance on large instruction working sets

• Collapsing Buffer
• Complex Hardware
• Trace Cache performs better

PC

Parallelism in the Front-End 3 / 29

Wide Fetch v/s Parallel Fetch

• Wide Fetch
• Fetch long contiguous blocks of instructions
• Hard to construct long contiguous blocks

• Parallel Fetch
• Fetch multiple discontiguous blocks of instructions
• Individual blocks can be small
• More blocks => higher throughput

PC

PC1 PC2 PC3 PC4

Parallelism in the Front-End 4 / 29

Parallel Fetch

• Multiple PCs
• Each PC is the start of a fragment of the instruction stream

• Multiple Sequencers
• Sequence through instructions in program order
• Similar to a sequential fetch unit
• Each sequencer is assigned a fragment

• Multiple fragments are fetched in parallel

PC1 PC2 PC3 PC4

Parallelism in the Front-End 5 / 29

Benefits of P arallel Fetc h

• Throughput not limited b y individual sequencer s
• Add hardware to increase throughput

• Latenc y Tolerance
• One stall does not block fetch completely
• Stalls are overlapped with fetch of other instructions

• Flexibility
• Fine-grain allocation of fetch bandwidth to threads
• May ease implementation of other techniques

• Dual-path execution, Speculative threads

• Replicated Har dware
• Easier design and verification

Parallelism in the Front-End 6 / 29

Outline

• Introduction

• Parallel Fetch
• Design Overview
• Fragment Selection & Prediction

• Parallel Renaming

• Simulation Results

• Related Work

• Conclusions

Parallelism in the Front-End 7 / 29

Sequential Fetch Unit

• Single sequencer

• Instruction fetch queue buffers instructions

• Branch predictor predicts individual branches

In
st

ru
ct

io
n

C
ac

he

Sequencer Decode
Rename
Execute
Commit

Instruction
Fetch Queue

Branch Predictor

Parallelism in the Front-End 8 / 29

Parallel Fetch Unit

• Fragment predictor predicts future fragments
• Each fragment is assigned a fragment buffer
• Sequencers fetch multiple fragments in parallel

• Instructions from oldest fragment are placed in the IFQ
• Instructions enter the IFQ in program order
• No changes to rest of the pipeline

In
st

ru
ct

io
n

C
ac

he
Sequencers Fragment Buffers

Fragment

Decode
Rename
Execute
Commit

Instruction
Fetch Queue

Buffers

Predictor

Parallelism in the Front-End 9 / 29

Fragments

• Fragments
• Defn: A contiguous portion of the dynamic instruction stream
• The entire stream is obtained by concatenating all fragments
• The division can be completely arbitrary

• Unlike traces, tasks, streams, ...

• Identical to Traces in this paper
• Simplifies evaluation

In
st

ru
ct

io
n

C
ac

he
Sequencers Fragment Buffers

Fragment

Decode
Rename
Execute
Commit

Instruction
Fetch Queue

Buffers

Predictor

Parallelism in the Front-End 10 / 29

Fragment Selection and Prediction

• Selection
• Similar to previous techniques (tasks, traces)
• More details in paper

• Prediction
• Path-based prediction [Jacobson et al., MICRO 1997]
• 95% prediction accuracy

• Characteristics
• Maximum size: 16 instructions
• Average size:10-12 instructions
• Typical working set sizes are small (< 500 fragments)

Parallelism in the Front-End 11 / 29

Performance Intuition

• Sequencers fetch fragments far ahead of rest of the pipeline

• Steady State: Just-in-time fragment construction
• 84% fragments are constructed in advance
• Compare: 87% traces hit in the trace cache

• Performance of Trace Cache
• Storage efficiency of Instruction Cache

In
st

ru
ct

io
n

C
ac

he
Sequencers Fragment Buffers

Decode
Rename
Execute
Commit

Instruction
Fetch Queue

Buffers

Fragment
Predictor

Parallelism in the Front-End 12 / 29

Outline

• Introduction

• Parallel Fetch

• Parallel Renaming
• Motivation
• Design Overview

• Simulation Results

• Related Work

• Conclusions

Parallelism in the Front-End 13 / 29

The IFQ Bottleneck

• Instructions are renamed in-order
• Delay in constructing a fragment affects all future fragments
• Example: Branch misprediction, Cache miss

• Rename rate is low, even though fetch rate is high
• Serialization exposes latencies

In
st

ru
ct

io
n

C
ac

he
Sequencers Fragment Buffers

Decode
Rename
Execute
Commit

Instruction
Fetch Queue

Buffers

Fragment
Predictor

Parallelism in the Front-End 14 / 29

Parallel Renaming

• Rename multiple fragments simultaneously
• Replicate rename units
• All renamers operate in parallel

• Must rename instructions out-of-order
• How?

Fragment Buffers

Buffers

Rename

In
st

ru
ct

io
n

W
in

do
w

Execute
Commit

Fetch

Parallelism in the Front-End 15 / 29

Out-of-Or der Renaming—Pr oblem
P

ro
gr

am
 O

rd
er

Fragment 1

I1 R1=R4+R5 R1 mapped to P4

Reg Map
R4 → P2
R5 → P3

Fragment 2

I2 R2=R1+1

Reg Map
R4 → P2
R5 → P3
R1 → P4

• I1 writes to R1
• Create mapping R1→P4

• I2 reads R1
• Use mapping R1→P4

• If I2 is renamed before I1?

Parallelism in the Front-End 16 / 29

Out-of-Or der Renaming—Solution
P

ro
gr

am
 O

rd
er

Fragment 1

I1 R1=R4+R5 R1 mapped to P4

Reg Map
R4 → P2
R5 → P3

Fragment 2

I2 R2=R1+1

Reg Map
R4 → P2
R5 → P3
R1 → P4

• Speculate
• Predict Frag 1 writes to R1
• Create mapping R1→P4

• Rename
• Use predicted mapping

when renaming I2
• Use pre-allocated register

when renaming I1

Parallelism in the Front-End 17 / 29

Out-of-Or der Renaming—Details

• Three predictions f or eac h fra gment
• Length of the fragment
• Registers written by the fragment (live-outs)
• Instructions corresponding to live-out values

• Stage 1: Serialized, but fast
• Allocate ROB slots
• Allocate physical registers to all live-outs
• Forward new mappings to future fragments

• Stage 2: Multiple fragments in parallel
• Rename instructions as usual
• Use pre-allocated physical registers for live-outs
• Insert into ROB

• Similar to Skipper [Cher et al., MICRO 2001]

Parallelism in the Front-End 18 / 29

Live-out Prediction

• Live-outs are predictable
• Fragments are fixed sequences of instructions

(in the absence of self-modifying code)

• Record live-outs when a fragment is seen
• Use recorded values as predictions

• Predictor
• 4K entries, 2-way set associative
• 98% accuracy

• Size: 42KB
• 84 bits per entry

Registers: 64, Instructions: 16, Tag: 4

• Size can be reduced by using more complex encoding
Most fragments have only 4–6 live-outs

Parallelism in the Front-End 19 / 29

Mispredictions

• Detecting Mispredictions
• After a fragment is renamed, check predicted live-outs
• Check fragment length

• Overprediction OK

• Recovery
• Squash all future fragments
• Selective re-execution can also be used

Fragment Buffers

Buffers

Rename

In
st

ru
ct

io
n

W
in

do
w

Execute
Commit

Fetch

Parallelism in the Front-End 20 / 29

Outline

• Introduction

• Parallel Fetch

• Parallel Renaming

• Simulation Results
• Front-End Throughput
• Performance
• Sensitivity to Cache Size

• Related Work

• Conclusions

Parallelism in the Front-End 21 / 29

Simulated Configurations

• 16-wide processor, 256 entry window, 64KB L1, 1MB L2
• Fetch unit is a bottleneck

• W16 — Sequential, 16-wide
• 64KB instruction cache
• stop at taken branches and cache-line boundaries

• TC — Trace Cache
• 2-way set associative
• Space split equally between TC and I-Cache

• Performs better than allocating all space to TC
• 32KB TC + 32KB I-cache

• TC2x — Trace Cache with 2x cache size
• 64KB TC + 64KB I-cache

Parallelism in the Front-End 22 / 29

Simulated Configurations (contd.)

• Parallel Fr ont-End
• 16 fragment buffers (1KB)
• Sequencers are identical to W16 (except their width)

• PF — Parallel Fetch
• PF-2x8w: 2 sequencers, 8-wide each
• PF-4x4w: 4 sequencers, 4-wide each

• PR — Parallel Rename
• PR-2x8w: 2 sequencers, 2 renamers, 8-wide each
• PR-4x4w: 4 sequencers, 4 renamers, 4-wide each

• Branc h Predictor
• All mechanisms—W16, TC, PF/PR—use a trace predictor
• TC & PF/PR have identical trace/fragment selection

Parallelism in the Front-End 23 / 29

Fetch and Rename Rate

• High Fetch Rate
• 20% more than TC, 49% more that W16

• PF has low rename rate
• Despite a high fetch rate

• PR increases rename rate by 13%
• Still, large gap between fetch and rename rate

W16 TC TC2x PF-2x8w PF-4x4w PR-2x8w PR-4x4w4

5

6

7

8
In

st
ru

ct
io

ns
 p

er
 C

yc
le

Fetch
Rename

Parallelism in the Front-End 24 / 29

Performance

• 9–12% better than W16 on average

• PR-2x8w 5% better than TC on average
• Equivalent to TC2x with only half the space
• 10–20% better than TC on large programs

(crafty, gcc, perl, vortex)

• PR increases performance by 0–6%

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr Avg-5

0

5

10

15

20

25

30
S

pe
ed

up
 o

ve
r

W
16

 (
%

)
TC
TC2x

PF-2x8w
PR-2x8w
PF-4x4w
PR-4x4w

Parallelism in the Front-End 25 / 29

Sensitivity to Cache Size

• Increase cache misses by reducing cache size
• W16 and TC - performance deteriorates rapidly
• PF & PR performs robustly across a range of sizes

• 40–60% faster on average for small cache sizes
• Parallelism hides L1 miss latency

W16 (64 KB)

8 16 32 64 128
L1 Instruction Storage (KB)

-40

-30

-20

-10

0

10
S

pe
ed

up
 o

ve
r

W
16

 -
 6

4
K

B
 (

%
)

W16
TC
PR-2x8w
PR-4x4w

Parallelism in the Front-End 26 / 29

Outline

• Introduction

• Parallel Fetch

• Parallel Renaming

• Simulation Results
• Front-End Throughput
• Performance
• Sensitivity to Cache Size

• Related Work

• Conclusions

Parallelism in the Front-End 27 / 29

Related Work

• Wide Fetch
• Code Relayout [many schemes]
• Trace Cache [Peleg, many others]
• Collapsing Buffer [Conte, et al.]

• Trace Selection and Prediction
• Multiscalar, Other Speculative MT architectures
• Trace Cache [Rotenberg et al., Patel et al.]
• Path-based Prediction [Jacobson el al.]

• Renaming
• Out-of-Order Renaming [Stark et al.]
• Skipper [Cher et al.]

• Alpha 21464
• Fine grained allocation of fetch resources to threads

Parallelism in the Front-End 28 / 29

Conc lusions

• High band width f etch
• Wide fetch is difficult due to discontinuities
• Parallel fetch is an alternative

• Parallel Fetc h and Rename
• Higher throughput than a Trace Cache
• Robust performance across a wide range of cache sizes

• Better fit f or the future
• High performance
• Replicated hardware
• Larger programs, Smaller low-latency caches

Parallelism in the Front-End 29 / 29

Simulation Parameters

Width Fetch,decodeandcommitatmost16 instructionspercycle

Functional Units 16 integer ALUs, 4 integer multipliers,
4 floating point ALUs, 1 floating point multiplier,
4 load/store units

In-flight Instructions 256 entry instruction window
128 entry load/store queue

L1 Caches
(Insn & Data)

64K, 2-way set-associative,
1 cycle access time, 64b blocks

L2 Cache
(Unified)

1M, 4-way set-associative,
10 cycle access time, 128 byte blocks

Memory 100 cycle access time

Trace Predictor 64K entry primary table
16K entry secondary table
D=9, O=4, L=7, C=9

