Instruction Fetch
using
Multiple Sequencers

Paramijit Oberoi
Gurindar Sonhi

University of Wisconsin - Madison

August 19, 2002

The 2002 International Conference on Parallel Processing
Vancouver, Canada

m Qut-of-Order Fetch using Multiple Sequencers u Slide
1/26

Problem: Instruction Stream Discontinuties

Instruction Cache

‘E
-

Discontinuties in the instruction stream
 Taken Branches
e Cache Line Boundaries

Discontinuties limit fetch throughput

Solutions
e Remove discontinuties
 Handle discontinuties

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
2/26

Known Solutions

* Remove Discontinuties

- » Cache Layout

Example: Trace Cache
h BN = - Code Layout

Example: Software TC, Dynamo

| | Handle Discontinuties

|
: P e Collapsing Buffer
| | |

Combine — NI

m Qut-of-Order Fetch using Multiple Sequencers u Slide
3/26

4 Wide Fetch is Inefficient

 Example: Trace Cache

Trace 1 l
5 cycles 20 cycles (12 instructions)
Trace2 |, l
Time - Fetch

Execute

e Consecutive traces execute concurrently (almost)
* |[nstructions are executed in dataflow order
e But they are fetched serially

* A few critical instructions are needed first
* Wide fetch also fetches the intervening instructions

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
4/ 26

Analogy:

4 Out-of-Order Fetch

* |nstructions are not needed in sequential order

e Can we fetch instructions in a more efficient order?

Out-of-Order Execution

Out-of-Order Fetch

Uses execution
resources more efficiently

Use fetch bandwidth
more efficiently

Tolerates long latencies

Tolerate fetch delays

Higher execution
throughput

Achieve high fetch
throughput

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
5/26

4 Multiple Instruction Sequencers

* Wide Fetch
e Fetch a large contiguous block of instructions

PC

e Multiple Fetch
e Fetch discontiguous blocks from multiple locations

PC PCj PCy4

PCl 2

: > - ————

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
6 /26

Benefits of Multiple Sequencers
Fetch throughput not limited by width of single sequencer

Latency Tolerance

* One cache miss does not block all sequencers
e Overlap cache-miss latencies

Flexibility
* Not limited to sequential fetch
* Fine-grain allocation of fetch bandwidth to threads

* May ease implementation of many techniques
e Dual-path execution
e Speculative threads

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
7126

Design Detalls

m Qut-of-Order Fetch using Multiple Sequencers u Slide
8/ 26

Single Sequencer

Instruction Decode
Sequencer > Fetch Queue :> Rename

Execute
Commit

Instruction Cache

Branch Predictor

m Qut-of-Order Fetch using Multiple Sequencers u Slide
9/26

Multiple Sequencers

Sequencers Trace Buffers

| Instruction
’ — :> Fetch Queue

16 buffers

i i

Trace Predictor

Instruction Cache

Trace predictor predicts future traces

Each sequencer is assigned a trace to fetch

Multiple sequencers operate in parallel
 |-Cache has multiple banks

Decode
Rename
Execute
Commit

m Qut-of-Order Fetch using Multiple Sequencers

Slide
10/ 26

Trace Buffers

o Sequencers Trace Buffers
S ™ —
c | | Instruction Decode
LC) —> B ::> Fetch Queue :|I> Rename
S ™ ™ | Execute
S| | 1 16 buffers Commit
— I
@ } |
Trace Predictor
e Each sequencer can write to any trace buffer
* Instructions from oldest trace are placed in the IFQ
e Steady State: Just-in-time trace construction
e Storage efficiency of Instruction Cache
* Performance of Trace Cache

m Qut-of-Order Fetch using Multiple Sequencers u Slide
11/ 26

Trace Reuse

Sequencers Trace Buffers

| | Instruction Decode
> :> Fetch Queue :> Rename

| Execute
16 buffers Commit

i i

Trace Predictor

Instruction Cache

* Reuse traces instead of constructing them again
 Like a small trace cache

e 20%-70% traces can be reused with only 16 trace buffers
* Reduced I-cache traffic
* Potential performance & power benefits

m Qut-of-Order Fetch using Multiple Sequencers u Slide
12/ 26

Trace Selection & Prediction)

Call/Return/SysCall

>8 instructions Uncond Br

16 instructions

* Previously known techniques

* Predictor: Breach [PhD Thesis], Jacobson et.al. [MICRO 1997]
* 95% accuracy on average

* Trace selection heuristics
 Maximum size Is 16 instructions
* End traces at Call/Return/SysCall
* End traces at Unconditional Branchs if TraceSize > 8
e Limit number of potential starting points - reduce working set
e TraceSize > 8 increases average trace length

m Qut-of-Order Fetch using Multiple Sequencers u Slide
13/ 26

_

Trace Characteristics)
Dynamic Average Dynamic Traces Contributing
Benchmark Instructions Traces Trace Size Traces 95% instructions
Integer
bzip2 8822 M 1819 12.79 690 M 109 (6%)
crafty 4265 M 7541 12.02 355 M 909 (12%)
gap 1246 M 9074 10.70 117 M 972 (11%)
gcc 2016 M 38180 11.26 179 M 7165 (19%)
gzip 3367 M 1942 12.06 279 M 58 (3%)
mcf 260 M 1424 0.84 26 M 132 (9%)
parser 4203 M 6496 10.35 406 M 692 (11%)
Floating Point
ammp 5491 M 2932 13.11 419 M 332 (11%)
equake 1443 M 2182 11.10 130 M 356 (16%)
lucas 3689 M 1090 15.68 235 M 130 (7%)
mesa 2845 M 2543 11.30 252 M 110 (4%)
* Average Trace Size ~ 10-12 instructions
* Less than 1000 traces contribute to 95% dynamic instructions
® except gcCcC
%
m Qut-of-Order Fetch using Multiple Sequencers u Slide

14/ 26

Performance Evaluation

m Qut-of-Order Fetch using Multiple Sequencers u Slide
15/ 26

Configurations

16-wide processor, 256 entry instruction window
e 64K L1, 256K L2

W16 — conventional 16-wide fetch
 stop at taken branches and cache-line boundaries

MS-2x8w — Multiple Sequencers
e Two 8-wide sequencers
16 trace buffers of 16 instructions each

TC — Trace Cache

e 2-way set associative, 16 instructions per trace
e 32K (512 lines) + 32K I-cache

* |-cache + TC performs better than just TC

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
16/ 26

4 Performance (without reuse) A
o 10 W16
£
=
S 0.9
% 0.8
i mTC
m MS-2x8w
0.6- bzip2 crafty gap gcc gzip mcf parser ammp equake lucas mesa
Performance without Reuse
e 5% - 15% speedup over W16 on most benchmarks
e Performance similar to Trace Cache
* More efficient utilization of cache space (gcc)
- /
m Qut-of-Order Fetch using Multiple Sequencers u Slide

17126

4 |-Cache Traffic (without reuse)
2.5+

S 207

815

% 1.0 Committed

"~ 0.5+ OW16
mTC
m MS-2x8w

bzip2 crafty gap gcc gzip mcf parser ammp equake lucas
I-Cache Traffic without Reuse

* Independent of cache-line size

e 20% increase over W16

mesa

e Number of instructions fetched from the I-Cache

Avg

m Qut-of-Order Fetch using Multiple Sequencers

Slide
18/ 26

Effect of Reuse on I-Cache Traffic

2.5+
2.0
©
()
<
L
Q 1.5+
2]
&
B 1.0 Committed
B
£
0.5+
O W16
mTC
0 W MS-2x8w
gzip mcf parser ammp equake
I-Cache Traffic without Reuse
2.5+
2.0
©
(O]
<
O
3 1.5+
0
S
‘§ 1.0 Committed
B
£
0.5+
oOW16
mTC
0 H MS-2x8w
gzip mcf parser ammp equake
I-Cache Traffic with Reuse
m Qut-of-Order Fetch using Multiple Sequencers u Slide

19/ 26

~

Normalized Execution Time

Normalized Execution Time

-

Effect of Reuse on Performance

=
o

o
bl

o
i

o
i

0TI

bzip2 crafty gap gcc gzip mcf parser ammp equake lucas mesa Avg
Performance without Reuse
1.0
0.9+
0.8+
0.7+
0.6—
bzip2 crafty gap gcc gzip mcf parser ammp equake Ilucas mesa Avg

Performance with Reuse

W16

mTC
B MS-2x8w

W16

mTC
B MS-2x8w

)

Out-of-Order Fetch using Multiple Sequencers

Slide

20/ 26

4 Latency Tolerance
o 1.2
£
|_
% 1.1+
b
Tg 1.0 W16 (64K)
2 —W16
\ :1|\-/|CS-2X8W
0.9 8K 16K 32K 64K
Instruction Cache Size
* |Increase cache misses by reducing cache size
* W16 and TC - performance deteriorates rapidly
* MS performs robustly across a range of sizes
* MS is 20% faster on average for small cache sizes
N\

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
21/ 26

Conclusion

High bandwidth fetch
* EXisting solutions attempt wide fetch
* Multiple fetch is also an alternative

Multiple Sequencers

e Not limited by instruction stream discontinuties

e Performance of Trace Cache, without wasted storage
e More latency tolerant than existing techniques

Better fit for the future
e Flexible allocation of fetch resources to threads

* Robust across a wide range of cache miss rates
(Smaller caches, Large working sets)

* May make other optimizations easier
(Dual-path execution, Speculative threads)

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
22 /26

Instructions Fetched

Instructions Fetched

2.57]

2.0

P
T

=
o
|
I

2.07]

1.57

0.57]

Backup: I-Cache Traffic

 bzip2

crafty

gap

gcc gzip mcf parser ammp equake
Benchmarks

lucas

mesa

Average_

B bzip2

crafty

gap

gcc gzip mcf parser ammp equake

Benchmarks

lucas

mesa

Average

Out-of-Order Fetch using Multiple Sequencers

Normalized Execution Time

Backup: Performance

1.2
1.157 B - M
£ 1.1
=
S 1.05
5
[8] —
e 1.0
Lu —
' 0.957]
N
©
E 0.97
2
0.85 HmTC
H MS-1x16w
0.8 B MS-2x8w
' O MS-4x4w
| I MS-8x2w
0.75 bzip2 crafty gap gcc gzip mcf parser ammp equake lucas mesa Average
Benchmarks
1.057 -
1.0 — -
0.957 —
0.9-1] [] (]
0.85
HTC
0.8 B MS-1x16w
' B MS-2x8w
O MS-4x4w
_] MS-8x2w
0.75 bzip2 crafty gap gce gzip mcf parser ammp equake lucas mesa Average
Benchmarks
Out-of-Order Fetch using Multiple Sequencers u Slide

24/ 26

4 Backup: Latency Tolerance
1.2
é 1.157]
% 1.1
% 1.057
g
g 107 —W16
....Tc
0.957 "mg%\?vw
MS-4x4w
MS-8x2w
0.9 8K 16K 32K 64K
Instruction Cache Size
* Increase cache misses by reducing cache size
* W16 and TC - performance deteriorates rapidly
* MS performs robustly across a range of sizes
* MS is 20% faster on average for small cache sizes
_

m Qut-of-Order Fetch using Multiple Sequencers u

Slide
25/ 26

Backup: Simulation Parameters

Width

Fetch, decode and commit at most 16 instructions per ¢y

Functional Units

16 integer ALUs, 4 integer multipliers,
4 floating point ALUs, 1 floating point multiplier,
4 |load/store units

In-flight Instructions

256 entry instruction window
128 entry load/store queue

L1 Caches 64K, 2-way set-associative,

(Insn & Data) 1 cycle access time, 64b blocks

L2 Cache 256K, 4-way set-associative,

(Unified) 10 cycle access time, 128 byte blocks
Memory 100 cycle access time

Trace Predictor

64K entry primary table
16K entry secondary table
D=9, O=4, L=7, C=9

m Qut-of-Order Fetch using Multiple Sequencers u Slide

26 / 26

\

cle

