Instruction Fetch using Multiple Sequencers

Paramjit Oberoi Gurindar Sohi

University of Wisconsin - Madison

August 19, 2002

The 2002 International Conference on Parallel Processing Vancouver, Canada

Problem: Instruction Stream Discontinuties

Instruction Cache

- Discontinuties in the instruction stream
 - Taken Branches
 - Cache Line Boundaries
- Discontinuties limit fetch throughput
- Solutions
 - Remove discontinuties
 - Handle discontinuties

Known Solutions

Remove Discontinuties

- Cache Layout
 Example: Trace Cache
- Code Layout
 Example: Software TC, Dynamo

Handle Discontinuties

Collapsing Buffer

Wide Fetch is Inefficient

Example: Trace Cache

- Consecutive traces execute concurrently (almost)
 - Instructions are executed in dataflow order
 - But they are fetched serially
- A few critical instructions are needed first
 - Wide fetch also fetches the intervening instructions

Out-of-Order Fetch

- Instructions are not needed in sequential order
- Can we fetch instructions in a more efficient order?

Analogy:

Out-of-Order Execution	Out-of-Order Fetch
Uses execution resources more efficiently	Use fetch bandwidth more efficiently
Tolerates long latencies	Tolerate fetch delays
Higher execution throughput	Achieve high fetch throughput

Multiple Instruction Sequencers

- Wide Fetch
 - Fetch a large contiguous block of instructions

- Multiple Fetch
 - Fetch discontiguous blocks from multiple locations

Benefits of Multiple Sequencers

- Fetch throughput not limited by width of single sequencer
- Latency Tolerance
 - One cache miss does not block all sequencers
 - Overlap cache-miss latencies
- Flexibility
 - Not limited to sequential fetch
 - Fine-grain allocation of fetch bandwidth to threads
 - May ease implementation of many techniques
 - Dual-path execution
 - Speculative threads

Multiple Sequencers

- Trace predictor predicts future traces
- Each sequencer is assigned a trace to fetch
- Multiple sequencers operate in parallel
 - I-Cache has multiple banks

Trace Buffers

- Each sequencer can write to any trace buffer
- Instructions from oldest trace are placed in the IFQ
- Steady State: Just-in-time trace construction
 - Storage efficiency of Instruction Cache
 - Performance of Trace Cache

Trace Reuse

- Reuse traces instead of constructing them again
 - Like a small trace cache
- 20%-70% traces can be reused with only 16 trace buffers
 - Reduced I-cache traffic
 - Potential performance & power benefits

Trace Selection & Prediction

	Call/Return/SysCall
>8 instructions	Uncond Br
16 instructions	5

- Previously known techniques
 - Predictor: Breach [PhD Thesis], Jacobson et.al. [MICRO 1997]
 - 95% accuracy on average
- Trace selection heuristics
 - Maximum size is 16 instructions
 - End traces at Call/Return/SysCall
 - End traces at Unconditional Branchs if TraceSize > 8
 - Limit number of potential starting points reduce working set
 - TraceSize > 8 increases average trace length

Trace Characteristics

Benchmark	Dynamic	Traces	Average	Dynamic	Traces Contributing
	Instructions		Trace Size	Traces	95% instructions
Integer					
bzip2	8822 M	1819	12.79	690 M	109 (6%)
crafty	4265 M	7541	12.02	355 M	909 (12%)
gap	1246 M	9074	10.70	117 M	972 (11%)
gcc	2016 M	38180	11.26	179 M	7165 (19%)
gzip	3367 M	1942	12.06	279 M	58 (3%)
mcf	260 M	1424	9.84	26 M	132 (9%)
parser	4203 M	6496	10.35	406 M	692 (11%)
Floating Point					
ammp	5491 M	2932	13.11	419 M	332 (11%)
equake	1443 M	2182	11.10	130 M	356 (16%)
lucas	3689 M	1090	15.68	235 M	130 (7%)
mesa	2845 M	2543	11.30	252 M	110 (4%)

- Average Trace Size ~ 10-12 instructions
- Less than 1000 traces contribute to 95% dynamic instructions
 - except gcc

Configurations

- 16-wide processor, 256 entry instruction window
 - 64K L1, 256K L2
- W16 conventional 16-wide fetch
 - stop at taken branches and cache-line boundaries
- MS-2x8w Multiple Sequencers
 - Two 8-wide sequencers
 - 16 trace buffers of 16 instructions each
- TC Trace Cache
 - 2-way set associative, 16 instructions per trace
 - 32K (512 lines) + 32K I-cache
 - I-cache + TC performs better than just TC

- 5% 15% speedup over W16 on most benchmarks
- Performance similar to Trace Cache
- More efficient utilization of cache space (gcc)

- Number of instructions fetched from the I-Cache
 - Independent of cache-line size
- 20% increase over W16

Latency Tolerance

- Increase cache misses by reducing cache size
 - W16 and TC performance deteriorates rapidly
 - MS performs robustly across a range of sizes
- MS is 20% faster on average for small cache sizes

Conclusion

- High bandwidth fetch
 - Existing solutions attempt wide fetch
 - Multiple fetch is also an alternative
- Multiple Sequencers
 - Not limited by instruction stream discontinuties
 - Performance of Trace Cache, without wasted storage
 - More latency tolerant than existing techniques
- Better fit for the future
 - Flexible allocation of fetch resources to threads
 - Robust across a wide range of cache miss rates (Smaller caches, Large working sets)
 - May make other optimizations easier (Dual-path execution, Speculative threads)

Backup: Latency Tolerance

- Increase cache misses by reducing cache size
 - W16 and TC performance deteriorates rapidly
 - MS performs robustly across a range of sizes
- MS is 20% faster on average for small cache sizes

Backup: Simulation Parameters

Width	Fetch, decode and commit at most 16 instructions per cycle
Functional Units	16 integer ALUs, 4 integer multipliers, 4 floating point ALUs, 1 floating point multiplier, 4 load/store units
In-flight Instructions	256 entry instruction window 128 entry load/store queue
L1 Caches (Insn & Data)	64K, 2-way set-associative, 1 cycle access time, 64b blocks
L2 Cache (Unified)	256K, 4-way set-associative, 10 cycle access time, 128 byte blocks
Memory	100 cycle access time
Trace Predictor	64K entry primary table 16K entry secondary table D=9, O=4, L=7, C=9