Speculative Data-Driven Multithreading

!'- (an implementation of pre-execution)

Amir Roth and Gurindar S. Sohi
HPCA-7
Jan. 22, 2001

"DDMT", Amir Roth, HPCA-7

Pre-Execution

= Goal: high single-thread performance

= Problem: parchitectural latencies of “problem” instructions (PIs)
= Memory: cache misses, Pipeline: mispredicted branches

= Solution: decouple parchitectural latencies from main thread
= Execute copies of PI computations in parallel with whole program
= Copies execute PIs faster than main thread — “pre-execute”
= Why? Fewer instructions
= Initiate Cache misses earlier
= Pre-computed branch outcomes, relay to main thread

= DDMT: an implementation of pre-execution

"DDMT", Amir Roth, HPCA-7

Pre-Execution is a Supplement

= Fundamentally: tolerating non-execution latencies (pipeline, memory)
requires values faster than execution can provide them

= Ways of providing values faster than execution
= Old: Behavioral prediction: table-lookup
= + small effort per value, - less than perfect (“problems”)
= New: Pre-execution: executes fewer instructions
= + perfect accuracy, - more effort per value

= Solution: supplement behavioral prediction with pre-execution
=« Key: behavioral prediction must handle majority of cases
= Good news: it already does

"DDMT", Amir Roth, HPCA-7 3

Data-Driven Multithreading (DDMT)

= DDMT: an implementation of pre-execution
« Data-Driven Thread (DDT): pre-executed computation of PI

= Implementation: extension to simultaneous multithreading (SMT)
= SMT is a reality (21464)
= Low static cost: minimal additional hardware
= Pre-execution siphons execution resources
= Low dynamic cost: fine-grain, flexible bandwidth partitioning
= Take only as much as you need
= Minimize contention, overhead

= Paper: Metrics, algorithms and mechanics
= Talk: Mostly mechanics

"DDMT", Amir Roth, HPCA-7

Talk Outline

= Working example in 3 parts
= Some details
= Numbers, numbers, numbers

"DDMT", Amir Roth, HPCA-7

Example.1 Identify PIs

PC INST

_ I3 | Idq r1, O(rl)
= Running example: same as the paper I5 | br I1

= Simplified loop from EM3D

STATIC CODE

DYNAMIC INSN STREAM

= Use profiling to find PIs
I1 | beqgri, 112

v

= Few static PIs cause most dynamic “problems”

= Good coverage with few static DDTs dt fO. 16(r1

"DDMT", Amir Roth, HPCA-7 6

Example.2 Extract DDTs

PC INST

110 | Idg r1, O(rl)

l PC INST 111 | br I1

110: [110 [Idq r1, O(r1) 11 beqri, 112

12 [1dq r2, 8(r1) 12 |1dg r2, 8(rl)

A A A A

E Ejeiqf 1rz,1 16‘1(02) I3 | beq r2, 110
= Examine program traces DDTC (sta‘tric') 14 | Idt 0, 16(r1)
= Start with PIs I5 | Idt f1, 16(r2)
—cli 16 | Idt f2, 24(r1)
= Work backwards, gather backward-slices 7 Tmalt F. £ 13
= Eventually stop. When? (see paper) I8 | subt f0, f3, f0
19 | stt f0, 16(rl)
—110 | Idqg r1, O(r1)
= Pack last N-1 slice instructions into DDT 111 [brI1
—_ . . I1 |beqril, 112
= Use first instruction as DDT trigger 12 | Idg r2, 8(rl)
= Dynamic trigger instances signal DDT fork 13 | beq r2, 110
14 | Idt fO, 16(r1)
= Load DDT into DDTC (DDT$) I5 | Idt f1, 16(r2)

"DDMT", Amir Roth, HPCA-7 7

Example.3 Pre-Execute DDTs

PC INST
110 | Idg r1, O(rl)
111 | brI1

= Main thread (MT)

MT

l PC INST
[10: 110 | ldg r1, O(r1)

= Executed a trigger instr? -
- Fork DDT (parch) l DD['C (static)

PC INST

= MT, DDT execute in parallel _

DD

= DDT initiates cache miss
= “Absorbs” latency

beq r1, 112

= MT integrates DDT results
= Instr’s not re-executed — reduces contention
= Shortens MT critical path
= Pre-computed branch avoids mis-prediction

"DDMT", Amir Roth, HPCA-7 8

Details.1 More About DDTs

= Composed of instr’s from original program PC INST
. . . 110: 110 [Idq r1, 0(r1)
= Required by integration 12 [Ida r2. 8(rl)
i inctr’ I3 | beq r2, 110
= Should look like normal instr’s to processor T2 it 1. 16(r2)

|II

= Data-driven: instructions are not “sequentia
= No explicit control-flow
= How are they sequenced?
= Pack into “traces” (in DDTC)
PC INST

= Execute all instructions (branches too) 110: 110 TIda rL O(rD)

= Save results for integration 110 | Ida r1, O(r1)

110 |Idgrl, 0(rl)

110 | Idgrl, O(rl)

] 12 Idcj r2, 8(r1)
No runaway threads, better overhead control 13 Tbeq ra. 110

= Contain” any control-flow (e.g. unrolled loops) I5 | Idt f1, 16(r2)

"DDMT", Amir Roth, HPCA-7 9

Details.2 More About Integration

= Centralized physical register file Erqﬁlr 0(rl)

= Use for DDT-MT communication idg ri. 0(r1)
Idcj 2, 8(r1)

= Fork: copy MT rename map to DDT
= DDT locates MT values via lookups
= "Roots” integration

= Integration: match PC/physical registers to
establish DDT-MT instruction correspondence

« MT “claims” physical registers allocated by DDT
= Modify register-renaming to do this

rl

More on integration: implementation of squash-reuse [MICRO-33]

"DDMT", Amir Roth, HPCA-7 10

Details.3 More About DDT Selection

Very important problem
Very important problem

Fundamental aspects
= Metrics, algorithms
= Promising start

= See paper

Practical aspects
= Who implements algorithm? How do DDTs get into DDTC?
= Paper: profile-driven, offline, executable annotations
= Open question

"DDMT", Amir Roth, HPCA-7

11

Performance Evaluation

SPEC2K, Olden, Alpha EV6, —O3 —fast
= Chose programs with problems
SimpleScalar-based simulation environment

DDT selection phase: functional simulation on small input
DDT measurement phase: timing simulation on larger input
= 8-wide, superscalar, out-of-order core
= 128 ROB, 64 LDQ, 32 STQ, 80 RS (shared)
= Pipe: 3 fetch, 2 rename/integrate, 2 schedule, 2 reg read, 2 load
= 32KB I$/64KB D$ (2-way), 1MB L2$ (4-way), mem b/w: 8 b/cyc.
DDTC: 16 DDTs, 32 instructions (max) per DDT

"DDMT", Amir Roth, HPCA-7 12

Numbers.1 The Bottom Line

Cache misses 25
= Speedups vary, 10-15% 2

= DDT “unrolling”: increases
latency tolerance (paper)

parser ncf = gzip "em3d’ mst
Branch mispredictions *
25
= Speedups lower, 5-10% 20
= More PIs, lower coverage 15
= Branch integration 10

= perfect branch prediction 5
o T N B

Effects mix

"DDMT", Amir Roth, HPCA-7

Numbers.2 A Closer Look

= DDT overhead: fetch utilization 100 |
= ~5% (reasonable) 80 _

= Not completed: a little late

=« Fewer MT fetches (always) %0
= Contention zg
= Fewer total fetches o
m EarIy branch resolution T mefl T vprl T mstl Teon.b " gzip.b 'em3d.b
= DDT utility: integration rates £ ¢ B meTeD
= Vary, mostly ~30% (low) - u
= Completed: well done ; "

20
= Input-set differences _ j I
= Greedy DDTs, no early exits | 0 .

mcfl ~ vprl = mstl " eonb ' gzip.b 'em3d.b

"DDMT", Amir Roth, HPCA-7 14

Numbers.3 Is Full DDMT necessary?

“2()

? 25 T VL LILIIVII

f 20 ¥ NO INTEGRATION

; 15 ; NO DATA DRIVEN SEQUENCING
2 10

-5

) 0

])

2 5

i

micfl vpr mst.

= How important is integration?
= Important for branch resolution, less so for prefetching

= How important is decoupling? What if we just priority-scheduled?
= Extremely. No data-driven sequencing — no speedup

"DDMT", Amir Roth, HPCA-7 15

Summary

= Pre-execution: supplements behavioral prediction
= Decouple/absorb parchitectural latencies of “problem” instructions

= DDMT: an implementation of pre-execution
= An extension to SMT
=« Few hardware changes
=« Bandwidth allocation flexibility reduces overhead

= Future: DDT selection
= Fundamental: better metrics/algorithms to increase utility/coverage
= Practical: an easy implementation

= Coming to a university/research-lab near you

"DDMT", Amir Roth, HPCA-7 16

