Multiple Threads and Future-Generation
Architectures

Guri Sohi

Overview

e Thread types
e Supporting threads
e Opportunities provided by threads

o Will not talk about why technology trends favor
underlying hardware capable of supporfing
multiple tThreads

o wire delays

o ease of design

o eqase of verification

o eqse of "adaptability”

Slide

What is a thread?

e A sequence of instr uctions
estate (r eqgisters, memory)

Slide

Thread types

e [raditional” threads

e|ndependent (non-speculativ e) program
fragments

eSpeculativ e threads
o control-driven
o helper/scout/data-driven

Slide

Issues with Threads

oGr ain size
o[Nr ead management (spawning, execution, ..)
eSyNnchr onization

Slide

Traditional Threads

oDif ferent programs (processes)

eMultithr eaded single program (lightweight
processes, kernel threads)

o fypically programmer specified
o] ypically very coarse grain (1K-10K+ instructions)

eScheduled b y OS (dispatcher) on underlying
hardware platform

o heavy weight

e Paradllel execution increases system throughput but
does not decrease single program execution time

Slide

Independent Program Fragments

e Carved from single program either by programmer
or (pardllelizing) compiler

o E.Q., iterations of a DOALL loop
eMedium fo lar ge grain -- 100- 1K+ instructions

oP arallel execution can improve single program
execution time

eHar d to extract automatically

Slide

Independent Program Fragments -- Observations

e Start with sequence of instructions in a total
(control-driven) order

oCr eate threads which execute in a partial order

eMaintain o verall total order

o respect original ordering of observable events (e.g..
dependences) in thread creation

Slide

Speculative Threads

Ratfionale: use speculation to overcome barriers to extraction
of fradifional (independent) threads

e Threads whose effect is not architectural without
other events

eUseful w hen more traditional (independent)
threads can’t be extracted from program

Slide

Speculative Control-Driven Threads

eConsider o verall (dynamic) program execution
order

o traversal of static program CFG
eDivide Info m ultiple pieces

eConsider each piece a “speculativ e thread”

o Ordered speculafive threads re-create total program
order

o threads could execute in parallel using confrol and data-
dependence speculafion

- N0 guarantees of control and datfa independence

Slide
10

Example

for (indx = O; indx < BUFSIZE; indx++) {
/* get the symbol for which to search */
symbol = SYMVAL (buffer[indx]);

/* do a linear search fo rthe symbol in the list */
for (list = listhd; list; list = LNEXT(list) {
/* if symbol already present, process entry */
if (symbol == LELE(list)) {
process(list);
break;
}
}

/* if symbol not found, add it to the tail */
if (! list) {
addlist(symbol);

Slide
11

Speculative Control-Driven Threads

e Speculative threads execute, buffering speculative
state

eConfir mation of correct speculation allows
speculafive state fo become architectural

eExample: Space-time computing in MAJC

Slide
12

Speculative Data-driven Threads: Motivation

ePr ogram execution is typically processing of low-
latency instructions, with pauses for long-latency
events (e.g., cache misses, branch mispredicts)

o\What if long-latenc y events did not cause stalls?
o processing of low-latency instructions
eHO w tO folerate long latencies?
o initiate long-latency events earlier
- fradifional solution -- scheduling -- full of problems

Slide
13

Speculative Data-driven Threads

e|solate computation leading to long-latenc y event
o use speculation to facilitate isolation
o use speculation to frade off size vs. accuracy

e|solated computation is speculativ e data-driven
thread

o data-driven because instructions of thread not configuous
iNn original program order

eExecute speculativ e thread in parallel with normal
control-driven thread (original program)

Slide
14

Motivation Example

RETIREMENT
STREAM

Pre-execution

FORK
sub
program
branch TIME
mispredict 1 TIME
BRANCH
OUTCOME

AVOID MISPREDICTION

cache
miss

Slide
15

Speculative Data-driven Thread: Example

BACKWARD SLICE

| da r8, -8432(r29) cnoveq r18,r1,r0

cnoveq rlg8,r1,r0 and r4,r5,r5

| di rl, -19952(r29) sl | 5,4, 1r5

s4addq rle,r8,r8 addq ro,r5,r5

st | r31, O(r8) | dg r7,8(rb5)
Cand r4,r5,r5 F

sl | r5 4, r5 —

| dq r23, -19408(r 29) follow dependences backward

| dI r27, -19944(r 29) from criterion instruction

addl rl,1,r1

addq ro, r5,r5 both data and control
(bis r31, r31,r0

st | rl,-19952(r29)

| dg r7,8(r5) -« Criterion Instruction

Slide
16

Speculative Data-driven Threads

» TRIGGER: point in the program from which slice will be forked
e frigger selection is a research topic
o frade-off between latency tolerance and slice size

Trigger

S\

Slide

Criterion 17

Positioning of Data-driven Threads

Unverified : Verified
|
Speculative |;
DDT !
: Application
0 Code
:
|
|
|
|
Software

Slide
18

Supporting Threads

o[hr ead management: initiating threads and
providing thread context

eSyNchr onization, if need be

o Helper threads may not need values o be passed
architecturally

Slide
19

Initiating and Managing Threads

ePr ovide pointer to starfing instruction plus
sequencing method
oPr ovide working thread context
o |s a “spare” register file available?
o Can the appearance of a spare register file be provided?
o How are initial values of reqisters provided?

e Managing threads and thread initiation influenced
by how working thread contfext can be provided

Slide
20

Synchronization

e How are values passed between threads, and how
are they synchronized?

o\/ adlues passed through memory namespace;
synchronized through synchronization namespace
(in memory)

o high overhead

o petter solution in single-chip environment, with different
types of threads?

o\/ adlues passed through register namespace;
synchronized through reservations on registers

o E.g., speculative threads in multiscalar

o\\Vnat other options?
o efficient synchronization key to fine-grain threads

Slide
21

Example: Threads in Multiscalar

Create mask $4,

Targ Spec Branch, Branch
Targl OUTER
Targ2 OUTERFALLOUT

$8,$17,$20,$23

OUTER:
addu
Id
move

beq
INNER:

Id

bne

move
jal
i
SKIPCALL:
Id
bne
INNERFALLOUT:

release

bne

move

jal
SKIPINNER:

release

bne
OUTERFALLOUT:

$20, $20, 16
$23, SYMVAL-16($20)
$17, $21

$17, $0, SKIPINNER

$8, LELE($17)
$8, $23, SKIPCALL

$4, $17
process
INNERFALLOUT

$17, NEXTLIST($17)
$17, $0, INNER

$8, $17
$17, $0, SKIPINNER

$4, $23
addlist

$4
$20, $16, OUTER

Forward Bits

Stop Bits

o

Stop
Always

Slide
22

Opportunities Provided by Multiple Threads/Sequencers

eUNnder stand performance tricks used in fraditional
(single-threaded) architectures

o [nsfruction scheduling
o Dealing with branches

Slide
23

Instruction Scheduling

eOper ation in program can only be initiated when
the operation is “seen” by the execution hardware

o[raditionally, operations “seen” by hardware when
(single) sequencer reaches operation

o segquencer traversing static program representation

eStatic scheduling used o mo ve operation “earlier”
o “earlier” posifioning in executable allows earlier initiation

Slide
24

Sequencer/Scheduling Interplay

 Single sequencer Stetc

» Schedule is facilitated by placing
Instructions in static representation
e move Instructions “up”

« statically orchestrating schedule
very important

Dynamic

i

Slide
25

Sequencer/Scheduling Interplay

« Multiple sequencers

e Schedule is a ensemble of
pipelined schedules

e moving instructions “up” less
important

« statically orchestrating schedule
less important

Static

—l

—ill

—ill

™

Dynamic

Slide
26

Artifacts of Single Sequencers

« Wide instructions: to sequence through (and schedule)
more than one operation at a time

e Predicated instructions: work around branches in
scheduling

e poor man’s way of getting “multiple” flows of control

e Non-trapping instructions: to allow “early” placement of
high-latency instructions

« Software Pipelining: to allow overlapped execution of
multiple loop iterations

Less important with multiple sequencers

Slide
27

Sequencers and Register Sets

Dynamic Sequencing Model

[
g Single, Narrow Single, Wide Multiple
S Mult :

: : : ultiple physical,
=2 Single Single register Renamed single Iloogical
= set registers .
o Narrow J register set
% Single

. Various forms
8 Wide
0p]
O . Multiple, small,
= Multiple)
o P register sets
)]

With multiple register sets, need to increase the
size of each set becomes less important

Slide
28

Questions

eCan w e freat different thread types uniformly?
eHO W tO represent threads in executable?

eHO W to inifiate threads effi ciently?

eHO W to deal with variable context availability?
eHO w TO synchronize effi ciently?

eHO W tO0 emulate performance optimizations for
single sequencers with multiple sequencers?

Slide
29

