
Multiple Threads and Future-Generation
Architectures

Guri Sohi

Slide
2

Overview

• Thread types
• Supporting threads
• Opportunities provided by threads
• Will not talk about why technology trends favor

underlying hardware capable of supporting
multiple threads

O wire delays
O ease of design
O ease of verification
O ease of “adaptability”

Slide
3

What is a thread?

• A sequence of instr uctions
• state (r egisters, memory)

Slide
4

Thread types

• “T raditional” threads
• Independent (non-speculativ e) program

fragments
• Speculativ e threads

O control-driven
O helper/scout/data-driven

Slide
5

Issues with Threads

• Gr ain size
• Thr ead management (spawning, execution, ..)
• Synchr onization

Slide
6

Traditional Threads

• Dif ferent programs (processes)
• Multithr eaded single program (lightweight

processes, kernel threads)
O typically programmer specified

• T ypically very coarse grain (1K-10K+ instructions)
• Scheduled b y OS (dispatcher) on underlying

hardware platform
O heavy weight

• Parallel execution increases system throughput but
does not decrease single program execution time

Slide
7

Independent Program Fragments

• Carved from single program either by programmer
or (parallelizing) compiler

O E.g., iterations of a DOALL loop

• Medium to lar ge grain -- 100-1K+ instructions
• P arallel execution can improve single program

execution time
• Har d to extract automatically

Slide
8

Independent Program Fragments -- Observations

• Start with sequence of instructions in a total
(control-driven) order

• Cr eate threads which execute in a partial order
• Maintain o verall total order

O respect original ordering of observable events (e.g.,
dependences) in thread creation

Slide
9

Speculative Threads

Rationale: use speculation to overcome barriers to extraction
of traditional (independent) threads

• Threads whose effect is not architectural without
other events

• Useful w hen more traditional (independent)
threads can’t be extracted from program

Slide
10

Speculative Control-Driven Threads

• Consider o verall (dynamic) program execution
order

O traversal of static program CFG

• Divide into m ultiple pieces
• Consider each piece a “speculativ e thread”

O Ordered speculative threads re-create total program
order

O threads could execute in parallel using control and data-
dependence speculation

- no guarantees of control and data independence

Slide
11

Example

for (indx = 0; indx < BUFSIZE; indx++) {
 /* get the symbol for which to search */
 symbol = SYMVAL(buffer[indx]);

 /* do a linear search fo rthe symbol in the list */
 for (list = listhd; list; list = LNEXT(list) {
 /* if symbol already present, process entry */
 if (symbol == LELE(list)) {
 process(list);
 break;
 }
 }

 /* if symbol not found, add it to the tail */
 if (! list) {
 addlist(symbol);
 }
}

Slide
12

Speculative Control-Driven Threads

• Speculative threads execute, buffering speculative
state

• Confir mation of correct speculation allows
speculative state to become architectural

• Example: Space-time computing in MAJC

Slide
13

Speculative Data-driven Threads: Motivation

• Pr ogram execution is typically processing of low-
latency instructions, with pauses for long-latency
events (e.g., cache misses, branch mispredicts)

• What if long-latenc y events did not cause stalls?
O processing of low-latency instructions

• Ho w to tolerate long latencies?
O initiate long-latency events earlier

- traditional solution -- scheduling -- full of problems

Slide
14

Speculative Data-driven Threads

• Isolate computation leading to long-latenc y event
O use speculation to facilitate isolation
O use speculation to trade off size vs. accuracy

• Isolated computation is speculativ e data-driven
thread

O data-driven because instructions of thread not contiguous
in original program order

• Execute speculativ e thread in parallel with normal
control-driven thread (original program)

Slide
15

Motivation Example

TIME

BRANCH

LOAD

branch
mispredict

cache
miss

RETIREMENT
STREAM

TIME

BRANCH

BRANCH

FORK

BRANCH
OUTCOME

AVOID MISPREDICTION

sub
program

Pre-execution

Slide
16

Speculative Data-driven Thread: Example

lda r8,-8432(r29)
cmoveq r18,r1,r0
ldl r1,-19952(r29)
s4addq r16,r8,r8
stl r31,0(r8)
and r4,r5,r5
sll r5,4,r5
ldq r23,-19408(r29)
ldl r27,-19944(r29)
addl r1,1,r1
addq r0,r5,r5
bis r31,r31,r0
stl r1,-19952(r29)
ldq r7,8(r5)

cmoveq r18,r1,r0
and r4,r5,r5
sll r5,4,r5
addq r0,r5,r5
ldq r7,8(r5)

Criterion Instruction

follow dependences backward
from criterion instruction

both data and control

BACKWARD SLICE

Slide
17

Speculative Data-driven Threads

• TRIGGER: point in the program from which slice will be forked
• trigger selection is a research topic

O trade-off between latency tolerance and slice size

Trigger

Criterion

Slice

program

Slide
18

Positioning of Data-driven Threads

Application
Code

Speculative
DDT

Unverified Verified

Software

Slide
19

Supporting Threads

• Thr ead management: initiating threads and
providing thread context

• Synchr onization, if need be
O Helper threads may not need values to be passed

architecturally

Slide
20

Initiating and Managing Threads

• Pr ovide pointer to starting instruction plus
sequencing method

• Pr ovide working thread context
O Is a “spare” register file available?
O Can the appearance of a spare register file be provided?
O How are initial values of registers provided?

• Managing threads and thread initiation influenced
by how working thread context can be provided

Slide
21

Synchronization

• How are values passed between threads, and how
are they synchronized?

• V alues passed through memory namespace;
synchronized through synchronization namespace
(in memory)

O high overhead
O better solution in single-chip environment, with different

types of threads?

• V alues passed through register namespace;
synchronized through reservations on registers

O E.g., speculative threads in multiscalar

• What other options?
O efficient synchronization key to fine-grain threads

Slide
22

Example: Threads in Multiscalar

F

Fo
rw

ar
d

Bi
ts

Stop
Always

St
op

 B
its

OUTER:

INNER:

SKIPCALL:

OUTERFALLOUT:

bne $17, $0, SKIPINNER

j INNERFALLOUT

INNERFALLOUT:

F

F

move $17, $21

move $4, $23

Branch, Branch

OUTER
OUTERFALLOUT

Targ Spec

Targ1

Targ2

Create mask $4,$8,$17,$20,$23

release $8, $17

beq $17, $0, SKIPINNER

ld $8, LELE($17)
bne $8, $23, SKIPCALL
move $4, $17

ld $17, NEXTLIST($17)

bne $17, $0, INNER

addu $20, $20, 16

ld $23, SYMVAL−16($20)

jal process

jal addlist

bne $20, $16, OUTER

release $4

SKIPINNER:

Slide
23

Opportunities Provided by Multiple Threads/Sequencers

• Under stand performance tricks used in traditional
(single-threaded) architectures

O Instruction scheduling
O Dealing with branches

Slide
24

Instruction Scheduling

• Oper ation in program can only be initiated when
the operation is “seen” by the execution hardware

• T raditionally, operations “seen” by hardware when
(single) sequencer reaches operation

O sequencer traversing static program representation

• Static scheduling used to mo ve operation “earlier”
O “earlier” positioning in executable allows earlier initiation

Slide
25

Sequencer/Scheduling Interplay

• Single sequencer
• Schedule is facilitated by placing

instructions in static representation
• move instructions ‘‘up’’

• statically orchestrating schedule
very important

Static Dynamic

Slide
26

Sequencer/Scheduling Interplay

• Multiple sequencers
• Schedule is a ensemble of

pipelined schedules
• moving instructions ‘‘up’’ less

important
• statically orchestrating schedule

less important

Static Dynamic

Slide
27

Artifacts of Single Sequencers

• Wide instructions: to sequence through (and schedule)
more than one operation at a time

• Predicated instructions: work around branches in
scheduling
• poor man’s way of getting “multiple” flows of control

• Non-trapping instructions: to allow “early” placement of
high-latency instructions

• Software Pipelining: to allow overlapped execution of
multiple loop iterations

Less important with multiple sequencers

Slide
28

Sequencers and Register Sets

Single, Narrow Single, Wide Multiple

Single
Narrow

Single register
set

Renamed
registers

Multiple physical,
single logical
register set

Single
Wide

Various forms

Multiple
Multiple, small,
register sets

Dynamic Sequencing Model

S
ta

tic
 S

eq
ue

nc
in

g
M

od
el

With multiple register sets, need to increase the
size of each set becomes less important

Slide
29

Questions

• Can w e treat different thread types uniformly?
• Ho w to represent threads in executable?
• Ho w to initiate threads efficiently?
• Ho w to deal with variable context availability?
• Ho w to synchronize efficiently?
• Ho w to emulate performance optimizations for

single sequencers with multiple sequencers?

