Register Integration:
A Simple and Efficient Implementation of

!'- Squash Reuse

Amir Roth and Gurindar S. Sohi
University of Wisconsin-Madison

MICRO-33
Dec. 12, 2000

Parsing the Title

= Squash: mis-speculation? abort sequentially later work, fixup, resume
= Problem: re-execute (squashed) mis-speculation independent work

= Reuse: salvage useful squashed results, don’t re-execute instructions

= Implementation: reuse by writing saved value into register
= determine instruction reusability: value-comparison/invalidation

Register Integration:
“Recognize” and “un-squash” results from physical register file
Efficient: more natural “fit” for squash reuse
Simple: no need to read/write register values

"Register Integration”. Amir Roth, MICRO-33 2

Talk Outline

= Motivation and logical basis

= Working example

= Some implementation details
= Short performance evaluation

"Register Integration”. Amir Roth, MICRO-33

Motivation

= Assume Unified Physical Register File (PRF)
= Logical Register Map (LRM) sequentially "manages” PRF

= Conventional mis-speculation recovery
= PR values intact
= LRM restored to prior state, PR’s become “garbage”

= Conventional” reuse
= Allocate new PR, write value into it

m Register Integration: why write? value is already in PR
= To reuse: allocate PR holding squashed result to new instruction

= Modify register-renaming to do this

"Register Integration”. Amir Roth, MICRO-33

Logical Basis for Integration

= Key: must locate PR holding squashed value

= Use a second mapping of PRF

= A second LRM? No
= Implicitly sequential, can't be “searched” using right criteria

= Integration Table (IT): describe each PR using creating instruction
= Operation (PC) and input PR’s
« Valid after squash (valid always)
= Encodes “reusability criteria”

= Renaming + Integration
= Rename an instruction, use LRM to find input PR’s
= Search IT for PR created by same instr. (PC) with same input PR’s
= Find one? Inputs haven’t changed since squash! Integrate!

"Register Integration”. Amir Roth, MICRO-33 5

1 Picture == 4KB

Dyn. Instrs LRM IT Comment
PC INST XY PCI11I2 O E
Al: X=1; 48 | 47 Al: 48 | N Alloc/IT enter
A2: Y =2; 48 | 49 A2: 49| N Alloc/IT enter
A3: if (1X) —148 | 49 A3:| 48 N Predict taken/IT enter
Ad: Y =3; 48 | 50 A4: 50| Y Alloc/IT enter
A5: X++; 51 (50| A5:/48 51| Y Alloc/IT enter
A6: Y++; 51|52 A6:| 50 52| Y Alloc/IT enter
A7: X++; 53|52 A7: 51 53|Y Alloc/IT enter

+ 48 | 49 Squash/IT enable
A5: X++; 5149 | ||~A5:| 48 51| N Integrate/IT disable
A6: Y++; 51|54 »A6:| 50 54 | N No/Alloc/IT enter
A7: X++; 53| 54 »A7: 51 53| N Integrate/IT disable

E = Eligible (can be integrated)
PR cannot simultaneously be mapped by two active instructions

"Register Integration”. Amir Roth, MICRO-33 6

The Tao of Integration

= Definition of “reusable” instruction: inputs unchanged since squash

= Exactly the information IT encodes
PR tags naturally track data-dependences (input changes)
Instructions integrated iff data-dependences intact
No need to read/compare values to perform reusability test
No separate invalidation/dependence-tracking mechanism

"Register Integration”. Amir Roth, MICRO-33

What Integration (Reuse) Accomplishes

Improved performance (first-order effects)
Integrated instructions are complete*
Collapses data dependences
Chains of dependent instr’s can be integrated in a single cycle
Integrated mis-predicted branch recovery begins immediately

Reduced resource consumption/contention

No reservation-stations/scheduling/execution/writeback
Faster branch resolution reduces fetch demand

*Choose to integrate only completed instructions
Simplifies things, doesn't reduce benefit

"Register Integration”. Amir Roth, MICRO-33

Implementation Details

= Requirements of base microarchitecture
= Unified PRF
= Support for load speculation (see why soon)

= Changes/Additions
« IT
= Integration circuit (added to renaming, next slide)
= More PR’s (keep squashed results alive longer)
= Data-paths to LoadQ, StoreQ (see why soon)

= Non-changes
No datapaths to read/write PRF

"Register Integration”. Amir Roth, MICRO-33

Integration Circuit

A 4

A5:

A 4

IT Dyn. Insn LRM FreelList
PCI1I2 0O
A5: X X
'
PCI1I2 O E XY
48 511 Y 48 | 49 54|55
:@:
X v l
PCI1I2 O E PCI1I2 O XY '
48 51| N — |A5:|48 51 5149 54|55

A5:

"Register Integration”. Amir Roth, MICRO-33

10

Other Implementation Issues

= Superscalar integration? Sure
= Same parallel prefix formulation as “plain” renaming
= Check N? dependences for N instructions (PR, not LR)
= N2MZ2if IT is M-way set-associative

= Integrating loads
= PC + PR’s not enough, previous stores are implicit inputs
= Mis-integration: load integrated despite conflicting store
= Add address/value fields to IT, save-from/restore-to LoadQ
= Load speculation mechanism handles conflict after integration
=« "Snoop” IT for conflicts before integration

= More details in paper

"Register Integration”. Amir Roth, MICRO-33

11

Performance Evaluation

SPEC2000 benchmarks, Alpha EV6, -O2 —fast
Simplescalar simulator

8-wide superscalar, 000, speculative, load speculation
256-entry, direct-mapped IT, #PR’s = 64+R0OB+256
32KB 2-way I-Cache, 64KB 2-way D-Cache, 1MB 4-way L2
2 base pipeline configurations
= Current-generation:
= 128 ROB (448 PR’s), 64 LoadQ, 32 StoreQ
= Pipe: 3 fetch, 2 decode/rename, 2 schedule/reg-read, 3 load
= Next-generation: (faster clock, 2MB L2)
= 256 ROB (576 PR’s), 128 LoadQ, 64 StoreQ
= Pipe: 5 fetch, 3 decode/rename, 4 schedule/reg-read, 4 load

"Register Integration”. Amir Roth, MICRO-33 12

Performance vs. Base Microarchitecture

—
N

-
N

-
o

B Current-generation

B Next-generation

Execution Time Saved (%)

gzip vpr gcc mcf crafty parser eon perlbomk gap vortex bzip2 tw olf

o N H (o)) oo
| | | | |

= Integration more effective as microarchitecture more aggressive
= More speculative buffering+longer pipe:
= more instructions completed along mis-speculated paths
= Mmore integrated instructions
= Deeper pipeline, each integrated instruction saves more work

"Register Integration”. Amir Roth, MICRO-33 13

A Closer Look

Current generation microarchitecture, every second benchmark

Vpr Mcf Parser | Perl Vortex | Twolf
Integrated/committed (%) 15.9 6.1 6.5 4.7 1.6 8.6
Integrated/squashed (%) 46.7 24.0 28.3 22.4 7.3 41.4
Fetched instr. saved (%) 6.6 3.7 1.9 1.1 4.8 4.8
Executed instr. saved (%) 15.3 7.0 5.6 4.4 15.1 9.2
Execution Time Saved (%) 8.1 1.1 1.1 0.9 3.1 5.6

4-15% reduction in instructions executed, 1-7% in fetched

= Performance correlated with fetch reduction

= Integrated instructions still fetched (leave “bubbles”)

Some other results

IT size matters a little, IT associativity less (thankfully)

"Register Integration”. Amir Roth, MICRO-33

14

Summary

= Integration: new implementation of squash reuse
= Based on data-dependences, not values/invalidations
Reuse: improves performance, reduces resource contention
Simple: requires only LRM manipulations, no PR reads/writes
Efficient: implementation matches definition of reuse

"Register Integration”. Amir Roth, MICRO-33 15

