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ABSTRACT
Virtual caches have potentially lower access latency and en-
ergy consumption than physical caches because they do not
consult the TLB prior to cache access. However, they have
not been popular in commercial designs. The crux of the
problem is the possibility of synonyms.

This paper makes several empirical observations about the
temporal characteristics of synonyms, especially in caches of
sizes that are typical of L1 caches. By leveraging these ob-
servations, the paper proposes a practical design of an L1 vir-
tual cache that (1) dynamically decides a unique virtual page
number for all the synonymous virtual pages that map to the
same physical page and (2) uses this unique page number to
place and look up data in the virtual caches. Accesses to this
unique page number proceed without any intervention. Ac-
cesses to other synonymous pages are dynamically detected,
and remapped to the corresponding unique virtual page num-
ber to correctly access data in the cache. Such remapping
operations are rare, due to the temporal properties of syn-
onyms, allowing a Virtual Cache with Dynamic Synonym
Remapping (VC-DSR) to achieve most of the benefits of vir-
tual caches but without software involvement.

Experimental results based on real world applications show
that VC-DSR can achieve about 92% of the dynamic energy
savings for TLB lookups, and 99.4% of the latency benefits
of ideal (but impractical) virtual caches for the configurations
considered.

1. INTRODUCTION
Virtual memory and caches are two of the most common

elements of computers today. A processing core generates
virtual addresses, which are translated to physical addresses
so that the appropriate memory accesses can be made. With
Physically Indexed, Physically Tagged (PIPT) caches, a vir-
tual to physical translation is performed, via a TLB, prior to
cache access. This consumes significant power [1], and adds
latency to the cache access. The use of Virtually Indexed,
Physically Tagged (VIPT) caches can hide the latency over-
head. However, it not only still consumes power/energy for
TLB lookups but also could entail more power overhead for
cache lookups due to constraints on the cache organization
(e.g., requiring a larger associativity) [2, 3, 4]. Over the years,
a plethora of techniques have been proposed and deployed to
reduce the latency and energy impacts of the (prior) TLB ac-

cess [5, 6, 7, 8, 9, 10, 11, 12, 13]. However, the basic problem
still remains in physical caches—where a physical address is
used for cache access—especially for L1 caches.

Virtually Indexed, Virtually Tagged (VIVT) caches have
potentially lower access latency and energy consumption than
physical caches because a TLB is consulted only for L1 cache
misses (e.g., 2% of L1 cache accesses). Despite the desirabil-
ity [14, 15], however, virtual caches have not been consid-
ered to be practical. The primary reason is the complications
due to synonyms.

For a variety of reasons [2, 14, 16], multiple virtual pages
can be mapped to the same physical page. The same data
can be placed and looked up later with multiple different vir-
tual addresses, and thus the straightforward use of unmodi-
fied virtual addresses can lead to potentially erroneous data
accesses. Moreover, depending upon the microarchitecture,
additional challenges can arise, e.g., the x86 hardware page
table walk [17, 18], coherence [19], and violations of mem-
ory consistency and of sequential program semantics [16, 20]
(Section 3.6). Several virtual cache designs have been pro-
posed to obviate the overheads of physical caches [2, 15, 16,
19, 21, 22, 23, 24]. However, the plethora of problems com-
plicate the cache design and impair the potential benefits of
virtual caches (Section 4.4 and 5).

This paper describes and evaluates a practical L1 virtual
cache design, called VC-DSR: Virtual Cache with Dynamic
Synonym Remapping. The design leverages the following
temporal properties of synonyms that are quantified in this
paper:

• There are several physical pages with potential synonyms
over the duration of the program. However, in a smaller
window of time, e.g., the duration of a data item’s res-
idence in an L1 cache, the number of physical pages
with potential synonyms is small (e.g., 4).

• The number of synonymous virtual pages mapped to
such physical pages is small (e.g., 2) as well.

• For smaller caches such as L1 caches, only a small frac-
tion (e.g., 1%) of cache accesses are to such physical
pages.

The above empirical characteristics of synonyms suggest
that it is practical to design an L1 virtual (VIVT) cache with
physical (PIPT) caches for lower-levels. Furthermore, data is
cached and looked up with a unique (leading) virtual page,
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Vi, while data from the corresponding physical page resides
in the L1 virtual cache.1 Accesses to the leading virtual page
Vi proceed without intervention, while accesses made to the
same data with a different address, Vj, are remapped to use
Vi instead; dynamic remappings from a non-leading (virtual)
address to a leading address are needed for select accesses,
rather than performing virtual to physical translation, via a
TLB, for every access.

Because synonyms are short-lived in smaller caches, such
remappings are rare for an L1 VC-DSR, and the data struc-
ture used to link Vj to Vi is quite small as well. Thus, VC-DSR
can handle needed remappings in an energy and latency effi-
cient manner, thereby achieving most of the benefits of canon-
ical (but impractical) virtual caches without any modifica-
tions of software. In addition, the use of a unique (leading)
virtual address for all the operations of a virtual cache pre-
vents potential synonym issues, which greatly simplifies the
design of our proposal, as well as the overall memory hierar-
chy.

In this paper:

• We present novel empirical observations for the tempo-
ral behavior of synonyms, based on real world server
and mobile workloads (Section 2).

• We propose VC-DSR, a practical solution to a prob-
lem that has long vexed computer architects: achieving
most of the benefits of virtual caches but without any
software involvement.

• Regarding specific microarchitectural details that are
critical to a viable commercial implementation of any
virtual cache (Section 3.6), we discuss synonym issues
and solutions for VC-DSR.

• Presented experimental results show that VC-DSR saves
about 92% of dynamic energy consumption for TLB
lookups and also achieves most of the latency benefit
(about 99.4%) of ideal (but impractical) virtual caches
(Section 4).

The remainder of this paper is as follows. Section 2 presents
an empirical evaluation of the temporal nature of synonyms.
Motivated by this data, Section 3 presents the overall design
of VC-DSR and details the hardware structures needed to en-
sure correct operation. Section 4 assesses the effectiveness of
VC-DSR. Section 5 presents selected related work, and we
conclude in Section 6.

2. TEMPORAL SYNONYM BEHAVIOR
A variety of common programming and system practices

lead to synonyms [2, 14, 16], and it is well established that
over the execution of an entire program, especially one that
has a lot of OS activity, synonyms are not a rare occurrence.
This has been the primary impediment to the adoption of vir-
tual caches.

Let us call the set of one physical page (PX ) and possibly
multiple virtual pages associated with PX the Equivalent Page
Set (EPSX ), and let C(X) be the cardinality of EPSX , i.e., the

1The leading virtual page at a given time can change in different
phases of program execution.

number of virtual pages in EPSX over the entire duration of
a program’s execution. Since synonyms in a virtual cache
are an actual problem only if a block is cached and accessed
with different addresses during its residence in the cache, the
temporal characteristics of potential synonyms are what is
important. Let TC(X,T) be the temporal cardinality of EPSX ,
i.e., the number of virtual pages that are synonymous with
physical page PX in time interval T. An active synonym for
PX (or the associated EPSX ) occurs when TC(X,T) ≥ 2 in the
time interval T. The time interval T that is of interest is where
one or more lines from the page PX are resident in the cache.

As we shall establish below, the temporal characteristics of
active synonyms do indeed display properties that are amenable
to designing a software-transparent, practical, L1 virtual cache.
To gather the empirical data, we use several real world appli-
cations running on a full-system simulator as we describe in
Section 4.1. Several of the data items below are gathered
using periodic sampling of the contents of a cache. Since
in some cases the samples with different cache organizations
may correspond to different points in a program’s execution,
comparing the absolute numbers of two arbitrary data points
may not be very meaningful; the trends characterizing the
temporal behavior are what we want to highlight. When ab-
solute numbers are appropriate, they are presented without
sampling.

2.1 Number of Pages with Active Synonyms
The first set of data (1) of Table 1 presents the average

number of physical pages with active synonyms. The time
interval T is the time in which data blocks from the corre-
sponding PX reside in the cache of the particular size and thus
it varies with cache size. Both instruction and data caches of
varying sizes are considered. For smaller cache sizes there
are few pages with active synonyms; the average number of
pages with the potential for synonymous access increases as
the cache size increases.

This phenomenon occurs due to two complementary rea-
sons: smaller caches not only contain data from fewer pages,
but all the blocks from a given page are likely to be evicted
from a smaller cache earlier than they would be from a larger
cache. A large 256KB cache contains data from tens or hun-
dreds of pages with the potential for synonyms; the number
for all of memory (not shown) is even larger. The latter con-
firms that there are many EPSs with C(X) ≥ 2, i.e., the po-
tential for synonyms is real. However, for small cache sizes,
such as those one might expect to use for an L1 cache (e.g.,
32-64KB), the number of pages residing in the cache with
TC(X,T) ≥ 2 is small.

Observation 1 (OB1): The number of pages with active
synonyms is quite small for small cache sizes that are typical
of an L1 cache.

2.2 Temporal Cardinality of an EPS
The next set of data (2) of Table 1 presents the average

number of distinct virtual pages in an EPS for which an active
synonym occurs, for different sized caches.2 This number in-

2A blank entry indicates that the corresponding number is not mean-
ingful since there are almost zero pages with active synonyms resi-
dent in the cache.
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(1) Avg. number of physical pages (2) Avg. number of virtual pages (3) Frequency of changes
with active synonyms in an EPS for active synonyms in the LVA (%)

Inst. Cache Data Cache Inst. Cache Data Cache Inst. Cache Data Cache
Size (KB) 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256 32 64 32 64
TPC-H 6 20 57 133 2 5 8 12 2 3 8 32 2 2 2 2 63 57 73 74

SPECjbb2005 0 0 2 22 0 1 2 2 - - 2 2 - - 2 2 69 67 63 56
Memcached 36 87 158 282 52 93 160 284 2 3 12 28 2 2 2 2 4 0 5 5

bzip2 1 12 93 282 0 0 0 0 - 13 23 29 - - - - 70 71 98 98
h264ref 0 0 5 115 0 0 0 1 - - 25 24 - - - - 79 75 82 82
Stream 0 1 23 106 1 1 2 4 - - 4 4 - - 2 2 76 70 70 70

Raytrace 0 0 0 0 7 15 29 57 - - - - 2 2 2 2 100 100 26 26

Table 1: Analysis of EPSs with Active Synonyms in Various Sizes of Caches

creases with cache size, due to longer residence time of a
block (page); it can become quite large for the larger instruc-
tion cache sizes due to shared libraries and kernel interfaces.
However:

Observation 2 (OB2): The average number of virtual
pages mapped to the same physical page, for pages with an
active synonym, in a small cache is quite small.

2.3 Changes in Leading Virtual Address (LVA)
Suppose at some point in time address Vi was the first vir-

tual page in an EPSX and was therefore being used as the
leading virtual address (page number) for the corresponding
physical page PX . Now suppose that after being cached with
Vi, other references were made, and all the blocks from PX
were evicted from the cache. Next time PX was referenced,
virtual address Vj was the leading virtual page for that EPS.
We say that a change in the leading virtual address occurs if
Vj �= Vi.

Table 1, third set of data (3) presents the percentage of
changes in the leading virtual address (LVA). Only pages in
which active synonym accesses occur at least once are con-
sidered. An entry indicates the percentage of time a change in
the LVA occurs; 100 indicates that the LVC always changes
and 0 means that it is always the same. The data indicates
that it is quite common for different virtual addresses from
the same EPS to be the leading virtual addresses at differ-
ent times during the execution of the program. For mem-
cached, the percentage of LVA changes is small. This is
because, due to heavy synonym access activity, lines from
synonym pages are frequently referenced. Thus they are not
replaced, and continue to reside in the cache with the leading
virtual address, even though the additional references may be
made with other virtual addresses. This results in fewer LVA
changes.

Observation 3 (OB3): When multiple virtual addresses
map to the same physical address, always using the same
virtual address to cache the page can be unnecessarily con-
straining.

2.4 Accesses to Pages with Active Synonyms
Table 2 presents the frequency of cache access to physi-

cal pages with active synonyms for different sized instruction
and data caches. There are two sets of data for both instruc-
tion and data caches; each entry is the number of references
per 1000 accesses.

The first set of data (1) is the number of references to cache
blocks contained in pages with active synonyms, using any

Set (1) Set (2)
Size (KB) 32 64 128 32 64 128

Inst.
TPC-H 45 105 161 15 22 55

SPECjbb2005 0 0.1 0.2 0 0.1 0.2
Memcached 502 695 770 282 352 492

Cache bzip2 0.3 2.3 2.9 0.3 2.3 2.9
h264ref 0 0.1 0.3 0 0.1 0.3

Access Stream 0.3 3 28 0.3 0.3 26
Raytrace 0.1 0.1 0.1 0.1 0.1 0.1

Data
TPC-H 48 80 87 9 12 27

SPECjbb2005 2.7 22.8 25.5 2.6 22.7 25.1
Memcached 478 518 530 274 294 295

Cache bzip2 1 1.9 2.3 1 1.9 2.3
h264ref 0.1 0.7 2 0.1 0.7 2

Access Stream 20 24 25 20 24 25
Raytrace 32 93 119 32 93 118

Table 2: Number of References (per 1000) to Pages with
Active Synonyms in Caches

virtual address in an EPS. It is for these references that a vir-
tual cache design may have to take additional steps to ensure
correct operation. The second set (2) is the number of ref-
erences made with a non-leading virtual address Vj, that is
different from the current leading virtual address Vi. These
are the references for which a virtual cache design, that we
describe in Section 3, will have to intervene to remap Vj to Vi
and submit the access with Vi instead of Vj.

The first set of data suggests that the overall percentage of
accesses to cache blocks in pages with active synonyms is
quite small in most cases, especially for smaller cache sizes.
However, in some cases it is quite large. For example, mem-
cached has many references, both instruction and data, to
lines within pages with active synonyms. This is due to heavy
use of shared libraries (e.g., libc and libpthread) and kernel
interfaces/structures (e.g., network communication (TCP/IP),
memory operations, locks, I/O, etc.).3 The number of refer-
ences to blocks in pages with active synonyms increases as
the cache size increases but is still somewhat small in most
(although not all) cases. At first glance, we would expect
the percentage of accesses to synonym pages to be the same
regardless of the cache size. This is true. However, the per-
centage of accesses to active synonyms is smaller as there are
fewer active synonyms in smaller caches.

Looking at the second set of data and comparing an entry
with the equivalent entry in the first set, notice that the en-

3For smaller caches, e.g., 32KB, most of the synonym accesses re-
sult from accessing the kernel virtual address space. About 61% of
memory references occur in the kernel space and about 76% of such
references are for active synonyms.
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tries in the second set are smaller (in some cases by a large
amount) than the entries in the first set. This suggests that, of
the small number of references to pages with an active syn-
onym (1st set), even smaller number of references (2nd set)
are made with a virtual address that is different from the lead-
ing virtual address.

Observation 4 (OB4): Typically only a small fraction
of cache accesses are to cache lines from pages with active
synonyms.

Observation 5 (OB5): In most cases, a very small per-
centage of cache accesses are to cache lines from pages with
active synonyms that are cached with a different virtual ad-
dress.

3. PROPOSED VIRTUAL CACHE DESIGN
3.1 Rationale of Our Proposal

The above empirical observations suggest that it might be
practical to design an L1 virtual cache in which data is cached
with one virtual address, Vi, and synonymous accesses made
to the same data with a different address, Vj, remapped to use
Vi instead. In particular:

• OB1 and OB2 suggest that a structure tracking remap-
ping links [Vj, Vi] can be quite small.

• OB3 suggests that this data structure would need to track
the mappings dynamically, since it is desirable that the
leading virtual address Vi changes during a program’s
execution.

• OB4 and OB5 suggest that the (re)mapping data struc-
ture may be infrequently accessed.

Our proposal: Using these observations as a basis, we
propose a practical virtual L1 cache design, called a Virtual
Cache with Dynamic Synonym Remapping (VC-DSR). At a
very high level, its operation is as follows. Data is cached and
accessed with a (dynamic) unique leading virtual address for
a given physical page. When a virtual address is generated,
hardware structures are consulted to see if the address is a
leading virtual address. If so, the address is used to look up
the virtual cache. Otherwise, the corresponding leading ad-
dress is identified and used to access the virtual cache.

By employing a unique virtual address, the operation of
virtual caches, as well as the overall memory hierarchy, is
greatly simplified. Due to the temporal behavior of synonyms
in smaller caches, VC-DSR can handle such dynamic remap-
pings in an energy and latency efficient manner.

3.2 Design Overview of VC-DSR
Figure 1 gives an overview of the overall microarchitec-

ture: the processor generates virtual addresses (Phase 1 ), the
L1 cache is virtually indexed and tagged (Phase 3 ), and the
lower-level caches are traditional physical caches (Phase 5 ).
Phase 4 is a boundary between a virtual and a physical ad-
dress, and thus the virtual to physical (or physical to virtual)
address translation is performed via a traditional TLB for L1
virtual cache misses (or via an Active Synonym Detection
Table for coherence requests from lower-level caches). In
addition, there are other microarchitectural structures for the
active synonym remapping (Phase 2 ) and detection (Phase
4 ), ensuring the correctness of overall cache operations.
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Figure 1: Schematic Overview of VC-DSR

Basic Operations: VC-DSR uses a unique leading virtual
address for a given physical page not only to place data of
the corresponding page but also to later access the data in an
L1 virtual cache. Thus, conceptually, an Address Remapping
Table (ART) is consulted on every cache access with a virtual
address (Vi)

4 generated by a CPU. It identifies if Vi is a non-
leading virtual address for a given physical page. If so, the
corresponding leading virtual address, Vj, is provided, and Vi
is remapped to Vj for that access. Otherwise, Vi is used to
look up the virtual cache.

Since temporally there are expected to be few accesses to
pages with active synonyms (OB4), the chances for finding
a matching entry in the ART are low, e.g., 0.6%, and thus
most accesses to the ART are wasted. To reduce the number
of such ART accesses, a Synonym Signature (SS) could be
used. The SS is a hashed bit vector based on the virtual ad-
dress (Vi) generated by the CPU and conservatively tracks the
possibility of a match in the ART. If the corresponding bit in
the SS indicates no possibility, e.g., 98% of the time, the ART
is not consulted and Vi is used to look up the cache. Other-
wise, e.g., 2% of the time, the ART is consulted to determine
the correct lookup address (Vi or Vj).

On a cache miss, the virtual address (Vi) is used to access
the TLB, and the corresponding physical page address, Pi, is
obtained. Next, an Active Synonym Detection Table (ASDT)
is searched for an entry corresponding to Pi. A valid entry
indicates that some data from that physical page resides in
the virtual cache. If there is no match, one is created for the
[Pi,Vi] pair, and Vi will be used as the leading virtual page. If

4All virtual addresses include an ASID to address the issue of
homonyms.
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Figure 2: Overview of Entries for Structures Supporting
VC-DSR

there is a match, the corresponding leading virtual page, Vk, is
obtained. If Vi �=Vk, an active synonym is detected, an entry is
created in the ART for the [Vi,Vk] tuple and the corresponding
bit set in the SS. Vk is then used as the lookup address for
references made with Vi, while the [Vi,Vk] tuple is valid in the
ART.

3.3 Details of Structures Supporting VC-DSR
More details of components supporting VC-DSR in each

phase are described next. Figure 2 presents the basic organi-
zation of an entry for each component.

3.3.1 Active Synonym Detection
The Active Synonym Detection Table (ASDT) is a set-

associative array indexed with a physical page number (PPN).
A valid entry in the ASDT tracks (1) whether lines from a
physical page are being cached in the virtual cache and (2)
the leading virtual address being used to cache them, along
with its permission bits. For the former, a counter suffices
for correctness. However, for more efficient evictions (Sec-
tion 3.4.5), employing a bit-vector to identify the individual
lines from the page in the cache may be a better option.

The ASDT is consulted on every L1 cache miss to see if an
active synonym access occurs by comparing the current lead-
ing virtual address and the referenced virtual address, and an
active synonym bit in the entry is set if there is one. In ad-
dition, the ASDT is also consulted to perform the physical
to the (leading) virtual address translation for coherence re-
quests from lower-level caches.

3.3.2 Active Synonym Remapping
The design employs two other structures to efficiently per-

form a remapping between a non-leading and the correspond-
ing leading virtual address, when needed.

The Address Remapping Table (ART) is a small set asso-
ciative cache, indexed with a virtual address generated by a
CPU, whose entries are created when the ASDT detects an
active synonym. A valid entry in the ART tracks a [non-
leading, leading virtual page] tuple, along with the permis-
sion bits of the non-leading page, for an active synonym. On
a match, the ART returns the leading virtual page and the per-
mission bits for the requested (non-leading) virtual address.
The permission check for accesses with a non-leading virtual
address is performed at this point (details in Section 3.6) and
the leading virtual address is used to look up the virtual cache
for the request. The absence of a matching entry in the ART
indicates the lack of an active synonym for that page, i.e., a
virtual address generated by the CPU is the correct lookup ad-
dress. When an active synonym no longer persists, e.g., when

all the cache lines from a physical page are evicted from the
virtual cache, the corresponding entry in the ART has to be
invalidated (details in Section 3.4.5).

Accesses to the ART are unnecessary when the referenced
virtual address is a leading virtual address, i.e., no match in
the ART. A Synonym Signature (SS) is used to elide most
unneeded ART lookups. The SS is a Bloom filter [25], which
is accessed with the virtual address of a request, and a single
bit is read to determine if the ART should be accessed. When
a new ART entry is populated, a bit in the SS is set based
on the hash of the non-leading virtual address for the entry.
Since multiple non-leading virtual addresses can be mapped
to the same bit, each bit in the SS conservatively tracks the
possibility of a match in an ART, and thus false positives are
possible.

To prevent the SS from being overly conservative, a counter
per bit tracks how many entries in the ART are associated
with it; the counter increases/decreases when the correspond-
ing ART entry with the virtual address is populated/invalidated.
The size of the counter is proportional to the number of en-
tries in an ART. It will be quite small (e.g., 4 bits) since an
ART has few (e.g., 16) entries (see OB1 and OB2). As we
shall see in Section 4.2, a small SS (e.g., 256 bits) with 5-bit
counters is sufficient to filter out almost all unneeded ART
lookups.

3.3.3 L1 Virtual Cache
The L1 virtual cache is effectively the same as a traditional

virtual cache, as depicted in Figure 2. ASIDs are employed to
address homonym issues without flushing the cache on con-
text switches. The leading virtual page’s permission bits are
stored with each entry.

3.4 Overall Operation
We describe the overall operation of VC-DSR. Figure 3

illustrates how virtual addresses are used and the needed op-
erations in each phase.

3.4.1 Determining a leading virtual page (LVP)
An access is made with the virtual page number (Vi). Let

us assume this is the first access to data from a physical page
(Pi) (Case 1 ). A leading virtual page (LVP) has not been
determined for Pi (i.e., no matching ASDT entry), and thus
we have an SS miss or an ART miss (if an SS hit occurs due
to the false positive information). Either way, Vi is used to
look up the virtual cache (VC), leading to a VC miss.

The TLB is accessed with Vi to obtain the physical page
number (PPN), and then the ASDT is checked for a matching
entry of the PPN. As this is the first access to Pi, no matching
entry is found. An ASDT entry is chosen as a victim (e.g., an
invalid entry, or a valid entry with the lowest counter value).
For a valid entry victim, operations needed to invalidate the
entry are carried out (Section 3.4.5). The entry is allocated
for the requested physical page Pi. The leading virtual page
field is populated with the Vi and with its permission bits.

The line is fetched from the lower-level(s).5 The corre-
sponding bit in the bit vector of the ASDT entry is set and

5MSHR entries keep the index of the relevant ASDT entry. Hence
no additional ASDT lookups are needed when the response arrives.
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Figure 3: Overall Operations of VC-DSR

the counter is incremented. Then the fetched line (and the
permission bits) is placed in the VC with the leading virtual
address (Vi). A victim line in the VC may need to be evicted
to make place for the new line.

3.4.2 Accesses with a leading virtual page
Further accesses to the physical page (Pi) with the leading

virtual page (Vi) (Case 2 ) proceed without any intervention.
A VC hit proceeds as normal. A VC miss indicates that the
line does not reside in the VC (i.e., true miss) since Vi is the
leading virtual page. Thus, the line is fetched from the lower-
level caches, and then the request is satisfied as discussed
above.

3.4.3 Accesses with a non-leading virtual page
We now consider the first synonymous access (left side of

Case 3 ). Data of the common physical page (Pi) is accessed
with a virtual address synonym (Vk). An active synonym has
not yet been detected for this page. Thus, Vk is used to look up
the virtual cache. Since Vk is not a leading virtual page (LVP),
the access will result in a miss. The TLB is then accessed to
translate Vk (to Pi), a matching entry for the common physical
page (Pi) is found in the ASDT, a new active synonym is de-
tected, and the ART is informed to create a new entry for the
[Vk, Vi] tuple (and the SS is modified accordingly). Any fur-
ther accesses to virtual page Vk will be remapped with Vi via
the ART (right side of Case 3 ). Since the data may actually
reside in the VC with the leading virtual address (i.e., it is a
false miss), the request is resubmitted (replayed) to the VC
with Vi. In this case, the VC hit/miss is handled like accesses
with a leading virtual page.

3.4.4 Coherence Request
A coherence event typically uses physical addresses. Thus,

it is handled as normal for lower-level (PIPT) caches. For co-
herence activities between L2 and virtual L1 caches (Case
4 ), the ASDT has to be consulted to translate a physical ad-
dress to the corresponding leading virtual address. This may
add additional latency and energy overhead. However, such
coherence events between an L2 and a (relatively small) L1

are rare [2]. The ASDT can also be used to shield the VC
from unnecessary VC lookups if an ASDT entry includes in-
formation identifying individual lines from the page present
in the cache (the bit vector).

3.4.5 Entry Eviction of VC-DSR Components
Cache line eviction: On evicting a VC entry, the corre-

sponding ASDT needs to be updated. A matching entry is
always found in the ASDT since at least one line (i.e., the
victim line) from the page was still resident in the VC. The
corresponding bit in the bit vector is unset, and the counter
decremented. If the counter becomes zero, the ASDT entry
can be invalidated.

To find the matching ASDT entry, the PPN is needed, via
a TLB lookup. Thus, on a VC miss, with the straightforward
approach the ASDT and TLB are consulted twice, once each
for the evicted line and the newly fetched line. An alternative
is to keep the index of the relevant ASDT entry with each
line in the VC (e.g., with 8 bits) (see Figure 2) so that the
corresponding ASDT entry for the victim line can be directly
accessed without a TLB (and ASDT) lookup.

ASDT entry invalidation/eviction: A valid ASDT entry
is normally evicted when there is no available entry for a new
physical page. Page information changes or cache flushing
also triggers invalidations of corresponding ASDT entries.
To evict an ASDT entry, it first has to be invalidated (Case
5 ). All lines from the corresponding (victim) page that are
still in the VC have to be evicted. Furthermore, if active syn-
onyms have been observed (a detection bit was set), the map-
pings in the ART are now stale. Thus the relevant ART/SS
entries have to be invalidated/updated (or simply flush all).

ART entry invalidation/eviction: If space is needed in
the ART, a victim entry can be chosen and evicted with-
out correctness consequences as accesses made with a non-
leading virtual address will simply miss (and result in recre-
ation of the ART entry, Case 3 ). However, the correspond-
ing counter/bit in the SS should be updated so that it can
retain its effectiveness. Page information change for non-
leading virtual pages also triggers the invalidation of the re-
lated ART entries.

217



3.5 Design Choices for SS and ART Lookups
In the previous sections, we describe the overall opera-

tions of our proposal by conceptually assuming that a syn-
onym signature (SS) is consulted prior to the phase of look-
ing up the L1 cache. This may lengthen the cache access
path, although the SS is small; we can still expect most of the
power/energy benefits of using virtual caches but perhaps not
the potential latency benefits. However, the SS and ART (if
needed) accesses could be performed in a manner that may
not affect the timing of the actual L1 access, depending upon
the microarchitecture.

Since memory operations typically require additional steps
between an address generation and submission to the L1 cache
(e.g., load/store queue, disambiguation), there are several choices
for where/when the SS and ART are consulted. The SS and
ART can be accessed in parallel with memory disambigua-
tion (Option 1). In practice, the SS can be accessed before
the address generation, based upon the contents of a base (or
segment) register (Option 2). If the address generation is a
multi-step process, the SS could be accessed after intermedi-
ate steps of the process (Option 3). By consulting an SS in
advance (Options 2 and 3) or in parallel with other operations
in the pipeline (Option 1), the ART could be selectively ac-
cessed before L1 cache lookups (or in the pipeline). Option 2
looks appealing since it can be applied to both I and D caches,
and most of the energy and latency benefits can be achieved
without an increase in design complexity. In addition, SS
and ART accesses could be bypassed for store requests (e.g.,
30% of data accesses) because write synonym accesses are
rare [2].

3.6 Other Design Issues
We now discuss several other issues that need to be ad-

dressed for a practical virtual cache design. Most of these
issues also arise in other VC designs.

Page information changes: When page information (e.g.,
mapping and permissions) changes, all the entries correspond-
ing to that page in all the components supporting VC-DSR
need to be invalidated (or updated) to ensure consistency (Sec-
tion 3.4.5). The event is triggered by TLB invalidations, which
potentially requires multiple ASDT lookups to search for an
ASDT entry that has the target virtual page as a leading vir-
tual page. In practice, such events can be filtered out with a
simple filter based on the ASDT information. When a match-
ing entry is found, only the corresponding lines can be selec-
tively evicted from the VC with a bit vector. Thus, this does
not have a significant impact on the effectiveness of our pro-
posal, although such events are not rare [26].

Permission check: Depending on whether an access is to a
leading or non-leading virtual page, the location of checking
(keeping) the page permission bits is different. For the former
case, each line in the VC tracks the permission bits, while an
entry in the ART maintains the permission bits for a non-
leading virtual page. The permission check is done when a
matching entry is found. Once a page permission mismatch
occurs, the request is handled like a cache miss, after carrying
out all the actions for the store to read only page exception
that includes the page information change discussed above.

If the active synonym remapping phase is completely by-

passed for stores (Section 3.5), the ART does not necessarily
need to track permission bits for non-leading virtual pages.
Stores with non-leading virtual addresses will simply miss,
and the permission check will be performed by consulting a
TLB as normal.

Non-cacheable data access: Cacheability of accessed data
is recognized when a corresponding TLB entry is looked up.
VC-DSR consults a TLB only when virtual cache (VC) misses
occur. Thus an access to non-cacheable data triggers an L1
VC miss, increasing the access latency. The overhead (e.g.,
1-2 ns) is a very small portion of the overall latency (e.g.,
50-100 ns for memory reference). Hence, the actual timing
overhead will not be significant even though such accesses
are not rare.

Hardware page-table walk based on physical addresses:
Some architectures (e.g., x86) support a hardware page-table
walker [17, 18]. The PTE may be accessed using a virtual ad-
dress by the OS, and thus may end up in the cache, whereas
it is only accessed using physical addresses by the page table
walker. The key to handling this case is the observation that
if a line (from a physical page) resides in the L1 cache, there
will be a corresponding entry in the ASDT. An access made
with a physical address will consult the ASDT to obtain the
leading virtual address (LVA) with which the block is being
cached, and access the cache (if the block is there) with that
LVA.

Supporting a virtually addressed Load-Store Unit: Us-
ing virtual addresses for a conventional write buffer (or store
queue) can result in a violation of sequential semantics: a
load may not identify the matching latest store due to syn-
onyms, and vice versa. Thus, stale data could be returned
from caches or from a matching older store. In the simi-
lar vein, using virtual addresses for a load queue could po-
tentially violate memory consistency models, when a coher-
ence event, e.g., an invalidation or eviction, occurs in L1
caches, a load that has been carried out (speculatively) for the
corresponding data may need to be identified and replayed.
In some commercial processors, these issues are handled by
finding potentially offending loads by matching the physical
addresses and replaying them. For virtual caches, however,
synonyms can complicate their identification.

Most of the prior literature has not discussed these issues,
and the proposed solution for the former issue may not be
efficient [16]. However, VC-DSR can easily handle all of
them, as follows: the key idea is to employ an LVA as an
alternative to a physical address. Accesses with a non-leading
virtual address always cause VC misses and are eventually
replayed with the LVA via an ART (Case 3 ). Thus, once
a load/store is (speculatively) executed, its LVA is identified
and kept in the load/store queue. The unique LVA of each
load/store is used to find potential violations.

Now we briefly discuss how TLB misses are handled for
stores in the write buffer. One option is to hold the younger
stores in a separate buffer until the TLB miss is resolved. An
alternative would be to restart the program from the offending
store, e.g., by delaying the release of the state in the ROB. A
similar proposal has been made to tolerate late memory traps
[27].

Large pages: For large pages, individually identifying lines
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from the page resident in the L1 virtual cache (VC) is not
practical since the bit vector would be extremely large. How-
ever, keep in mind that a bit vector is simply an optimization
to invalidate lines in the VC before evicting the correspond-
ing ASDT entry. Without precise information about individ-
ual lines, the lines from a page could be invalidated by walk-
ing through the lines in the VC to search for lines from the
page, and using the associated counter to track when the nec-
essary operation is completed (counter is zero). We can mini-
mize the likelihood of this potentially expensive operation by
not evicting an ASDT entry for a large page unless absolutely
necessary (e.g., all candidate entries are for large pages—an
extremely unlikely event).

Supporting H/W Prefetchers: H/W prefetchers employed
by modern processors can be seamlessly integrated with our
proposal. For example, a stride prefetcher and stream buffer
[28, 29] can use the physical address from the translation
caused by a cache miss (i.e., no additional TLB lookups).
Multiple prefetches initiated in a (large) page can also hide
the potential overhead of multiple TLB lookups (or ASDT
lookups if prefetched data is placed in the L1 VC).

3.7 Optimizations
Last LVA Register: Though few, ART accesses can be

reduced even further by exploiting the fact that often succes-
sive references are to the same page (especially true for in-
structions). Similar to the VIBA/PIBA register used for pre-
translation for instruction TLB accesses in the VAX-11/780
[30], we can employ a Last LVA (LLVA) register, which main-
tains the leading virtual address (LVA) for the last page that
was accessed, close to (or within) address generation. Thus
consecutive access to the same page need not consult the
ART.

Kernel Address Space Access: All the distinct processes
globally share kernel code and data structures, and ASIDs
are used to solve the homonym problem. Done naively, this
could lead to multiple entries in the ART. To avoid the as-
sociated overhead, we can use on-the-fly remapping of an
ASID only for accesses to the kernel space; a predefined (or
unique) ASID value is used for such accesses. For the cur-
rent design (x86-64 Linux) supporting 48-bit virtual address,
the OS takes the upper half of the address space and thus the
remapping process can easily be carried out by reading the
48th bit of a virtual address.

3.8 Storage Requirements
The storage requirements for the proposal are quite mod-

est. An over-provisioned ASDT (e.g., 128 entries) requires
2.4KB.6 A 32-entry ART (large given the number of pages
with active synonyms (OB1 and OB2)), along with 256-bit
SS (with 5-bit counters), needs approximately 550B. A 256-
entry ASDT would also imply 8 extra bits with each VC line
if eliminating the TLB access for cache line eviction was de-
sired.

6Half of the storage is taken by a 64-bit bit vector per entry for 4KB
page with 64B lines. To further reduce the overhead, the information
can be maintained in a coarse grained manner, although it could lose
accuracy.

1 2
CPU type AtomicSimple 3GHz, 8-way Out-of-Order

Num. CPU Single-Core

L1 Virtual $ Classic $ Model Ruby 3-level hierarchy
Separate I and D$, 32 KB, 8-way

64B Line, 1ns access latency

L2 Physical $ 4096KB 16-way 256KB, 8-way, 3ns latency

L3 Physical $ None 4096KB, 16-way, 10ns latency

Main Memory 3GB Simple Memory Model, 50ns access latency

Table 3: System Configurations

TPC-H [31] 1-21 Queries, 1GB DB on MonetDB[32]

SPECjbb2005 [33] 2 Warehouses

Memcached [34, 35] Throughput Test, 3GB Twitter Data-set

bzip2, h264ref [36] reference input size

Raytrace [37] mobile input size

Stream (Copy, Add, desktop input size, sequential execution of
Scale, Triad) [37] four different Stream workloads

Table 4: Workloads
4. EVALUATION

We now evaluate the effectiveness of VC-DSR. First, Sec-
tion 4.1 describes the evaluation methodology and workloads.
Then, we evaluate how much dynamic energy consumption
can be saved in Section 4.2, briefly evaluate the latency ben-
efits in Section 4.3 and compare VC-DSR with three other
virtual cache proposals in Section 4.4.

4.1 Evaluation Methodology
We attached modules to simulate our proposal in the Gem5

x86 simulator [38]. To carry out a meaningful study of virtual
caches, especially for synonyms, two essential features have
to be considered for the experimental methodology. First,
the infrastructure needs to support a full-system environment
so that all kinds of memory access, e.g., access to dynami-
cally linked libraries and access to user/kernel address space,
can be considered. Second, the experiments need to be run
long enough to reflect all the operations of a workload and
interaction among multiple processes running on the system.
Detailed CPU models in architecture simulators [38, 39] sup-
porting a full-system environment are too slow, and instru-
mentation tools [40], while relatively fast, provide inadequate
full-system support.

For most of the evaluation, we use a functional CPU model
(AtomicSimple7) running Linux and simulate a maximum of
100B instructions. The default system configurations are pre-
sented in the left column of Table 3. Although this does not
provide accurate timing information, it provides information
regarding all memory accesses and is fast enough to test real
world workloads for a long period. We also evaluate potential
performance impact conservatively by using more detailed
CPU (Out-of-Order) and cache models. The configurations
are presented in the right column of Table 3 and for this we
simulate up to 1B instructions.

We model hardware structures supporting VC-DSR at a
32 nm process technology with CACTI 6.5 [41]. For bench-
marks, we use several real world applications, e.g., DB, server,

7More sophisticated processors may show different instruction
cache access patterns, to some extent, by using diverse techniques
to improve the efficiency of the fetch stage, e.g., fetch/loop buffers,
branch predictors, prefetchers, etc.
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Instruction Cache Access Data Cache Access
W/O Op Kernel Op LLVA Op Kernel+LLVA W/O Op Kernel Op LLVA Op Kernel+LLVA

Acc. Hits Acc. Hits Acc. Hits Acc. Hits Acc. Hits Acc. Hits Acc. Hits Acc. Hits
Memcached 56.9 28.1 3.41 2.13 1.61 0.9 0.08 0.06 39.3 26.8 0.97 0.63 13.9 10.1 0.05 0.03

TPC-H 3.86 1.5 1.88 0.26 0.12 0.1 0.02 0.01 3.95 0.92 0.21 0.15 0.52 0.3 0.04 0.03
SPECjbb 0 0 0 0 0 0 0 0 0.35 0.27 0.33 0.27 0.04 0.02 0.04 0.02

bzip2 0.03 0.03 0 0 0 0 0 0 0.12 0.1 0.06 0.05 0 0 0 0
h264ref 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0 0 0
Stream 0.04 0.03 0 0 0 0 0 0 3.02 2.02 2.86 1.91 0.8 0.5 0.79 0.44

Raytrace 0.01 0.01 0 0 0 0 0 0 5.54 3.19 5.53 3.18 0.2 0.1 0.17 0.06

Table 5: Analysis of ART Accesses

0

100

200

300

400

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

TPC-H Sjbb Memc. Raytrace Stream h264ref bzip2 Mean

N
um

be
r o

f 4
KB

 P
ag

es Data Cache > Two Lines
Two Lines
One Line

0

100

200

300

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

32
KB

64
KB

TPC-H Sjbb Memc. Raytrace Stream h264ref bzip2 Mean

N
um

be
r o

f 4
KB

 P
ag

es Instruction Cache
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Caches

and mobile workloads, described in Table 4.

4.2 Dynamic Energy Saving
We first consider how much dynamic energy consump-

tion for TLB lookups can be saved with VC-DSR. Ideally,
the benefit will be proportional to the cache hit ratio for L1
virtual caches since a TLB is consulted only when cache
misses occur. For VC-DSR, in practice, the ART is selec-
tively looked up to obtain a leading virtual address for syn-
onym access, and the ASDT is also referenced for several
cases such as cache misses, coherence, TLB invalidations,
etc. The organization of the needed structures (e.g., ASDT
size) could also affect cache misses. These aspects have all
to be accounted for when evaluating the overall benefits.

ASDT size: An ASDT with fewer entries tracks fewer
pages, which could evict pages whose lines are not dead yet
from the cache in order to track newly referenced data. This
could increase the cache miss ratio, degrading performance.
Hence, an ASDT needs to be adequately provisioned to pre-
vent this case.

Figure 4 shows the average number of distinct 4KB pages
from which blocks reside in 32KB (64KB) L1 physical caches
with a 64B line size. Each bar has three sub-bars. They
are classified according to the number of cached lines from
each page. Even though 512 (1024) different pages are pos-
sible, typically there are an average of less than 150 distinct
pages at a given time in most cases. There are fewer distinct
pages in instruction caches (e.g., 80) than in data caches (e.g.,
100). Moreover, most instruction pages have more than 2
lines cached, whereas many data pages have only 1 or 2 lines
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Figure 5: Analysis of VC-DSR L1 VC Hits

cached. The data suggest that a middle-of-the-road sized
ASDT is enough and that a smaller ASDT can be used for
instruction caches: 128 and 256 entries for 32KB L1 I-cache
and for D-cache respectively.

Based on the configuration, the experimental results show
that an ASDT entry eviction occurs rarely (less than once per
100 L1 misses) and that this results in at most 1 or 2 VC
line evictions. The results suggest that the overhead result-
ing from the ASDT entry eviction is not significant and that
identifying VC-resident lines individually with a bit vector is
likely to be useful.

ART access: Table 5 shows how efficiently ART lookups
can be managed with a 256-bit SS. We assume that the SS
is consulted before the address generation, with bits 19-12 of
the base register with a 4KB fixed offset (Option 2 in Sec-
tion 3.5). The SS decision not to consult the ART is consid-
ered valid if these bits do not change as a result of address
generation.8 For these results, we consider 32KB L1 virtual
caches and the ART has 32 entries (8 sets and 4 ways). The
data presented is: 1) percentage of all cache accesses that
consult the ART after the SS lookup (Acc.) and 2) percent-
age of all cache accesses that find a matching entry in the
ART (Hits), without any optimizations (W/O Op), with an
LLVA register (LLVA Op), and with the optimization for ac-
cesses to the kernel virtual address space (Kernel Op).

For most cases, the small SS can filter out a significant
number of ART lookups. For example, for tpc-h, the SS fil-
ters out about 96% of instruction accesses, and only 1.5%
of accesses hit in the ART without optimizations. For mem-
cached showing most frequent active synonym accesses, no-
tice frequent ART lookups (i.e., SS hits) in the base case.
The use of the optimization for kernel virtual address space
significantly reduces the number of ART accesses. This is
because most of the active synonym accesses for memcached

8Accessing the SS with a more complex hash (e.g., using more ad-
dress bits or the sum of the ASID and the address bits) further re-
duces the number of ART accesses.
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Figure 6: Breakdown of Dynamic Energy Consumption for VC-DSR (baseline 100%, lower is better)

occur in the kernel space. The optimization completely pre-
vents such accesses from being considered as active synonym
accesses. Thus this makes the SS less conservative, consid-
erably reducing the number of SS hits. Employing an LLVA
register is also effective. For memcached, notice a significant
reduction in ART lookups for instruction accesses. However,
due to relatively low temporal and spatial locality of data ac-
cesses, we can still see noticeable ART accesses (about 14%)
with an LLVA register. This can be reduced to almost zero
with the optimization for kernel virtual address space.

Since very few ART accesses end up finding a matching
entry, a larger sized SS does an even better job of filtering
out unnecessary ART accesses (data is not presented). To be
conservative in presenting our results, we use a 256-bit SS
for the rest of the evaluation.

L1 VC hits: Figure 5 shows the hit rate of a 32KB L1
VC-DSR, relative to a PIPT cache; the false misses due to
synonymous accesses (Case 3 in Figure 3) are treated as a
miss. Notice almost the same results across all of the work-
loads regardless of instruction and data accesses.

Energy saving: Putting it together, we now consider how
much TLB lookup energy can be saved with VC-DSR. Fig-
ure 6 presents the breakdown of dynamic energy consump-
tion accounted for by each component of VC-DSR. A 32
entry, fully associative 3-ported TLB is used as a baseline.
100% indicates the TLB lookup energy of the baseline. The
without optimization (W/O) bars correspond to the baseline
design that we described in Section 3.3 and the with opti-
mization (W) bars include the optimization mentioned in Sec-
tion 3.4.5 and 3.7. For virtual cache lookups (bars with L1
Cache label), we consider the extra overhead due to reading
additional bits (e.g., ASID and extra virtual tag bits) on every
access as well as the false misses.

A few points before discussing the results. First, TLBs
with more than 32 entries are common in real designs, e.g.,
ARM Cortex [42] and AMD Opteron [43]. They consume
significantly higher energy than the 32-way baseline, and thus
we can expect more energy benefits when they are used as a
baseline. Second, we use the same TLB organization as the
baseline with VC-DSR, although VC-DSR would permit us
to have a larger, slower, lower-associativity, fewer ports de-
sign, which has lower energy consumption (and miss rate).
Third, our proposal removes constraints on the organization
of virtually indexed caches (i.e., a larger associativity). Thus
we can also expect lower power/energy consumption for L1
cache lookups [2, 3]. We do not consider these benefits from
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Figure 7: Performance Analysis of VC-DSR

the flexible design choices of VC-DSR in our comparison,
thereby disadvantaging VC-DSR.

We will first consider the results without optimization (bars
with W/O label). Notice about 93% and 84% (average) en-
ergy saving for an instruction and for data TLB, respectively.
We observe that a small portion of the energy overhead is ac-
counted for by reading the additional bits on every L1 VC
lookup, regardless of instruction and data accesses. The con-
sumption is dominated by the TLB and ASDT lookups on
cache misses (especially for data accesses). The energy over-
head except the overhead for the L1 VC lookups can be re-
duced further by leveraging the proposed optimization (Sec-
tion 3.4.5 and 3.7). We can save the TLB and ASDT lookup
overhead for handling an evicted line on every miss by keep-
ing the ASDT index with a cache line. The use of an LLVA
register can reduce ART lookups. We observe that all the op-
timizations reduce the energy consumption by half (bars with
W label), resulting in about 95% and 90% energy saving for
an instruction and for data TLB, respectively. In compari-
son, an ideal virtual cache would achieve about a 99% and
96% reduction for an instruction and data TLB, respectively,
in this situation. These results suggest that VC-DSR achieves
most of the energy benefits of employing pure, but impractical
virtual caches.

4.3 Latency and Timing Benefits
While improved cache access latency—the original moti-

vation for virtual caches—and the consequent performance
impact, was not our primary driver, we do mention the quan-
titative timing benefits we obtained in our experiments (the
right side of Table 3). We assume that one cycle is consumed
by consulting a TLB, one cycle for consulting an ART and
three cycles for active synonym detection (TLB and ASDT
lookups). The optimizations discussed above and the virtu-
ally addressed Load-Store Unit discussed in Section 3.6 are
employed.
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Figure 7 shows relative performance of various L1 cache
configurations. The baseline uses L1 VIPT caches for both
instruction and data accesses, which can completely hide the
one cycle latency overhead of TLB lookups. We saw a triv-
ial (0.6%) timing overhead for VC-DSR. We can expect such
overhead could be hidden by taking advantage of flexible de-
sign choices supported by the usage of virtual caches, e.g.,
TLB organization lowering misses [44] and virtual cache or-
ganization fully employing spatial locality of memory access
[45]. The results suggest that VC-DSR also achieves most of
the latency benefits of employing virtual caches.

In addition, some commercial designs [42, 46] use a PIPT
data cache to simply avoid problems with synonyms. VC-DSR
has a significant timing benefit over such designs.

4.4 Comparison with Other Proposals
There has been a plethora of proposals for virtual caches,

each with their own pluses and minuses. We compare VC-DSR
with three of them: Opportunistic Virtual Cache (OVC) [2],
which is a recent proposal, Two-level Virtual-real Cache hier-
archy (TVC) [22], which is an early proposal that has several
pluses for a practical implementation, and Synonym Look-
aside Buffer (SLB) [16], which takes a somewhat similar
approach for handling synonyms (see detailed differences in
Section 5). Note that OVC and SLB require assistance from
software, whereas VC-DSR does not. For OVC, we assume
an optimistic case where all lines will be cached with virtual
addresses, saving the energy consumption for TLB lookups
as much as possible. For TVC, we assume that an ASID is
employed to address the issue of homonyms, which excludes
the impact of flushing virtual caches on a context switch [47].

Figure 8 presents the L1 cache hit rate of two approaches,
OVC and TVC, relative to VC-DSR for 32KB and 64KB
caches. Notice that VC-DSR achieves a slightly higher hit
rate due to more efficient handling of active synonym ac-
cesses. OVC allows duplicate copies of data to be cached
with synonyms in a virtual cache, resulting in a reduction
in cache capacity. This overhead could be noticeable for
caches with smaller associativity or in systems with kernel
same-page merging dynamically allowing multiple processes
to share the same physical page (e.g., virtualized environ-
ments) In addition, this approach could impose restrictions
on designing a viable practical implementation because the
issues of virtually addressed Load-Store Units (Section 3.6)
may not be efficiently handled.

TVC does not keep duplicate copies of data in virtual caches
like our proposal, but accesses with a synonymous address
that is different from a virtual address used to cache data re-
sult in cache misses. This requires additional operations to
cache a synonym copy with a most recently referenced vir-
tual address. It is possible for the synonym copy to be relo-
cated to a different set, and thus TVC also has the overhead
of data replication in virtual caches. The cost of handling
synonymous accesses could be more noticeable depending
on the multiprogramming environment and microarchitecture
design (e.g., SMT). Furthermore, TVC works only with an
inclusive cache hierarchy.

For SLB, performance degradation can result due to SLB
traps that occur when the SLB cannot provide a correspond-
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Figure 9: Frequency of SLB Miss Traps

ing leading virtual address (LVA) for synonym access. This
leads to misses in all the caches in the hierarchy. Further it
requires not only TLB lookups but also OS involvement to
search for the corresponding LVA (not latency efficient). Ac-
cordingly, we analyze the percentage of cache accesses that
result in an SLB trap for different SLB sizes in Figure 9. In
this analysis, we take a checkpoint after the initial boot pro-
cesses (including setting up a server or loading data) is over,
and start the SLB simulation from this point. This initial
phase has significant OS activity and results in many syn-
onyms and thus a significant source of the total number of
potential synonyms is left out in our analysis, thereby ad-
vantaging the SLB. Regardless, we see noticeable SLB traps
for data cache access although a larger SLB is employed for
some cases, e.g., 0.6% for memcached with 48 entries. This
suggests that using a smaller SLB instead of a TLB may not
be a viable solution. Such traps could potentially be further
reduced by profiling and dynamically changing the LVA for
virtual pages that are being frequently accessed at a given
time during the program’s execution. However, this entails
even more OS involvement.

5. RELATED WORK
A variety of designs have been proposed to achieve the

benefits of virtual caches for over four decades; prior liter-
ature [14, 48, 49] summarized the problems and some pro-
posed solutions. We discuss some of the most relevant work
below.

Qui et al. [16] proposed a synonym look-aside buffer (SLB)
for virtual caches. The high level approach of VC-DSR is
similar to that of the SLB for enforcing a unique (primary)
virtual address among synonyms. The SLB is focused on
efficiently resolving the scalability issue of the address trans-
lation via a TLB by using a relatively smaller SLB structure.
On the other hand, VC-DSR aims for a software-transparent
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latency and energy efficient L1 virtual cache access by ex-
ploiting the temporal behavior of active synonyms. Signifi-
cant differences in how SLB and VC-DSR achieve their goals,
and their impact, are discussed below.

First, VC-DSR is a software-transparent virtual cache. For
the SLB, considerable OS involvement is required to man-
age synonyms. It requires additional page table like software
structures to track a primary virtual address and other syn-
onyms. Further, all synonyms need to be identified while
the related data resides in a large main memory even though
many such pages do not actually face synonym issues dur-
ing their lifetime in smaller caches. In addition, the primary
virtual address can change frequently in many cases (OB3),
thus restricting caching to a single, static (OS-determined)
primary address can be unnecessarily constraining. These as-
pects further complicate the OS memory management.

Second, VC-DSR seamlessly provides a synonym remap-
ping only for accesses with active synonyms. The SLB has to
be consulted on every cache access to decide the leading vir-
tual address (not power/energy efficient). Although it could
be smaller and more scalable than a normal TLB, the misses
for synonyms, i.e., SLB miss traps, are expensive, akin to
a page table walk (not latency efficient: Figure 9), and all
the mappings are shared across different caches in the sys-
tem. Extra operations are needed to guarantee the consis-
tency among them (like TLB shootdown) although it rarely
occurs.

Several others [15, 21, 22] have proposed solutions that
employ a variant of the (physical to virtual) reverse map to
identify and track the data with synonyms in virtual caches.
Goodman [15] proposed one of the earliest hardware solu-
tions by using dual tags in virtual caches as the reverse maps.
Wang et al. [22] augmented a back-pointer per line in a
physical L2 cache to point to the matching data in L1 virtual
caches.

Other proposals are supported by the OS to attain the ben-
efits of virtual caches. Some software-based approaches [23,
50, 51, 52] employ a single global virtual address space OS
that can eliminate the occurrence of synonyms itself. Zhang
et al. [24] proposed Enigma using an additional indirection
to efficiently avoid synonym issues. It uses a unique interme-
diate address (IA) space across the entire system for cases
where data sharing is not expected. Recently, Basu et al.
[2] proposed Opportunistic Virtual Caching (OVC) based on
minor OS modifications. OVC caches a block either with a
virtual address or with a physical address depending on the
access pattern in a page. A virtual address will be used when
caching data with it is safe (i.e., no read-write synonyms oc-
cur) or efficient (i.e., few permission changes occur), which
could result in multiple duplicates in virtual caches.

Recent work [19] takes a different approach to simplify
virtual cache coherence. It eliminates the reverse translation
by employing a simple request-response protocol (e.g., self-
invalidation/downgrade). Sembrant et al. [53, 54] propose a
(virtual) cache design by keeping a way index information
in the TLB, obtaining substantial energy saving for cache
lookups. Woo et al. [55] employ a Bloom filter to reduce
serial cache lookups searching for possible locations of syn-
onyms in virtually indexed caches.

6. CONCLUSION
This paper proposes Virtual Cache with Dynamic Synonym

Remapping (VC-DSR) for use as an L1 cache. VC-DSR is a
purely hardware solution that functions correctly without any
software assist. By leveraging the temporal behavior of syn-
onyms, VC-DSR dynamically detects active synonyms, and
submits such requests with a different (leading) virtual ad-
dress that was used to place the corresponding data in the vir-
tual cache. Empirical results show that VC-DSR can achieve
most of the energy and latency benefits of ideal (but imprac-
tical) virtual caches.

We believe that VC-DSR is a practical solution to a prob-
lem that has long vexed computer architects: achieving the
benefits of virtual caches in a practical manner, i.e., without
reliance on software.
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