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Figure 1. Traditional vs. Multithreaded Exception Handling.
Six instructions have been fetched when an exception is
detectedon the fourth. Traditionally (a), instructions4-6 are
squashedand mustbe refetchedafter the exceptionhandler is
fetched. With our multithreaded mechanism (b), a second
threadfetchesthe exceptionhandler(A-D), and thenthe main
threadcontinuesto fetch (7,8).Theexceptionhandleris retired
before the excepting instruction. (c) This makes the global
retirementorder different than the fetch order, but each thread
retires instructions in it’s fetch order.
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Abstract
Common hardware exceptions,when implementedby

trapping, unnecessarilyserialize program execution in
dynamicallyscheduledsuperscalarprocessors.To avoidthe
consequencesof trapping the main program thread,
multithreaded CPUs can exploit control and data
independenceby executing the exception handler in a
separatehardware context. Themainthreaddoesn’t squash
instructionsafter theexceptinginstruction,conservingfetch
bandwidth and allowing execution of instructions
independentof the exception.This leadsto earlier branch
resolution in the post exception code and additional
memorylatency tolerance. As a proof of concept,using
threadsto handlesoftware TLB missesis shownto provide
performanceapproaching that of an aggressivehardware
TLB miss handler.

1  Introduction
Exceptionhandlingis a mechanismto flexibly, andwith

low implementationcost,handle“exceptional”eventsin a
way thatdoesn’t impacttheexecutionof thecommoncase.
This is performedby insertinga shortsoftwareroutineinto
the dynamicinstructionstreamat the site of the exception.
This exceptionhandlerresolvestheexceptingevent so that
the execution of the application can continue.

Currentsequentialexecutionparadigmsprovidenomech-
anismto insert the exceptionhandlerbetweeninstructions
which are alreadyin the processof execution.Typically,
in-flight instructionsyoungerthantheexceptinginstruction
are squashedand refetchedfollowing the executionof the
exception handler(Figure1.a). Like a branchmispredict,
this significantly impactsperformancein the locus of the
exception; for a numberof cycles after the exception is
detected,fewer instructions are available for execution.
Sincemany of the squashedinstructionswere control and
dataindependentof theexceptionhandler. This unnecessar-
ily penalizes the execution.

To avoid squashingwe requirea mechanismwhich pro-
vides the appearanceof sequentialexecution,namelycor-
rect dataflow andretirementorder, despitethe fact that the
exceptionhandleris fetchedwhentheexceptionis detected.
Correct dataflow implies observing true register depen-
dences,but becauselittle datapassesbetweenanapplication
andanexceptionhandler, oftenonly valuesassociatedwith

the excepting instruction, a generalpurposeout-of-order
register renamingmechanismis not required.The correct
retirementorder is different from the fetch order because
theexceptionhandleris retiredbeforetheexceptinginstruc-
tion. By allocating the handler to a separatethread, the
desiredretirementordercanbeenforcedwhile maintaining
FIFO resourcemanagementwithin a thread(Figure1.b).
Retirementis controlled so that the exception handler is
retiredin its entiretyafterall pre-exceptioninstructionsand
before all post-exception instructions retire (Figure1.c).

This work explores using separatethreadsin a multi-
threadedprocessorfor exceptionhandlingto avoid squash-
ing in-flight instructions.The exception thread does not
have direct accessto the application’s registers,avoiding
complex renamerhardware, and memory operationsare
executedspeculatively, recoveringif anorderingviolation is
detected.Although this mechanismis applicableto many
classesof exceptions,in this paperwe focus on software
TLB misshandling.The multithreadedexceptionhandling
approachhalves the cycles-per-instruction(CPI) attributed
to softwareTLB misshandling,andwith an optimization,
which we call quick-starting, the performancediscrepancy
betweensoftwareandhardwareTLB misshandlerscanbe
reduced by 80%. We expect similar benefits for other
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classesof exceptions,which cannot be implementedin
hardware state machines.

This paperis organizedasfollows: In Section2 we pro-
vide morebackgroundon exceptions,focusingon software
TLB misshandlers.Section3 motivatesthis work by dem-
onstratinghow the performanceimpactof traditional soft-
ware TLB miss handling increaseswith current trendsin
microprocessors.In Section4, we describethe hardware
requirementsfor TLB exceptions and walk through the
exception process.In Section5, we presentperformance
resultsfor amultithreadedsoftwareTLB misshandleralong
with our simulationmethodologyand model. In Section6
we briefly describehow to generalizethe mechanismfor
othertypesof exceptions.Finally, in Section7, we discuss
the related work and, in Section8, conclude.

2  Background
Exceptionsareeventswhich areeitherimpossibleor too

costly to handle through normal program execution. An
illustrative exampleis arithmeticoverflow; software could
test whether an overflow occurredafter every arithmetic
operationand branchto fix-up code if necessary, but this
would addsubstantialoverheadto theexecutionsincesuch
overflows are uncommon.

Sincea purely softwaresolution is not appealing,anda
purely hardware solution aren’t cost effective nor provide
the flexibility requiredby many exceptions,a hybrid hard-
ware/software solution is generallyused.The hardware is
responsiblefor identifying the exceptionalevent, at which
point it haltstheexecutingprogramandtransferscontrol to
asoftwareroutinecalledtheexceptionhandler. Thishandler
attemptsto rectify the causeof the exception and deter-
mines if and when to return control to the user application.

Exceptionscanbeseparatedinto two classes:un-recover-
able andrecoverable. Un-recoverableexceptions,wherethe
systemcannotrestoretheapplicationto a meaningfulstate,
areinfrequent,at mostonceperapplication,sotheir perfor-
manceis not a concern.In contrast,recoverableexceptions
can be called repeatedlyto perform “behind-the-scenes”
work on behalf of the programmerand can affect system
performance.They, in general,have a control independent
nature;aftertheexceptionhandleris executedthey returnto
the site of the exception. This reconvergent behavior
enablesour multithreadedexceptionhandlingarchitecture.
If the exception handlerdoesnot return to the excepting
instruction we cannot avoid squashingand re-fetching.
Some examplesof recoverable exceptionsare unaligned
access,profiling, andinstructionemulation.In thispaperwe
study TLB miss handlers.

To provide the virtual memoryabstractionwithout sub-
stantiallysacrificingperformance,modernmicroprocessors
include a translation lookaside buffer (TLB). The TLB

servesasa cacheof recentlyusedtranslations(from virtual
addressesto physical addresses).When a virtual address
that is not currently mappedby the TLB is accessed,the
processorhandlesthe TLB missby fetchingan entry from
the page table.

TLB missesoccur becausethe TLB cannot map the
whole application’s addressspace;in fact, many machines
cannoteven maptheir whole L2 cache.As memoriessizes
continueto grow at anexponentialrate,we expectprogram
data sets to grow proportionally. TLB size, on the other
hand,is limited by processorcycle time, power dissipation,
andsilicon areain proximity to thememorydatapath.Most
architecturessupport large pages,which can increasethe
amountof memory mappedby the TLB, but large pages
have provento bedifficult to useandcanreducetheutiliza-
tion of memorydue to internal fragmentation.Secondary
TLBs canscalemoreefficiently with datasetsize,but exe-
cution of future applicationswill likely continueto stress
the virtual memory sub-system,maintainingTLB perfor-
manceasanimportantcomponentof overall systemperfor-
mance.

A numberof architecturesprovide TLB miss handling
through a dedicated,hardware finite-state-machine.This
structureis capableof walking thepagetableandwriting a
new entryinto theTLB. Instructionswhichmissin theTLB
are stalled while the hardware page-walk takes place; no
instructionsneedto be squashed,and, in machineswhich
permitout-of-orderexecution,independentinstructionscan
continue to execute.This TLB widget competesnormal
instructionexecutionfor the cacheports,making the core
somewhat more complex.

In contrast,onefeaturecommonto someRISC architec-
tures (Alpha, MIPS, Sparc V9) is the software-managed
TLB. Software-managedTLBs save hardwareandprovide
flexibility to softwareonhow pagetablesareorganizedand,
in somecases,allow softwareto control replacementpoli-
cies.In addition,they canbe usedto simplify implementa-
tions of software distributed shared memory (DSM),
copy-on-write, and concurrentgarbagecollection. In cur-
rent processorsfor these architectures,the pipeline is
flushedat thememoryinstructionwhichmissedin theTLB.
The software TLB miss handleris fetchedand executed,
and then the application is restartedwith the faulting
instruction.This serializing natureof the traditional soft-
ware TLB miss handling is not intrinsic to the natureof
TLB fills, but merely an artifact of the implementation.

This paperpresentsmultithreadingas an alternative to
both traditionalmechanisms.Multithreadinghasbeenpro-
posedasa techniquefor toleratinglatency, typically mem-
ory latency [14]. Recently, microprocessorswhich support
multithreadinghave begun shipping [16]. By time-multi-
plexing resourcesbetweenmultipleprogram“threads,” high
aggregatethroughputcanbeattaineddespitechronicstalls,



becauseeachthread’s stallstendto beindependent.In addi-
tion, simultaneousmultithreading(SMT) [9,17,19],unlike
coarse-grainedmultithreading,provides the flexibility to
issueinstructionsfrom multiple threadsin the samecycle.
This tolerates the lack of parallelism in the individual
threads, further increasing throughput.

3  Motivation
In this section,we demonstratethat the performanceof

traditional software TLB miss handling is increasingat a
slower rate thanprogramexecutionasa whole. With TLB
miss handling becomingan increasinglylarge fraction of
execution,alternative mechanismsfor exception handling
become appealing.

At the 1998Microprocessorforum, Compaqpresenteda
breakdown of theexecutiontime of thetransactionprocess-
ing benchmark TPC-C for their current and future
Alpha-basedproducts[1]. Theenhancedmicro-architecture
of theout-of-order21264spentthesameamountof time on
traphandlingasthein-order21164(at thesamefrequency),
but dueto the 21264’s increasedexploitation of ILP in the
restof the applicationthe percentagecontribution for traps
increasesfrom about8 percentto about13 percent.Increas-
ing the clock frequency (of the 21264)and integrating the
L2 cache(the 21364)do not significantly changethe per-
centagecontribution from its 13 percentlevel. This evi-
denceimplies a relationshipbetweenthe sophisticationof
thecoreandrelative overheadof exceptionhandling;in this
section we presentsimulation results which explore this
relationship in more detail.

Dynamically-scheduledsuperscalaris the paradigmof
choicefor currenthigh-performancemicroprocessors.The
processorsseekto achieve high levels of instruction level
parallelism(ILP) by speculatingpastunresolved branches
andrelaxingartificial constraintsto issueinstructionsout of

programorder. Typically, thesemachinesmaintaina “win-
dow” of instructionsfrom thepredicteddynamicinstruction
stream,from which readyinstructionsareselectedfor exe-
cution in the functional units.

AchievableILP is stronglydependenton usefulwindow
occupancy, thenumberof instructionsfrom thecorrectpath
in theinstructionwindow availablefor execution.Thetradi-
tional mechanismfor executingexceptionhandlersreduces
useful window occupancy by squashingall post-exception
instructions.As machinescontinuetheir current trendsof
increasingsuperscalarwidth, window size, and pipeline
length, the importanceof keepingthe instructionwindow
full of “useful” instructions increases.

TLB fill latency is not a good metric for characterizing
programexecutiontime becauseit doesnot accountfor the
extent that the executionof the TLB miss handlercan be
overlappedwith otheroperations.To measureperformance
directly, wecompareeachsimulationto oneperformedwith
a perfectTLB to identify the performancedegradationdue
to TLB misshandling.Ratherthandividing this penaltyby
the numberof instructionsexecuted,as would be doneto
computethe CPI contribution, we divide by the numberof
TLB misses.This “penalty cycles per TLB miss” metric
allows comparisonbetweenbenchmarkswith widely differ-
entTLB missrates.Detailsaboutour simulationmodeland
benchmarksare available in Section5.1 and Section5.2,
respectively.

Figure2 shows the trendsfor increasedpipeline length
(3, 7, and 11 stagesbetweenfetch and execute,the mini-
mumbranchmispredictpenalty)for an8 issuemachine.In
correspondenceto branch misprediction penalties,we’d
expect longerpipelinesto have proportionallyhigherTLB
misshandlingpenalties,andwe arenot disappointed.The
various benchmarksdiffer in their ability to tolerate the
squashes,but theslopeof thegraph(i.e. its dependenceon

Figure 2. Overhead of software TLB miss handling as a
function of pipeline length. With an increasingnumberof
stages betweenfetch and execute, overhead of traditional
exception handling increases.
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percentage of their execution time on TLB miss handling
becauseTLB miss handling does not benefit much from
increased issue width.
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the pipelinelength)is around2 for mostbenchmarks.This
roughly correspondsto the time to refill the pipe at the
exception,and onceagain after the return from exception
since our simulator doesnot have a return addressstack
(RAS) likemechanismfor predictingthetargetof exception
returns.

A similar experimentwasperformedto show the perfor-
mancetrendswith respectto superscalarwidth. In general,
asthe machinewidth increases,the percentageof the time
spenthandlingTLB missesincreases.The wider machines
areableto executethemisshandlerslightly faster, but exe-
cution in the locus of a TLB miss doesnot benefit from
wider issuenearly as much as the programas a whole.
Figure3 shows relative percentageof executiontime spent
handlingTLB missesfor 2, 4, and 8 wide machineswith
instructionwindows of size 32, 64, and 128 respectively.
Theperformancetrendin gcc is a symptomof cachepollu-
tion from speculative memoryaccessesin thebasecaseand
is described in detail in Section5.3.

Theseperformancetrends,which we expectto be repre-
sentative for othertypesof exceptionsaswell, demonstrate
a steadilyincreasingopportunityfor alternateimplementa-
tionsfor exceptionhandling.Giventhatcommonexception
handlerstendto beshort,in thetensof instructions,purging
the instructionwindow representsa significantportion of
the exception penalty in future machines.

4 Description of the proposed hardware
In this section,we walk throughthemultithreadedexcep-

tion handler’s executionanddiscussin detail the hardware
requirementsfor this mechanism.This work is presentedas
an extensionto a simultaneousmultithreading(SMT) pro-
cessor. For clarity, we focuson theexecutionof a software
TLB miss handler.

4.1  Starting/Stopping Threads
When a TLB miss occurs,the faulting memoryinstruc-

tion (and any dependentinstructions which have been
scheduled)hasto be restoredto a statefrom which it can
re-executewhen the TLB fill has completed.This means
returning the instruction to the instruction window and
marking the instructionasnot readyto execute.A similar
recovery mechanismis requiredfor machineswhich specu-
latively scheduleinstructionsthat are dependenton loads,
beforeit is determinedwhethertheloadhashit in thecache
[12]. Presumably, an extensionto sucha mechanismcould
support TLB misses as well.

To accomplishthe fill, a threadcontext is selectedand
instructedto begin fetchingtheTLB misshandler. Thepriv-
ilegelevel for theTLB misshandlermaybehigherthanthe
application code; we assumea processorwhich allows
instructionsfrom multiple privilege levels to co-exist in the

pipeline.This threadcould be one of the generalpurpose
threadcontexts in theSMT, or it couldbeaspecial-purpose,
reduced-functionalitythreadcontext. Typically, the proces-
sor would select from idle threads,but lower priority
threadscould be preemptedto run exceptionhandlerson
behalfof higherpriority threads,sacrificingtheir through-
put to benefit the higher priority thread.

ThethreadID andtheinstructionidentifierof theexcept-
ing instructionarestoredby theallocatedthread(Figure4).
Thisexecutionof theTLB misshandlerproceedsin parallel
with the execution of independentinstructions from the
applicationthread.When the TLB write is complete,the
faulting instruction is made ready and scheduled normally.

Instructionsarenot retiredin the orderthey arefetched;
the exceptionhandleris splicedinto the retirementstream
of the application(Figure 1). When the exceptinginstruc-
tion is the next to retire, retirementfrom the application
thread is halted. This can be detectedby comparingthe
sequencenumbersof retiring instructionswith those of
exceptinginstructionswhich have spawnedthreads(Figure
4). At this point the exceptionthreadcanbegin retirement.
Whenit hascompletelyretired(signifiedby the retirement
of a RETURN FROM EXCEPTION) it resetsits threadstateto
idle, signallingthat retirementof theapplicationthreadcan
recommence.Also, eventswhich causesquashes(for exam-
ple controlmispredicts)checkexceptionsequencenumbers
to reclaimexceptionthreadsif the faulting instructionhas
been squashed.

4.2  Register and Memory Communication
Inserting an arbitrary piece of code into the dynamic

instruction stream requires re-renamingthe instructions
after the insertion. Any post-insertioninstruction which
readsa logical register definedby the insertedcode will
have a stalephysical registernumberfor oneof its source
operands.This staleID shouldbeupdatedwith thephysical
registernumberassignedto theinstructionfrom theinserted
code. This operation is equal in complexity to register
renaming.

Fortunately, exceptionhandlersarenotarbitrarypiecesof
code and do not require a general-purposere-renaming
mechanism.Specifically, the TLB misshandleronly reads
the virtual addressgeneratedby the faulting memory
instruction (which is provided from a privileged register
read) and the pagetable (which is not accessibleby the
application)andonly writes an entry into the TLB (which

Figure 4. Additional Per-Thread Control State (in bits). When
an idle threadis allocatedto handlean exception,theID (log2
(# of threads)bits) of the threadwhich causedtheexceptionis
put into Master Thread, and a “pointer” to the excepting
instruction (~log2 (window size) bits) is stored.

State (Normal, Idle, Exception) Master Thread
Sequence Number of Excepting Inst.



the application reads indirectly). The exception handler
begins andendswith the sameregisterstate.The fact that
no direct register communicationtakes place allows the
hardware to be greatly simplified. The exceptionthreadis
provided with an independentsetof registerswhich begin
the exception handlercontainingundefinedvalues.These
registers are only used to hold temporary values.

Sincethereis no direct registercommunicationbetween
theTLB misshandlerandtheapplicationthread,no order-
ing violations can occur in registers.On the other hand,
becauseexceptionhandlerscanexecutememoryoperations,
we need to correctly enforce true dependenciesbetween
thesememory operationsand memory operationsin the
application thread. The TLB miss handler performs no
storesandloadsonly from thepagetable.Theseloadswill
only aliaswith a storethat is modifying or invalidatingan
entryof thepagetable.Sincewriting thepagetablealready
hasspecialsemantics,necessaryto keepa coherentview of
virtual memoryin multiprocessors,ensuringproperorder-
ing for the TLB misshandler’s memoryoperationsshould
be manageable.

4.3  Handling the Uncommon Case
Due to the concessionswe madeto simplify the hard-

ware,theexceptionthreadwill notbeableto handleall pos-
sibletasksthatanexceptionhandlermight needto perform.
If a TLB miss is discoveredto be a pagefault the process
stateneedsbesaved.To allow theapplication’s registersto
be read, we revert to the traditional exception handling
mechanism.

This reversionprocessis complicatedby the fact that it
cannotbeknown a priori whetheranexceptionwill require
thefull functionalityof thetraditionalmechanismor canbe
handledby an exceptionhandlerthread.Only by loadinga
pagetableentry canwe detectthat the desiredpageis not
residentin memory, but at thatpoint thehandlerhasalready
beenpartially executed.Clearly, the mechanismmust be
ableto recover from incorrectlyspawninganexceptionhan-
dler threadfor an exceptionwhich requiresthe traditional
mechanism.

The handlerneedsa mechanismto communicateto the
hardwarethat it requirestraditionalexceptionsupport.This
could be accomplishedcompletelyin hardware (requiring
the machineto recognizethat the handleris trying to per-
form someactionof which the multithreadedmodel is not
capable)but is probablysimplerto accomplishby providing
software a mechanism which communicatesthis fact
directly to the hardware. This hard exception mechanism
could be in the form of an new instructionor a storeto a
specialaddress,muchlike aninter-processorinterrupt.This
instruction should be present in the exception handler
beforeany instructionswhichpermanentlyaffect thevisible
machine state.

When a hard exception instruction is encountered,the
exceptionhandlerhasbeenpartially executedby theexcep-
tion thread.The machinewill either have to merge state
from the application and exception threadstogether, or
throw awaythework in progressin theexceptionthreadand
re-fetch and re-executethe whole handlerfrom the main
thread.Sincememoryoperandswill have beenprefetched
into the cache,we expect the performanceof a complete
re-executionshouldnot be substantiallyworse,andre-exe-
cution is likely to be significantly simpler to implement.
The threadID andinstructionnumberstoredby the excep-
tion thread(Figure4) can be usedto trigger a squash.To
avoid repeatingbranchmispredictionsin the re-execution,
thebranchoutcomescouldbebufferedandusedinsteadof a
predictor for the previously executed region.

Someoperatingsystemsmay chooseto not implement
spawnableexceptionhandlersfor all exceptions.For these
exceptions,attemptingto spawn the handlerwill only add
latency to theexceptionhandling;thiscanbeavoidedeasily.
TheOScouldexplicitly inform thehardwarewhich excep-
tionsshouldbespawnedby settingbits in a controlregister.
Alternatively, the hardware could learn which exceptions
shouldbespawnedby trackingtheuseof thehard exception
instruction.A small predictor, perhaps2-4 bits for eachof
16 or so exception types, could detectwhich exceptions
were implementedwith spawning in mind. In addition, it
might beableto adaptto dynamicbehavior, like clustering
of page faults.

4.4  Resource Allocation
Oncethehandlerthreadhasbeenallocated,it hasto com-

pete for processorresources.Previous work on SMT has
shown that properallocationof fetch bandwidthis critical
for high throughput [17]. The handler thread should be
given fetch priority over the main threadsincethe instruc-
tions in the handlerthreadwill needto retire before any

instructionsafter the exception1. Prioritization in the pres-
enceof multiple applicationthreadsis more complicated.
Givena schemelike ICOUNT [17], which givespriority to
threadswith less in-flight instructions,it is likely that all
active threadshaveapproximatelyequalnumbersof instruc-
tions in-flight. Statisticallytheexceptinginstructionshould
beat leastascloseto retirementasthemostrecentlyfetched
instructionsfor other threads,implying that the exception
handler, which should be retired before the excepting
instruction, should be given fetch priority. This policy is
naturally implementedin ICOUNT becausewhenthe han-
dler thread is started it will have no in-flight instructions.

To avoid wasting fetch bandwidth, the handler thread
shouldstop fetching oncethe completeexceptionhandler

1. Although theexceptionhandlercanbe launchedcontrol-speculatively,
andmaybesquasheddueto abranchmispredict,it is nomorespecula-
tive than the post-exception instructions.



has been fetched.The common-casesoftware TLB miss
handleris typically in the tensof instructionslong. By the
time the RETURN FROM EXCEPTION instructionis decoded,
signallingtheendof theexception,multiplecyclesworthof
instructionspast the end of the handlercould have been
fetched.To avoid theperformanceimpactof theselost fetch
cycles (approximately0.5 cycles/miss),the machinecould
predict,usingtheprevioushandlerexecution,thenumberof
fetchcyclesanexceptionhandlerrequiresandpreventaddi-
tional fetching until the initial instructions have been
decoded.

Out-of-orderfetch providesthe opportunityfor deadlock
unlessinstructionwindow resourcesareproperlymanaged.
Deadlockoccurs if the window is full of post-exception
instructions.Instructionsfrom the handler thread,which
mustbe retiredbeforethe instructionsin the window, will
never completebecausethey can not be insertedinto the
instruction window and executed.Even for caseswhen
deadlockdoesn’t occur, performancewill suffer if sufficient
window resources are not available.

A mechanismis requiredto restrict the original thread
from monopolizing window resourcesand reclaim them
when necessary. Since other application threadsare not
dependenton thehandlerthread,they will continueto retire
instructions(andhencereclaimwindow resources)regard-
lessof theconditionof thehandlerthread.Otherapplication
threadsare ignored for instruction window management
purposes.In our implementation,whenanexceptionoccurs,
a “reservation” is madefor the window resourcesrequired
to hold the handler(using the predictionof handlerlength
mentioned above). The main thread is prevented from
insertingadditionalinstructionsinto theinstructionwindow
if no unreserved slots are available. In addition, to avoid
deadlock,if the handlerthreadever hasinstructionswhich
arereadyto beput in thewindow, instructionsfrom thetail
of themain threadaresquashedto make room(unlesssuch
a squashwould kill theexceptinginstruction,in which case
the exception handler is stalled). Such a squashis an
extremely rare occurrence in our simulations.

4.5  Multiple Exceptions
Multiple exceptionscan occur in the samewindow of

instructions;to avoid unnecessaryserializationtheseshould
be handledin parallelwhenpossible.Our hardwaremodel
providessupportfor renamingandspeculativeexecutionfor
privileged architecturestate. This allows the traditional
mechanismto handlemultipleexceptionhandlersin parallel
assumingtheir controlflow is predictable,but it cannotdis-
patchthemin parallelbecausethesecondexceptinginstruc-
tion will be squashedwhen the first handleris fetched.In
contrast,themultithreadedsolutiondoesnot needto squash
the secondexcepting instruction,allowing both exception
handlersto belaunchedimmediately. In addition,themulti-

threadedsolutioncangracefullyhandlelaunchingexception
handlers out-of-order.

Therearetwo implementationoptionsto handlethecase
when more exceptionsoccur than idle threadcontexts are
available:1) stall exceptionsuntil threadsareavailableor 2)
handlethe additionalexceptionstraditionally by squashing
and re-fetching. Stalling exceptions introduces another
deadlockcase(when exceptionsare detectedout-of-order
and the oldest is not allocatedto a thread)to be avoided.
This, coupledwith the fact that the traditional exception
handlingmechanismis alreadyrequired,leadsus to advo-
cate using the traditional scheme.

One case,particular to TLB miss handlers,is detecting
TLB missesto the samepageout-of-order, which occurs
1-2%of thetime.To maintaincorrectretirementsemantics,
the handler should be retired before the first offending
instruction and only affect the stateof later instructions.
Traditionally, the handleris squashedandre-fetchedat the
correct instruction boundary. Since the correct handler is
alreadyin-flight, the unnecessarydelay of re-fetchingcan
be avoided. Our proposedmultithreadedhardware detects
this situationandre-links the exceptionthreadwith earlier
exceptinginstruction,by updatingthe sequencenumberof
theexceptinginstruction(Figure4). We believe this canbe
implementedwith minimal additionalcomplexity. Whether
or not this relinking is supported,amechanismfor buffering
secondaryTLB misseswill be requireddueto their preva-
lence.

5  Experimental Results
To demonstratetheperformancebenefitof multithreaded

exceptionhandlingwe performeda seriesof experiments
using software TLB miss handling as an example.Since
there is no benefit to spawning exception threads for
instructionTLB misses,only dataTLB missesaremodeled.

5.1  Simulation Infrastructure
This research was performed using a simultaneous

multi-threadedsimulatorevolved from the Alpha architec-
ture version of the SimpleScalarToolkit [2], version 3.0.
This execution-driven simulator supports precise inter-
rupts/exceptionswhich allows usto trapat TLB missesand
run the TLB misshandler. The simulatorsupportsenough
of the21164privilegedarchitecture[4] to run thecommon
caseof the dataTLB miss handlerfrom the 21164privi-
leged architecturelibrary (PAL) code.The basesimulated
machine configuration is described in Table1.

The simulatorhasan abstractfront-endwhich provides
the benefitsof a tracecachewithout a specificmechanism.
It is capable of supplying instructions from multiple
non-contiguousbasicblocksin thesamecycleandthenum-
ber of taken branchesper cycle is not limited. To simplify



simulation, instructionsare scheduledin the samecycle
they are executed,which in effect provides perfect cache
hit/missprediction.To accountfor the delayrequiredfor a
registerfile read,instructionsarepreventedfrom scheduling
until a numberof cyclesafter they areput in the window.
Limited execution resourcesand bandwidthare modeled,
but writeback resourcesare not. Instructions maintain
entriesin the instructionwindow until retirementandmust
retire in order, but retirementbandwidthis not limited. A
multi-level cachehierarchy andrequest/transferbandwidths
betweenlevelsof thehierarchy aremodeled.Thepagetable
entriesaretreatedlikeany otherdataandcompetefor space
in the cache as such.

The simulatedmachineincludesa 64 entry data TLB,
smaller than contemporarymachines,to accountfor the
moderatelysmall data sets of the benchmarks.Since all
results are presentedin terms of cycle penalty per TLB
miss, ratherthan absolutespeedup,resultsare not signifi-
cantlyaffectedby TLB size.Usinga smallerTLB increases
thenumberof missespersimulatedinstruction.ThreeTLB
miss handler mechanisms are studied:
• The traditional software TLB handler squashesall

instructionsfrom the TLB misson, fetchesthe handler
andthenresumesthe applicationcode.Instructionsare
free to usetranslationsspeculatively, but the translation
is only permanentlyenteredinto the TLB at retirement
of the exception handler.

• The multithreadedTLB misshandlerexecutesthe han-
dler codein aseparatethread,whenavailable;otherwise
it reverts to the traditional mechanism.

• Lastly, for comparison,a hardwareTLB misshandleris
studied.The hardwareschemedoesnot requireinstruc-

tions to be fetched,but requiresmemorysystemband-
width, and its load from the page table must be
scheduledlike otherloads.The finite statemachinecan
handlemultiple missesin parallelandspeculatively fills
theTLB if the faulting instructionhasn’t beensquashed
by the time the translation has been computed.

5.2  Benchmarks
Five benchmarks,thosewith non-trivial dataTLB behav-

ior, were selectedfrom Spec95.Three additional bench-
marks from various sources (X Windows, verification,
object-oriented[5]) areincludedfor additionalbreadth.All
benchmarkswererun for 100million instructions.To avoid
the initialization phaseof the programs,the simulations
were startedfrom checkpointspartway into the execution.
The benchmarks are listed in Table2.

5.3  Analysis
Figure5 shows therelativeperformancefor four different

exceptionarchitecturesacrossthebenchmarksuite.Thetra-
ditional software TLB miss handlerhas an averageTLB
miss penalty (run time differencecomparedto a perfect
TLB, divided by the numberof TLB fills, as describedin
Section3) of 22.7cyclespermiss.ThehardwareTLB miss
handlerusuallyhasthe bestperformance(the only excep-
tion is gcc which is describedin thenext paragraph)with a
TLB misspenaltyof 7.3 cycles,arounda third of the tradi-
tional software handler. The multithreaded(1)solution,
which hasoneidle threadavailablefor exceptionhandling
is asignificantimprovementover thetraditionalmechanism
with an averagepenaltyof about11.7 cycles per miss,or
just over half of the traditional miss penalty. Additional

Core Dynamically-scheduled simultaneous multithreading with 2 or 4 threads. All threads share a single fetch unit,
branchpredictor, decoder, centralizedinstructionwindow (with 128entries),scheduler, memorysystems,andpool
of functional units. Fetch, decode, and execution bandwidth are equal, nominally 8. The fetch chooser policy is
described in Section4.4. Instructions are scheduled oldest fetched first.

Branch

Prediction
YAGS[7] with 214 entry table, 212 exceptions with 6 bit tags, with perfect branch target prediction. Indirect

branches predicted by an cascaded indirect predictor [6] with 28 entry table, with 210 exceptions. Returns are pre-
dicted by a 64 entry checkpointing return address stack (RAS) [10].

Pipelining 3 cycles for Fetch, 1 cycle Decode, 1 cycle Schedule, 2 cycle Register Read for nominal 7 stages between Fetch
and Execute.

Functional Units
(Latency)

8 integer ALUs (1), 3 integer mult/div (3/12), 3 Float Add/Mult (2/4), 1 Float Div/SQRT (12/26), 3 Load/Store
ports(3/2) for an 8 way machine. All functional units are fully pipelined.

Memory System 64 KB, 2 way set associative (32 B lines) L1 instruction cache, 64 KB, 2 way set associative (32 B lines) L1 data
cache, up to 64 outstanding (primary + secondary) misses, L1/L2 bus is 16B wide giving a 2 cycle occupancy per
block, 1 MB (64 B lines) 4 way set associative fully-pipelined unified L2 cache with a 6 cycle latency (best
load-use latency is 12 cycles), L2/memory bus occupied for 11 cycles during transfer, 80 cycle memory latency
(best load-use latency is 104 cycles)

Translation Perfect ITLB, 64 entry DTLB. PAL instructions can co-exist in pipeline with user-mode instructions, TLB misses
are handled speculatively, and TLB miss registers are renamed to allow multiple in-flight misses simultaneously.
Assume common case (no page faults or double TLB misses), enabling perfect prediction of handler length.

Table 1. Base simulated machine configuration



threadsprovide only modestbenefit; the multithreaded(3)
experiments,which have 3 idle threads,reducetheaverage
the miss penalty to about 11.0 cycles.

The multithreadedmechanismhas better performance
than the hardware mechanismon the benchmark gcc
becausethehardwaremechanismspeculatively updatesthe
TLB, andgccsuffersfrom many TLB missesonmis-specu-
lated paths.The speculative loads that causetheseTLB
missescausecachepollution in the perfect-TLB case(the
TLB filters thesespeculativeaccessesreducingcachepollu-
tion) giving the perceptionthat the TLB penaltyfor gcc is
lower than other benchmarks.

Although the multithreadedmechanismregainsmuchof
the performancelost to traditionalsoftwaremisshandling,
thereis still a discrepancy betweenits performanceandthat
of the hardware statemachine.The multithreadedmecha-
nism hasa numberof overheadsnot presentin a hardware
mechanism:latency for fetchinganddecodinginstructions,
fetch and decodebandwidth, execution bandwidth, and
instructionwindow space.To quantify theseoverheadswe
performeda seriesof limit-study style experiments,where
we eliminatedeachof theseoverheadsin turn andanalyzed
their effect on performance.Theselimit studieswere per-
formed with 3 idle threads to maximize performance.

Table3 shows the averageresults of the theseexperi-
ments,comparingthem with averagesfor traditional soft-
ware, multithreadedsoftware, and hardware mechanisms.
Instantaneousfetch is the only optimizationwhich signifi-
cantlyaffectsperformance,reducingthemisspenaltyby 2.5
cycles.In thenext sectionwe proposea hardwareoptimiza-
tion to reducethefetch/decodelatency of thesoftwareTLB
miss handler.

5.4  Quick Start
Sincefetch and decodelatency is the major contributor

preventing equivalent performanceto the hardware TLB,
we explored a possible optimization which reducesthe
latency incurredbeforetheexceptionhandlerbeginsexecu-
tion. Specifically we predict the next exception to occur,
prefetch the exception code, and store it in the fetch buffer.

At fetch time, it canbe difficult to predictwhetherthere
will be room for instructions in the instruction window
given that it is unknown wheninstructionswill retire. Our
microarchitectureincludesfetch buffers, which serve as a
holding placefor instructionswhich have beenfetchedbut
not decodedbecausethe instructionwindow is full. In our
SMT processor, theseresourcesaresuppliedonaperthread
basis.Whena threadis idle, sois its buffer. Theseidle fetch

Name Data Set TLB misses description

alphadoom (adm) -playdemo rockin 11,000 X-windows first-person shooter game Doom, from Id Software.

applu (apl) test input 16,000 parabolic/elliptical partial differential equation solver (SpecFP 95)

compress (cmp) 100000 q 2131 230,000 text compression using adaptive Lempel-Ziv coding (SpecInt 95)

deltablue (dbl) 5000 16,000 object-oriented incremental dataflow constraint solver (C++)

gcc (gcc) jump.s 14,000 GNU optimizing C compiler, generating SPARC assembly (SpecInt 95)

hydro2d (h2d) test input 23,000 astrophysics-hydrodynamical Navier Stokes solver (SpecFP 95)

murphi (mph) adash.m 36,000 finite state space exploration tool for verification (C++)

vortex (vor) persons.250 86,000 single-user object-oriented transactional database (SpecInt 95)

Table 2.Benchmark summary. TLB misses records approximate number of TLB misses in runs of 100 million instructions.

Figure 5. Relative TLB miss performance of traditional,
multithreaded and hardware handlers.
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Configuration Average

Penalty/Miss

Traditional Software 22.4

Multithreaded 11.0

Multi w/o execute bandwidth overhead 10.7

Multi w/o window overhead 10.5

Multi w/o fetch/decode bandwidth overhead 10.2

Multi w/ instant handler fetch/decode 8.5

Hardware TLB miss handler 7.1

Table 3. Averagenumberof penaltycyclesper missfor differ-
ent configurations.The“Multi” configurationsare limit stud-
ies of the multithreadedmechanismwith oneof its overheads
removed.Thelatencyof fetch anddecodeis a major contribu-
tor to theperformancediscrepancybetweenmultithreadedand
the hardware mechanism.



buffers can be usedto hold the exception code that was
prefetched before the exception occurred.

To prefetch the exception handler, we have to predict
whichexceptionis likely to occurnext. Sinceit is likely that
a particularapplicationis dominatedby a small numberof
exceptiontypes,asimplehistory-basedpredictoris likely to
perform well. Since our experimentsonly modelleddata
TLB misses,predictionof thenext exceptiontypewasper-
fect and thus optimistic.

Figure6 shows that the quick startmechanismdoespro-
ducea sizableperformanceimprovement,on average1.7
cyclespermiss.This improvementfalls shortof the instant
fetch/decodelimit studyfrom Section5.3,asthequick start
mechanismcannot avoid the latency for decoding the
exception handler, and the instructionshave not always
been prefetched.

Speedupis a functionof thenumberof penaltycyclesper
miss, the TLB miss rate and the baseIPC. Although we
don’t feel that thesebenchmarks,with their relatively small
data sets,have TLB miss ratesthat are representative of
important workloads,for completenesswe have included
Table4 with speedups, TLB miss rates and base IPC.

5.5  Multiple Application Threads
Sincean SMT processorwill often be running multiple

applicationthreads,it is importantto investigatethebenefit
of our techniquein thatenvironment.We performedexperi-
mentswith 3 applicationthreads(arbitrarycombinationsof
our 8 benchmarks)and one idle thread.Figure7 shows
theseresults.The benefitsof our techniquehereare more
modestbut arenot unsubstantial,reducingtheaverageTLB
miss penalty by 25% (30% with quick start).

One threadproved to be sufficient for supporting3 of
thesebenchmarkapplications.The exception thread was

active between5 and 40 percentof the time, averaging
about 20% activity.

Thereare many factorswhich affect theseresults.SMT
processorsaremore tolerantof the delayscausedby TLB
missesbecausethe other threadscan continueto execute
normally. This leadsto a reductionof the overall penalty,
reducing the opportunity for our optimization. However,
becauseSMT tendto have higherthroughputin general,the
lost fetch and decode bandwidth due to unnecessary
squashesbecomesmore harmful, hence our technique
shows benefit.Similarly, the hardware TLB miss handler
hasan advantageover the software techniquesbecauseit
doesn’t allocatepreciousfetchanddecodebandwidthto the
exception handler itself.

6  Generalized Mechanism
In Section4, we focusedon the mechanismsnecessary

for TLB missexceptions.Otherexceptions,like unaligned
accessor floating-pointexceptions,can’t easily be imple-
mentedwithout someaccessto registers.Up to this point
we’ve relied on the traditional exception mechanismfor
generalpurposereadingandwriting of the registerfile, but
themultithreadedmechanismcouldbeextendedto provide
read access to the register file.

Sinceall threadsin anSMT processorshareacentralpool
of physicalregisters,thedifficulty of providing crossthread
register accessis not in adding extra datapath,but rather
finding the correctphysical registernumber. The exception
handlerthreadcould be startedwith a copy of the applica-
tion thread’s registerrenamemapasit existedimmediately
precedingthe exceptinginstruction(mechanismsfor copy-
ing registermapsareproposedin [18]). TheSMT will cor-
rectly handletheseread-onlyregistersnaturally:thenormal

Figure 6. Performanceof the “quick-starting” multithreaded
implementation.
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Figure 7. Average TLB miss penaltieswith 3 applications
running on the SMT.
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schedulingmechanismhandlesthe cross-threaddataflow,
the registerswill remainvalid for the life of the exception
handlersincethey can’t bereclaimeduntil instructionsafter
thehandlerretire,andthenormalrenamingmechanismwill
not allow the original thread’s registersto be polluted.The
difficulty with this solution is that the rename map might no
longer exist when the exception is detectedand may be
expensive to regenerate.Althougha mechanismto roll back
the renamingmapsto an arbitrary instructionboundaryis
necessaryfor traditional exceptionhandling,utilizing this
hardware to recover renamingmaps for running threads
might add unacceptable complexity.

Someexceptionhandlers,including thosefor unaligned
accessand emulatedinstructions (those implementedin
software),only needto readandwrite thesourceanddesti-
nation registersof the faulting instruction. Simpler hard-
ware could be built which would provide accessto only
those registers which were involved in the excepting
instruction.In any machinein orderto execute,an instruc-
tion needsto know the IDs of its sourceand destination
physical registers;whenanexceptionoccurswe keeptrack
of thoseregisteridentifiers.In this way we canprovide read
accessto the exceptinginstruction’s sourceregisterswith-
out the need to reconstruct the whole register map.

Write accessto the instruction’s destinationcanbe simi-
larly provided.Whentheexceptionis detected,the faulting
instruction’s destinationregister is recordedand it and all
dependentinstructionsare returnedto the instructionwin-
dow. We canprovide theexceptionhandlera mechanismto
write directly to this physical register. Upon this write, the
excepting instruction is converted to a nop (to make sure
thattheregisteris not re-written)andany consumersof that
registerthatarein theinstructionwindow aremarkedready
and scheduled normally.

Othertypesof exceptionsalsoneeda moregeneralmem-
ory ordering solution. Typically, dynamically scheduled
processorsinclude a mechanismto support out-of-order
memory operationswithin a thread,but this needsto be
extendedto handleRAW violationsbetweenthe exception
threadandthe applicationthread.This inter-processmem-
ory orderingsupportis alreadypresentin machineswhich
enforcesequentialconsistency in the presenceof specula-
tive memory operations [20].

7  Related Work
A wealth of researchhas beendone on multithreading

andsimultaneousmultithreading,in particular, for increas-
ing throughput of multi-programmed workloads and
multi-threadedapplications.Recently, Chappellet. al. [3]
and Songand Dubois [15] have investigatedmechanisms
which allow subordinatethreadsto assistthe executionof
an applicationthread.This work differs from the previous

work in threeways:1) theexceptionthreadsarefull-fledged
SMT threadswhich areidle, ratherthanspecializedthreads
with reducedregisterfiles [3] or a registerfile which is par-
tially sharedwith theapplicationthread[15], 2) instructions
arefetchedfrom the instructioncache;no micro-RAM has
to be managed[3], and 3) the threadsare synchronous;
instructionsexecutedby thesubordinatethreadareinserted
into theapplicationthread’s retirementstream,andall syn-
chronization between threads is implicit.

Significantwork hasbeendonein TLB designto reduce
thefrequency of TLB misses.MultithreadedTLB misshan-
dling does not reduce the number of TLB misses,but
instead reduces the performance impact of each TLB miss.

Previously, Henry explored mechanismswhich acceler-
ated interruptsand exceptionsin a superscalarprocessor
using the traditional mechanism[8], including taggingall
in-flight instructionswith a kernel/userbit ratherthanusing
aglobalkernel/userbit to avoid flushingthepipeat thetran-
sition. This mechanism is assumed in our implementation.

Concurrentlywith this work, Keckleret. al. performeda
studyon the performanceimpactof usingseparatethreads
for exception and interrupt handling for the M-Machine
[11]. Becausethe M-Machine is an in-order machine,the
work relieson the“instructionslack”betweentheexcepting
instructionandthefirst instructionwhich requiresits result
to overlap the handler with the faulting thread.

Our proposedmechanismexploits the control indepen-
dencepresentin exceptionhandlerexecution.Micro-archi-
tectureswith generalmechanismsfor exploiting control
independence[13] shouldbe able to likewise exploit this
aspect of exception handlers.

8  Conclusion
This paperpresentsa new exceptionarchitecturewhich

usesidle threadsin a multithreadedprocessorto execute
exceptionhandlers.The exceptionhandleris executedin a
separatethread,but instructionsare forced to retire in the
correctordermaintainingtheappearanceof sequentialexe-
cution. Squashingand re-fetching instructions after the
faulting instructionis avoided,and,with dynamicschedul-
ing, independentoperationscancontinueto executein par-
allel with the exception handler.

This executionmodel only appliesto exceptionswhich
returnto theexceptinginstructionandlimits accessto regis-
ter valuesfrom the main thread.Despitetheselimitations,
this architectureseemspromisingfor acceleratingthe exe-
cutionof theclassesof exceptionswhicharefrequentlyexe-
cuted.

The performanceof this mechanismappliedto software
TLB misshandlingis investigated.The overheadof tradi-
tional exception handling is rapidly increasinggiven the
current trendsin microprocessors.With the multithreaded



mechanismtheTLB misspenaltycanbereducedby afactor
of two. With a small optimization,speculatively fetching
theexceptionhandlerandstoringit in anidle thread’s fetch
buffer, the penaltycanbe further reduced,rivaling the per-
formanceof hardwareTLB misshandling.Whenmultiple
applicationsarebeingexecutedthe benefitis reducedto a
25% reduction of average TLB miss penalties.
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Name base IPC TLB misses Perfect H/W Multi(1) Multi(3) Quick(1) Quick(3)

alphadoom 4.3 11,000 1.0% 0.6% 0.4% 0.4% 0.5% 0.5%

applu 2.6 16,000 0.9% 0.4% 0.1% 0.1% 0.2% 0.2%

compress 2.6 230,000 12.9% 9.0% 6.8% 7.3% 7.8% 8.4%

deltablue 2.2 16,000 1.4% 0.8% 0.6% 0.6% 0.7% 0.7%

gcc 2.8 14,000 0.5% 0.4% 0.4% 0.4% 0.4% 0.4%

hydro2d 1.3 23,000 0.7% 0.4% 0.1% 0.1% 0.2% 0.2%

murphi 3.9 36,000 3.2% 2.2% 1.6% 1.7% 1.8% 1.9%

vortex 4.9 86,000 9.6% 7.1% 4.8% 5.3% 5.7% 6.3%

Table 4. Table of speedups (over traditional software), TLB miss rates and base IPC for 100 million inst. runs of the benchmarks.


