
Abstract

Current techniquesfor prefetching linked data structures
(LDS) exploit the work available in oneloop iteration or
recursivecall to overlap pointer chasinglatency. Jump-
pointers, which provide direct accessto non-adjacent
nodes,can be usedfor prefetching whenloop and recur-
siveprocedure bodiesare smallanddo not havesufficient
work to overlap a long latency. This paper describesa
framework for jump-pointerprefetching (JPP) that sup-
ports four prefetching idioms:queue, full, chain, androot
jumping and three implementations:software-only, hard-
ware-only, and a cooperative software/hardware tech-
nique. On a suite of pointer intensiveprograms, jump-
pointerprefetching reducesmemorystall timeby 72%for
software, 83%for cooperativeand55%for hardware, pro-
ducing speedups of 15%, 20% and 22% respectively.

1 Introduction

Linkeddatastructures(LDS) arecommonin many appli-
cations,andtheir importanceis growing with thespreadof
object-orientedprogramming. The popularity of LDS
stemsfrom their flexibility , not their performance. LDS
access,oftenreferredto aspointer-chasing, entailschains
of datadependentloadsthat serializeaddressgeneration
and memory access. In traversing an LDS, theseloads
often form the program’s critical path. Consequently,
whenthey missin thecache,they canseverelylimit paral-
lelism and degrade performance.

Prefetchingis one way to hide LDS load latency and
recover performance. Address prediction based tech-
niques can generate addressesin non-serial fashion,
prefetchnodesarbitrarily faraheadof theiranticipateduse
andtoleratelong latencies.However, LDS accessstreams
rarely display the high levels of arithmetic regularity
required to support accurate address prediction.

Recentlyproposedschedulingbasedtechniques[11, 16]
prefetchnodesserially but attackissuedelaysthat aggra-
vateserializedlatenciesby issuingLDS loadsassoonas
their inputsareready. Schedulingmethodscanpre-calcu-
lateLDS addressesaccurately, but theirpaceis dictatedby
the critical path through the pointer chain. Scheduling
methodsare inadequatewhen the amountof work avail-
ablefor overlappingwith thecritical chainis limited, due
to eithera tight loop or a slow memory. Handling these
situations,which will worsen as the processor/memory
speedgap grows, requiresa mechanismthat can address
and prefetch arbitrary LDS nodes.

To illustrate our point, Figure 1(a) shows a list traversal
loop (e.g.,for (l = list; l; l = l->next) ...) with the long latency

of the induction loads(instancesof l = l->next) exposed.
Schedulingmethodshidethis latency by issuingtheinduc-
tion loadearlyin theiteration(Figure1(b)). For shortiter-
ationsor long latencies(Figure 1(c)), an induction load
will stall the next iterationno matterhow early within its
own iterationit issues.For full efficiency, it mustbeover-
lapped with work frommultiple iterations.

We presenta methodfor overlappingLDS load latency
with thework of multiple iterationsvia thestructureduse
of jump-pointers. Jump-pointersare used strictly for
prefetching. Residingat someor all LDS nodes,they
point to nodesthat are likely to be accessedin the near
future,not onesthat arefunctionally adjacent. As shown
in figure 1(d), jump-pointerprefetching (JPP)overcomes
the serial natureof LDS addressgenerationand obtains
the addressof an otherwisenon-adjacentLDS nodevia a
singlelow-latency lookup. This in turn allows usto over-
lap theaccesslatenciesof multiple nodes,or equivalently,
to overlap the latency of one node with multiple iterations.

Our generalframework combinesjump-pointerprefetch-
ing with chained prefetching,which uses the pointers
available in the original unmodifiedprogram. We show
that jump-pointerprefetchingandchainedprefetchingcan
be combinedin different ways to createfour prefetching
idiomswhich we call queuejumping, full jumping, chain
jumping and root jumping. Since both jump-pointer
prefetchingand chainedprefetchingcan be implemented
in eitherhardwareor software,eachidiom canbeinstanti-
atedin oneof threeimplementations: software, hardware,

Figure 1. Hiding LDS load latency. (a) Exposed
inductionload latencycanbehiddenby (b) scheduling
it early in an iteration. (c) Thisapproach is ineffective
if a single iteration has insufficient work. (d) Jump-
pointers can leverage the work of multiple iterations.

(b)

(d)

(a)

(c)

compute

stall LDS induction load

loop iteration

jump-pointer prefetch

Effective Jump-Pointer Prefetching for Linked Data Structures

Amir Roth and Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin, Madison
{amir, sohi}@cs.wisc.edu

andcooperative. The cooperative schemehandlesjump-
pointerprefetchingin softwareandchainedprefetchingin
hardware.

Each idiom/implementationcombinationhas advantages
and drawbacksthat make it suitablefor certainkinds of
LDS traversals.Westudyasetof pointerintensivebench-
marksandattemptto isolatetheprogramfeaturesthatbest
guide idiom and implementationselection. Our experi-
ments show that software, cooperative and hardware
prefetchingeliminateanaverageof 72%,83%and55%of
the total memorystall time in theseprograms,translating
into speedupsof 15%,20%,and22%respectively. This is
a significant improvement over other known schemes.

This rest of the paperis organizedas follows. The next
section presentsour JPP framework and a benchmark
characterization.Thethreeimplementationsaredescribed
in Section3 andevaluatedin Section4. The last sections
discuss related and future work and our conclusions.

2 Jump-pointer Prefetching Framework

Our prefetchingframework can be describedin termsof
two building blocks:jump-pointer prefetches andchained
prefetches. Jump-pointers arepointersaddedto the pro-
gram’s datastructuresfor prefetchingpurposesonly. We
saythata jump-pointerresidesin a home nodeandpoints
to a target node. Jump-pointer prefetches prefetchtarget
nodesusing the jump-pointer at the home node. For
prefetchingto succeed,the target of a jump-pointermust
point to a nodethat is likely to be referencedsometime
after the correspondinghomenode. Chainedprefetches,
on the other hand, do not require jump-pointers,they
prefetchusingtheoriginal pointersin thestructure. Each
of thesetypesof prefetchprovidesdifferentbenefitsand
hasdifferentassociatedperformancecosts. Jump-pointer
prefetchescan prefetcharbitrary LDS nodes,hide arbi-
trary amounts of latency and allow otherwise serial
prefetchesto executein parallel. However, jump-pointers
requirestorageand maintenance,imposingoverheadson
the program. Chainedprefetchesincur no explicit over-
headsandrequirenoadditionalmaintenance,but providea
more limited amount of latency tolerance.

Jump-pointerprefetchesand chainedprefetchescan, to
somedegree,be tradedoff for oneanotherandcombined
to createefficient prefetchingsolutions. Our framework
comprisesfour idioms that representpoints along this
trade-off/combinationspectrum.On oneend,full jumping
usesjump-pointerprefetchesexclusively. At the other,
root jumping usesfew jump-pointerprefetches,andrelies
heavily on chainedprefetching. Chain jumping is some-
wherein the middle. Finally, queue jumping is a special
case that handlessimple structuresusing jump-pointer
prefetchesonly. Therestof thesectiondescribestheseidi-
omsandprovidesa benchmarkcharacterizationin which
high level programfeaturesareusedto guideidiom selec-
tion. However, we first provide a short overview of the
creation and use of jump-pointers.

2.1 Creating Jump-pointers Using a Queue

When prefetching,the distance(in dynamic nodestra-
versed)betweenthe home and target nodesof a jump-
pointer shouldbe proportionalto the target nodeaccess

latency. For instance,if eachnodevisit contains10cycles
of work andnodeaccesstakes40 cycles,a jump-pointer’s
homenodeshouldbe four nodesaheadof its targetnode.
A shorter distancewould allow only part of the target
accesslatency to be hidden. On the otherhand,usinga
distancethatis too long maycausetheprefetchedblock to
be evicted before it can be used.

Although ideal distancesmay vary from node to node,
such information is difficult to gather, expressor use.
Instead,wechooseafixedinterval I, usuallythemaximum
(or average)requireddistanceper node,andsetall jump-
pointers I nodesaheadof their targets. This is easily
accomplishedusingaqueueof lengthI. OnLDS creation,
or first traversal, a queue maintains the last I node
addresses.As eachnew nodeis added(traversed)a jump-
pointeris createdwith thenodeat theheadof thequeueas
its homeand the currentnodeas its target. The current
nodeis thenenqueuedat the tail of the queue,while the
home node at the head is removed.

The running example in this section uses the routine
check_patients_waiting from the Olden benchmark[15]
health, a hierarchicalhealth-caresystemsimulator. Every
iteration, health visits a tree of hospitals bottom up.
Check_patients_waiting scansthewaitingpatientlist, pos-
sibly removing or addingsomepatients.Themainloop is
shown in Figure2(a); theloadsin bold areresponsiblefor
a largefractionof thecachemissesin theprogram.Figure
2(b) shows jump-pointer creation using the queue method.

2.2 Four Prefetching Idioms

Jump-pointerprefetchingandchainedprefetchingcanbe
combinedin various ways to form different prefetching
idioms. Thefirst idiom we present,queue jumping, is not
reallyaconsciouscombinationof theseblocksbut rathera
degeneratecase. Queue jumping is applied to simple
“backbone” structureswhich contain nodesof only one
type connectedin any regular way, suchasa list, tree,or
graph. In queuejumping, jump-pointersare addedto
everystructurenodeusingthequeuemethod,andtheseare
usedto prefetchthe entire structure. The trade-offs we
spoke of comeinto play when we deal with “backbone-
and-ribs”structureswhichcontainaprimarypointerstruc-
turewith secondarystructuresat every primarynode. The
list usedby check_patients_waiting is such a structure,
with thelist nodesformingthe“backbone”,andthepatient
recordsthe“ribs”. Evenin thesecases,queuejumpingcan
be used to prefetch only the “backbone”.

Full jumping, originally introducedby Luk and Mowry
[11] in a programmer-controlled context, prefetches
“backbone-and-ribs”structuresusing only jump-pointer
prefetches.Full jumping is shown in Figure2(b). Each
nodeis augmentedwith two jump-pointers:j_list pointsto
the nodeI iterations(hops)ahead,and j_patient points to
that node’s patientrecord. With an appropriatechoiceof
interval, prefetch list->j_list hidesthe p = list->patient load
latency and prefetch list->j_patient hides the latency of
p->time. Our convention for prefetchstatementsfollows
Luk andMowry’s. Thatis, prefetch x means“prefetchthe
addressthat is the valueof x”. In software,this is a load
followed by a dependent non-binding prefetch.

Chain jumping applies jump-pointer prefetchesto the
“backbone”andchainedprefetchesto the“ribs”, reducing
jump-pointeroverheads.At thesametime,chainjumping

cantolerateasmuchlatency asa full queuejumpingsolu-
tion by exploiting thefact thata jump-pointercantolerate
anyamountof latency if setwith asuitablechoiceof inter-
val. In our full jumping example,we maintainedjump-
pointersfor bothlist nodeandpatientrecord,allowing the
prefetchesto proceedin parallel. In chainjumpingshown
in Figure2(c),we keepjust thelist nodejump-pointerand
prefetchingthepatientrecordthroughit, halvingthenum-
ber of jump-pointers (not to mention jump-pointer
updates).Thepricefor this overheadefficiency is thatthe
two prefetchesmust now executein series(prefetch list-
>j_list->patient blocks until prefetch list->j_list com-
pletes). Again, to fully hide the latency of both loads
chain jumping mustusea longer interval thanfull jump-
ing. For instance,supposeeachiteration in our example
contains10 cyclesof computation,while list->forward and
p->time eachtake 20cyclesto complete.Full jumpinghas
only 20 cycles of latency to cover and can install jump-

pointersat two nodeintervals. Chain jumping incursthe
latencies in series and must use a four-node interval.

Root jumping is most suitable for collectionsof small,
highly dynamicpointerstructures.It reliesalmostexclu-
sively on chainedprefetching.All jump-pointersinstalled
in highly dynamicstructures,suchasthelistsprocessedby
check_patients_waiting, eventuallybecomeinvalid. Keep-
ing jump-pointersupdatedis one way to deal with this
problem. However, continuousupdatesareexpensive and
updates on insertions/deletions only are complex to imple-
ment. Root jumping avoids the update problem by
prefetchingin a way that is transparentto LDS mutation.
In root jumping, an entire LDS is prefetchedin chained
jumpingfashionusinga singlepointerto theroot. In Fig-
ure2(d), &vlg->j_vlg.hosp.waiting computestheaddressof
theroot of thelist for thenext hospital. As thecurrentlist
is accessed,the next list is prefetchedusing the original
program pointers. On the negative side, root jumping

Figure 2. Jump-pointer prefetching idioms. (a) Unoptimizedcheck_patients_waitingprocedure from the health
benchmark: the loadsin bold traversea list of patientrecordsandincur manycachemissesthat combineto serialize
the routine. (b) Jump-pointercreation: pointers are installedusingthe queuemethod. (c) In full jumping, each list
nodeis fittedwith jump-pointers to a future nodeand its patientrecord. (d) Chain jumpingachievesthesameeffect
without maintaining the second jump-pointer. (e) Root jumping can prefetch an entire list with a single jump-pointer.

while (list != NULL) {
p = list->patient;
if (...) {

removeList(&vlg->hosp.waiting, p);
addList(&vlg->hosp.assess, p); }

list = list->forward; }
else p->time++;

while (list != NULL) {
prefetch list->j_list;

if (...) { ... } else p->time++;
list = list->forward; }

p = list->patient;
prefetch list->j_patient;

while (list != NULL) {
prefetch list->j_list;

if (...) { ... } else p->time++;

list = list->forward; }

p = list->patient;

prefetch list->j_list->patient;

while (list != NULL) {
prefetch j_list->patient;

if (...) { ... } else p->time++;
list = list->forward;

p = list->patient;

j_list = j_list->forward; }

j_list = &vlg->j_vlg->hosp.waiting;

prefetch j_list->forward;

(a)

(d)(c)

(e)

Program storage
Jump-pointer storage

Pointer dereference

Legend:

// jl
// jp

jp
jl

jl jlp

// jl

// jlp

// jlp
// jll

jlp1 jlp2

jll2jll1

while (list != NULL) {
p = list->patient;
if (...) { ... } else p->time++;

list = list->forward; }

(b)

queue[queue_tail]->j_list = list; //jpc

queue_tail = (queue_tail + 1) % INTERVAL;

Jump-pointer create
Chained prefetch

jpc

Jump-pointer prefetch

queue[queue_tail] = list;

magnifieschainedprefetchserializationeffects. Conse-
quently, it is well suitedfor collectionsof LDS that are
both dynamicand short, like hash table buckets.

2.3 Selecting the Appropriate Idiom

With this idiomaticframework in place,we arefacedwith
the taskof choosing(explicitly for software implementa-
tions, implicitly for hardware)theappropriateidiom for a
given program. Someprogramsmay not needa jump-
pointer prefetchingsolution, they may not incur many
LDS cachemissesor alternatively have sufficient parallel
work to overlap with thosemisses. Others,by virtue of
their algorithmic structure,cannotsupporta JPPimple-
mentation. The specificsetof programswe will studyis
the Olden pointer-intensive benchmarksuite [15] which
haspreviously beenusedto studybothhardwareandsoft-
wareprefetchingmechanisms[11, 16]. A summaryof the
benchmarks is shown in Table 1.

In consideringthe need for jump-pointerprefetching,we
measurethe fraction of loads that are both LDS related
and incur full or partialcachemisses.Equivalently, this is
the product of the overall miss rate and the fraction of
missesaccountedfor by LDS loads. Otherkindsof loads
(arrays,stack,global) andloadsthat hit in the cachewill
notbeaffectedby JPP. To obtainameasureof parallelism,
we countthe averagenumberof in-flight first level cache
missessampledat cachemissesthemselves. A low value
indicates that few cache missesare being overlapped.
Combinedwith a sizablemissratio, this implies thatLDS
missesareserializingtheprogramandpointsout a signifi-
cant need for the parallelism enabled by JPP.

Table1 givesLDS missfractionandmissoverlapnumbers
for a 64KB, 32B line, 2-way associative datacacheanda
super-scalarout-of-orderprocessorcore as describedin
Table 2. This preliminary analysisindicatesthat power
and voronoi may not requirea JPPsolution as JPPcan
attackfewer than1% of the loadsin theseprograms. In
addition, em3d appearsto have sufficient parallelismto
overlap a significant numberof LDS misses. A serial
LDS prefetching mechanism, like dependencebased
prefetching [16], will probably suffice to handle them.

Regardlessof theneedfor it, JPPis notapplicablein every
situation. For instance,largestructuresthatareextremely
dynamicanddatadependenttraversals(treesearches)are
difficult to prefetcheven using jump-pointers. The last
partof Table1 detailsthekindsof datastructuresusedin
eachbenchmark,their runtime behavior, and the jump-
pointeridiom(s)wejudgedto beappropriatefor eachcase.

Bh, bisort, perimeter, power, treeadd, tsp andvoronoi all
use “backbone-only” structures,making queuejumping
theonly choice. Actually, we maynot wantto explicitly
implementany idiom on bisort andtsp, astheseprograms
usestructuresthat are both large and extremely volatile.
For these,jump-pointertechniquesmay be both complex
to implementandinsufficiently effective to offsettheover-
headsof any software components. Becauseem3d and
health have “backbone-andribs” structures,we can use
chainandfull jumping for these. Finally, health andmst
use dynamic lists that suggestthe use of root jumping.
With this characterizationin mind, we proceedto thedis-
cussion and evaluation of our three implementations.

3 Implementations

Both of our JPPbuilding blocks:jump-pointerprefetching
and chainedprefetching,can be implementedin either
hardwareor softwareyielding four possiblecombinations.
We present three: software-only, hardware-only, and a
cooperative schemein which jump-pointerprefetchingis
done in software and chainedprefetchingis handledin
hardware. Although it is possiblefor softwareandhard-
wareto cooperatein reversedroles,this final combination
makeslittle sensein termsof bothcomplexity andperfor-
mance. So that we can introducehardware techniques
gradually, wedescribethethreeplausibleimplementations
in the following order: software,cooperative, and finally
hardware.

3.1 Software

Software JPPimplementationsrequirenospecialhardware
supportand,if implementedby hand,benefitdirectly from
the programmer’s high-level knowledgeof the code. He/

Bench Parameters
Inst

Count
LDS
Miss

Miss
Overlap Data Structures/Runtime Behavior

Prefetching
Idiom

bh 2K bodies 1788M 1.6% 0.12 static octree rebuilt at each iteration queue

bisort 250,000 numbers 565M 4.8% 0.26 binary tree nodes flipped queue

em3d 2000 nodes 60M 21.7% 1.62 static list, pointer array at each node queue, chain

health 5 levels, 500 iters 162M 23.3% 0.22 static quadtree, dynamic lists at each nodefull, chain, root

mst 1024 nodes 199M 13.7% 0.32 dynamiclist, statichashtableateachnode queue, root

perimeter 4K x 4K image 1570M 8.6% 0.53 static quadtree queue

power 10,000 nodes 791M 0.4% 0.12 static multiway tree, lists at each node queue

treeadd 1M nodes 72M 3.4% 0.00 static binary tree, queue

tsp 100,000 cities 328M 3.9% 0.76 binary tree converted to list queue

voronoi 60,000 points 317M 0.6% 0.05 static binary tree queue

Table 1. Olden benchmarks. The statistical characterization shows the fraction of loads that are both LDS related and
miss in a 64KB L1 data cache (LDS miss) and the average degree of L1 miss overlapping. The structural
characterization shows types and runtime behaviors of data structures used. We combine information from both
analyses to select the appropriate prefetching idiom(s) for each benchmark.

shecanchoosethe appropriateidiom or even constructa
specialpurposealgorithmthatexploits high-level program
invariants. On the downside,softwareis restrictedto use
only architectedresources,a constraintthat manifestsin
threemajor ways. First, jump-pointerstorageconsumes
usermemoryand increasesthe program’s datafootprint.
Second,jump-pointermaintenanceand prefetchingcode
increasesbothstaticprogramsizeanddynamicinstruction
count. Finally, softwarechainedprefetchesintroduceseri-
alization artifacts into the program.

The codeexamplesin Figure2 arerepresentative of soft-
wareprefetchingimplementationsfor eachidiom. In soft-
ware,jump-pointercreationis simpleto implementandis
inexpensive in termsof executiontimeandcachefootprint
overheads.Jump-pointercreationhandlesrecentlyrefer-
encednodesand,althoughit consumescachebandwidth,
rarely causescachemisses. Storageoverhead(measured
in terms of additional distinct first level cache blocks
accessed)is evenlessof aproblem. Althoughevery jump-
pointeraddsfour bytesto the programdataset,only the
em3d full jumping implementationshowed any memory
overhead,andthenonly a 13% increasein distinct cache
blocks accessed. We attribute this phenomenonto the
implementationof memory allocators which, for effi-
ciency reasons,allocatesmall heapobjectsin only a few
fixedsizes. LDS nodesthatarenot of somepreferredsize
arepadded.Jump-pointerscanbestoredin this would-be
paddingwith nocachefootprint increase.Althoughmem-
ory overheadwill appearif non-paddingallocatorsare
used, it is difficult to estimatethe performanceimpact
without an empirical study.

Software implementationsof jump-pointerprefetchesare
also inexpensive: of the two dependentloadsrequiredto
implementa prefetch,thefirst is likely to hit in thecache
and the secondis non-binding,completingon issue. In
starkcontrast,however, chainedprefetcheshave badexe-
cution characteristicsandmustbe implementedcarefully
to avoid performancepenalties. Since they traversethe
pointersof the original program,chainedprefetcheshave
thesamedependencesanddependencechainsastheloads
for which they aretrying to prefetch. Furthermore,these
are typically long latency dependencechains since
prefetchestypically accessdatathatis not in thecache.In
software, theselong latency chainswill clog the out-of-
order engineunlesschainedprefetchesare spacedsuffi-
ciently farapart. Thissortof schedulingis difficult in situ-
ations where iterationshave little work, an unfortunate
problemconsideringthat thesearepreciselythesituations
that force us to use jump-pointers in the first place.

Weimplementedtheselectedidiom(s)for eachbenchmark
by hand. We first profiled the benchmarksto determine
which LDS loads contributed the majority of the cache
misses,and tracedtheseback to their sourcelevel state-
ments. Wechosetheappropriateprefetchidiom by study-
ing the programsource,then insertedthe corresponding
code. The humancomponentof the entire processtypi-
cally took aboutone hour per benchmark. Only in one
case,mst, did weexploit knowledgeof aprograminvariant
to streamlinethejump-pointercreationprocess.Giventhe
uniformity of jump-pointer creation and prefetching,it
seemslikely that jump-pointerprefetchingcan be auto-
matedin a compiler. However, the structureresizingand
realignment needed to create jump-pointer storage
requiresguaranteesaboutpointer arithmeticthat may be

difficult to obtain in a languagelike C. A more likely
placefor theseimplementationsis a datastructurereposi-
tory such as the C++ Standard Template Library.

3.2 Cooperative

Cooperative JPPintroducesmodesthardware supportto
allow chainedprefetchingto beimplementedin hardware,
reducingboth the direct (instruction count) and indirect
(serialization artifact) costs of software implementations.

The hardware componentof cooperative JPPis nothing
more than the previously proposeddependence-based
prefetchingmechanism(DBP) [16]. DBP observes an
executingprogramanddynamicallyidentifiesLDS loads
andtheir datadependencerelationships,effectively isolat-
ing the “kernel” responsiblefor LDS traversal. To
prefetch, we speculatively and aggressively unroll the
“kernel” in dataflow fashion,alongsidethe original pro-
gram. Datais prefetchedwhenit is accessedby the“ker-
nel”. In effect, DBP allows the speculative issueof LDS
loadsthat have yet to be scheduledor even seenby the
sequentialprocessingcore. The centralDBP component
is a dependencepredictorthat representsthe datadepen-
dencesamongLDS loads. CompletedLDS loadsaccess
thispredictorto determinewhich,if any, LDS loadscanbe
speculatively issuedas prefetchesusing the just-loaded
valueasaninput address.Completed(arrived)prefetches
are sentback to the predictorto potentially launchother
prefetches. In this manner, an entire LDS can be
prefetchedgivenonly its root addressanda descriptionof
its traversalkernel. We proposea DBP implementation
that containstwo optimizations. To minimize resource
contention,prefetchrequestsarequeued(PRQ)until data
cacheportsareidle. To avoid cachepollution, prefetched
blocks are installed into a prefetch buffer (PB).

With chainedprefetchingin hardware, software chained
prefetchescan be removed from the code, streamlining
chain and root jumping implementations. For instance,
considerthe software root jumping implementationfor
health from Figure2(e). A cooperative versioneliminates
the statementsprefetch j_list->patient, prefetch j_list->for-
ward, j_list = j_list->forward. Not only doesthe software
versionexecutemoreinstructions,it potentiallyserializes
the programalong the j_list = j_list->forward dependence.
The cooperative counterpartof this dependenceexecutes
in hardware and does not serialize the program.

To make a cooperative implementationwork, software
prefetchesmustbe madeto trigger chainedprefetchesin
the hardware. Thesechainedprefetchescorrespondto
speculative instancesof original programLDS loads.One
simpleway to achieve this communicationis to have the
dependencepredictor learn the relationships between
jump-pointerprefetchinstructionsand other LDS loads.
Oncetheseconnectionsare in place,the hardware auto-
matically issueschainedprefetchinstancesof any loads
that dependon a jump-pointerprefetch. In addition to
eliminatingsoftwarechainedprefetches,this communica-
tion mechanismallows the remaining software jump-
pointer prefetchesto be streamlined. Recall, a software
prefetchis implementedusing two dependentloads, the
secondof which is non-binding. By performingthe sec-
ond load in hardware, the corresponding software
sequenceis reducedto the first load which now can be
made non-binding.

3.3 Hardware

HardwareJPPhastheadvantagethatit imposesnoexplicit
execution overheadon the program.However, hardware
JPPfaceschallengesin finding jump-pointerstorageand
mayperformpoorly whenhigh level programunderstand-
ing is needed to construct a prefetching solution.

For a hardware-onlyimplementation,we extendthe DBP
mechanismwith structuresthat direct jump-pointercre-
ation (storage)andprefetching(retrieval). Our particular
mechanismimplementschain jumping: restricting jump-
pointer prefetching to recurrent “backbone” loads and
using DBP to automaticallychain prefetch “rib” loads.
Thissolutionautomaticallyprovidesqueuejumpingwhere
appropriate.Thesetwo idiomsaresimpleto implementin
hardwareandhandlemostprograms.Full androot jump-
ing are not implemented,due to difficulties with finding
jump-pointerstorageanda relianceon high level program
understanding,respectively. In this sectionwe explain the
processes of jump-pointer creation and retrieval.

For jump-pointer creation, we implement the queue
methodin hardware. Eachstatic load identifiedasbeing
recurrent (“backbone”) is associatedwith a queuethat
tracksits mostrecentinput addresses.Addressqueuesfor
the set of active recurrentloads are storedin the Jump
QueueTable(JQT). Whenaninstanceof a recurrentload
commits,it accessesthe JQT and createsa jump-pointer
from thenodesitting at theheadof thequeueto thenode
correspondingto its own input address. This processis
illustrated in Figure 3(b). list = list->forward createsa
jump-pointerfrom thenodevisitedfour hopsago,A, to the
currentnode,E. A requestfor storingthis jump-pointeris
generatedwhile the queueis updatedto reflectthe access
of the current node.

Jump-pointerretrieval and prefetch initiation is a more
delicate processwhich we first explain at a high level
using the example in Figure 3(c). Whenever an LDS
“backbone” load issues,the jump-pointerresidingat the
correspondinghomenodeis placed(magically for now)
into a specialnon-architectedlocation called the Jump-
pointerRegister(JPR). A jump-pointerprefetchis created
usingaspeculative instanceof theloadwith theJPRvalue
as its input. A completedjump-pointer prefetch may
access the predictor and spawn chained prefetches.

The main issuein implementinghardware jump-pointers
is not which pointers to create,but rather where they
should be stored. Two storageoptions are available: a
non-architectedon-chip table and user memory. Non-
architectedon-chip storageis attractive becauseof its
implementationsimplicity. However, its non-scalabilityis

a major problem. Prefetchinga 16K-nodeLDS requires
64KB of jump-pointerstorage,with potentiallymorestor-
agefor tags. It maybedifficult to justify theconstruction
of a special purpose on-chip predictor of this size.
Anotherseriousproblemis thevolatility of tablecontents,
both when traversing structureswith more nodes than
table entries and acrosscontext switches. Our experi-
mentsshow that, with the exceptionof em3dwhich has
only 4000 nodesin its “backbone” data structure,most
benchmarksexperiencenegligible speedups(lessthan2%)
from a 16K entry on-chipjump-pointer cache.

Althoughmorecomplicated,storingjump-pointersin user
memoryis morepromising. Earlierwe observedthatsoft-
ware jump-pointersare often stored in what otherwise
wouldbeallocatorpadding.Webelieve thathardwarecan
and should use this samepadding. Padding storageis
available in quantities proportional to the number of
nodes. It provides a natural, taglessway of attaching
jump-pointersto their home nodesand guaranteesfast
jump-pointeraccesssincethejump-pointeris broughtinto
thecachewhenits homenodeis referenced.Oneconcern
with this approachis that it createsa different memory
imagethantheonedictatedby theprogram.However, this
point is mitigatedsincethe storagein questionwould not
have otherwisebeenread. Previously, Martin et. al. [12]
usedthisargumentto justify cancellingwould-bestoresof
deadmemoryvalues.Weuseasimilarargumentto justify
storing non-program values in would-be unused locations.

Convincedof theadvantagesof allocatorpaddingstorage,
we now needa safeandautomaticway for detectingand
usingthe padding. The methodwe presentaddsinstruc-
tion setandmemoryallocatorinterfaceextensionsto our
otherwisepure hardwarescheme.However, theseplay no
activepart in either jump-pointercreationor prefetching.
We leave other possibilities for future exploration.

Mostallocators(e.g.,GNU C library) allocatesmallmem-
ory chunksin sizesthatarestrictly powersof two; wesug-
gestsolidifying this conventionso that it canbe assumed
by thecompiler. Next, we addfour or five loadvariantsto
the instructionset(call theselw8, lw16, etc.)andusethem
to implementrecurrentload accesseswith the particular
variantchosenbasedon the sizeof the referencedobject.
Specifically, if thesizeis exactly a power of two suchthat
no paddingis available, then the unvaried load is used.
Otherwise,storagefor at leastone jump-pointeris avail-
ableat theendof theallocatedblock. To annotateits loca-
tion, we usethe load variant correspondingto the object
sizeroundedup to thenext power of two. In this way, an
annotatedrecurrentload canbe usedto computea jump-
pointer address in addition to the standard effective

Figure 3. Hardware JPP. (a) Block diagramwith DBP specificparts in light gray andJPPcomponentsin dark gray.
(b) Installing jump-pointers: theJumpQueueTable(JQT)entrycontainsthepreviousfour input addressesof theload
list = list->forward. Whena new instancecommits,it createsa jump-pointerfromthenodeat thequeuetail, A, to the
currentnode, E. It thenupdatestheJQT, advancingthequeue. (c) Jump-pointerprefetching: Asa “backbone” load
issues, the jump-pointer in the corresponding home node is placed in the JPR and used to launch a prefetch.

PBData

Dep

Processor

PRQJQT

JPR
Pred

(b)
list = list->forward E

“backbone” load

JQT Tail JQT
C

Tail

At: A
set jump-pointer
Val: E

(a)

B E DC B A D

input
Cache

(c)
list = list->forward A

“backbone” load input

E
JPR

list = list->forward E
prefetch input

mem
hier

address.This secondaddresscanbe usedto both storea
jump-pointerandto fill theJPRwith theappropriateword
without performing any explicit additional loads.

4 Evaluation

Our performanceevaluationproceedsin four steps. We
begin with aperbenchmarkcomparisonof theJPPidioms.
For eachbenchmark,thebestidiom is chosenastherepre-
sentative software/cooperative solution. With software
andcooperative schemesfixed,we quantitatively evaluate
all three JPP implementationsfor each benchmarkand
comparethemto otherprefetchingschemes.Usinga few
selected benchmarks and some extrapolated current
trends,weprojecttheperformanceimpactof JPPonfuture
architectures. Finally, we attempt to quantify both the
direct and implicit costs of JPP implementations.

To perform our experiments, we modified the Olden
benchmarksby handto executeon a singleprocessor, and
compiledthemfor theMIPS-I architectureusingtheGNU
GCC2.7.2compilerwith flags-O2 -finline-func-
tions. Many of thebenchmarkscontainlongallocation-
dominatedinitialization phasesthatarenot acceleratedby
prefetching;we did not discountthesein any way. Our
evaluationtool wastheSimpleScalartiming simulator[1],
with micro-architecturalparametersasshown in Table2.
We always report execution time as a decompositionof
memoryaccesstime andcomputetime. We definecom-
putetimeasexecutiontimeassuminguniformsinglecycle
datamemoryaccessbut with realistic cachebandwidth.
Computetime encapsulatesstalls resulting from branch
mispredictions,instruction cachemisses,structuralhaz-
ardsandinsufficientmemorybandwidth.For eachbar, the
compute portion was obtained using a second simulation.

4.1 Comparing Idioms

We evaluatethe relative merits of the JPPidioms in the
context of the softwareandcooperative implementations.
We ignorehardwareprefetchingfor now becauseit imple-
mentsonly one idiom. Resultsare shown in Figure 4.
With chain and root jumping eachimplementedin only
two benchmarks, we discuss the results on a case basis.

In em3d, the loadsthatwould mostbenefitfrom prefetch-
ing accesspointerarraysstoredat every node. It is costly
to implementjump queuesandexplicit jump-pointersfor
arraysonly in software and, consequently, full jumping
cannotbe used. In a cooperative environment,however,
implementingthesearray prefetchesis simpler. Conse-
quently, an algorithm that performsonly explicit queue
jumping in softwareandthearrayprefetchesto be imple-
mentedin thehardwareis themosteffective methodhere.
Mst’s short hashtable bucket chainsare ideal for a root
jumpingimplementation.Althoughhealth’s dynamiclists
suggestroot jumping, the lists aretoo long for this idiom
to be effective, chain jumping is the choice here.

We believe that in generalchain jumping, a combination
of jump-pointer prefetching for recurrent “backbone”
loadsandchainedprefetchingfor “rib” loadsis the most

Figure 4. Comparingidiom performance.Normalized
execution times of software and cooperative
implementations of the three prefetching idioms.

Legend: B: Base S: Software JPP C: Cooperative JPP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

BSC
health

full

BSC
health
chain

BSC
health
root

BSC
em3d
queue

BSC
em3d
chain

BSC
mst

queue

BSC
mst
root

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Memory latency

Compute time

Out-of-Order Core 5 stage, 4 way superscalar, out-of-order pipeline with 64 instructions in-flight. Wrong path execution
modeled. Loads and stores issue via a 32 entry queue with a 1 cycle load bypass. Loads wait for all
previous store addresses before issuing.

Branch Prediction 8K entry combined 10-bit history gshare and 2-bit predictors. 2K entry, 4-way associative BTB.

Memory System 32KB, 32B lines, 2-way associative, 1 cycle access first level instruction cache. 64KB, 32B lines, 2-
way associative, 1 cycle access, first level and data cache. A maximum of 8 outstanding data misses.
16-entry ITLB, 32-entry DTLB with 30-cycle hardware miss handling. Shared 512KB, 64B line, 4-
way, 12 cycle access second level cache. 70-cycle memory latency. 8B busses to L2 cache and main
memory clocked at 1/2 and 1/4 processor frequency, respectively, with cycle level utilization modeled.

Functional Units (latency) 4 int ALU (1), 1 int mult (3), 1 int div (20),2 FPadd(2), 1 FPmult (4), 1 FPdiv (24),2 load/store(1)

Software Prefetches
(where applicable)

Non-binding, complete on issue, and can initiate TLB miss handling.

Dependence Based
Prefetch Mechanism
(where applicable)

256 entry, 4-way associative dependence predictor that allows two queries per cycle. Prefetched
blocks are stored in a 2KB, 32B line, 8-way associative, 1 cycle access prefetch buffer and subse-
quently installed into the cache if used. Prefetch requests wait on an 8 entry request queue.

Jump-pointer Mechanism
(where applicable)

32 entry, fully associative jump queue table (JQT) with fixed 8-address queues. One Jump-pointer
Register (JPR) allowing a single jump-pointer access per cycle.

Table 2. Simulated Machine Configuration. Base simulator configuration for all of our experiments.

effective idiom. In puresoftware,it canachieve thesame
effect asfull jumpinggivenanappropriatechoiceof inter-
val andcarefulscheduling. In a cooperative implementa-
tion, it can take advantage of the automatic chained
prefetchingperformedby thedependencehardware. Root
jumpingcanbethemosteffective idiom in certainspecial-
izedcases,in mst for instance,but is notageneralpurpose
technique. Chainjumping is alsothe idiom implemented
by the hardware mechanism.

4.2 Comparing Implementations

With the most efficient idioms selectedfor our software
andcooperative implementations,wecannow evaluatethe
hardwareschemealongsidethem. For addedinsight, we
compareour JPP implementationsto DBP, a hardware
mechanismthat doesnot usejump-pointers. The results
areshown in Figure5. Again, we discussspecificcases
before making general observations.

As our benchmarkcharacterizationpredicted,both power
and voronoi have very small memory latency execution
components. Even the smallestcomputationoverheads
introducedby softwareprefetchingoverwhelmthe poten-
tial benefitandproduceanoverall slowdown. In voronoi,
softwareandcooperative prefetchingactuallyincrease the
total memory latency, as uselessprefetchescontendfor
memoryresourceswith arraybasedcachemisses. Along
similar lines,we notedthat bisort and tsp areboth highly
dynamic structuresfor which any jump-pointerscheme
will not remainvalid for longenoughto beuseful. In fact,
explicit jump-pointerprefetchinghasanadverseeffect on
bisort, as traversalorder changesrapidly and any jump-
pointerprefetchesbecomepurely overhead. Softwareor
cooperative prefetchingshould not be implementedfor
thesebenchmarks.In contrast,while hardwareJPPis use-
less, at the very least it does not degrade performance.

The remaining programshave sizable memory latency
componentsand benefit from software and cooperative
JPPimplementations.For theseprograms,in fact,JPPin

any form provides superior performanceover prefetch
mechanismsthat do not possessthe ability to break
addressgenerationserializationconstraints. If we disre-
gardbh, bisort, power, tsp andvoronoi, software,coopera-
tive andhardwareJPPimprovedperformanceby averages
of 15%, 20% and 22%, respectively while cutting the
memorylatency executioncomponentsby 72%,83%and
55%. As we observedearlier, theperformancereturnson
softwareandcooperative schemeswould beeven larger if
not for their associated computation overhead.

In contrastwith JPP, dependencebasedprefetchingpro-
vided only an 11% averageperformanceboostwhile cut-
ting only 29% of the total memory latency component.
This is not surprising since our earlier characterization
indicated that most benchmarksare serializedby their
LDS load chains. Indeed,the onebenchmarkwhich has
somenaturalparallelism,em3d, benefitsalmostas much
from the non-parallelizingdependencebasedprefetching
as it does from the use of jump-pointers.

The relationshipsamong the different JPP implementa-
tions arealso interesting. Oneexpectedtrend is that the
cooperative implementationconsistentlyoutperformsthe
puresoftwareone,by asmuchas10%onbenchmarksthat
usechainor root jumping like bh, mst, andhealth. These
improvements are due to the elimination of software
chainedprefetchesandtheir serializationartifacts. More
modestimprovements,1 to 2%, areobserved for full and
queuejumping implementationsof bisort, tsp, treeadd,
and perimeter. Theseare due to the streamlinedimple-
mentations of prefetches themselves.

Bothsoftwareandcooperative implementationsarefunda-
mentally more effective than their observed speedups
would indicate. Jump-pointercreationimposesnon-trivial
overheadthat degradesfrom the observed impact. In the
health chainjumpingimplementations,for instance,jump-
pointer creationcreatesan a priori 12% slowdown that
mustbeovercomeby prefetchingbeforeany performance
gainsareobtained. If we correctfor this initial degrada-

Figure 5. Comparing prefetching implementations. Execution times (normalized to an unoptimized execution) for
three JPP implementations: software, cooperative and hardware, and for dependence based prefetching.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

BDSCH
bh

BDSCH
bisort

BDSCH
em3d

BDSCH
health

BDSCH
mst

BDSCH
perimeter

BDSCH
power

BDSCH
treeadd

BDSCH
tsp

BDSCH
voronoi

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Memory latency

Compute time

Legend: B: Base D: DBP S: Software JPP C: Cooperative JPP H: Hardware JPP

tion, we find that softwareJPPimprovesperformanceby
90%, not 68%, for this program and cooperative JPP
achieves130%ratherthan103%speedups.Thesearethe
gains we would expect to seein a hardware only imple-
mentation, where jump-pointer creation is “free”.

In reality, however, therelationshipbetweentheeffective-
nessof hardware JPPand its software and cooperative
counterpartsis variable. While hardwareis moreeffective
on em3dandhealth, theoppositeholdsfor mst, perimeter,
and to a lesserdegree treeadd. The featurethat distin-
guishesthe first set of programsfrom the secondis the
numberof traversalsperformedon thedataset. Em3dand
healthperform100and500traversals,respectively, while
treeaddmakes four passes,and mst and perimetermake
oneeach. HardwareJPPtakesonefull traversalto install
jump-pointers,and so optimizesonly secondand subse-
quentpassesover thedata. Thechoicebetweencoopera-
tive and hardware implementations,between incurring
explicit jump-pointercreationoverheadand leaving the
first passunoptimizedclearlydependson thetotal number
of traversalsin the program. In health and em3d, one
unoptimizedpassis negligible, on treeaddit forfeits one
quarterof thetotal savings,while for singlepassprograms
likeperimeterandmst, it makeshardwareJPPuseless.To
prefetch one-pass programs, jump-pointers must be
installedasthe LDS itself is built. For reasonsincluding
difficulties with dependencedetectionand potentialmis-
matchesbetweencreationand traversal orders,this is a
task seemingly more suited for software.

4.3 Comparing Bandwidth Requirements

Bandwidthconsumptionis anothermetricusedto evaluate
prefetching solutions. Ideally, prefetching should not
changethe overall numberof bytes moved betweenthe
first andsecondlevel cachesandmemory. A mechanism
thatachievesthis goal is perfectlyefficient sinceit simply
converts fetchesto prefetches. However, most mecha-
nismsprefetchsomeamountof uselessdatawhile unnec-
essarilyevicting usefulblocks. Figure6 shows, for each
programandeachprefetchingimplementation,thenumber
of bytes moved betweenthe first and secondlevel data
cachesper dynamic instruction in the original program.
We do not count the instructionsaddedto software and
cooperative implementationsas these would bias our
results in their favor.

Sometrendsareevident from theseresults. First, jump-
pointerprefetchingsolutionshave only a slight impacton
bandwidthconsumption,increasingthe numberof bytes
movedby 3%,6% and35%for software,cooperative,and
hardware implementationsrespectively. This compares
favorablywith the25%overheadsincurredby dependence
basedprefetching.AmongthethreeJPPimplementations,
it is clear that increasingsoftware control over what is
prefetchedreducesprefetchwaste. The additionalband-
width consumedby hardwareandcooperative schemesis
due largely to the dependencebasedprefetchingmecha-
nism, which prefetches “rib” structures in greedy fashion.

4.4 Tolerating Longer Latencies

Jump-pointer prefetching provides good performance
gainson configurationstypical of today’s systems.How-
ever, architecturesof the near future will have different
characteristics. In this section, we extrapolatecurrent
trendsto predict the performanceof our benchmarksand
to explore the importance of JPP in future designs.

Weconsideredprojectionsof severalcurrenttrendsinclud-
ing: wider issuepipelines,deeperpipelines,greatermem-
ory bandwidth at all levels, and relatively longer main
memory latencies. We chose to disregard trends that
project larger on-chipsecondlevel cacheswith the argu-
mentthat thedatasetsfor thesebenchmarkswill increase
as well. Our experimentsshow that pipeline enhance-
mentsand increasedbandwidthdo not have a significant
impacton thesebenchmarkswhich,asa group,arehighly
serial. A relative increasein memory latency, however,
translatesdirectly into performanceloss. In health, for
instance,a 4-fold increasein memorylatency producesa
2.5-fold increasein executiontime. The barsin Figure7
show normalizedexecutiontimesfor health, with different
memorylatencies(70 and280processorcycles)andvary-
ing jump-pointer prefetch intervals (8 and 16 nodes).

For benchmarksthat lack parallelism, longer memory
latenciesreduce the effectivenessof serial prefetching
schemeslike dependencebasedprefetching,which com-
pressbut cannotflatten the memory dependencegraph.
For health, the impactof DBP dropsfrom 17%in the low
latency caseto 9%. On theotherhand,JPPremainseffec-
tive as relative memory latenciesgrow. The relative
impactof cooperative JPPgrows from 50% to 65%,with
similar trends observed for hardware and software JPP.

Figure 6. Comparing bandwidth requirements. Bytesof datamovedbetweenthefirst andsecondlevel datacaches
divided by the number of instructions in the original programs.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BDSCH
bh

BDSCH
bisort

BDSCH
em3d

BDSCH
health

BDSCH
mst

BDSCH
perimeter

BDSCH
power

BDSCH
treeadd

BDSCH
tsp

BDSCH
voronoi

By
te

s
M

ov
ed

 p
er

 In
st

ru
ct

io
n

Legend: B: Base D: DBP S: Software JPP C: Cooperative JPP H: Hardware JPP

Not only doesJPPretain its effectiveness,the amountof
latency it hides can actually be tuned using the jump-
pointerinterval parameter. Increasingtheinterval requires
morethanchanginga few linesof software,or increasing
thesizeof thequeuesin theJQT. Theprefetchbuffer must
be expandedto accommodatethe potentially longer resi-
denceof prefetchedblocks, and the numberof possible
outstandingprefetchrequestsmust be increased. How-
ever, with thesemodifications,JPPcanbeusedto tolerate
even long latencies.

4.5 Other Costs

Amongthethreeimplementations,it appearsthatcoopera-
tive and hardware JPPare more effective than software
solutions,with the mosteffective of thesetwo depending
on the particular benchmarkand prefetch idiom used.
Cooperative JPP has the advantagefor single-traversal
programs,sincea hardware-onlysolutiondoesnot accel-
eratethefirst passover a datastructure. Cooperative JPP
also outperformshardware in programssuited for root
jumping sincethis idiom typically requiresknowledgeof
high-level programinvariants.HardwareJPPhastheedge
in prefetching multiple-passprogramsthat lend them-
selves to queueor chain jumping. Cooperative JPPalso
has slightly lower effect on bandwidth consumption.

Performanceis not theonly criterionby which to evaluate
JPPimplementations. Other important factorsare soft-
wareandhardwarecomponentcomplexitiesandcosts,and
any requirementssuchas ISA changesthat may be met
with resistance. While software JPP loses the perfor-
mancebattle,it hastheadvantageof requiringonly a pro-
gramminginvestment. Hardware-onlysolutionsfree the
programmerfrom implementationdetailsbut requirespe-
cial processorextensions. Although the implementation
wepresentrequiresISA changesanddeliversperformance
improvementsonly for programsthat arerecompiled,we

believe that theserequirementscanbeavoidedat thecost
of additional hardware complexity. Cooperative JPP
seemsto have anoverall advantagewhenwe considerper-
formanceandcosttogether. It providesperformancethat
comparesfavorably with hardware JPP, while requiring
fewer processorresourcesand less significant interface
changes. While cooperative JPPdoesrequiresomepro-
grammereffort, it eliminatesthe most tediousportion of
the software requirement:schedulingchainedprefetches.
For now, cooperative JPPseemsto be the bestchoicefor
combining high performancewith low implementation
cost. That may changeassomeof the challengesassoci-
ated with hardware implementations are overcome.

5 Related Work

While prefetching literature is abundant, prefetching
directedat thespecialrequirementsandchallengesof LDS
is less extensive. Early work on improving the spatial
locality in LDS referencestreamswasdonein thecontext
of LISP machines[5, 7]. This work aimed to increase
pagereferencedensityandusedruntimetechniquesimple-
mentedin either the memoryallocatoror garbagecollec-
tor. Recently, Seidl and Zorn [17] and Calderet. al. [2]
have shifted focus to cache-consciousallocation and
addedprofile feedbackto this process. Chilimbi et. al.
implementedcachespecifictechniquessuchas compres-
sionandline coloringfor LDS nodesin a memoryalloca-
tor [3] and a generational garbage collector [4].

One of the earliestsoftware-controlledLDS prefetching
schemewasSPAID of Lipasti et. al. [10] which heuristi-
cally dereferencedpointerspassedinto procedures.Luk
and Mowry [11] discussedseveral software techniques,
including compiler-basedgreedy prefetching,program-
mer-controlled history pointer prefetching (essentially
software full jumping), and data linearization. On the
hardwareside,MehrotraandHarrison[13, 8] introduceda
detectionandprefetchschemefor loadsthat, in isolation,
exhibited one of a numberof presetaccesspatterns,self
recurrencebeing one. Most recently, Roth et. al. [16]
describeda dependencebasedmechanismthat dynami-
cally isolatesthe LDS accesskernel in a programand
prefetches by speculatively pre-executing that kernel.

Pugh introduced skiplists [14], a jump-pointer-based
sortedlist implementationwith searchand manipulation
statisticssimilar to thoseof a balancedsearchtree. Jump-
pointershave beenusedto representset data structures
efficiently [6] andto parallelizesearchesandreductionson
lists [9]. Discussionsof maintainingrecursion-avoiding
traversalthreadsin non-lineardatastructurescanbefound
in datastructuresliterature[18]. As notedearlier, Luk and
Mowry [11] suggestedthe useof programmercontrolled
jump-pointersfor prefetching. We are not aware of any
implementations,actual or proposed, of hardware or
cooperative jump-pointer prefetching.

6 Summary and Future Directions

In this paper, we describethe generaltechniqueof jump-
pointer prefetching(JPP) for tolerating linked structure
(LDS) accesslatency. JPPis effective whenlimited work
is availablebetweensuccessivedependentaccesses(e.g.,a

Figure 7. Tolerating longer memory latencies.
Executiontimesfor health: thefirst groupof bars uses
the baseconfiguration (70 cyclememorylatency),the
secondand third simulatelong memorylatency(280
cycles). In terms of prefetching, the first two
configurations use a jump interval (the distance
betweena jump-pointer’s homeandtarget nodes)of 8,
the third uses an interval of 16.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

BDSCH
MemLat=70
Interval=8

BDSCH
MemLat=280

Interval=8

BDSCH
MemLat=280
Interval=16

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Memory latency

Compute time

Legend: B: Base D: DBP S: Software JPP
C: Cooperative JPP H: Hardware JPP

tight pointerchasingloop) to enableaggressivescheduling
techniquesto prefetcheffectively. We present,evaluate,
and comparethreeJPPimplementations. Our technical
contributions are summarized as follows:

• We presentJPPasa generalpurposetechniquefor tol-
erating serializedlatenciesthat result from LDS tra-
versal. By storing explicit jump-pointersto nodes
several hopsaway, JPPovercomesthe pointer-chasing
problem. It is able to generateprefetch addresses
directly, ratherthanin a serialfashion,andis effective
even in situationswherenot enoughwork is available
to hide latencies by scheduling.

• We presenttwo basic prefetchingtechniques:jump-
pointerprefetchingandchainedprefetching,whichcan
be combinedto form four prefetchingidioms: queue,
full, chain androot jumping. Drawing from their com-
ponent prefetching blocks, each idiom has certain
advantagesand disadvantages. We provide a high-
level program characterizationthat can be used to
select a suitable idiom for a given program.

• WedescribethreeJPPimplementations:software-only,
hardware-only, and cooperative. For thoseprograms
with appreciablememory latency components,these
implementations reduce overall observed memory
latency by 72%, 55%, and 83%, respectively and
achieve speedups of 15%, 22%, and 20%.

Several directionsfor future work exist, beginning with a
systematicstudyof thedesignspaceof hardwareJPP. Our
simulatedimplementationuseda fixed queueinginterval
of 8 nodeswithout regardto thetrade-offs in latency toler-
anceand predictive accuracy. A more detailedstudy of
this spectrumis needed,with a bettermechanismadapting
theinterval on a caseby casebasis. We alsoassumedone
methodfor detectingand exploiting the unusedmemory
that padsallocatedblocks. Other methodsfor detecting
andusingthis padding,or maybesomeotherunusedpart
of memory, may be better. Our rationalefor usingmem-
ory to store jump-pointerswas predicatedon the sheer
numberof pointersthat would be needed. Advancesin
compressionor predictioncouldmake processorstoragea
viable option. Finally, jump-pointerprefetchingmay be
generalizedto otherclassesof datastructureswith serial-
izedaccessidioms,likesparsematricesanddatabasetrees.

Acknowledgements

The authorsthankMilo Martin, Marci McCoy, andCraig
Zilles for their commentson several draftsof this paper,
and the anonymous refereesfor their suggestions.This
work wassupportedin part by NSF grantMIP-9505853,
by U.S. Army Intelligence Center and Fort Huachuca
under contract DABT63-95-C-0127 and ARPA order
D346, and by an equipmentdonationfrom Intel. Amir
Roth is alsosupportedby a Cooperative GraduateFellow-
ship from IBM. Theviews andconclusionspresentedare
thoseof the authorsanddo not necessarilyrepresentthe
official policies or endorsements,either expressedor
implied, of the U.S. Army IntelligenceCenterand Fort
Huachuca or the U.S. Government.

References
[1] D.C. BurgerandT.M. Austin. TheSimpleScalarTool Set,

Version2.0.TechnicalReportCS-TR-97-1342,University
of Wisconsin-Madison, Jun. 1997.

[2] B. Calder,C. Krintz, S.John,andT.M. Austin.CacheCon-
ciousDataPlacement.In Proc.8thConferenceonArchitec-
tural Supportfor ProgrammingLanguagesandOperating
Systems, pages 139–149, Oct. 1998.

[3] T.M. Chilimbi, M.D. Hill, andJ.R.Larus.Cache-Conscious
StructureLayout. In Proc. SIGPLAN’99 Conferenceon
ProgrammingLanguageDesignandImplementation, May
1999.

[4] T.M. Chilimbi andJ.R.Larus.UsingGenerationalGarbage
Collectionto ImplementCacheConciousDataPlacement.
In Proc. International Symposiumon Memory Manage-
ment, Oct. 1998.

[5] C.J.Cheney.A nonrecursivelist compactingalgorithm.
Communications of the ACM, 13(11):677–678, 1970.

[6] T.H.Cormen,C.E.Leiserson,andR.L.Rivest.Introduction
to Algorithms, chapter22:DataStructuresfor Disjoint Sets.
The MIT Press, 1990.

[7] R. FenichelandJ.Yochelson.A LISPgarbagecollectorfor
virtual memorycomputersystems.Communicationsof the
ACM, 12(11):611–612, 1969.

[8] W.L. HarrisonandS.Mehrotra.Prefetchsystemapplicable
to complexmemoryaccessschemes.US Patent5694568,
Dec. 1997.

[9] W.D. Hillis and G.L. Steele.Data Parallel Algorithms.
Communications of the ACM, 29(12), Dec. 1986.

[10] M.H. Lipasti,W.J.Schmidt,S.R.Kunkel,andR.R.Roedi-
ger.SPAID:SoftwarePrefetchingin PointerandCall Inten-
siveEnvironments.In Proc.28thInternationalSymposium
on Microarchitecture, pages 231–236, Nov. 1995.

[11] C-K. Luk andT.C.Mowry. CompilerBasedPrefetchingfor
RecursiveDataStructures.In Proc.7th InternationalCon-
ferenceon Architectural Supportfor ProgrammingLan-
guages and Operating Systems, pages 222–233, Oct. 1996.

[12] M.M. Martin, A. Roth,andC.N. Fischer.Exploiting Dead
ValueInformation.In Proc.30thInternationalSymposium
on Microarchitecture, pages 125–135, Dec. 1997.

[13] S.Mehrotra and L. Harrison. Examinationof a Memory
AccessClassificationSchemefor Pointer-Intensiveand
NumericProgram.In Proc. 10th InternationalConference
on Supercomputing, pages 133–139, May 1996.

[14] W. Pugh.Skip lists: a probabilisticalternativeto balanced
trees.Communications of the ACM, 33(6):668, Jun. 1990.

[15] A. Rogers,M. Carlisle,J.Reppy,andL. Hendren.Support-
ing DynamicDataStructureson DistributedMemoryMa-
chines.ACM Transactionson ProgrammingLanguages
and Systems, Mar. 1995.

[16] A. Roth,A. Moshovos,andG.S.Sohi.DependenceBased
Prefetchingfor Linked DataStructures.In Proc. 8th Con-
ferenceon Architectural Supportfor ProgrammingLan-
guages and Operating Systems, pages 115–126, Oct. 1998.

[17] M.L. Seidl and B.G. Zorn. SegragatingHeapObjectsby
ReferenceBehaviorandLifetime. In Proc.8th Internation-
al Conferenceon ArchitecturalSupportfor Programming
Languagesand Operating Systems, pages12–23, Oct.
1998.

[18] T.A. Standish.Data StructureTechniques. AddisonWes-
ley, 1980.

