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Abstract
The trace cache has been proposed as a mechanism

for providing increased fetch bandwidth by allowing the
processor to fetch across multiple branches in a single
cycle.  But to date predicting multiple branches per cycle
has meant paying a penalty in prediction accuracy.  We
propose a next trace predictor that treats the traces as
basic units and explicitly predicts sequences of traces.
The predictor collects histories of trace sequences (paths)
and makes predictions based on these histories.  The
basic predictor is enhanced to a hybrid configuration that
reduces performance losses due to cold starts and
aliasing in the prediction table. The Return History Stack
is introduced to increase predictor performance by saving
path history information across procedure call/returns.
Overall, the predictor yields about a 26% reduction in
misprediction rates when compared with the most
aggressive previously proposed, multiple-branch-
prediction methods.

1. Introduction

Current superscalar processors fetch and issue four to
six instructions per cycle -- about the same number as in
an average basic block for integer programs.  It is obvious
that as designers reach for higher levels of instruction
level parallelism, it will become necessary to fetch more
than one basic block per cycle.  In recent years, there have
been several proposals put forward for doing so [3,4,12].
One of the more promising is the trace cache [9,10],
where dynamic sequences of instructions, containing
embedded predicted branches, are assembled as a
sequential “ trace” and are saved in a special cache to be
fetched as a unit.

Trace cache operation can best be understood via an
example.  Figure 1 shows a program’s control flow graph
(CFG), where each node is a basic block, and the arcs

represent potential transfers of control.  In the figure, arcs
corresponding to branches are labeled to indicate taken
(T) and not taken (N) paths.  The sequence ABD
represents one possible trace which holds the instructions
from the basic blocks A, B, and D.  This would be the
sequence of instructions beginning with basic block A
where the next two branches are not taken and taken,
respectively. These basic blocks are not contiguous in the
original program, but would be stored as a contiguous
block in the trace cache.  A number of traces can extracted
from the CFG -- four possible traces are:

        1: ABD
        2: ACD
        3: EFG
        4: EG

Of course, many other traces could also be chosen for the
same CFG, and, in fact, a trace does not necessarily have
to begin or end at a basic block boundary, which further
increases the possibiliti es.  Also, note that in a trace
cache, the same instructions may appear in more than one
trace.  For example, the blocks A, D, E, and G each
appear twice in the above list of traces.  However, the
mechanism that builds traces should use some heuristic to
reduce the amount of redundancy in the trace cache;
beginning and ending on basic block boundaries is a good
heuristic for doing this.
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Figure 1 Example CFG



Associated with the trace cache is a trace fetch unit,
which fetches  a trace from the cache each cycle.  To do
this in a timely fashion, it is necessary to predict what the
next trace will be.  A straightforward method, and the one
used in [9,10], is to predict simultaneously the multiple
branches within a trace.  Then, armed with the last PC of
the preceding trace and the multiple predictions, the fetch
unit can access the next trace.  In our example, if trace 1 --
ABD -- is the most recently fetched trace, and a multiple
branch predictor predicts that the next three branch
outcomes will be T,T,N, then the next trace will i mplicitly
be ACD.

In this paper, we take a different approach to next
trace prediction -- we treat the traces as basic units and
explicitly predict sequences of traces.  For example,
referring to the above list of traces, if the most recent trace
is trace 1, then a next trace predictor might explicitly
output “ trace 2.”  The individual branch predictions
T,T,N, are implicit.

We propose and study next trace predictors that
collect histories of trace sequences and make predictions
based on these histories.  This is similar to conditional
branch prediction where predictions are made using
histories of branch outcomes.  However, each trace
typically has more than two successors, and often has
many more.  Consequently, the next trace predictor keeps
track of sequences of trace identifiers, each identifier
containing multiple bits.   We propose a basic predictor
and then add enhancements to reduce performance losses
due to cold starts, procedure call/ returns, and interference
due to aliasing in the prediction table.  The proposed
predictor yields substantial performance improvement
over the previously proposed, multiple-branch-prediction
methods.  For the six benchmarks that we studied the
average misprediction rate is 26% lower for the proposed
predictor than for the most aggressive previously
proposed multiple-branch predictor.

2. Previous work

A number of methods for fetching multiple basic
blocks per cycle have been proposed.  Yeh et al. [12]
proposed a Branch Address Cache that predicted multiple
branch target addresses every cycle.  Conte et al. [3]
proposed an interleaved branch target buffer to predict
multiple branch targets and detect short forward branches
that stay within the same cache line.  Both these methods
use conventional instruction caches, and both fetch
multiple lines based on multiple branch predictions.
Then, after fetching, blocks of instructions from different
lines have to be selected, aligned and combined -- this can
lead to considerable delay following instruction fetch.  It
is this complex logic and delay in the primary pipeline
that the trace cache is intended to remove.  Trace caches

[9,10] combine blocks of instructions prior to storing
them in the cache.  Then, they can be read as a block and
fed up the pipeline without having to pass through
complex steering logic.

Branch prediction in some form is a fundamental part
of next trace prediction (either implicitly or explicitly).
Hardware branch predictors predict the outcome of
branches based on previous branch behavior.  At the heart
of most branch predictors is a Pattern History Table
(PHT), typically containing two-bit saturating counters
[11].  The simplest way to associate a counter with a
branch instruction is to use some bits from the PC address
of the branch, typically the least significant bits, to index
into the PHT [11].  If the counter’s value is two or three,
the branch is predicted to be taken, otherwise the branch
is predicted to be not taken.

Correlated predictors can increase the accuracy of
branch prediction because the outcome of a branch tends
to be correlated with the outcome of previous branches
[8,13].  The correlated predictor uses a Branch History
Register (BHR).  The BHR is a shift register that is
usually updated by shifting in the outcome of branch
instructions -- a one for taken and a zero for not taken.  In
a global correlated predictor there is a single BHR that is
updated by all branches.  The BHR is combined with
some bits (possibly zero) from a branch’s PC address,
either by concatenating or using an exclusive-or function,
to form an index into the PHT.  With a correlated
predictor a PHT entry is associated not only with a branch
instruction, but with a branch instruction in the context of
a specific BHR value.  When the BHR alone is used to
index into the PHT, the predictor is a GAg predictor [13].
When an exclusive-or function is used to combine an
equal number of bits from the BHR and the branch PC
address, the predictor is a GSHARE  predictor [6].
GSHARE has been shown to offer consistently good
prediction accuracy.

The mapping of instructions to PHT entries is
essentially implemented by a simple hashing function that
does not detect or avoid colli sions.  Aliasing occurs when
two unrelated branch instructions hash to the same PHT
entry.  Aliasing is especially a problem with correlated
predictors because a single branch may use many PHT
entries depending on the value of the BHR, thus
increasing contention.

In order to support simultaneous fetching of multiple
basic blocks, multiple branches must be predicted in a
single cycle.  A number of modifications to the correlated
predictor discussed above have been proposed to support
predicting multiple branches at once.  Franklin and Dutta
[4] proposed subgraph oriented branch prediction
mechanisms that uses local history to form a prediction
that encodes multiple branches.  Yeh, et al. [13] proposed
modifications to a GAg predictor to multiport the



predictor and produce multiple branch predictions per
cycle.  Rotenberg et al. [10] also used the modified GAg
for their trace cache study.

Recently, Patel et al. [9] proposed a multiple branch
predictor tailored to work with a trace cache.  The
predictor attempts to achieve the advantages of a
GSHARE predictor while providing multiple predictions.
The predictor uses a BHR and the address of the first
instruction of a trace, exclusive-ored together, to index
into the PHT.  The entries of the PHT have been modified
to contain multiple two-bit saturating counters to allow
simultaneous prediction of multiple branches.  The
predictor offers superior accuracy compared with the
multiported GAg predictor, but does not quite achieve the
overall accuracy of a single branch GSHARE predictor.

Nair [7] proposed “path-based” prediction, a form of
correlated branch prediction that has a single branch
history register and prediction history table.  The
innovation is that the information stored in the branch
history register is not the outcome of previous branches,
but their truncated PC addresses.  To make a prediction, a
few bits from each address in the history register as well
as a few bits from the current PC address are concatenated
to form an index into the PHT.  Hence, a branch is
predicted using knowledge of the sequence, or path, of
instructions that led up to it.  This gives the predictor
more specific information about prior control flow than
the taken/not taken history of branch outcomes.  Jacobson
et al. [5] refined the path-based scheme and applied it to
next task prediction for multiscalar processors.  It is an
adaptation of the multiscalar predictor that forms the core
of the path-based next trace predictor presented here.

3. Path-based next trace predictors

We consider predictors designed specifically to work
with trace caches.  They predict traces explicitly, and in
doing so implicitly predict the control instructions within
the trace.  Next trace predictors  replace the conventional
branch predictor, branch target buffer (BTB) and return
address stack (RAS).  They have low latency, and are
capable of making a trace prediction every cycle.  We
show they also offer better accuracy than conventional
correlated branch predictors.

3.1. Naming of traces

In theory, a trace can be identified by all the PCs in
the trace, but this would obviously be expensive.  A
cheaper and more practical method is to use the PC value
for the first instruction in the trace combined with the
outcomes of conditional branches embedded in the trace.
This means that indirect jumps can not be internal to a

trace.  We use traces with a maximum length of 16
instructions.  For accessing the trace cache we use the
following method.  We assume a 36 bit identifier, 30 bits
to identify the starting PC and six bits to encode up to six
conditional branches.  The limit of six branches is
somewhat arbitrary and is chosen because we observed
that length 16 traces almost never have more than six
branches.  It is important to note that this limit on
branches is not required to simpli fy simultaneous multiple
branch prediction, as is the case with trace predictors
using explicit branch prediction.

3.2. Correlated predictor

The core of the next trace predictor uses correlation
based on the history of the previous traces.  The
identifiers of the previous few traces represent a path
history that is used to form an index into a prediction
table; see Figure 2.  Each entry in the table consists of the
identifier of the predicted trace (PC + branch outcomes),
and a two-bit saturating counter.  When a prediction is
correct the counter is incremented by one.  When a
prediction is incorrect and the counter is zero, the
predicted trace will be replaced with the actual trace.
Otherwise, the counter is decremented by two and the
predicted trace entry is unchanged.  We found that the
increment-by-1, decrement-by-2 counter gives slightly
better performance than either a one bit or a conventional
two-bit counter.

HISTORY REGISTER

TABLE

Predicted
Trace ID

Index
Trace ID cnt

Hashed ID Hashed ID Hashed ID Hashed ID

Index
Generation

Hashing
Function

Figure 2 Correlated predictor

Path history is maintained as a shift register that
contains 16 bit hashed trace identifiers (Figure 2).  The
hashing function uses the outcome of the first two
conditional branches in the trace identifier as the least
significant two bits, the two least significant bits of the
starting PC as the next two bits, the upper bits are formed
by taking the outcomes of additional conditional branch
outcomes and exclusive-oring them with the next least
significant bits of the starting PC.  Beyond the last
conditional branch a value of zero is used for any
remaining branch outcome bits.



The history register is updated speculatively with
each new prediction.  In the case of an incorrect
prediction the history is backed up to the state before the
bad prediction.  The prediction table is updated only after
the last instruction of a trace is retired -- it is not
speculatively updated.
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Figure 3 Index generation mechanism

Ideally the index generation mechanism would simply
concatenate the hashed identifiers from the history register
to form the index.  Unfortunately this is sometimes not
practical because the prediction table is relatively small so
the index must be restricted to a limited number of bits.

The index generation mechanism is based on the
method developed to do inter-task prediction for
multiscalar processors [5].  The index generation
mechanism uses a few bits from each of the hashed trace
identifiers to form an index.  The low order bits of the
hashed trace identifiers are used.  More bits are used from
more recent traces.  The collection of selected bits from
all the traces may be longer than the allowable index, in
which case the collection of bits is folded over onto itself
using an exclusive-or function to form the index.  In [5],
the “DOLC” naming convention was developed for
specifying the specific parameters of the index generation
mechanism.  The first variable ‘D’epth is the number of
traces besides the last trace that are used for forming the
index.  The other three variables are: number of bits from
‘O’ lder traces, number of bits from the ‘L’ast trace and
the number of bits from the ‘C’urrent.  In the example
shown in Figure 3 the collection of bits from the trace
identifiers is twice as long as the index so it is folded in
half and the two halves are combined with an exclusive-
or.  In other cases the bits may be folded into three parts,
or may not need to be folded at all.

3.3. Hybrid predictor

If the index into the prediction table reads an entry
that is unrelated to the current path history the prediction
will almost certainly be incorrect.  This can occur when
the particular path has never occurred before, or because

the table entry has been overwritten by unrelated path
history due to aliasing.  We have observed that both are
significant, but for realistically sized tables aliasing is
usually more important.  In branch prediction, even a
randomly selected table entry typically has about a 50%
chance of being correct, but in the case of next trace
prediction the chances of being correct with a random
table entry is very low.

To address this issue we operate a second, smaller
predictor in parallel with the first (Figure 4).  The
secondary predictor requires a shorter learning time and
suffers less aliasing pressure.  The secondary predictor
uses only the hashed identifier of the last trace to index its
table.  The prediction table entry is similar to the one for
the correlated predictor except a 4 bit saturating counter is
used that decrements by 8 on a misprediction.  The reason
for the larger counter will be discussed at the end of this
section.

CORRELATING TABLE

HISTORY REGISTER

SECONDARY TABLE

Prediction

Trace ID cnt

Hashed ID Hashed ID Hashed ID Hashed ID

Index
Generation Trace ID cnt Tag

Hashing
Function

==

Figure 4 Hybrid predictor

To decide which predictor to use for any given
prediction, a tag is added to the table entry in the
correlated predictor.  The tag is set with the low 10 bits of
the hashed identifier of the immediately preceding trace at
the time the entry is updated.  A ten bit tag is soff icient to
eliminate practically all unintended aliasing When a
prediction is being made, the tag is checked against the
hashed identifier of the preceding trace, if they match the
correlated predictor is used; otherwise the secondary
predictor is used.  This method increases the likelihood
that the correlated predictor corresponds to the correct
context when it is used.  This method also allows the
secondary table to make a prediction when the context is
very limited, i.e. under startup conditions.



The hybrid predictor naturally reduces aliasing
pressure somewhat, and by modifying it slightly, aliasing
pressure can be further reduced.  If the 4-bit counter of the
secondary predictor is saturated, its prediction is used, and
more importantly, when it is correct the correlated
predictor is not updated.  This means if a trace is always
followed by the same successor the secondary predictor
captures this behavior and the correlated predictor is not
polluted.  This reduces the number of updates to the
correlated predictor and therefore the chances of aliasing.
The relatively large counter, 4-bits, is used to avoid giving
up the opportunity to use the correlated predictor unless
there is high probability that a trace has a single successor.

3.4. Return history stack (RHS)

The accuracy of the predictor is further increased by a
new mechanism, the return history stack (RHS).  A field is
added to each trace indicating the number of calls it
contains.  If the trace ends in a return, the number of calls
is decremented by one.  After the path history is updated,
if there are any calls in the new trace, a copy of the most
recent history is made for each call and these copies are
pushed onto a special hardware stack.  When there is a
trace that ends in a return and contains no calls, the top of
the stack is popped and is substituted for part of the
history.  One or two of the most recent entries from the
current history within the subroutine are preserved, and
the entries from the stack replace the remaining older
entries of the history.  When there are five or fewer entries
in the history, only the most recent hashed identifier is
kept.  When there are more than five entries the two most
recent hashed identifiers are kept.

HISTORY STACK

HISTORY REGISTER
hashed ID hashed ID hashed ID hashed ID

PUSHPOP

Figure 5 Return history stack implementation

With the RHS, after a subroutine is called and has
returned, the history contains information about what
happened before the call, as well as knowledge of the last
one or two traces of the subroutine.  We found that the
RHS can significantly increase overall predictor accuracy.
The reason for the increased accuracy is that control flow
in a program after a subroutine is often tightly correlated
to behavior before the call.  Without the RHS the
information before the call is often overflowed by the

control flow within a subroutine.  We are trying to achieve
a careful balance of history information before the call
versus history information within the call.  For different
benchmarks the optimal point varies.  We found that
configurations using one or two entries from the
subroutine provide consistently good behavior.

The predictor does not use a return address stack
(RAS), because it requires information on an instruction
level granularity, which the trace predictor is trying to
avoid.  The RHS can partly compensate for the absence of
the RAS by helping in the initial prediction after a return.
If a subroutine is significantly long it will force any pre-
call information out of the history register, hence
determining the calling routine, and therefor where to
return, would be much harder without the RHS.

4. Simulation methodology

4.1. Simulator

To study predictor performance, trace driven
simulation with the Simplescalar tool set is used [1].
Simplescalar uses an instruction set largely based on
MIPS, with the major deviation being that delayed
branches have been replaced with conventional branches.
We use the Gnu C compiler that targets Simplescalar.
The functional simulator of the Simplescalar instruction
set is used to produce a dynamic stream of instructions
that is fed to the prediction simulator.

For most of this work we considered the predictor in
isolation, using immediate updates.  A prediction of the
next trace is made and the predictor is updated with the
actual outcome before the next prediction is made.  We
also did simulations with an execution engine.  This
allows updates to be performed taking execution latency
into account.  We modeled an 8-way out-of-order issue
superscalar processor with a 64 instruction window.  The
processor had a 128KB trace cache, a 64KB instruction
cache, and a 4-ported 64KB data cache.  The processor
has 8 symmetric functional units and supports speculative
memory operations.

4.2. Trace selection

For our study, we used traces that are a maximum of
16 instructions in length and can contain up to six
branches.  The limit on the number of branches is imposed
only by the naming convention of traces.  Any control
instruction that has an indirect target can not be embedded
into a trace, and must be at the end of a trace.  This means
that some traces will be shorter than the maximum length.
As mentioned earlier, instructions with indirect targets are
not embedded to allow traces to be uniquely identified by



their starting address and the outcomes of any conditional
branches.

We used very simple trace selection heuristics.  More
sophisticated trace selection heuristics are possible and
would significantly impact the behavior of the trace
predictor.  A study of the relation of trace selection and
trace predictability is beyond the scope of this paper.

4.3. Benchmarks

We present results from six SpecInt95 benchmarks:
compress, gcc, go, jpeg, m88ksim and xlisp.  All results
are based on runs of at least 100 million instructions.

Table 1 Benchmark summary

Benchmark Input number
of instr.

avg.
trace
length

Static
traces

compress 400000 e
2231

104 * 106 14.5 992

gcc genrecog.i 117 * 106 13.9 51337
go 9 9 133 * 106 14.8 48736

jpeg vigo.ppm 166 * 106 15.8 5462
m88ksim ctl.in 120 * 106 13.1 2871

xlisp queens 7 first 100
million

12.4 1393

5. Performance

5.1. Sequential branch predictor

For reference we first determined the trace prediction
accuracy that could be achieved by taking proven control
flow prediction components and predicting each control
instruction sequentially.  In sequential prediction each
branch is explicitly predicted and at the time of the
prediction the outcomes of all previous branches are
known.  This is useful for comparisons although it is not
realizable because it would require multiple accesses to
predict a single trace and requires knowledge of the
branch addresses within the trace.  The best multiple
branch predictors to date have attempted to approximate
the behavior of this conceptual sequential predictor.

We used a 16-bit GSHARE branch predictor, a
perfect branch target buffer for branches with PC-relative
and absolute address targets, a 64K entry correlated
branch target buffer for branches with indirect targets [2],
and a perfect return address predictor.  All of these
predictors had ideal (immediate) updates.  When
simulating this mechanism, if one or more predictions
within a trace was incorrect we counted it as one trace
misprediction.  This configuration represents a very
aggressive, ideal predictor. The prediction accuracy of

this idealized sequential prediction is given in Table 2.
The mean of the trace misprediction rate is 12.1%.  We
show later that our proposed predictor can achieve levels
of prediction accuracy significantly better than those
achievable by this idealized sequential predictor.  In the
results section we refer to the trace prediction accuracy of
the idealized sequential predictor as “sequential.”

The misprediction rate for traces tends to be lower
than that obtained by simply multiplying the branch
misprediction rate by the number of branches because
branch mispredictions tend to be clustered.  When a trace
is mispredicted, multiple branches within the same trace
are often mispredicted.  Xlisp is the exception, with hard
to predict branches tending to be in different traces.  With
the aggressive target prediction mechanisms none of the
benchmarks showed substantial target misprediction.

Table 2 Prediction accuracy for sequential predictors

Benchmark 16-bit Gshare
branch

misprediction

Number of
Branches
per Trace

Mispredic
tion of
traces

compress 9.2 2.1 17.9
gcc 8.0 2.1 14.0
go 16.6 1.8 24.5

jpeg 6.9 1.0 6.7
m88ksim 1.6 1.8 3.1

xlisp 3.2 1.9 6.5

5.2. Performance with unbounded tables

To determine the potential of path-based next trace
prediction we first studied performance assuming
unbounded tables.  In this study, each unique sequence of
trace identifiers maps to its own table entry.  I.e. there is
no aliasing.

We consider varying depths of trace history, where
depth is the number of traces, besides the most recent
trace, that are combined to index the prediction table.  For
a depth of zero only the identifier of the most recent trace
is used.  We study history depths of zero through seven.

Figure 6 presents the results for unbounded tables, the
mean of the misprediction rate is 8.0% for the RHS
predictor at the maximum depth.  For comparisons, the
“sequential” predictor is based on a 16-bit Gshare
predictor that predicts all conditional branches
sequentially. For all the benchmarks the proposed path-
based predictor does better than the idealized sequential
predictor.  On average, the misprediction rate is 34%
lower for the proposed predictor. In the cases of gcc and
go the predictor has less than half the misprediction rate
of the idealized sequential predictor.
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Figure 6 Next trace prediction with unbounded tables
For all benchmarks, the hybrid predictor has a higher

prediction accuracy than using the correlated predictor
alone.  The benchmarks with more static traces see a
larger advantage from the hybrid predictor because they
contain more unique sequences of traces.  Because the
table size is unbounded the hybrid predictor is not
important for aliasing, but is important for making
predictions when the correlated predictor entry is cold.

For four out of the six benchmarks adding the return
history stack (RHS) increases prediction accuracy.
Furthermore, the four improved benchmarks see a more
significant increase due to the RHS than the two
benchmarks hurt by the RHS see a decrease.  For
benchmark compress the predictor does better without the
RHS.  For compress, the information about the subroutine
being thrown away by the RHS is more important than the
information before the subroutine that is being saved.

Xlisp extensively uses recursion, and to minimize
overhead it uses unusual control flow to backup quickly to
the point before the recursion without iteratively

performing returns.  This behavior confuses the return
history stack because there are a number of calls with no
corresponding returns.  However, it is hard to determine
how much of the performance loss of RHS with xlisp is
caused by this problem and how much is caused by loss of
information about the control flow within subroutines.

5.3. Performance with bounded tables

We now consider finite sized predictors.  The table
for the correlated predictor is the most significant
component with respect to size.  We study correlated
predictors with tables of 214, 215 and 216 entries.  For each
size we consider a number of configurations with different
history depths.  The configurations for the index
generation function were chosen based on trial-and-error.
Although better configurations are no doubt possible we
do not believe differences would be significant.
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Figure 7 Next trace prediction
We use a RHS that has a maximum depth of 128.

This depth is more than sufficient to handle all the
benchmarks except for the recursive section of xlisp,
where the predictor is of little use, anyway.

Performance results are in Figure 7.  Three of the
benchmarks stress the finite-sized predictors: gcc, go and
jpeg.  In these predictors the deviation from the
unbounded tables is very pronounced, as is the deviation
between the different table sizes.  As expected, the
deviation becomes more pronounced with longer histories
because there are more unique sequences of trace
identifiers being used and, therefore, more aliasing.

Go has the largest number of unique sequences of
trace identifiers, and apparently suffers from aliasing
pressure the most.  At first, as history depth is increased
the miss rate goes down.  As the history depth continues
to increase, the number of sequences competing for the
finite size table increases aliasing.  The detrimental effects
of aliasing eventually starts to counter the gain of going to
deeper histories and at some point dominates and causes a
negative effect for increased history depth.  The smaller

the table size, the sooner the effects of aliasing start to
become a problem.  It is important to focus on the
behavior of this benchmark and the other two larger
benchmarks -- gcc and jpeg, because in general the other
benchmarks probably have relatively small working sets
compared to most realistic programs.

We see that for realistic tables, the predictor can
achieve very high prediction accuracies.  In most cases,
the predictor achieves miss rates significantly below the
idealized sequential predictor.  The only benchmark
where the predictor can not do better than sequential
prediction is for a small, 214 entry, table for jpeg.  But
even in this case it can achieve performance very close to
the sequential, and probably closer than a realistic
implementation of Gshare modified for multiple branches
per cycle throughput.  For our predictor the means of the
mispredict rates are 10.0%, 9.5% and 8.9% for the
maximum depth configuration with 214, 215 and 216 entry
tables respectively. These are all significantly below the
12.1% misprediction rate of the sequential predictor, 26%
lower for the 216 predictor.



Table 3 Index generation configurations used

Depth D-O-L-C for
14 bit Index

D-O-L-C for
15 bit Index

D-O-L-C for
16 bit Index

0 0-0-0-14 (1p) 0-0-0-15 (1p) 0-0-0-16 (1p)
1 1-0-6-8 (1p) 1-0-7-8 (1p) 1-0-7-9 (1p)
3 3-5-7-11 (2p) 3-5-8-12 (2p) 3-5-9-13 (2p)
5 5-3-6-11 (2p) 5-4-5-9 (2p) 5-5-5-7 (2p)
7 7-4-7-11 (3p) 7-4-9-12 (3p) 7-5-7-11 (3p)
9 9-3-7-11 (3p) 9-3-9-12 (3p) 9-4-7-9 (3p)

5.4. Impact of delayed updates

Thus far simulation results have used immediate
updates.  In a real processor the history register would be
updated with each predicted trace, and the history would
be corrected when the predictor backs up due to a
misprediction.  The table entry would not be updated until
the last instruction of a trace has retired.

Table 4 Impact of real updates

Benchmark Misprediction
with ideal updates

Misprediction
with real update

compress 5.8 5.8
gcc 10.5 10.5
go 9.3 9.3

jpeg 3.5 3.6
m88ksim 2.4 2.1

xlisp 4.7 4.8
To make sure this does not make a significant impact

on prediction accuracy, we ran a set of simulations where
an execution engine was simulated.  The configuration of
the execution engine is discussed in section 4.1.  The
predictor being modeled has 216 entries and a 7-3-6-8
DOLC configuration.  Table 4 shows the impact of
delayed updates, and it is apparent that delayed updates
are not significant to the performance of the predictor.  In
one case, m88ksim, the delayed updates actually increased
prediction accuracy.  The delayed updates has the effect
of increasing the amount of hysteresis in the prediction
table which in some cases can increase performance.

5.5. A cost-reduced  predictor

The cost of the proposed predictor is primarily a
function of the size of the correlated predictor’s table.
The size of the correlated predictor’s table is the number
of entries multiplied by the size of an entry.  The size of
an entry is 48 bits: 36 bits to encode a trace identifier, two
bits for the counter plus 10 bits for the tag.

A much less expensive predictor can be constructed,
however, by observing that before the trace cache can be
accessed, the trace identifier read from the prediction
table must be hashed to form a trace cache index.  For

practical sized trace caches this index will be in the range
of 10 bits.  Rather than storing the full trace identifier, the
hashed cache index can be stored in the table, instead.
This hashed index  can be the same as the hashed
identifier that is fed into the history register (Figure 2).
That is, the Hashing Function can be moved to the input
side of the prediction table to hash the trace identifier
before it is placed into the table.  This modification should
not affect prediction accuracy in any significant way and
reduces the size of the trace identifier field from 36 bits to
10 bits.  The full trace identifier is still stored in the trace
cache as part of its entry and is read out as part of the
trace cache access.  The full trace identifier is used during
execution to validate that the control flow implied by the
trace is correct.

6. Predicting an alternate trace

Along with predicting the next trace, an alternate
trace can be predicted at the same time.  This alternate
trace can simpli fy and reduce the latency for recovering
when it is determined that a prediction is incorrect.  In
some implementations this may allow the processor to
find and fetch an alternate trace instead of resorting to
building a trace from scratch.

Alternate trace prediction is implemented by adding
another field to the correlated predictor.  The new field
contains the identifier of the alternate prediction.  When
the prediction of the correlated predictor is incorrect the
alternate prediction field is updated.  If the saturating
counter is zero the identifier in the prediction field is
moved to the alternate field, the prediction field is then
updated with the actual outcome.  If the saturating counter
is non-zero the identifier of the actual outcome is written
into the alternate field.

Figure 8 shows the performance of the alternate trace
predictor for two representative benchmarks.  The graphs
show the misprediction rate of the primary 216 entry table
predictor as well as the rate at which both the primary and
alternate are mispredicted.  A large percent of the
mispredictions by the predictor are caught by the alternate
prediction.  For compress, 2/3 of the mispredictions are
caught by the alternate, for gcc it is slightly less than half.
It is notable that for alternate prediction the aliasing effect
quickly dominates the benefit of more history because it
does not require as much history to make a prediction of
the two most likely traces, so the benefit of more history is
significantly smaller.

There are two reasons alternate trace prediction
works well .  First, there are cases where some branch is
not heavily biased;  there may be two traces with similar
likelihood.  Second, when there are two sequences of
traces aliased to the same prediction entry, as one
sequence displaces the other, it moves the other’s likely



prediction to the alternate slot.  When a prediction is made
for the displaced sequence of traces, and the secondary
predictor is wrong, the alternate is likely to be correct.
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Figure 8 Alternate trace prediction accuracy

7. Summary

We have proposed a next trace predictor that treats
the traces as basic units and explicitly predicts sequences
of traces.  The predictor collects histories of trace
sequences and makes predictions based on these histories.
In addition to the basic predictor we proposed
enhancements to reduce performance losses due to cold
starts, procedure call/ returns, and the interference in the
prediction table.  The predictor yields consistent and
substantial improvement over previously proposed,
multiple-branch-prediction methods.  On average the
predictor had a 26% lower mispredict rate than the most
aggressive previously proposed multiple-branch predictor.
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