
To appear in Proceedings of the 24th International Symposium on Computer Architecture (ISCA), June, 1997

Abstract

This paper introduces the concept of dynamic instruction reuse.
Empirical observations suggest that many instructions, and
groups of instructions, having the same inputs, are executed
dynamically. Such instructions do not have to be executed repeat-
edly — their results can be obtained from a buffer where they were
saved previously. This paper presents three hardware schemes for
exploiting the phenomenon of dynamic instruction reuse, and eval-
uates their effectiveness using execution-driven simulation. We
find that in some cases over 50% of the instructions can be reused.
The speedups so obtained, though less striking than the percent-
age of instructions reused, are still quite significant.

1 Introduction

There are three parameters that influence the execution time
of a program. Microarchitecture has concentrated on two of
them: (i) the number of instructions executed per clock cycle,
i.e., the IPC, and (ii) the clock cycle time. The third parameter:
(iii) the total number of instructions, has been considered the
domain of software. In this paper we address the following ques-
tion: “Can we develop microarchitectural techniques to reduce
the number of instructions that have to be executed dynamically,
and what are the potential benefits of such techniques?’’

Just as caches reduce the number of memory accesses made
dynamically if a memory location is going to be accessed repeat-
edly, the number of instructions executed dynamically can be
reduced if an instruction is going to produce the same value
repeatedly. We have observed many instructions, and groups of
instructions, having the same inputs (consequently producing the
same output) when executed dynamically. This observation can
be exploited to reduce the number of instructions executed
dynamically as follows: by buffering the previous result of the
instruction, future dynamic instances of the same static instruc-
tion can use the result by establishing that the input operands in
both cases are the same. We call thisdynamic instruction reuse.

Dynamic instruction reuse can benefit performance in two
main ways. First, by not having to pass through all the phases of
execution (e.g., issue, execute, result bypass) dynamically, utili-
zation of machine resources could be reduced, alleviating
resource conflicts. Second, and more important, the outcome of
an instruction can be known much earlier, allowing instructions

that are dependent upon the outcome to proceed sooner. As we
shall see, the results of chains of dependent instructions could all
be generated in a single cycle, short-circuiting dependence
chains, and reducing the lengths of critical paths of execution.

This paper is concerned with exploiting the phenomenon of
dynamic instruction reuse. Towards this end, we develop
microarchitectural mechanisms that allow the outcome of an
instruction to be known earlier than it would had the instruction
have to pass through all the phases of its execution. We describe
the concept of dynamic instruction reuse in section2, and
present scenarios to illustrate why it occurs and why might it be
a useful phenomenon to exploit. In section3, we present three
different schemes for instruction reuse. Each scheme employs a
reuse buffer, a buffer of previous outcomes of instruction execu-
tion. In section4 we show how a reuse buffer can be incorpo-
rated into a generic superscalar processor. In section5 we
provide a quantitative evaluation, and in section6 we discuss
related work. Finally section7 presents some concluding
remarks.

2 Scenarios for Dynamic Instruction Reuse

Before developing mechanisms to allow dynamic instruction
reuse, we need to understand why this phenomenon occurs.
What causes instructions to be executed with the same input
operands? Why are such instructions in the program in the first
place? Are such instructions needed? Why might it be better to
obtain the outcome of an instruction from a buffer rather than
recompute it? In order to answer these questions, we look at a
couple of scenarios

The first scenario involves speculative execution in a dynam-
ically scheduled processor. As illustrated in Figure1, when a
branch instruction is encountered, its outcome is predicted, and
instructions from the predicted basic block (block A) are exe-
cuted speculatively. In addition to executing instructions from

���

���

��

��
�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

path

correct
path

Dynamic
instruction
stream

branch

(C)

(A)

(B)

Squashed

predicted

Figure 1. Scenario where execution on the (mis)predicted path
converges with the execution on the correct path. In such cases
certain instructions from part (C) need not be re-executed when
encountered on the correct path.

Dynamic Instruction Reuse

Avinash Sodani and Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706 USA
{sodani,sohi}@cs.wisc.edu

Permission to make digital/hard copy of part or all of this work for personal or
classroom use if granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage, the copyright notice, the title of
the publication and its date appear, and notice is given that copying is by per-
mission of ACM, Inc. To copy otherwise, to publish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or fee.

© 1997 ACM.

block A, the processor may execute instructions from another
block (C), which is control independent of the branch. If the
branch was mispredicted, instructions executed from both blocks
A and C are discarded, execution resumes at block B, from
where it proceeds to block C. Instructions in block C that were
discarded, but whose operands are not affected by instructions in
either blocks A or B, would end up being re-executed. If the
results of such instructions were buffered, and we could detect
that their operands values are the same, their results could be
reused, thereby reducing the squash penalty. We term this sce-
nario assquash reuse.

Our initial goal for developing an instruction reuse mecha-
nism was to reduce the branch mis-prediction penalty, especially
for short forward branches, as described above. However, when
we were studying the effectiveness of the mechanisms that we
developed for the above case, we discovered that the concept
was much more powerful. Other scenarios where instructions
can be reused dynamically also arise frequently. These scenarios
are a result of two important artifacts of how the dynamic com-
putation is expressed statically. First, programs are written to be
generic, i.e., operate upon a variety of input data sets — we don’t
write programs that operate on only a single input data set. Start-
ing out with a single static program, different inputs will cause
different instructions to be executed dynamically, resulting in a
different dynamic operation stream for each input data set. For a
particular input set, operands for some of the instructions may
not change dynamically (they would in another execution with a
different input data set). Second, programs are written to express
a desired computation in a concise manner. For example, the
computation to carry out operations on each element of a 1000-
element data structure is expressed using a loop structure; we
don’t write separate instructions for each element of the data
structure. In the process of recreating the dynamic sequence of
operations from the static representation, many operations may
be repeated, as we shall see shortly.

The above situations are best illustrated by an example. Con-
sider the example of Figure2. The functionfunc searches for a
value in a list of a particular size. The function
main_func callsfunc several times, searching for a different
element in the same list with each call. Whenfunc is called, it
iterates through thelist, element by element, searching for the
value until the end of thelist, exiting when the value is found.
Instructions corresponding to the loop infunc are shown in
Figure2(b). Figure2(d) shows the dynamic instances of these
instructions which are generated by the first call tofunc. In
each iteration of the loop, the instruction 2 is dependent upon the
size parameter, the instructions 3 and 4 are dependent upon the
list parameter, instruction 5 is dependent upon both thelist
as well as the value being searched for, and instruction 6 is
dependent on the induction variable. Iffunc is called again
(Figure2(e)) on the samelist (and samesize), but with a
different search key, then all the different dynamic instances of
instructions 1-4 and 6 produce the same outcomes as they did the
last time the function was called (a total of size dynamic
instances of instructions 2-4 and 6). Only the dynamic instances
of instruction 5 produce results that might be different from what
they were in the previous call tofunc. This “reuse’’ of the
results of the dynamic instances of instructions 1-4 and 6 is
directly attributable to the fact thatfunc was written to be a
generic list search function, but in this particular case, only one
of its parameters changed between different calls to it. Even if
func was called with all its parameters being different for each
call, the different dynamic instances of the instruction 6 (i=0,
i=1, i=2, ..) in the second call tofunc would end up producing
the same values as they did in the first call tofunc, a conse-
quence of using loops to express the desired computation in a
concise manner. (Actually, if thesize parameter was also dif-
ferent, then onlymin(size1,size2) dynamic instances of
instruction 6 would produce the same values.)

How might performance benefit if we buffered the (size)

int func(x, list, size) {

int i;

for(i=0; i<size; i++) {

if(x==list[i]) return i;

}

return -1;

}

*1 i = 0

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

5 if(a == val) jump found

*6 i++

*7 jump 2

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

 5 if(a == val) jump found

*6 i++

...

Figure 2. Scenario illustrating that
instructions often perform the same compu-
tation repeatedly. The dynamic instructions
marked “*” would perform the same com-
putation for both the calls to functionfunc
shown in the figure.

main_func(a, b, c) {

...

func(a, list, size);

...

func(b, list, size);

}

*1 i = 0

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

5 if(b == val) jump found

*6 i++

*7 jump 2

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

 5 if(b == val) jump found

*6 i++

...

1 i = 0

2 if(i >= size) jump out

3 p = list + i

4 val = Memory[p]

5 if(x == val) jump found

6 i++

7 jump 2

(a) (b) (c)

(d) (e)

dynamic instances of instructions 1-4 and 6 in the above exam-
ple, and reused them? First, the dynamic instances of instruc-
tions 1-4 and 6 do not have to pass through all the different
phases of execution (ALU, issue, result bus, etc.), thereby reduc-
ing the demand for processor resources. (In the above case,
accesses to the data cache are also eliminated — these end up
becoming accesses to the buffer which holds previous instruction
results.) Second, the critical path to carry out the total computa-
tion involved in func can be reduced considerably. Without
dynamic instruction reuse, the critical path through the computa-
tion, as expressed above, would besize+3 steps (assuming that
the loop executes allsize iterations),size steps to generate
all the dynamic instances for the induction variablei, plus 3
steps to execute instructions 3, 4, and 5 of each iteration (which
form a dependence chain). In other words, the height of the data-
flow graph for the above computation issize+3 steps. With
instruction reuse, in the best case, the critical path, i.e., the
height of the dataflow graph through the computation, is reduced
to only 1 step. This is because the outcomes of all the dynamic
instances of instructions 1-4 are already known, and all the
dynamic instances, being independent of one another, could all
execute at the same time. In other words, dynamic instruction
reuse allows us toexceed the dataflow limit that is “inherent’’ in
the program. Of course, in an actual execution other constraints
will prevent us from achieving the dataflow limit in either case, but
concentrating on the dataflow limit illustrates the potential power
of the concept. We call this second scenariogeneral reuse.

The above example shows that the potential for instructions
to be reused dynamically exists. As we shall see in section 5, in
some cases over 50% of all executed instructions produce results
that they produced earlier, suggesting a need to exploit the phe-
nomenon. Our objective is to develop dynamic techniques to
exploit repetitive behavior of the above type. While not impossi-
ble, doing the same statically in the compiler would require a tre-
mendous (and very likely impractical) effort in the above case:
constant propagation, function in-lining, loop unrollingsize
times, common sub-expression elimination, all carried out glo-
bally (and possibly inter-procedurally), sufficient registers to
storesize elements, as well as alias analysis to allow register
allocation of the list elements. In the above example, to achieve
the same effect as dynamic instruction reuse, the compiler would
essentially have to end up putting thesize elements of list in
registers, and in-liningfunc as a sequence ofsize static
instructions, each of which compares value with a register. This
is a tall order, given the current state of the art. Accordingly we
concentrate on developing dynamic schemes for instruction
reuse.

3 Schemes for Instruction Reuse

In this section, we describe three hardware schemes to imple-
ment dynamic instruction reuse. To reuse an instruction we need
to determine that its outcome is going to be the same as a previ-
ous outcome, and reuse the previous outcome. The reuse
schemes described in this section implement this determination
in different ways. In each scheme we store the result(s) of a pre-
viously-executed instruction in a hardware structure calledReuse
Buffer (RB) (Figure3).1 When an instruction is encountered, the
RB is queried to see if it contains a reusable result for the
instruction. Three issues need to be dealt with: (i) how the infor-

mation in the RB is accessed, (ii) how we know that the accessed
RB entry (or entries) has reusable information, and (iii) how the
buffer is managed.

The first issue is easily dealt with: the program counter (PC)
of the instruction provides a convenient index for searching the
RB. The RB could be organized with any degree of associativity,
the larger the associativity, the larger the number of dynamic
instances of an instruction that can be held in the RB at a given
time.

To deal with the second issue, we need to develop areuse test
which checks information accessed from the RB to see if there is
a reusable result. Details of the test depend upon the reuse
scheme, as we describe shortly.

There are two aspects to RB management: (i) deciding which
instructions get placed in the buffer, and (ii) maintaining the
consistency of the buffer. The decision as to what to place in the
buffer can range from no policy, i.e., place all recently executed
instructions in this buffer (if they aren’t already present), to a
more judicious policy that filters out instructions that aren’t
likely to be reused.2 Maintaining the consistency of information
in the RB depends upon the reuse scheme, as we see shortly.

Next, we present details of three schemes for reusing instruc-
tions. These schemes mainly differ in the way in which reusable
results are identified. The first scheme (Sv) tracks operand val-
ues for each instruction, the second scheme (Sn) tracks only
operand names (register identifiers), and the third scheme (Sn+d)
tracks dependence relationships among the instructions. For
each scheme, we discuss the following issues:

• What information is stored in the RB?
• How is the reuse test performed?
• How is the information in the RB updated/invalidated?

In practice, the reuse schemes would be implemented in a
variety of different ways. In this paper we concentrate on the
functionalities required by each reuse scheme instead of their
implementations.

1. Depending upon the buffer mapping and management policy, the RB could con-
tain the outcomes of many previous dynamic instances of the same instruction.
For example, in Figure2, the buffer could contain all thesize dynamic
instances of the instruction updating the induction variable, with each dynamic
instance producing a different value.

2. In this paper, we do not explore this aspect of the problem — in our discussions
and experiments we assume that all recently executed instructions are placed in
the RB.

o

o

o

entries

PCInvali-
date

Events

reuse test

Reuse Buffer

Reused inst.

Figure 3. Generic Reuse Buffer. It is indexed by the PC and it
has mechanism for selectively invalidating entries based on
some event.

3.1 Scheme Sv: Reuse based upon operand values

Scheme Sv is a straightforward implementation of the reuse
concept. The operand values of an instruction are stored along
with its result. Since the reuse test is based on operand values, as
we will see shortly, we call this scheme Sv, where ‘v’ stands for
value.

When an instruction is decoded, its current operand values
are compared with those stored in the RB. If they are the same,
then the result stored in the RB is reused. Loads, being a two-
operation instruction, need special handling. Address-calculation
can be reused if the operands for the address calculation did not
change. However, the actual outcome of the load can only be
reused if the addressed memory location was not written into by
a store instruction. Information in the RB has to distinguish
between the two. Likewise, stores are also special. While reusing
the address calculation part of a store presents no problems (we
treat it no differently from the address calculation for a load) we
make no attempt to reuse the actual memory write — the mem-
ory write could have side effects outside the domain of the pro-
cessing node (similar restrictions would apply to other
instructions with side effects, e.g. loads in the I/O space).

• RB entry: An entry in RB for this scheme is shown in
Figure4(a). Thetag field stores part of the PC. Theresult, oper-
and value1, andoperand value2 store the result and the operand
values of the instruction. These fields are used to identify the
instruction (or address calculation in case of a load/store) that
can be reused. Thememvalid bit and theaddress field are used to
determine if the actual memory access for a load instruction can
be reused; thememvalid bit indicates whether the value loaded
from memory (present in theresult field) is valid, and the
address field stores the memory address (i.e., the outcome of the
address calculation).

• Reuse test: For testing reuse, the operands of an instruc-
tion are compared with the values in theoperand value fields of
the RB entry. A match indicates thatresult is valid (for non-load/
store instructions) oraddress is valid (for loads and stores). For
loads, in addition to testing the validity of theaddress bits, we
also need to test thememvalid bit to see if the outcome of the
load (in theresult field) can be reused. If the operand values are
not known at the time of the reuse test then the instruction is not
reused.

• Invalidation: For non-load operations, the reuse test
works because the operands uniquely determine the result and
therefore invalidations are not needed to maintain the integrity of

tag
operand1

value
operand2

value
address result mem

valid

tag operand1
reg name

operand2
reg name

address result result
valid

mem
valid

memresultresultaddresstag
operand1

src-index reg name src-index reg name
operand2

vaildvaild

(a)

(b)

(c)

Figure 4. RB entry (a) Scheme Sv (b) Scheme Sn (c) Scheme Sn+d

the test. For loads, a store to the same address invalidates the
value in theresult field. Accordingly, on a store theaddress field
of each RB entry is searched for a matching address, and the
memvalid bit reset for matching entries.

Note that theaddress field, memvalid field, and the associa-
tive search for invalidations are required only to maintain the
integrity of load values. The RB can be split into two buffers:
one for storing load values and another, the main RB, for storing
everything except the load values (including entries for load
addresses). This RB organization has two advantages: first,
address andmemvalid fields need not be maintained for entries
storing non-load instructions, reducing the overall storage
required for the reuse scheme; second, the main RB need not
have invalidation logic, this logic would only be present in the
buffer for load values, which probably would be much smaller
compared to the main RB. Nevertheless, since our goal is to
demonstrate the potential of instruction reuse, and not to com-
pare the merits of different implementations, we assume a uni-
fied RB for our experiments presented in this paper.

3.2 Scheme Sn: Reuse based upon register names

In scheme Sn, weattempt to trivialize the reuse test (and also
to reduce the size of each RB entry). Rather than store operand
values, we store operand (architectural) register identifiers in the
RB. When an instruction writes into a register, all instructions
with a matching (source) register identifier in the RB are invali-
dated. Since the reuse test is based on operand names (and not
value), we call this scheme Sn, where ‘n’ stands forname. The
remaining details are:

• RB entry : An RB entry for this scheme is shown in
Figure4(b). Differences from scheme Sv are: (i) theoperand1
and operand2 fields contain register names of the operands
instead of actual operand values, (ii) there is aresultvalid bit,
which indicates whether the result is valid. (This bit was not
required in scheme Sv because the reuse test detected the stale
results). This bit is set when an entry is first inserted into the RB.

• Reuse test: The reuse test is as simple as testing the state
of resultvalid andmemvalid bits. Address calculation for load/
store instructions and results for all other instructions can be
reused if theresultvalid bit is set; the result of a load instruction
can be reused if bothresultvalid andmemvalid are set.

• Invalidations : As before, stores invalidate the loads
from the same address (memvalid bit is reset). Moreover, when a
register is written, the RB is searched for entries whose operand
field matches the name of the register. The entries which match
are marked invalid (resultvalid bit is reset).

Note that the effect of invalidations (which is to purge stale
results) can be obtained in other ways too, e.g., usingtime-
stamps for the operands. As mentioned earlier, in this paper we
focus on the required functionality and leave the task of explor-
ing different implementations as a future work.

3.3 Scheme Sn+d: Reuse using register names and
dependence chains

Scheme Sn+d extends scheme Sn by attempting to establish
chains of dependent instructions, and to track the reuse status of
such instruction chains. Since in this scheme the reuse status of

an instruction in the RB is established based on its operand
names and/or its dependence information, we call this scheme
Sn+d (the letters ‘n’ and ‘d’ stand forname and dependence
respectively).

Figure5(a) motivates scheme Sn+d. The figure shows a
dynamic stream of instructions on the left and the contents of the
RB at different point in time on the right. I, J, K is a chain of
dependent instructions; I1, J1, K1 and I2, J2, K2 are the dynamic
instances of this instruction chain. With scheme Sn, only instruc-
tion I2 could reuse the result of I1, because results of J1 and K1
are invalidated by instruction R. Scheme Sn+d instead tries to
establish the fact that instruction J2 (J1) depends solely upon
instruction I2 (I1), and instruction K2 (K1) depends solely upon
instructions I2 and J2 (I1 and J1) (Figure5(b)). If instruction I2
can be reused, so can instructions J2 and K2. Furthermore, if I2,
J2, and K2 are all fetched simultaneously from the RB, the reuse
status of all three could be established simply by establishing the
reuse status of I2, and verifying the dependence relationship (as
we elaborate below). This is tantamount to obtaining the result(s)
of chains of dependent operations in a single cycle. Scheme Sv,
which does not maintain instruction dependence relationships,
can’t establish the reuse status of a dependence chain as easily.
In our example, the reuse status of I2 would have to be estab-
lished; the result of I2 would be needed to establish the reuse sta-
tus of J2; and J2’s result would be needed to establish the reuse
status of K2.

For the ensuing discussions we define the following terms

o
o
o

o
o
o

K1

J1

I1

K 2

I2

J2

r1 <- 0

r2 <- r1 + 4

r3 <- r1 + r2

r1 <- 0

r2 <- r1 + 4

r3 <- r1 + r2

r1 <- 0

r2 <- r1 + 4

r3 <- r1 + r2

r1 <- 0
r2 <- r1 + 4
r3 <- r1 + r2

r1 <- 4

r1 <- 0
r2 <- r1 + 4
r3 <- r1 + r2

:

:

:

:

:

:

R :

time
stream

Dynamic instruction

reused

reused

t1

reused

t2

t3

RB contents

Figure 5. Dependent sequence of instructions (a) not handled in
Scheme Sn, but (b) handled in Scheme Sn+d.

o
o
o

o
o
o

K 1

J1

1I

K 2

2J
I2

r1 <- 0

r2 <- r1 + 4

r3 <- r1 + r2

r1 <- 0

r2 <- r1 + 4

r3 <- r1 + r2

r1 <- 0

r2 <- r1 + 4

r3 <- r1 + r2

Dynamic instruction
stream

time

r1 <- 0
r2 <- r1 + 4
r3 <- r1 + r2

r1 <- 0
r2 <- r1 + 4
r3 <- r1 + r2

:

:

:

:

:

:

r1 <- 4R :

reused

t1

t2

t3

RB contents

(a)

(b)

(illustrated in Figure6). Instructions that produce values used by
other instructions in the chain are calledsource instructions (e.g.
A and B in the figure). Instructions whose source instructions are
not in the chain, which implies that their data dependence infor-
mation is not available, are calledindependent instructions (e.g.
A). Finally, instructions whose source instructions are in the
chain are called thedependent instructions (e.g. B and C).

Dependence chains are created as entries are inserted into the
RB. To facilitate this process, we use a mapping table called a
Register Source Table (RST). The RST has an entry for each
architectural register; it tracks the RB entry which has (or will
have) the latest result for that register. When an entry is reserved
in the RB for an instruction, the RST entry for its destination
register is updated to point to the reserved entry. If the instruc-
tion which is the latest producer of a register is not in the RB,
then the RST entry for that register is set to invalid.The RST is
similar in spirit to the rename map used in register renaming. In
essence, the RST is used to link a consumer instruction to the lat-
est producer instruction by pointing to the “physical register” (RB
entry) of the producer. Accordingly, another way of looking at
scheme Sn+d is to consider it as a “physical register” version of
scheme Sn, which tracks dependences using architectural regis-
ters.We now present details of this scheme’s operation.

• RB entry: An RB entry (shown in Figure4(c)) is similar
to that of scheme Sn, except for the addition of asrc-index field.
The dependence links are created by storing the RB index of the
source instructions in this field. An invalid value is inserted in
this field if the source doesn’t exist in the RB.

• Reuse test: The reuse status of independent instructions
is established as it was in scheme Sn (resultvalid bit is set;mem-
valid is set in the case of load instructions). A dependent instruc-
tion is reused if its source instructions (in the RB), as indicated
by thesrc-index field of its operands, are indeed the latest pro-
ducers for its operands. This fact is established with the help of
the RST, as we shall illustrate below with the help of an example
(Figure7).

• State updates: As in schemes Sv and Sn, stores invali-
date the loads to the same address (memvalid is reset). As in
scheme Sn, independent instructions are invalidated when their
operands registers are overwritten (resultvalid is reset). Depen-
dent instructions need not be invalidated on operand overwrites
because their reuse status can be established using their depen-
dence information. Instead, they are invalidated when their
source instructions are evicted from RB, i.e., when the depen-
dence information is lost.3 To perform this operation the RB
needs to be searched for entries whosesrc-index field matches
the index (in RB) of the source instruction being evicted. The
entries which result in a match are invalidated (resultvalid bit is

A

B

C

r1 0

r2 r1 + 4

r3 r1 + r2

Independent

Dependent

Source

Figure 6. Instructions with data dependence links. The arrows
point from the instruction using the value to the instruction pro-
ducing the value.

reset).

We illustrate the working of this scheme using the example
shown in Figure7 with the same dynamic stream of instructions
as in Figure5. Figure7(a) shows the state of the RB and RST at
the time when I2 is encountered in the dynamic instruction
stream. At this time, the results of instructions I1, J1 and K1 are
present in the RB with appropriate data dependence information
(indicated by the links in RB and the index values in thesrc-
index field). Since instructions J1 and K1 are stored in the RB as
dependent instructions, their results are not invalidated by
instruction R (unlike scheme Sn). Instruction I2 reuses the result
of I1 (since it is independent and valid) and the RST entry forr1
is updated to point to RB entry 10 (the latest producer for
r1)(Figure7(b)). To establish the reusability of J2, thesrc-index
field for r1 is compared with the RST entry forr1 (Figure7(b)).
The match indicates that the source forr1 in the dependence
chain (which is I1) is also the current producer forr1; hence the
result is reusable. Instruction K2 gets reused in a similar fashion
(Figure7 (c)). The instructions I2, J2, K2 can be reused simulta-
neously if encountered in the same cycle. While performing the
reuse test on each one, interdependence among them needs to be
considered. The interdependence check is similar to what is done
while renaming registers for multiple dependent instructions in
the same cycle.

4 Microarchitecture with a Reuse Buffer

Figure8 shows a generic microarchitecture with an RB.
Except for the RB (and the datapaths associated with it), the rest
of the microarchitecure is similar to what is found in a generic
dynamically-scheduled superscalar processor.

TheInstruction Fetch Unit fetches and places the instructions
in the Instruction Queue. Instruction decode and register renam-
ing is done in theDecode and Rename Unit. At this point, the RB
is accessed to see if a reusable result for the instruction can be
found. If a reusable result is found, the instruction does not need
to be operated upon any further; it bypasses theInstruction Win-
dow (IW), and proceeds directly to theReorder Buffer (ROB)

3. An optimization to this approach is to check whether the source instruction is the
current producer for its destination register (this can be done using the RST); if
so, then the dependent instructions are not invalidated, instead they are treated as
independent instruction thereafter. In our simulations we implemented this opti-
mization.

[8]. Loads bypass the IW only if both micro-operations, address
calculation and the actual memory operation, can be reused. If a
reusable result is not found in the RB, an entry is reserved in the
RB where the result of the instruction will be placed after it is
executed, setting it up for future reuse (in scheme Sn+d, the RST
has to be updated accordingly). Once in the IW, instructions pro-
ceed as they would in any generic superscalar processor. After
an instruction has executed, its results are stored in the reserved
RB entry. In scheme Sv, the operand values are also stored in the
entry at this time. When an instruction commits, depending on
the reuse scheme, it invalidates appropriate results in the RB.

Since the RB contains state that will determine the outcome
of future instructions, it needs to be maintained precisely (just
like a register file). The straightforward way to do this is to
update the RB only when an instruction is committed. However,
this approach prevents speculatively-executed instructions from
being entered into the RB, making it ineffective for one of our
purposes, that of recovering squashed work. Accordingly, we
must allow the RB to be updated speculatively, and take neces-
sary actions (depending upon the reuse scheme) to ensure correct
behavior. For scheme Sv, inserting instructions into the RB spec-
ulatively requires no special actions — the reuse test ensures that
the correct result is obtained. For scheme Sn+d, the RST controls
the reusability of instructions. Just like the rename map in a
superscalar processor, checkpoints of the RST have to be taken
when a speculation decision is made, and it has to be repaired in
the case of an incorrect speculation.

Other issues, such as interlocks to ensure correct operations,
flushing on context switches, etc., are fairly routine, and we
don’t discuss them further.

Though in all previous discussions we assumed that an RB

Figure 8. Generic microarchitecture with a reuse buffer.

Reuse
Buffer

Inst
Fetch

Inst
Queue

Decode
and

Rename

FU

Reorder
Buffer

Inst
Window

Register
File

FU

FU

o

o

o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

r2 r1 + 4

r1 0

valid

r1

r2

10

15 10

RST

r3

16 r3 r1 + r2 10 15

RB

RB index

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

r2 r1 + 4

r1 0

r1

r2

yes 10

10

15 10

RST

r3

16 r3 r1 + r2 10 15

r2 r1 + 4 10

==

RB

RB indexvalid
o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

r2 r1 + 4

r1 0

valid

r1

r2

yes

yes

10

15

10

15 10

RST

r3

16 10 15

r3 r1 + r2

r3 r1 + r2

10 15

====

RB

RB index

r1
r2 r1 + 4
r3 r1 + r2

I1:
J1:
K1:

0

r1 4

r1
r2 r1 + 4
r3 r1 + r2

I2:
J2:

K2:

0

R:

Dynamic instruction
stream

Figure 7. Illustrating the reuse test for dependent instructions. (a) State when I2 is encountered. (b) Testing r2 <- r1 +4 for reusability.
(c) Testing r3 <- r1 + r2 for reusability. (Instruction R is not shown in RB for clarity).

(b) (c)(a) State when I2 is Reusing J2 Reusing K2
encountered

access takes a single cycle, there is no need for this timing con-
straint since accesses may be pipelined. For example, the access
can begin in the fetch stage of the pipeline after the PC of the
instruction is available (since only the PC is required for indexing
the RB, the RB access can begin as early as in fetch stage); then
only the reuse test needs to be performed in the decode stage.
Other operations, like invalidations, evicting entries to make
way for new instructions etc., can be pipelined as well. For
example, when the RB gets full, entries can be freed for future
inserts. This will ensure that free RB entries are always avail-
able, eliminating the search for a victim entry from the critical
path. Thus, despite its size, the RB seems unlikely to be the
structure that determines the cycle time.

5 Experimental Evaluation

Our simulator is built on top of theSimpleScalar toolset [1],
an execution-driven simulator based upon the MIPS-I ISA. The
base simulator models in detail a 4-way dynamically-scheduled
processor with its first level of instruction and data cache mem-
ory. The parameters for the base out-of-order simulator are listed
in Table1. We extended this base simulator to incorporate the
RB and the three instruction reuse schemes described earlier.
The RB is integrated with the processor pipeline as described in
section4. In our simulations, the RB is capable of supporting 4
reads, 4 writes, and 4 independent invalidations simultaneously.
We also assume that all RB accesses — read, write or invalidate
— complete in one cycle, and that, like scheme Sn+d, scheme Sv
can reuse multiple dependent results in a single cycle (the maxi-
mum length of a dependence chain reused in a cycle is equal to
the read bandwidth of RB, which is 4 in the simulated configura-
tion). This configuration of the RB, though aggressive, allows us
to study the concept of instruction reuse without been limited by
any particular implementation.

5.1 Benchmarks

The benchmark programs analyzed are listed in Table2 along
with their inputs and number of dynamic instructions executed
on the timing simulator. There are five integer programs from
SPEC ‘92 benchmark suite (gcc, compress eqntott, espresso,
xlisp) and five integer programs from the SPEC ‘95 benchmark
suite (go, m88ksim, vortex, ijpeg and perl). Other integer pro-

grams analyzed are:Yacr2, a VLSI channel router routing a
channel with 230 terminals, andMpeg, a mpeg decoder which
decodes a mpeg file with 71 frames. Except forgo, m88ksim,
vortex and ijpeg, all programs were run to completion. These
four programs were run for first 1 billion instructions on a func-
tional simulator (so that we do not do all our measurement in the
initialization phases) and for the next 500 million cycles (or
completion) on the timing simulator. The exact number of
instructions simulated in a fixed number of cycles is dependent
on the microarchitectural enhancements applied. Thus, for these
programs (exceptijpeg which ran to completion) in Table2 we
show the approximate number of instructions executed on the
timing simulator. All the benchmark programs were compiled
using GNUgcc (version 2.6.3),gas (version 2.5.2) andgld (ver-
sion 2.5) with maximum optimizations (-O3).

5.2 Experiments and Results

We performed several experiments to evaluate the concept of
dynamic instruction reuse. Being the first paper on the concept
(and mechanisms to exploit it), an exhaustive evaluation of all
interesting cases is not possible. Furthermore, we also don’t
evaluate the concept in the abstract. Rather, we concentrate on

Benchmarks Input
Inst. count

(Mil.)
Gcc 1stmt.i 116.2

Compress in 66.4

Eqntott int_pri_3.eqn 1117.3

Espresso bca.in 458.4

Xlisp li-input.lsp 967.8

Go null.in (reference) ~750.0

M88ksim ctl.in (reference) ~1050.0

Vortex vortex.in (training) ~900.0

Ijpeg vigo.ppm(training) 442.2

Perl scrabbl.in(training) 555.6

Yacr2 input2 397.5

Mpeg foot.mpeg 385.9

Table 2: Benchmark programs, inputs and instruction count.

Instruction fetch
 4 instructions per cycle. Aggressive: can fetch beyond multiple branches and across cache line
boundaries. Fetch stops only on I-cache misses.

Instruction cache 16K bytes, direct mapped, 32 byte cache line, 6 cycles miss latency

Branch predictor 2048 BTB entries with 2-bit saturating counters.

Speculative execution
mechanism

Out of order issue/commit of 4 operations per cycle, 32 entry reorder buffer, 32 entry load/store
queue. Maximum of 8 unresolved branches. Loads execute only after all the preceding store
addresses are known. Values bypassed to loads from matching stores ahead in load/store queue.

Architected Registers 32 integer, hi, lo, 32 floating point, fcc.

Functional units 4-integer ALUs, 2-load/store units, 4-FP adders, 1-integer MULT/DIV, 1-FP MULT/DIV

Functional unit latency
(total/issue)

integer ALU-1/1, load/store 1/1, integer MULT 3/1, integer DIV 20/19, FP adder 2/1, FP MULT
4/1, FP DIV 12/12, FP SQRT 24/24.

Data cache
16K 2-way set associative, 32 bytes block, 6 cycles miss latency. Dual ported, non-blocking
interface, one outstanding miss per register.

Table 1: Details of the base simulator

some key initial results for some sample configurations of the
proposed mechanisms: how much dynamic reuse of instructions
is there (as captured by our reuse schemes), what types of
instructions are reused, how does it vary with RB size, and how
much speedup results. We categorize total instruction reuse into
squash reuse and general reuse, and show the contribution of
either category to total speedup. We also evaluate the impact of
associativity and the effectiveness of instruction reuse in allevi-
ating dependences.

For most of our experiments we use fully-associative RBs of
three different sizes: 32, 128, and 1024 entries with a FIFO
replacement policy. As mentioned earlier, we make no attempt to
be selective about what instructions get inserted into the RB; that
will be the subject of future work. We expect that with clever RB
management policies, small RBs will be able to achieve the same
performance as the larger RBs presented in the next several sec-
tions.

5.2.1 Instructions Reused
Figure 9 shows the percentage of total dynamic instructions

reused for the three different schemes, with 3 different RB sizes
for each scheme. The harmonic mean (HM) over all benchmarks
for each RB size is also shown in the figure. All the analyzed
benchmarks exhibit significant instruction reuse, especially for
the larger buffer sizes. For scheme Sv with 1024 entries the per-
centage of instructions reused are 63% for eqntott, 39% for
espresso, 76% for yacr2 and 34% for xlisp. Even for small RB
sizes the instructions reused are significant (21% for eqntott,
24% for espresso, 26% for yacr2). For other benchmarks and for
other reuse schemes the percentage of instruction reuse is also
appreciable.

For larger RB sizes, scheme Sn does not reuse as many
instructions as schemes Sv and Sn+d. This is because invalida-
tions are more frequent in scheme Sn (being done every time a
register or memory location is written), which limit the number
of reusable instructions irrespective of the RB size (for large RB
sizes). Frequent invalidations help small size RBs (32 entries);
the instructions which are more likely to be reused remain in the
RB, resulting in better utilization. Thus, Sn performs better than
other two schemes for RB with 32 entries.

In scheme Sv, invalidations are infrequent: only stores that
match loads cause invalidations. Accordingly, larger buffers are
able to retain more reusable instructions, resulting in Sv perform-
ing better than Sn and Sn+d for RB with 1024 entries. The smaller
number of invalidations also means that instructions which are
not likely to be reused remain in RB. This phenomenon results in
scheme Sv performing worse than Sn and Sn+d for an RB size of
32 entries.

Since scheme Sn+d uses selective invalidations (only indepen-
dent instructions are invalidated), the frequency of invalidations
is reduced while still retaining the ability to purge unusable
instructions from the RB. Thus, Sn+d not only continues to bene-
fit as the RB size is increased to 1024 entries but also out per-
forms other two schemes for RB with 128 entries.

To study the reuse characteristics of different instruction
types, we divide the instructions into the following broad catego-
ries: loads, address calculations, control and integer. The cate-
gory address calculations consists of loads and stores for which
only the address calculation part is reused. (As noted earlier, for

stores we reuse only address calculation, and not the actual
memory operation). The integer instructions are further divided
into three subcategories based on the type of operands: two reg
operands, one reg operands and immediate. Table 3 shows the
percentage of instructions reused (average over all benchmarks)
from each category using a 1024 entry RB (e.g. 36.9% of all
integer instructions with two register operands are reused). As
expected, most computation involving immediate constants is
reused. Likewise, reuse of address calculation is also not very
surprising. Somewhat surprising is that a large number of load
instructions could be reused (an average of 21.2% for scheme
Sv). This reduces the demand for data cache bandwidth, which

Scheme Sv : Instructions reused

0

10

20

30

40

50

60

70

80

90

100

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t R

eu
se

4

10.5

25

4

10

23
21

27

63

9.5

24

39

2

13

34

26 27

76

3

8

22

4

12

24

2.5
6

28

2
5

13

2
5

17

0.2

5

27

32 RB entries (HM = 2.23)

128 RB entries (HM = 8.47)

1024 RB entries (HM = 25.7)

Scheme Sn+d : Instructions reused

0

10

20

30

40

50

60

70

80

90

100

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t R

eu
se

4.5

10

19

5

19
21 21

30
32

11

27 28

4

12

17 16

32

59

4

11
14

4

13

23

3
6

41

3
6

17

2

7
11

0.5

6

19

32 RB entries (HM = 2.62)

128 RB entries (HM = 10.4)

1024 RB entries (HM = 20.6)

Scheme Sn : Instructions reused

0

10

20

30

40

50

60

70

80

90

100

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t R

eu
se

5
9

13
9

15 15
17

19 19

10 11 12

6

14 14

22
25 25

6 7 8
6

12

18

5 6

20

4
6

11

2.5
6 6

0.5

7

12

32 RB entries (HM = 3.12)

128 RB entries (HM = 9.39)

1024 RB entries (HM = 12.5)

Figure 9. Percentage of instructions reused for RB sizes: 32, 128
and 1024 entries. The RB in these experiments was fully associa-
tive. (a) Scheme Sv (b) Scheme Sn (c) Scheme Sn+d. HM stands for
harmonic mean.

(a)

(b)

(c)

can possibly be exploited by reducing the number of data cache
ports.

Figure 10 shows the contribution of each instruction cate-
gory to the total instruction reuse (averaged over all bench-
marks), for 3 different RB sizes. We observe that each
instruction category makes a measurable contribution to the total
instruction reuse; reuse is not limited to some particular instruc-
tion type. However, it is worth noting that almost 40-50% of the
reuse comes from the load instructions (about 15%) and address
calculations (25-35%).

5.2.2 Speedups
Figure 11 shows the speedups (IPCwithRB/IPCwithoutRB)

obtained with the different reuse schemes for varying RB sizes.
The harmonic mean (HM) over all the benchmarks for each RB
size is also shown in the figure. The speedups are not as impres-
sive as the percentage of instructions reused, however, they are
still significant in many cases; they range from no speedup to
19% for a 32 entry RB, from 2% to 28% for a 128 entry RB, and
from 3% to 43% for a 1024 entry RB. The speedups are not as
impressive because there are many other parameters that contrib-
ute to overall performance (e.g., cache misses) and reducing the
instruction execution component of the execution time may not
result in a proportionate decrease in the overall time. With more
ideal system parameters (for which instruction issuing and/or the
lengths of dependence paths are more important), the speedups

Instruction Categories

Instruction Reused (%)

 Sv Sn Sn+d

Loads (value) 21.2 6.7 11.9

Address Calculations 20.8 10.3 11.9

Control 35.1 1.8 20.2

integer

two reg operands 36.9 26.8 32.0

one reg operand 38.6 17.9 30.9

immediate 51.0 98.1 90.4

Table 3: Percent reuse per instruction category for a 1024 entry
RB

Break down of Instruction Reuse per category

0

10

20

30

40

50

60

70

80

90

100

32 128
	

scheme Sv

1024 	 32 128
	

scheme Sn

1024 	 32 128
	

scheme Sn+d

1024

P
er

ce
nt

integer : immediate

integer : one reg

integer : two reg

control

addr calc

loads

Figure 10. Contribution of each instruction category to total
reuse. These numbers are average over all benchmarks for full
associative RB.

will mirror the percentage of instructions reused more closely.

Comparing the harmonic means of the speedups we can see
that Sn performs best (among the three schemes) for a 32 entry
RB (harmonic mean 4.3), Sn+d performs best for a 128 entry RB
(harmonic mean 7.2), Sv works best for a 1024 entry RB (har-
monic mean 14.9). Comparing percent instruction reuse
(section 5.2.1) with the resulting speedups, we see that the
scheme that reuses more instructions also delivers better overall
speedup.

Scheme Sv : Speedups

0

10

20

30

40

50

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t

2

5

12

2
4

8

17

26

43

6

13

22

2

10

25

11
12

22

2

5

8

2

5

10

1
3

13

1
2

7

1
2

6

0
2

16

32 RB entries (HM = 3.7)

128 RB entries (HM = 7.0)

1024 RB entries (HM = 14.9)

Scheme Sn : Speedups

0

10

20

30

40

50

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t

2
4

6

3

7
8

14
15

17

8 8
9

4
6

9

12
14

15

4
5

6

3
4

5

2
3

5

1
2

7

1
3 3

0
2

3

32 RB entries (HM = 4.3)

128 RB entries (HM = 5.7)

1024 RB entries (HM = 7.5)

Scheme Sn+d : Speedups

0

10

20

30

40

50

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t

2
4

6

1

5
7

19

28
30

6

13
15

3

9

12
11

13

20

2

5
7

2
4

6

1
3

15

1
2

6

1
3

4

0
2

6

32 RB entries (HM = 3.8)

128 RB entries (HM = 7.2)

1024 RB entries (HM = 10.5)

Figure 11. Speedups obtained due to instruction reuse. The
numbers are presented for RB entries 32, 128 and 1024. (a)
Scheme Sv (b) Scheme Sn (c) Scheme Sn+d. HM stands for har-
monic mean.

(c)

(b)

(a)

5.2.3 Squash Reuse vs. General Reuse
Figure12 gives a break down of the number of instructions

reused into two categories:squash reuse and general reuse.
Squash reuse and general reuse have been illustrated in Figure1
and Figure2 respectively. Due to a lack of space, we do not
present the breakdown for all three schemes; Figure12 contains
the information only for scheme Sn+d. The figure suggests that,
as one might expect (with a couple of exceptions), smaller RB
sizes have a larger percentage of squash reuse. This is also true
for the other schemes.

Figure13 separates the performance obtained by squash
reuse from that obtained by general reuse for each benchmark for
scheme Sn+d with the three different RB sizes. Observe that the
fraction of the speedup attributed to squash reuse is greater than
the contribution of squash reuse to the total number of instruc-
tions reused (compare with Figure12). This suggests that squash
reuse is more time critical than general reuse — the squash pen-
alty impacts the bottom line more than the latency of an instruc-
tion (or a set of instructions), especially in a dynamically
scheduled processor.

5.2.4 Set Associative RB
Figure14 presents the results for a 4-way set associative, 128

entry RB, for scheme Sv. (Figure14(a) presents the instruction
reuse and Figure14(b) presents the speedups.) Other schemes

Percent squash reuse

0

20

40

60

80

100

A B
gcc

C 	 A B
	

compress

C 	 A B
eqntott

C 	 A B
	

espresso

C 	 A B
xlisp

C 	 A B
	

yacr2

C 	 A B
mpeg

C 	 A B
	

go

C 	 A B
m88ksim

C 	 A B
	

perl

C 	 A B
ijpeg

C 	 A B
	

vortex

C

Benchmarks

Pe
rc

en
t

general reuse

squash reuse

Figure 12. Reuse break down in terms of general and squash
reuse using scheme Sn+d. Bar ‘A’ stands for a 32 entry RB, ‘B’
stands for a 128 entry RB, and ‘C’ stands for a 1024 entry RB.

Performance from squash reuse

0

20

40

60

80

100

A B
gcc

C 	 A B
	

compress

C 	 A B
eqntott

C 	 A B
	

espresso

C 	 A B
xlisp

C 	 A B
	

yacr2

C 	 A B
mpeg

C 	 A B
	

go

C 	 A B
m88ksim

C 	 A B
	

perl

C 	 A B
ijpeg

C 	 A B
	

vortex

C

Benchmarks

Pe
rc

en
t

general reuse

squash reuse

Figure 13. Performance break down in terms of general and
squash reuse using scheme Sn+d. Bar ‘A’ for a 32 entry RB, ‘B’
for a 128 entry RB, and ‘C’ for a 1024 entry RB

and buffer sizes show similar results. As we can see, the perfor-
mance is comparable in either case. For some programs (e.g.,
eqntott, espresso, and compress) set associativity actually
improves performance. This is due to the fact that the FIFO
replacement policy that we use does not discriminate between
reusable and not reusable instructions. Reusable entries are
evicted even though non-reusable entries are present (the non-
reusable entries are evicted in the set-associative case because of
limited choice).

5.2.5 Early resolution of data dependence
We now evaluate the effectiveness of instruction reuse in

reducing the length of dependence chains. To do so, we measure
the average number of cycles an instruction spends waiting for
its operands to be ready (this is called thedata dependence reso-
lution latency [5]). Figure15 plots the data dependence resolu-
tion latency with instruction reuse, normalized to that without
instruction reuse. The data in the figure is for 4-way set associa-
tive RB implementing reuse scheme Sv. As is evident from the
figure, instruction reuse causes significant reduction in operand
waiting times. Foreqntott andespresso, the waiting time is cut
down by 40% and 32%, respectively, for an RB size of 128
entries, suggesting that dynamic instruction reuse is quite effec-
tive in collapsing true dependences.

Reuse : Full vs. 4-way assoc : RB 128 entries

0

10

20

30

40

50

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t

10.5
8

10
12

27 27

24
26

13

10

27 27

8 8

12

8
6 6 5 5 5 4

1 0.2

Fully-assoc.

4-way set assoc.

Speedups : Full vs. 4-way assoc : RB 128 entries

0

10

20

30

40

50

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

Pe
rc

en
t

5 4 4 5

26 27

13 14

10

7

12 12

5 5 5 4 3 3 2 2 2 2 2 1

Fully-assoc.

4-way set assoc.

Figure 14. Comparison of 4-way set associative RB against fully-
associative RB. (a) Percentage instruction reused, (b) Speedups.
The results are for RB with 128 entries using Scheme Sv.

(b)

(a)

6 Related Work and Discussion

The idea of not having to redo computation is not a new one
— it has been used before in several different contexts. A tech-
nique calledmemoization has been used for functional and logic
programs. The outcome of a function (or a rule) is saved in a
table. If the function or the rule is encountered again with the
same parameters then the result from the table is used instead of
re-evaluation. Memoization is also used to reduce the running
time of optimizing compilers, where the same data dependence
test is carried out repeatedly.

Harbison in [2][3] proposes a stack-oriented architecture, the
Tree Machine, which uses a hardware mechanism, thevalue
cache, for eliminating common subexpressions and loop invari-
ant expressions. He keeps the result of a computation (called a
phrase) in thevalue cache. A bit vector, called adependency set,
is associated with each result in the value cache to indicate the
variables used in computing the result; the bit positions are
determined by the address of the variables. When an address is
overwritten, all the results in the value cache which have the bit
set for that address are invalidated. If a phrase is encountered
again, recomputation is avoided by reading the result from the
value cache. This approach is similar to our second reuse
scheme, scheme Sn. Both perform reuse based on the architec-
tural names of the operands (scheme Sn uses the register speci-
fier, while the value cache uses the memory address). The
differences are highlighted later in this section.

Richardson [7] introduces the notion of redundant computa-
tion, which is computation that produces the same result repeat-
edly because it gets the same value for its operands. In this work,
the results of floating point operations are stored in a cache,
calledresult cache. The index of the cache is obtained by hash-
ing the operand values. The result cache is accessed in parallel
with executing an floating point operation. If the result is found
in the result cache then the operation is halted.

In [6], Oberman and Flynn, propose the use ofdivision
caches andreciprocal caches for capturing the redundancy in the
division and square root computation. The division caches are
similar to Richardson’s result cache, but for divisions only. The
reciprocal caches hold the reciprocals of the divisors. They help
convert the high latency division operation to relatively low
latency multiply operation. These caches are accessed using the

Figure 15. Data dependence resolution latency with instruc-
tion reuse normalized to that without instruction reuse. The
result is shown for scheme Sv using 4-way set associative RBs of
three different sizes.

Data dependence resolution latency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

gcc 	
compress

eqntott 	
espresso

xlisp 	
yacr2

mpeg 	
go

m88ksim 	
perl

ijpeg 	
vortex

Benchmarks

No
rm

ali
ze

d r
eso

lut
ion

 la
ten

cy
32 RB entries

128 RB entries

1024 RB entries

bits from the mantissa of the operands.

There are several differences between our work and the work
mentioned above. First, the above techniques are more special
purpose. The value cache [2][3] approach is tailored for an archi-
tecture which expresses computation in the form ofparse trees
(Tree Machine). The result caches [7], and the division and
reciprocal caches[6] target only floating point operations. Our
approach is general purpose in that it does not assume any spe-
cial architecture, and it captures reuse of any type of instruction
(except stores). Second, the techniques referred to above access
their respective result buffers (value cache in [3], result cache in
[7] and division and reciprocal caches in [6]) by using either the
operand address [3] or operand values [7][6], which are only
available later in the pipeline. Thus, the result buffer access is
delayed till the execute stage, which restricts the usefulness of
these techniques only to instructions which have multi-cycle
latency ([7] uses it for floating point instruction, while [6] uses it
for floating point divides only). In contrast, the reuse schemes
presented in this paper access the RB using the instruction
address, and hence reuse occurs while the instruction is still in
the decode stage. This has two advantages: first, even single
cycle instructions benefit from reuse; second, the reused instruc-
tion need not flow down the pipeline, which frees machine
resources for other instructions to use. The third difference is,
since other techniques use operand values for indexing in the
result buffer, unlike our schemes, they cannot reuse multiple
dependent instructions simultaneously (the result of one instruc-
tion would be needed to form the index for the dependent
instruction)

One of the benefits of instruction reuse is that it collapses
true dependencies. Other techniques based on prediction have
been proposed to achieve the same effect [4][5]. In [5], Lipasti
et. al. propose predicting the value of loads to collapse the true
dependencies. In [4] they extend this concept to predict the value
of registers. The fundamental difference from our schemes is
that these approaches are based on prediction. The instructions
still must execute to generate result for later verification. Our
schemes are not based on prediction, and the reused result is
guaranteed to be correct.

7 Conclusions

In this paper we introduced and studied the concept of
dynamic instruction reuse. Empirical observations suggest that
in a program execution, many instructions (and groups of
instructions) are executed repeatedly with the same inputs, gen-
erating the same results. We discussed two causes of this behav-
ior: (i) the re-execution of (control-independent) computation
when recovering from a branch mis-prediction, and (ii) the
generic nature of programs which are written to operate on a
variety of data inputs.

We presented three schemes for exploiting the phenomenon.
All three schemes buffer the outcome of an instruction in areuse
buffer from where future instructions can access it (if the oper-
ands match). The schemes differ in the way that they track the
reuse status of an instruction: scheme Sv uses operand values,
scheme Sn uses operand names, and scheme Sn+d uses operand
names as well as dependence information. By dynamically reus-
ing instruction results, we are able to (i) cut down on the
resources required to execute the instructions, and (ii) cut down

on the time that it takes to know the outcomes of sequences of
dependent instructions, i.e., reduce the length of critical paths of
computation.

We evaluated the effectiveness of the proposed schemes
using 3 different buffer sizes: 32, 128, and 1024 entries, using
execution-driven simulation. Significant instruction reuse was
found in many cases, with as many as 76% of the instructions
being reused in one case. Furthermore, reuse was not limited to a
particular category of instructions; a significant number of
instructions were reused from all the broad categories of instruc-
tions considered. We also measured the resulting speedup in the
program execution time. The speedup is not as pronounced as
the percentage of instructions reused, but it is still quite signifi-
cant, with as much as 43% speedup in one case. We also
observed that a 4-way set associative reuse buffer compared
favorably in performance for the cases considered. Finally, we
measured the effectiveness of reuse in cutting down data depen-
dence path lengths by measuring the average time that an
instruction waits for operands. We found that the waiting time
was cut down by 40% in one case.

This paper represents only a first attempt at studying a phe-
nomenon (and associated means to exploit it) that could have
significant implications for the microarchitecture of the future
processors. There is a great deal of work that remains to be done;
this work can broadly be classified into two-related categories:
(i) better exploiting the reuse phenomenon, and (ii) impact of
reuse on other microarchitectural components. Several issues
need to be investigated in either category. In the former, we have
observed that only about 20% of the instructions inserted into the
RB constitute all the reuse. This calls for selective insertion poli-
cies that result in better reuse characteristics with small reuse
structures. Another issue that needs to be investigated is better
invalidation mechanisms (for schemes Sn and Sn+d) such as
invalidation using time-stamps. Software transformations that
facilitates reuse are also an area that deserves study. Consider-
able work is also needed in the second category. Success at
instruction reuse might cause us to rethink the need for aggres-
sive speculation structures: there might be no need to predict the
outcome of a branch if its outcome can be determined from a
reuse buffer. Likewise, there might be no need to carry out value
prediction, if the value can be determined from the reuse buffer.
In this case, resources that would otherwise be spent in making
more powerful speculation structures might be better spent in
structures that improve instruction reuse, backed up by less pow-
erful speculation structures.

Acknowledgments

We thank Scott Breach, Doug Burger, Andy Glew, Andreas
Moshovos, Shubu Mukherjee, Subbarao Palacharla and the
anonymous referees for their comments on earlier drafts of the
paper. We would also like to thank Haitham Akkary and Todd
Austin for their comments on this work.

This work was supported in part by NSF Grants CCR-
9303030 and MIP-9505853, the U.S. Army Intelligence Center
and Fort Huachuca under contract DABT63-95-C-0127 and
ARPA order no. D346, a donation from Intel Corp, and an equip-
ment donation from Sun Microsystems. The views and conclu-

sions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S Army
Intelligence Center and Fort Huachuca, or the U.S. Government.

References

[1] D. Burger, T.M. Austin, and S.Bennett. Evaluating Future Micropro-
cessors: The SimpleScalar Tool Set. Technical Report CS-TR-96-
1308, University of Wisconsin-Madison, July 1996.
(URL: http://www.cs.wisc.edu/~mscalar/simplescalar.html)

[2] S.P. Harbison.A Computer Architecture for the Dynamic Optimiza-
tion of High-Level Language Programs. Ph.D. thesis, Carnegie Mel-
lon University, Sept. 1980.

[3] S.P. Harbison. An architectural alternative to optimizing compilers.
In Proc. International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), page 57 65,
Mar. 1982.

[4] M. H. Lipasti and J.P. Shen. Exceeding the dataflow limit via value
prediction. InProc. of 29th International Symposium on Microarchi-
tecture, pages 226–237, Dec. 1996.

[5] M. H. Lipasti, C.B. Wilkerson, and J.P. Shen. Value locality and
load value prediction. InProc. of ASPLOS VII, pages 138–147, Sept.
1996.

[6] S.F. Oberman and M.J. Flynn. On Division and Reciprocal Caches.
Technical Report CSL-TR-95-666, Stanford University, Apr. 1995.

[7] S.E. Richardson. Caching function results: Faster arithmetic by
avoiding unnecessary computation. Technical Report SMLI TR-92-1,
Sun Microsystems Laboratories, Sept. 1992.

[8] J.Smith and A.Pleszkun. Implementing precise interrupts in pipe-
lined processors.IEEE Transactions on Computers, 37(5):562–573,
May 1988.

