
Control Flow Prediction For Dynamic ILP Processors

Dionisios N. Pnevmatikatos Manoj Franklin Gurindar S. Sohi

Computer Sciences Department ECE Department Computer Sciences Department
University of Wisconsin-Madison Clemson University University of Wisconsin-Madison

Madison, WI 53706 Clemson, SC 29634 Madison, WI 53706

Abstract

We introduce a technique to enhance the ability of
dynamic ILP processors to exploit (speculatively exe-
cuted) parallelism. Existing branch prediction mechanisms
used to establish a dynamic window from which ILP can
be extracted are limited in their abilities to: (i) create a
large, accurate dynamic window, (ii) initiate a large
number of instructions into this window in every cycle,
and (iii) traverse multiple branches of the control flow
graph per prediction. We introduce control flow prediction
which uses information in the control flow graph of a pro-
gram to overcome these limitations. We discuss how infor-
mation present in the control flow graph can be
represented using multiblocks, and conveyed to the
hardware using Control Flow Tables and Control Flow
Prediction Buffers. We evaluate the potential of control
flow prediction on an abstract machine and on a dynamic
ILP processing model. Our results indicate that control
flow prediction is a powerful and effective assist to the
hardware in making more informed run time decisions
about program control flow.

1. Introduction

Conditional branch instructions are a necessary evil
in programs. They introduce control dependencies, the
flow of control being described by the control flow graph
(CFG) of the program [1]. Ordinarily, these control
dependencies must be respected: no instruction that occurs
after a branch can be executed before the branch. The
plethora of conditional branches in many programs, how-
ever, forces the development of alternatives, because very
little instruction-level parallelism (ILP) would be exposed
if this simple-minded rule were obeyed.

Most of these alternatives employ some form of
speculative execution. The branch outcomes are predicted
using a prediction strategy, and instructions from the
predicted path are considered for execution (one alterna-
tive is to consider instructions from both paths). By doing
so, we establish a path through the CFG, which is an
approximation of the run-time execution path. Once this
path (or trace, or window), is established, hardware or
software mechanisms can be used to detect independent
instructions and establish a schedule to execute them in
parallel. This general philosophy for alleviating the
impact of control dependencies is germane to any static or
dynamic technique.

Knowledge of the CFG is essential to any technique
that tries to expose speculative ILP. A recent study by
Lam and Wilson has underscored the importance of the
knowledge of control-dependence relationships amongst
instructions for ILP processors [13]. Their study shows
that an (abstract) ILP processor which performs branch
prediction and speculative execution but allows only a
single flow of control can extract a parallelism of only
about 7. If the ILP processor exploits the control depen-
dence information to execute instructions before branches
which they do not depend upon, the parallelism limit is
increased to about 13. Finally, if the processor can exploit
the control dependence information, resolve multiple
branches in one cycle, and follow multiple flows of con-
trol, the available parallelism increases to about 40.

Whereas static techniques to alleviate the impact of
control dependencies, such as Trace scheduling [7, 8],
Predicated Execution [11], Superblock and Hyperblock
scheduling [6, 15], and Boosting [18], exploit information
present in the CFG, dynamic techniques typically do not.
Instead, they rely only on dynamic branch prediction tech-
niques to construct the dynamic window. Dynamic branch
prediction schemes make decisions about a branch when
the branch is encountered, for example, when it is fetched
and decoded. The decision is made using a Branch His-
tory Table (BHT) [14, 17], which typically stores a con-
densed history of past taken/not taken outcomes; this his-
tory is updated when the branch outcome is known.

We believe that dynamic branch prediction, as we
know it today, is fundamentally limited in establishing a
large and accurate dynamic window, since it makes local-
ized decisions without any knowledge of the global control
structure of the program. This lack of knowledge results
in several problems. First, to predict a branch, its identity
must be known, i.e., the branch must be encountered by
the hardware. With normal branch prediction, a prediction
is made when the branch instruction is fetched by the fetch
unit. While some recent prediction mechanisms [16, 20] do
not require the branch address to predict its outcome, the
identity of the branch must still be known so that the
predicted target address can be determined (either using a
BTB structure [14], or by decoding the branch instruction).
After the prediction decision, instructions from the
predicted path need to be fetched, and the next branch in
the predicted path encountered (and its identity deter-
mined), before its target can be predicted. Since the
number of instructions between two consecutive branches



can be arbitrary, it is not always possible to determine the
identity of the next branch, and make a prediction, in the
very next cycle after a branch prediction is made. If a
branch prediction can not be made in every cycle, the
prediction bandwidth, and consequently the overall
number of instructions per cycle (IPC) that can be exe-
cuted will suffer. If we like to sustain a rate of one predic-
tion per cycle, the identity of the next branch to be
predicted must be known when a prediction is made. This
problem has been identified and partly addressed in [21],
where the prediction mechanism can perform one predic-
tion per cycle (two or more predictions per cycle in [19])
as long as the next branch lies inside the block of instruc-
tions fetched from the instruction cache.

The second problem has to do with the initiation
size, that is, the number of instructions that can enter into
the dynamic window in a given cycle. Clearly the best-
case IPC is limited by the number of instructions that can
enter into the dynamic window in a cycle. If it is possible
to ‘‘get past’’ or traverse only one branch at a time, a sin-
gle node of the CFG can be initiated per cycle, and the
average initiation size is limited by the average straight-
line code size — a rather small value for many programs.
What we need is a mechanism that makes it possible to
traverse multiple branches at a time, initiate a set of CFG
nodes at a time into the dynamic window, and quickly
identify the (more distant) CFG node to execute next.

The third problem has to do with the accuracy/size
of the dynamic window. Some of the branches with low
prediction accuracies are part of if-then-else control struc-
tures. As we shall see in an example later, such branches
can result in small or inaccurate dynamic windows, con-
taining very few instructions that would actually be exe-
cuted.

This paper introduces the concept of control flow
prediction (CFP). The idea is to go a step beyond com-
mon branch prediction and allow the hardware to have
information about parts of the CFG of the program so that
it can make better decisions about navigating through the
CFG. The better the navigation, the greater the ILP that
can be exposed and exploited. Overall, control flow pred-
iction increases the bandwidth of the prediction mechan-
ism, increases the initiation size, permits the overlapped
execution of multiple independent flows of control, and
allows multiple branch instructions to be resolved simul-
taneously. These are intermediate steps we need to take in
order to increase the size of the dynamic window and
achieve our ultimate goal, which is to expose and exploit
the maximum ILP.

The remainder of this paper is organized as follows.
In section 2 we introduce multiblocks and show how they
are used for control flow prediction. Section 3 discusses
Control Flow Prediction Tables and Buffers — hardware
structures for control flow prediction, and in section 4 we
carry out a quantitative analysis of control flow prediction

on an abstract machine. In section 5 we evaluate control
flow prediction on a concrete machine model, the multis-
calar model. In section 6 we discuss the relationship of
control flow prediction to other concepts for alleviating the
impact of control dependencies in a dynamic ILP proces-
sor, and we conclude in section 7.

2. Control Flow Prediction—Exploiting Control Flow
Graph Characteristics

Let us see how we can exploit the information
present in the CFG of a program. By inspecting a
program’s CFG, it is possible to infer that some basic
blocks will be executed regardless of the outcome of the
previous branches. To illustrate this, let us take a simple
example. Figure 1(a) presents the C code for the inner
loop of the Cmppt routine of the eqntott benchmark from
the SPEC92 suite. Figure 1(b) presents its CFG, showing
the number of instructions in each basic block (BB) for a
MIPS R2000 executable and sample prediction accuracies
(for a counter-based predictor) of the branches that ter-
minate the basic blocks.

BB1

BB2

BB3

BB4

BB5

BB6

BB7

BB8

BB9

for (i = 0; i < ninputs; i++) {
    aa = a[0]−>ptand[i];
    bb = b[0]−>ptand[i];
    if (aa == 2)
        aa = 0;
    if (bb == 2)
        bb = 0;
    if (aa != bb) {
        if (aa < bb) {
            return (−1);
        } else {
            return (1);
        }
    }
} /* rof */

(a) (b)

61% Pred. Accuracy
3 instrs (1−3)

1 instr (4)

1 instr (6)

1 insrts (9)

Return
2 instrs (12−13)

97% Pred. Accuracy
4 instrs (14−17)

Return
2 instrs (10−11)

1 instrs (5)
61% Pred. Accuracy

99% Pred. Accuracy
2 instrs (7−8)

Figure 1: C Code and CFG for the inner loop
of function Cmppt in Eqntott

With common branch prediction, when BB1 is
entered, the prediction mechanism has to wait until the
branch at the end of BB1 is encountered. Depending on
the prediction, either BB2 is executed or not, and then BB3
is executed. If the branch was predicted to go to BB3, and
the prediction was wrong, we would have to squash the
execution of BB3, execute BB2, only to come back and
execute BB3 again. Continuing further, the probability of
reaching BB5 without any incorrect predictions is 37.2%,
even though BB5 is control independent of BB1 and is
guaranteed to execute regardless of the outcomes of the
branches at the end of BB1 and BB3!



What could we do if the CFG of the above example
were known? Once BB1 is entered, we could initiate the
execution of BB3, or even BB5, without worrying about
the branches at BB1 and BB3. (The underlying hardware
must be able to simultaneously execute code from dif-
ferent parts of the dynamic trace/window and enforce
dependencies between the different parts of the computa-
tion.) If we do so, then we accomplish several things.
First, we will increase the bandwidth of the prediction
mechanism that navigates through the CFG. Second, we
will effectively traverse more than one branch per cycle,
consequently increasing the initiation size, and increasing
the peak IPC. Third, we will have created a larger, and
more accurate, dynamic window. (The probability of
correctly initiating the execution of BB5 is 100% as
opposed to 37.2% with branch prediction.) A larger
dynamic window allows more ILP to be exposed and
exploited [3, 4]. Next, we describe multiblocks, a vehicle
for conveying the necessary control flow information to
the hardware prediction mechanism.

2.1. Multiblocks and their Use

A multiblock is a subgraph of the CFG of a pro-
gram; the first instruction of a multiblock is defined to be
its entry point. Starting from the CFG of a program,
whose nodes are basic blocks, the CFG can be transformed
into a graph whose nodes are multiblocks. Information
about multiblocks can be conveyed to the hardware (as we
show in section 3), and used to make informed decisions
about navigating through the CFG. Once a multiblock is
entered, its exit points can be determined in a straightfor-
ward and accurate manner (so that the next multiblock to
be executed can be accurately identified), even though the
exact path through it may be unknown. As we will see
later, the execution of multiblocks can be overlapped,
allowing the overlapped execution of multiple flows of
control.

Given the flexibility to consider an arbitrary sub-
graph of the CFG (including loops) as a multiblock, what
kind of subgraphs should we be interested in when con-
structing multiblocks? The answer is tied to the data
dependencies between the instructions in the multiblock
and the underlying execution model. There are many rea-
sons why one might want to restrict the scope of a multi-
block. For instance, if the execution model can exploit
inter-multiblock parallelism, then it is better to pack
dependent instructions into a multiblock. Thus, each itera-
tion of a data-independent loop can be considered as a
multiblock, permitting the initiation of one iteration per
cycle. In the case of a DOACROSS loop where iterations
are dependent, it could be advantageous to encapsulate the
entire loop in a multiblock. Figure 2 illustrates this point.
This code, taken from the SPEC92 benchmark xlisp, con-
sists of a doubly nested loop; the inner loop traverses a
linked list, and its iterations are both control and data
dependent. However, each activation of the inner loop is

independent of the previous one. If the entire inner loop is
defined to be a single multiblock, it is possible to start
many activations of the inner loop, without waiting for the
previous ones to complete.
/* check the environment list */
for (fp = xlenv; fp; fp = cdr(fp))
for (ep = car(fp); ep; ep = cdr(ep))
if (sym == car(car(ep)))
return (cdr(car(ep)));

Figure 2: C code for function Xlygetvalue in Xlisp.

Another consideration in the choice of multiblocks
is the number of targets a multiblock can have. Allowing
many targets increases the flexibility in constructing multi-
blocks, and produces larger multiblocks. However, as the
number of targets increases, the dynamic prediction
mechanism needs more state information, and the predic-
tion accuracies are likely to decrease. Therefore, a
compromise may be to allow multiblocks to have at most
two targets. An exception to this is when a multiblock has
more than two targets, but all except one or two are rarely
exercised at run time, in which case the prediction
mechanism can ignore these and predict one of the two
likely ones.

A final consideration in deciding the scope of multi-
blocks is whether all the instructions in it are statically
adjacent or not. This has implications from the point of
ease of conveying the multiblock information to the
hardware. If all instructions in a multiblock are statically
adjacent, then it can be specified by giving its entry point
and length; otherwise, all the multiblock parts must be
specified, requiring significantly more space.

For the rest of this paper we assume a simple form
of multiblocks — a loop-free collection of statically adja-
cent basic blocks with a maximum of two targets — and
all references to multiblocks shall allude to these simple
(restricted) multiblocks. To illustrate the multiblock con-
cept under these constraints, consider our Cmppt example
(c.f. Figure 1). Starting at node BB1, we can form the fol-
lowing multiblocks: BB1, BB1-BB2, BB1-BB3, BB1-
BB4, BB1-BB5 and BB1-BB8, out of which BB1-BB8 is
the maximal multiblock. (Notice that the exits from BB 7
and 8 are function returns, and are therefore to the same
target.) The basic block sequences BB1-BB6, BB1-BB7
and BB1-BB9 are not counted as multiblocks because they
have three targets.

The reduced CFG, containing maximal multiblocks
as nodes, for the same code is shown in Figure 3; the first
multiblock (containing BB1 through BB8) is called MB1-8
and the second one (containing just BB9) is called MB9.
With this reduced CFG, only two predictions are required
per iteration of the loop as opposed to four predictions that
an ordinary branch prediction scheme would require.
Second, an average of 5.73 instructions can be initiated per
cycle into the dynamic window (an average of 7.46 for dif-
ferent executions of MB1-8 and 4 for MB9) versus 2.87



instructions per cycle that would have been possible with
ordinary branch prediction. Third, the need to predict the
branches at BB1 and BB3 has been eliminated. This even-
tually results in a larger dynamic window. Last, we can
initiate (and execute, if data dependencies allow) one itera-
tion of this loop every two cycles, if adequate hardware
support is available.

BB1

BB2

BB3

BB4

BB5

BB6

BB7

BB8

BB9
MB 9
(4 instructions,
  static and dynamic)

MB 1−8
(16 static instructions,
  7.46 instructions average,
  executed dynamically)

Figure 3: Reduced CFG for the Cmppt inner loop.

3. Structures for Control Flow Prediction

3.1. Control Flow Table (CFT)

Control flow and multiblock information can be
represented and conveyed to the hardware in a number of
ways. The simplest and most intuitive way is in the form
of a table containing one entry for each multiblock. We
call this table the Control Flow Table (CFT). Each CFT
entry contains all the necessary fields to fully describe a
multiblock. Because all instructions in a multiblock are
contiguous in memory, the multiblock’s entry point and
length are sufficient to fully specify its boundaries. We
also store the multiblock’s list of targets, and perhaps other
useful static information that we might want to convey to
the processor. Table 1 shows the CFT for our Cmppt
example.

How is the CFT accessed? Since there is only one
CFT entry per multiblock, the obvious way is to construct
the CFT by assigning a unique number to each multiblock
in the program, and use it to index the CFT. However, the
CPU uses instruction addresses to sequence through a pro-
gram. Therefore, a mapping from the multiblock numbers
to the instruction addresses is required, so that the predic-
tion mechanism can convey the address of the predicted
instruction to the CPU. Furthermore, branches with
unknown targets (indirect jumps and returns) require in
addition a reverse mapping. The alternative way to access
the CFT is to index it using instruction addresses. This

eliminates the need to map multiblock numbers to instruc-
tion addresses, but results in a sparse CFT.
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Table 1: CFT entries for the Cmppt inner loop

If the CFT is stored in memory then size is an
important factor, and accessing the CFT entries by multi-
block numbers is the preferable option. The mapping from
multiblock numbers to addresses can be implemented by
having an address field in the CFT entry; however, the
reverse mapping required for returns and indirect jumps
becomes difficult. To speed up the CFT accesses we advo-
cate caching the CFT entries as discussed below; this also
solves the fragmentation problems.

3.2. Control Flow Prediction Buffers (CFPB)

The Control Flow Prediction Buffer (CFPB) is a
cache of CFT entries, with each entry appended with
sufficient information to make dynamic prediction deci-
sions. If a counter based branch prediction mechanism is
used, the CFPB resembles a BTB [14] augmented with
multiblock information. The CFPB is accessed once for
every multiblock activation to determine the multiblock’s
size and targets. Between the two targets, the prediction
mechanism selects one target. If the selected target is the
special value Return, then the actual target is predicted
using a return stack [12]. If the selected target is
Unknown, indicating an indirect branch, the predictor can
optimistically use the last outcome of this branch. Table 2
shows the CFPB for our Cmppt example, assuming per-
multiblock prediction information.

� ���������������������������������������������������������������������������������������
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Address
State

Target1 Target2 Len
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Table 2: CFPB entries for the Cmppt inner loop

Multiblock information is associated with the entry
point of a multiblock, therefore the next access to the
CFPB for the predicted multiblock can start in the next
cycle using the predicted target. This access will also pro-
vide the prediction state information of the predicted mul-
tiblock, resulting in a prediction throughput of one predic-
tion per cycle when accesses to the CFPB are hits.

Although we have presented the CFPB as a modified
BTB using history based branch prediction and per-
multiblock state information, the CFPB poses no restric-
tion on the prediction mechanism that can be used. If the
structure of the table(s) used by the prediction mechanism
is different from the structure of the CFPB (as in the cases



of [20] and [16]), then the prediction state field in the
CFPB can be eliminated, and the CFPB is just a cache of
the CFT entries.

Because the CFPB is a cache, fragmentation is not
an issue and we can use instruction addresses to access the
CFPB. This eliminates the need for mappings between the
instruction and multiblock addresses. If the hit ratios in
the CFPB are sufficiently high, then the time to retrieve a
CFT entry on a CFPB miss becomes less of a concern, and
slower but more compact CFT representations become
possible.

3.3. On-the-fly Reconstruction of CFT Entries

Most of the information needed to reconstruct the
CFG and multiblocks of the program (and therefore the
CFT) is available in the executable. Rather that compute
the entire CFT a priori and store it in memory, the relevant
CFT entries can be constructed at run-time, on a CFPB
miss. However, given realistic constraints on time,
storage, and hardware complexity, it is unlikely that a
hardware mechanism will be able to identify optimal mul-
tiblocks. One way to ensure that the optimal multiblocks
will be used, is to have the compiler guide the hardware
mechanism by supplying the optimal length for each multi-
block. Once the length is known, the bounds of the multi-
block uniquely defined and the hardware mechanism can
simply traverse the instructions of the multiblock and col-
lect the set of all branch targets that fall out of its bounds
and of any backward branch. The algorithm for this pro-
cess is shown in Figure 4.

/* Starting and ending addresses are known */
foreach instruction in the multiblock {

if the current instruction is a branch {
if (the branch target is greater than the

ending address OR the branch is backward)
add the branch target to the target set

}
}
if the last instruction is not an unconditional branch

add the fall through address to the target set

Figure 4: Algorithm for On-The-Fly
reconstruction of CFT entries

The compiler can encode the multiblock length in
the instruction stream using a special NOP instruction (for
example an ‘‘addiR0,R0,length’’ in the MIPS instruc-
tion set) without requiring any instruction set modifications
or special mapping tables. The use of such special instruc-
tions increases the code size of the program, but since a
multiblock will contain several basic blocks we expect this
increase to be small. Furthermore, these special instruc-
tions will not increase the execution time of the program
as long as they are recognized by the instruction fetch
mechanism and are removed from the instruction stream
before they enter the execution pipeline.

4. Evaluation on an Abstract Machine

We now consider the effectiveness of control flow
prediction in achieving the stated objectives. As men-
tioned earlier, getting past control dependencies and estab-
lishing a trace is one problem, extracting ILP from this
trace and establishing a schedule for the execution of
instructions is another. Though related (the type of win-
dow that we need to establish depends upon the type of
window that the underlying machine can extract ILP
from), the two problems are best dealt with separately.
Therefore, we first evaluate the potential of the control
flow prediction concept on an abstract machine. Our
abstract machine maintains a dynamic window from which
its extracts ILP. Instructions are initiated into the window
(by the control flow prediction mechanism); the machine
executes the instructions in the window when it can,
enforcing necessary dependencies in the process. The
instructions which the machine chooses for execution at
any given time can be from different parts of the window,
perhaps from different flows of control in the program.
With these computation abilities, the overall parallelism-
extraction abilities of the machine are limited by how large
a dynamic window size can be established by the CFP
mechanism, and by how many (useful) instructions could
be initiated into this window.

We use 15 programs as benchmarks in our evalua-
tion. Compress, Eqntott, Espresso, Gcc, Sc, and Xlisp are
C programs and Doduc and Spice are FORTRAN pro-
grams from the SPEC92 benchmark suite, We also use
Yacc, Tex and three simulators written in C: Tycho, a
cache simulator [10], SuperMips, a simulator of a super-
scalar CPU using the MIPS instruction set, and ThisSim,
the simulator used for the studies of this section. Finally,
we use two Object Oriented Database benchmarks written
in C++: Sun-benchmark [5], and Tektronix [2].

Table 3 show the basic statistics for the programs,
including the dynamic number of instructions we consider
for execution, the percentage of these instructions that are
branches (conditional and unconditional), the code size (in
instructions) and the corresponding Control Flow Table
size (in entries).

For the remaining results presented in this paper,
when we present results without control flow prediction,
we mean results obtained using branch prediction and
when we present results with control flow prediction, we
mean results obtained with a control flow analysis of the
program to detect and form multiblocks, and using a CFPB
to make prediction decisions. We allowed only two tar-
gets per multiblock, and we placed no restrictions on the
size of each multiblock. In many cases, we were able to
coalesce 20 or more basic blocks into a multiblock,
although we observed only marginal improvement in all
our metrics when more than 5 or 6 basic blocks were
coalesced. (The ability to create a bulk of the multiblock
in the CFG by coalescing only a few basic blocks bodes



well for on-the-fly creation of CFPB entries.) Third, we
assumed all hits in the CFPB (and the BTB without control
flow prediction). (While this assumption will not alter our
results in terms of the units used to present the results, it
would alter the results per units of time; the magnitude
would depend upon the CFPB and BTB miss penalty.)
Fourth, both the BTB and the CFPB use a GAs(8,64) two-
level branch predictor [20].

�����������������������������������������������������������������������������������������������������������������������������
Dynamic Branch Ratio Static

Instructions �����������������������������������������������������������������������������

Code size CFT size
Program

(Millions) Cond. Uncond.
(Instrs) (Entries)����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Compress 22.68 0.149 0.040 6144 885
Doduc 500.00 0.064 0.025 46080 3624
Eqntott 1000.00 0.319 0.010 10240 1715
Espresso 1000.00 0.163 0.012 47104 6644
Gcc 1000.00 0.156 0.042 172032 25653
Sc 500.00 0.202 0.034 32768 6013
Spice 1000.00 0.115 0.061 95232 8729
Sunbench 640.03 0.137 0.065 16384 1799
SuperMips 500.00 0.111 0.056 14336 1851
Tektronix 937.57 0.131 0.083 17408 1984
Tex 214.67 0.143 0.055 60416 9976
ThisSim 650.60 0.102 0.046 7168 957
Tycho 408.47 0.123 0.060 11264 1546
Xlisp 500.00 0.157 0.091 21504 3637
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Table 3: Benchmark program characteristics

In our results, the initiation size is the number of
useful instructions that can enter into the dynamic window
in a cycle. When control flow prediction is not used, the
initiation size is just the number of instructions between
branches. When control flow prediction is used, the initia-
tion size is the number of useful instructions in the multi-
block that contribute to the computation.

Figure 5 presents the cumulative distribution of the
initiation size without control flow prediction, and Figure 6
presents the same distribution with control flow prediction.
Figure 7 presents the cumulative distribution of the
number of useful instructions between mispredicted
branches (or the dynamic window size) without control
flow prediction, and Figure 8 presents the same for control
flow prediction. Table 4 summarizes the average results.
In the table, we have listed the mean initiation size and the
mean window sizes, both with and without control flow
prediction, and the branch prediction accuracies of the
branches that need to be predicted in both cases. We have
also listed the average number of branches traversed per
cycle when control flow prediction is used. This is assum-
ing that a prediction is made in each cycle. (Without CFP,
the number of branches traversed in a prediction is 1).

The first observation from Table 4 is the increase in
the number of branches traversed per cycle with control
flow prediction. For example, in the case of Doduc, with
control flow prediction we traverse 2.22 branches per
cycle. For many programs there is a significant increase in
the number of branches traversed per cycle, indicating the

effectiveness of multiblock formation in merging several
small basic blocks into a larger multiblock.

� �����������������������������������������������������������������������������������
Mean Mean Branch

Initiation Window PredictionProgram
Size Size Accuracy� ������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������

Compress 5.24 64 89.59
Doduc 11.17 436 96.42
Eqntott 3.03 49 93.60
Espresso 5.77 120 94.75
Gcc 5.02 72 91.11
Sc 4.22 126 96.04
Spice 5.64 599 98.55
Sunbench 4.93 504 98.55
SuperMips 5.95 319 97.20
Tektronix 4.63 241 96.79
Tex 5.02 169 95.87
ThisSim 6.68 331 97.06
Tycho 5.42 168 95.16
Xlisp 4.00 144 95.63
Yacc 3.87 103 95.84� �����������������������������������������������������������������������������������
Harmonic
Mean

4.95 135 95.41
� �����������������������������������������������������������������������������������
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Table 4(a): Results without Control Flow Prediction
� ���������������������������������������������������������������������������������������������������������

Mean Mean Branch Traversed
Initiation Window Prediction BranchesProgram

Size Size Accuracy Per Cycle� ���������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������
Compress 8.40 86 89.71 1.33
Doduc 21.64 649 94.67 2.22
Eqntott 5.53 371 98.49 1.82
Espresso 8.57 213 95.98 1.37
Gcc 9.44 105 91.02 1.47
Sc 6.35 205 96.36 1.51
Spice 8.08 661 98.55 1.11
Sunbench 8.40 566 98.14 1.45
SuperMips 13.25 844 97.71 2.17
Tektronix 8.07 415 97.15 1.54
Tex 6.24 207 96.10 1.16
ThisSim 17.46 779 96.07 3.15
Tycho 7.72 241 95.85 1.23
Xlisp 5.11 157 95.34 1.16
Yacc 4.96 150 96.51 1.22� ���������������������������������������������������������������������������������������������������������
Harmonic
Mean

7.84 230 95.77 1.47
� ���������������������������������������������������������������������������������������������������������
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Table 4(b): Results with Control Flow Prediction

Control flow prediction reduces the number of
branches that require prediction by traversing multiple
branches in a single prediction. The effect on the branch
prediction accuracy is not uniform across the benchmark
programs. For Eqntott and Espresso, many of the poorly
behaved branches were encompassed into multiblocks and
the prediction accuracy of the remaining branches
increased. In some of the other cases, the prediction accu-
racy decreased, indicating that some of the accurately
predicted branches were encompassed into multiblocks.
The reduction in branch prediction accuracy is not a nega-
tive result since our main goal is to increase the initiation
size and the window size, and the branch prediction accu-
racy is only one factor that determines the window size.

We now consider the mean initiation and window
sizes. From Figures 5 and 6 and Table 4, we see that con-
trol flow prediction results in a considerable increase in the



initiation size in most cases. For SuperMips and ThisSim,
the improvement in the mean initiation size is greater than
a factor of 2. The improvements for the other benchmarks
are also respectable and the harmonic mean of the mean
initiation size has increased from 4.95 to 7.84. From Fig-
ures 7 and 8 and Table 4, we see that the mean window
sizes have also increased considerably for all benchmarks,
except for Spice and Xlisp. The harmonic mean of the
mean window size has increased from 135 to 230.

Why did the simulators SuperMips and ThisSim,
programs that we had control in writing, perform so well,
and why didn’t Xlisp and Spice do better as far as the win-
dow size was concerned? The reason is not an intentional
doctoring of the code in SuperMips and ThisSim. Because
these programs are very long running, we had given extra
attention to reducing their running times when they were
written (and long before they were used as benchmarks for
this study). To improve their execution speed, we had
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Figure 5: Cumulative distribution of initiation
size without Control Flow Prediction
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Figure 6: Cumulative distribution of initiation
size with Control Flow Prediction

deliberately avoided the use of function calls in inner
loops. Moreover, the inner loops of these simulators were
peppered with if-then-else constructs and were more
amenable to our multiblock formation and control flow
prediction techniques.

Xlisp is highly recursive, with lots of function calls.
Similarly, Spice also made fairly liberal use of subroutine
calls. Since we made no effort to capture program control
flow information past function call boundaries, nor made
any attempts to in-line function calls, multiblock formation
was not able to help much. Likewise Tycho was designed
to be readable and portable, and makes fairly liberal use of
function calls, constraining the formation of multiblocks to
predict program control flow. If functions were inlined,
and if the multiblock restrictions were relaxed, allowing
more targets per multiblock and perhaps allowing loops as
multiblocks, we believe that many of our results will be
even more impressive.
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Figure 7: Cumulative distribution of misprediction
distances without Control Flow Prediction
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Finally, we consider the effectiveness of a CFPB.
Table 5 shows the miss ratios for several CFPB
configurations; 256, 512, and 1024 entries, with direct-
mapped, 2, 4, 8 way set associative and fully associative
configurations. The results are not surprising. A CFPB
with a reasonable number of entries misses rarely, except
for Gcc and Tex (both these programs have quite complex
control structures with many basic blocks and multi-
blocks). Due to the relatively small buffer size, associa-
tivity helps. The small miss ratios, coupled with the fact
that the CFT can be quite large (c.f. Table 3), suggests that
on-the-fly construction of CFT entries is preferable than
storing the CFT in memory.

5. Evaluation on a Multiscalar Processor

Having analyzed the potential of control flow pred-
iction using an abstract machine model, we now use the
concept on a concrete machine model. In this section, we
discuss how the multiblock concept was used in the multis-
calar processing model (erstwhile Expandable Split Win-
dow (ESW) model) [9].

5.1. The Multiscalar Processor

Figure 9 shows the block diagram of a multiscalar
processor. It consists of several independent, identical
execution stages, each of which is equivalent to a typical
datapath found in modern processors. The execution
stages are connected together as a circular queue; the head
and tail pointers to this queue are managed by a control
unit (control flow predictor), which also performs the task
of assigning multiblocks to the stages. It is important to
note that all that the control unit does when it assigns a
multiblock to a stage is to tell the stage to execute the mul-
tiblock starting at a particular PC value; it is up to the stage
to fetch the required instructions, decode and execute

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
256 Entries 512 Entries 1024 Entries�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Associativity Associativity Associativity�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Program
1 2 4 8 Full 1 2 4 8 Full 1 2 4 8 Full� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Compress 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Doduc 4.87 3.52 2.60 2.71 2.65 3.46 1.52 0.05 0.00 0.00 1.86 0.68 0.00 0.00 0.00
Eqntott 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Espresso 2.23 1.20 0.60 0.41 0.25 1.03 0.49 0.11 0.07 0.02 0.59 0.11 0.02 0.01 0.00
Gcc 20.42 14.80 12.20 10.34 8.55 12.20 7.77 5.70 4.65 4.01 7.15 4.03 3.09 2.74 2.55
Sc 2.39 1.27 0.90 0.90 0.69 1.16 0.49 0.42 0.31 0.22 0.51 0.13 0.08 0.04 0.00
Spice 0.42 0.20 0.14 0.14 0.12 0.23 0.09 0.04 0.02 0.00 0.12 0.03 0.00 0.00 0.00
Sunbench 10.73 0.39 1.00 0.18 0.00 3.99 0.11 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00
SuperMips 3.85 0.61 0.12 0.01 0.00 1.66 0.18 0.00 0.00 0.00 1.01 0.00 0.00 0.00 0.00
Tektronix 9.36 2.64 3.16 0.32 0.00 4.68 0.81 0.02 0.00 0.00 3.33 0.70 0.00 0.00 0.00
Tex 10.47 7.51 5.25 4.45 3.63 5.45 2.84 1.93 1.00 0.48 2.97 1.03 0.29 0.14 0.06
ThisSim 0.98 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tycho 2.34 0.01 0.00 0.00 0.00 2.19 0.00 0.00 0.00 0.00 1.58 0.00 0.00 0.00 0.00
Xlisp 10.63 5.63 2.04 0.54 0.09 3.69 1.79 0.30 0.01 0.00 2.40 0.41 0.04 0.00 0.00
Yacc 1.52 0.43 0.22 0.06 0.02 0.90 0.17 0.02 0.02 0.02 0.41 0.06 0.02 0.02 0.02� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 5: CFPB miss ratios (percent)
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Figure 9: Block diagram of a Multiscalar Processor

them, until control flows out of the multiblock. Since the
controller performs no instruction fetching or decoding, it
can perform a control flow prediction every cycle using a
CFPB, and assign a new multiblock every cycle to the



execution stage at the tail (as long as there are free execu-
tion stages). This allows the execution of multiblocks to
be overlapped, and multiple branches (i.e., the branches
within a multiblock) to be resolved per cycle. The active
stages, the ones from the head to the tail, together consti-
tute the large dynamic window of operations, and they
contain multiblocks, in the sequential order in which the
multiblocks appear in the dynamic instruction stream. In
any given cycle, up to a fixed number of ready-to-execute
instructions begin execution in each of the active stages.
Hardware means are provided for forwarding values
across stages, and to enforce register and memory depen-
dencies [9].

5.2. Experimental Results

To study how much a conventional branch predic-
tion mechanism limits the performance of the multiscalar
processor, and to study the efficacy of multiblocks for the
multiscalar processor, we used a detailed simulator. This
simulator uses the MIPS R2000 instruction set and func-
tional unit latencies, and models all parts of the multiscalar
processor. It accepts executable images of programs, and
executes them; it is not trace driven.

We conducted two sets of experiments — one with
branch prediction and the other with control flow predic-
tion. Both sets use a pattern-based prediction scheme (cf.
section 4) plus a call/return stack [12] to predict the target
of procedure call returns. For the former set, when a
branch instruction is fetched by an execution stage, a
lookup is done in a BTB to determine the branch target.
Then, a dynamic prediction is performed to decide the
basic block that is to be executed by the next execution
stage. To give an optimistic treatment to the scheme with
branch prediction, an infinite size BTB with 100% hit ratio
is used. Thus, the target of a branch is assumed to be
determined as soon as the branch instruction is fetched.
For the latter set of simulations, after the controller assigns
a multiblock to the tail execution stage, it performs a
lookup in a CFPB to determine the multiblocks’s targets.
Then, a dynamic prediction is performed to decide the
multiblock that is to be executed by the next execution
stage. For our simulations, we assumed a 2-way set-
associative CFPB with 512 entries. If there is a miss in the
CFPB, it takes

�
(l − 1) / f� + 1 cycles to determine the tar-

gets of a multiblock, where l is the length of the multi-
block, and f is the number of instructions fetched by an
execution stage in a cycle1. In our simulations, a multi-
block can have up to 32 instructions. The multiblocks
were formed based on control flow analysis only (without
�����������������������������������������������������������������������

1 In MIPS R2000 programs the last instruction in a multiblock can
not cause a change in control flow (because of the delayed branching),
and the hardware can determine the multiblock’s targets after fetching
l − 1 instructions. Since f instructions are fetched by an execution stage in
a cycle, it takes � (l − 1) / f� cycles to fetch the l − 1 instructions.

considering data dependency analysis), and thus our
results for control flow prediction are somewhat pessimis-
tic. The remaining parameters are given below:

� Up to 2 instructions are fetched/decoded/issued per
cycle from each of the active execution stages; out-of-
order execution is used in each stage. For branches
enclosed within a multiblock, speculative execution is
performed in the execution stage along the fall-through
path.

� The data cache is 128Kbytes, direct-mapped, and has an
access latency of 2 cycles. The data cache and the ARB
have an interleaving factor of 32. The data cache miss
latency is 4 cycles (assuming the presence of a second
level data cache).

� Each stage has a 4Kword L1 instruction cache and the
L2 instruction cache has a hit ratio of 100%.

For benchmarks, we used a subset of the programs
used in section 4; notice that the executables have been
compiled for a single-issue machine (a DECstation 3100).
All benchmarks were simulated up to 100 million instruc-
tions. Table 6 presents the performance results obtained
for the multiscalar processor with branch prediction and
control flow prediction using 8 and 12 execution stages.
The sustained IPC values take into account only the useful
non-NOP instructions executed, and not the speculative
instructions that were discarded. The first thing to notice
from the table is that a multiscalar processor based on con-
ventional branch prediction is essentially handicapped,
whatever resources we throw at it. The sustained issue
rates are poor, despite the high branch prediction accura-
cies (cf. Table 4). The second striking result is that except
for Gcc and Xlisp, the multiscalar processor with control
flow prediction sustains much higher issue rates for all
programs. Finally, control flow prediction enables the
multiscalar processor to traverse and resolve multiple
branches per cycle, as can be clearly seen for the case of
Eqntott: dividing the sustained IPC for 12 execution stages
(4.51) with the mean initiation size without control flow
prediction from Table 4(a) (3.03), we find that an average
of 1.49 branches are resolved per cycle.

The improvements for Gcc, Spice, and Xlisp have
not been as dramatic as the improvements for the remain-
ing programs. Note that these were programs that did not
show much improvement in the abstract machine model
also. These programs need software assist, such as func-
tion inlining and more sophisticated multiblock selection.
For example, in Gcc, parallelism exists (albeit compara-
tively lower), and does so in reasonable-sized instruction
windows [3], but accurately establishing windows of this
size is currently a problem. A major reason is due to loops
that iterate only 2 or 3 times, resulting in poor prediction.
We intend to combine the entire execution of such a loop
into a single multiblock, and assign it to a single execution
stage, rather than spread the different iterations across
multiple execution stages as we do now. We expect this to



boost the performance of Gcc, Spice, and Xlisp.

5.3. The Role of the Compiler

Although for our measurements we used only con-
trol flow analysis to determine the multiblocks, the optimal
choice of multiblocks is intimately tied to the data depen-
dencies and the underlying execution model. All of this
information is available to the compiler which is best
suited to identify these optimal multiblocks. Moreover,
the code generation strategies can be changed to take
advantage of control flow prediction. For example, the
compiler can replicate code in appropriate places to reduce
the number of targets of a multiblock, or arrange the
instructions inside the multiblock so that the most likely
instructions appear earlier.

���������������������������������������������������������������������������������������������������������������������
Sustained Instructions Per Cycle�����������������������������������������������������������������������������������������������

Branch Prediction Control Flow Prediction�����������������������������������������������������������������������������������������������Program
8 Units 12 Units 8 Units 12 Units������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Compress 1.70 1.70 2.45 2.88
Eqntott 1.83 1.84 3.30 4.51
Espresso 1.75 1.75 3.00 3.80
Gcc 1.49 1.49 1.91 2.01
Sc 1.46 1.46 2.62 2.92
Spice 1.82 1.82 2.18 2.47
Sunbench 1.41 1.43 2.70 3.11
Tycho 1.73 1.73 3.00 3.26
Xlisp 1.41 1.42 2.02 2.15���������������������������������������������������������������������������������������������������������������������
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Table 6: Instruction issue rates with Branch
Prediction and Control Flow Prediction

Our research group is currently modifying the Gcc
compiler to produce code for the multiscalar architecture,
taking advantage of control flow prediction. The modified
Gcc moves up within a multiblock instructions that com-
municate values to later multiblocks, and moves down
instructions that receive values from earlier multiblocks.
This rearrangement reduces the waiting time for these
instructions. Once all the dependencies are known, the
compiler can identify the best grouping of basic blocks
into multiblocks, and generate appropriate code for them.
We expect that these techniques will improve the perfor-
mance, since the code we are currently using for our
experiments is scheduled for a single-issue processor.

6. Relation to Other Work

Before concluding, we would like to discuss the
relationship between our concept of control flow predic-
tion and other techniques for alleviating the impact of con-
trol dependencies for dynamic ILP processors. The most
important comparison is with the concept of guarded
instructions. Guarded instructions allow the compiler to
produce a good static schedule by converting some of the
control dependencies into data dependencies, and in some
cases they can achieve the same effect as multiblocks and
CFP. For example, in our Cmppt example, the branches at

the ends of BB1 and BB3 could be eliminated with
guarded instructions. Extensive application of guarded
instructions, however, has problems. First, to use guarded
instructions in nested control structures requires multiple
guards, and possibly significant changes to the instruction
set. Second, guarded instructions can increase the total
number of instructions executed. For example, instruc-
tions from both the taken and the fall-through parts of a
branch will be executed, with only the instructions from
the actual path contributing to useful execution. Third,
guarded instructions cannot achieve the full flexibility of
multiblocks in CFP (for example, they cannot be used to
initiate entire loops for execution).

Overall, we believe that while guarded instructions
are a very useful concept, they alone cannot be used to
overcome the limitations of conventional branch predic-
tion techniques which we outlined in this paper. For-
tunately, guarded instructions can be used in conjunction
with control flow prediction, and this is something we are
currently investigating. In fact, CFP can be used in con-
junction with any software technique to enhance the paral-
lelism for a dynamic ILP processor, such as superblock or
hyperblock scheduling [6, 15]. A judicious use of these
techniques can generate large nodes in a CFG that the
software can optimize, and CFP can be used to navigate
intelligently through the transformed CFG dynamically.

7. Conclusions

In this paper we introduced the concept of control
flow prediction. This concept is a natural extension of
dynamic branch prediction — use non-local information
about the flow of control to go beyond branch prediction
(and overcome its limits). We discussed how nodes in the
control flow graph can be grouped into multiblocks to
facilitate control flow prediction. Structures to carry out
control flow prediction, namely Control Flow Tables and
Control Flow Prediction Buffers were also described.

We evaluated the potential of control flow prediction
on an abstract machine. The evaluation results illustrated
the power of control flow prediction in rapidly establishing
an accurate dynamic window from which ILP could be
extracted. For our programs, the mean size of the dynamic
window increased by a factor of 1.7, and the initiation size
increased by a factor of 1.58 when control flow prediction
was used instead of ordinary branch prediction. Moreover,
control flow prediction allowed an average of 1.47
branches to be traversed per cycle, whereas branch predic-
tion allowed only 1.

We also evaluated the control flow prediction con-
cept the concrete multiscalar machine model. The results
confirmed that the performance of an ILP processor that
relies on dynamic branch prediction to establish an accu-
rate dynamic window is limited. Control flow prediction
consistently improved the sustained issue rates for all the
programs. The improvement for 8 execution stages was in



the range of 1.19 to 1.91 with a harmonic mean of 1.54;
for 12 execution stages, the improvement was in the range
of 1.34 to 2.45 with a harmonic mean of 1.76.

Overall, control flow prediction has tremendous
potential to overcome the limitations of branch prediction
in dynamic ILP processors. We view this as a first step in
conveying high-level information about program behavior
(which is essential to any ILP processor) to the hardware,
in an effort to enhance the abilities of the hardware to
exploit fine-grain parallelism. Some of the issues under
investigation include sophisticated multiblock structures,
enhancing multiblock formation with function inlining,
and the use of CFPB information for guided prefetching of
instructions to reduce the instruction cache miss penalty.
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