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Abstract

Traditionally, register files have been the primary
agent for inter-operation communication in load/store
architectures. As processors start issuing multiple
instructions per cycle, a centralized register file can
easily become a bottleneck. This paper analyzes the
register file traffic in a load/store architecture with a view
to motivate the development of alternate inter-operation
communication mechanisms that reduce the bandwidth
demanded of a centralized register file.

We first provide metrics to characterize the register
traffic. These metrics deal with the degree and locality
of use of the register instances created. We then present
the results of a simulation study that uses the MIPS
R2000 architecture and the SPEC benchmark programs.
We have two major results. First, a large number of the
register instances are used only once, and the average
degree of use of register instances is about 2. Second,
most of the register instances are used up soon after they
are created (within about 30-40 instructions). This sug-
gests that alternate inter-operation communication
mechanisms that exploit the temporal locality of use of
register instances are likely to be effective in reducing
the traffic burden on the centralized register file. The
second result was pivotal in the design of the distributed
register file for the multiscalar processing paradigm.

1. Introduction

The execution of a program, in an abstract form, is
a dynamic dataflow graph whose nodes represent compu-
tation operations and arcs represent the communication
of values between the computation nodes. The abstract
dataflow graph encapsulates the data dependencies in the
program, but contains no information about the distances
involved in the communication of values, or for that
matter, even the type of mechanism used for the com-
munication. When the graph is mapped onto a process-
ing structure, irrespective of the processing model used,
computation operations are always carried out by means
of functional units; communication of values, on the
other hand, depends on the processing model used.

Most modern CPUs use a load/store instruction set
architecture (ISA), in which a set of ISA-visible registers
are the primary means of inter-operation communication.

Specifically, all computation instructions fetch their
operands from, and place their results back in the ISA-
visible registers, and explicit load and store instructions
move data between the memory and the registers.

An adequate inter-operation communication
mechanism is central to the design of any processor. In a
processor that issues a peak of one instruction per cycle,
a register file with 2 read ports and 1 write port is
sufficient to provide the required bandwidth. Modern
fine-grain parallel processors, on the other hand, attempt
to issue multiple instructions per cycle, posing higher
bandwidth demands on the inter-operation communica-
tion mechanism. If a centralized register file is the pri-
mary means of this communication, it will inevitably be
burdened by the high demands of multiple instruction
issue. Decentralizing the inter-operation communication
mechanism is essential.

1.1. Register Instances and Register File Traffic

Each time a datum is written into a register, a new
register instance (or register name) is created. Succeed-
ing reads to the register use the latest register instance.
Normally, the creation of each register instance requires
a write access to the register file, and each use of a regis-
ter instance requires a read access to the register file.
The writing and reading of the centralized register file is
the fundamental inter-operation communication mechan-
ism in a load/store architecture.

To sustain an average issue rate of S instructions
per cycle (in a load/store architecture with dyadic ALU
operations), we need a register bandwidth of at least 2S
reads and S writes per cycle. Supporting 2S reads and S
writes with a single register file, for the values of S (5-
10) that we expect to see in the next few years, requires a
complex register file as well as a complex interconnect
between the register file and the functional units. In
CMOS, the area required to build read ports is propor-
tional to the square of the number of ports [12]. Whereas
a few multi-ported register files have been built, for
example the register files for the Cydra 5 [15], the SIMP
processor [14], Intel’s iWarp [12], and the XIMD proces-
sor [19], we feel that centralized, multi-ported register
files are not a good long-term solution, and that alternate
means need to be explored. Ideally, these alternate
means should retain the elegance of the ISA-visible
register file (for example the easy and familiar
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compilation model), but at the same time provide the
needed bandwidth with a decentralized realization.

The first step that was proposed in this direction
was to split the register file into an integer file and a
floating-point (FP) file, each file having fewer ports. It
was even proposed to provide independent control to the
integer and FP units, resulting in a decoupled architecture
[2, 17]. While in theory this partitioning could reduce the
bandwidth requirements of each register file by a factor
of 2, in practice the bandwidth reduction achieved and
the issue rate achieved depends upon the mix of FP and
integer operations in the program. Moreover, because of
data movement between the two register files, the total
traffic handled by the two files might actually be larger
than the traffic handled by a single, consolidated register
file. In any case, this separation of register files is only a
temporary solution to the bandwidth problem.

VLIW processors, such as the TRACE /300 [5],
take the above approach one step further by having mul-
tiple, ISA-visible integer and FP register files. Whereas
this approach may be suitable for a VLIW processor hav-
ing a sophisticated compiler that can move data between
the various register files of each type, it is not suitable for
superscalar or other fine-grain parallel processors that
have the notion of a single set of ISA-visible registers.
Interestingly, Multiflow retracted to the single register
file model in their later model TRACE /500 [6].

1.2. Reducing the Register File Traffic

How can we reduce the register file traffic? The
obvious answer is to provide some form of auxiliary
storage elements that can carry out most of the inter-
operation communication in a decentralized manner.
Previously, such mechanisms have been used explicitly,
i.e., in a manner visible to the ISA. For example, decou-
pled architectures use explicit memory-to-processor
queues for loads to communicate with computation
instructions, and processor-to-memory queues for com-
putation instructions to communicate with stores [2, 17].
Likewise, systolic arrays use systolic queues that allow
some computation instructions to communicate with oth-
ers directly [3, 7]. If one adheres to a load/store architec-
ture in which all explicit communication is through the
ISA-visible registers (as we expect most superscalar
implementations to be), then the auxiliary storage must
take on the role of implicitly forwarding a register
instance directly from the producer to the consumer(s),
without going through the register file.

Whereas register read traffic can be reduced by
simple data forwarding, register write traffic reduction is
harder. Discarding the write of a register instance to the
register file requires a guarantee that the instance will
never be used again in a valid execution of the program.
If such a guarantee is available, the instance can simply
be discarded from the auxiliary storage after any poten-
tial cusumers have consumed it. There are 2 ways to
enforce this guarantee. First, if adequate compile-time

support is available to recognize the last use of a register
instance, the compiler could mark the instruction
corresponding to the last use. If, at run-time, the marked
instruction is issued before the register instance is written
to the register file, then the write can be suppressed.

If the use of compile-time support is not an option
(for example if object code compatibility is required), or
adequate compile-time support is not available to detect
the last use of register instances, then at run-time the only
way we can guarantee that a register instance will never
be used in the future is when a new instance has been
created for the same register.

1.3. Paper Objective and Outline

The purpose of this paper is two-fold. The first is
to study (both qualitatively and quantitatively) the nature
of inter-operation communication in real programs. For
a load/store architecture, this reduces to the study of the
register traffic, since all inter-operation communication is
through registers. Such a study is important to develop
alternate mechanisms that can satisfy the inter-operation
communication bandwidth demands of fine-grain parallel
implementations of load/store architectures.

The second is to show how the register file usage
characteristics were exploited in the design of a distri-
buted register file for the multiscalar, erstwhile ESW
(Expandable Split Window), processing paradigm [9].
The central idea of the distributed register file design was
to have multiple versions of the register file, thereby
keeping the number of read and write ports of each regis-
ter file much less than that in the register file of conven-
tional VLIW and superscalar processors.

The outline of this paper is as follows. Section 2
introduces metrics to characterize the register file traffic.
Section 3 presents the results of an empirical study of the
register file traffic. Section 4 describes how the register
traffic characteristics were exploited in the design of a
distributed register file. Section 5 summarizes and
presents our conclusions.

2. Register Traffic Metrics

The first step in the design of a streamlined inter-
operation communication mechanism is an understanding
of the nature of communication that takes place in a typi-
cal program. In this context, two characteristics of the
register traffic are important: (i) the degree of use of regis-
ter instances, and (ii) the temporal locality of creation
and use of register instances.

2.1. Degree of Use of Register Instances

This metric indicates the number of times register
instances are used by other instructions. The motivation
for this metric is that, if most register instances are used
only once or a few times, and the uses are within a small
window of dynamic instructions, then techniques such as
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data forwarding within the small window are likely to be
effective. If register instances are used many times, and
the uses are spread out across the program, auxiliary
storage in the execution unit is not likely to suffice as a
viable inter-operation communication mechanism, and
the register file is perhaps the best mechanism.

Before conducting empirical studies with a specific
architecture and specific compiler(s), we shall first do a
qualitative analysis. Such an analysis transcends archi-
tectures and compilers, and adds confidence to the results
obtained in a specific study. Indeed, a simple analysis of
program execution can provide us with the average
degree of use of register instances, D

� �

u. This analysis is
based on the fact that the average degree of use is equal
to the total number of register instance uses (i.e., total
number of read accesses R) divided by the total number
of register instances created (W). That is,

D
� �

u =
W
R
� ���

What would be the value of D
� �

u in an arbitrary pro-
gram? A naive guess, prompted by the myth that regis-
ters hold only frequently-accessed variables, is that the
average degree of use would be very high. This guess is
incorrect for two reasons. First, even if a particular
register holding a frequently-accessed variable may be
accessed repeatedly with reads and writes, each instance
of the register is not. Second, many register instances are
created to hold intermediate computation values that do
not appear in the source program, and are used only once
or a few times. The average degree of use of register
instances, therefore, can be expected to be low.

In load/store architectures, most of the dynamic
instructions are dyadic computation instructions, which
read 2 registers and write 1 register. (Among the rest,
some read 2 registers and write none (stores and some
branches), and some read 1 register and write 1 register
(loads and moves)). This means that, over the execution
of the program, the total number of register reads R can
be expected to be about twice the total number of register
writes W. That is, the average degree of use of register
instances in a load/store architecture is only about 2.
Such a low value of D

� �

u implies the existence of a large
number of register instances that are used either 0, 1, or 2
times, regardless of the program being executed. In sec-
tion 3, we will indeed see that our experimental results
tally with this qualitative assessment.

2.2. Temporal Locality of Register References

If many of the register instances are indeed used
only a few times, then the best way of exploiting this
phenomenon to reduce the register file traffic is to use
some form of data forwarding. However, data forward-
ing schemes are effective only if instances are used up
soon after creation. Since the ‘‘locality’’ of use of regis-
ter instances is important in determining the efficacy of
such techniques, our second set of metrics deals with the

temporal locality of creation and use of register
instances. For studying temporal locality, we measure
temporal distance in terms of the number of dynamic
instructions executed. We consider three measures of
locality: (i) the age of register operands (i.e., the temporal
distance between a register instance use and its creation),
(ii) the useful lifetime of register instances (i.e., the tem-
poral distance between the creation and last use of regis-
ter instances), and (iii) the lifetime of register instances.

If our auxiliary storage is of the form that it buffers
the results of the last N instructions before writing them
into the register file, if need be, the first measure gives us
an indication of the register file read traffic that could be
eliminated with such buffering, the second measure gives
an upper bound on the register file write traffic that could
be eliminated with perfect knowledge about the last use
of register instances, and the third measure gives an indi-
cation of the amount of register file write traffic that
could be eliminated in practice (with no knowledge of
the last use of register instances).

3. Empirical Analysis of Register Traffic

In this section, we present the results of an empiri-
cal study of the register traffic in a MIPS R2000 proces-
sor with an R2010 FP coprocessor [13]. The MIPS
R2000 architecture is representative of the class of
load/store architectures that have emerged recently; other
architectures in this class have very similar traits [10].
Briefly, the MIPS R2000, with an R2010 FP coprocessor,
has separate integer and FP register files. The integer
register file has 32 registers, each of which is 32 bits
wide. R0 is used as a special register to hold the constant
value 0. Since R0 is not a general-purpose register for
which new register instances can be created, we exclude
it from all of our statistics. The R2010 has 16 FP regis-
ters that can hold single-precision (32 bits) or double-
precision (64 bits) values.

3.1. Data Gathering Tools and Benchmarks

All data reported in this paper are gathered with a
simulator that accepts programs written for the MIPS
R2000-based DECstation 3100, and simulates their exe-
cution, keeping track of relevant information on a cycle-
by-cycle basis. System calls made by the simulated pro-
gram are handled with the help of traps to the operating
system. The collected statistics therefore exclude the
code executed during system calls, but includes all other
code portions, including the library routines.

For benchmarks, we use the SPEC ’89 suite. Data
is presented for the following 10 benchmark programs:
eqntott with input file int_pri_3.eqn,
espresso with input file bca, gcc with input file
stmt.i, xlisp with input file li-input.lsp,
which are integer-intensive programs written in C, and
dnasa7, doduc, fpppp, matrix300,
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spice2g6, and tomcatv, which are floating-point-
intensive programs (FP programs) written in Fortran.
The programs were compiled using the MIPS C and
FORTRAN compilers (version 1.31). Compiler effects
are discussed in Section 3.4. For the C benchmarks,
statistics are collected for the entire run, and for the
FORTRAN benchmarks, statistics are collected for the
first 1 billion instructions.

Table 1 presents the total number of instructions
executed (in million), and the total number of reads and
writes (in million) to each register file. Blank entries
indicate zero or negligible number of accesses.

Table 1: Number of Instructions Executed and
Register Read/Write Traffic (in million)

�������������������������������������������������������������������������������������������������������
Register Traffic���������������������������������������������������������������

Floating Point Integer���������������������������������������������������������������Benchmarks Instr.
Writes Reads Writes Reads��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

eqntott 1485 855 1587
espresso 522 352 540
gcc 147 81 146
xlisp 1247 599 1101

�������������������������������������������������������������������������������������������������������
dnasa7 1000 953 1248 228 706
doduc 1000 698 949 216 633
fpppp 1000 867 1001 192 593
matrix300 1000 361 451 592 1136
spice2g6 1000 40 49 625 1051
tomcatv 1000 823 1034 248 800
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3.2. Degree of Use of Register Instances

Table 2 presents the degree of use distributions of
the FP and integer register instances. The entries in each
column are the percentage of register instances of a par-
ticular type (FP or integer) with the listed degree of use.
For example, in Table 2 we see that for xlisp, 6.97%
of the integer instances are used 4 times or more.
Surprisingly, several instances are not used at all, i.e.,
there are cases where a value is written into a register
and later overwritten before being read even once. This
happens because the use of register instances during pro-
gram execution depend upon the dynamic execution path
taken through the code. Since a compiler cannot accu-
rately predict the paths that would be dynamically taken
through the code, it is forced to place values (e.g. param-
eters of procedure calls) in registers that might not be
read at run-time.

From Table 2 we see that, just as we argued quali-
tatively, a large number of register instances in all the
benchmarks are used only once. For example, 99.83% of
the FP instances in dnasa7 and 99.92% of the FP
instances in matrix300 are used only once. This
single-use property is not surprising; it has been routinely
used in vector machines in the form of chaining to reduce
the traffic to the vector register file (and of course to
decrease the overall latency and increase the throughput

of a sequence of vector operations) [16]. More recently,
superscalar architectures such as the IBM RS/6000 [1]
attempt to exploit this phenomenon, in a limited manner,
by replacing a sequence of operations that produce
single-use results by higher strength operations (e.g.,
IBM RS/6000’s multiply-add fused unit [11] ). Recall
that in load/store architectures, single-use instances are
typically created because of the register file being used as
an intermediate storage for computations.

In the integer programs also, most register
instances are used only once; however, the percentage is
lower than that of the FP register instances of the FP pro-
grams. The reason for this is that, apart from being used
as an intermediate storage for communicating results
from one instruction to another in the computation
stream, the integer registers are also used for address
manipulation and loop control. Whereas the former class
of register instances can be expected to be mostly
single-use instances, the latter class can be expected to
have a higher degree of use. This is borne out by the
integer registers of the FP benchmarks, which are used
mainly for address manipulation and loop control.

Finally, we note that although the register instances
that are used ≥ 4 times are a small percentage of all regis-
ter instances, they can contribute heavily to the register
read traffic. For example, the 0.08% of FP register
instances that are used ≥ 4 times in matrix300 (c.f.
Table 2) account for 20% of the read traffic to the FP
register file (as we shall see in Figure 1(i)).

3.3. Temporal Locality of Register References

We now consider the issue of temporal locality of
register references. In keeping with our overall goal of
reducing the traffic to the centralized register file, we also
consider the potential reduction in read/write traffic to
the register file with auxiliary storage in the execution
unit.

3.3.1. Age of Register Operands

Figure 1 presents the cumulative percentage distri-
bution of the age of register operands, measured in terms
of dynamic instructions or the dynamic window size. In
Figure 1 (also Figures 2 and 3), the first and second
graphs show the data for the FP and integer registers,
respectively, of the FP benchmarks, and the third graph
shows the data for the integer registers of the integer
benchmarks. The X-axis denotes the dynamic window
size and the Y-axis denotes the cumulative percentage.
For example, in Figure 1(i), 80% of all FP register
instances read in matrix300 were created in the last
10 instructions executed.

From Figure 1, we can assess the potential reduc-
tion in register read traffic that can be attained by data
forwarding. For example, by buffering the results of the
last 30 instructions (of all types) in the execution unit, we
can reduce over 75% and 55-95% of the read traffic to
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Table 2: Degree-of-Use Distribution of Register Instances
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Floating-Point Register Instances Integer Register Instances�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Percentage with Degree of Use Average Percentage with Degree of Use Average

� ������������������������������������������������������������������� Degree � ������������������������������������������������������������������������� Degree
Benchmarks

0 1 2 3 ≥4 of Use 0 1 2 3 ≥4 of Use
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

eqntott 0.89 71.34 17.54 9.47 0.76 1.86
espresso 3.67 72.30 17.66 3.74 2.63 1.48
gcc 6.26 67.37 15.51 4.45 6.41 1.69
xlisp 4.27 66.14 12.42 10.20 6.97 1.84

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
dnasa7 0.00 99.83 0.02 0.03 0.12 1.31 0.67 2.36 16.29 64.36 16.33 3.28
doduc 1.46 84.00 9.51 1.94 3.09 1.36 10.31 44.35 26.52 10.13 8.69 2.93
fpppp 0.16 91.09 6.15 1.14 1.46 1.16 1.34 10.12 83.45 0.46 4.63 3.09
matrix300 0.00 99.92 0.00 0.00 0.08 1.25 15.29 61.54 7.71 0.12 15.35 1.92
spice2g6 0.21 79.85 19.22 0.16 0.56 1.22 4.04 73.38 12.08 3.56 6.94 1.68
tomcatv 0.00 86.43 8.30 1.49 3.77 1.26 0.12 24.99 37.54 27.40 9.96 3.22

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure 1: Cumulative Percentage Distribution of the Age of Register Operands

the FP and integer register files, respectively, for the FP
benchmarks, and over 75% of the register read traffic for
the integer benchmarks. More buffering would help
somewhat, but not significantly, because a fair amount of
the read traffic is due to register instances created more
than 100 instructions ago. Our experience suggests that
this remaining read traffic is mainly due to a small
number of frequently-used values, such as loop invari-
ants. Even though loop invariants form a small percen-
tage of all register instances, they contribute to a
significant percentage of register reads, since each loop-
invariant instance may be read several hundred times.

3.3.2. Useful Lifetime of Register Instances

Figure 2 presents the cumulative percentage distri-
bution of the temporal distance between the creation and
last use (i.e., the useful lifetime) of register instances.

The information in Figure 2 can be used to determine the
amount of register write traffic that could be eliminated,
if we have perfect knowledge about the last use of each
register instance, and if we use that knowledge to delay
writes to the register file. For example, if we delay writ-
ing back the result of an instruction until 30 more instruc-
tions enter the execution unit, and we have perfect
knowledge about the last use of each register instance, in
more than 80% of all cases (except for the integer regis-
ters of tomcatv), we will have encountered the last
use of the register instance and therefore the register
instance need not be written back, resulting in more than
80% reduction in register write traffic.

It is interesting to see how the data in Figures 1
and 2, and Table 2 are related. Figure 2 shows that for
all benchmarks except tomcatv, only about 10% of
the register instances are not used up within 100
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Figure 2: Cumulative Percentage Distribution of the Useful Lifetime of Register Instances

instructions of being created. Earlier in Figure 1, we
noticed that only 70-80% of the operands were generated
within the previous 100 instructions. Combining these
two facts together, we can see that about 10% of the
register instances contribute to 20-30% of the source
operands of all instructions. This information lends sup-
port to our earlier observation (from Table 2) that a few,
and only a few, of the register instances are used more
than a few times, and that the ones that fall into this
category are used a large number of times. Consider, for
example, matrix300. In Figure 1(i), the curve for
matrix300 stays nearly constant at 80%, indicating
that about 20% of the FP operands are coming from at
least 100 instructions away in the past. In Figure 2(i), the
curve for matrix300 stays constant at 99.92%, i.e.,
about 99.92% of the FP register instances are used up
within 100 instructions of their generation. We can infer
from this that, for matrix300, about 0.08% of the FP
register instances account for 20% of the FP register read
traffic. (This is also true for the integer registers, but the
resolution in Table 2, i.e., the breakdown of the ≥ 4
category, is not sufficient to show this.)

3.3.3. Lifetime of Register Instances

Figure 3 presents the cumulative percentage distri-
bution of the lifetime of register instances. We can infer
from Figure 3 that, if an instruction’s result is not written
until 25-30 more instructions have entered the dynamic
window, we can suppress over 50% of the register writes
in almost all cases, saving over 50% of the write traffic.

3.4. Effect of Compiler and Instruction Set

So far we have ignored the compiler issue.
Whereas our specific results are applicable solely to the

MIPS R2000, with the MIPS C and FORTRAN com-
pilers (version 1.31), we expect to see similar trends with
other load/store architectures because many of the results
are a manifestation of the nature of the programs them-
selves, and the way code is written for such machines,
regardless of the inter-operation communication mechan-
ism. Most programs are written in an imperative
language for a sequential machine having a limited
number of ISA-visible registers for storing intermediate
values.

The dyadic/monadic nature of instruction sets, and
dependencies caused by a limited number of registers are
factors that could change the results, albeit slightly.
Depending upon the number of ISA-visible registers, and
the register allocation algorithms used by different com-
pilers (such as minimizing the number of live registers or
lifetimes of register instances), the lifetime values would
change, but not as much as to void the results of our
study. For instance, if most of the instructions create a
new register instance, then the average lifetime of an
instance will be roughly equal to the number of registers.
(To be precise, the average lifetime in terms of dynamic
instructions is upper bounded by the number of registers
divided by the fraction of instructions that produce a new
instance.)

The average value of the degree of use of register
instances depends on the dyadic/monadic nature of
instruction set and the dynamic instructions encountered.
Our results could change somewhat if the instruction set
architecture is changed. To add confidence to our
results, we compiled the C benchmarks with the GNU C
compiler also, and collected the statistics. We observed
very similar results with the GNU C compiler.
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Figure 3: Cumulative Percentage Distribution of the Lifetime of Register Instances

4. An Application

Having discussed some important register traffic
characteristics, let us now turn our attention to how one
might use them to develop alternate inter-operation com-
munication mechanisms. In this section, we discuss how
some of the characteristics were used in the development
of the multiscalar processing model [9] for exploiting
fine-grain parallelism, and the distributed inter-operation
communication mechanism for the multiscalar model.
The objective of this section is not to advocate a particu-
lar processing model or inter-operation communication
mechanism, but only to illustrate how some of the results
of Section 3 can be put into effective use. Indeed, many
different schemes could be developed based on these
results and the execution models in which the schemes
are used. For example, single-use instances can be
exploited by means of compound functional units.

The central idea behind the multiscalar inter-
operation communication mechanism is to exploit the
dataflow properties present in programs by providing
multiple versions of the register file. This helps to keep
the number of read and write ports per register file much
less than that needed in conventional VLIW and super-
scalar processors. We shall briefly describe the multis-
calar processing paradigm below; more detailed informa-
tion can be found in [9].

4.1. The Multiscalar Processing Paradigm

In section 3, we saw that most of the register
operands are generated in the immediate past, and that
most of the register instances are used up almost immedi-
ately after creation. This means that instructions of close
proximity, quite likely, are dependent. Notice that this

does not necessarily mean that instructions farther apart
are independent; one could argue that because near-
neighbor instructions are dependent, then by transitivity,
these dependencies could propagate forward (and back-
ward) from any given instruction in the stream such that
all instructions could, in fact, be dependent. We shall see
why this need not be the case. An inspection of the
dynamic dataflow graph of many sequential programs
reveals that there exists a large amount of theoretically
exploitable instruction-level parallelism [4, 8], i.e., a
large number of computation nodes that can be executed
in parallel, provided a suitable processor model with a
suitable inter-operation communication mechanism
exists. In that case, if instructions of close proximity are
dependent, then many of the farther-apart instructions
should be independent. This means that most of the
parallelism can be found only further down in the
dynamic instruction stream. The obvious way to get to
that parallelism is to use a large window of dynamic
instructions.

Using a large enough dynamic window is not
sufficient by itself; the hardware required to extract
independent instructions and to enforce dependencies in
a large window typically involves wide associative
searches, and is non-trivial. There should be some means
of decentralizing the critical resources in the system. If
instructions of close proximity are most likely dependent,
and instructions farther apart are independent, then we
can consider a block of instructions (most likely having
dependencies) as a single subwindow, and exploit fine-
grain parallelism by overlapping the execution of multi-
ple subwindows. This is the central idea behind the mul-
tiscalar paradigm. Instead of considering a consolidated
large dynamic window, the principle of temporal locality
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of creation and use of register instances is applied, and
the large window is split into smaller subwindows (c.f.
Figure 4). This helps to decentralize the critical
resources in the system.

Dynamic Instruction Stream

(i) (ii)

Dynamic Instruction Stream

Large Window

Register File

Small Subwindows

Distributed
Auxiliary Storage

Multi-ported ISA-visible
Register File

Figure 4: (i) A Single Large Window
(ii) Split into Small Subwindows

The multiscalar processor consists of several
independent, identical stages, each of which is equivalent
to a typical datapath found in modern processors. The
stages conceptually form a circular queue, with hardware
pointers to the head and tail of the queue. These pointers
are managed by a control unit, which also performs the
task of assigning subwindows to the stages. The active
stages, the ones from the head to the tail, together consti-
tute the large dynamic window of operations, and they
contain subwindows, in the sequential order in which
they appear in the dynamic instruction stream. In any
given cycle, up to a fixed number of ready-to-execute
instructions begin execution in each of the active stages.
When all the instructions in the stage at the head have
completed execution, the stage is committed, and the
head pointer is moved forward to the next stage.

4.2. Distributed Inter-Operation Communication
Mechanism

Let us now look into the inter-operation communi-
cation mechanism of the multiscalar processor. In the
multiscalar processor, at any one time, there could be
more than 100 active operations, many of which may
start execution simultaneously. Clearly, a centralized
register file cannot handle the amount of register traffic
needed to support such a large number of active opera-
tions; a decentralized mechanism is essential.

For decentralizing the communication mechanism,
we again utilized the results of section 3. In particular,
we utilized the result that a significant number of register
instances are used up and eventually overwritten soon
after they are created. This means that if we have a local
register file for each stage, much of the communication
in a stage can be handled by the local register file itself.
Only the last updates to the registers in a stage need be
passed on to the subsequent stages. Furthermore, most of
these last updates need not propagate beyond one or two

stages, because a new instance would soon be created for
those registers. The local register files, which we call
future files, work similar in spirit to the future file pro-
posed in [18] for implementing precise interrupts in pipe-
lined processors. Thus we exploit the temporal locality
of creation and use of register instances to design a good
decentralized register file structure that ties well with the
multiscalar execution model. The distributed system also
helps to maintain precise state at each subwindow boun-
dary, which significantly eases recovery actions in times
of incorrect branch prediction.

4.3. Traffic Handled by Local Register Files

To study the efficacy of the distributed register file
in the multiscalar model, we conducted several simula-
tion experiments. It is worthwhile to see how much of
the read traffic is being handled by the local register files,
and how much of the rest are generated in subwindows
close by in the past. If many of the operands come from
subwindows immediately in the past, it means that the
register traffic flowing across subwindow boundaries is
less, and "localized".

Figure 5 shows the cumulative percentage distribu-
tion of the register operands based on the number of
subwindows away in the past they were created, for a
multiscalar implementation with subwindow size of up to
32 instructions. In Figure 5, the data points falling on the
Y-axis (i.e., the points corresponding to "Number of
Subwindows = 0") depict the percentage of operands that
are generated in the same subwindow. Needless to say,
the graphs of Figure 5 closely follow those in Figure 1.
It can be seen from Figure 5 (i) that for the FP bench-
marks, a large portion of the FP operands (ranging from
68-80%) are generated in the same subwindow. For the
FP benchmarks’ integer operands, about 50-95% of the
operands come from at most 3 subwindows in the past.
Recall that integer operands do not form a substantial
portion of the read traffic for the FP benchmarks (c.f.
Table 1).

Figure 6 shows the cumulative percentage distribu-
tion of the lifetime of register instances in terms of
dynamic subwindows of the multiscalar implementation.
Notice that the graphs of Figure 6 closely follow those of
Figure 3. For a dynamic subwindow size of up to 32
instructions, except for dnasa7, a large portion of the
FP instances (ranging from 70% to 99.92%) are used up
either in the same stage in which they were created or in
the subsequent stage. For the integer write traffic also,
the write traffic reduction is substantial.

The distributed register file thus provides sufficient
bandwidth to meet the demands of the multiscalar pro-
cessor, demands that would have been difficult to meet
with a centralized register file. The efficacy of the distri-
buted future file system for the multiscalar model is
further substantiated by the high sustained issue rates we
obtained in our simulation studies of the multiscalar
model, some of which were reported in [9].
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Figure 5: Cumulative Percentage Distribution of the Age of Register Operands in the Multiscalar Implementation
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Figure 6: Cumulative Percentage Distribution of the Lifetime of Register Instances in the Multiscalar Implementation

5. Summary and Conclusions

As processors start issuing several instructions per
clock cycle, the inter-operation communication
bandwidth must be improved commensurately. If all
inter-operation communication is carried out through a
centralized register file, the register file can easily
become a bottleneck. Alternate mechanisms are needed
to support the bandwidth demands of fine-grain parallel
processors capable of sustaining an issue rate of more
than 4 or 5 instructions per cycle. To provide a founda-
tion for the investigation of alternate mechanisms, we
studied the register file usage in a load/store architecture

(the MIPS R2000) using the SPEC benchmarks.

We saw that most of the register instances are used
only once; techniques to exploit this property merit
further investigation. The average number of times a
register value is used is about 2. A few register instances
are used heavily, and these correspond to constant FP
values and values used in address manipulation and loop
control. We also saw that many of the register instances
are used for the last time within 20 instructions, and
almost all are used up within 100 instructions.

Our results suggest that decentralized storage in
the execution unit, to forward data from one instruction
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to another, has significant potential as an inter-operation
communication mechanism, and in reducing the
bandwidth required of a centralized register file. For
example, by delaying writes to the register file by 25-30
instructions, and by buffering these values in the execu-
tion unit, we can reduce more than 80% of the read
traffic, and more than 50% of the write traffic to the
register file.

We saw how some of these results were used in the
development of the multiscalar model. In the multiscalar
implementation, multiple versions of the register file
were used, giving a decentralized inter-operation com-
munication mechanism. With a subwindow size of up to
32 instructions, a significant portion of the register read
traffic is handled by local register files. Also, most of the
register instances do not propagate beyond 3-4 subwin-
dows, indicating that the distributed register file system
does not present a bottleneck to performance.

Admittedly, many more schemes could be
developed to exploit register traffic characteristics. We
believe that a decentralized inter-operation communica-
tion mechanism is indispensable to the design of a fine-
grain parallel processor, and researchers and designers
should exploit localities of communication, as evidenced
in this paper, to construct inter-operation communication
mechanism (perhaps with the user-appearance of a cen-
tralized ISA-visible register file) suitable for future fine-
grain parallel processors.
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