
Todd M. Austin Page 1MRL

A Hacker’s Guide to
the SimpleScalar Architectural

Research Tool Set

Todd M. Austin

taustin@ichips.intel.com

Intel MicroComputer Research Labs

M/S JF3-359, 2111 NE 25th Ave.

Hillsboro, OR 97124-5961

December, 1996

Todd M. Austin Page 2MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 3MRL

• What is an architectural simulator?
q a tool that reproduces the behavior of a computing device

• Why use a simulator?
q leverage faster, more flexible S/W development cycle

q permits more design space exploration

q facilitates validation before H/W becomes available

q level of abstraction can be throttled to design task

q possible to increase/improve system instrumentation

A Computer Architecture Simulator Primer

Device
Simulator

System
Inputs

System Outputs

System Metrics

Todd M. Austin Page 4MRL

A Taxonomy of Simulation Tools

Architectural Simulators

PerformanceFunctional

Cycle TimersInst SchedulersExec-DrivenTrace-Driven

Direct ExecutionInterpreters

• shaded tools are included in the SimpleScalar tool set

Todd M. Austin Page 5MRL

Functional vs. Performance Simulators

• functional simulators implement the architecture
q the architecture is what programmer’s see

• performance simulators implement the microarchitecture
q model system internals (microarchitecture)

q often concerned with time

Development
Arch
Spec

uArch
Spec

Sp
ec

if
ic

at
io

n
Si

m
ul

at
io

n

Arch
Sim

uArch
Sim

Todd M. Austin Page 6MRL

Execution- vs. Trace-Driven Simulation

• trace-based simulation:

q simulator reads a “trace” of instructions captured during a
previous execution

q easiest to implement, no functional component needed

• execution-driven simulation:

q simulator “runs” the program, generating a trace on-the-fly

q more difficult to implement, but has many advantages

q direct-execution: instrumented program runs on host

inst trace Simulator

program Simulator

Todd M. Austin Page 7MRL

• constraint-based instruction schedulers
q simulator schedules instructions into execution graph based on

availability of microarchitecture resources

q instructions are handled one-at-a-time and in order

q simpler to modify, but usually less detailed

• cycle-timer simulators
q simulator tracks microarchitecture state for each cycle

q many instructions may be “in flight” at any time

q simulator state == state of the microarchitecture

q perfect for detailed microarchitecture simulation, simulator
faithfully tracks microarchitecture function

Instruction Schedulers vs. Cycle Timers

Todd M. Austin Page 8MRL

The Zen of Simulator Design

• design goals will drive which aspects are optimized

• The SimpleScalar Architectural Research Tool Set
q optimizes performance and flexibility

q in addition, provides portability and varied detail

Performance

Detail Flexibility

Pick
Two

Performance: speeds design cycle

Flexibility: maximizes design scope

Detail: minimizes risk

Todd M. Austin Page 9MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview
q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 10MRL

The SimpleScalar Tool Set

• computer architecture research test bed
q compilers, assembler, linker, libraries, and simulators

q targeted to the virtual SimpleScalar architecture

q hosted on most any Unix-like machine

• developed during my dissertation work at UW-Madison
q third generation simulation system (Sohi → Franklin → Austin)

q 2.5 years to develop this incarnation

q first public release in July ‘96, made with Doug Burger

• actively developed and maintained

• freely available with source and docs from UW-Madison

http://www.cs.wisc.edu/~mscalar/simplescalar.html

Todd M. Austin Page 11MRL

SimpleScalar Tool Set Overview

• compiler chain is GNU tools ported to SimpleScalar

• Fortran codes are compiled with AT&T’s f2c

• libraries are GLIBC ported to SimpleScalar

F2C GCC

GAS

GLD
libf77.a

libm.a
libc.a

Simulators

Bin Utils

Fortran code C code

Assembly code

object files

Executables

Todd M. Austin Page 12MRL

SimpleScalar Tool Set

• extensible
q source included for everything: compiler, libraries, simulators

q widely encoded, user-extensible instruction format

• portable
q at the host, virtual target runs on most Unix-like boxes

q at the target, simulators support multiple ISA’s

• detailed
q execution driven simulators

q supports wrong path execution, control and data speculation, etc...

q many sample simulators included

• performance (on P6-200)
q Sim-Fast: 4+ MIPS

q Sim-OutOrder: 200+ KIPS

Todd M. Austin Page 13MRL

Simulation Suite Overview

Performance

Detail

Sim-Fast Sim-Safe Sim-Cache Sim-Inorder Sim-Outorder

- 270 lines
- functional
- 2 MIPS

- 272 lines
- functional
 w/ checks

- 390 lines
- functional
- cache stats

- 1110 lines
- performance
- inorder issue
- branch pred.
- mis-spec.
- ALUs
- cache

- 2221 lines
- performance
- OoO issue
- branch pred.
- mis-spec.
- ALUs
- cache
- TLB
- 200 KIPS

Todd M. Austin Page 14MRL

Simulator Structure

• modular components facilitate “rolling your own”

• performance core is optional

BPred Simulator
Core

Machine DefinitionFunctional
Core

SimpleScalar ISA POSIX System Calls

Proxy Syscall Handler

Cache

EventQ MemoryRegsLoader

Resource

Stats

Performance
Core

Prog/Sim
Interface

SimpleScalar Program BinaryUser
Programs

Todd M. Austin Page 15MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 16MRL

Installation Notes

• follow the installation directions in the tech report, and

 DON’T PANIC!!!!

• avoid building GLIBC
q it’s a non-trivial process

q use the big- and little-endian, pre-compiled libraries in ss-
bootstrap/

• if you have problems, send e-mail to the SimpleScalar
mailing list: simplescalar@cs.wisc.edu

• please e-mail install mods to: dburger@cs.wisc.edu

• x86 port has limited functionality, portability
q reportedly only works under little-endian Linux

Todd M. Austin Page 17MRL

User’s Guide

• compiling a C program, e.g.,
ssbig-na-sstrix-gcc -g -O -o foo foo.c -lm

• compiling a Fortran program, e.g.,
ssbig-na-sstrix-f77 -g -O -o foo foo.f -lm

• compiling a SimpleScalar assembly program, e.g.,
ssbig-na-sstrix-gcc -g -O -o foo foo.s -lm

• running a program, e.g.,
sim-safe [-sim opts] program [-program opts]

• disassembling a program, e.g.,
ssbig-na-sstrix-objdump -x -d foo

• building a library, use ssbig-na-sstrix-{ar,ranlib}

Todd M. Austin Page 18MRL

Simulator Options

• sim-fast, sim-safe:
no options

• sim-cache:
-d name:sets:bsize:assoc:repl{r,l,f} - D-Cache
-i name:sets:bsize:assoc:repl{r,l,f} - I-Cache
-t name:sets:psize:assoc:repl{r,l,f} - D-TLB
-f - flush caches on system calls

• sim-inorder:
-w # - issue with
-b # - predictor config
-j # - mis-prediction penalty
-m # - L1 miss latency

Todd M. Austin Page 19MRL

Simulator Options

• sim-outorder
-D # - decode width
-R # - ROB size
-L # - Load/Store queue size
-0 - no mis-spec modeling
-1 - force in-order issue

Todd M. Austin Page 20MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture
• Out-of-Order Issue Simulator

q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 21MRL

The SimpleScalar Instruction Set

• clean and simple instruction set architecture:
q MIPS/DLX + more addressing modes - delay slots

• bi-endian instruction set definition
q facilitates portability, build to match host endian

• 64-bit inst encoding facilitates instruction set research
q 16-bit space for hints, new insts, and annotations

q four operand instruction format, up to 256 registers

16-annote 16-opcode 8-ru 8-rt 8-rs 8-rd

16-imm

081624324863

Todd M. Austin Page 22MRL

SimpleScalar Architected State
Virtual Memory

0x00000000

0x7fffffff

Unused

Text
(code)

Data
(init)
(bss)

Stack
Args & Env

0x00400000

0x10000000

0x7fffc000

.

.

r0 - 0 source/sink

r1 (32 bits)

r2

r31

Integer Reg File

.

.

f0 (32 bits)

f1

f2

f31

FP Reg File (SP and DP views)

r30

f30

f1

f3

f31

PC

HI

LO

FCC

Todd M. Austin Page 23MRL

SimpleScalar Instructions

Control:
j - jump
jal - jump and link
jr - jump register
jalr - jump and link register
beq - branch == 0
bne - branch != 0
blez - branch <= 0
bgtz - branch > 0
bltz - branch < 0
bgez - branch >= 0
bct - branch FCC TRUE
bcf - branch FCC FALSE

Load/Store:
lb - load byte
lbu - load byte unsigned
lh - load half (short)
lhu - load half (short) unsigned
lw - load word
dlw - load double word
l.s - load single-precision FP
l.d - load double-precision FP
sb - store byte
sbu - store byte unsigned
sh - store half (short)
shu - store half (short) unsigned
sw - store word
dsw - store double word
s.s - store single-precision FP
s.d - store double-precision FP

addressing modes:
 (C)
 (reg + C) (w/ pre/post inc/dec)
 (reg + reg) (w/ pre/post inc/dec)

Integer Arithmetic:
add - integer add
addu - integer add unsigned
sub - integer subtract
subu - integer subtract unsigned
mult - integer multiply
multu - integer multiply unsigned
div - integer divide
divu - integer divide unsigned
and - logical AND
or - logical OR
xor - logical XOR
nor - logical NOR
sll - shift left logical
srl - shift right logical
sra - shift right arithmetic
slt - set less than
sltu - set less than unsigned

Todd M. Austin Page 24MRL

SimpleScalar Instructions

Floating Point Arithmetic:
add.s - single-precision add
add.d - double-precision add
sub.s - single-precision subtract
sub.d - double-precision subtract
mult.s - single-precision multiply
mult.d - double-precision multiply
div.s - single-precision divide
div.d - double-precision divide
abs.s - single-precision absolute value
abs.d - double-precision absolute value
neg.s - single-precision negation
neg.d - double-precision negation
sqrt.s - single-precision square root
sqrt.d - double-precision square root
cvt - integer, single, double conversion
c.s - single-precision compare
c.d - double-precision compare

Miscellaneous:
nop - no operation
syscall - system call
break - declare program error

Todd M. Austin Page 25MRL

Annotating SimpleScalar Instructions

• useful for adding
q hints, new instructions, text markers, etc...

q no need to hack the assembler

• bit annotations:
q /a - /p, set bit 0 - 15

q e.g., ld/a $r6,4($r7)

• field annotations:
q /s:e(v), set bits s->e with value v

q e.g., ld/6:4(7) $r6,4($r7)

Todd M. Austin Page 26MRL

Proxy System Call Handler

• syscall.c implements a subset of Ultrix Unix system calls

• basic algorithm:
q decode system call

q copy arguments (if any) into simulator memory

q make system call

q copy results (if any) into simulated program memory

write(fd, p, 4)

Simulated Program Simulator

sys_write(fd, p, 4)

args in

results out

Todd M. Austin Page 27MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture
q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 28MRL

Simulator Structure

• modular components facilitate “rolling your own”

• performance core is optional

BPred Simulator
Core

Machine DefinitionFunctional
Core

SimpleScalar ISA POSIX System Calls

Proxy Syscall Handler

Cache

EventQ MemoryRegsLoader

Resource

Stats

Performance
Core

Prog/Sim
Interface

SimpleScalar Program BinaryUser
Programs

Todd M. Austin Page 29MRL

Out-of-Order Issue Simulator

• implemented in sim-outorder.c and modules

Fetch Dispatch Scheduler

Memory
Scheduler

Writeback CommitExec

Mem

D-CacheI-Cache

Virtual Memory

D-TLB

Todd M. Austin Page 30MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 31MRL

Out-of-Order Issue Simulator: Fetch

• implemented in ruu_fetch()

• models machine fetch bandwidth

• inputs:
q program counter

q predictor state (see bpred.[hc])

q mis-prediction detection from branch execution unit(s)

• outputs:
q fetched instructions to Dispatch queue

Fetch

mis-prediction

to Dispatch inst queue

Todd M. Austin Page 32MRL

Out-of-Order Issue Simulator: Fetch

• procedure (once per cycle):
q fetch insts from one I-cache line, block until misses are resolved

q queue fetched instructions to Dispatch

q probe line predictor for cache line to access in next cycle

Fetch

mis-prediction

to Dispatch inst queue

Todd M. Austin Page 33MRL

Out-of-Order Issue Simulator: Dispatch

• implemented in ruu_dispatch()

• models machine decode, rename, allocate bandwidth

• inputs:
q instructions from input queue, fed by Fetch stage

q RUU

q rename table (create_vector)

q architected machine state (for execution)

• outputs:
q updated RUU, rename table, machine state

Dispatch to Scheduler inst queueinsts from Fetch

Todd M. Austin Page 34MRL

Out-of-Order Issue Simulator: Dispatch

• procedure (once per cycle):
q fetch insts from Dispatch queue

q decode and execute instructions

q facilitates simulation of data-dependent optimizations

q permits early detection of branch mis-predicts

q if mis-predict occurs:

q start copy-on-write of architected state to speculative state buffers

q enter and link instructions into RUU and LSQ (load/store queue)

q links implemented with RS_LINK structure

q loads/stores are split into two insts: ADD → Load/Store

q improves performance of memory dependence checking

Dispatch to Scheduler inst queueinsts from Fetch

Todd M. Austin Page 35MRL

Out-of-Order Issue Simulator: Scheduler

• implemented in ruu_issue()and lsq_refresh()

• models instruction, wakeup, and issue to functional units
q separate schedulers to track register and memory dependencies

• inputs:
q RUU, LSQ

• outputs:
q updated RUU, LSQ

q updated functional unit state

Scheduler

Memory
Scheduler

RUU, LSQ to functional units

Todd M. Austin Page 36MRL

Out-of-Order Issue Simulator: Scheduler

• procedure (once per cycle):
q locate instructions with all register inputs ready

q in ready queue, inserted during dependent inst’s wakeup walk

q locate instructions with all memory inputs ready

q determined by walking the load/store queue

q if earlier store with unknown addr → stall issue (and poll)

q if earlier store with matching addr → store forward

q else → access D-cache

Scheduler

Memory
Scheduler

RUU, LSQ to functional units

Todd M. Austin Page 37MRL

Out-of-Order Issue Simulator: Execute

• implemented in ruu_issue()

• models func unit and D-cache issue and execute latencies

• inputs:
q ready insts as specified by Scheduler

q functional unit and D-cache state

• outputs:
q updated functional unit and D-cache state

q updated event queue, events notify Writeback of inst completion

issued insts from Scheduler finished insts to WritebackExec

Mem

memory requests to D-cache

Todd M. Austin Page 38MRL

Out-of-Order Issue Simulator: Execute

• procedure (once per cycle):
q get ready instructions (as many as supported by issue B/W)

q probe functional unit state for availability and access port

q reserve unit it can issue again

q schedule writeback event using operation latency of functional unit

q for loads satisfied in D-cache, probe D-cache for access latency

q also probe D-TLB, stall future issue on a miss

q D-TLB misses serviced at commit time with fixed latency

issued insts from Scheduler finished insts to WritebackExec

Mem

memory requests to D-cache

Todd M. Austin Page 39MRL

Out-of-Order Issue Simulator: Writeback

• implemented in ruu_writeback()

• models writeback bandwidth, detects mis-predictions,
initiated mis-prediction recovery sequence

• inputs:
q completed instructions as indicated by event queue

q RUU, LSQ state (for wakeup walks)

• outputs:
q updated event queue

q updated RUU, LSQ, ready queue

q branch mis-prediction recovery updates

detected mis-prediction to Fetch

Writebackfinished insts from Execute insts ready to commit to Commit

Todd M. Austin Page 40MRL

Out-of-Order Issue Simulator: Writeback

• procedure (once per cycle):
q get finished instructions (specified in event queue)

q if mis-predicted branch:

q recover RUU
q walk newest inst to mis-pred branch

q unlink insts from output dependence chains

q recover architected state
q roll back to checkpoint

q wakeup walk: walk dependence chains of inst outputs

q mark dependent inst’s input as now ready

q if all reg dependencies of the dependent inst are satisfied,
wake it up (memory dependence check occurs later in Issue)

detected mis-prediction to Fetch

Writebackfinished insts from Execute insts ready to commit to Commit

Todd M. Austin Page 41MRL

Out-of-Order Issue Simulator: Commit

• implemented in ruu_commit()

• models in-order retirement of instructions, store commits
to the D-cache, and D-TLB miss handling

• inputs:
q completed instructions in RUU/LSQ that are ready to retire

q D-cache state (for committed stores)

• outputs:
q updated RUU, LSQ

q updated D-cache state

Commitinsts ready to commit from Writeback

Todd M. Austin Page 42MRL

Out-of-Order Issue Simulator: Commit

• procedure (once per cycle):
q while head of RUU is ready to commit (in-order retirement)

q if D-TLB miss, then service it

q then if store, attempt to retire store into D-cache, stall
commit otherwise

q commit inst result to the architected register file, update
rename table to point to architected register file

q reclaim RUU/LSQ resources

Commitinsts ready to commit from Writeback

Todd M. Austin Page 43MRL

Out-of-Order Issue Simulator: Main

• implemented in sim_main()

• walks pipeline from Commit to Fetch
q backward pipeline traversal eliminates relaxation problems, e.g.,

provides correct inter-stage latch synchronization

• loop is execute via a longjmp() to main() when
simulated program executes an exit() system call

ruu_init()
for (;;) {
 ruu_commit();
 ruu_writeback();
 ruu_dispatch();
 lsq_refresh();
 ruu_issue();
 ruu_fetch();
}

Todd M. Austin Page 44MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar
• Looking Ahead

Todd M. Austin Page 45MRL

Hacker’s Guide

• source code design philosophy:
q infrastructure facilitates “rolling your own”

q standard simulator interfaces

q large component library, e.g., caches, loaders, etc...

q performance and flexibility before clarity

• section organization:
q compiler chain hacking

q simulator hacking

Todd M. Austin Page 46MRL

Hacking the Compiler (GCC)

• see GCC.info in the GNU GCC release for details on the
internals of GCC

• all SimpleScalar-specific code is in the config/ss in the
GNU GCC source tree

• use instruction annotations to add new instruction, as you
won’t have to then hack the assembler

• avoid adding new linkage types, or you will have to hack
GAS, GLD, and libBFD.a, all of which are very painful

Todd M. Austin Page 47MRL

Hacking the Assembler (GAS)

• most of the time, you should be able to avoid this by
using instruction annotations

• new instructions are added in libopcode.a, new
instructions will also be picked up by disassembler

• new linkage types require hacking GLD and libBFD.a,
which is very painful

Todd M. Austin Page 48MRL

Hacking the Linker (GLD and libBFD.a)

• avoid this if possible, both tools are difficult to
comprehend and generally delicate

• if you must...
q emit a linkage map (-Map mapfile) and then edit the executable

in a postpass

q KLINK, from my dissertation work, does exactly this

Todd M. Austin Page 49MRL

Hacking the SimpleScalar Simulators

• two options:
q leverage existing simulators (sim-*.c)

q they are stable

q very little instrumentation has been added to keep the source
clean

q roll your own

q leverage the existing simulation infrastructure, i.e., all the
files that do not start with ‘sim-’

q consider contributing useful tools to the source base

Todd M. Austin Page 50MRL

Simulator Structure

• modular components facilitate “rolling your own”

• performance core is optional

BPred Simulator
Core

Machine DefinitionFunctional
Core

SimpleScalar ISA POSIX System Calls

Proxy Syscall Handler

Cache

EventQ MemoryRegsLoader

Resource

Stats

Performance
Core

Prog/Sim
Interface

SimpleScalar Program BinaryUser
Programs

Todd M. Austin Page 51MRL

Machine Definition

• a single file describes all aspects of the architecture
q used to generate decoders, dependency analyzers, functional

components, disassemblers, appendices, etc.

q e.g., machine definition + 10 line main == functional sim

q generates fast and reliable codes with minimum effort

• instruction definition example:

DEFINST(ADDI, 0x41,
 “addi”, “t,s,i”,
 IntALU, F_ICOMP|F_IMM,
 GPR(RT),NA, GPR(RS),NA,NA
 SET_GPR(RT, GPR(RS)+IMM))

opcode

assembly
template

FU req’s

output deps input deps

semantics

inst flags

Todd M. Austin Page 52MRL

Crafting a Functional Component
#define GPR(N) (regs_R[N])
#define SET_GPR(N,EXPR) (regs_R[N] = (EXPR))
#define READ_WORD(SRC, DST) (mem_read_word((SRC))

switch (SS_OPCODE(inst)) {
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3,EXPR) \
 case OP: \
 EXPR; \
 break;
#define DEFFU(FU,DESC)
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
 case OP: \
 panic("attempted to execute a linking opcode");
#define CONNECT(OP)
#include "ss.def"
#undef DEFFU
#undef DEFINST
#undef DEFLINK
#undef CONNECT
 }

Todd M. Austin Page 53MRL

Crafting an Decoder
#define DEP_GPR(N) (N)

switch (op) {
#define DEFINST(OP,MSK,NAME,OPFORM,RES,CLASS,O1,O2,I1,I2,I3,EXPR) \
 case OP: \
 out1 = DEP_##O1; out2 = DEP_##O2; \
 in1 = DEP_##I1; in2 = DEP_##I2; in3 = DEP_##I3; \
 break;
#define DEFFU(FU,DESC)
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
 case OP: \
 /* can speculatively decode a bogus inst */ \
 op = NOP; \
 out1 = NA; out2 = NA; \
 in1 = NA; in2 = NA; in3 = NA; \
 break;
#define CONNECT(OP)
#include "ss.def"
#undef DEFFU
#undef DEFINST
#undef DEFLINK
#undef CONNECT
 default:
 /* can speculatively decode a bogus inst */
 op = NOP;
 out1 = NA; out2 = NA;
 in1 = NA; in2 = NA; in3 = NA;
 }

Todd M. Austin Page 54MRL

Proxy Syscall Handler (syscall.[hc])

• algorithm:
q decode system call

q copy arguments (if any) into simulator memory

q make system call

q copy results (if any) into simulated program memory

• you’ll need to hack this module to:
q add new system call support

q port SimpleScalar to an unsupported host OS

Todd M. Austin Page 55MRL

Branch Predictors (bpred.[hc])

• various branch predictors
q static

q BTB w/ 2-bit saturating counters

q 2-level adaptive

• important interfaces:
q bpred_create(class, size)

q bpred_lookup(pred, br_addr)

q bpred_update(pred, br_addr, targ_addr, result)

Todd M. Austin Page 56MRL

Cache Module (cache.[hc])

• ultra-vanilla cache module
q can implement low- and high-assoc, caches, TLBs, etc...

q efficient for all geometries

q assumes a single-ported, fully pipelined backside bus

• important interfaces:
q cache_create(name, nsets, bsize, balloc, usize, assoc

 repl, blk_fn, hit_latency)

q cache_access(cache, op, addr, ptr, nbytes, when, udata)

q cache_probe(cache, addr)

q cache_flush(cache, when)

q cache_flush_addr(cache, addr, when)

Todd M. Austin Page 57MRL

Event Queue (event.[hc])

• generic event (priority) queue
q queue event for time t

q returns events from the head of the queue

• important interfaces:
q eventq_queue(when, op...)

q eventq_service_events(when)

Todd M. Austin Page 58MRL

Program Loader (loader.[hc])

• prepares program memory for execution
q loads program text

q loads program data sections

q initializes BSS section

q sets up initial call stack

• important interfaces:
q ld_load_prog(mem_fn, argc, argv, envp)

Todd M. Austin Page 59MRL

Main Routine (main.c, sim.h)

• defines interface to simulators

• important (imported) interfaces:
q sim_options(argc, argv)

q sim_config(stream)

q sim_main()

q sim_stats(stream)

Todd M. Austin Page 60MRL

Physical/Virtual Memory (memory.[hc])

• implements large flat memory spaces in simulator
q uses single-level page table

q may be used to implement virtual or physical memory

• important interfaces:
q mem_access(cmd, addr, ptr, nbytes)

Todd M. Austin Page 61MRL

Miscellaneous Functions (misc.[hc])

• lots of useful stuff in here, e.g.,
q fatal()

q panic()

q warn()

q info()

q debug()

q getcore()

q elapsed_time()

q getopt()

Todd M. Austin Page 62MRL

Register State (regs.[hc])

• architected register variable definitions

Todd M. Austin Page 63MRL

Resource Manager (resource.[hc])

• powerful resource manager
q configure with a resource pool

q manager maintains resource availability

• resource configuration:
 { “name”, num, { FU_class, issue_lat, op_lat }, ... }

• important interfaces:
q res_create_pool(name, pool_def, ndefs)

q res_get(pool, FU_class)

Todd M. Austin Page 64MRL

Tutorial Overview

• Computer Architecture Simulation Primer

• SimpleScalar Tool Set
q Overview

q User’s Guide

• SimpleScalar Instruction Set Architecture

• Out-of-Order Issue Simulator
q Model Microarchitecture

q Implementation Details

• Hacking SimpleScalar

• Looking Ahead

Todd M. Austin Page 65MRL

Looking Ahead

• upcoming maintenance release (in December)
q install fixes

q much more documentation

q DLite - the light debugger

q stats package

q options package

• SimpleScalar port to WinNT

• MP/MT support for SimpleScalar simulators

• Linux port to SimpleScalar
q with device-level emulation and user-level file system

• Alpha and SPARC target support (SimpleScalar and
MIPS currently exist)

Todd M. Austin Page 66MRL

To Get Plugged In

• Technical Report:
q “Evaluating Future Microprocessors: the SimpleScalar Tools

Set”, UW-Madison Tech Report #1308, July 1996

• SimpleScalar Public Release
q Public Release 0 is available from:

http://www.cs.wisc.edu/~mscalar/simplescalar.html

q the “early bird” release

q to be followed in Dec by Public Release 1, includes more
documentation, a hacker’s guide, install fixes

• SimpleScalar mailing list:
q contact Doug Burger (dburger@cs.wisc.edu) to join

Todd M. Austin Page 67MRL

Backups

Todd M. Austin Page 68MRL

Experiences and Insights

• the history of SimpleScalar:
q Sohi’s CSim begat Franklin’s MSim begat SimpleScalar

q first public release in July ‘96, made with Doug Burger

• key insights:
q major investment req’d to develop sim infrastructure

q 2.5 years to develop, while at UW-Madison

q modular component design reduces design time and complexity,
improves quality

q fast simulators improve the design process, although it does
introduce some complexity

q virtual target improves portability, but limits workload

q execution-driven simulation is worth the trouble

Todd M. Austin Page 69MRL

Advantages of Execution-Driven Simulation

• execution-based simulation
q faster than tracing

q fast simulators: 2+ MIPS, fast disks: < 1 MIPS

q no need to store traces

q register and memory values usually not in trace

q functional component maintains precise state

q extends design scope to include data-value-dependent
optimizations

q support mis-speculation cost modeling

q on control and data dependencies

q may be possible to eliminate most execution overheads

Todd M. Austin Page 70MRL

Example Applications

• my dissertation: “H/W and S/W Mechanisms for
Reducing Load Latency”
q fast address calculation

q zero-cycle loads

q high-bandwidth address translation

q cache-conscious data placement

• other users:
q SCI project

q Galileo project

q more coming on-line

Todd M. Austin Page 71MRL

Related Tools

• SimOS from Stanford
q includes OS and device simulation, and MP support

q not portable, currently only runs on MIPS hosts

q little source code since much of the tool chain is commercial code,
e.g., compiler, operating system

• functional simulators:
q direct execution via dynamic translation: Shade, FX32!

q direct execution via static translation: Atom, EEL, Pixie

q machine interpreters: Msim, DLXSim, Mint

Todd M. Austin Page 72MRL

Fast Functional Simulator

ADDI

BNE

FADD

. . .

O
pc

od
e

M
ap

sim_main()

• on SPARC host, some globals are register allocated

Todd M. Austin Page 73MRL

SimpleScalar Wish List

• Linux port to SimpleScalar
q with device-level emulation

• MP/MT support for SimpleScalar sims

• Port SimpleScalar tool set to Windows NT

• simple debugger support for SimpleScalar sims
q fast code/data breakpoints, machine state access, hooks for

microarchitecture state access

• GDB port to SimpleScalar
q would allow source-level debugging

• Alpha, SPARC target support (MIPS exists)

• NOTE: ping the mailing list before starting a project

