
STHREAD T(STHREAD) STHREAD T(STHREAD)

NAME
sthread t − Shore Thread Abstract Base Class

SYNOPSIS
#include <sthread.h>

/* See sthread.h - too long to include here */

DESCRIPTION
The thread mechanism allows several threads of control to share the same address space. Each
thread is represented by an instance of class sthread t. Once created, a thread is an indepen-
dent entity with its own stack. A thread’s execution begins with its run method and ends when
run returns. A thread can also be made to end early by calling end, which forces a longjmp out
of the run method.

A thread is created by allocating it from the heap with a call to new and it is started by calling
its method fork. One can await a thread’s completion by calling its method wait. The following
code is an example from the Tcl-based storage manager test shell, ssh.

/*
* ssh_smthread_t is derived from smthread_t, which is
* derived from sthread_t.
*/

smthread_t *doit = new ssh_smthread_t(f_arg);
if (!doit) {

/* error - out of memory */
}

w_rc_t rc = doit->fork();
if(rc) {

/* fatal error */
}

w_rc_t rc = doit->wait();
if(rc) {

/* fatal error */
}

delete doit;

In a C++ program, the sthread initialization code is built into the library such that it will exe-
cute before the main function. The initialization code is responsible for spawning a
main thread, such that, when the initialization function returns, it returns in the context of the
main thread. This ensures that the program executes in a threaded environment from the very
beginning.

Class sthread base t is the base class for all sthread classes. It defines constants and enums
used throughout the thread package.

Class sthread named base t inherits from sthread base t and adds a name string to the
class. Its only purpose is to ease debugging by providing a name to sthread classes.

Class sthread t is an abstract base class that represents a thread of execution; it must be derived
in order to be used, hence the protected constructor.

Release Jan 1999 1



STHREAD T(STHREAD) STHREAD T(STHREAD)

Enumerations
enum status t

A thread can be in one of the following states at any one time:
t_defunct is dead
t_ready is in the ready queue waiting to run
t_running is running
t_blocked is not ready to run

enum priority t

These are the thread priority levels in decreasing order:
t_time_critical has highest priority
t_regular has regular priority
t_fixed_low has lower than regular priority
t_idle_time only runs when system is idle

Methods
sthread t(priority, block immediate, auto delete, name)

The constructor creates a priority level thread. If block immediate is true, the thread will
automatically be run sometime soon. Otherwise, the thread is blocked awaiting an
explicit unblock call. If auto delete is true, the thread automatically deallocates
(destroys) itself when it ends. Otherwise, the caller must deallocate the thread with
delete. The name parameter is used for debugging purposes only.

The constructor is protected because sthread t is an abstract base class. Users should
derive from sthread t and provide the virtual run method.

˜sthread t()

The destructor deallocates the stack and other resources used by the thread.

run()

Method run is automatically started (by the thread switching code) when a thread begins
execution. It is a pure virtual function that must be implemented in a derived class. The
thread ends when

static end()

The end method ends the execution of the current thread by forcing a longjmp out of the
run method.

static block(timeout, list, caller)

The block method makes the current thread dormant for at least timeout milliseconds.
The thread can be awakened explicitly by an unblock call. The calling thread’s tcb is
inserted into { list}, and the caller string is saved for debugging purposes. Note that
block only returns when the thread is unblocked (by another thread). Ordinarily, pro-
grams do not call block of unblock, since they are the basis for more powerful synchro-
nization mechanisms: mutexes and condition variables.

unblock(rc)

Release Jan 1999 2



STHREAD T(STHREAD) STHREAD T(STHREAD)

The unblock method unblocks the thread with an the error rc and marks it as ready to
continue running. The value of rc will be returned from the block method.

static me()

The me method returns a pointer to the current (running) thread.

wait(timeout)

The wait method waits for the thread to terminate. The method returns without error
when the thread terminates within timeout milliseconds. Otherwise, a timeout error is
returned.

sleep(timeout)

The sleep method causes the thread to halt execution for timeout milliseconds. Other
threads continue running.

yield()

The yield method gives up the CPU so other threads can run. The current thread
remains active and will be run again soon.

I/O Operations
The thread package provides asynchronous I/O operations. Threads performing these operations
will block, but the server process will not. The implementation was developed for operating sys-
tems that do not provide threads or asynchronous I/O. For each open file a process, is started.
When a thread needs I/O on a file, the sthread library blocks the thread, forwards its request to
and switches to another ready thread. When the I/O request is complemented, the process
informs the sthread library, which in turn unblocks the original thread that requested the I/O.

Sthread t provides methods similar to Unix in handling file I/O. However, the file descriptors
used by these methods are not interchangeable with that of Unix, i.e., the fd returned by
sthread t::open can only be used with other methods in sthread t such as sthread t::read.

These I/O operations are closely integrated with buffer pool management. The storage manager
buffer pool is located in memory shared with the processes. I/O requests must refer to locations
in this shared memory.

Now that most popular operating systems provide threads and asynchronous I/O, the sthread t
I/O operations should be re-implemented or even eliminated.

ERRORS
See errors(sthread)

EXAMPLES
VERSION

This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract

Release Jan 1999 3



STHREAD T(STHREAD) STHREAD T(STHREAD)

DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
smthread t(ssm), smutex t(sthread), scond t(sthread), sevsem t(sthread), file han-
dlers(sthread), intro(sthread).

Release Jan 1999 4


