
ss m::init(ssm) Shore Storage Manager ss m::init(ssm)

NAME
ss m, set shutdown flag, setup options − Class ss m Methods for Initialization

SYNOPSIS
#include <sm_vas.h>

class ss_m;

static void ss_m::set_shutdown_flag(bool clean);
ss_m::ss_m();
ss_m(ss_m::LOG_WARN_CALLBACK_FUNC callback = 0);

static rc_t ss_m::setup_options(option_group_t*);
ss_m::~ss_m();

DESCRIPTION
These methods of class ss m control initializing and shutting down the Shore storage manager
(SSM). Constructing an instance of ss m starts the SSM. Destroying the instance causes the
SSM to shut down.

During construction, the SSM follows the steps discussed in the Recovery section of The Shore
Storage Manager Programming Interface.

setup options(option group t *)

The setup options method adds storage manager specific options to the option group t.
These options must be initialized before the ss m constructor is called.

ss m(ss m::LOG WARN CALLBACK FUNC callback = 0)

The ss m constructor initializes all SSM data structures, and performs recovery based on
the current log. Only one instance of ss m may be in existence at any one time (this is
enforced by the constructor). The single optional argument is a callback function that is
called when the the active transactions have used so much log space that there is a threat
of running out of log. The details of this procedure are in the section
LOG WARN CALLBACK FUNC, below. If no such callback function is provided, when
the threshold is exceeded the SSM returns to the calling function with the error value
RC(E LOGSPACEWARN).

Part of SSM initialization includes allocating a buffer pool. The buffer pool is located in shared
memory, so the operating system must have shared-memory support to accommodate the size of
the buffer pool. If insufficient shared memory is available, the SSM prints a message indicating
how much shared memory it is trying to acquire, and exits.

set shutdown flag(clean)

The set shutdown flag method can be used to simulate a crash. If clean is set to false,
the SSM will not flush any buffers when ˜ss m() is called. If clean is set to true, all
data pages and logs are flushed to disk, and no recovery processing will be needed when
the SSM is restarted. This is the normal operation of the storage manager.

˜ss m()

Release Jan 1999 1



ss m::init(ssm) Shore Storage Manager ss m::init(ssm)

The ss m destructor flushes all buffers in the buffer pool to disk (unless set shut-
down flag(clean) was used to defeat this) and frees all the resources used by the SSM.

LOG WARN CALLBACK FUNC
At all times there must be enough log space left to abort a transaction. In the SSM, log space is
finite (the SSM does not archive parts of log on tertiary storage), so the value-added server must
assist in keeping adequate log space available. The run-time option sm log warn determines a
threshold (in percentage of the log) at which the threat of running out of log exists. When all the
active transactions in the system together have used that much of the log, the SSM issues a call-
back to the value-added server, which then chooses a victim (transaction) to abort.

The callback function has the following type, which is in the ss m namespace:

typedef w_rc_t (*LOG_WARN_CALLBACK_FUNC) (
xct_i* iterator,
xct_t*& victim,
w_base_t::base_stat_t curr,
w_base_t::base_stat_t thresh

);

The first argument, iterator, iterates over the transactions in the system. Its methods xct t*
xct i::next() and xct t* xct i::curr() return pointers to transaction data structures.

The second argument, victim, is where the resulting chosen victim is returned.

The arguments curr and thresh are simply advisory information: the current number of bytes of
log used by all active transactions in the system, and the threshold that was exceeded before the
callback was made.

The callback function must analyze data structures that are internal to the storage manager, so
the source code for this function must include the definitions of these data structures. To accom-
plish this, the following macros and inclusions are required:
#define SM_LEVEL 1
#define SM_SOURCE
#define XCT_C
#include "sm_int_1.h"
#include "e_error_def_gen.h"

/* Define your callback function here: */
w_rc_t out_of_log_space (

xct_i* iterator ,
xct_t *& victim,
w_base_t::base_stat_t curr,
w_base_t::base_stat_t thresh

)
{

/* this function must return one of three states:
*
* a valid xct_t* in victim AND the w_rc_t value
* RC(E_USERABORT) (in which case, victim is aborted
* by the SSM after the calling SSM method completes)
*
* OR
*
* the w_rc_t value RCOK (in which case victim is ignored)
*
* OR

Release Jan 1999 2



ss m::init(ssm) Shore Storage Manager ss m::init(ssm)

*
* the any other w_rc_t value (in which case victim is ignored,
* but the error code is returned to the caller of the
* calling SSM method, and the SSM method is not applied)
*/

...

return RCOK;
}

The detection of threat of log-space overrun occurs whenever any value-added server thread calls a
SSM method that might generate any log. The detection and callback occur at the beginning of
the method call; subsequent aborting of the victim occurs upon exit from the SSM method.

It is important that the callback function not return the same victim more than once, so the call-
back function must take precautions to save state in a thread-safe manner.

If no such callback is provided in the SSM constructor, when the threshold is exceeded the SSM
returns to the calling function with the error value RC(E LOGSPACEWARN).

ERRORS
Failure to properly construct/destruct the SSM will result in a fatal error that will print a mes-
sage and exit the program.

See errors(ssm) for more information on error-handling.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
intro(ssm), volume(ssm), options(common), transaction(ssm)

Release Jan 1999 3


