
ss m::rtree(ssm) Shore Storage Manager ss m::rtree(ssm)

NAME
bulkld md index, create md assoc, create md index, destroy md assoc, destroy md index,
find md assoc, print md index, draw rtree rtree stats − Class ss m Methods for R*tree (multi-
dimensional) Index Operations

SYNOPSIS
#include <sm_vas.h> // includes sm.h (where they are declared)

static rc_t create_md_index(
vid_t vid,
ndx_t ntype,
store_property_t property,
stid_t& stid,
int2_t dim = 2

);

static rc_t destroy_md_index(const stid_t& iid);

static rc_t bulkld_md_index(
const stid_t& stid,
const stid_t& source,
sm_du_stats_t& stats,
int2_t hff=75,
int2_t hef=120,
nbox_t* universe=NULL

);

// version of above that takes multiple input files
static rc_t bulkld_md_index(

const stid_t& stid,
int nsrcs,
const stid_t* source,
sm_du_stats_t& stats,
int2_t hff=75,
int2_t hef=120,
nbox_t* universe=NULL

);

static rc_t bulkld_md_index(
const stid_t& stid,
sort_stream_i& sorted_stream,
sm_du_stats_t& stats,
int2_t hff=75,
int2_t hef=120,
nbox_t* universe=NULL

);

static rc_t create_md_assoc(
stid_t stid,
const nbox_t& key,
const vec_t& el

);

static rc_t destroy_md_assoc(

Release Jan 1999 1



ss m::rtree(ssm) Shore Storage Manager ss m::rtree(ssm)

stid_t stid,
const nbox_t& key,
const vec_t& el

);

static rc_t find_md_assoc(
stid_t stid,
const nbox_t& key,
void* el,
smsize_t& elen,
bool& found

);

static rc_t print_md_index(stid_t stid);

static rc_t draw_rtree(const stid_t& stid, ostream &);

static rc_t rtree_stats(
const stid_t& stid,
rtree_stats_t& stat,
uint2_t size = 0,
uint2_t* ovp = NULL,
bool audit = false

);

DESCRIPTION
The above class ss m methods all deal with manipulating multi-dimensional (md) indexes. So
far, the only type of multi-dimension index provided by the SSM is the R*tree. See The Shore
Storage Manager Programming Interface for more information on R*trees.

Common Parameters
There are a number of common parameters for these methods:

stid Store ID of an index.

key A n-dimensional box, nbox t(common), that is the key portion of an index entry.

el A vector pointing to the element portion of an index entry.

create md index(vid, ntype, property, stid, dim)

The create md index method creates a new B+tree index on the volume vid, and
returns its store ID in stid. The ntype parameter specifies the type of implementation
used for the index. The only valid value for the ntype parameter is t rtree, indicating an
R*tree. The property parameter specifies whether the index is temporary or not. See
enum(ssm) for more information on store property t. The dim parameter specifies
the number of dimensions for the index. Note: only 2 dimensions are currently sup-
ported.

destroy md index(stid)

The destroy index method destroys the index and deallocates all space used by it. The
space is not available for reuse until the transaction destroying the index commits.

bulkld md index(stid, nsrcs, sources, stats, hff, hef, universe) bulkld md index(stid,

Release Jan 1999 2



ss m::rtree(ssm) Shore Storage Manager ss m::rtree(ssm)

source, stats, hff, hef, universe)

This bulkld md index method bulk loads the empty index, identified by stid. The
entries to load are located, in sorted order, in the file(s) identified by nsrcs and the array
sources, or, in the simpler version of the method, from the single source source. The
header of each record in the file(s) contains the key (see nbox t(common)). and the
body contains the element (value) associated with the key. This file must have been
sorted by sort(ssm) using the t spatial key type to get a spatial linear order (Hilbert
curve). Statistics for the newly loaded index are returned in stats, specifically in the rtree
field.

The hff parameter is a heuristic fill factor and hef is a heuristic expansion factor. They
are used to determine when an Rtree page should stop accepting new entries to reduce the
degree of overlap during bulk loading. Since bulk loading requires some linear order to
map 2-d keys to 1-d disk locations, there definitely will be some loss of spatial clustering.
Thus, packing entries 100% to a rtree page could result in a very large overlap between
leaf pages. These heuristics parameters are designed to minimize this problem. It is rec-
ommended that the default values always be used. The default values are chosen to be
the best on the average case. But they not guaranteed best for the worst case (skewed
data).

The VA universe parameter is a "box" specifying the boundaries of the "space" contain-
ing the loaded keys. A more compact index can be built if this parameter is provided,
but it is not necessary.

bulkld md index(stid, sorted stream, stats, hff, hef, universe)

This bulkld md index method is identical to the one above except that rather than
getting entries from a file, the entries come from sorted stream. Note: this method has
not been extensively tested and may change in the future. See sort stream i(ssm) for
more information.

create md assoc(stid, key, el)

The create md assoc method adds a new entry associating key with the element
(value) el.

destroy md assoc(stid, key, el)

The destroy md assoc method destroys the entry associating key with the element
(value) el.

find md assoc(stid, key, el, elen, found)

The find assoc method finds key in the index and and writes the associated element
(only the first one found) to the address specified by el. At most elen bytes will be writ-

ten. If the element is not needed, set elen to 0. If key is found, then found will be set to
true. A more comprehensive lookup facility, allowing range searches, is available from
the class scan rt i described in scan rt i(ssm)

print md index(stid)

The print md index method is prints the contents of the index. It is meant to be a
debugging utility.

draw rtree(stid)

Release Jan 1999 3



ss m::rtree(ssm) Shore Storage Manager ss m::rtree(ssm)

The draw rtree method generates a "gremlin" file for visualizing an R*-tree graphically.
This method is an unsupported debugging utility.

rtree stats(stid, stat, size, ovp, audit)

The rtree stats method is an unsupported debugging utility for gathering more detailed
statistics on an R*tree. The stats parameter is filled with the regular Rtree stats gathered
by ss m::get du statistics(). The ovp parameter is an array that will be filled with
overlap percentage for each level of the R*tree. The size parameter is the size of the
array. If the audit parameter is true, the stats structure is audited.

ERRORS
All of the above methods return a w rc t error code. If an error occurs during a method that is
updating persistent data (the create, destroy, and bulk load method will update data) then the
index could be in an inconsistent state. The caller then has the choice of aborting the transaction
or rolling back to the nearest save-point (see transaction(ssm) ).

See errors(ssm) for more information on error handling.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
scan rt i(ssm) sort stream i(ssm) intro(ssm)

Release Jan 1999 4


