
ss m::index(ssm) Shore Storage Manager ss m::index(ssm)

NAME
bulkld index, create assoc, create index, destroy assoc, destroy index, find assoc, print index −
Class ss m Methods for B+Tree Index Operations

SYNOPSIS
#include <sm_vas.h> // includes sm.h (where they are declared)

static rc_t create_index(
vid_t vid,
ndx_t ntype,
store_property_t property,
const char* key_desc,
concurrency_t cc,
stid_t& stid // result
);

// for backward compatibility:
static rc_t create_index(

vid_t vid,
ndx_t ntype,
store_property_t property,
const char* key_desc,
stid_t& stid
);

static rc_t destroy_index(
const stid_t& iid
);

static rc_t bulkld_index(
const stid_t& stid,
const stid_t& source,
sm_du_stats_t& stats,
bool sort_duplicates = true,
bool lexify_keys = true
);

/* Variant of above with multiple input files */
static rc_t bulkld_index(

const stid_t& stid,
int nsrcs,
const stid_t* source,
sm_du_stats_t& stats,
bool sort_duplicates = true,
bool lexify_keys = true
);

static rc_t bulkld_index(
const stid_t& stid,
sort_stream_i& sorted_stream,
sm_du_stats_t& stats
);

static rc_t print_index(
stid_t stid

Release Jan 1999 1

ss m::index(ssm) Shore Storage Manager ss m::index(ssm)

);

static rc_t create_assoc(
stid_t stid,
const vec_t& key,
const vec_t& el
);

static rc_t destroy_assoc(
stid_t stid,
const vec_t& key,
const vec_t& el
);

static rc_t destroy_all_assoc(
stid_t stid,
const vec_t& key,
int& num_removed
);

static rc_t find_assoc(
stid_t stid,
const vec_t& key,
void* el,
smsize_t& elen,
bool& found
);

DESCRIPTION
The above class ss m methods manipulate B+tree indexes.

Common Parameters
There are a number of common parameters for these methods:

stid Store ID instead of the index.

key A vector pointing to the key portion of an index entry.

el A vector pointing to the element portion of an index entry.

static rc t create index(
vid t vid,
ndx t ntype,
store property t property,
const char* key desc,
concurrency t cc,
stid t& stid // result
);"

The create index methods creates a new B+tree index on the volume vid, and returns
its store ID in stid. The ntype parameter specifies the type of implementation used for
the index. Valid values for the ntype parameter are t btree, indicating a B+tree allow-
ing entries with duplicate keys, and t uni btree, indicating a B+tree only allowing
entries with unique keys. The property parameter specifies whether the index is tempo-
rary. See enum(ssm) for more information on ss m::store property t.

Release Jan 1999 2

ss m::index(ssm) Shore Storage Manager ss m::index(ssm)

The key desc parameter is a string describing the the type of the keys to be stored in the
index. The syntax of key desc is as follows:

<key_type_str> ::= <key_type>* <v_key_type>
<key_type> ::= <type> <len>
<v_key_type> ::= <type> <var> <len>
<type> ::= ’i’ | ’u’ | ’f’ | ’b’
<var> ::= ’*’ | NULL
<len> ::= [1-9][0-9]*

A <key type> contains a type (’i’ for integer, ’u’ for unsigned, ’f’ for float, ’b’ for
binary), and a length. A <v key type>, which is the last part of <key type str>, can
contain an optional indicator (’*’) for variable length field. A <key type str> is com-
posed of multiple <key type>, and a <v key type>; i.e. only the last field can be vari-
able length.

For example the key_desc "i4f8b*1000" specifies a
key that contains:
1. a 4 byte integer
2. an 8 byte float (double)
3. a variable length binary field that could be as long as

as a 1000 bytes.

The SSM applies a function to the key values, the result of which is a string of bytes that
can be lexicographically compared, and yield the correct order. The SSM contains such
functions for keys of the following types: signed and unsigned integer keys of length 1, 2,
or 4, floating point keys of length 4 or 8. Byte strings keys are not interpreted; they are
stored as presented to the SSM. The cc argument allows you to associate with the index,
a locking protocol other than t cc kvl. See enum(ssm) for more information on
ss m::concurrency t.

See the "ROOT INDEX METHODS" section of volume(ssm) for information on how to
keep track of the indexes on a volume.

destroy index(stid)

The destroy index methods destroys the index and deallocates all space used by it.
The space is not available for reuse until the transaction destroying the index commits.

bulkld index(stid, nsrcs, sources, stats, sort duplicates, lexify keys)

bulkld index(stid, source, stats, sort duplicates, lexify keys)

These bulkld index methods bulk load the empty index identified by the stid. The
entries to load must be located, in sorted order, in the file or files identified by source or
the array sources. The header of each record in the source files contain the key and the
body contains the element (value) associated with the key. Statistics for the newly loaded
index are returned in stats, specifically in the btree field.

bulkld index(stid, sorted stream, stats)

This bulkld index method is identical to the one above except that rather than getting
entries from a file, the entries come from sorted stream. Note: this method has not been
extensively tested and may change in the future. See sort stream i(ssm) for more
information.

print index(stid)

Release Jan 1999 3

ss m::index(ssm) Shore Storage Manager ss m::index(ssm)

The print index method is prints the contents of the index. It is meant to be a debug-
ging tool.

create assoc(stid, key, el)

The create assoc method adds a new entry associating key with the element (value) el.

destroy assoc(stid, key, el)

The destroy assoc method destroys the entry associating key with the element (value)
el.

destroy all assoc(stid, key, num removed)

The destroy all assoc method destroys all entries with key as a key. The number of
entries removed is returned in num removed.

find assoc(stid, key, el, elen, found)

The find assoc method finds key in the index and and writes the associated element
(only the first one found) to the address specified by el. At most elen bytes will be writ-
ten. If the element is not needed, set elen to 0. Elen will be set to the length actually
written. If key is found, then found will be set to true. A more comprehensive lookup
facility, allowing range searches, is available from the class scan index i described in
scan index i(ssm)

ERRORS
All of the above methods return a w rc t error code. If an error occurs during a methods that is
updating persistent data (the create, destroy, and bulk load methods will update data) then the
index could be in an inconsistent state. The caller then has the choice of aborting the transaction
or rolling back to the nearest save-point (see transaction(ssm)).

See errors(ssm) for more information on error handling.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number
018 (formerly 8230), monitored by the U.S. Army Research Laboratory under contract
DAAB07-91-C-Q518. Further funding for this work was provided by DARPA through Rome
Research Laboratory Contract No. F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All
Rights Reserved.

SEE ALSO
id(ssm), scan index i(ssm), sort stream i(ssm) intro(ssm)

Release Jan 1999 4

