
The Shore Storage Manager Programming Interface1

The Shore Project Group
Computer Sciences Department

UW-Madison
Madison, WI
Version 2.0

Copyright c©1994–9
Computer Sciences Department, University of Wisconsin—Madison.

All Rights Reserved.

May 7, 2008

1This research is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-92-C-
Q508. Further funding for this work was provided by DARPA through Rome Research Laboratory
Contract No. F30602-97-2-0247.



1 Introduction

The Shore Storage Manager (SSM) is a package of libraries for building object repository servers
and their clients. The core library in the package, libsm.a, is a multi-threaded system man-
aging persistent storage and caching of un-typed data and indexes. It provides disk and buffer
management, transactions, concurrency control and recovery. A second library, libcommon.a,
provides many common utilities need for implementing both client and servers.

We use the term value-added-server (VAS) to refer to systems built with the SSM. A VAS
relies on the SSM for the above capabilities and extends it to provide more functionality.

This document provides an overview the SSM facilities and interface. Details of the pro-
gramming interfaces are presented in a set of manual pages. Where each facility is discussed,
references are made to the appropriate manual pages. The introductory sections for these
manual pages are:

• Storage Manager proper (see intro(ssm))

• Thread package (see intro(sthread))

• Common utility classes (see intro(common))

• Foundation classes (see intro(fc))

The tutorial Getting Started Writing a Value-Added Server with the Shore Storage Manager
complements this document by explaining how to use the SSM to build a simple server.

The rest of this document is organized as follows. The first six sections describe the basic
facilities provided by the SSM. Each sections has pointers to manual pages with details on
using the facility. The final section describes how to write and compile a VAS and its clients.

1.1 Conventions

This document follows these notational conventions:

• File and path names are displayed in a fixed size font.

• Reference to manual pages look like: intro(ssm).

• Name of classes and methods are displayed in a fixed size font.

2 Initialization and Shutdown

The class ss m is the core of the SSM interface. Creating an instance of ss m starts the
SSM. Destroying the ss m instance causes the SSM to shutdown. Details on initialization and
shutdown are available in init(ssm).

When the SSM is started, it processes configuration options described below an initialized
all the SSM data structures. This initialization includes allocation of the buffer pool. The
buffer pool is located in shared memory, so the operating system must have shared-memory
support to accommodate the size of the buffer pool. Next, the SSM checks the log to see if
recovery is needed. If so, it follows the steps discussed in Section5.3.

1



2.1 Setting SSM Configuration Options

The SSM has a number of configuration options that must be set before it is started with the
ss m constructor. These options include such things as buffer pool sizes and location of the
log. Many have default values. Those without default values must be set or the SSM will fail.
Below we list all options and their default values.

• sm bufpoolsize no-default

This is the size of buffer pool in K-bytes. The minimum value is 64. Increasing the size
will usually lower the amount of I/O done by the SSM.

• sm logdir no-default

The SSM currently uses OS files for log storage. This option sets the path name of the
directory where log files will be placed.

• sm logsize 10000 This is the maximum size, in K-bytes, of the log. All updates by
transactions are logged, so the log size puts a limit on how much work any transaction
can do. See Section5.1 for a discussion of log space usage.

• sm logging yes

This options controls whether or not logging is performed at all. Turning it off, by setting
it to no, is used primarily for evaluating logging performance. No recovery or transaction
rollback can be performed if logging is off.

• sm diskrw diskrw

This is the path name of the program forked by the SSM to perform asynchronous I/O.
Usually this will point to bin/diskrw where Shore is installed.

• sm locktablesize 64000

This is the number of buckets in the hash table used by the lock manager.

• sm backgroundflush yes

This option controls whether or not there is a background thread started to flushing the
buffer pool periodically.

• sm errlog - (stderr)

This is the location to send error logging messages. The default is the standard error file.
Other options are syslogd (to syslog daemon), or to a specific filename.

• sm errlog level error

This is the level of error logging detail. Possible values (from least amount of logging to
most amount) are none emerg fatal alert internal error warning info debug.

2



2.2 Adding VAS-Specific Options

In addition, a VAS, will often have options of its own that need to be set. The SSM provides
an options facility, options(common) for this purpose. Included with the option facility are
functions to set options from the program command line and from files containing configuration
information.

A discussion of how to use the options facility is given in the tutorial.

3 Storage Facilities

The SSM provides a hierarchy of storage structures. A description of each type of storage
structure is given below, followed by a description of the identifiers used to refer to them.

3.1 Devices

A device is a location, provided by the operating system, for storing data. In the current
implementation, a device is either a disk partition or an operating system file. A device is
identified by the name used to access it through the operating system. Each device is managed
by a single server. A device has a quota. The sum of the quotas of all the volumes on a device
cannot exceed the device quota. Note: devices are currently limited to containing only one
volume.

The device management interface is part of class ss m and is described in device(ssm).
For each mounted device, the server forks a process called diskrw (determined by the

sm diskrw option) to perform asynchronous I/O on the device. These processes communicate
with the server through sockets and shared memory, so your OS must be configured with shared
memory support.

3.2 Volumes

A volume is a collection of file and index storage structures (described below) managed as a
unit. All storage structures reside entirely on one volume. A volume has a quota specifying
how must large it can grow. Every volume has a dedicated B+-tree index called the root index
to be used for cataloging the data on the volume.

The volume management interface is part of class ss m and is described in volume(ssm).

3.3 Files of Records

A record 1 is an un-typed container of bytes, consisting of a tag, header and body. The tag
is a small, read-only location that stores the record size and other implementation-related
information. The header is variable length (limited to what will fit on a page) location for a
VAS to store meta-information about the record (such as its type). The body is the primary

1The term record is used to distinguish them from objects (which have type and methods).

3



data storage location and can range in size from zero bytes to 4-GB. A record can grow and
shrink in size by operations that append and truncate bytes at the end of the record.

A file is a collection of records. Files are used for clustering records and have an interface
for iterating over all the records they contain. The number of records that a file can hold is
limited only by the space available on the volume containing the file. The minimum size of a
file is 64K-bytes (8 pages). We are working on ways to reduce this to 8K, but in either case,
using a file to store a collection containing only a few small records will waste space.

Methods for creating/destroying files and creating/destroying/modifying records are part
of class ss m and described in file(ssm). There is a pin i class for pinning records for reading
and modifying. This class is documented in pin i(ssm). There are the classes scan file i for
iterating over the records in a file, and append file i for appending records to a file. Both
are described in scan file i(ssm).

3.4 B+tree Indexes

The B+tree index facility provides associative access to data. Keys and their associated values
can be variable length (up to the size of a page). Keys can be composed of any of the basic
C-language types plus variable length character strings. A bulk-loading facility is provided.
The number of key-value pairs that an index can hold is limited only by the space available on
the volume containing the index. The minimum size of a B+tree index is 8K-bytes (1 page).

Methods for index operations are part of class ss m and described in btree(ssm). There is
scan index i class for iterating over a range of keys in the index This class is documented in
scan index i(ssm).

3.5 R*Tree Indexes

An R-Tree is a height-balanced tree structure designed specifically for indexing multi-
dimensional spatial objects. It stores the minimum bounding box (with 2 or higher dimension)
of a spatial object as the key in the leaf pages. The current implementation in SHORE is a
variant of R-Tree called R*-Tree [BKSS], which improves the search performance by using a
better heuristic for redistributing entries and dynamically reorganizing the tree during inser-
tion. Currently, only 2-dimensional R*-trees with integer coordinates are supported by the
SSM. A bulk-loading facility is provided. The number of key-value pairs that an index can
hold is limited only by the space available on the volume containing the index. The minimum
size of an R*tree index is 64K-bytes (8 pages).

The R*-Tree implementation stores [key, value] pairs, where the key is of type nbox t (see
nbox t(common). and the value is of type vec t. A 2-D nbox t is a rectangle which stores
coordinates in the order of x low, y low, x high, y high (lower left point and higher right point).
Currently, only integer values are supported for the coordinates.

Methods for R*-tree index operations are part of class ss m and described in rtree(ssm).
There is scan rt i class for iterating over a range of keys in the index This class is documented
in scan rt i(ssm).

4



3.6 Identifiers

Volumes, files, records and indexes all have identifiers (IDs). IDs are location-dependent,
meaning they refer to the physical location (usually location on disk) of the referenced object.

Volume IDs are a globally unique, 8-byte long ID called lvid t described in lid t(common).
The complete ID for a file or index is a combination of the volume ID and a local store id. The
complete ID for a record combines the file ID, the ID of the page on which the record resides,
and a slot number on the page.

4 Transaction Facilities

As a database storage engine, the SSM provides the atomicity, consistency, isolation, and dura-
bility (often referred to as ACID) properties associated with transactions. More information
on transaction processing issues can be found in the book Transaction Processing: concepts
and techniques [GrRe].

4.1 Transactions

A transaction bounds an atomic and set of operations on records, files, and indexes. The
manual page, transaction(ssm), describes methods for beginning, committing and aborting
transactions. Updates made by committed transactions are guaranteed to be reflected on
stable storage, even in the event of software or processor failure. Updates made by aborted
transactions are rolled back and are not reflected on stable storage.

Although nested transactions are not provided at this time, the notion of save-points are.
Save-points delineate a set of operations that can be rolled back without rolling back the entire
transaction. The interface is described in transaction(ssm).

4.2 Concurrency Control

Transactions are also a unit if isolation. Locking is provided by the SSM as a way to keep
one transaction from interfering with another. When designing the SSM interface there was
considerable debate on whether the SSM should automatically do locking or instead require
the VAS writer to obtain appropriate locks. We chose to have the SSM automatically obtain
locks, but the SSM interface does provide methods allowing locks to be explicitly acquired.
See lock(ssm) for details.

The SSM performs concurrency control using the standard hierarchical two-phase locking
protocol [GrRe]. The lock hierarchy for files is: volume, file, page, slot-containing-record. The
lock hierarchy for indexes is: volume, index, key-value.

Chained transactions are also provided. Chaining involves committing a transaction, re-
taining its locks, starting a new transaction and giving the locks to the new transaction.

5



5 Crash Recovery Facilities

The crash recovery facilities of the SSM can be divided into: logging, checkpointing, and
recovery management.

5.1 Logging

Updates performed by transactions are logged so that the can be rolled back (in the event of
a transaction abort) or restored (in the event of a crash). Both the old and new values of an
updated location are logged. This allows a steal, no-force buffer management policy, which
means the buffer manager is free to write dirty pages to disk at any time and yet does not have
to write dirty pages for a a transaction to commit.

The log is a location holding log records. Currently the log is stored in Unix files in a
special directory (we plan to support using a raw device partition in the future). The size and
location of the log is determined by configuration options described in Section2.

The proper value for the size of the log depends upon the expected transaction mix. More
specifically, it depends on the age of the oldest (longest running) transaction in the system
and the amount of log space used by all active transactions. Here are some general rules to
determine the amount of free log space available in the system.

• Log records between the first log record generated by the oldest active transaction and
the most recent log record generated by any transaction cannot be thrown away.

• Log records from a transaction are no longer needed once the transaction has committed
or completely aborted and all updates have made it to disk. Aborting a transaction
causes log space to be used, so space is reserved for aborting each transaction. Enough
log space must be available to commit or abort all active transactions at all times.

• Only space starting at the beginning of the log can be reused. This space can be reused
if it contains log records only for transactions meeting the previous rule.

• All ss m calls that update records require log space twice the size of the space updated
in the record. All calls that create, append, or truncate records require log space equal
to the size created, inserted, or deleted. Log records generated by these calls (generally
one per call) have an overhead of approximately 50 bytes.

• The amount of log space reserved for aborting a transaction is equal to the amount of
log space generated by the transaction.

• When insufficient log space is available for a transaction, the transaction is aborted.

• The log should be at least 1 Mbyte.

For example, consider a transaction T1 that creates 300 records of size 2,000 bytes, writes
20 bytes in 100 objects, and is committed. T1 requires at 615 Kbytes for the creates and 9
Kbytes of log space for the writes. Since log space must be reserved to abort the transaction,
the log size must be over 1.248 Mbytes to run this transaction. Assuming T1 is the only

6



transaction running in the system, all the log space it uses and reserves becomes available
when it completes. If another transaction, T2, is started at the same time as T1, but is still
running after T1 is committed, only the reserved space for T1 is available for other transactions.
The portion of the log used by T1 and T2 is not available until T2 is finished.

Transactions that fail because of insufficient log space are commonly those that load a large
number of objects into a file during the creation of a database. A solution to this problem is
to load the file in a series of smaller transactions. When the last transaction is committed, the
load is complete. If the load needs to be aborted, a separate transaction is run to destroy the
file.

5.2 Checkpointing

Checkpoints are taken periodically by the SSM in order to free log space and shorten recovery
time. Checkpoints are “fuzzy” and can do not require the system to pause while they are
completing.

5.3 Recovery

The SSM recovers from software, operating system, and CPU failure by restoring updates made
by committed transactions and rolling back all updates by transactions that did not commit
by the time of the crash. when an instance of class ss m is created.

Recovery has three phases:

• Analysis

During the analysis phase the log is scanned to determine what transactions were active
and which devices were mounted at the time of the failure.

• Redo

During the redo phase the devices are remounted and the log is scanned starting at a
location determined by analysis. The operation recorded in each log record is redone if
necessary. After redo, the database is in the state it was just before the crash.

• Undo

During the undo phase, all active transactions at the time of the crash are undone. The
devices are dismounted, and a checkpoint is taken.

The time it takes for recovery depends on several factors, including the number of trans-
actions in progress at the time of the failure, the number of log records generated by these
transactions, and the number of log records generated since the last checkpoint.

6 Thread Management

Providing the facilities to implement a multi-threaded server capable of managing multiple
transactions is one of the distinguishing features of the SSM. Other persistent storage sys-

7



tems such as the Exodus Storage Manager (http://www.cs.wisc.edu/exodus/) only support
writing clients that run one transaction at a time and are usually single-threaded.

The Shore Thread Package is documented in intro(sthread) All threads are derived from
the abstract base class sthread t. Any thread that uses the SSM facilities must be derived
from class smthread t described in smthread t(ssm)

A discussion of how to use threads facility is given in the tutorial.
Any program using the thread package automatically has one thread, the one running

main(). In addition, the SSM starts one thread to do background flushing of the buffer pool
and another to take periodic checkpoints.

We have also implemented some extensions to the thread package. These are not formally
part of the thread package, but we’ve found them useful enough in building the SSM and the
Shore VAS to warrant including them as part of the documented interface.

6.1 Latches

Latches are a read/write synchronization mechanism for threads, as opposed to locks which
are used for synchronizing transactions. Latches are much lighter weight than locks, have no
symbolic names, and have no deadlock detection. Latches are described in latch t(common)

6.2 Thread-Protected Hash Tables

The Resource Manager, rsrc m, template class manages a fixed size pool of shared resources in
a multi-threaded environment. The rsrc m protects each resource with a latch and uses them
to enforce a protocol in which multiple threads have consistent and concurrent access to the
shared resources. For instance, the Shore buffer manager uses rsrc m to manage buffer control
blocks. The rsrc m is implemented using a hash table. When a entry needs to be added and
the table is full, on old entry is removed based on an LRU policy. More details can be found
in rsrc(common)

7 Error Handling

Errors in the SSM (and the rest of Shore) are indicated by an unsigned integer encapsulated
in a class that includes stack traces and other debugging aids. The class is w rc t (commonly
typdefed to rc t) described in rc(fc). It is the return type for most SSM methods. When
linking with a debugging version of the SSM (compiled with #define DEBUG), the destructor of
an w rc t object performs auditing to verify that it was checked at least once. If not checked,
the destructor calls w rc t::error not checked which prints a warning message. An w rc t
is considered checked when any of its methods that read/examine the error code are called,
including the assignment operator. Therefore, simply returning an w rc t (which involves
an assignment) is considered checking it. Of course, the newly assigned w rc t is considered
unchecked.

The domain of error codes is an extension of the Unix error codes found in #include
<errno.h>. Each layer of the Shore software adds its own extension to the domain. The

8



following layers have error codes which may be returned by SSM methods:

• Storage Manager proper, see errors(ssm).

• Thread package, see errors(sthread).

• Configuration options package, see options(common).

• Foundation Classes, see intro(fc).

VAS writers may wish to use the error handling facility to add their own error codes. See
the tutorial and error(fc) for more details.

8 Miscellaneous Facilities

8.1 Statistics

The SSM keeps many statistics on its operation such as lock request and page I/O counts.
Details are available in statistics(ssm). A utility for formatted printing of these statistics is
described in statistics(fc).

8.2 Sorting

The SSM has sorting facilities, however they are still under development, so the interface may
change. Descriptions of the sorting facilities can be found in sort stream i(ssm) and sort(ssm)

8.3 Data Vectors

A data vector is an array of pointers-length pairs to in-memory data. The array can be
arbitrarily long, and methods are provided to comparing and copying data. They are further
described in vec t(common).

Data vectors reduce the number of parameters in many SSM methods be combining pointer
and length information. More importantly, they allow more flexibility in structuring data. For
example, consider record that is stored in memory in three parts. To create the record, all
that is necessary is to build a vector pointing to the three parts and pass the vector to the
ss m::create rec method.

9 Writing and Compiling a VAS and Client

This section discusses some of the general issues in compiling and linking with the SSM libraries.
Still, the best way to learn about writing and compiling a VAS and client is to read the tutorial,
Getting Started Writing a Value-Added Server with the Shore Storage Manager.

9.1 Include Files and Libraries

Any server code using the SSM should include sm vas.h.

9



9.2 Template Instantiation

The SSM uses a number of templates One of the issues that is often confusing is controlling
template instantiation. All of the template instantiations needed by the SSM are already
included in the libraries.

However, due to a bug in gcc 2.6.* (supposedly to be fixed in 2.7.0), it is possible to have
problems during linking due to multiple definitions of template code. To avoid this, and to
have smaller executables, we use the gcc option -fno-implicit-templates in the default
configuration and build. This causes gcc not to emit any template code unless the template is
explicitly instantiated. The configure script options allow you to override this to use explicit
templates.

9.3 Other Example Code

The SSM has been used to build a number of value-added servers. Some of these are publicly
available. You may find these helpful in writing your own. Caveat: Some of these servers are
dated and have not been updated to run with the 5.0 and later releases of the Shore Storage
Manager.

• Shore Server

The Shore Server is the server for the Shore object repository. The Shore Server actually
has two interfaces. One is used by SDL applications and the other is the NFS interface.
The Shore Server code is available in src/vas.

• SSM Testing Shell

The SSM testing shell is a server with a TCL interface designed to test the SSM. The
code is available in src/sm/smsh. No documentation is available yet.

• Paradise

Paradise is a GIS system still under development. It will be publicly available in the
future. See http://www.cs.wisc.edu/paradise/ for more information.

References

[BKSS] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B. “The R*–Tree: An Efficient
and Robust Access Method for Points and Rectangles”. Proc. ACM SIGMOD Int. Conf.
on Management of Data, 1990, pp. 322-331.

[GrRe] Gray, J., Reuter, A. Transaction Processing: concepts and techniques, 1993.

10


