
STHREAD_T (STHREAD) STHREAD_T (STHREAD)

NAME
sthread_t − Shore Thread Abstract Base Class

SYNOPSIS
#include <sthread.h>

/∗ See sthread.h - too long to include here ∗/

DESCRIPTION
The thread mechanism allows several threads of control to share the same address space. Each thread is
represented by an instance of class sthread_t. Once created, a thread is an independent entity with its own
stack. A thread’s execution begins with its run method and ends when run returns. A thread can also be
made to end early by calling end, which forces a longjmp out of the run method.

A thread is created by allocating it from the heap with a call to new and it is started by calling its method
fork. One can await a thread’s completion by calling its method wait. The following code is an example
from the Tcl-based storage manager test shell,

/∗
∗ ssh_smthread_t is derived from smthread_t, which is
∗ derived from sthread_t.
∗/
smthread_t ∗doit = new ssh_smthread_t(f_arg);
if (!doit) {
/∗ error - out of memory ∗/

}

w_rc_t rc = doit->fork();
if(rc) {
/∗ fatal error ∗/

}

w_rc_t rc = doit->wait();
if(rc) {
/∗ fatal error ∗/

}

delete doit;

In a C++ program, the sthread initialization code is built into the library such that it will execute before the
main function. The initialization code is responsible for spawning a main_thread, such that, when the ini-
tialization function returns, it returns in the context of the main_thread. This ensures that the program exe-
cutes in a threaded environment from the very beginning.

Class sthread_base_t is the base class for all sthread classes. It defines constants and enums used
throughout the thread package.

Class sthread_named_base_t inherits from sthread_base_t and adds a name string to the class. Its only
purpose is to ease debugging by providing a name to sthread classes.

Release Jan 1999 1

STHREAD_T (STHREAD) STHREAD_T (STHREAD)

Class sthread_t is an abstract base class that represents a thread of execution; it must be derived in order to
be used, hence the protected constructor.

Enumerations

enum status_t

A thread can be in one of the following states at any one time:

t_defunct is dead
t_ready is in the ready queue waiting to run
t_running is running
t_blocked is not ready to run

enum priority_t

These are the thread priority levels in decreasing order:

t_time_critical has highest priority
t_regular has regular priority
t_fixed_low has lower than regular priority
t_idle_time only runs when system is idle

Methods

sthread_t(priority, block_immediate, auto_delete, name)

The constructor creates a priority level thread. If block_immediate is true, the thread will automat-
ically be run sometime soon. Otherwise, the thread is blocked awaiting an explicit unblock call.
If auto_delete is true, the thread automatically deallocates (destroys) itself when it ends. Other-
wise, the caller must deallocate the thread with delete. The name parameter is used for debugging
purposes only.

The constructor is protected because sthread_t is an abstract base class. Users should derive from
sthread_t the virtual run method.

˜sthread_t()

The destructor deallocates the stack and other resources used by the thread.

run()

Method run is automatically started (by the thread switching code) when a thread begins execu-
tion. It is a pure virtual function that must be implemented in a derived class. The thread ends
when

static end()

The end method ends the execution of the current thread by forcing a longjmp out of the run
method.

static block(timeout, list, caller)

The block method makes the current thread dormant for at least timeout milliseconds. The thread
can be awakened explicitly by an unblock call. The calling thread’s tcb is inserted into { list}, and

Release Jan 1999 2

STHREAD_T (STHREAD) STHREAD_T (STHREAD)

the caller string is saved for debugging purposes. Note that block only returns when the thread is
unblocked (by another thread). Ordinarily, programs do not call block of unblock, since they are
the basis for more powerful synchronization mechanisms: mutexes and condition variables.

unblock(rc)

The unblock method unblocks the thread with an the error rc and marks it as ready to continue
running. The value of rc will be returned from the block method.

static me()

The me method returns a pointer to the current (running) thread.

wait(timeout)

The wait method waits for the thread to terminate. The method returns without error when the
thread terminates within timeout milliseconds. Otherwise, a timeout error is returned.

sleep(timeout)

The sleep method causes the thread to halt execution for timeout milliseconds. Other threads con-
tinue running.

yield()

The yield method gives up the CPU so other threads can run. The current thread remains active
and will be run again soon.

I/O Operations

The thread package provides asynchronous I/O operations. Threads performing these operations will
block, but the server process will not. The implementation was developed for operating systems that do not
provide threads or asynchronous I/O. For each open file a process, diskrw, is started. When a thread
needs I/O on a file, the sthread library blocks the thread, forwards its request to diskrw and switches to
another ready thread. When the I/O request is complemented, the diskrw process informs the sthread
library, which in turn unblocks the original thread that requested the I/O.

Sthread_t provides methods similar to Unix in handling file I/O. However, the file descriptors used by
these methods are not interchangeable with that of Unix, i.e., the fd returned by sthread_t::open can only
be used with other methods in sthread_t such as sthread_t::read.

These I/O operations are closely integrated with buffer pool management. The storage manager buffer
pool is located in memory shared with the diskrw processes. I/O requests must refer to locations in this
shared memory.

Now that most popular operating systems provide threads and asynchronous I/O, the sthread_t I/O opera-
tions should be re-implemented or even eliminated.

ERRORS
See errors(sthread)

Release Jan 1999 3

STHREAD_T (STHREAD) STHREAD_T (STHREAD)

EXAMPLES
VERSION

This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
smthread_t(ssm), smutex_t(sthread), scond_t(sthread), sevsem_t(sthread), file_handlers(sthread),
intro(sthread).

Release Jan 1999 4

