
smthread_t (ssm) Shore Storage Manager smthread_t (ssm)

NAME
smthread_t − SSM Thread Class

SYNOPSIS
#include <sm_vas.h> // which includes smthread.h

typedef void st_proc_t(void ∗);

class smthread_t : public sthread_t {
public:

NORET smthread_t(
st_proc_t∗ f,
void∗ arg,
priority_t priority = t_regular,
bool block_immediate = false,
bool auto_delete = false,
const char∗ name = 0,
long lockto = WAIT_FOREVER);

NORET smthread_t(
priority_t priority = t_regular,
bool block_immediate = false,
bool auto_delete = false,
const char∗ name = 0,
long lockto = WAIT_FOREVER);

NORET ˜smthread_t();

virtual void run() = 0;

void attach_xct(xct_t∗ x);
void detach_xct(xct_t∗ x);
xct_t∗ xct();
const xct_t∗ const_xct() const;
static smthread_t∗ me();

// set and get lock_timeout value
long lock_timeout() const;
void lock_timeout(long i);

/∗
∗ These methods are used to verify than nothing is
∗ left pinned accidentally. Call mark_pin_count before an
∗ operation and check_pin_count after it with the expected
∗ number of pins that should not have been released.
∗/
void mark_pin_count();
void check_pin_count(int change);
void check_actual_pin_count(int actual) ;
void incr_pin_count(int amount) ;

/∗
∗ These methods are used to verify that a thread

Release Jan 1999 1

smthread_t (ssm) Shore Storage Manager smthread_t (ssm)

∗ is only in one ss_m::, scan::, or pin:: function at a time.
∗/
void in_sm(bool in);
bool is_in_sm() const;

private:
void user(); /∗ disabled sthread_t::user ∗/

};

DESCRIPTION
Class smthread_t inherits from sthread_t, and extends it for use by the higher layers of the Shore Storage
Manager. Any thread calling methods documented in ssm section manual pages (see intro(ssm) for a list)
must be an smthread_t or derived from it.

sthread_t(priority, block_immediate, auto_delete, name, lock_timout)

See sthread_t(sthread) for details on the priority, block_immediate, auto_delete and name
parameters. The lock_timout parameter specifies the default for how long a lock request by the
smthread should block before it times out.

run()

This method is the body of the thread. See sthread_t(sthread) for more details. Users must pro-
vide their own run method.

Methods pertinent to Transactions

Threads often run on behalf of a transaction, so there are methods for associating a thread with a transac-
tion. For more information on transactions, see transaction(ssm)

attach_xct(xct)

The attach_xct method attaches the thread to transaction xct. Any SSM operation, performed by
this thread, that requires transaction information will use the xct transaction. For example, all
locks acquired by operations will be for the xct transaction. The ss_m::begin_xct method
automatically calls attach_xct. It is a fatal error to call attach_xct if the thread is already attached
to a transaction.

More than one thread can operate on behalf of a given transaction at any time, but certain transaction-
related activities are serialized with a synchronization variable. For example, only one of the threads can
be writing log records for a top-level (compensated) operation at any time. Another example of such seri-
alization involves the lock manager: if any single thread of a multi-threaded transaction waits on a lock, all
of the transaction’s threads that would block in the lock manager wait on the same lock (regardless what
locks they are trying to acquire).

A VAS that attaches a transaction to more than one thread runs a high risk of getting latch-latch deadlocks
among threads. It is the responsibility of the VAS to implement its own protocol for avoiding these
deadlocks. An example of such a protocol is to allow threads of multi-threaded transactions to work on
non-overlapping partitions of the database.

Release Jan 1999 2

smthread_t (ssm) Shore Storage Manager smthread_t (ssm)

It is also the responsibility of the VAS to see that certain operations, including commit and abort, are not
attempted while a transaction is attached to several threads.

detach_xct(xct)

The detach_xct method detaches the thread from transaction xct. It is a fatal error if the thread is
not already attached to xct.

xct()

The xct method returns the transaction to which the thread is currently attached.

ERRORS
TODO

EXAMPLES
See Writing Value-Added Servers with the Shore Storage Manager for an example of how to use
threads in a server.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
intro(sthread) sthread_t(sthread) transaction(ssm) lock(ssm)

Release Jan 1999 3

