
FILE_HANDLERS (STHREAD) FILE_HANDLERS (STHREAD)

NAME
sfile_hdl_base_t, sfile_read_hdl_t − File Descriptor I/O Handler Classes

SYNOPSIS
#include <sthread.h>

class sfile_hdl_base_t : public w_vbase_t {
public:

enum { rd = 1, wr = 2, ex = 4 };
enum { max = 64 };

NORET sfile_hdl_base_t(
int fd,
int mask);

NORET ˜sfile_hdl_base_t();

const int fd;

virtual void read_ready() = 0;
virtual void write_ready() = 0;
virtual void expt_ready() = 0;

void enable();
void disable();

static w_rc_t wait(long timeout = sthread_base_t::WAIT_FOREVER);
static void dump(const char∗ str, ostream& out);

static bool is_active(int fd);
};

class sfile_read_hdl_t : public sfile_hdl_base_t {
public:

NORET sfile_read_hdl_t(int fd);
NORET ˜sfile_read_hdl_t();

w_rc_t wait(long timeout);
void shutdown();
bool is_down() { return _shutdown; }

protected:
// hide base::read_ready
virtual void read_ready();

};

class sfile_write_hdl_t : public sfile_hdl_base_t {
public:

NORET sfile_write_hdl_t(int fd);
NORET ˜sfile_write_hdl_t();

w_rc_t wait(long timeout);
void shutdown();
bool is_down() { return _shutdown; }

protected:
// hide base::write_ready

Release Jan 1999 1

FILE_HANDLERS (STHREAD) FILE_HANDLERS (STHREAD)

virtual void write_ready();
};

DESCRIPTION
File handlers are used in situations when a thread needs to wait for I/O on a unix file descriptor but does
not want the operating system to suspend the whole process. File handlers provide a means with which a
thread can wait for I/O without affecting other threads that are ready to run.

Class sfile_hdl_base_t
Class sfile_hdl_base_t is an abstract base class for handling asynchronous file events. In general, users
should not be concerned with this class. They should, instead, be instantiating more refined file handler
classes such as sfile_read_hdl_t. see the implementation of sfile_read_hdl_t in src/sthread/sthread.c.

sfile_hdl_base_t(fd, mask)

The constructor creates a file handler for the file descriptor fd. Parameter mask is a bitwise ORed
value of the following flags:

rd signifying read intention
wr signifying write intention
ex signifying exception intention

˜sfile_hdl_base_t()

enable()

The enable method enables the file handler to be waited on when the thread package calls the
select system call.

disable()

The disable method disables the file handler from being waited on when the thread package calls
the select system call.

wait()

The wait method waits for some file handlers to be ready. An error is returned if timeout mil-
liseconds elapsed before any file handler is ready. Warning: this method blocks the entire pro-
cess on a unix select system call.

is_active(fd)

The is_active method returns true if a file handler exists for file descriptor fd.

Class sfile_read_hdl_t
Class sfile_read_hdl_t inherits from sfile_hdl_base_t but handles only read events. It is used to block a
thread that needs to wait for input on a file descriptor before proceeding. For example, a thread that
processes user commands from stdin would create a sfile_read_hdl_t on file descriptor 0. The the EXAM-
PLES section for more details.

Release Jan 1999 2

FILE_HANDLERS (STHREAD) FILE_HANDLERS (STHREAD)

sfile_read_hdl_t(fd)

The constructor creates a read-intention file handler on file descriptor fd.

˜sfile_read_hdl_t()

shutdown()

The shutdown method turns off monitoring of the file descriptor manages by the file handler.
Any threads is waiting on it, awakened with a stBADFILEHDL error code.

wait()

The wait method suspends the current thread, waiting to read from the file descriptor. The
method returns timeout error if timeout milliseconds elapse before anything arrives on the file
descriptor.

Class sfile_write_hdl_t
Class sfile_write_hdl_t inherits from sfile_hdl_base_t but handles only write events. It is used to block a
thread that needs to wait for a file descriptor to be ready for writing.

This class has only recently been implemented. No documentation is available yet. TODO

ERRORS
TODO.

EXAMPLES
stdin_thread_t::run()
{
sfile_read_hdl_t h(0); // handle on stdin
char buf[256];
for (;;) {

if (h.wait()) {
/∗ handle error ∗/
...

}
/∗ stdin is ready -- read user command into buf ∗/
read(0, buf, sizeof(buf)-1);
/∗ process user command ∗/
...

}
}

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

Release Jan 1999 3

FILE_HANDLERS (STHREAD) FILE_HANDLERS (STHREAD)

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
errors(sthread), sthread_t(sthread), smutex_t(sthread), scond_t(sthread), sevsem_t(sthread),
intro(sthread).

Release Jan 1999 4

