
enum (ssm) Shore Storage Manager enum (ssm)

NAME
ss_m::concurrency_t, ss_m::store_property_t − Enumerations for Class ss_m

SYNOPSIS
// In use, each of the values must be qualified by ss_m:
enum ss_m::concurrency_t {

t_cc_bad,
t_cc_none,
t_cc_record,
t_cc_page,
t_cc_file,
t_cc_vol,
t_cc_kvl,
t_cc_im,
t_cc_modkvl

};

// In use, each of the values must be qualified by ss_m:
enum ss_m::store_property_t {

t_regular,
t_temporary,
t_load_file,
t_insert_file,
t_bad_storeproperty

};

DESCRIPTION
enum ss_m::concurrency_t

The enumeration, ss_m::concurrency_t is used for specifying locking granularity. Lock granularity
comes in several flavors, depending on the context in which it is used. In any case, it is based on a lock
hierarchy. The lock hierarchy for files is: volume, file, page, record. The hierarchy for indexes is: volume,
index, key-value. The values for the enumeration have the following general meanings (more specific
meanings are described in the manual pages for the context in which they are used):

ss_m::t_cc_none:
No locking is to be done. The responsibility for consistency lies with the user of the SSM service
being invoked.

ss_m::t_cc_volume:
Acquire only volume locks.

ss_m::t_cc_file:
Acquire file or index locks (and volume locks resulting from the hierarchy).

ss_m::t_cc_page:
Acquire page locks, along with the file, and volume locks determined by the hierarchy. (Page
locks are never acquired for indexes.)

ss_m::t_cc_record:
Acquire record locks, and acquire the page, file, and volume locks determined by the hierarchy.

Release Jan 1999 1

enum (ssm) Shore Storage Manager enum (ssm)

ss_m::t_cc_kvl:
Acquire key-value (predicate) locks, along with the index and volume locks determined by the
hierarchy. This is the default locking protocol for B+ trees, and when it is used, next-key locks
are acquired for phantom protection, giving full degree-3 transaction isolation. See Gray, J.,
Reuter, A. Transaction Processing: concepts and techniques, 1993. for to learn about predicate
locking and transaction isolation.

ss_m::t_cc_modkvl:
This is a simplistic form of key-value locking, in which there is no phantom protection. When
used, range scans on indexes are not permitted.

ss_m::t_cc_im:
This locking protocol can be used with B+ tree indexes that are used as access methods. It works
ONLY for indexes whose values are record identifiers. When used, the index manager acquires
record locks, along with the page, file, and volume locks determined by the hierarchy, for records
identified by the index entries.

enum ss_m::store_property_t

The enumeration ss_m::store_property_t identifies special properties that a store (a set of pages; a file or
an index) may have. A store can be given one of these properties when the store is created, and subse-
quently it can be given a different property. This is useful for bulk-loading.

The enumerated values have the following meanings:

ss_m::t_regular:
Updates to the store (file or index) are logged, providing the Durability property in ACID transac-
tions.

ss_m::t_temporary:
File or index is temporary. This means that no logging will be done on the data in the store, and
the effect of rollback on updates is undefined. (The store’s structural integrity is guaranteed by
logging, but the user’s data within the store are not. In the case of B+trees and R∗trees, the
integrity of the tree is NOT guaranteed; only the integrity of the underlying store is guaranteed. In
event of abort, the index must be destroyed.) Temporary stores are removed when the volumes
containing them are dismounted or mounted; consequently, temporary stores do not survive
crashes.

ss_m::t_load_file:
A store that is created with this property starts out as a temporary store, and is converted to a regu-
lar store at commit time.

ss_m::t_insert_file:
Updates to existing pages of the store are fully-logged (as if the store had the property
ss_m::t_regular), but pages allocated (while the store has this property) are not logged. This
makes sense in the context in which a store is bulk-loaded in one transaction (with property
ss_m::t_load_file), and more data are appended in a subsequent transaction. To avoid the cost of
logging, the latter transaction would convert the store’s property to ss_m::t_insert_file, append its
data, and convert the store’s property back to ss_m::t_regular.

Release Jan 1999 2

enum (ssm) Shore Storage Manager enum (ssm)

CAVEAT
The numeric values of these enumeration constants may change from release to release. Use only the sym-
bolic forms. Do not use these constants as bit-mask values.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
intro(ssm), lock(ssm), Gray, J., Reuter, A. Transaction Processing: concepts and techniques, 1993.

Release Jan 1999 3

