Stat 849: Polynomial regression and introduction to model selection

Sündüz Keleș
Department of Statistics
Department of Biostatistics and Medical Informatics
University of Wisconsin, Madison

Polynomial regression

Useful when transformations cannot linearize the relation between the predictors and the response.
General polynomial model with one predictor:
$Y=\beta_{0}+\sum_{i=1}^{k} \beta_{j} X^{j}+\epsilon$.
Parameter estimation?

Polynomial regression

Useful when transformations cannot linearize the relation between the predictors and the response.
General polynomial model with one predictor:
$Y=\beta_{0}+\sum_{i=1}^{k} \beta_{j} X^{j}+\epsilon$.
Parameter estimation?
Numerical problems: Different powers of the same variable could be highly correlated, numerical values can easily get very large or very small.
To overcome this, one could normalize X :

$$
X^{*}=\frac{2 X-\max (X)-\min (X)}{\max (X)-\min (X)}
$$

A better way is to use orthogonal polynomials.

Consider the model

$$
Y_{i}=\gamma_{0} \phi_{0}\left(X_{i}\right)+\gamma_{1} \phi_{1}\left(X_{i}\right)+\cdots+\gamma_{k} \phi_{k}\left(X_{i}\right)+\epsilon_{i}
$$

where $\phi_{r}\left(X_{i}\right)$ is an r-th degree polynomial in X and the polynomials are orthogonal over X :

$$
\sum_{i=1}^{n} \phi_{r}\left(X_{i}\right) \phi_{s}\left(X_{i}\right)=0, \quad \forall r, s, r \neq s
$$

We have $Y=X \gamma+\epsilon$, where

$$
X=\left(\begin{array}{cccc}
\phi_{0}\left(X_{1}\right) & \phi_{1}\left(X_{1}\right) & \cdots & \phi_{k}\left(X_{1}\right) \\
\phi_{0}\left(X_{2}\right) & \phi_{1}\left(X_{2}\right) & \cdots & \phi_{k}\left(X_{2}\right) \\
\cdots & \cdots & \cdots & \cdots \\
\phi_{0}\left(X_{n}\right) & \phi_{1}\left(X_{n}\right) & \cdots & \phi_{k}\left(X_{n}\right)
\end{array}\right)
$$

How about $X^{\top} X$?

$$
X^{T} X=\left(\begin{array}{cccc}
\sum_{i} \phi_{0}^{2}\left(X_{i}\right) & 0 & \cdots & 0 \\
0 & \sum_{i} \phi_{1}^{2}\left(X_{i}\right) & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \sum_{i} \phi_{k}^{2}\left(X_{i}\right)
\end{array}\right)
$$

Hence,

$$
\hat{\gamma}_{r}=\frac{\sum_{i} \phi_{r}\left(X_{i}\right) Y}{\sum_{i} \phi_{r}^{2}\left(X_{i}\right)}, \quad r=0, \cdots, k
$$

How about obtaining ϕ_{r} ?

Generating orthogonal polynomial basis

Various ways to do so.
Hayes (1974) suggested: Normalize X so that $-1 \leq X_{i} \leq 1$ and

$$
\phi_{r+1}(X)=2\left(X-a_{r+1}\right) \phi_{r}(X)-b_{r} \phi_{r-1}(X),
$$

where $\phi_{0}(X)=1, \phi_{1}(X)=2\left(X-a_{1}\right)$,

$$
\begin{aligned}
a_{r+1} & =\frac{\sum_{i=1}^{n} X_{i} \phi_{r}^{2}\left(X_{i}\right)}{\sum_{i=1}^{n} \phi_{r}^{2}\left(X_{i}\right)} \\
b_{r} & =\frac{\sum_{i=1}^{n} \phi_{r}^{2}\left(X_{i}\right)}{\sum_{i=1}^{n} \phi_{r-1}^{2}\left(X_{i}\right)},
\end{aligned}
$$

with $b_{0}=0, a_{1}=\bar{X}$.
In practice, use poly().

Example: 133 observations of acceleration against time for a simulated motorcycle accident (Silverman, 1985).
> library (MASS)
$>$ data(mcycle)
$>$ attach(mcycle)
> plot(times, accel)
> lm1 = lm(accel ~ poly(times, 3))
> lines(times, lm1\$fitted, lty = 3, col = "red")
> lm2 = lm(accel ~ poly(times, 6))
> lines(times, lm2\$fitted, lty = 5, col = "blue")
> legend (40, -100, c("degree = 3", "degree = 6"), lty $=c(3,5), ~ c o l=c(" r e d ", ~ " b l u e "))$

Figure: Polynomial regression.
$>$ cbind(times, times^2, times^3) [1:7,]
times

$[1]$,	2.4	5.76	13.824
$[2]$,	2.6	6.76	17.576
$[3]$,	3.2	10.24	32.768
$[4]$,	3.6	12.96	46.656
$[5]$,	4.0	16.00	64.000
$[6]$,	6.2	38.44	238.328
$[7]$,	6.6	43.56	287.496

> model.matrix(lm1)[1:7,]

(Intercept) poly(times, 3)1 poly (times, 3) $2 \mathrm{poly}(\mathrm{times}, 3) 3$			
1	-0.150978025	0.228360989	-0.2572341691
1	-0.149652433	0.223634171	-0.2473124239
1	-0.145675655	0.209670791	-0.2186500006
1	-0.143024469	0.200542765	-0.2004466931
1	-0.140373284	0.191559455	-0.1829542651
1	-0.125791765	0.144738044	-0.0989511020
1	-0.123140580	0.136695387	-0.0858056922

Is the design matrix orthogonal?

```
> X = model.matrix(lm1)
> t(X[, 1]) %*% X[, 2]
    [,1]
[1,] 1.110223e-15
> t(X[, 1]) %*% X[, 3]
    [,1]
[1,] 1.665335e-16
> t(X[, 1]) %*% X[, 4]
    [,1]
[1,] 6.661338e-16
> t(X[, 2]) %*% X[, 3]
            [,1]
[1,] -5.691384e-17
> t(X[, 2]) %*% X[, 4]
    [,1]
[1,] 1.996287e-17
```

poly() function generates orthogonal polynomials which represent a basis for polynomial regression. Orthogonal polynomials are not uniquely defined.

Comparing fits from different order polynomial regressions

```
> anova(lm1, lm2)
Analysis of Variance Table
Model 1: accel ~ poly(times, 3)
Model 2: accel ~ poly(times, 6)
    Res.Df RSS Df Sum of Sq F \(\operatorname{Pr}(>F)\)
\(1 \quad 129206424\)
\(2126138921366750320.4087 .645 e-11\) ***
Signif. codes: \(0{ }^{\prime * * * '} 0.001{ }^{\prime * *} 0.01\) '*' \(0.05^{\prime} .{ }^{\prime} 0.1\) ' ' 1
```


Model/variable selection

Why select?

Model/variable selection

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given p variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.

Model/variable selection

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given p variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have $p>n$ variables. Can we fit a linear regression model using all these p variables?

Model/variable selection

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given p variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have $p>n$ variables. Can we fit a linear regression model using all these p variables?
- We might have variables that are very correlated. We will see that multicollinearity can be a severe problem.

Model/variable selection

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given p variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have $p>n$ variables. Can we fit a linear regression model using all these p variables?
- We might have variables that are very correlated. We will see that multicollinearity can be a severe problem.

Model/variable selection

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given p variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have $p>n$ variables. Can we fit a linear regression model using all these p variables?
- We might have variables that are very correlated. We will see that multicollinearity can be a severe problem.

The emphasis in the next couple of lectures is model/variable selection.

Multicollinearity: why it might be a problem and what can

 we do?
Possible remedies:

- Subset selection.
- Shrinkage estimators: Ridge and Lasso (regularization); Principal components regression (PCR), and Partial least squares regression (PLS) (methods using derived input directions).

Multicollinearity: why it might be a problem and what can

 we do?
Possible remedies:

- Subset selection.
- Shrinkage estimators: Ridge and Lasso (regularization); Principal components regression (PCR), and Partial least squares regression (PLS) (methods using derived input directions).
Overall idea: we will give up some bias (in estimates of β) to gain in variance. Recall that mean squared error of an estimator $=$ Bias ${ }^{2}+$ Variance.

Multicollinearity: why it might be a problem and what can

 we do?
Possible remedies:

- Subset selection.
- Shrinkage estimators: Ridge and Lasso (regularization); Principal components regression (PCR), and Partial least squares regression (PLS) (methods using derived input directions).
Overall idea: we will give up some bias (in estimates of β) to gain in variance. Recall that mean squared error of an estimator $=$ Bias ${ }^{2}+$ Variance.
First, let's investigate what happens with collinearity with simple examples.

```
x1 = c(2, 8, 6, 10)
x2 = c(6, 9, 8, 10)
y = c(23, 83, 63, 103)
#Obtain the design matrix
x = cbind(1, x1, x2)
> qr(x)$rank #QR decomposition
[1] 2
xx = t(x) % *% % x
> XX
```

		$x 1$	x2
	4	26	33
x1	26	204	232
x2	33	232	281

\#R will not report an estimated coefficient for all predictors
$>\operatorname{lm}\left(\mathrm{y}^{\sim} \mathrm{x} 1+\mathrm{x} 2\right)$
Call: $\operatorname{lm}(f o r m u l a=y \quad \sim x 1+x 2)$
Coefficients:

(Intercept)	x 1	x 2
3	10	NA

\#Though it will give us the fitted values of Y
$>\operatorname{lm} 1=\operatorname{lm}\left(y^{\sim} \mathrm{x} 1+\mathrm{x} 2\right)$
> lm1\$fitted
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$\begin{array}{llll}23 & 83 & 63 & 103\end{array}$

```
#Finding generalized inverse using SVD
svd1 = svd(xx, nu = 2, nv = 2)
ginv1 = svd1$v%*%diag(1/svd1$d[1:2])%*%t(svd1$u)
    [,1] [,2] [,3]
[1,] 0.005247813 -0.01974733 0.01636540
[2,] -0.019747328 0.07628377 -0.06059475
[3,] 0.016365403 -0.06059475 0.05152964
```

\#check whether this satisfies the g-inverse property.
> xx\%*\%ginv1\% 1% \%xx

		$x 1$	$x 2$
	4	26	33
x1	26	204	232
x2	33	232	281

```
#Another way of obtaining a generalized inverse.
lxx = xx[1:2, 1:2]
a = solve(lxx)
a = cbind(a, 0)
a = rbind(a, 0)
ginv2 = a
> ginv2
x1
    1.4571429 -0.18571429 0
x1 -0.1857143 0.02857143 0
    0.0000000 0.00000000 0
#check whether this satisfies the g-inverse property.
> xx%*%%ginv2%*%xx
        x1 x2
        4 26 33
        x1 26 204 232
        x2 33 232 281
```

hatbeta1 = ginv1\% 1% (x) \% $\% \% \mathrm{y}$
hatbeta2 = ginv2\% $\% \%$ t (x) \% $\% \%$ y
> hatbeta1

$$
\begin{array}{rr}
& {[, 1]} \\
{[1,]} & -0.8095238 \\
{[2,]} & 9.6190476 \\
{[3,]} & 0.7619048
\end{array}
$$

> hatbeta2
[,1]
3
x1 10
0
\#Let's check the predictions from two fits:
> $\mathrm{x} \% * \%$ hatbeta1

$$
\begin{array}{cc}
& {[, 1]} \\
{[1,]} & 23 \\
{[2,]} & 83 \\
{[3,]} & 63 \\
{[4,]} & 103 \\
> & \text { x\%*\%hatbeta2 }
\end{array}
$$

$$
[, 1]
$$

$$
[1,] \quad 23
$$

$$
[2,] \quad 83
$$

$$
[3,] \quad 63
$$

$$
[4,] \quad 103
$$

\#This confirms that $x *$ hatbeta is the same for both set of parameter estimates.
\#Other coefficient estimates computed using \#other generalized inverses...
hatbeta3 $=$ matrix $(c(-87,1,18)$, nrow $=3)$
hatbeta4 $=$ matrix $(c(-7,9,2)$, nrow $=3)$
> $\mathrm{x} \% * \%$ hatbeta3

\[

\]

$$
[, 1]
$$

$$
[1,] \quad 23
$$

$$
[2,] \quad 83
$$

$$
[3,] \quad 63
$$

$$
[4,] \quad 103
$$

Notes

```
x1
[1] 2 8 6 10
> x2
[1] 6 9 8 10
```


Notes

```
> x1
```

[1]	2	8	6	10
$>\mathrm{x} 2$				
$[1]$	6	9	8	10

- We have $x 2=5+0.5 * x 1$, perfect correlation (perfect multicollinearity) between the two predictors!

Notes

$>\mathrm{x} 1$
[1] 288610
$>\mathrm{x} 2$
[1] $6 \quad 9 \quad 8 \quad 10$

- We have $x 2=5+0.5 * x 1$, perfect correlation (perfect multicollinearity) between the two predictors!
- So, what is the problem ? Can you say which predictor is more important?

Notes

$>\mathrm{x} 1$
[1] 288610
$>\mathrm{x} 2$
[1] $6 \quad 9 \quad 8 \quad 10$

- We have $x 2=5+0.5 * x 1$, perfect correlation (perfect multicollinearity) between the two predictors!
- So, what is the problem ? Can you say which predictor is more important?
- What happens when we get a new observation (x_{1} and x_{2}), and we want to predict Y for this observation? E.g. $x_{1}=6$, $x_{2}=-3$.
\#Example 1:
newx $=c(1,6,-3)$
> newx\%*\%hatbeta1

$$
[, 1]
$$

[1,] 54.61905
> newx\%*\%hatbeta2
[,1]
[1,] 63
> newx\%*\%hatbeta3

$$
[, 1]
$$

[1,] -135
> newx\%*\%hatbeta4
[,1]
[1,] 41
\#4 different predictions are obtained!!
\#Example 2:
newx $=c(1,7,8.5)$ \#note that $5+0.5 * 7=8.5$
> newx\%*\%hatbeta1

$$
[, 1]
$$

[1,] 73
> newx\%*\%hatbeta2

$$
[, 1]
$$

[1,] 73
> newx\%*\%hatbeta3 [,1]
[1,] 73
> newx\%*\%hatbeta4
[,1]
[1,] 73

If the new observations are following the same collinearity pattern, the predictions are not affected, i.e., predictions for new observations are unique for different estimates of regression coefficients.

Almost perfect multicollinearity

```
n = 100
p = 2
set.seed(1)
#I am not showing you how I generated
#predictors X1 and X2
Y = 1.3+ 0.5 * X[, 1] + 0.05 * X[, 2] + rnorm(n, 0, 1)
```

Now, lets regress Y on X_{1} and X_{2}.

```
> summary(lm(Y~ X))
    Call: lm(formula = Y ~ X)
    Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.943591 & -0.436453 & 0.002018 & 0.636917 & 2.639407
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
    (Intercept) 1.3254 0.1052 12.599 <2e-16 ***
    X1 0.8963 0.7770 1.154 0.252
    X2 -0.3290 0.7761 -0.424 0.673
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
    Residual standard error: 1.043 on 97 degrees of freedom
Multiple R-Squared: 0.1988, Adjusted R-squared: 0.1823
F-statistic: 12.03 on 2 and 97 DF, p-value: 2.144e-05
```

Notice anything strange?

The paradoxical result is due to the fact that X_{1} and X_{2} are highly correlated, they essentially convey the same information regarding Y.
> summary $\left(\operatorname{lm}\left(\mathrm{y}^{\sim} \mathrm{X}[, 1]\right)\right)$
Call: $\operatorname{lm}(f$ formula $=y$ ~ $\mathrm{X}[, 1])$
Residuals:

Min	1Q	Median	3Q	Max
-2.91800	-0.46847	-0.04045	0.64358	2.64128

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $1.3271 \quad 0.104712 .679<2 \mathrm{e}-16 * * *$
$\mathrm{X}\left[\begin{array}{lllll} & 1] & 0.5707 & 0.1163 & 4.908 \\ 3.66 e-06 & * * *\end{array}\right.$

Signif. codes: $0{ }^{\prime} * * * ' 0.001^{\prime} * * ' 0.01^{\prime} *^{\prime} 0.05$ ', 0.1 , 1
Residual standard error: 1.039 on 98 degrees of freedom
Multiple R-Squared: 0.1973, Adjusted R-squared: 0.1891
F-statistic: 24.09 on 1 and 98 DF, p-value: 3.663e-06

How about the fitted values?

```
> lm1
    Call: lm(formula = y ~ X)
    (Intercept) X1
        X1 X2
        1.3254 0.8963 -0.3290
    > lm2
    Call: lm(formula = y ~ X[, 1])
    (Intercept) X[, 1]
        1.3271 0.5707
> lm3
Call: lm(formula = y ~ X[, 2])
(Intercept) X[, 2]
        1.3323 0.5561
> cor(lm1$fitted, lm2$fitted)
    [1] 0.9962594
    > cor(lm1$fitted, lm3$fitted)
    [1] 0.9719647
    > cor(lm2$fitted, lm3$fitted)
    [1] 0.988647
```


Summary

- Perfect multicollinearity (rank deficient design matrix X, singularity) affects interpretability, causes unreliable predictions for future observations.
- In case of high collinearity (not perfect but in the range of \sim 0.90), we won't be able to understand how various predictors impact Y, e.g., individual p-values might be misleading, confidence intervals will be wide and adding or deleting a single data point might change the coefficients dramatically (unstable coefficient estimates).
- We might be interested in only a subset of the predictors when we have thousands of them.
- Prediction accuracy might be improved by sacrificing a bit of bias in exchange for reducing the variance.
- It is often easier to interpret a simple model than a complex one.

