Stat 849: Polynomial regression and introduction to model selection

Sündüz Keleş

Department of Statistics Department of Biostatistics and Medical Informatics University of Wisconsin, Madison

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polynomial regression

Useful when transformations cannot linearize the relation between the predictors and the response.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General polynomial model with one predictor:

$$Y = \beta_0 + \sum_{i=1}^k \beta_i X^j + \epsilon.$$

Parameter estimation?

Polynomial regression

Useful when transformations cannot linearize the relation between the predictors and the response.

General polynomial model with one predictor:

$$Y = \beta_0 + \sum_{i=1}^k \beta_j X^j + \epsilon.$$

Parameter estimation?

Numerical problems: Different powers of the same variable could be highly correlated, numerical values can easily get very large or very small.

To overcome this, one could normalize X:

$$X^* = \frac{2X - \max(X) - \min(X)}{\max(X) - \min(X)}.$$

A better way is to use orthogonal polynomials.

Consider the model

$$Y_i = \gamma_0 \phi_0(X_i) + \gamma_1 \phi_1(X_i) + \cdots + \gamma_k \phi_k(X_i) + \epsilon_i,$$

where $\phi_r(X_i)$ is an *r*-th degree polynomial in X and the polynomials are orthogonal over X:

$$\sum_{i=1}^n \phi_r(X_i)\phi_s(X_i) = 0, \quad \forall r, s, r \neq s.$$

We have $Y = X\gamma + \epsilon$, where

$$X = \begin{pmatrix} \phi_0(X_1) & \phi_1(X_1) & \cdots & \phi_k(X_1) \\ \phi_0(X_2) & \phi_1(X_2) & \cdots & \phi_k(X_2) \\ \cdots & \cdots & \cdots & \cdots \\ \phi_0(X_n) & \phi_1(X_n) & \cdots & \phi_k(X_n) \end{pmatrix}$$

How about $X^T X$?

$$X^{T}X = \begin{pmatrix} \sum_{i} \phi_{0}^{2}(X_{i}) & 0 & \cdots & 0 \\ 0 & \sum_{i} \phi_{1}^{2}(X_{i}) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sum_{i} \phi_{k}^{2}(X_{i}) \end{pmatrix}$$

Hence,

$$\hat{\gamma}_r = rac{\sum_i \phi_r(X_i) Y}{\sum_i \phi_r^2(X_i)}, \quad r = 0, \cdots, k.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

How about obtaining ϕ_r ?

Generating orthogonal polynomial basis

Various ways to do so.

Hayes (1974) suggested: Normalize X so that $-1 \le X_i \le 1$ and

$$\phi_{r+1}(X) = 2(X - a_{r+1})\phi_r(X) - b_r\phi_{r-1}(X),$$

where $\phi_0(X) = 1$, $\phi_1(X) = 2(X - a_1)$,

$$a_{r+1} = \frac{\sum_{i=1}^{n} X_i \phi_r^2(X_i)}{\sum_{i=1}^{n} \phi_r^2(X_i)}$$

$$b_r = \frac{\sum_{i=1}^{n} \phi_r^2(X_i)}{\sum_{i=1}^{n} \phi_{r-1}^2(X_i)},$$

with $b_0 = 0$, $a_1 = \bar{X}$. In practice, use poly(). **Example:** 133 observations of acceleration against time for a simulated motorcycle accident (Silverman, 1985).

- > library(MASS)
- > data(mcycle)
- > attach(mcycle)
- > plot(times, accel)
- > lm1 = lm(accel ~ poly(times, 3))
- > lines(times, lm1\$fitted, lty = 3, col = "red")
- > lm2 = lm(accel ~ poly(times, 6))
- > lines(times, lm2\$fitted, lty = 5, col = "blue")
- > legend(40, -100, c("degree = 3", "degree = 6"),

lty = c(3, 5), col = c("red", "blue"))

Figure: Polynomial regression.

э

ł

> cbin	d(time	es, tim	nes^2, times^3)	[1:7,]		
times						
[1,]	2.4	5.76	13.824			
[2,]	2.6	6.76	17.576			
[3,]	3.2	10.24	32.768			
[4,]	3.6	12.96	46.656			
[5,]	4.0	16.00	64.000			
[6,]	6.2	38.44	238.328			
[7,]	6.6	43.56	287.496			
<pre>> model.matrix(lm1)[1:7,]</pre>						
(Intercept) poly(times, 3)1 poly(times, 3)2 poly(times, 3)3						
1		1	-0.150978025	0.228360989	-0.2572341691	
2		1	-0.149652433	0.223634171	-0.2473124239	
3		1	-0.145675655	0.209670791	-0.2186500006	
4		1	-0.143024469	0.200542765	-0.2004466931	
5		1	-0.140373284	0.191559455	-0.1829542651	
6		1	-0.125791765	0.144738044	-0.0989511020	
7		1	-0.123140580	0.136695387	-0.0858056922	

Is the design matrix orthogonal?

```
> X = model.matrix(lm1)
> t(X[, 1]) %*% X[, 2]
             [.1]
[1,] 1.110223e-15
> t(X[, 1]) %*% X[, 3]
             [.1]
[1,] 1.665335e-16
> t(X[, 1]) %*% X[, 4]
             [.1]
[1.] 6.661338e-16
> t(X[, 2]) %*% X[, 3]
              [.1]
[1.] -5.691384e-17
> t(X[, 2]) %*% X[, 4]
             [,1]
[1,] 1.996287e-17
```

poly() function generates orthogonal polynomials which represent a basis for polynomial regression. Orthogonal polynomials are not uniquely defined.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Comparing fits from different order polynomial regressions

> anova(lm1, lm2)
Analysis of Variance Table

Model 1: accel ~ poly(times, 3)
Model 2: accel ~ poly(times, 6)
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 129 206424
2 126 138921 3 67503 20.408 7.645e-11 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

<□ > < @ > < E > < E > E のQ @

Why select?

Why select?

• In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given *p* variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given *p* variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have p > n variables. Can we fit a linear regression model using all these p variables?

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given *p* variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have p > n variables. Can we fit a linear regression model using all these p variables?
- We might have variables that are very correlated. We will see that multicollinearity can be a severe problem.

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given *p* variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have p > n variables. Can we fit a linear regression model using all these p variables?
- We might have variables that are very correlated. We will see that multicollinearity can be a severe problem.

Why select?

- In practice, we never know the underlying true variables that are associated with the response of our interest (e.g., true model is unknown to us). Typically, we will be given *p* variables and we would like to find out which of these we should include in the regression model. Many investigators like a small model, i.e., small number of variables because of its simplicity to explain and understand.
- Often, we might have p > n variables. Can we fit a linear regression model using all these p variables?
- We might have variables that are very correlated. We will see that multicollinearity can be a severe problem.

The emphasis in the next couple of lectures is model/variable selection.

Multicollinearity: why it might be a problem and what can we do?

Possible remedies:

- Subset selection.
- Shrinkage estimators: Ridge and Lasso (regularization); Principal components regression (PCR), and Partial least squares regression (PLS) (methods using derived input directions).

Multicollinearity: why it might be a problem and what can we do?

Possible remedies:

- Subset selection.

- Shrinkage estimators: Ridge and Lasso (regularization); Principal components regression (PCR), and Partial least squares regression (PLS) (methods using derived input directions). **Overall idea:** we will give up some bias (in estimates of β) to gain in variance. Recall that mean squared error of an estimator = Bias² + Variance.

Multicollinearity: why it might be a problem and what can we do?

Possible remedies:

- Subset selection.

- Shrinkage estimators: Ridge and Lasso (regularization); Principal components regression (PCR), and Partial least squares regression (PLS) (methods using derived input directions). **Overall idea:** we will give up some bias (in estimates of β) to gain in variance. Recall that mean squared error of an estimator =

 $Bias^2 + Variance.$

First, let's investigate what happens with collinearity with simple examples.

```
x1 = c(2, 8, 6, 10)
x2 = c(6, 9, 8, 10)
y = c(23, 83, 63, 103)
#Obtain the design matrix
x = cbind(1, x1, x2)
> qr(x)$rank #QR decomposition
[1] 2
xx = t(x) % * x
> xx
       x1 x2
    4 26 33
x1 26 204 232
x2 33 232 281
#R will not report an estimated coefficient for all predictors
> lm(y^x1+x2)
Call: lm(formula = y ~ x1 + x2)
Coefficients:
(Intercept) x1
                                 x2
        3
                   10
                                 NA
#Though it will give us the fitted values of Y
> lm1 = lm(y^x1+x2)
> lm1$fitted
1
    2
      3 4
23 83 63 103
                                          ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
```

#Finding generalized inverse using SVD svd1 = svd(xx, nu = 2, nv = 2) ginv1 = svd1\$v%*%diag(1/svd1\$d[1:2])%*%t(svd1\$u) [,1] [,2] [,3] [1,] 0.005247813 -0.01974733 0.01636540 [2,] -0.019747328 0.07628377 -0.06059475 [3,] 0.016365403 -0.06059475 0.05152964

#check whether this satisfies the g-inverse property.
> xx%*%ginv1%*%xx

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

x1 x2 4 26 33 x1 26 204 232 x2 33 232 281

```
#Another way of obtaining a generalized inverse.
 lxx = xx[1:2, 1:2]
 a = solve(lxx)
 a = cbind(a, 0)
 a = rbind(a, 0)
 ginv2 = a
 > ginv2
                       x1
    1,4571429 - 0.18571429 0
x1 - 0.1857143 0.02857143 0
    0.000000 0.0000000 0
 #check whether this satisfies the g-inverse property.
 > xx%*%ginv2%*%xx
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

x1 x2 4 26 33 x1 26 204 232 x2 33 232 281

```
hatbeta1 = ginv1%*%t(x)%*%y
hatbeta2 = ginv2%*%t(x)%*%y
> hatbeta1
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
[,1]
[1,] -0.8095238
[2,] 9.6190476
[3,] 0.7619048
```

> hatbeta2

```
[,1]
3
x1 10
0
```

#Let's check the predictions from two fits: > x%*%hatbeta1

[,1] [1,] 23 [2,] 83 [3,] 63 [4,] 103 > x%*%hatbeta2 [,1] [1,] 23 [2,] 83 [3,] 63 [4,] 103

#This confirms that x*hatbeta is the same for both set of parameter estimates.

```
#Other coefficient estimates computed using
#other generalized inverses...
hatbeta3 = matrix(c(-87, 1, 18), nrow = 3)
hatbeta4 = matrix(c(-7, 9, 2), nrow = 3)
> x%*%hatbeta3
```

- [,1] [1,] 23 [2,] 83 [3,] 63 [4,] 103
- > x%*%hatbeta4

	[,1]
[1,]	23
[2,]	83
[3,]	63
[4,]	103

> x1 [1] 2 8 6 10 > x2 [1] 6 9 8 10

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> x1 [1] 2 8 6 10 > x2 [1] 6 9 8 10

> We have x2 = 5 + 0.5 * x1, perfect correlation (perfect multicollinearity) between the two predictors!

> x1 [1] 2 8 6 10 > x2 [1] 6 9 8 10

- We have x2 = 5 + 0.5 * x1, perfect correlation (perfect multicollinearity) between the two predictors!
- So, what is the problem ? Can you say which predictor is more important?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> x1 [1] 2 8 6 10 > x2 [1] 6 9 8 10

- We have x2 = 5 + 0.5 * x1, perfect correlation (perfect multicollinearity) between the two predictors!
- So, what is the problem ? Can you say which predictor is more important?
- What happens when we get a new observation (x₁ and x₂), and we want to predict Y for this observation? E.g. x₁ = 6, x₂ = -3.

```
#Example 1:
newx = c(1, 6, -3)
> newx%*%hatbeta1
          [,1]
 [1,] 54.61905
> newx%*%hatbeta2
       [,1]
 [1.] 63
> newx%*%hatbeta3
     [,1]
[1.] -135
> newx%*%hatbeta4
      [,1]
[1.] 41
#4 different predictions are obtained!!
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

```
#Example 2:
newx = c(1, 7, 8.5) #note that 5 + 0.5 * 7 = 8.5
> newx%*%hatbeta1
```

[.1] [1.] 73 > newx%*%hatbeta2 [,1] [1,] 73 > newx%*%hatbeta3 [,1] [1,] 73 > newx%*%hatbeta4 [.1] [1,] 73

If the new observations are following the same collinearity pattern, the predictions are not affected, i.e., predictions for new observations are unique for different estimates of regression coefficients.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Almost perfect multicollinearity

```
n = 100
p = 2
set.seed(1)
#I am not showing you how I generated
#predictors X1 and X2
Y = 1.3+ 0.5 * X[, 1] + 0.05 * X[, 2] + rnorm(n, 0, 1)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Now, lets regress Y on X_1 and X_2 .

> summary(lm(Y[~] X)) Call: lm(formula = Y ~ X)Residuals: Min 10 Median 30 Max -2.943591 -0.436453 0.002018 0.636917 2.639407 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.3254 0.1052 12.599 <2e-16 *** X1 0.8963 0.7770 1.154 0.252 X2 -0.3290 0.7761 -0.424 0.673 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.043 on 97 degrees of freedom Multiple R-Squared: 0.1988, Adjusted R-squared: 0.1823 F-statistic: 12.03 on 2 and 97 DF, p-value: 2.144e-05

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Notice anything strange?

> cor(X[, 1], X[, 2])
[1] 0.988647

The paradoxical result is due to the fact that X_1 and X_2 are highly correlated, they essentially convey the same information regarding Y.

```
> summary(lm(y~ X[, 1]))
Call: lm(formula = y ~ X[, 1])
Residuals:
    Min 10 Median
                              30
                                      Max
-2.91800 -0.46847 -0.04045 0.64358 2.64128
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.3271 0.1047 12.679 < 2e-16 ***
    X[, 1] 0.5707 0.1163 4.908 3.66e-06 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.039 on 98 degrees of freedom
Multiple R-Squared: 0.1973, Adjusted R-squared: 0.1891
F-statistic: 24.09 on 1 and 98 DF, p-value: 3.663e-06
```

How about the fitted values?

```
> lm1
Call: lm(formula = y ~ X)
 (Intercept)
                                 X2
                     X1
     1.3254 0.8963 -0.3290
> 1m2
Call: lm(formula = y ~ X[, 1])
 (Intercept) X[, 1]
    1.3271 0.5707
> 1m3
Call: lm(formula = y ~ X[, 2])
 (Intercept) X[, 2]
    1.3323 0.5561
> cor(lm1$fitted, lm2$fitted)
 [1] 0.9962594
> cor(lm1$fitted, lm3$fitted)
 [1] 0.9719647
> cor(lm2$fitted, lm3$fitted)
 [1] 0.988647
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

- Perfect multicollinearity (rank deficient design matrix X, singularity) affects interpretability, causes unreliable predictions for future observations.
- In case of high collinearity (not perfect but in the range of ~ 0.90), we won't be able to understand how various predictors impact Y, e.g., individual p-values might be misleading, confidence intervals will be wide and adding or deleting a single data point might change the coefficients dramatically (unstable coefficient estimates).
- We might be interested in only a subset of the predictors when we have thousands of them.
- Prediction accuracy might be improved by sacrificing a bit of bias in exchange for reducing the variance.
- It is often easier to interpret a simple model than a complex one.