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Department of Statistics
Department of Biostatistics and Medical Informatics

University of Wisconsin, Madison



Regression Diagnostics

Checking the Gauss-Markov assumptions on the error vector
using graphical and numerical methods.

Checking the normality assumption.

Weighted least squares: Heteroscedascity.

Outlier and influential point detection.



Outliers and Influential observations

Regression outliers.

High leverage points.

Influential points.

What are these and how can we measure them?

One should be cautious about unusual data points in linear models
since they can influence the results of the analysis, and their
presence might may be a signal that the model fails to capture
important characteristics of the data.
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Outliers

Outliers are extreme observations.

It is common practice to distinguish between two types of
outliers.

Outliers in the response variable are called residual outliers.

Outliers with respect to the predictors are called leverage
points. They can affect the regression model, too. Their
response variables need not be outliers. However, they may
almost uniquely determine regression coefficients. They may
also cause the standard errors of regression coefficients to be
much smaller than they would be if the observation were
excluded.



Outlier detection

Residual outliers can be identified from (1) residual plots
against X or Ŷ ; (2) box plots, stem-and-leaf plots, and dot
plots of the residuals.

Plotting standardized residuals might be helpful.

Standardized residuals: ε̂i/
√

var(ε̂i ).

var(ε̂) =?



Standardized (internally studentized) residuals

var(ε̂) = var(Y − Ŷ )

= var(Y − PY ) = σ2(I − P),

where P = X (XTX )−1XT is the projection matrix (hat matrix H).
Then, var(ε̂i ) = σ2(1− hii ) where hii is the i-th element on the
main diagonal of the hat matrix, and the covariance between
residuals ε̂i and ε̂j (i 6= j) is σ2(0− hij) = −hijσ

2, where hij is the
element in the i-th row and j-th column of the hat matrix.
Note: This can only correct for the natural non-constant variance
in residuals when errors εi have constant variance.



Leverage

hii is called the leverage (in terms of the X values) of the i-th
case.

Properties of hii : 0 ≤ hii ≤ 1,
∑n

i=1 hii = p.

The hii values theoretically range from 1/n to 1. Those that
exceed 2p/n are said to be large.

Interpretation: It is a measure of distance between the X
values for the i-th case and the means of the X values for all
of the observations. It measures the degree of conformity of a
single observation to the linear pattern established by the
other n − 1 observations.

For a linear regression with model with one predictor, the
leverage associated with the specific observation (xi , yi ) is

hii =
1

n
+

(xi − x̄)2∑n
i=1(xi − x̄)2

.



#Computing standardized residuals
xx = cbind(1, x)
H = xx %*% solve((t(xx)%*%xx)) %*% t(xx) #Hat Matrix
dhat = (1-diag(H))

#Could also use lm.influence(lm1)$hat
lm1.stdres0 = lm1$resid/sqrt((sum(lm1$resid^2)/(n-2 ))*dhat)

#Two R functions that will give us standardized residuals
lm1.stdres2 = rstandard(lm1)
library(MASS)
lm1.stdres1 = stdres(lm1)



What to do with outliers?

Should only discard these if there is a direct evidence that it
represents an error in recoding, a miscalculation, a malfunctioning
of equipment, or a similar type of circumstance. Sometimes
detection of an outlier itself might be of interest.



Example 1
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Fits with and without data points 14 and 28 (Example 1)

summary(lm(Y ~ X))$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.2213052 0.196018 11.33215 3.610852e-15
X 0.4650999 0.074137 6.27352 9.567487e-08

summary(lm(Y[-which(X >= 7)] ~ X[-which(X >= 7)]))$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.2477769 0.2349439 9.567291 1.630211e-12
X[-which(X >= 7)] 0.4464636 0.1127122 3.961095 2.573293e-04



Example 2
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Fits with and without data point 51 (Example 2)

summary(lm(Y~X))$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.417814 0.2813514 5.039298 6.759613e-06
X 0.540498 0.2299715 2.350282 2.282995e-02
summary(lm(Y[-51]~X[-51]))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9872932 0.3036230 6.5452648 3.665170e-08
X[-51] -0.0856566 0.2763996 -0.3099014 7.579775e-01



Example 3
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Example 3
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Fits with and without data point 51 (Example 3)

summary(lm(Y~X))$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.063155 0.3531323 5.842443 4.089197e-07
X 4.918900 0.3220109 15.275571 2.884107e-20
summary(lm(Y[-51]~X[-51]))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.987293 0.3036230 6.545265 3.66517e-08
X[-51] 4.914343 0.2763996 17.779852 9.29556e-23



R commands (Example 2)

> cbind(lm1$resid, rstandard(lm1), rstudent(lm1),
cooks.distance(lm1))

[,1] [,2] [,3] [,4]
1 0.16501135 0.16007840 0.15847797 2.910475e-04
2 0.87295674 0.84646206 0.84397335 7.793663e-03
3 -0.78706606 -0.77629531 -0.77310187 1.722916e-02
4 -0.55512537 -0.53784507 -0.53390689 2.909499e-03
. . .
49 0.03401324 0.03295962 0.03262192 1.109980e-05
50 0.51771742 0.50705673 0.50317786 5.453846e-03
51 2.42019451 3.11442047 3.44190961 3.877808e+00

> 4/(51-2) #Adhoc threshold for Cook’s distance
[1] 0.08163265

#Also check out outlier.test() in the car library.



Box-Cox Transformation

library(MASS)
data(trees)
attach(trees)

#This data set provides measurements of the girth, height and
#volume of timber in 31 felled black cherry trees. Note that
#girth is the diameter of the tree (in inches) measured at 4
#ft 6 in above the ground.

lmtree = lm (Volume ~ Girth, data = trees)

par(mfcol = c(2, 2))
plot(Girth, Volume, main = "Scatter plot of the raw data")
plot(Girth, lmtree$resid, ylab = "residuals", main = "Residual
plot from raw data fit")
abline(h = 0)
boxcox(lmtree)
mtext("Box-Cox transformation")



boxcox()
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Diagnostic plots before boxcox()
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boxcox()

names(boxcox(lmtree)) #Find the index of lambda with the highest
#log-likelihood value

rev(order(boxcox(lmtree)$y))[1]
[1] 60
> boxcox(lmtree)$x[60]
[1] 0.3838384
lambda = boxcox(lmtree)$x[60]

Volumestar = (Volume^(lambda)-1)/lambda
newlmtree = lm (Volumestar ~ Girth, data = trees)

par(mfcol = c(2, 2))
plot(Girth, Volumestar, main = "Scatter plot of the
transformed data")
plot(Girth, newlmtree$resid, ylab = "residuals",
main = "Residual plot from transformed data fit")
abline(h = 0)
boxcox(newlmtree)
mtext("Box-Cox transformation")



boxcox()
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Diagnostic plots after boxcox()
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