Stat 849: Application of the Gauss-Markov Theorem

Sündüz Keleș

Department of Statistics
Department of Biostatistics and Medical Informatics
University of Wisconsin, Madison

September 14, 2008

Problem

A rocket is launched from ground level (altitude $y=0$) at time $t=0$. Its upward acceleration is a. The altitude of the rocket is measured by two separate instruments at times $t_{1}, t_{2}, \cdots, t_{n}$. At time t_{i}, the altitudes $y_{i, 1}$ and $y_{i, 2}$ measured by the respective instruments satisfy the model

$$
y_{i, j}=\frac{1}{2} a t_{i}^{2}+e_{i, j}, \quad 1 \leq i \leq n \quad j=1,2 .
$$

The measurement errors $\left\{e_{i, j}: 1 \leq i \leq n, j=1,2\right\}$ are taken to be independent, identically distributed. Both the acceleration a and the variance σ^{2} are unknown.

Candidate estimators for a

- Least squares estimator:

$$
\hat{a}_{L S E}=\frac{\sum_{i=1}^{n} t_{i}^{2}\left(y_{i, 1}+y_{i, 2}\right)}{\sum_{i=1}^{n} t_{i}^{4}}
$$

- Another estimator:

$$
\tilde{a}=\sum_{i=1}^{n}\left(y_{i, 1}+y_{i, 2}\right) / \sum_{i=1}^{n} t_{i}^{2}
$$

You are allowed to choose between the two estimators. Which one would you use and why?

Properties of the estimators

- Linearity?

Properties of the estimators

- Linearity?

Properties of the estimators

- Linearity? Both estimators are linear.
- Bias:

Properties of the estimators

- Linearity? Both estimators are linear.
- Bias:

Properties of the estimators

- Linearity? Both estimators are linear.
- Bias:
$\hat{a}_{L S E}$ is unbiased by the LSE theory.

Properties of the estimators

- Linearity? Both estimators are linear.
- Bias:
$\hat{a}_{\text {LSE }}$ is unbiased by the LSE theory.

$$
\begin{aligned}
E[\tilde{a}]=\frac{\sum_{i=1}^{n} E\left(y_{i, 1}+y_{i, 2}\right)}{\sum_{i=1}^{n} t_{i}^{2}} & =\frac{\sum_{i=1}^{n}\left(a t_{i}^{2} / 2+a t_{i}^{2} / 2\right)}{\sum_{i=1}^{n} t_{i}^{2}} \\
& =a \frac{\sum_{i=1}^{n} t_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}}=a .
\end{aligned}
$$

Properties of the estimators

- Linearity? Both estimators are linear.
- Bias:
$\hat{a}_{\text {LSE }}$ is unbiased by the LSE theory.

$$
\begin{aligned}
E[\tilde{a}]=\frac{\sum_{i=1}^{n} E\left(y_{i, 1}+y_{i, 2}\right)}{\sum_{i=1}^{n} t_{i}^{2}} & =\frac{\sum_{i=1}^{n}\left(a t_{i}^{2} / 2+a t_{i}^{2} / 2\right)}{\sum_{i=1}^{n} t_{i}^{2}} \\
& =a \frac{\sum_{i=1}^{n} t_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}}=a .
\end{aligned}
$$

Properties of the estimators

- Linearity? Both estimators are linear.
- Bias:
$\hat{a}_{\text {LSE }}$ is unbiased by the LSE theory.

$$
\begin{aligned}
E[\tilde{a}]=\frac{\sum_{i=1}^{n} E\left(y_{i, 1}+y_{i, 2}\right)}{\sum_{i=1}^{n} t_{i}^{2}} & =\frac{\sum_{i=1}^{n}\left(a t_{i}^{2} / 2+a t_{i}^{2} / 2\right)}{\sum_{i=1}^{n} t_{i}^{2}} \\
& =a \frac{\sum_{i=1}^{n} t_{i}^{2}}{\sum_{i=1}^{n} t_{i}^{2}}=a .
\end{aligned}
$$

- Both are linear and biased. By the Gauss-Markov Theorem, the LSE â $\mathrm{a}_{L S E}$ is better (has smaller mean squared error, e.g., variance).

Variances of the estimators

$$
\begin{aligned}
\operatorname{Var}\left(\hat{a}_{L S E}\right) & =\frac{2 \sigma^{2}}{\sum_{i=1}^{n} t_{i}^{4}}, \\
\operatorname{Var}(\tilde{a}) & =\frac{2 n \sigma^{2}}{\left(\sum_{i=1}^{n} t_{i}^{2}\right)^{2}} .
\end{aligned}
$$

Variances of the estimators

$$
\begin{aligned}
\operatorname{Var}\left(\hat{a}_{L S E}\right) & =\frac{2 \sigma^{2}}{\sum_{i=1}^{n} t_{i}^{4}}, \\
\operatorname{Var}(\tilde{a}) & =\frac{2 n \sigma^{2}}{\left(\sum_{i=1}^{n} t_{i}^{2}\right)^{2}} .
\end{aligned}
$$

Can estimate these variances by replacing σ^{2} by its least squares estimator s^{2}.

A simulation study to see this in action

We will generate 1000 data points. Then, we will look at the variance and bias of the two estimators as a function of the sample size $(n=\{10,20, \cdots, 1000\})$.

Results: Bias

Results: Variance

Notes on the R code

- The code to generate these plots are available on the course website.
- The code works with the estimator of 2a rather than a.
- $\operatorname{Var}(2 a ̃)=4 \operatorname{Var}(\tilde{a})$.
- Note that for each t_{i}^{2} we have a $y_{i, 1}$ and $y_{i, 2}, i=1, \cdots, n$. So the effective sample size of the data is $2 n$.
- You are encouraged to experiment with the value of a, σ^{2}, and sample size.

Exercise

- Calculate variances of the both estimators.
- Analytically show that $\hat{a}_{L S E}$ has a smaller variance (Hint: Use Cauchy-Schwarz inequality).

