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Problem

A rocket is launched from ground level (altitude y = 0) at time
t = 0. Its upward acceleration is a. The altitude of the rocket is
measured by two separate instruments at times t1, t2, · · · , tn. At
time ti , the altitudes yi ,1 and yi ,2 measured by the respective
instruments satisfy the model

yi ,j =
1

2
at2

i + ei ,j , 1 ≤ i ≤ n j = 1, 2.

The measurement errors {ei ,j : 1 ≤ i ≤ n, j = 1, 2} are taken to be
independent, identically distributed. Both the acceleration a and
the variance σ2 are unknown.



Candidate estimators for a

Least squares estimator:

âLSE =

∑n
i=1 t2

i (yi ,1 + yi ,2)∑n
i=1 t4

i

.

Another estimator:

ã =
n∑

i=1

(yi ,1 + yi ,2)/
n∑

i=1

t2
i .

You are allowed to choose between the two estimators. Which one
would you use and why?



Properties of the estimators

Linearity?

Both estimators are linear.

Bias:
âLSE is unbiased by the LSE theory.

E [ã] =

∑n
i=1 E (yi ,1 + yi ,2)∑n

i=1 t2
i

=

∑n
i=1(at

2
i /2 + at2

i /2)∑n
i=1 t2

i

= a

∑n
i=1 t2

i∑n
i=1 t2

i

= a.

Both are linear and biased. By the Gauss-Markov Theorem,
the LSE âLSE is better (has smaller mean squared error, e.g.,
variance).
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âLSE is unbiased by the LSE theory.

E [ã] =
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Variances of the estimators

Var(âLSE ) =
2σ2∑n
i=1 t4

i

,

Var(ã) =
2nσ2(∑n
i=1 t2

i

)2
.

Can estimate these variances by replacing σ2 by its least squares
estimator s2.
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Var(ã) =
2nσ2(∑n
i=1 t2

i

)2
.

Can estimate these variances by replacing σ2 by its least squares
estimator s2.



A simulation study to see this in action

We will generate 1000 data points. Then, we will look at the
variance and bias of the two estimators as a function of the sample
size (n = {10, 20, · · · , 1000}).



Results: Bias
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Results: Variance

0 2000 4000 6000 8000 10000

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Sample size

V
ar

ia
nc

e

LSE
Other



Notes on the R code

The code to generate these plots are available on the course
website.

The code works with the estimator of 2a rather than a.

Var(2ã) = 4Var(ã).

Note that for each t2
i we have a yi ,1 and yi ,2, i = 1, · · · , n. So

the effective sample size of the data is 2n.

You are encouraged to experiment with the value of a, σ2,
and sample size.



Exercise

Calculate variances of the both estimators.

Analytically show that âLSE has a smaller variance (Hint: Use
Cauchy-Schwarz inequality).


