
Stat 849: Subset selection and obtaining a

sequence of models for model selection

There are, in general, two main reasons why we may not be ”happy” with least
squares estimators (LSEs) in a regression model. The first reason is the prediction
accuracy, which reflects the fact that LSEs may be unbiased but have high variance.
Prediction accuracy can sometimes be improved by shrinking (we will talk about
this later in the class) or setting some coefficients to zero. With this, some bias is
sacrificed to reduce the variance of the predicted values with the goal of improving
overall accuracy. The second reason for considering alternatives to LSEs is the issue
of interpretability. If we have thousands of variables (predictors), we might usually
be interested in identifying a subset of these that show the strongest effects. (Refer-
ence: Hastie, Tibshirani, Friedman 2002).

So far, we have seen various criteria to choose among different models (Cp, AIC,
BIC, adjusted-R2). We have yet to talk about obtaining candidate models when we
have large number of predictor.

Subset selection refers to only keeping a subset of the original variables, and elim-
inating the rest from the model. Least squares is used for estimation in the obtained
smaller models.

Suppose that we have p predictors. There are alternative ways of obtaining
sequence of models of various sizes using these predictors. We list these below:

1. Best subset regression. This is feasible to employ if one has a small subset
of predictors. The general principle includes finding for each k ∈ {1, · · · , p} the
subset of size k that gives smallest residual sum of squares.

Question: Given the model size, e.g. k = 3, how do you decide which model
of size k is the best? Note that if there are p predictors, we have p choose k
models of size k.

If we have a candidate model for each model size (note that each candidate
model implies a candidate estimator µn,k for E[Y ]), then the next step is
to choose among these candidate estimators using the various approaches we
talked about.

Drawbacks: Can you think of any?
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2. Forward stepwise selection (Forward addition). This methods starts
with the intercept and sequentially adds into the model the predictor that
improves the fit most. First note that this will give us a nested sequence of
models with sizes from 1 to p.

Suppose our current model has k predictors (k + 1 parameters including the
intercept term) and the corresponding parameters are represented by the vector
β̂k. Say we add in a predictor resulting in estimates β̃. The improvement in
the fit is often based on the F-statistics:

F =
RSS(β̂k) − RSS(β̃)

RSS(β̃)/(n − k − 2)
∼ F1,n−k−2.

A commonly employed strategy adds in sequentially the predictor producing
the largest value of F , stopping when no predictor produces an F-ratio greater
than the 90th or 95th percentile of the corresponding distribution F1,n−k−2.

Drawbacks: Can you think of any?

3. Backward stepwise selection (Backward deletion, backward elimina-
tion). This procedure starts with the full model, and sequentially deletes pre-
dictors. Similar to forward selection, it typically uses an F-ratio to choose the
predictor to delete. In this case, we drop the predictor producing the smallest
value of F at each stage, stopping when each predictor in the model produces
a value of F greater than the 90th or 95th percentile when dropped.

Question: Can we use this method regardless of the dimensions of n and p?

Drawbacks: Can you think of any?

4. Stepwise regression (Forward selection - Backward elimination). This
is a combination of forward stepwise selection and backward stepwise elimina-
tion procedures, and in particular, consists of forward selection (FS) followed
by backward deletion (BD) at each step. There are two model parameters FIN

and FOUT .

Start with a model consisting of the intercept term alone, then perform a
FS step adding a single variable if the corresponding F value is greater than
FIN . Then, perform a BD step removing a variable if the corresponding F
value is less than FOUT . These steps are iterated until no further variables
are introduced at the FS step. Provided that FOUT < FIN algorithm must
eventually terminate (see page 418 in Seber and Lee).

Drawbacks: Can you think of any?
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Question. How about including interactions?

Useful R functions: leaps(), mle.stepwise(), step(). See R handout for an
example.

These procedures provide means for obtaining a set of candidate models (also
estimators). Once we have those models we would like to be able to choose the
model that provides the best prediction accuracy [Recall that the selection criteria
we talked about do not utilize future observations]. Say as our estimate of E[Y | X]
we choose µn,k(X) = Xkβk,n, where βk,n is the LSE in a k dimensional model and
Xk is the corresponding design matrix in this model. Then, we want to know what
the expected loss (expected squared error loss) would be for future observations. In
other words,

EP0 [(Y − Xβk,n)2],

which represents the risk of the estimator βk,n is the quantity of interest. Here, the
expectation is w.r.t. unknown true data generating distribution P0. We need to
find a way of estimating this quantity! Also note that the risk is a random quantity
because it depends on the random sample (also called the learning sample) through
βk,n. We will use cross-validation to estimate this risk and then choose the estimator
with minimum cross-validated risk.
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